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PREFACE 

Sparger reactors have a relatively short history in 

industrial operation limited mainly to the last decade, 

Unfortunately there is still much confusion and 

contradiction in the literature. There are countless 

recommended correlations, but little in the way of a 

unifying theory. Each researcher has worked on any one 

particular aspect of this reactor on small scale models. 

All of these findings have to be integrated to simulate a 

model for the reactor. This approach was the basis of my 

Master's thesis at Oklahoma state University. 

My studies in the United states have given me an 

indepth knowledge of the American culture apart from 

strengthening my educational background. I must admit 

that I was extremely fortunate to have had Dr. Arland H. 

Johannes as my adviser. He was a sincere and patient 

instructor, whose commitment to education places student's 

cause above himself. I never hesitated in talking to him 

about my personal problems, and my respect for him goes 

deeper than that for a mentor and guide. 

I thank Dr. Gary L. Foutch and Dr. Whiteley for 

having served on my committee and for, their endearing 

presence. Special thanks to Dr. Robert L. Robinson for 
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his financial support during my Study at OSU. It is among 

my greatest academic experiences to have been enrolled in 

courses offered by Dr. K. J. Bell and Dr. K. A. Gasem. 

Special thanks to the secretaries of the department for 

their cheerful and friendly attitude. 

studying abroad was not too often felt by me chiefly 

due to the enjoyable presence of my dear friends. If I 

were to thank everyone of them I would run out of both 

space and time. I must admit that Stillwater and osu are 

truly unique in certain aspects nationwide and I wish to 

acknowledge all those people who made my stay in 

stillwater memorable. 

My parents Mr. w. Somasundaram and Mrs. w. s. 

Kannibai deserve adoration for all their love and 

sacrifice, and so do my friends and relatives back home. 

Special thanks to my brother Anand and sister Aruna with 

whom I shared more than a common roof. I thank all my 

friends and relatives without whose cooperation this study 

wouldn't be possible. 
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CHAPTER I 

INTRODUCTION 

In the last decade, a large amount of research was 

done on the use of spargers as a surrogate for mechanical 

agitation. The present scope of such replacement is 

limited to low viscosity liquid systems. Sparger type 

reactors find application in many chemical industries and 

biotechnology processes such as the production of baker's 

yeast, wastewater management, single cell protein (SPC) 

production, and citric acid production [1]. 

Spargers are used in a variety of processes as a 

contacting apparatus to obtain mass transfer with or 

without chemical reaction. Spargers are bubble columns 

which negate the need for mechanical agitation, thereby 

eliminating the disadvantage of moving parts. Use of 

spargers results in better circulation, i.e. more 

efficient mixing which is needed for efficient chemical 

reactors. 

The basic mechanisms taking place in a bubble column 

are the formation of bubbles, bubble rise and the 

resulting circulation. These mechanisms influence the 

flow pattern which influences mixing, heat and mass 

transfer. 
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Of late, spargers have found application in the 

manufacture of dimethyl-terephthalate [2]. Manufacture 

of dimethyl-terephthalate involves the oxidation of p­

xylene over modified cobalt catalyst. Air, which is 

widely used as the oxidizer, is bubbled through a column 

of liquid p-xylene. 

Dimethyl-terephthalate is extensively being used as 

a raw material for polymers (e.g. nylon). The reaction 

process is as follows: a) p-xylene is oxidized to 

monomethyl-terephthalate at high circulation rates in an 

induced flow reactor loop, b) the reaction is carried out 

under isothermal conditions made possible by the use of 

heat exchangers, with maximum temperature variation 

within the reactor limited to about 3° - 5°F. The steps 

involved in the process are: 

a) introduction of the liquid reactants, 

b) bubbling air up through the reactor, 

c) venting excess gas, and 

d) cooling the reaction medium to remove the heat of 

reaction (exothermic). 

Some variables that control the. rate of oxidation of 

p-xylene are the cobalt concentration, temperature, 

pressure, mass transfer coefficients, the reactor 

dynamics and mixing patterns. 

Despite serious drawbacks, the compelling advantages 

of the sparger system have been responsible for the 

successful use in many industrial operations. 
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Advantages and Disadvantages of Bubble Columns for 

Industrial Operations 

Use of spargers in industrial applications have both 

desirable and undesirable characteristics. These are the 

factors to be considered for such a replacement. 

Advantages of sparger type reactors include: 

1. rapid mixing of liquid which results in 

isothermal conditions throughout the reactor when 

heat exchanger tubes are used inside the reactor, 

2. mass transfer rates between gas and liquid phases 

are high compared to mechanical agitation, and 

3. the rate of heat transfer between gas and liquid 

phases is high, hence the area required for heat 

transfer is relatively small. 

Disadvantages of sparger type reactors include: 

1. difficulty in describing the flow of gas through 

the reactor, and deviation from ideal plug flow 

conditions. This effect becomes predominant at 

high production rates. 

2. rapid mixing which can lead to non-uniform 

residence time of the catalyst. 

3. the catalyst concentration can vary, depending on 

the size of the reactor, due to the fluidizing 

conditions. 
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Due to the complex characteristics of this reactor, 

modeling of such reactors pose a great problem. Some 

portions of the reactor behave as a plugflow reactor 

while the remaining portions can be treated as a well 

mixed reactor. 

This study investigates the mechanisms of bubble 

column related to three phase sparged reactors, studies 

the effect of the circulation patterns on the reaction 

kinetics and predicts industrial operating conditions. 
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CHAPTER II 

LITERATURE REVIEW 

A detailed study of the literature relevant to the 

manufacture of DMT in sparged reactors involved the 

following: 

1. description of bubble columns, 

2. reaction kinetics for oxidation of p-xylene, 

3. process description, and 

4. purification. 

Bubble Column Description 

The need to do away with moving parts in the reactor 

leads to wide usage of sparger reactors in chemical and 

biotechnological applications. Spargers are very energy 

efficient [3] and are suitable where precise temperature 

control is desired [4]. 

One of the basic phenomenon in a bubble column is 

the formation of bubbles at the sparger. The smaller the 

bubbles, the larger the area available for mass transfer 

between the gas and the liquid phases. Bubbles formed at 

the sparger increases in size as they move upward in the 

reactor. 

5 



The bubbles formed at the sparger rise in the form 

of a cloud~ The behavior of the bubble cloud is 

determined,solely by the superficial gas velocity. At 

low gas velocities, a fairly homogeneous distribution of 

rising bubbles occurs in ·the bubble column. This is 

sometimes called the "homogeneous flow regime" [3]. The 

fractional gas holdup, also defined as the void fraction, 

is defined by 

€ = 

where 

Vs - 'gas superficial velocity, mfs 

Vbs - single bubble rise velocity, m/s 

(2 .1) 

Liquid mixing in a bubble column is attributed 

mainly to the bubbles themselves. When the bubbles rise, 

a certain amount of the liquid is carried along with them 

in the wake and some pushed upward by the rising bubble. 

The velocity difference around the bubble also causes 

liquid mixing. 

The effect of liquid properties on the gas holdup is 

large and is dependant on the type of sparger. The 

liquid properties that affect the holdup are the surface 

tension and viscosity. 

Reaction Kinetics for Oxidation of P-xylene 

The rate expression is not widely available for the 

oxidation of p-xylene. The disappearance of oxygen 
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without an induction period by p-xylene at 140°C is 

expressed as follows (5] 

= K 

Where 

[Co III]0.19 [PX]2 

(PTA]0.21 

K = rate constant, 6.5 X 10-5 Kgmole Sec-1 

(Co III] = cobalt catalyst concentration 

[PX] = p-xylene concentration 

(PTA] = terephthalic acid concentration 

(02] = 9xygen concentration 

(2.2) 

There are several reactions possible along with the 

two major reactions listed below. At low temperatures, 

between 140 and 170°C, the manufacture of DMT follows the 

path of the second reaction. 

1. Converllon ............... p-tolulo .......... 

y,. ............ u o. CAlli- Cr/\0. .,.,._. "a0 

Process Description 

The oxidation of p-xylene in the presence of cobalt 

salts proceeds at temperatures above 110°C and sufficient 
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oxygen pressures. Usually no induction period is 

required, and the oxygen absorption is self catalyzed 

like autocatalytic reactions. The effect of initial 

concentration of the cobalt catalyst on the maximum 

absorption rate of oxygen is significant, and shows the 

sensitivity of the reaction to the catalyst 

concentration. 

The manufacture of dimethyl-terephthalate is carried 

out by the oxidation of p-xylene at very high circulation 

rates in an induced flow reactor loop without mechanical 

agitation or pumping [6], under isothermal conditions. 

Maximum variation within the reactor can be limited to 

3° - 5°F. The conversion of p-xylene to momomethyl­

terephthalate is carried out in a reactor loop in the 

following manner 

1. introduction of liquid p-xylene into the loop 

through one or more liquid inlets, 

2. introduction of oxygen containing gas into the 

reactor column to gasify and cause circulation of 

the reaction medium through the loop, 

3. introduction of catalyst into the reactor loop 

along with solid residue, 

4. venting of excess gas from the top of the 

reactor, and 

8 

5. cooling of the reaction medium to remove the heat 

of reaction (exothermic). 



Figures 1 and 2 present typical industrial sparger 

reactors. Figure 1 shows a reactor with two legs for 

induced circulation. Figure 2 show a single reactor with 

the bubble column. These reactors operate with high 

liquid circulation rates. The driving force for 

circulation is the difference in specific gravity or 

weight of the liquid reaction medium contained in the 

reactor. Unreacted oxygen and inerts are vented off the 

top of the loop. The excellent mixing associated with 

the turbulent flow results in high yields. Introduction 

of a substantial amount of gas ensures that the flow is 

in the turbulent region which is required for proper 

mixing and heat transfer. 

