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CHAPTER I 

INTRODUCTION 

Much of the current research on the nutrient requirements of the 

exercising horse has been focused on energy arid protein and led to improved 

ration formulation for performance horses. The area of mineral requirements 

has only recently received attention. Current recommendation on mineral 

requirements for most classes of horses are not well defined, and research on 

the effect of exercise on mineral requirements is fragmented and incomplete. It 

is suspected that exercise influences mineral metabolism as evidenced by 

changes in circulating concentrations of calcium, phosphorus, potassium, 

chloride and sodium. Also, it is known that significant amounts of minerals are 

lost in sweat. Potassium, the major intracellular ion, is involved in the 

maintenance of acid-base balance and osmotic pressure. Sodium, the major 

extracellular ion, is also involved in acid-base balance and osmotic regulation of 

body fluids. Chloride normally accompanies sodium and is also involved in acid

base balance and osmotic regulation of body fluids. These three ions are the 

main components of the equation used to express dietary cation-anion balance 

(DCAB). Research data from other species indicates that the acid or base 

producing power of a diet has significant effects on calcium and magnesium 

balance, blood and urine pH, milk production, adaptation to heat stress, and the 

occurrence of developmental bone diseases. However, little or no work has 

been conducted on the effects of DCAB, calculated as meq((Na + K)- Cl)jkg 

diet DM, on mineral metabolism in the exercising horse. Diets fed to 
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most exercising horses have calculated DCAB near 150 meqjkg of dry matter 

and may be as low as 50-100 meqjkg dry matter. Those levels would be 

considered as marginal to deficient for poultry and dairy cattle rations in terms of 

maintaining optimum blood pH and calcium retention. While short term effects 

of feeding such diets may or may not be noticeable, long term effects could 

significantly influence the health and performance of horses. If manipulating the 

DCAB could be shown to improve calcium retention or balance, there is potential 

for minimizing skeletal demineralizations and the associated changes in bone 

strength. Also, if DCAB could be shown to elevate blood pH or prevent the 

depression of blood pH associated with anaerobic exercise, the onset of fatigue 

due to metabolic acidosis might be delayed and ultimately performance 

improved. 

Research on the effects of DCAB on mineral balance is needed if owners 

and trainers are to maximize performance and minimize the health risks to 

exercising horses. Therefore, the objectives of this trial were to investigate the 

effects of dietary cation-anion balance on mineral balance, blood pH, and urine 

pH in the anaerobically exercised horse. 



CHAPTER II 

LITERATURE REVIEW 

Evolution of Dietary Cation-Anion Balance 

The dietary electrolytes sodium, potassium, and chloride have received 

minimal attention in animal nutrition research. This might partially be explained 

by the rare occurance of electrolyte deficiencies in common animal rations. 

Diets usually contain potassium in excess of most animal requirements, and 

sodium and chloride may be easily supplemented as salt. However, the ratio of 

these ions in the composition of ration ingredients or within supplemental form is 

usually not considered. In recent years, it has become apparent that the 

interrelationships between these elements play an important role in nutrition and 

should be more precisely controlled and studied. 

Mangin (1980) was one of the first researchers to propose a balance 

equation which included the dietary electrolytes sodium (Na), potassium (K), 

and chloride (CI) as follows: meq (Na + K)- Cl/100g diet dry matter. The 

equation was used to express a diet's ability to affect acid-base physiology. 

More recent equations have included all ionizable elements in the diet regardless 

of their valence state or availability. However, Mangin's equation is st1ll the most 

commonly used and considers only the monovalent elements Na, K, and Cl as 

they are the most readily absorbed from the gut and appear to have the greatest 

effect on the acid or base producing power of the diet (Austic, 1988). The units 

of this equation are appropriately in milliequivalents instead of milligrams as 

3 



these elements produce their physiological effects according to their valence 

rather than their weight. 

Either dietary cation-anion balance (DCAB) or acid-base balance has 

been the accepted terminology used to describe the interrelationships of these 

electrolytes. However, since the DCAB exerts its physiological effects via the 

acid-base system of the body, it has in recent years become the most popular 

and printed term. 

Equine Studies 

Mineral Requirements 

4 

Sodium. The NRC lists the sodium concentrations of common feedstuffs 

to be less than 0.01 in many cases. Therefore, sodium is routinely added to 

horse rations or provided in supplemental form. Although sodium is the major 

extracellular cation and the major electrolyte involved in the maintanence of acid

base balance and osmotic regulation of body fluids, there are no reported 

studies defining the sodium requirement based on Meal of digestible energy 

intake per day. However, an optimum sodium concentration for equine diets 

has been reported to range between 1.6 and 1.8 gjkg of dry matter for 

maintenance, growth, and late gestation (Jarrige and Martin-Rosset, 1981). The 

same study reported a two fold increase in sodium requirement to 3.6 gjkg of 

dry matter for horses performing moderate to heavy work. Drepper et al. (1982) 

reported a maintenance requirement of 15 gj day and a light to heavy work 

requirement of 21 to 36 gjday for a mature 600 kg horse. Generally, the sodium 

requirement for work is reported as roughly twice that for maintenance. 

However, the requirement may dramatically increase when exposed to 
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prolonged exercise or elevated temperatures as sodium is a primary component 

of sweat. Sweat sodium losses have been reported to range between 8.25 to 

82.5 g depending on the level of exercise (Meyer, 1987). More recently, Young 

et al. (1989) reported sodium losses in sweat of 42.1 mgjkg of body weight in 

miniature horses during exercise at a work load of 945 kg·km. Based on the 

limited data reported on sodium requirement, the 1989 National Research 

Council Nutrient Requirements of Horses (NRC) lists the adequate concentration 

of sodium for maintenance, pregnant and lactating mares, and growth as 0.10 

percent of the total ration on a dry matter basis. The requirement for working 

horses is listed at 0.30 percent of the total ration (DM). 

Potassium. The NRC (1989) lists the potassium concentration of forages 

and oilseed meals as 1 to 2 percent on a dry matter basis. The common cereal 

grains corn, oats, and wheat contain 0.3 to 0.4 percent potassium. Therefore, 

the potassium requirement is easily met as forages represent a large proportion 

of horse rations,. Hintz and Schryver (1976) reported mature horses required 

0.06 g of potassiumjkgBW /d or approximately 0.4 percent of the diet. In 1981, 

Jarrige and Martin-Rosset reported an optimum potassium concentration for 

light to medium work of 0.4 to 0.5 percent. Drepper et al. (1982) estimated the 

potassium maintenance requirement of a 600 kg horse to be 22 gjd. The 

requirement was estimated to increase to 32 g/d for light work, 43 gjd for 

medium work, and 53 g/d for heavy work. Meyer et al. (1985) suggested that 

sweat losses of potassium are so large that the requirement for the heavily 

exercised horse may be twice that of the sedentary horse. Young et al. (1989) 

reported sweat potassium losses of 138.1 mgjkg BW in miniature horses 

exercising at a work load of 945 kg·km. Based on the previous information, the 

NRC (1989) estimates the potassium requirement for maintenance to be 0.05 



gjkg BW or 1.52 gjMcal of DE. The NRC further suggests an increase in the 

potassium requirements of 1.1, 1.4, and 1.8 times maintenance for light, 

medium, and heavy work respectively, based on the work of Drepper et al. 

(1982). 

6 

Chloride. Chloride is also an essential component of gastric secretions 

necessary for digestion and is an important extracellular anion involved in acid

base balance and osmotic regulation of body fluids. However, the chloride 

concentrations of feedstuffs are not well defined, and the requirements of horses 

have not been established. Nonetheless, chloride requirements are assumed to 

be met when sodium requirements are met with the addition of sodium chloride 

to the diet. 

Magnesium. The NRC (1989) states the magnesium concentrations of 

common feedstuffs ranges from 0.1 to 0.3 percent. Hintz and Schryver (1972) 

and Meyer (1979) reported a range from 40 to 60 percent for the true absorption 

efficiency of magnesium. McKenzie (1981) reported magnesium to be 42 to 45 

percent digestible. Drepper et al. (1982) proposed a daily magnesium 

requirement of 12 g for maintenance of a 600 kg horse and that the requirement 

increases by 1 to 2 gjday for light to medium work. Given a true absorption 

efficiency of 40 percent, the NRC (1989) suggests a magnesium requirement of 

15 mgjkg BW/day or .46 gjMcal of DE/day. 

Sulfur. To date, sulfur has received very little attention from equine 

nutrition researchers, and no data has been reported on sulfur requirements in 

the exercising horse. It is known that nonruminant animals meet their sulfur 

amino acid requirement pnmarily from organic sulfur forms including cystine and 

methionine. Some dietary inorgantc sulfur IS incorporated into sulfur-containing 
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microbial protein in the hind gut of the horse. However, there is limited amino 

acid absorption from this region. High quality dietary protein sources usually 

provide a minimum of .15 percent organic sulfur on a dry matter basis. Based 

on the work of Jarrige and Martin-Rosset (1981), the NRC (1989), suggests that 

this level is adequate in meeting the sulfur requirement of all classes of horses. 

Phosphorus. The estimated efficiency of true phosphorus absorption 

ranges from 30 to 55 percent in the horse (NRC, 1989). The variation is due to 

age of animal and the source and concentration of phosphorus in the diet (NRC, 

1989). Because idle horses, gestating mares, and work1ng horses consume 

mainly plant sources of phosphorus, the NRC (1989) suggests a true absorptive 

efficiency value of 35 percent. The value is increased to 45 percent for lactating 

mares and growing horses as their diets are supplemented with inorganic forms 

of phosphorus. Given these values, the NRC (1989) list the phosphorus 

maintenance requirement at 28.6 mgjkg BW /day or 0.87 gjMcal of DE/day. 

Calcium. The NRC (1989) suggests the true absorptive efficiency of 

calcium ranges from 70 percent in young horses to 50 percent in mature horses. 

However, for the purposes of estimating calcium requirements, the NRC (1989) 

suggest a value of 50 percent be used for the calcium absorptive efficiency for all 

classes of horses. Using this value, the calcium requirement is stated to be 0.04 

gjkg BW /day for maintenance or 1.22 gjMcal of DE/day. The NRC (1989) 

suggest that any increase in calcium requirements associated with exercise 

should be met by the obligatory increase in calcium intake as dry matter 

consumption increases to meet energy demapds. 
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Mineral Studies 

In 1970, Schryver et al. investigated the effect of level of calcium intake on 

skeletal metabolism and the homeostatic mechanisms of calcium metabolism in 

young growing ponies. Dietary calcium levels below (0.15%), equal to (0.8%), 

and greater than (1.5%) that suggested by the NRC (1966) were formulated by 

adding calcium carbonate at the expense of hay and corn. These variations in 

calcium intake produced large differences in excretion and retention of calcium 

in order to maintain calcium homeostasis but had no effect on the level in the 

plasma or on the size of the exchangeable pool. Ponies fed the low calcium diet 

responded with increased fractional absorption of calcium while decreasing the 

renal excretion rate. Also, the removal rate from bone was increased to a level 

which exceeded the deposition rate producing a net transfer of calcium from 

bone into the exchangeable pool. Nonetheless, these ponies experienced 

negative calcium balance in spite of the homeostatic control mechanisms. 

Opposite responses were observed when the ponies were fed the high calcium 

diet. However, unlike rate of removal, the depostion rate was insensitive to the 

level of calcium in the diet. 

In a following study, Schryver and coworkers (1971a) looked at the effect 

of high dietary phosphorus levels on calcium utilization and skeletal metabolism 

in growing Shetland ponies fed diets containing 0.4% calcium and either 0.2% or 

1.2% phosphorus. As expected, the phosphorus retention and plasma levels 

were increased when the ponies were fed the high phosphate diet. However, 

calcium absorption, renal excretion, and retention were each decreased while 

total and endogenous fecal calcium excretion increased. Schryver et al. (1971 b) 

demonstrated that renal phosphorus excretion, total amount of phosphorus 

absorbed from the gut, and retention were all dependent upon phosphorus 



intake. However, the efficiency of absorption was unaffected by the level of 

phosphorus in the diet and averaged 45 percent. 

9 

Williamson (1974) evaluated the serum electrolyte (Na, K, Cl) and 

serum HC03 levels from Thoroughbrea and Standardbred horses experiencing 

poor race track performance. Control values for these parameters were 

obtained from 200 individual winners. Various forms of alkalosis and acidosis 

were associated with elevations or depressions in electrolyte and bicarbonate 

levels andjor combinations thereof. He also reported that these disorders could 

be treated by supplementing the diet, drenching, or intravenous administration 

of electrolytes. Thus, electrolyte therapy was proposed as a means to treat 

acidosis and alkalosis and possibly improve race track performance in horses. 
I 

In 1974, Milne studied the effects of exercise on blood parameters, acid-

base balance, and electrolyte levels. He demonstrated that acid-base balance 

was not affected by moderate work below the anaerobic threshold whereas a 

heavy workload produced a partially compensated metabolic acidosis. These 

effects on acid-base balance were still present at fifteen minutes post-exercise 

but were returning toward normal levels. He also proposed a linear relationship 

between the changes in arterial and venous pH, pC02, and HC03 in response 

to exercise. He also stated that these arterial blood parameters could be 

accurately predicted from venous samples; however, the p02 level could not be 

predicted from these venous samples. Heavy, short-duration exercise produced 

significant increases in serum calcium most likely due to a shift of calcium out of 

the muscle cells as a result of the acidosis whereas serum calcium will generally 

decrease during endurance test. Serum potassium concentration in man has 

been shown to increase following both short duration exercise and marathon 

running (Pugh et al., 1967 and Rose et al., 1970). This rise in serum potassium 

may be from: 1) an influx of potassium from the intracellular stores being 
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exchanged for hydrogen ions during metabolic acidosis, 2) the diffusion of 

potassium from the intracellular space when muscle and liver glycogen is 

reduced, or 3) intravascular hemolysis (Berg storm et al., 1971; Gilligan et al., 

1943 and Kjellmer, 1965). However, Milne (1974) reported no significant change 

in serum potassium concentration in endurance horses possibly due to the large 

amount of potassium lost in sweat. 

In 1978, Schryver and coworkers investigated the effects of exercise on 

calcium metabolism, skeletal mass, and the dermal excretion of calcium and 

phosphorus in yearling Standardbred horses. During exercise periods, the 

urinary excretion of 4Dca and 4 7 Ca decreased 50 to 75 percent. Although the 

retention of 47ca increased during the exercise periods, dietary 40ca retention 

did not change. Exercise did not affect the efficiency of absorption or the 

endogenous fecal excretion of calcium. In a second experiment, they observed 

no marked differences in relative weight or specific gravity in limb bones of 

exercised versus non-exercised Shetland ponies. Thus, they concluded that 

although exercise increases the rate of bone turnover in growing ponies and 

horses it does not affect the skeletal mass. In the last portion of the experiment, 

they reported polo horses excreted 80 to 145 mg of calcium and 11 to 17 mg of 

phosphorus during a twenty-minute workout. 

Schryver and coworkers (1987) evaluated the range of voluntary salt 

(NaCI) intake in horses and its effect on mineral metabolism. The mean daily 

salt consumption of mature unexercised horses was 53 g with a range from 19 

to 143 g. The consumption pattern was not affected by the season of the year 

mainly because they were sedentary animals with minimal sweat loss. In the 

metabolism studies, diets containing 1, 3, and 5% NaCI showed that urinary 

excretion was the primary pathway for sodium and chloride loss. Urinary 

sodium excretion was directly related to intake with 69 to 78% of the sodium 



11 

intake being excreted via the urine at each level of intake. The varying levels of 

salt intake did not affect fecal excretion, intestinal absorption, or retention of 

sodium. Chloride was not detected in the feces at any level of salt intake thus 

indicating that dietary chloride was completely absorbed and that urinary 

excretion was the sole pathway for chloride excretion. Although urinary calcium 

and phosphorus excretion was not affected by the level of salt intake, the 

absorption and retention of calcium and phosphorus were significantly 

increased when the ponies were fed the 3 or 5% NaCI diets. Magnesium 

metabolism was unaffected by the level of salt intake. 

Young and coworkers (1989) evaluated the extent of mineral losses 

(fecal, urine, and sweat) in miniature horses at rest and during extensive 

physical exercise. The total daily feed intake at rest of 1.6 kg and 4.32 Meal 

increased to 3.0 kg and 7.93 Mcal/d during the exercise period. As daily 

sodium intake increased from 7.5 to 25.4 mgjkg BW during exercise period, 

there was a trend for daily fecal excretion to increase from 1.2 to 8.2 mgjkg BW. 

Also, daily urinary sodium excretion tended to decrease from 14.6 4. 7 mgjkg 

BW. This is probably due to the large amount of sodium lost in sweat. Daily 

retention of sodium decreased from -8.3 to -29.6 mgjkg BW during the exercise 

portion of the trial. This indicates the increase in sodium intake due to the 

increased feed intake associated with the exercise was not sufficient to 

compensate for the large amount of sodium lost in heavily exercised horses. 

This agrees with Meyer (1987) who suggested that most diets contain 

inadequate sodium concentrations to meet the needs of the exercising horse. 

In the same study, the daily chloride intake increased from 25.4 to 40.9 

mgjkg BW during the exercise trial. Contradictory to Schryver et al., (1987) 

fecal chloride increased from 6.3 to 18.9 mg/kg BW. Also, there was a trend for 

urinary chloride excretion to decrease from 9.0 to 0.9 mgjkg BW. Daily chloride 
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retention decreased from 10.1 to -69.2 mgjkg BW during the exercise trial 

primarily due to the large amount of chloride lost in sweat. This disagrees with 

Meyer (1987) who suggested that the obligatory increase in chloride intake due 

to the increase in total feed intake in response to exercise to be an adequate 

supply of chloride. 

Young and coworkers (1989) also reported daily intake of potassium 

increased from 54.9 to 220.2 mgjkg BW in response to exercise. Daily fecal 

potassium excretion increased from 16.9 to 55.7 mgjkg BW during exercise. 

Also, daily urinary excretion increased from .3 to 31.6 mgjkg BW. Daily 

retention of potassium decreased from 37.7 to -5.2 mgjkg BW in response to 

exercise. Although slightly negative, this agrees with Meyer (1987) suggesting 

that the increase of potassium due to increased feed intake is sufficient in 

preventing large potassium deficiencies associated w1th sweating. 

In the same study, the daily intake of calcium increased with exercise 

from 9.1 to 39.6 mgjkg BW. Accordingly, daily fecal excretion increased from 

9.8 to 19.6 mgjkg BW. However, daily urinary excretion decreased with 

exercise from .6 to .1 mgjkg BW. Daily retention of calcium increased with 

exercise from -1.3 to 19.7 mgjkg BW. This indicates that the increase in calcium 

associated with the increase in energy requirement was sufficient in meeting the 

calcium requirement of these horses. 

Young and coworkers (1989) reported daily intake of phosphorus 

increased from 32.9 to 53.9 mgjkg BW during exercise. The daily fecal 

excretion increased from 8.5 to 27.3 mgjkg BW and urine fell from 1.6 to 1.1 

mgjkg BW. The daily retention of phosphorus increased from 22.8 to 25.2 

mgjkg BW thus indicating the increase in phosphorus along w1th increased DE 

intake was more than sufficient in meeting the needs of the animals. 



13 

DCAB 

The equation we used to express dietary cation-anion balance (DCAB) 

includes the dietary electrolytes sodium (Na), potassium (K), and chloride (CI) as 

follows: meq (Na + K)- Cljkg of diet dry matter. The issue of dietary cation

anion balance is not even addressed in the NRC (1989) and in fact, only within 

the last couple of years has DCAB begun to receive attention from equine 

researchers. In 1989, Topliff and coworkers studied the effect of DCAB on 

mineral metabolism in horses galloped two miles daily at approximately 7 mjsec. 

No change in heart rate or serum chloride and calcium concentrations were 

observed. However, he demonstrated a significant increase of calcium in the 

urine from 9.2 mgjdl of horses consuming higher DCAB diet (150 meqjkg) to 

84.7 mg/dl in the urine of horses consuming a low DCAB diet (6.5 meqjkg). 

Since total urine output was not significantly different, those horses consuming 

the low DCAB diet excreted more total calcium per day. These horses also had 

higher concentrations of chloride in the urine (176.1 meq/1 vs. 124.8 meq/1). 

This effect was attributed to the acid producing power of the diet. One could 

assume that those horses consuming diets of lower DCAB may be in negative 

calcium balance. If this situation is prolonged, an osteoporotic weakening of the 

skeletal system as seen in other species might occur. 