Relative to improving monomethyl-terephthalate 

yield, it is preferred to operate at a p-xylene 

conversion of 20 and 50 percent. This is to reduce the 

amount of byproduct formation [7]. The consumption of 

oxygen during the oxidation process reduces the amount of 

oxygen reaching the top of the reactor loop. The taller 

the gasified section, the greater the circulation. The 

presence of inerts greatly increases the amount of 

circulation. When air is used, introduction of about 

3.0 moles of oxygen, per mole of p-xylene to be oxidized 

results in more than adequate circulation. The typical 

reaction conditions are from 140°C to about 170°C and 

4 to 8 atmospheres (6], these conditions have been 
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The labelling of the parts is as follows and are common 

for both figures 

2. Reactor with induced circulation loop 

3. Liquid reaction medium 

4. Reactor column 

6. Heat exchanger column 

8. Gas inlet 

10. and 11. Reactant inlet means 

12. and 13. Connecting conduits 

14. Venting section 

15. Heat exchanger tubes 

18. Gas-liquid interphase 

19. Liquid-gas separation section 

20. Oxidate outlet 

21. Catalyst inlet 

30. Water inlet 

32. Steam outlet 

10 
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Figure 1. Reactor with separate bubble and heat exchanger 
loop; adapted from Klingman [2] 



CATALYST 
PMT 

VENT 

---• 
• 3 -=--

• 
• • 

.! '-­-,.; . -
• 

8 
OXYGEN-CONTAINING 

GAS 

-15 

. Figure 2. Reactor with induced circulation loop; 
adapted from Klingman [2]. 
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optimized to reduce oxidation losses of p-xylene to 

carbon dioxide and water. 

13 

This reactor mechanism has an inherently low 

pressure drop and the wall effects on the flow of liquids 

through the reactor are minimal because of the large 

column diameter. 

Purification 

The reaction mixture, which is either in the 

crystalline or emulsion form is mixed with an appropriate 

solvent to dissolve all compounds except monomethyl­

terephthalate. Solvent extraction is then carried out to 

purify the monomethyl-terephthalate {MMT). 

An alternate procedure is to cool and crystalli~e 

the monomethyl-terephthalate. The molten and crystalline 

portions are then separated from one another. The 

crystallized portion is then washed with an appropriate 

solvent, to remove the impurities. 

The MMT will still have traces of colored 

contaminants. These can be removed by an adsorption 

process [7]. The MMT is dissolved in a solvent at 

elevated temperatures. Suitable solvents for this process 

are methanol and acetone. The resulting solution of MMT 

is contacted with activated carbon and the colored 

contaminants and are removed by adsorption. 



CHAPTER III 

DESIGN PRINCIPLES TOR 

SPARGER REACTOR 

The sparger reactor deviates from ideal plug flow 

conditions because a portion of the reactor behaves as a 

constantly stirred tank reactor. Hence, this reactor 

cannot be modelled with the performance equation for any 

one individual case. 

Ideal Plug Flow Reactor 

In a plug flow reactor, the composition of the fluid 

varies from point to point along the reactor length. A 

material balance for the reactor yields the performance 

equation for the plug flow reactor as follows 

XAf 
dxA r v 

c:o = J 
1 dCA 

= = ---
FAo -rA CAO -rA 

( 3 .1) 

0 CAO 

r CAf 
v dXA _ J dCA r = = CAO = 
vo -rA -rA 

(3.2) 

0 CAO 

14 



Where 

T = residence time, s 

v = volume of reactor, m3 

v = volumetric flow rate, m3 js 

CAO = initial concentration of A, Kgmolefm3 

FAo = molar flow rate of A, Kgmolefs 

XA = conversion of A 

CAf,XAf = final concentration and conversion of A 

respectively. 

As discussed earlier, the rate expression for the 

reaction is not available. Hronec et al. (5] concluded 

that the rate decreases with temperature for the 

oxidation of p-xylene. Since the oxidation of 

p-xylene to MMT follows a similar mechanism as that for 

the oxidation of p-xylene to p-toluic acid [5], equation 

2.2 was modified to 

15 

= 2.5 X 10-5 e(413/T) 
[PX]2 [Co III]0.21 

[MMT] 
(3.3) 

Where 

[px] = p-xylene concentration, Kgmole{m3 

[Co III] = cobalt catalyst concentration, Kgmole{m3 

[MMT] = monomethyl-terephthalate concentration, Kgmole{m3 

[02 ] = oxygen concentration, Kgmolejm3 

The rate expression can be represented by 

(3.4) 



Where 

K = Rate constant, 2.5X1o-5 e(413/T) 

A = stands for p-xylene 

B = stands for co III 

c = stands for MMT 

The performance equation from equation 3.2 is 

JxA_f_d_x_A __ 

-rA 
0 

Substituting for -rA in the above equation gives; 

r CAO (N + XA) dXA 
Tp = CAO 

K CAO 2 (1 - XA) CAO 0.21 {M)0.21 
0 

Where 

N = 

Simplification of the equation gives; 

= JXAf dXA (N + XA) 
_{_1 ___ X_A_)_2_{M-) 0-.-2-1-

0 

r -{-1-:-d-:-:-)-2- + 

0 

16 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Substituting -t for 1 - XA and in the integral gives; 

1.0 

K M0.21 J [ N dt (t + 1)dt ] Tp = + (3. 9) 
CAO 0.21 t2 t2 

Analytical integration yields: 

1.0 [ 1)[ 1.0 1.0] + Tp = (N + 
CAO 0.21 K M0.21 (1 - XAf) 

ln (1 - XA) ] (3.10) 

The above equation determines the residence time needed 

for a given conversion. 

Ideal Mixed Reactor 

. In an ideal mixed reactor like a CSTR the 

concentration is uniform throughout the reactor and exits 

at the bulk concentration. Hence the mass balance 

becomes simpler and gives the following performance 

equations, subsequently the rate expression is 

substituted in equation 3.11 to get the relationship 

between residence time and conversion. 

v XA CAO - CA 
= = ( 3 .11) 

FAO -rA CAO (-rA) 

v CAOXA (3.12) 
r = = 

v -rA 
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Substituting for -rA in the above equation gives 

(3.13) 

Sparger 

Bubble Size at the Sparger 

The bubble diameter is· dependent on the equilibrium 

between surface tension and buoyancy forces (8]. As the 

air flow rate increases, bubbles leave as a chain from 

the orifice. At this condition, the diameter of the 

bubble is dependent on the number of bubbles formed. A 

simple relation given by Davidson and Harrison (9] can be 

used to estimate bubble diameter. 

(3.14) 

Where 

Db = diameter of the bubble, meters 

Uo = superficial gas velocity, mjs 

do =. diameter of orifice, meters 

g = acceleration due to gravity, 9.81 m;s2 

More complex relations have been established by 

Kumar et al. [10], but the above equation is adopted for 

this study. When gas flow rates are increased bubble 

formation at the sparger becomes unstable. Leibson et 

al. [11] and Bhavaraju et al. [12] found this transition 

to occur at 2000 < DbUbP/M < 10000. 
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Bubble Size at a Distance From the Sparger 

The bubble formed at the sparger can either coalesce 

or disperse. In a coalescing media as in this case, the 

bubble diameter can be ~stimated using a formula reported 

by Calderbank [13) and Lee and Meyrick [14]. 

(P/V}0.4p0.2 
(3.15} 4.15 

Where 

(P/V} = is the work done, Dynes/m3 

a = surface tension between gas and liquid, N m-1 

P = density of liquid, kg m-3 

€ = void fraction 

The P/V and € terms cancel approximately each other 

out. 

+ 9 X 10-4 
p0.2 

and in a noncoalescing media Db can be calculated 

according to Lehrer [15] as follows 

a0.6 

= 1.93 

Bubble rise velocity 

(3.16} 

(3.17} 

The bubble rise at a given ·frequency from the 

sparger, proceeds like a chain to the top of the reactor. 

To simplify further, the following assumptions are made 



1. The velocity of the bubble is directly 

proportional to the diameter of the bubble . 

.2. Interaction of the bubble swarm gives rise to 

bigger sized bubbles. -

3. Wall effects are neglected. 

With the above mentioned assumptions, the 

rate of rise of the bubble was found by Davidson and 

Harrison [9) to be: 

20 

(3. 18) 

Where 

g = acceleration due to gravity, cmjsec2 

Db = diameter of bubble, em 
-

Ubr = bubble rise velocity, cmjsec 

The absolute rise velocity of the bubble is given by: 

Where 

u0 = superficial gas velocity, cmjs 

Umf = minimum fluidizing velocity, cmjs 

Liquid Mixing and Mass Transfer Coefficient 

(3.19) 

Liquid mixing in a bubble column is due to several 

processes. The bubbles themselves contribute to mixing 

because of the liquid transport due to the velocity 

differences around the bubble. The following equations 

are suggested by Davidson and Harrison (9]. 

(3.20) 



where 

vlc = liquid velocity, mjs 

¢1 = ~iquid mixing, m3/s 

Dbed = diameter of bed, m 

Vg = velocity of gas, mjs 

Relationship Between Bubble Phase Variables 

(3.21) 

On a superficial velocity basis, the total flow and 

that through the two phase region as given by Kunii et 

al. [16] as: 

21 

(3.22) 

In a bed of large bubbles, each rising bubble 

carries liquid up the bed. The upward velocity of the 

liquid is then simply that of the bubble itself, or: 

(3. 23) 

therefore; 

(3.24} 

where 

o = is the fraction of bed consisting of bubbles. 

Interphase Coefficients 

To determine the mass transfer characteristics it is 

essential to consider the interchange between bubbles and 

the bubble cloud. This consists of flow across a phase 



boundary and mass transport between the bubble and the 

liquid. The mass transfer between the bubble and the 

liquid is given by Kunii et al.[16] as: 

22 

= 4.5 + 5.85 (3.25) 

where 

Kbc = mass transfer coefficient between bubble and cloud, 

s-1 

DAB = diffusion coefficient between catalyst and 

p-xylene, cm2/s 

The mass transfer between the cloud and the emulsion is 

given by Kunii et al. [16] as: 

where 

[ -em_f_o_AB_u_b_ ] 1/2 
6.78 

Db3 

Kce = mass transfer coefficient between cloud and 

emulsion, s-1 

Emf = void fraction in a bed at minimum fluidizing 

conditions 

(3.26) 

The ratio of solids (catalyst and residue) dispersed in 

the bubble to the volume of bubbles in the bed, Tb is 
I 

given by Kunii et al. [16] as: 

(3.27) 
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where 

mb = fraction of solids in bubble 

Similarly, the ratio of the solids in the cloud to 

the volume of bubbles in the bed, Tc, is given by: 

(3.28) 

where 

·Vw = volume of wake following a gas bubble, cm3 

Vb = volume of gas bubble, cm3 

The ratio of solids in the emulsion to the volume of 

bubbles in the bed, Te, is given by: 

o( Tb + Tc + Te ) = {1 - Emf) (1 - o) 

Assuming that the flow pattern in the bed for 

(3.29) 

downflow of emulsion is as illustrated in Figure 3., 

i.e., the liquid that is carried long with the bubble 

moves downward after the bubble disintegrates, an 

accounting for p-xylene in the cloud, emulsion and in the 

bubble was given by Kunii et al. [16] as: 

1 

1 

where 

Kf = 1st order reaction rate group for fluidized bed. 



t 
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Gas from leavina 
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Figure 3. Bubble rise and circulation pattern; 
adapted from Kunii and et al. (16] 
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Lf = is the length of the reactor, m 

Kr = 1st order rate constant, s-1 

Tb = ratio of solids in bubbles to volume of bubble 

Tc = ratio of solids in clouds to volume of bubble 

Te = ratio of solids in emulsion to volume of bubble 

Kbc = mass transfer coefficient between bubble and cloud, 

s-1 

Kce = mass transfer coefficient between cloud and 

emulsion, s-1 

Ub = bubble rise velocity, mfs 

By definition the conversion of p-xylene is given by: 

(3.31) 

or 

(3.32) 

CAo 

Assuming a pseudo first order irreversible reaction 

KT = -ln{1 - XA) 
{3.33) 

Making the substitution of Kf for KT gives: 

(3.34) 



CHAPTER IV 

PROBLEM STATEMENT AND APPROACH 

The purpose of this thesis is to develop a model to 

simulate a sparger reactor. Sparger reactors, as 

discussed earlier, deviate from ideal plug flow reactor 

behavior to a great extent. To start with, the variables: 

namely temperature, pressure, initial moles of reactants 

and catalyst, diameter of the orifice, number of orifices, 

diameter of heat exchanger tubes, and pitch on a 

triangular layout, are specified. 

Sparger reactors typically have reactants entering 

the reactor at low flow rates. It is difficult to model 

the system at steady state because of the entrance effects 

and the resulting change in concentration. In this 

preliminary work the reactor is modeled as a reactor 

operating at pseudo-steady state with no external input or 

output streams. However, internal circulation in the 

reactor due to the bubble rise and the wake that rises 

along with the bubble must be included. The following 

assumptions were made to simplify the problem and 

calculations. 

1. The reactor is assumed to have no input or output 

streams. 
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2. The catalyst is uniformly distributed in the 

reactor. 

3. The core of the reactor that is not occupied by 

tubes acts like a plug flow channel (hatched 

section in figure 4.) 
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4. The other portions of the reactor are well mixed, 

and behaves like a batch reactor (Figure 4.) 

5. The reactor is at psuedo-steady state. 

6. The reaction takes place at constant temperature. 

In this idealized reactor, the concentration of the 

reactants is not the same through out. The plug flow 

channel section can be visualized as a separate reactor 

operating at steady state, where the inlet and exit 

streams flow from and into the well mixed portion of the 

reactor. This is assumed to be true for each cycle (time 

taken for bubble to reach top of the reactor), and the 

change in concentration for the inlet and exit streams is 

neglected due to the short time duration for each cycle, 

i.e., the fluid surrounding the plug flow core is well 

mixed and no chemical reaction is assumed to occur in this 

region. 

The assumption that the reactor has no external 

circulation, has certain drawbacks. The total time in the 

reactor is fixed, hence the residence time for the plug 

flow reactor section has to be defined. The time taken 

for the bubble to reach the top of the reactor, is taken 

as one cycle. Since the air circulation rate is high, the 



Figure 4. Representation of Reactor Configuration as 
used in model. 
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bubbles tend to force up all the liquid in this section, 

and liquid velocity assumes the bubble rise velocity. The 

plug flow section volume is known or estimated and thus 

volumetric flow rate can be calculated. This fixes the 

residence time for one cycle in the plug flow channel. 

The model is treated as a steady state reactor for one 

cycle and the concentrations at the top-and bottom of the 

plug flow channel are determined. The concentration of 

the well mixed portion is taken as the average of these 

two concentrations, and oxygen concentration is attributed 

mainly to the bubbles that move downward. The same 

residence time is used as the space time in the well mixed 

section. At the end of each cycle the concentrations are 

averaged on a volumetric basis, and the next cycle is 

restarted with the new bulk concentration. 

The program organization is indicated in Figure 5. 

With the input conditions fixed, the following steps were 

adopted in developing the model 

1. the subroutine INITIAL fixes the dimension of the 

reactor based on the inlet conditions. 

2. the subroutine INITIAL also calculates the bubble 

diameter, rise velocity, and other bubble 

characteristics. 

3. the subroutine PCVOL initializes the plug flow 

section from the well mixed section. 

4. the subroutine FINAL calculates the overall 

conversion. 
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CALL TAUEST 

CALL AIRPROP 

CALL INITIAL 

CALL PCVOL 

CALL FINAL 

CALL OUTPUT 

Figure 5. Program organization for the model. 
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Description of the Subroutines 

INPUT 

· This subroutine developed using EZVU allows the user 

to change the variables on screen. This allows the user 

to test the model by changing one or more of the 

variables. 

TAUEST 

This subroutine is used to estimate the conversion 

for a given residence time. - The equations discussed in 

the previous section are used in this subroutine. This 

reactor behaves both as a pl~g flow reactor and as a batch 

reactor, the average of the conversion from both cases 

provides the estimate for the overall conversion. This 

subroutine is used in initializing the reactor dimensions. 

AIRPROP 

This subroutine calculates the properties of air at 

the input conditions specified. 

INITIAL 

This subroutine is used to initialize the size of the 

reactor. The diameter of the reactor is fixed based on 

the amount of p-xylene initially present in the reactor. 

The piameter of the bubble is calculated from a knowledge 



of the flow rate of air required from the following 

equation 

where 

u0 = superficial gas velocity, mjs 

d0 = diameter of orifice, m 

g = acceleration due to gravity, 9.81 mjs2 

The bubble rise velocity in the reactor is determined 

using the equation given below 

Where 

g = acceleration due to gravity, cmjsec2 

Db = diameter of bubble, em 

0 br = bubble rise velocity, cmfs 
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Subroutine TAUEST is used to estimate the conversion 

as discussed earlier. This estimate for the conversion is 

needed to calculate the number of heat exchanger tubes and 

the length of the reactor. The number of heat exchanger 

tubes is calculated in the following manner. 

where 

NAo = initial moles of p-xylene in the reactor, Kgmoles 

XA = conversion of p-xylene 

6HR = heat of reaction, calfKgmole 

Total heat removed 
Heat transfer area = ------------------------

U(6T) 



where 

u = overall heat transfer ocoefficient, caljhr cm2 °C 

Number of tubesoneeded = 

PCVOL 

Heat Transfer area 

Area per tube 
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This subroutine is used to determine the radius of 

the core that behaves as aoplug fl~w reactor. The reactor 

dealt with here is not symmetrical, i.e. the tubes are not 

placed throughout the radius. The number of tubes that 

can be placed in the arc of-length re, can be calculated. 

The radius of the next inner ring is calculated and the 

procedure is repeated until the total number that can be 

fitted equals the actual number of tubes needed. 

FINAL 

This subroutine is employed to calculate the final 

conversion in the reactor. The reactor is divided into 

segments each having a length 400 centimeters. From the 

bubble rise velocity, the time in each segment is 

calculated. From this residence time the conversion is 

calculated using subroutine TAUVSXA. The velocity of the 

bubble changes due to bubble growth and other factors. 

Hence the residence time in each segment is different. 

The total time required for the bubble to reach the top of 

the reactor is taken as the space time in the well mixed 

portion of the reactor. The concentration is averaged on 
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a volumetric basis after each cycle. The procedure is 

repeated until the total residence time in the reactor 

equals the specified time duration. The source code for 

this model is listed in the appendices. IBM software EZVU 

was used to simulate the control panels. This software 

makes the model very friendly. 