Lawrence and coworkers (1987) orally dosed racing standardbreds with 

sodium bicarbonate in a switchback designed experiment and found a higher 

blood pH post racing even though blood lactate levels were similar to the 

control. Most of the horses also ran a faster time after the sodium bicarbonate 

infusion, suggesting a link between maintenance of blood buffering capacity and 

performance. In a more recent study, Lawerence and coworkers (1990) 

examined the effect of bicarbonate administration in Standardbreds. They 



reported improved race times in those horses treated with NaHC03 2.5 hours 

before the workout. The NaHC03 treatment increased blood lactate removal 

which may enhance exercise by postponing the onset of fatigue caused by 

intramuscular acidosis. 
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Sodium and potassium are frequently absorbed from the gastrointestinal 

tract in exchange for the secretion of a proton, namely hydrogen. Also, as 

chloride is absorbed from the gastrointestinal tract, a bicarbonate ion is 

secreted. Therefore, any alterations in the amounts of sodium, potassium, or 

chloride absorbed could be expected to alter the acid or base producing power 

of that diet and interfere with the normal acid-base status of the animal. 

However, Kelso et al. (1987) reported conflicting results suggesting that sodium 

bicarbonate supplementation provided little if any physiological advantage to the 

exercising horse. 

DCAB Effect on Other Species 

Rabbit 

In most literature today, poultry researchers are cred1ted with being the 

first to recognize and study the effects of dietary cation-anion balance on 

physiological and production parameters. However, Morgen and Berger (1915) 

reported that rabbits fed sodium carbonate had increased bone mineral content 

compared to rabbits fed sodium chloride. They suggested that the carbonate 

salt increased the alkaline reserve. From this hypothesis, they also suggested 

that manipulating the cation-anion balance could induce deficiencies in calcium, 

sodium, potassium, and magnesium. 
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Thacker (1959) evaluated a depression in growth and failure to maintain 

normal blood hemoglobin and bone ash content reported in a previous 

experiment in rabbits fed a basal diet containing timothy hay grown in heavily 

fertilized soils. He reported that these abnormalities could be corrected by 

supplementing the diet with salts of sodium, potassium, calcium, and 

magnesium carrying an anion metabolized to C02 and H20 by the animal. 

However, salts of these same minerals carrying a chloride or sulfate anions were 

not effective in correcting the abnormalities. It was suggested that the rabbits in 

this experiment suffered physiological cation-anion imbalance (aCidosis) 

associated with altered mineral metabolism on the animal. He reported that this 

mineral imbalance induced deficiencies of calcium and potassium in rabbits fed 

adequate dietary levels of these minerals. He also suggested that this condition 

might involve the metabolism of additional cations. 

Poultry 

Researchers in poultry nutrition where the first major livestock group to 

recognize and study the effects that dietary cation-anion balance could have on 

production parameters. Early research was primarily interested in how sodium, 

potassium, and chloride might affect the nutrition and growth of the animal 

through there physiological roles iri the regulation of osmotic pressure and acid

base balance. 

In 1964, Nesheim and coworkers reported chicks fed excesses of dietary 

chloride or sulfate supplied as glutamic acid hydrochloride, calcium chloride, or 

calcium sulfate suffered dramatic decreases in growth rate. This effect is the 

major inferiority of amino acid diets as compared to those containing intact 

protein. However, this depression in growth rate could be alleviated by 
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supplying equimolar levels of sodium or potassium supplied with glutamate or 

carbonate. Growth rate was also depressed by excesses of sodium. Again, this 

effect could be eliminated by adding equivalent amounts of chloride. High levels 

of potassium alone were better tolerated by the chick than sodium. In a similar 

study, Melliere and Forbes (1 966) noted maximum growth and weight gain in 

chicks fed a diet with a cation-anion ratio of 1.2 to 1.8. whereas a ration of 0.6 

nearly inhibited growth completely. Excess calcium was not effective in 

offsetting the depression in growth rate due to excess chloride; however, 

magnesium did partially overcome the reponse. 

Frank and Beger (1965), Howes (1967), Anderson (1967), and Mangin 

(1968) set off a new wave of acid-base physiology research by reporting that the 

egg-shell calcification process could be altered through the acid-base balance 

physiology of the laying hen. 

Previously, the ammonium ion was thought to be the acidogenic agent 

while the bicarbona1e ion was considered the alkalogenic agent. However, 1n 

1972, Cohen, Hurwitz, and Bar reported that the inclusion of large amounts of 

ammonium chloride in the diet leads to metabolic acidosis wh1le additional 

dietary sodium bicarbonate produces metabolic alkalosis. These results 

indicate that sodium supplied with several salts except chloride causes alkalosis 

while chloride added in several salt combinations except with sodium causes 

acidosis. When sodium and chloride are added in equal amounts, no changes 

in acid-base parameters were detected. Thus, blood pH and HC031evels were 

a function of the die1ary ratio of sodium to chloride and not the total amount of 

either. It was noted that the actual dietary pH is irrevelant in producing alkalosis 

or acidosis: calcium chloride with a pH near neutral causes acidosis whereas, 

an acid salt such as sodium monophosphate causes alkalosis 
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Cohen and Hurwitz (1974) incorporated potassium into the equation for 

cation-anion balance and described it as having as alkalogenic effect similar to 

sodium. These findings demonstrated that sodium and potassium are additive 

in their effects in offsetting the metabolic acidosis produced by elevated levels of 

dietary chloride. This agrees with Nesheim et al. (1964), who demonstrated that 

sodium and potassium supplementation was an effective means of 

counteracting the depression of growth produced by high levels of chloride in 

the diet. 

In 1980, Mangin was one of the first to suggest a balance equation 

incorporating sodium, potassium, and chloride as follows: mEq(Na+ K)-CI/100g 

diet dry matter. This equation could be used to actually quantify the acid-base 

status of a ration. Mangin also demonstrated the interaction between the acid

base balance of the blood with the cation-anion balance in the diet. 

In the same year, Hamilton and Thompson reported decreased blood pH 

and bicarbonate levels and reduced eggshell strength and thickness in hens 

when the chloride level was increased from .11 to 2.13% of the diet. This agrees 

with Hall and Helbacka (1959), Hunt and Aitken (1962), and Saveur and Mangin 

(1971) who reported excessive levels of acid chlorides depressed eggshell 

calcification. Similarly, Frank and Burger (1965), Howes (1967), and Mangin 

(1968) demonstrated an increase in egg shell strength associated with feedstuffs 

that increase the alkaline reserve. 

The cation-anion balance has also been correlated with incidence of tibial 

dyschondroplasia (TO). Leach and Neshium (1965) described this bone 

disorder occuring in young chicks. They later discovered that this condition is 

affected by dietary cation-anion manipulation (Leach and Neshium, 1972). 

Sauveur and Mangin (1978) reported that metabolic acidosis resulting from 

excessive dietary chloride intake increased the incidence of tibial 



dyschondroplasia. These studies agree with more recent work relating the 

anionic content of diets with alteration in acid-base status and ultimately the 

incidence of TO (Edwards, 1984, Halley et al., 1987, Hamilton and Thompson 

1980, Hurwitz et al., 1973, Mangin, 1981). 
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Nelson and coworkers (1981) reported dry matter and amino acid 

digestion were lower in 30 day-old-chicks fed diets that contained the greatest 

cation-anion balance manipulated by supplementing with calcium or 

phosphorus. In a similar study, Riley and Austic (1983) evaluated the effect of 

dietary electrolytes on the pH of the digestive tract and the acid-base status of 

the chicken. The cation-anion status was altered by adding either potassium 

bicarbonate or calcium chloride. They reported the pH of the crop was 

depressed by dietary chloride. However, neither chloride nor potassium had an 

effect on the pH of the proventriculus, duodenum, or the middle and distal 

portions of the small intestine. The addition of d1etary chloride did decrease the 

plasma bicarbonate, base excess, and pC02 but did not decrease the plasma 

pH. 

, Rat and Human 

As a result of the recent interest in osteoporosis in humans, DCAB 

research in rats has been slanted toward the effects of acid-base physiology on 

bone metabolism. Barzel and Jowsey (1969) reported significant increases in 

bone resorption in adult rats with long term consumption of ammonium chloride. 

However, chronic ,ingestion of sodium and potassium carbonate prevented the 

loss of bone tissue, apparently by stimulating bone formation. These responses 

were attributed to the changes in bone metabolism during systemic acid-base 



alterations. Therefore, it was suggested that the intracellular mechanism 

controlling bone deposition and resorption are sensitive to systemic pH. 

19 

In 1975, Newell and Beauchene evaluated the effects of acid stress on 

renal, serum and bone responses in 13 and 25-month-old rats fed ammonium 

chloride for nine months. The acid-stressed rats showed decreases in urinary 

pH along with increases in urinary calcium and phosphorus excretions and 

kidney weights. The acid-stressed rates tended to have decreased serum 

calcium and phosphorus levels. However, bone analysis in either age group 

was not affected by acid stress. In a similar study, Petito and Evans (1984) 

noted increases in urinary calcium in rats fed ammonium chloride. These rats 

also had a two-fold increase in fecal calcium as well. As a result, femur specific 

gravity was decreased in the rats fed the more acidic diet. Additional studies 

support these findings in the rat (Cole and Zlotkin, 1983; Emerick, 1984) and in 

humans (Walser and Browder, 1959; Lemann and Reiman, 1959; Adams et al., 

1979; Schuett et al., 1980). Also, rats given salt supplements excreted more 

calcium in the urine and had less calcium in the bone than control rats (Goulding 

and Campbell, 1984). Again, similar effects have been reported in humans 

(Kleeman et al., 1964). 

Whiting and Draper (1980) investigated the effects of different levels of 

sulfur on the hypercalcuria produced by high protein diets. Their results showed 

a linear relationship between calcium excretion and sulfate excretion. A peak 

calcium excretion occurred after only two days. Although the level of urinary 

calcium declined, a moderate hypercalcuria persisted throughout the eight week 

experiment. Also, the degree of hypercalcuria was proportional to the sulfur 

content of the diet. It was proposed that the production and excretion of sulfate 

are the major factors in the hypercalcuria associated with high protein feeding 

and are dependent upon the sulfur amino acid content. 
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In a similar human study, Schuette and coworkers (1980) studied the 

metabolic effects of protein intake on urinary calcium excretion, calcium 

absorption, and calcium balance in older rats. An increase in protein intake from 

47 to 112 g while maintaining mineral levels constant resulted in increased 

urinary calcium and a decrease in calcium retention. Glomerular filteration rate 

was increased and fractional renal tub,ular absorption was de~reased when 

protein intake increased. The changes in urinary calcium were positively 

correlated with the increase in total renal acid and sulfate excretion and with the 

decrease in fractional renal tubular reabsorption of calcium. 