Testing 

The validation of the model is difficult due to the 

lack of experimental data available in the literature. 

However, the model was tested to study the effect on 

conversion of the following variables. 

1. temperature, 

2. pressure, 

3. cobalt concentration, and 

4. time. 

Effect of Temperature 

The model was tested for sensitivity with temperature 

with all other variables remaining constant. To prevent 

side reactions, it is preferable to operate the reactor 

between 140 and 170 °C. To study the effect of 

temperature on the system, the following trials were 

performed. 

The following operating conditions were used as 

inputs: 
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1. isothermal reaction 

2. operating temperature = 140 - 170°C in two degree 

increments 

3. system pressure = 6 ATM 

4. initial moles of p-xylene = 6000 Kgmoles 

5. initial moles of cobalt catalyst = 60 Kgmoles 

6. initial moles of MMT = 100 Kgmoles 

7. total time in reactor = 1 hour 

The final conversion of p-xylene from the model was 

found to be 29.5% at 140°C. There are no experimental 

data, to confirm this result, but the conversion level is 

reasonable compared to typical industrial conversion 

levels. 

When the temperature was increased to 150°C, the 

final conversion of p-xylene from the model was found to 

be 28.6%. So, for a increase of 10°C the conversion 

decreased by roughly 1%. The results are listed in 

Table I. 

Figure 6. shows the predictions from the model for 

the change in temperature on the conversion of p-xylene. 

It is seen that the conversion of p-xylene can be 

controlled by the oxidation temperature, although many 

other factors can affect it. It can also be seen that the 

% MMT yield increases with lower oxidation temperature. 

This effect can be attributed to the exothermic nature of 

the reaction. 
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TABLE I 

EFFECT OF TEMPERATURE ON CONVERSION 

Trial Temperature Pressure Conversion from 
Number oc Atmospheres 

-
model (%) 

1. 140.0 6.0 29.5 
2. 142.0 6.0 29.4 
3. 144.0 6.0 28.9 
4. 14_6. 0 6.0 28.8 
5. 148.0 6.0 28.7 
6. 150.0 6.0 28.6 
7. 152.0 6~0 28.5 
8. 154.0 6.0 28.0 
9. 156.0 6.0 27.9 

10. 158.0 6.0 27.8 
11. 160.0 6.0 27.7 
12. 162.0 6.0 27.2 
13. 164.0 6.0 27.1 
14. 166.0 6.0 27.0 
15. 168.0 6.0 26.9 
16. 170.0 6.0 26.8 
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Effect of Pressure 

The operating 1pressure for the reaction is typically 

between 4 and B atmospheres in normal industrial 

operation. The model was tested for pressures in this 

range. The results and discussion are given below. 

1. isothermal reaction 

2. operating temperature = 140 °C 

3. system pressure= 4 - 7 ATM in steps of 0.3 

4. initial moles of p-xylene = 6000 Kgmoles 

5. initial moles of cobalt catalyst = 60 Kgmoles 

6. initial moles of MMT = 100 Kgmoles 

7. total time in reactor= 1 hour 

The conversion of p-xylene was found to be 33.6% at 4 

atmospheres. This conversion is slightly lower than that 

for an ideal plug flow reactor. 

When the pressure is increased to 5.5 atmospheres, 

the conversion from the model was found to be 30.2%. The 

conversion decreases as the pressure is increased. For an 

increase of operating pressure of 1.5 atmospheres the 

conversion decreas~s by roughly 3.0%. The results are 

given in Table II. 

The effect of pressure on the conversion of p-xylene 

as predicted from the model is represented in Figure 7. 

It is seen that the oxidizer pressure can also affect the 

production rate. The pressure of the system controls the 

size of the air bubbles. When the bubbles are larger 
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TABLE II 

EFFECT OF PRESSURE ON CONVERSION 

Trial Temperature Pressure Conversion from 
Number oc Atmospheres model (%) 

-

1. 140.0 4.0 33.6 
2. 140.0 4.3 32.9 
3. 140.0 4.6 31.9 
4. 140.0 4.9 31.3 
5. 140.0 - 5.2 30.8 
6. 140.0 5.5 30.2 
7. 140.0 5.8 29.6 
8. 140.0 6.1 29.4 
9. 140.0 6.4 29.2 

10. 140.0 6.7 29.2 
1~. 140.0 7.0 29.1 
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in size, the circulation is higher, and the surface area 

is lowered, hence the conversion decreases. 

Effect of Cobalt Concentration 

41 

The effect of cobalt concentration on the reaction 

should be significant as seen from the rate expression for 

the reaction. Trials were performed on the model to study 

the effect of the cobalt concentration on the reaction, at 

the following conditions. 

1. isothermal reaction 

2. operating temperature = 140 oc 

3. system pressure = 6 ATM 

4. initial moles of p-xylene = 6000 Kgmoles 

5. initial moles of cobalt catalyst = 20 - 200 

Kgmoles in steps of 20 

6. initial moles of MMT= 100 Kgmoles 

7. total time in reactor = 1 hour 

The prediction from the model was found to be 29.1% 

for an initial moles of cobalt of 20 Kgmoles. Similar 

trials were conducted on the model, at different 

concentration levels. The predictions from the are given 

in Table 3. The conversion doesn't vary when the cobalt 

concentration is increased, as indicated in Figure 8. 

However, at very low cobalt concentration levels, p-xylene 

gets. decomposed into co2 and water. 



42 

TABLE III 

EFFECT OF COBALT CONCENTRATION ON CONVERSION 

I 

Trlial Initial moles of Initial moles conversion from 
Number cobalt (Kg-moles) of p-xylene model (%) 

11. 20.0 6000.0 29.1 
f. 40.0 6000.0 29.5 
3. 60.0 6000.0 29.5 
4. 80.0 6000.0 31.5 
5. 100.0 - 6000.0 33.3 
6. 120.0 6000.0 33.5 
7. 140.0 6000.0 33.5 
8. 160.0 6000.0 33.5 
9. 180.0 6000.0 33.6 

10. 200.0 6000.0 33.6 
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Effect of Total Time in Reactor 

The total time in the reactor has a significant 

effect on the rate of the reaction, -so time versus 

conversion is an important criteria. To obtain an idea 

about the reaction rate as a function of time the 

following trials were performed at the given conditions. 

1. isothermal reaction 

2. operating temperature = 140 °C 

3 • system pressure = 6 ATM 

4. initial moles of p-xylene = 6000 Kgmoles 

5. initial moles of cobalt catalyst = 60 Kgmoles 

6. initial moles of MMT= 100 Kgmoles 
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7. total time in reactor = 1-10 hours in steps of 1. 

For the initial case, the model predicted a 

conversion of 29.5%. Similar trials were carried out by 

incrementing the time in the reactor. The results are 

listed in Tabl~ IV. The conversion increases as the time 

allowed in the reactor is increased. The reaction is fast 

for the first few hours in the reactor, but as the 

amount of MMT formed increases, the reaction gets 

retarded. The effect of total time in reactor, on the 

conversion as predicted from the model plotted in 

Figure 9. 
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TABLE IV 

EFFECT OF TIME ON CONVERSION 

Trial Total time in Temperature conversion from 
Number reactor (hours) oc model (%) 

1. 1.0 140.0 29.5 
2. 2.0 140.0 50.8 
3 . 3.0 140.0 58.3 
4. 4.0 140.0 69.3 
5. 5.0 - 140.0 71.3 
6. 6.0 140.0 76.8 
7. 7 .. a 140.0 81.4 
8. 8.0 140.0 82.1 
9. 9.0 140.0 83.3 

10. 10.0 140.0 86.1 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this study was to simulate a sparger 

reactor for the oxidation of p-xylene. This model 

perdicts conversion for changes in 
-

1. operating temperature, 

2. operating pressure, 

3. initial concentration of reactants, and 

4. residence time in the reactor. 

Conclusions 

In this study several conclusions can be made from 

the model output data. The major conclusions are 

1. Pressure has an indirect effect on the conversion 

by affecting the bubble characteristics. 

2. The reaction is insensitive to the concentration 

of the catalyst. 

3. The air circulation rate is so high, i.e. three 

moles of air is circulated per mole of p-xylene 

in the reactor, so the liquid velocity assumes 

the velocity of the rising gas in the plug flow 

core of the reactor. 
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Recommendations 

1. The ideal gas law was used in the reactor -model to 

evaluate concentrations. A study on the gas 

behavior, could suggest a better equation of 

state. 

2. This study did not consider any reversible 

reactions, which are prominent .at high 

concentrations of MMT and occur at conversions 

greater than 50%. Hence it is suggested that 

these considerations be used in future work to 

more accurately model the process. 

3. It is recommended that additional experimental 

data be obtained to validate the model. This 

model cannot be generalized or calibrated until 

additional kinetic data is generated for specific 

catalysts. 

4. Side reactions have to considered to model the 

system accurately and to compare with any 

industrial data. 
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DEBUG 

$STORAGE:2 
DIMENSION R(lOO) 

C Model for sparger reactor used in the manu­
c facture of Dimethyl terephthalate. This 
C program designs a reactor to handle the input 
c requirements and proceeds to calculate the 
C expected conversion based on the design and 
C other criteria. 

c 

INTEGER RC 

COMMON /Zl/ 
COMMON /Z2/ 
COMMON /Z3/ 
COMMON /Z4/ 
COMMON /ZS/ 
COMMON /Z6/ 
COMMON /Z7/ 
COMMON /ZB/ 

XA,TEMP,PRESS,PITCH,DHE 
TAUA,ANAO,ANBO,ANCO 
DOR,ANOR,DB,DBED,ALF,AKL 
VELBR,VELB,PHIL,NTA,U 
DELTA,TI,TC,NI,NU,RPFR 
XAA,DELHR,UO,AMDOT,TOUT~TIN 

DENG,TCG,VISG,GASCP,PRANG,DAB 
RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP,DELTAT 

OPEN(7 1 FILE='VEN.OUT',STATUS='UNKNOWN') 

c Defining the v~riables a value as default 
c 
c 

C******************************************************* 
c 
c 

NOMENCLATURE USED 

C******************************************************* 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

ANAO=INITIAL MOLES OF P-XYLENE Kg-Moles 
ANBO=INITIAL MOLES OF COBALT CATALYST Kg-Moles 
ANCO=INITIAL MOLES OF PMT Kg-Moles 
TEMP=TEMPERATURE DEGREE CELCIUS 
PRESS=PRESSURE IN ATMOSPHERES 
TIN=INLET TEMPERATURE OF COLD STREAM 
DOR=DIAMETER OF ORIFICE CENTIMETER 
ANOR=NUMBER OF ORIFICES 
DELTA=LENGTH INCREMENT IN CENTIMETERS 
UO=GAS SUPERFICIAL VELOCITY CM/SEC 
DHE=DIAMETER OF HEAT EXCHANGER TUBES CENTIMETERS 
PITCH=PITCH OF TUBES ON A TRIANGULAR LAYOUT CENTIMETERS 
CATDIA=DIAMETER OF CATALYST METERS 
CATDEN=DENSITY OF CATALYST GRAM/CC 
CATCP=SPECIFIC HEAT OF CATALYST 
PRANG=PRANDTL NUMBER FOR AIR 
DAB=DIFFUSION COEFFICIENT CM SQUARE/SEC 

C********************************************************* 
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RC=O 
ANA0=6000 
ANB0=600 
ANCO=lO 
TEMP=140.0 
PRESS=G.O 
TIN=SO.O 
DOR=0.2 
ANOR=SOO 
DELTA=400.0 
U0=25 
DHE=3.25 
PITCH=7.0 
CATDIA=Sl.E-4 
CATDEN=2.5 
EPSM=O.S 
VMF=0.2 
EPSMF=O.G 
CATCP=0.2 
PRANG=0.77 
DAB=0.39 C 

C THIS SUBROUTINE EXITS TO DOS AND EXECUTES PROGRAM START 
C AND RETURNS BACK TO THIS POINT AT THE END OF PROGRAM START 
c 

call ispff(9,'run start',rc) 

c 
C This is part of EZVU facility used to initialize variables 
C for the input and output screens 
c 

call ispffv(S,'XA fS',rc,XA,4) 
call ispffv(7,'TEMP FS',rc,TEMP,4) 
CALL ISPFFV(S,'PRESS F3',RC,PRESS,4) 
call ispffv(6,'DHE f4',rc,DHE,4) 
CALL ISPFFV(S,'PITCH F3',RC,PITCH,4) 

CALL ISPFFV(G,'DOR F3',RC,DOR,4) 
CALL ISPFFV(7,'ANOR F2',RC,ANOR,4) 
CALL ISPFFV(S,'DELTA F3',RC,DELTA,4) 
CALL ISPFFV(S,'UO F3',RC,U0,4) 
call ispffv(7,'ANAO F2',rc,ANA0,4) 

call ispffv(7,'ANBO F2',rc,ANB0,4) 
CALL ISPFFV(7,'ANCO F2',RC,ANC0,4) 
call ispffv(9,'CATDIA f4',rc,CATDIA,4) 
CALL ISPFFV(9,'CATDEN F3',RC,CATDEN,4) 
call ispffv(S,'CATCP f3',rc,CATCP,4) 
call ispffv(7,'EPSM FS',rc,EPSM,4) 
CALL ISPFFV(S,'EPSMF F3',RC,EPSMF,4) 
call ispffv(G,'VMF f4',rc,VMF,4) 
CALL ISPFFV(G,'DAB F3',RC,DAB,4) 
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c 

CALL ISPFFV(7,'PHIL F3',RC,PHIL,4) 

CALL ISPFFV(6,'TIN F2',RC,TIN,4) 
CALL ISPFFV(7,'TOUT F2',RC,TOUT,4) 
CALL ISPFFV(8,'AMDOT F2',RC,AMDOT,4) 
call ispffv(6,'ALT f5',rc,ALT,4) 
call ispffv(7,'TAUA F3',rc,TAUA,4) 

CALL ISPFFV(7,'ABED F3',RC,ABED,4) 
call ispffv(S,'db f4',rc,db,4) 
CALL ISPFFV(6,'Ant F3',RC,ANT,4) 
CALL ISPFFV(6,'AKL FS',RC,AKL,4) 
CALL ISPFFV(4,'U F8',RC,U,4) 

CALL ISPFFV(S,'AVELB FS',RC,AVELB,4) 
CALL ISPFFV(7,'ANAO F4',RC,ANA0,4) 
CALL ISPFFV(7,'ANCO F4',RC,ANC0,4) 
CALL ISPFFV(7,'ANAF F4',RC,ANAF,4) 
CALL ISPFFV(7,'ANCF F4',RC,ANCF,4) 

CALL ISPFFV(9,'DELTAT F4',RC,DELTAT,4) 
CALL ISPFFV(6,'XAA F4',RC,XAA,4) 

C This subroutine of EZVU puts the variables to the shared 
c pool. 
c 

CALL ISPFF(ll, 'VPUT TEMP S' ,RC) 
CALL ISPFF(l2,'VPUT PRESS S' ,RC) 
CALL ISPFF(ll,'VPUT TAUA S' ,RC) 
CALL ISPFF(lO,'VPUT DOR S' ,RC) 
CALL ISPFF(ll,'VPUT ANOR S',RC) 
CALL ISPFF(l2,'VPUT DELTA S',RC) 
CALL ISPFF(9,'VPUT UO S',RC) 
CALL ISPFF(ll,'VPUT ANAO S' ,RC) 
CALL ISPFF(ll,'VPUT ANBO S' ,RC) 
CALL ISPFF(ll,'VPUT ANCO S' ,RC) 

CALL ISPFF(l3,'VPUT CATDIA S' ,RC) 
CALL ISPFF(l3,'VPUT CATDEN S' ,RC) 
CALL ISPFF(12,'VPUT CATCP S',RC) 
CALL ISPFF(ll,'VPUT EPSM S',RC) 
CALL ISPFF(l2,'VPUT EPSMF S',RC) 
CALL ISPFF(lO,'VPUT VMS S',RC) 
CALL ISPFF(lO,'VPUT DAB S',RC) 
CALL ISPFF(ll,'VPUT PHIL S',RC) 
CALL ISPFF(ll,'VPUT TOUT S',RC) 
CALL ISPFF(lO,'VPUT TIN S' ,RC) 

CALL ISPFF(l2,'VPUT AMDOT S',RC) 
CALL ISPFF(ll,'VPUT ATAU S',RC) 
CALL ISPFF(lO,'VPUT ALT S',RC) 
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CALL ISPFF(10,'VPUT NTA S' ,RC) 
CALL ISPFF ( 11, 'VPUT ABED S' ,RC) 

CALL ISPFF(9,'VPUT DB S',RC) 
CALL ISPFF(10,'VPUT AKL S',RC) 
CALL ISPFF(8,'VPUT U S',RC) 
CALL ISPFF ( 12, 'VPUT A VELB S ' , RC) 
CALL ISPFF(ll, 'VPUT ANAO S' ,RC) 

CALL ISPFF ( 11, 'VPUT ANCO S' ,RC) 
CALL ISPFF ( 11, 'VPUT ANAF S', RC) 
CALL ISPFF ( 11, 'VPUT ANCF S' ,RC) 
CALL ISPFF(10,'VPUT XAA S' ,RC) 
CALL ISPFF(13,'VPUT DELTAT S' ,RC) 

c 
C SET FUNCTION KEYS 
c CALL ISPFFV(6,'ZF01 C',RC,ZF01,8) 
c CALL ISPFFV(6,'ZF02 C',RC,ZF02,8) 
c CALL ISPFFV(6,'ZF03 C',RC,ZF03,8) 
c CALL ISPFFV(6,'ZF04 C',RC,ZF04,8) 
c CALL ISPFFV(6,'ZCMD C',RC,ZCMD,S) 
C SET INITIAL VALUES OF 
c 

c 
c 
c 

c 

171 

FUNCTION KEY 

Define function keys. for the input and output screens. 