Dairy Cattle 

In 1986, Coppock reviewed the current literature concerning the influence 

of DCAB on livestock production. At that time, DCAB research in dairy cattle 

was minimal. However, he was able to calculate and evaluate the DCAB in 

various beef and dairy trials conducted in the past. He suggested that the 

ruminant animal could withstand a higher DCAB than poultry. He also stated 

that manipulating the DCAB from 10 to 40 meq/100 g diet dry matter would yield 

no beneficial results. Escobosa and coworkers (1984) reported that cows 

consuming a negative DCAB diet suffered decreased intake. Since that time, 

dairy researchers have made more progress towards understanding the 

physiological effects of DCAB than any other specie. 

The recent surge of interest in DCAB research in the dairy industry came 

when Block (1984) examined the effectiveness of a low DCAB diet in preventing 

the occurrence of parturient paresis in lactating dairy cows. In previous 

research, a link between dietary anions and increased calcium availability had 

been established (Dishington, 1975; Ender et al., 1971; Lomba et al., 1978). 
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Block (1984) demonstrated that highly anionic diets (-128 meqfkg DM) fed 

during the dry period reduced the incidence of parturient pariesis during 

lactation. Tucker et al. (1988) showed that linearly altering the DCAB from -100 

to + 200 meqfkg resulted in a linear increase in both milk production and blood 

pH. These workers also demonstrated that the effects were attributable to 

DCAB alone and not due to changes in the absolute amount of sodium, 

potassium, or chloride in the diet. 

Maintaining a constant blood pH is a critical normal body function 

accomplished by a homeostatic mechanism reponsible for maintaining a 

constant blood bicarbonate to blood pC02 rat1o Accord1ng to Tucker and 

coworkers (1988), this is accomplished by altenng renal excretion of bicarbonate 

to control blood bicarbonate concentrations and altering respiratory rate to 

control blood pC02. Altering the DCAB of the diet has been shown to have 

marked effects on blood acid-base balance. Diets with low DCAB or high in 

chloride have been shown to depress blood pH (Tucker, 1988). Tucker 

reported a linear relationship between blood pH, bicarbonate, and DCAB. 

Beighle and coworkers (1990) reported that calves fed diets with low 

DCAB had higher concentration of serum and fecal phosphorus. These calves 

also had decreased levels of phosphorus in the bone. These effects were 

amplified when a low phosphorus diet was fed thus indicating an interaction 

between DCAB and dietary phosphorus level on changes in blood, fecal, and 

bone phosphorus concentrations. 

Tucker and coworkers (1991) evaluated the influence of supplemental 

dietary sodium bicarbonate on potassium metabolism of young growing dairy 

calves. They reported feed intake was not affected by dietary potassium 

chloride or sodium bicarbonate supplementation. However, average daily gain 

increased with increased potassium but tended to decrease with increased 
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dietary sodium bicarbonate. Plasma potassium was elevated by the increased 

potassium intake. Urinary calcium excretion appeared to decline in response to 

sodium bicarbonate whereas urine pH increased. 

Tucker et al., (1991) also examined the influence of calcium chloride on 

systemic acid-base status and calcium metabolism in dairy heifers. The plasma 

free proton concentration increased and bicarbonate decreased with increasing 

calcium chloride intake. Plasma calcium and urinary hydroxyproline excretion 

were unaffected. However, renal calcium excretion rose with calcium chloride 

intake possibly due to increased bone resorption or intestinal absorption of 

calcium. Plasma and urinary chloride levels increased with increased dietary 

chloride intake. 

Recent research conducted by Tucker et al., (1991) demonstrated that 

dietary chloride and sulfur had similar effects on the acid-base status of dairy 

cows. This is in agreement with Oetzel (1991), who analyzed the previous 

research conducted on ac1d-base balance in dairy cattle and determined that 

sulfur is the primary ion affecting acid-base balance. Therefore, they suggest 

that sulfur be included along with chloride in the DCAB equation for lactating 

dairy cows. 

Parathyroid hormone has been shown to have a more dramatic effect on 

renal production of 1 ,25-dihydroxyvitamin D in dairy cows fed highly anionic 

diets thus increasing intestinal calcium absorption (Goff et al., 1991). Also, 

osteoclastic bone resorption was more responsive to parathyroid hormone as 

plasma hydroxyproline concentration was higher in those cows fed the low 

DCAB diet. The parathyroid hormone activity might be due to the decrease in 

the pH of the blood, which in dairy cattle and poultry has been shown to be a 

possible cause for increased levels of ionized or free calcium in blood and 



therefore an increase in urinary calcium excretion (Austic , 1984 and Tucker et 

al., 1988). 

Swine 
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Although the early investigations of DCAB have involved poultry, swine 

nutritionists have begun to show interest in this area. Yen et al. (1981) indirectly 

touched on this subject when they observed that the addition of 4% calcium 

chloride to the d1et resulted in reduced feed intake, weight gain, and feed 

efficiency in crossbred barrows. The diet also caused an increase in plasma 

chloride and a reduction in blood pH, base excess, and total C02 and HC03 

indicative of metabolic acidosis. These effects could be reversed and actually 

elevated by the addition of 2.03% sodium bicarbonate. 

Golz and Crenshaw (1984) examined the importance of sodium, 

potassium, and chloride on growth rate in young pigs. They noted growth was a 

function of potassium to chloride ratio with the optimum being 2.1 to 1. This 

effect was independent of sodium as long as sodium was within the range of .03 

to .6%. 

Patience and coworkers (1 987) examined the growth response of 2 to 3 

month old pigs in response to DCAB. Feed intakes and growth rates were 

maximized at a DCAB between 0 and 341 and were reduced at -85. They also 

noted that blood pH tended to increase as DCAB increased 

Haydon and West (1 990) examined the effect of DCAB on apparent 

nutrient digestibilities in pigs fitted with ileal T-cannulas. The DCAB was 

established by substituting calcium chloride for calcium carbonate and sodium 

bicarbonate for corn and soybean meal resulting in DCAB of -50, 100, 250, and 

400 meqjkg diet dry matter. They noted a linear relationship between DCAB 
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and apparent ileal digestibility of N, energy, dry matter, and all amino acids 

except for alanine and methionine. However, nutrient and amino acid 

digestibilities measured over the total tract were similar. Increasing the DCAB 

resulted in linear and quadratic effects on daily urinary nitrogen excretion which 

resulted in a linear improvement in nitrogen retention. Blood pH, total C02, and 

HC03 and base excess concentrations increased linearly with increased DCAB. 

From previous work in other species, it is obvious that DCAB has 

significant physiological effects that alter important production traits. It is also 

apparent that more work of this type must been done on the horse as the 

potential impact of DCAB on health and performance is great. This study will 

investigate the effects of dietary cation-anion balance on mineral balance, blood 

pH, and urine pH in the anaerobically exercised horse. 



CHAPTER Ill 

MATERIALS AND METHODS 

Experimental Design 

Four geldings and four mares of primarily Quarter Horse and 

Thoroughbred breeding (average weight 463 kg) were randomly assigned 

treatments within two simultaneous 4 x 4 Latin squares to study the effects of 

dietary cation-anion balance on mineral metabolism, blood pH and urine pH. 

The 22 week trial consisted of a 6 week conditioning period and four 

experimental periods each with 21 days adaptation culminating in 7 days of 

collection. 

Horses were stalled individually and allowed ad libitum access to water. 

Horses were fed at 10am and 10pm. All horses were immunized and dewormed 

prior to the initiation of the trial and received standard animal health care 

throughout the experiment. 

Treatments 

Diets consisted of a pelleted base concentrate of corn, soybean meal, 

and cottonseed hulls formulated at the Oklahoma State University Feedmill. The 

concentrate was fed with bermudagrass hay grown at the OSU Beef Research 

Center. The concentrate and hay was fed in a 60:40 ratio at levels necessary to 

maintain constant individual body weights during the 22 week experiment. All 
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horses were weighed prior to the morning workout one day each week using a 

standard livestock scale. 

Treatments were formed by supplementing the low diet with . 78% calcium 

chloride and .30% ammonium chloride (Table 1). The medium-low diet was 

supplemented with .54% calcium chloride. The high diet was supplemented with 

.89% potassium citrate and .61% sodium bicarbonate. The medium-high diet 

was not supplemented and served as the control ration indicative of an industry 

standard. Diets were calculated to 2.7 Meal/kg DM and 10.4% crude protein 

across treatments (Table II). Further, diets were analyzed and determined to 

contain equivalent amounts of calcium, phosphorus, magnesium, and sulphur. 

After supplementation the high diet contained 1.32% potassium and .41% 

sodium. The medium-low diet contained 1.0% chloride, and the low diet 

contained 1.38% chloride. These mineral concentrations yielded treatment 

dietary cation-anion balances of 27, 130, 223, and 354 respectively. 

Exercise Regimen 

Eight mature horses were conditioned aerobically by galloping 3.2 

kmjday 6 days each week for 6 weeks on a .8 km oval track located at the 

Oklahoma State University Equine Center. Workouts consisted of a .4 km 

warm-up at a long trot and slow gallop. Each horse was conditioned at a pace 

necessary to maintain a heart rate of 150 beats/min. Following each long slow 

distance workout (LSD), the horses were warmed down at a slow gallop over .4 

km and then walked out for 8 km. As the horses became more fit, the pace was 

quickened in order to maintain the target heart rate. During the experiment, the 

horses were subjected to a combined exercise regimen alternating long slow 

distance with interval training 6 daysjweek. The LSD workouts consisted of 



Ingredient(%) 

Corn 
Soybean Meal 
Cottonseed Hulls 
Dicalcium Phosphate 
Limestone, ground 
Trace Mineral Salt 
Calcium Chloride 
Ammonium Chloride 
Potassium Citrate 
Sodium Bicarbonate 
Molasses, syrup 
Bermudagrass Hay 

Total 

TABLE I 

COMPOSITION OF TREATMENTS, 
DRY MATTER BASIS 

Treatment 

L ML MH 

33.20 33.20 33.20 
6.90 6.90 6.90 

14.80 15.10 15.00 
.21 .21 .19 

.22 .78 
.55 .55 .55 
.78 .54 
.30 

2.00 2.00 2.00 
40.00 40.00 40.00 

100 100 100 

DCAB, meq((Na+K)-CI)jkg +27 +130 +223 

27 

H 

33.20 
6.90 

13.70 
.20 
.78 
.55 

.89 

.61 
2.00 

40.00 

100 

+354 
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TABLE II 

TREATMENT ANALYSIS, DRY MADER BASIS 

Treatment 

Constituent L ML MH H 

DE, Meal/kg 2.70 2.70 2.70 2.70 

Crude Protein, % 10.40 10.40 10.40 10.40 

Calcium,% .50 .53 .52 .54 

Phosphorus, % .28 .29 .28 .28 

Magnesium, % .15 .16 .15 .15 

Potassium, % 1.12 1.14 1.13 1.39 

Sulfur,% .11 .12 .11 .13 

Sodium,% .29 .27 .30 .43 

Chlonde,% 1.38 1.00 .69 .68 

DCAB +27 +130 +223 +354 
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a 3.2 km gallop at a heart rate of 160 beats/min; gallop times averaged 3 

minutes and 10 seconds. The interval training program consisted of a 1.2 km 

warm up followed by a pair of .4 km sprints each eliciting heart rates of 200-220 

beats/min. Between sprints horses were walked until the heart rate recovered 

to below 110 beats/min. The horses were warmed down for .8 km at a slow 

gallop and then walked out for another .8 km. When necessary, the horses 

were rinsed after working. In order to regulate large flucuations in temperature, 

all exercise occured between the hours of 6am and ?am. 