ZF10='QUIT' 
ZCMD=' 
ZATR='WRI' 

CALL ISPFFV(6,'ZATR C ' , RC, ZATR, 4 ) 
CALL ISPFFV(6,'ZF01 C' ,RC,ZF01,4) 
CALL ISPFFV(6,'ZF02 C' ,RC,ZF02,4) 
CALL ISPFFV(6,'ZF03 C' ,RC,ZF03,4) 
CALL ISPFFV(6,'ZF04 C',RC,ZF04,4) 
CALL ISPFFV(6,'ZF10 C' ,RC, ZF10, 4) 
CALL ISPFFV ( 6, 'ZCMD C' , RC, ZCMD, 4) 

c set function for keys 
c 

c 

ZF01='ADDI' 
ZF02='CONT' 
ZF10='QUIT' 

c Nullify z commands 
c 

ZCMD=' 
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c 
c Display input screen one along with keys1 appearing 
c at the bottom 
c 

c 

CALL ISPFF(13,'DISPLAY KEYS1',RC) 
CALL ISPFF(11,'DISPLAY SP1',RC) 

c Look for user's responce 
c 

IF(ZCMD.EQ.'ADDI') GOTO 170 
IF(ZCMD.EQ.'CONT') GOTO 152 
IF(ZCMD.EQ.'QUIT') GOTO 155 

GOTO 152 

172 .ZF10='QUIT' 
ZCMD=' 
ZATR='WRI' 

ZF10='QUIT' 
ZF01='RUN' 
ZCMD=' 

c 
c Display keys3 and additional screen for inputs. 
c 

c 

CALL ISPFF(13,'DISPLAY KEYS3',RC) 
CALL ISPFF(11,'DISPLAY SP3',RC) 

c Look for user's responce 
c 

IF(ZCMD.EQ. 'QUIT' l GOTO 155 
IF(ZCMD.EQ.'RUN') GOTO 171 

GOTO 155 

173 ZF10='QUIT' 
ZCMD=' 
ZATR='WRI' 

ZFlO='QUIT' 
ZF01='RUN' 
ZF03='DES' 
ZCMD=' 
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c 
c Display screen of output (design summary) 
c 

c 

CALL ISPFF(13,'DISPLAY KEYSS',RC) 
CALL ISPFF(12,'DISPLAY VEN3',RC) 

c look for user's responce. 
c 

IF(ZCMD.EQ.'QUIT') GOTO 155 
IF(ZCMD.EQ.'RUN') GOTO 171 
IF(ZCMD.EQ.'DES') GOTO 172 

GOTO 155 

170 ZF10='QUIT' 
ZCMD=' 
ZATR='WRI' 

ZF10='QUIT' 
ZF01='PREV' 
ZF02='CONT' 

ZCMD=' 

CALL ISPFF(13,'DISPLAY KEYS4',RC) 
CALL ISPFF(11,'DISPLAY SP4',RC) 

IF(ZCMD.EQ.'QUIT')GOTO 155 
IF(ZCMD.EQ.'PREV') GOTO 171 
IF(ZCMD.EQ.'CONT') GOTO 152 

GOTO 152 

174 ZF10='QUIT' 
ZCMD=' 
ZATR='WRI' 

ZF01='DES' 
ZF10='QUIT' 
ZF03='FIN' 
ZF04='RUN' 

ZCMD=' 

CALL ISPFF(13,'DISPLAY KEYS2',RC) 
CALL ISPFF(11,'DISPLAY SP2',RC) 

IF(ZCMD.EQ.'QUIT') GOTO 155 
IF(ZCMD.EQ.'RUN') GOTO 171 
IF(ZCMD.EQ.'DES') GOTO 172 
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IF(ZCMD.EQ.'FIN') GOTO 173 
c 
c Main program to call different subroutines. 
c 
c 

152 CALL TAUVSXA() 
CALL AIRPROP ( ) 
CALL HEAT() 
TAUA=TAUA*3600.0 
CALL INITIAL ( ) 
ANT=NTA 
ALT=ALF/100.0 
ABED=2*DBED/100.0 
AVELB=VELBR/100.0 
DB=DB/100.0 
WRITE(7,*)'ATAU =',ATAU,'HRS' 
CALL PCVOL ( ) 

153 CALL FINAL1() 
154 ANAF=ANA0*(1-XAA) 

ANCF=ANCO + ANAO*XAA 
TAUA=TAUA/3600 
CALL HEATEX(DELTAT) 
GOTO 174 
STOP 

155 END 
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APPENDIX B 

LISTING FOR SUBROUTINES 
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SUBROUTINE TAUVSXA() 

COMMON /Zl/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /ZS/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

C************************************************************* 
C THIS PROGRAM IS USED TO EVALUATE THE RATE EXPRESSION 
C FOR THE DI-METHYL TEREPHTHALATE REACTION FROM P-XYLENE. 
C THE CONVERSION AND WASHOUT FUNCTION WHERE STUDIED AS A 
C FUNCTION OF RESIDENSE TIME. 
C************************************************************* 
C THE FOLLOWING RATE EXPRESSION(S) WHERE ADOPTED. 
c 
C -rA=d(px]/dt=2.55e-05 (px]A2 (co]A0.21/[PMT] 
c 
c 
C************************************************************* * 
c FILES 
c 
c PC.DAT IS THE OUTPUT FOR A CSTR (XA vs TAU) 
c PP.DAT IS THE OUTPUT FOR A PFR (XA VS TAU) 
c RESC.DAT FOR CSTR (W(T) VS TAU) 
c RESP.DAT FOR PFR (W(T) VS TAU) 
c 
C************************************************************* *** 

OPEN(l2,FILE='PC.DAT',STATUS='UNKNOWN') 
OPEN(l3,FILE='PP.DAT',STATUS='UNKNOWN') 
OPEN(l4,FILE='RESC.DAT',STATUS='UNKNOWN') 
OPEN(lS,FILE='RESP.DAT',STATUS='UNKNOWN') 

C************************************************************* **** 
C NOMENCLATURE USED 
c 
c 
c 
c 
c 

XA=CONVERSION 
VOL=VOLUME OF 
D=DIAMETER OF 
AL=LENGTH OF 

OF P-XYLENE 
THE REACTOR 
REACTOR 

REACTOR 
C OF P-XYLENE ANAO=INITIAL NUMBER OF MOLES 
C OF COBALT ANBO=INITIAL NUMBER OF MOLES 
C OF TEREPHTHALIC ACID ANCO=INITIAL NUMBER OF MOLES 
C CAO,CBO,CCO=INITIAL CONC. OF PX,CO,TA 
C TAU=RESIDENSE TIME 
C RA=RATE EXPRESSION FOR CSTR CONVERSION. 
C WT=WASH OUT TIME = (CA(T)-CAF)/(CAO-CAF) 
c 
c 
C**************************************************************** 
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RATEK=2.SE-05*((273+TEMP)/{273+140)) 

CA0=10.0 
CB0=10.1 
CCO=l.O 

AM=CBO/CAO 
AN=CCO/CAO 

DO 10 TAU=1,75000,1800 

DO 20 I=1,9800,100 
AXA=I*.0001 
AA=RATEK*(CA0**2*(1-AXA)**2.)*(CB0)**0.21 
BB=(CCO+AXA*CAO) 
RA=AA/BB 
TAUC=CAO*AXA/RA 
IF(ABS(TAUC/TAU- 1.).LT.O.OS) GOTO 500 

20 CONTINUE 

GOTO 101 
500 WRITE(12,*)TAU/3600,AXA 

CA=CAO* ( 1.- AXA) 
CAF=CA0*(1. - .98) 
WT=(CA-CAF)/(CAO-CAF) 
WRITE(14,*)TAU/3600,WT 

101 DO 30 I=1,9800,100 
AXA=I*.0001 
RATE=(AN+1)*(1/(1-AXA) -1.0)+LOG(1 - AXA) 
TAUP=CAO*RATE/(RATEK*CA0**1.21*AM**0.21) 
IF(ABS(TAUP/TAU- 1.).LT.O.OS) GOTO 600 

30 CONTINUE 
GOTO 10 

600 WRITE(13,*)TAU/3600,AXA 
CA=CA0*(1-AXA) 
CAF=CA0*(1.-.98) 
WT=(CA-CAF)/(CAO-CAF) 
WRITE(1S,*)TAU/3600,WT 

10 CONTINUE 
RETURN 
END 

SUBROUTINE TAUEST(XXA) 

C**************************************************************** 
c This subroutine is used to estimate the conversion for a 
c given residence time. The average conversion for the CSTR 
c and a plug flow reactor is taken as the conversion in a 
C bubble column. 
C**************************************************************** 

COMMON /Z1/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
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COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /Z8/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

C************************************************************* **** 
C NOMENCLATURE USED 
c 
c 
c 
c 
c 
c 
c 
c 

XA=CONVERSION 
VOL=VOLUME OF 
D=DIAMETER OF 
AL=LENGTH OF 
ANAO=INITIAL 
ANBO=INITIAL 
ANCO=INITIAL 

OF P-XYLENE 
THE REACTOR 
REACTOR 

REACTOR 
NUMBER OF MOLES 
NUMBER OF MOLES 
NUMBER OF MOLES 

OF P-XYLENE 
OF COBALT 
OF TEREPHTHALIC 

C CAO,CBO,CCO=INITIAL CONC. OF PX,CO,TA 
C TAU=RESIDENSE TIME 
C RA=RATE EXPRESSION FOR CSTR CONVERSION. 
C WT=WASH OUT TIME = (CA(T)-CAF)/(CAO-CAF) 
c 
c 

ACID 

C************************************************************* *** 

CA0=10 
CB0=10.1 
CC0=1 

DO 121 II=1,9800,20 
XXA=0.0001*II 
AM=CBO/CAO 
AN=CCO/CAO 
AA=RATEK*(CA0**2*(1-XXA)**2)*(CB0)**0.21 
BB=(CCO+XXA*CAO) 
RA=AA/BB 
TAUC=CAO*XXA/RA 
IF(ABS(TAUA/TAUC- 1).LT.O.OS) GOTO 124 

121 CONTINUE 

124 XAC=XXA 

DO 126 II=1,9800,10 
XXA=0.0001*II 
RATE=(AN+1)*(1/(1-XXA)-1)- LOG(1-XXA) 
TAUP=CAO*RATE/(RATEK*CA0**1.21*AM**0.21) 
IF(ABS(TAUA/TAUP- 1).LT. 0.05) GOTO 127 