Heart Rate Measurement 

During exercise, heart rates were measured using a UNIQ onboard heart 

rate monitora. Standard EKG skin electrodes were attached at the shoulder and 

on the stomach near the midline approximately 10 inches behind the girth. In 

order to improve contact, the hair was clipped with #40 blades, and acetone 

was used to remove oil from the skin surface before attaching the electrodes. 

Heart rate was recorded on a 5 second interval throughout the LSD and interval 

training workouts. The information was then downloaded onto a computer. The 

data was plotted (heart rate over time) and stored on diskette. These graphs 

were used to evaluate each workout and individual consistency throughout the 

trial. Individual jockey weight ranged from 57 to 84 kg with an average of 70 kg 

across all riders. In order to equilibrate the workload of between individual 

horses, riders were rotated between horses in sequential order throughout the 

trial. One rider was picked to perform the standard exercise test for all horses 

throughout the experiment. 

a UNIQ Onboard Heart Rate Monitor (Model8799), Kempele, Finland. 
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Blood pH Measurement 

Venous Blood Collection 

Following the morning workout on the 22nd day of each experimental 

period, the four geldings were fitted with 18-gauge indwelling jugular catheters. 

Using #40 blades, the hair was removed from an area covering the jugular 

approximately 10-12 inches below the throatlatch. This area was then cleaned 

with betadine solution. With the injection cap exposed, the catheter was then 

taped in a fixed position. Heparin (3 ml) was injected into the catheter to prevent 

clotting. To prevent catheter damage while sampling, the horses were tied with 

access to feed and fresh water. Samples were collected hourly (for 17 hours) 

beginning at the morning feeding in order to include a 5-hour post-feeding 

interval with and without the effect of exercise. Just prior to the morning feeding 

(10 am), 5 ml of blood was drawn from each catheter to remove the heparin 

saline. Twenty ml of sample was drawn off, and the catheter was reheparinized. 

This sample was then used to fill a 3 ml and a 7 ml Lithium heparinized blood 

collection tube. The horse was fed after the time zero sample was drawn. 

Sampling times were spaced at 5 minute intervals between horses to allow for 

adequate sampling time. This same procedure was applied to the 4 mares on 

the 23rd day of each experimental period. 

Blood pH Analysis 

After sampling, the 3 ml blood tubes were immediately placed (stopper 



down) in crushed ice, transported to the lab, and analyzed for pH with a blood 

gas analyzerb. 

Urine Collection 

Geldings 
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Urine collection harnesses were designed and built in order to measure 

total urine output from the four geldings. A piece of 102 em x 102 em canvas 

was sewn around 2 em dow rod on two sides. This piece was placed over a 

western saddle pad and used to support the collection device. Fence stays 

were unwound from the closed end until a loop was made. The loop was sized 

and shaped to fit the sheath of a particular gelding. Automobile tire innertubes 

were cut in lengths to extend from the sheath, along the stomach midline, and to 

the sternum. One end was fitted to and sewn around the stay loop. The other 

end was folded over the stay and clipped to prevent leaking. Four heavy duty 

rubber bands were put over the stay and around the innertube to support the 

tube and keep the sample in the middle of the tube. Five adjustable rubber 

straps, attached to the offside dow rod, extended under the belly, between the 

stay and the innertube, and attached to the left side dow rod to insure correct 

positioning of the collection device. To collect a sample, the open end was 

unclipped from the stay and unfolded so the innertube could be emptied. 

Mares 

An 46 em, single bulb, latex catheter was inserted into the mares urethra. 

The bulb was filled with 60cc saline solution. Ninty-one em of tubing, attached to 

b Instrumentation Laboratories Blood Gas Analyzer (Model1304), Lexington 
MA. 
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the catheter and a collection bag, was braided into the tail. The collection bag 

was tied into the braid just below the nub of the tail; thus, allowing gravity flow of 

urine into the bag. Enough slack was given to allow the mare free use of her tail. 

Therefore, the device was unaffected by defecation. 

Beginning on the 22nd day of each experimental period, a total urine 

collection was taken for 72 hours on the geldings. A 24 hour total urine 

collection was taken on the mares for 24 hours beginning on the 23rd day of 

each experimental period. These urine collection devices were drained every 

four hours. The volume was measured and recorded for each collection. A 

representative sample (geldings 1%, mares 10%) was composited over t1me for 

each horsejperiodjtreatment interval. Another sample (100 ml) was tested for 

pH using a Fischer Accumet Model 950 pHC meter with a standard glass body 

combination electrode to account for sample temperature. The pH meter was 

standardized using buffers with pH of 4 and 10 prior to each 4 hour collection 

measurement. These samples were then acidified to a pH of 2 with hydrochloric 

acid to prevent bacterial growth. A 20 ml non-acidified sample was taken from 

each collection for chloride analysis. Individual samples were identified by 

horse, period, treatment, date, time, and acidified or non-acidified. Composited 

and individual samples were stored frozen in individual urine cups for 

subsequent mineral analyses. 

Fecal Collection 

Chromic oxide was added to the diet as an indigestible marker at the rate 

of 1.13 kg/ton of concentrate before pelleting. Six rectal fecal grab samples 

were taken randomly over 72 hours of each collection period such that every 2 

c Fisher Accumet pH Meter (Model950), Fisher Scientific, Pittsburgh, PA. 



hours during the post feeding-post exercise interval was represented. Each 

grab sample was identified by horse, period, treatment, date, and time then 

stored frozen in freezer safe zip-lock bags. 

Laboratory Analyses 

Feed and Fecal Mineral 

Fecal samples were allowed to thaw overnight at room temperature. 
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Each sample was placed individually in pie pans and dried in a forced air oven at 

60°C for 72 hours. These samples were then composited by weight for each 

horse/period/treatment interval. The feed and composite fecal samples were 

ground in a Wiley mill through a 1 mm screen and stored in whirl pacs. 

Chromium Analysis 

Oven-dried 1 00 ml beakers were weighed then approximately .4 g of fecal 

material was added, and the air-dried sample weight recorded. All samples 

were placed in drying ovens at sooq for 24 hours. The beakers were removed, 

placed in dessicators, and allowed to cool. Beaker + sample was reweighed to 

determine oven-dried sart:lple weight. These samples were ashed at 500°C for 4 

hours. Six ml of acid mixture (1000 ml DDH, 500 ml H2S04, and 500 ml H3P04) 

was added to the ashed sample. This mixture was then brought to a boil at a 

setting of 6 on a hot plate under a hood. Three ml of 4.5% KBr03 was added, 

and the mixture was allowed to boil for .5 to 1 minute after S03 fumes appeared. 

The beakers were removed from the hot plate and allowed to cool at room 
' ' 

temperature for 10 minutes. Then 20 ml of dilute Bromate was added, and the 
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mixture was brought to a boil at a setting of 4. After 3-4 minutes, the color 

changed from clear to milky, and the beaker was removed from heat and 

allowed to cool. The solution was transferred into 100 ml volumetric flask and 

filled to volume with distilled, deionized water. The flasks were capped with 

parafilm and inverted 3 times. Five ml were then transferred to a centrifuge tube 

and 7.5 ml of 5% NaOH was added. After 15 minutes, the tubes were vortexed 

and then allowed to settle for 45 minutes. The tubes were then centrifuged at 

2000 rpm for 15 minutes. Standards and unknown were then analyzed for 

chromiun concentration on a spectrophotometerct at 400 nm. 

Oven-dried 100 ml beakers were weighed then approximately 1 .0 g of 

sample (fecal and feed) was added, and the beaker + air-dried sample weight 

recorded. The beakers were placed in drying ovens at 60°C for 24 hours. The 

beakers were then removed, placed in dessicators, and allowed to cool. The 

beaker + sample was reweighed to determine the oven-dried sample weight. 

These samples were ashed at 500°C for 4 hours. Once the ashing oven cooled 

to 120°C the samples were removed, placed in dessicators, and cooled to room 

temperature. Twenty ml of 20% nitric acid was added. The beaker was placed 

on a hot plate (setting 2), covered with a watch glass, and the solution was 

brought to a low boil. After approximately 20 minutes, when the solution turned 

a dark purple, the beakers were removed and allowed to cool. Each watch 

glass was rinsed back 1nto the beakers w1th distilled, deion1zed water (DDH). 

The solution was transferred by glass funnel into 100 ml volumetric flask. The 

beaker and funnel were rinsed into the flask 3 times with DDH. Each flask was 

d Gilford Response Series UV-VIS Spectrophotometer, Ciba Corning 
Diagnostics Corporation. 
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filled to volume with DOH, covered with parafilm, and inverted 3 times. Both feed 

and fecal samples were analyzed for sodium, potassium, calcium, phosphorus, 

magnesium,and sulfur using an Induction Coupled Spectrophotometere. Also, 

both feed and fecal samples were analyzed for chloride using a Lachat 

Automated lon Analyzerf . 

Urinary Mineral 

Calcium, Sodium, Potassium, Chloride 
Phosphorus, and Magnesium 

Analysis 

A ten ml sample was pipetted from each horsejperiodjtreatment 

composite bottle 1nto 15 ml plastic bottles. One-half ml of HCI was added to 

keep the solution in suspension. The bottles were inverted three times prior to 

analysis. Each sample was analyzed for sodium, potass1um, calcium, 

phosphorus, magnesium, and sulfur using an Induction Coupled 

Spectrophotometere and for chloride using a Lachat Automated I on Analyzerf. 

Sulfur Analysis 

Two ml from each horsejperiodjtreatment composite bottle was pipetted 

into appropriately labeled 50 ml Erlenmeyer flasks. Then, 5 ml of digestion 

mixture was added. Th1s mixture consisted of 1. 7 g ammonium metavandate in 

e Jarrei-Ash Induction Coupled Argon Plasma Spectrophotometer (Model9000), 
Allied Analytical Systems, Therno Jarrei-Ash Corporation, Waltham, MA. 

f QuickChem System IV Automated lon Analyzer, Lachat Instruments, 
Milwaukee, WI. 
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1050 ml concentrated nitric acid (sp.gr. 1.42), 1200 ml perchloric acid (sp. gr. 

1.54), and 7.5 g potassium dichromate in 250 ml distilled deionized water. A 

glass funnel was placed in the nech of each flask before digest1ng at on an 

electric hotplate at 80° C for about 15 minutes. After the initial reaction, the 

digestion was continued at just below boiling (about 190°C) until the perchloric 

acid is fuming strongly within the flask and an orange precipitate appears. Flask 

was removed and allowed to cool. The funnel was rinsed back into the flask with 

deionized water, 25 ml of acid mixture was added, and the digest was diluted to 

50 ml with deionized water. The acid mixture consisted of 50 ml glacial acetic 

acid, 20 ml hydrochloric acid (sp. gr. 1.16), and 20 ml orthophosphoric acid (sp. 

gr. 1.69) diluted in 1 L of distilled deionized water. The diluted digest mixture 

was poured into disposable glass cultered tubes for storage until reading. A 

stock sulfur standard was made by dissolving 5.4341 g of dried potassium 

sulfate in 1 L deionized water. Working standards were then made by pipetting 

0, 1, 2, 3, 4, 5, 6, 7, and 8 ml of stock sulfur solution into 100 ml volumteric 

flasks. Two ml of a solution containing 15 mg potassium dichromate per ml, 5 

ml of perchloric acid, and 50 ml of acid mixture was added and the solution was 

diluted to volume with distilled deionized water. A solution containing 100 g 

barium chloride dihydrate and 50 ml of Tween 80 diluted to 1 L was made and 

allowed to stand overnight before using. Two ml of digested sample and 

standard solutions were pi petted with 1 ml of the barium chloride-Tween 80 

solution into disposable cuvetts prior to being analyzed for sulfur concentration 

on the spectrophotometerg at 623 nm. 

9 Gilford Response Series UV-VIS Spectrophotometer, Ciba Corning 
Diagnostics Corporation. 



Statistical Analyses 

All data were analyzed using a general linear model procedure with 

horse, period and treatment as main effects. Least squares means were 

calculated for each variable and Tukey's procedure was used to detect 

differences between treatment means at (P < .05) according to Steele and 

Torrie (1980). 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Blood pH 

Mean venous blood pH was lower (P < .001) for horses consuming the L 

diet than for those consuming the MH and H diet at 13 of the 17 measured 

intervals (Table Ill and Figure 1). This agrees with the previous work of Baker et 

al., (1991) noting a decrease in arterial and venous blood pH in horses 

consuming a low DCAB diet (-50) versus MH and H diets ( + 150, + 250). This 

also agrees with the depression in blood pH seen in dairy cows fed diets with a 

DCAB of -1 00 meqjkg dry matter (Tucker et al., 1988) and with numerous 

reports in poultry research linking DCAB with the systemic acid-base status of 

the animal (Cohen, Hurwitz, and Bar, 1972; Cohen and Hurwitz, 1974; Mangin, 

1980; Hamilton and Thompson, 1980). Chloride is absorbed from the lumen of 

the gastrointestinal tract in exchange for the secretion of a bicarbonate ion. This 

liberates a hydrogen ion from the intermediate carbonic acid (H2C03), resulting 

in increased systemic acid generation and metabolic acidosis. Hence, blood pH 

decreases with decreasing DCAB. Peak chloride absorption may have occurred 

at 1-hour post-feeding across treatments, corresponding to the lowest blood pH 

values. 
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Time 

10ama 

11 am 

12 pm 

1 pm 

2pm 

3pm 

4pm 

5pm 

6pm 

7pm 

8pm 

9pm 

10pma 

11 pm 

12am 

1 am 

2am 

TABLE Ill 

THE EFFECT OF DIETARY CATION-ANION BALANCE 
ON VENOUS BLOOD pH POST-FEEDING IN THE 

ANAEROBICALLY EXERCISED HORSE 

, Treatment 

L ML MH H 

7.391b 7.399b 7.395b 7.398b 

7.342b 7.368C 7.365C 7.370C 

7.354b 7.378C 7.376C 7.384C 

7.366b 7.380C 3.379C 7.390C 

7.366b 7.381C 7.380C 7.387C 

7.366b 7.381C 7.381C 7.383C 

7.370b 7.385C 7.385C 7.398C 

7.371b 7.376bc 7.387Cd 7.3sod 

7.374b 7.383bc 7.394Cd 7.395d 

7.375b 7.392C 7.392C 7.400C 

7.382b 7.398C 7.398C 1.395C 

7.383b 7.3ssb 7.395b 7.391b 

7.396b 7.397b 7.402b 7.398b 

7.348b 7.368b 7.359b 7.356b 

7.360b 7.378C 7.379C 7.384C 

7.374b 7.381bc 7.398d 7.392Cd 

7.374b 7.377bc 7.392d 7.387Cd 

a Indicates feeding time. 
b,c,d,e Means in rows with different superscripts differ (p< .05). 
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S.E. 

.005 

.004 

.006 

.004 

.004 

.005 

.004 

.005 

.004 

.004 

.004 

.004 

.003 

.007 

.006 

.005 

.005 
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Urine pH 

Variations in urine pH paralleled the blood pH response (Table IV and 

Figure 2); pH was lowest at 4-hour post-feeding, which corresponded to 2pm 

and 2am. Horses consuming the H diet had higher (P < .05) transient urine pH 

values than those receiving the other diets. Also, as DCAB increased, mean 

daily urinary pH increased (P < .01) across treatments with values of 6.73, 7.17, 

7.38, 7.92. This agrees with Baker and coworkers (1991) who reported a 

significant decrease in transient urine pH values ranging from 5.40 to 5.86 in 

sedentary horses fed a calculated DCAB of -50 meqjkg diet DM. The difference 

in treatment significance between the two trials may be explained by the 

difference in DCAB values for the H and L treatments. As chloride is filtered from 

blood and excreted in urine, it is accompanied by either hydrogen, sodium, or 

potassium. When the hydrogen ion accompanies chloride, urinary pH 

decreases. Also, there is a metabolic shift of C02 + H20 through the 

intermediate carbonic acid, ultimately forming H + HC03 ions. This increases 

systemic HC03 generation. 

Dry Matter Digestibility 

The effect of DCAB on dry matter digestibility and fecal output is shown in 

Table V. Fecal dry matter output, expressed in gjd, was calculated by 

multiplying grams of chromium fed/day times 100 and then divided by the 

percent chromium in the feces grab sample. Dry matter digestibility was 

calculated by dividing grams of DM fecal output by the grams of DM intake per 

day. An increase (P < .05) in fecal output and thus a decrease in dry matter 

digestibility was observed for those horses consuming the L versus H diet. 

Fecal output increased from 2709 gjd on the H diet to 3134 gjd for those 



TABLE IV 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON URINE 
pH POST-FEEDING IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

Time L ML MH H S.E. 

10AMa 6.aob 7.18C 7.43C 7.99d .11 

2PM 6.84b 7.04bc 7.23C 7.77d .10 

6PM 6.87b 7.2obc 7.52C 8.01d .12 

10PMa 6.71b 7.25C 7.53C 8.15d .10 

2AM 6.59b 7.11C 7.20C 7.74d .11 

6AM 6.64b 7.29C 7.45C 7.96d .12 

Average 6.73e 7.17f 7.389 7.92h 

a Indicates feeding t1me 
b,c,d Means in rows with different superscripts differ (P < 05). 
e,f,g,h Means 1n rows with different superscnpts differ (P < .01 ). 
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TABLE V 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON DRY 
MATTER DIGESTIBILITY IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

DM Digestibility% 61.63a 65.41 ab 63.54ab 66.s2b 

S.E. 

1.05 

Fecal Output gfd 3134a 2s25ab 297sab 27ogb 85.99 
a,b Means in rows with different superscripts differ (P < .05). 
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horses consuming the L diet. Accordingly, dry matter digestibility decreased 

from 66.82% to 61.63%. The ML and MH diet values were intermediate (65.41% 

and 63.54% respectively) and were not statistically different from the H or L diets. 

This disagrees with Nelson and coworkers (1981) who reported decreases in 

dry matter and amino acid digestion in 30-d-old chicks fed diets that contained 

the greatest cation-anion ratio. However, they manipulated cation-anion ratio by 

supplementing with calcium or phosphorus. The present findings do agree with 

Yen et al. (1981) who observed that the addition of 4% calcium chloride to the 

diet resulted in reduced feed intake, weight gain, and feed efficiency in 

crossbred barrows and with Haydon and West (1990) who reported a linear 

relationship between DCAB and apparent ileal digestibility of Nitrogen, energy, 

dry matter, and all amino acids, except for alanine and methionine in diets with 

DCAB of -50 to 400 meqjkg od diet dry matter. However, nutrient and amino 

acid digestibilities measured over the total tract were similar. The previous 

results might be explained by Riley and Austic (1983) who reported the pH of the 

crop was depressed by dietary chloride. However, neither chloride nor 

potassium had an effect on the pH of the proventriculus, duodenum, or the 

middle and distal protions of the small intestine. Most digestive enzymes have 

optimal activity at a pH ranging from 6.5 to 7.5. Therefore, if decreasing the 

DCAB increases the acidity of the digestive tract, the activity of many pH 

sensitive digestive enzymes may be decreased. 

Sodium Balance 

The high diet was supplemented with .89% potassium citrate and .61% 

sodium bicarbonate, increasing sodium intake to 35.38 gjd as compared to 

24.02, 22.36, and 24.33 gjd for the L, ML, and MH diets respectively. This effect 



44 

of DCAB on sodium balance is shown in Table VI and Figure 3. No differences 

in fecal sodium excretion were detected between the four treatments. However, 

urinary sodium excretion paralleled intake. Sodium excretion was similar for the 

L, ML, and MH diets (8.57, 8.61 ,and 5.94 gjd respectively). The increased daily 

sodium intake for those horses consuming the high diet resulted in a significant 

increase in daily urinary sodium excretion to 14.03 gjd. This increase in daily 

urinary excretion did not offset the increased intake as those horses on the high 

diet retained more sodium (8.86 gfd) as compared to the L (3.47 gfd) and ML 

(2.08 gfd). The MH diet (5.36 gfd) was not different from the other treatments. 