126 CONTINUE 

127 XAP=XXA 

XXA=(XAP+XAC) /2 

63 



RETURN 
END 

SUBROUTINE INITIAL() 

COMMON /Zl/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /Z8/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

C************************************************************* 
C THIS PROGRAM DESIGNA REACTOR TO HANDLE THE INPUT 
C REQUIREMENTS FOR THEOXIDATION OF P-XYLENE TO PMT. 
C************************************************************* 

TOTPROD=l20.0 
VOLFRAC=0.75 

C************************************************************* 
C THREE MOLES OF AIR PER MOLE OF P-XYLENE IS TO BE SUPPLIED FOR 
C THE ABOVE REACTION. 
C************************************************************* 

AIRFLOW=TOTPROD*3.0*1000/3600 

C************************************************************* 
C NOMENCLATURE 
c 
C SPAREA=TOTAL SPARGER AREA CM*CM 
C AIRVOL=VOLUMETRIC FLOW RATE OF AIR THROUGH SPARGER CM**3/SEC 
C UOR=VELOCITY OF BUBBLE AT THE ORIFICE CM/SEC 
C UO=SUPERFICIAL GAS VELOCITY 
C DB=DIAMETER OF BOBBLE 
C************************************************************* 

c 

FACTORl=ANA0/120.0 

AIRVOL=AIRFLOW*22414*(TEMP+273)/273/PRESS 

SPAREA=3.14*DOR**2/4*ANOR 

UOR=AIRVOL/SPAREA 

CALL TAUEST(XXA) 

XA=XXA 
WRITE(6,*)'XA=',XA 
WRITE(7,*)'UO=',U0,' CMS/SEC' 

c Calculate diameter of bubble. 
c 

DB=ll7*((UOR/100)**0.4)*(DOR/100)**0.8/(9.81**0.2) 
WRITE(7,*)'DB=',DB,' CMS' 
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C************************************************************* 
C NOMENCLATURE 
c 
C RATEK=RATE CONSTANT OF REACTION 
C CATDIA=DIAMETER OF CATALYST (M) 
C CAPCP=SPECIFIC HEAT OF CATALYST CAL/GM.DEGREE C 
C CATDEN=DENSITY OF CATALYST GM/CC 
C EPSM=VOID FRACTION IN A PACKED BED 
C EPSMF=VOID FRACTION UNDER MINIMUM FLUIDISING CONDITIONS 
C VMF=FLUIDISATION VELOCITY CM/SEC 
C DENG= DENSITY OF GAS GM/CC , 
C TCG=THERMAL CONDUCTIVITY OF GAS CAL/CM.SEC.DEGREE C 
C PRANG=PRANDL'S NUMBER OF GAS 
C VISG=VISCOSITY OF GAS GM/CM.SEC. 
C GASCP=SPECIFIC HEAT OF GAS 
C DAB=DIFFUSION COEFFICIENT CM*CM/SEC 
C XA=CONVERSION 
C FTUBE=FRACTION NOT OCCUPIED BY TUBES 
C DBED=DIAMETER OF BED (CM) 
C NT=NUMBER OF TUBES 
C NTA= ACTUAL NUMBER OF TUBES 
C VELB=VELOCITY OF BUBBLE CM/SEC 
C******************************************************************* 

c 
c Calculate fraction of bed not occupied by tybee. 
c 

c 

FTUBE=(O.S*((3**0.5)/2)*(PITCH**2)-0.S*(3.14/4)*(DHE**2)) 
DAM=(O.S*(3**0.5)/2*(PITCH**2)) 
FTUBE=FTUBE/DAM 
WRITE(7,*)'FRACTION NOT OCCUPIED BY TUBES',FTUBE 

c Calculate diameter of bed required. 
c 

c 

DT2=(AIRVOL)*4/(3.14*FTUBE)/UO 
DBED=l.l*SQRT(DT2) 
WRITE(7,*)'DT=',DBED,' CMS' 

NT=(3.14/4)*DT2/(2*0.5*(3**0.5)*PITCH*PITCH/2) 
WRITE(7,*)'NT=',NT,' TUBES' 

c Calculate velocity of bubble. 
c 

VELB=UO-VMF+(0.711*(980*DB)**O.S) 
VELBR=.711*(980*DB)**O.S 

WRITE(7,*)'BUBBLE VELOCITY',VELB,' CM/SEC' 
ADELTA=(UO-VMF)/VELB 
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c Calculate mass transfer coefficient(akl), 
c liquid mixing (phil) 
c 

c 

VLc=0.9*(9.8l*DBED/100*U0/100)**0.333 
DE1=.37*DBED/lOO*VLc 
DEg=78*(U0/100*DBED/100)**1.5 
DL=(DEl+DEg)/2 
AK1=1.13*((VELB-UO-VMF)*DL/DB)**O.S 
PHIL=0.30*(DBED/100)**1.66*(AIRVOL/1E06)**0.33*9.81**0.33 

WRITE(7,*)'THE MASS TRANSFER COEFFT. Kl IS',AKL,' M/SEC' 
WRITE(7,*)'THE LIQUID MIXING IS ',PHIL,' M**3/SEC' 

BCB=4.S*(VMF/DB)+S.SS*((DAB**O.S)*(980**0.25))/(DB**l.24) 
CEB=6.78*(((VMF*DAB*VELB)/(DB**3))**0.5) 

AKF=-LOG(l-XA) 

c Calculating the ratios gammaA etc. 
c 

c 

GAMB=(l-EPSMF)*(l-ADELTA)*O.OlS/ADELTA 
ALPHA=0.6 
AAA=3*VMF/EPSMF 
BBB=0.711*(980*DB)**O.S-(VMF/EPSMF) 
GAMC=(l-EPSMF)*(AAA/BBB + ALPHA) 
GAME=((l-ADELTA)/ADELTA)*(l-EPSMF)-(GAMB+GAMC) 
AAAA=l/(RATEK/CEB+l/GAME) 
BBBB=l/(AAAA+GAMC) 
CC=l/(RATEK/BCB+BBBB)+GAMB 

c Calculating length of reactor needed 
c 

c 

ALF=VELB*AKF/(RATEK*CC)/12/3600 
ALM=ALF*(l-ADELTA)*(l-EPSMF)/(1-EPSM) 

TDH=l.3*DBED 

c Calculating the overall heat transfer coefficient. 
c 

RET=DBED*DENG*UO/VISG 
CD=0.42 
AAAAA=(l-EPSM)*ALM/ALF 
BBBBB=GASCP*DENG/TCG 
REP=CATDIA*DENG*UO/VISG 
CR=0.01844*l.S*AAAAA*(BBBBB**0.43)*(REP**0.23) 
CR=CR*((CATCP/GASCP)**O.S)*((CATDEN/DENG)**0.66) 
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c 

HW=CR*TCG/CATDIA 
OU=l/HW+l/0.0833+1/0.044 
U=l/OU 
WRITE(7,*)'THE OVERALL HEAT TRANSFER COEFFT. IS ',U 

c Calculate heat released. 
c 

HEAT=(AIRFLOW)*XA*DELHR 

c 
c Calculate actual number of tubes needed. 
c 

NTA=HEAT/(3.14*DHE*ALF*U*l00) 
WRITE(7,*)'ACTUAL NUMBER OF TUBES NEEDED IS',NTA,' TUBES' 
ALF=FACTORl*ALF 
WRITE(7,*)'HEIGHT OF REACTOR REQUIRED',ALF,' CMS' 

RETURN 
END 

SUBROUTINE PCVOL() 

c************************************************************ 
c This subroutine calculate the core of the reactor not 
c occupied by tubes. 
c************************************************************ 

DIMENSION R(lOO) 

COMMON /Zl/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /ZS/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

c 
c TI = time required for the bubble to reach top of reactor. 
c 

c 

TI=ALF/VELBR 
TC=TI 

c Number of cycles 

NU=TAUA/TI 
c 
c Number of segments 

NI=ALF/DELTA 
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WRITE(7,*)'NU=',NU,'NI=',NI 
TA=3.14*(DBED)**2/4 

QTA=TA/4 
c******************************************************** 
c 
c 
c 
c 

NOMENCLATURE USED 
arcl = arc length 
ntarc = number of tubes in arc. 
ntaa = actual number of tubes. 

c***********************************************~******** 

c 
c 
c 
c 

NTAA=NTA/2 
WRITE(7,*)'NTAA=',NTAA 
RBED=DBED/2 
R(1)=RBED 

NTARC=O 

DO 25 I=2,100 

Assume only one thirds of the reactor radius is 
occupied by tubes 

ARCL=.65*3.14*R(I-1) 
NTARC=ARCL/PITCH + (NTARC+1) 
IF (NTARC.GT.NTAA) GOTO 129 
R(I)=R(I-1) - SQRT(PITCH**2-(0.5*PITCH)**2) 

25 CONTINUE 

129 RPFR=R(I-1) 

WRITE(7,*)'PLUG FLOW CHANNEL RADIUS= ',RPFR,' CMS' 

RETURN 
END 

SUBROUTINE FINAL1() 

c************************************************************* 
c 
c 

This subroutine calculates the final. conversion for the 
reaction based on the design and other criteria. 

c 
c************************************************************* 

COMMON /Z1/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /Z5/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
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COMMON /Z8/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 
c 
c initialize concentration. 

c 
c 

CALL INCONC(CAO,CBO,CCO) 