These findings agree with those of Schyrver and coworkers (1987) who 

demonstrated that urinary excretion was the primary pathway for sodium loss in 

sedentary horses consuming 1, 3, and 5% sodium chloride. He noted that 

sodium intake was directly related to urinary sodium excretion but had no effect 

on fecal excretion, intestinal absorption, or retention of sodium. The difference 

in sodium retention might be explained by the absolute amount and/or form of 

the sodium supplement used in the two trials. 

Young and coworkers (1989) reported sweat sodium losses of 42.1 

mgjkg BW in heavily exercised miniature horses consuming 25.4 mgjkg BW. 

Their findings agree with Meyer (1987) who suggested that most diets contain 

inadequate sodium concentrations to meet the needs of the exercising horse. 

He estimated the sweat sodium loss to range from 8.25 to 82.5g depending on 

the level of exercise. Although all treatments exhibited positive sodium 

balances, we may assume that these horses were marginal, if not in negative 

sodium balance, due to the large amount of sodium potentially lost in sweat. 

From the present study, it can be suggested that DCAB increases the 

sodium balance of anaerobically exercised horses and that this increase may 

help offset the large amount of sodium lost in sweat. The NRC (1989) lists the 



Intake g/d 

Urine gjd 

Fecalg/d 

TABLE VI 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
SODIUM BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

24.02 22.36 24.33 35.38 

8.57a 8.61a 5.94a 14.03b 

11.97a 11.67a 13.06a 12.48a 

Balance gjd 3.47a 2.o8a 5.36ab 8.86b 

a,b Means in rows with different superscripts differ (P < .05). 
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S.E. 

.96 

.99 

1.18 
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sodium requirement of working horses at .30% OM. From this study and 

estimations of sweat sodium losses, this value may be inadequate. Further 

research on the sodium balance of the exercising horse is needed to accur~tely 

quantify the sodium requirement. 

Potassium Balance 

Potassium, one of the cations used to manipulate the DCAB, was 

supplemented as potassium citrate at .89% along with .61% sodium bicarbonate 

in the H diet (Table 1). Thus, daily potassium intake increased to 113.78g as 

compared to L (91.85g), ML (93.75g), and MH (92.37g). This effect of DCAB on 

potassium balance is shown in Table VII and Figure 4. Those horses consuming 

the L diet had higher (P < .05) fecal excretion of potassium (22.29 gjd) as 

compared to the other treatments (ML=17.52, MH= 17.35, and H =17.46 gjd). 

Daily urinary excretion of potassium paralleled intake. The increase in intake to 

113.78 gjday in the H diet resulted in a significant increase (P < .05) in daily 

urinary potassium excretion (73.95 gjd). Potassium excretion was similar for the 

L (50.74), ML (49.38), and MH (50.33 gjd) diets. The increase in urinary 

excretion in the H diet and the decrease in intestinal absorption in the L diet did 

not produce significant differences in potassium balance (L=18.82, ML=26.46, 

MH =24.69, and H =22.38 gjd); however, there was a trend for balance to 

decrease on the L diet. 

The NRC (1989) lists the potassium requirement at 1.52 times Meal of DE 

intake/d. Young and coworkers (1989) reported sweat potassium losses of 

138.1 mgjkg BW in heavily exercised miniature horses consuming 220.2 mgjkg 

BW. These horses were in a slight negative potassium balance. However, 

Meyer (1987) suggested that the potassium requirement was adequate in 



Intake gjd 

Urine gjd 

Fecalg/d 

TABLE VII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
POTASSIUM BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

91.85 93.37 92.37 113 78 

50.74a 49.38a 50.33a 73.95b 

22.29a 17.52b 17.35b 17.46b 

Balance g/d 18.82a 26.46a 24.69a 22.38a 

a,b Means in rows with different superscripts differ (P < .05). 
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S.E. 

4.31 

1.06 

4.53 
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meeting the demands of the exercised horse. The horses in this trial consumed 

24.55 Mcal/d thus requiring 37.32 gjd of potassium. As in most horse rations, 

the potassium intake exceeded the requirement. Thus, considering sweat loss, 

we may suggest that if fed at the recommended level these horses could have 

been in negative potassium balance independent of DCAB. 

Chloride Balance 

Chloride was the only anion used to manipulate the DCAB in this 

experiment. The ML diet was supplemented with .54% calcium chloride and the 

L diet was supplemented with . 78% calcium chloride along with .30% ammonium 

chloride. Thus, daily intake of chloride was increased to 81.36 gfd for the ML 

diet and to 112.40 gj d for horses consuming the L diet. This compares with 

56.62 gfd and 55.17 gfd for the MH and H diets. The effect of altering the 

DCAB on chloride balance in shown in Table VIII and Figure 5. No difference 

was detected in fecal chloride excretion across treatments. However, 

' decreasing the DCAB resulted in increased (P < .05) urinary chloride excretion 

in the L (67.17 g/d) and ML (56.14 gjd) as compared to the MH (33.05 gjd) and 

H (35.39 gfd) diets. Apparently, the increase in urinary chloride excretion and 

the loss of chloride in the sweat was sufficient to offset the increased chloride 

intake in the ML diet as daily chloride balance was similar for the ML (17.00g), 

MH (17.07g), and H (12.04g). However, these chloride elimination pathways 

were not adequate in removing the excess chloride in the L diet as only the L 

diet proved to retain more chloride (37.65 gfd). 

These results agree with other data demonstrating increased urinary 

chloride excretion in horses consuming diets with a lower DCAB (Topliff et al., 

1989). However, this study disagrees with Schryver and coworkers (1987) who 



Intake gjd 

Urine g/d 

Fecalg/d 

-------

TABLE VIII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
CHLORIDE BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

112.40 81.36 56.62 55.17 

67.17a 56.14a 33.05b 35.39b 

7.58a 8.22a 6.49a 7.74a 

Balance g/d 37.65a 17.oob 17.o7b 12.04b 

a,b Means in rows with different superscripts differ (P < .05). 
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S.E. 

4.13 

.86 

4.13 



reported dietary chloride to be completely absorbed in sedentary horses 

consuming diets with 1, 3, and 5% sodium chloride and that urinary excretion 

was the sole pathway for chloride elimination. 
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Meyer (1987) suggested that the increase in chloride requirement of the 

exercising horse was met by the obligatory increase in dry matter intake 

necessary to meet energy demands. However, Young and coworkers (1989) 

reported exercised miniature horses with a daily chloride intake of 40.9 mgjkg 

BW to have sweat chloride losses of 90.3 mgjkg BW. They suggested that the 

increase in chloride intake accompanying the increase in dry matter intake 

associated with exercise was not sufficient to balance the large amount of 

chloride lost in sweat. These differences may be explained by the variance in 

workload and climatic factors. 

The NRC (1989) suggests that chloride requirements are presumed to be 

met when the sodium requirement is met by supplementing the diet with sodium 

chloride. However, Young and coworkers (1989) fed approximately 1.5 times 

more chloride than sodium to exercising miniature horses and still experienced a 

chloride deficiency. In the present study, a chloride to sodium ratio of 4.76 

resulted in a chloride balance of 37.65 gjd not including the chloride lost in 

sweat. Whereas, ratios of 3.7 (ML), 2.3 (MH), and 1.58 (H) produced similar 

chloride balances of 17.00, 17.07, and 12.04 g/d respectively. 

From this study, we may suggest that diets with low DCAB do increase 

the chloride balance in the anaerobically exercised horse depending on the level 

of chloride lost in sweat. Furthermore, this increased chloride balance has 

marked effects on blood and urine pH along with calcium, phosphorus, 

magnesium, and sodium balance in the anaerobically exercised horse. 
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Magnesium Balance 

Magnesium has been implicated as playing a minor role in the DCAB 

equation in dairy cattle. Therefore, the magnesium concentration was purposely 

held constant across treatments in order to evaluate sodium, potassium, and 

chloride as the primary contributers to the DCAB equation. The effects of DCAB 

on magnesium balance are shown in Table IX arid Figure 6. Intake of 

magnesium varied slightly across treatments ranging from 12.41 to 12.69 g/d. 

The L diet resulted in an increase (P < .05) in fecal magnesium excretion to 7.59 

gjd. The ML, MH, and H diets were similar with fecal excretions of 6.34, 6.45, 

6.4 7 g/ d. It appears that urinary excretion of magnesium was not affected by 

DCAB. Due to the increased fecal excretion, magnesium balance was lower (P 

< .05) for those horses consuming the L diet (.94g/d) versus the other 

treatments (ML=2.65, MH=2.28, H=2.31 g/d). 

The NRC (1989} suggests the magnesium requirement is .46 times Meal 

DE intake/day. Therefore, the horses in this trial required 11.29 gjd. 

Accordingly, all diets should have been sufficient in meeting the requirement. 

However, we may suggest that those horses consuming the L diet could be in 

marginal if not negative magnesium balance. 

Sulfur Balance 

Sulfur is an ion sometimes used in the equation to express DCAB. 

Therefore, by design, the intake of sulfur was held similar across treatments 

ranging from 9.20 g/d for the L diet to 10.39 g/d for those horses consuming 

the H diet. The effects of DCAB on sulfur balance is shown in Table X and 

Figure 7. DCAB did not appear to affect sulfur balance as values for urinary and 

fecal sulfur excretion were similar across treatments. Urinary excretion ranged 



Intake gjd 

Urine gjd 

Fecalg/d 

TABLE IX 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
MAGNESIUM BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

12.41 12.69 12.51 12.48 

3.88a 3.7oa 3.78a 3.7oa 

7.59a 6.34b 6.45b 6.47b 

Balance gjd .94a 2.65b 2.2sab 2.31ab 

a,b Means in rows with different superscripts differ (P < .05). 
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S.E. 

.31 

.24 

.34 



Intake gjd 

Urine gjd 

Fecalg/d 

TABLE X 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
SULFUR BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

9.2oa 9.49a 9.26a 10.39a 

7.91a 9.03a 8.34a 8 73a 

2.54a 2.35a 2.31a 2 23a 

Balance gjd -1.25a -1.89a -1.39a -o.ssa 

a,b Means in rows with different superscripts differ (P < .05). 

53 

S.E. 

1.93 

.14 

1.91 
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from 7.91 to 9.03 gjd while fecal excretion varied from 2.23 to 2.54 gjd. 

Although no significant differences were detected, the sulfur balance was 

negative across treatments (L = -1.25, ML = -1.89, MH = -1.39, and H = -.56). 

The NRC (1989), based on the work of Jarrige and Martin-Rosset (1981), 

suggests the sulfur requirement of the exercising horse is .15%, a minimum 

value provided by most high quality protein sources. In the present study, the 

sulfur content of the feedstuffs was overestimated resulting in sulfur 

concentrations slightly below the. requirement (L = .11, M L = .12, M H =. 11 , and 

H = .13%). Therefore, these horses consumed about 2 to 3 g/ d below the 

suggested 12.25 g/d. This could be the likely explanation for the negative sulfur 

balances. The NRC (1989) states the apparent protein digestibility for diets with 

a concentrate-to-hay ratio above 1:1 to be 70 to 75% depending on the source 

and need of the animal. In this study, the apparent absorption efficiency of 

sulfur averaged 75.31% across treatments. 

Recent research conducted by Tucker et al., (1991) demonstrated that 

dietary chloride and sulfur had similar effects on the acid-base status of dairy 

cows. This is in agreement with Oetzel (1991) who analyzed the previous 

research conducted on acid-base balance in dairy cattle and determined that 

sulfur is the primary ion affecting· acid-base balance. Therefore, they suggested 

that sulfur be included along with chloride in the DCAB equation for lactating 

dairy cows. 

Additional research investigating the role of sulfur in the acid-base 

physiology of anaerobically exercised horses is necessary to substantiate the 

inclusion of sulfur in the DCAB equation. 
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Phosphorus Balance 

The effect of DCAB on phosphorus balance is shown in Table XI and 

Figure 8. The intake of phosphorus was held constant across treatments 

(L=22.77, ML=23.95, MH =22.86, and H =22.94). DCAB affected phosphorus 

in the same manner as magnesium, decreasing (p < .05) intestinal absorption 

in horses consuming the L diet. These horses had higher fecal phosphorus 

excretion (21.68 gjd) as compared to the other treatments (ML=17.74, 

MH=17.18, H=17.20). The DCAB did not appear to affect renal excretion of 

phosphorus; excretion ranged from .06- .07 gjday across treatments. The low 

excretion values may be due to renal retention of phosphorus under situations of 

dietary and/or exercise induced urinary calcium loss and the excretion of 

phosphate in the feces. Also, there is some indication that phosphorus may be 

changed from the organic to inorganic form even in the frozen state. Additional 

phosphorus analysis using a Cobas Mira Automated I on Analyzer was done to 

test the original measurements. These test paralleled the previous urinary 

phosphorus analysis producing values slightly less than before across all tested 

samples, possibly due to the conversion from the organic to inorganic form. 

The increased fecal excretion of phosphorus in those horses consuming 

the L diet resulted in a decrease (P < .05) in phosphorus balance (1.03 gjd) as 

compared to 6.16 gjd (ML), 5.62 gjd (MH), and 5.68 gjd (H). This same effect 

seen in potassium and magnesium may be associated with the decrease in dry 

matter digestibility as these are primarily intracellular and structural elements. 

The NRC (1989) suggests the phosphorus requirement is .87 times Meal 

DE/d. Therefore, the horses in the present study required 21.36 gjd. 

Considering sweat phosphorus losses are minimal, each treatment supplied 



Intake gjd 

Urine gjd 

Fecalg/d 

TABLE XI 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
PHOSPHORUS BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

22.77 23.95 22.86 22.94 

.o7a .o6a .o6a .o6a 

21.6a 17.74b 17.18b 17.2Gb 

Balance g/d 1.oa 6.16b 5.62b 5.6sb 

a,b Means in rows with different superscripts differ (P < .05). 
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S.E. 

.01 

.42 

.42 



adequate phosphorus. However, from these data we may suggest that a low 

DCAB decreases intestinal absorption and retention of phosphorus to near 

marginal levels in the anaerobically exercised horse. 

Calcium Balance 

57 

The effect of DCAB on calcium balance is shown in Table XII and Figure 

9. The calcium concentration across treatments was formulated to be constant 

across treatments in order to more accurately quantify the effects of DCAB on 

calcium balance. However, due to variation in feedstuff composition calcium 

intake across treatments was 40.82 gjd (L), 42.98 gjd (ML), 42.35 g/d (MH), 

and 44.22 g/d (H). The effects of DCAB on intestinal absorption are not 

consistant with the other minerals. Fecal calcium excretion was higher (P < .05) 

for those horses consuming the H diet (21.01 gjd) versus the ML diet (15.66 

gjd). This effect is basically opposite those of the other minerals, but may be 

explained by the calcium homeostatic control mechanisms. These horses also 

had decreased (P < .05) urinary calcium excretion (10.33 gjd) versus those 

horses consuming the L diet (20.11 gjd). The ML and MH diets were 

intermediate and not different from either the H or L diet. 

These findings agree with published data demonstrating increased 

urinary calcium excretion in horses (Topliff et al., 1989), rabbits (Thacker, 1959), 

rats (Barzel and Jowsey, 1989; Newell and Beauchene, 1975; Cole and Zlotkin, 

1983; Petito and Evans, 1984; Emerick, 1984; Goulding and Campbell, 1984), 

and humans (Walser and Browder, 1959; Lemann and Reiman, 1959; Kleeman 

et al., 1964; Adams et al., 1979; Schuett et al., 1980) consuming diets of lower 

DCAB. 



Intake gjd 

Urine gjd 

Fecalg/d 

TABLE XII 

THE EFFECT OF DIETARY CATION-ANION BALANCE ON 
CALCIUM BALANCE IN THE ANAEROBICALLY 

EXERCISED HORSE 

Treatment 

L ML MH H 

40.82 42.98 42.35 44.22 

20.11a 15.71ab 12.16ab 10.33b 

17.45ab 15.66a 19.53ab 21.01b 

Balance gjd 3.26a 11.61ab 10.66ab 12.aab 

a,b Means in rows with different superscripts differ (P < .05). 

58 

S.E. 

2.12 

.97 

2.29 
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Parathyroid hormone has been shown to have a more dramatic effect on 

renal production of 1,25-dihydroxyvitamin D in dairy cows fed highly anionic 

diets thus increasing intestinal calcium absorption (Goff et al., 1991). Also, 

osteoclastic bone resorption was more responsive to parathyroid hormone as 

plasma hydroxyproline concentration was higher in those cows fed the low 

DCAB diet. The parathyroid hormone activity might be due to the decrease in 

the pH of the blood associated with diets of lower DCAB. 

These changes in fecal and urinary calcium metabolism resulted in an 

increase (P < .05) in calcium balance of those horses consuming the H diet 

(12.88 gjd) as compared to those on the L diet (3.26 gjd). The ML and MH 

diets were again intermediate and not different from either the H or L diet. 

The NRC (1989) suggests the calcium requirement to be 1.22 times the 

Meal of DE intake/day. These horses would therefore require 29.95 gjd of 

calcium. We purposely exceeded the calcium level in the diet as not to 

predispose these horses to a calcium defiency; therefore, each treatment has a 

10 to 12 g cushion in calcium requirement. Because of the tight control of 

calcium homeostatic mechanisms on intestinal absorption and renal 

reabsorption, it is not feasible to say that all horses would be in negative or 

marginal calcium balance if we had fed calcium levels more near the 

requirement. However, we may suggest that as DCAB decreases calcium 

balance also decreases, predisposing those animals to negative calcium 

balance. When prolonged, this condition could lead to an osteoporotic 

weakening of the skeletal system as seen in poultry (Leach and Neshium, 1965; 

Leach and Neshium, 1972; Sauveur and Mangin, 1978; Edwards, 1984; Hallet et 

al.m 1987; Hamilton and Thompson, 1980; Hurwitz et al., 1973; and Mangin, 

1981). 
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Summary and Conclusions 

These results further indicate the direct correlation between dietary 

cation-anion balance and the acid-base status of the animal. Furthermore, this 

correlation is positive noted by the decreasing pH of blood and urine in animals 

fed decreasing DCAB diets. 

These results also provide additional information concerning mineral 

balance and the implications of DCAB in the exercised horse. It is difficult to 

make inferences toward the mineral requirement of the heavily exercised horse 

without the knowledge of sweat rate and composition. However, these results 

suggest that the NRC (1989) recommendations for, magnesium, sodium, and 

possibly potassium may not meet the demands of the anaerobically exercised 

horse. We may also conclude that exercising horses consuming highly anionic 

diets experience decreases in calcium, magnesium, phosphorus, and sodium 

balance and that these could easily be negative depending on the level of intake. 

From the previous discussion, it should be clear that both the absolute 

levels and the ratios of electrolytes in horse rations should be precisely 

controlled. However, it is a common industry practice to use feed additives, top 

dress with various mineral mixtures, and to use compounds such as Lasix that 

alter the mineral balance of the animal. There are many known factors that 

affect the mineral balance of the exercising horse that need to be further 

quantified including temperature and humidity, degree and intensity of workload, 

water intake, and the possibility of other acidogenic or alkalogenic agents. 

Also, further research is needed to determine the effects of DCAB in the 

young rapidly growing horse which would be particularly susceptible to 

alterations in mineral balance that might affect bone formation. 
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Figure 1. The Effect of Dietary Cation-Anion Balance on Venous Blood pH Post-Feeding in the Anaerobically 
Exercised Horse. 
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Figure 2. The Effect of Dietary Cation-Anion Balance on Urine pH Post-Feeding in the Anaerobically Exercised 
Horse. 
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Figure 4. The Effect of Dietary Cation-Anion Balance on Potassium Balance in the Anaerobically Exercised Horse. 
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Figure 5. The Effect of Dietary Cation-Anion Balance on Chloride Balance in the Anaerobically Exercised Horse. 
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Figure 6. The Effect of Dietary Cation-Anion Balance on Magnesium Balance in the Anaerobically Exercised Horse. 
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Figure 7. The Effect of Dietary Cation-Anion Balance on Sulfur Balance in the Anaerobically Exercised Horse. 



gfd 

D Intake IJ Urine m Fecal §:1 Balance 

25 ~-----------------------------------------------------------------------------------

20 

15 

10 

5 

L 

... . . . . . . : .. 
~----~. ~--------------4--

ML 

Treatment 

MH H 

Figure 8. The Effect of Dietary Cation-Anion Balance on Phosphorus Balance in the Anaerobically Exercised Horse. 
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Figure 9. The Effect of Dietary Cation-Anion Balance on Calcium Balance in the Anaerobically Exercised Horse. 
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