AM=;CBO/CAO 
AN=CCO/CAO 
CAOO=CAO 
CAPO=CAO 

Nomenclature used 

c PFRVOL = Plug flow reactor volume. 
c CSTRVOL = CSTR volume 
c 

PFRVOL=3.14*RPFR**2*ALF 
CSTRVOL=3.14*DBED**2*ALF/4 - PFRVOL -NTA*3.14*DHE**2*ALF/4 

DO 32 I=1,NU 

DO 33 J=1,NI 
c 
c calculate velocity 
c 

VEL=VELB*(1.005)**(J-1) 
TP=DELTA/VEL 

C************************************************************* **** 

c 
c 

XA=CONVERSION OF P-XYLENE 
VOL=VOLUME OF THE REACTOR 
D=DIAMETER OF REACTOR 
AL=LENGTH-OF REACTOR 
ANAO=INITIAL NUMBER OF MOLES 
ANBO=INITIAL NUMBER OF MOLES 
ANCO=INITIAL NUMBER OF MOLES 

DO 301 II=1,10000,20 
BXA=II*.0001 
RATE=(AN + 1)*(1/(1-BXA) -1.0)+LOG(1-BXA) 
TAUP=CAPO*RATE/(RATEK*CAP0**1.21*AM**0.21) 
IF(ABS(TAUP/TP- 1.).LT.0.1) GOTO 12 

301 CONTINUE 
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c Reducing the conversion on a volumetric basis 
c This is for the core of length delta (PFR). 

c 

12 BXA=BXA*PFRVOL/(CSTRVOL + PFRVOL)*DELTA/ALF 
CAPO=CAPO*(l-BXA) 
IF(J.EQ.1)THEN 
CAOPB=CAPO 
ELSE IF(J.EQ.NI) THEN 
CAOPT=CAPO 
END IF 

33 CONTINUE 
CACOO=(CAOPB) 
CACO=CACOO 

c Calculation for CSTR 
c 

c 

DO 21 III=l,l0000,20 
BXA=III*. 0001 
AA=RATEK*(CAC0**2*(1-BXA)**2.)*(CB0)**0.21 
BB=(CCO+BXA*CACO) 
RA=AA/BB 
TAUC=CACO*BXA/RA 
IF(ABS(TAUC/TI- 1.).LT.O.l) GOTO 501 

21 CONTINUE 
501 - BXA=BXA*CSTRVOL/ (CSTRVOL + PFRVOL) *DELTA/ALF 

CACO=CACO*(l.- BXA) 
PFRVOL=3.14*RPFR**2*ALF 
CSTRVOL=3.14*DBED**2*ALF/4 - PFRVOL -NTA*3.14*DHE**2*ALF/4 

c Calculate new concentration for the next cycle. 
c 

CAPO=((CACOO+CAC0)/2*CSTRVOL+(CAOPB+CAOPT)/2*PFRVOL) 
+ /(CSTRVOL+PFRVOL) 

32 CONTINUE 
C****************************************************************** 
c 
c Final conversion is XAA 
c 

XAA=(CAOO-CAPO)/CAOO 
WRITE(7 1 *)'FINAL XA=',XAA 

RETURN 
END 

SUBROUTINE AIRPROP() 

c This subroutine calculates the air properties at a 
c given temperature and pressure. These values are used 
c other subroutines. 
c 
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COMMON /Zl/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /ZB/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

TEMPK= 2 7 3 + TEMP 

ACTVOL=22414/273*TEMPK/( PRESS ) 
DENG=(.79*28 + .21*32)/ACTVOL 
GASCP=(6.713 + 0.04697E-02*(TEMPK-273) 
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+ +0.1147E-OS*(TEMPK-273)**2 -0.4696E-09*(TEMPK-273)**3)/28.84 

c 

TCG=l.3E-04*(TEMPK/273)**.5 
VISG=4.0E-04*(273/TEMPK)**.33 

RETURN 
END 

SUBROUTINE HEAT() 

COMMON /Zl/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /ZB/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

c DELHR is the heat of reaction. 
c 

DELHR=3.25e03 +0.25*(TEMP-140) +1.25*(TEMP-140) 

RETURN 
END 

SUBROUTINE INCONC(CAO,CBO,CCO) 

********************************************************** 
c This program calculates the concentration of 
c reactants. This value gets changed elsewhere 
c in the program so this re initializes each time. 
c********************************************************* 

COMMON /Zl/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 



c 

COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /ZS/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 
VOL=(3.14*(DBED/100)**2/4 -NTA*3.14*(DHE/100)**2/4)*ALF/100 
CAO=ANAO/VOL 
CBO=ANBO/VOL 
CCO=ANCO/VOL 
RETURN 
END 

SUBROUTINE HEATEX(DELTAT) 

c This subroutine is included for future development 
c for the heat exchanger. 
c 

COMMON /Z1/ XA,TEMP,PRESS,PITCH,DHE 
COMMON /Z2/ TAUA,ANAO,ANBO,ANCO 
COMMON /Z3/ DOR,ANOR,DB,DBED,ALF,AKL 
COMMON /Z4/ VELBR,VELB,PHIL,NTA,U 
COMMON /ZS/ DELTA,TI,TC,NI,NU,RPFR 
COMMON /Z6/ XAA,DELHR,UO,AMDOT,TOUT,TIN 
COMMON /Z7/ DENG,TCG,VISG,GASCP,PRANG,DAB 
COMMON /ZS/ RATEK,CATDIA,CATDEN,EPSMF,VMF,EPSM,CATCP 

HTREL=1000*ANAO*XA*DELHR/TAUA*3600 
CPWATER=1.0 
DELTAT=100 
TOUT=TIN + 100.0 
AMDOT=HTREL/CPWATER/DELTAT/1000/3600 
RETURN 
END 
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APPENDIX C 

PROGRAM LISTING FOR GRAPHICS 
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I* This program written in C provides graphics for the first *I 
I* two screens *I 

#ifdef _TINY_ 
#error display will not run in the tiny model. 
#endif 

#include <dos.h> 
#include <math.h> 
#include <conio.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 

#include <graphics.h> 

#define ESC Ox1b 
#define TRUE 1 
#define FALSE 0 
#define PI 3.14159 
#define ON 
#define OFF 0 

char *Fonts[] = < 

I* Define the escape key 
I* Define some handy constants 
I* Define some handy constants 
I* Define a value for PI 
I* Define some handy constants 
I* Define some handy constants 

11DefaultFont11 1 11TriplexFont11 1 "SmallFont", 
"SansSerifFont" 1 "GothicFont" 

); 

char *LineStyles[] = < 
"Solidln11 1 11Dottedln11 1 "Centerln11 1 "Dashedln11 1 "UserBitLn" 

)j 

char *FillStyles[] = < 
11E~tyFill 11 1 "SolidFill 11 1 

"SlashF ill" 1 "BkS lashF ill" 1 

"LineFill 11 1 "LtSlashFill 11 1 

"LtBkSlashFill 11 1 "HatchFill 11 1 

11XHatchFill 11 1 11 InterleaveFill 11 1 "1JideDotFill 11 1 11CloseDotFill" 
}j 

char *TextDirect[l = < 
"HorizDi r" 1 "VertDi r" 

)j 

char *HorizJust[] = < 
"LeftText" 1 11CenterText11 1 "RightText" 

)j 

char *VertJust[] = < 
"BottomText" 1 11CenterText" 1 "TopText" 

)j 

int i 1 j; 

int r[100] 1 X[100] 1 y[100l; 
int mradius; 
int betax,betay1 gammax 1 gammay; 

struct PTS { 
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int x, y; 
>; !* Structure to hold vertex points */ 

int GraphDriver; 
int GraphMode; 

!* The Graphics device driver 
!* The Graphics mode value 

*I 
*I 

double AspectRatio; 
int 
int 

Maxx, MaxY; 
MaxColors; 

I* Aspect ratio of a pixel on the screen*/ 
!* The maximum resolution of the screen *I 

int ErrorCode; 
struct palettetype palette; 

I* 
I* 
I* 

Function prototypes 

void Initialize(void); 
void LineRelDemo(void); 
void LineToDemo(void); 
void CRTModeDemo(void); 
void FillStyleDemo(void); 
void FillPatternDemo(void); 
void PaletteDemo(void); 
void Polyoemocvoid); 

!*The maximum# of colors available 
!* Reports any graphics errors 

I* Used to read palette info 

void changetextstyle(int font, int direction, int charsize); 
int gprintf(int *xloc, int *yloc, char *fmt, >; 
void inti(); 
void pausef (); 
void copyright(void); 
void changetextstyle(int font, int direction, int charsize>; 
void pause(void); 

I* 
I* 
I* 

Begin main function 

int main() 
{ 

*I 
*I 
*I 

*I 
*I 
*I 

*I 

*I 
*I 
*I 

Initialize(); /*Set system into Graphics mode 
if( GraphDriver==EGA II GraphDriver==EGALO II GraphDriver==VGA 
closegraphO; 
return(O); 

!* Return the system to text mode 
Li neRelDemo(); 

*I 

} 

I* 
I* 
I* 
I* 

INITIALIZE: Initializes the graphics system and reports 
any errors which occured. 

void Initialize(void) 
{ 

*I 
*I 
*I 
*I 

int xasp, yasp; I* Used to read the aspect ratio*/ 

GraphDriver = DETECT; !* Request auto-detection *I 
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initgraph( &GraphDriver, &GraphMode, "'' >: 
ErrorCode = graphresult(); 
if( ErrorCode != grOk ){ 
printfC" Graphics System Error: 
exit( 1 >; 

} 

getpalette( &palette ); 
Maxcolors = getrnaxcolor() + 1; 

Maxx = getrnaxxC>; 
MaxY = getmaxy(); 

!*Read result of initialization*/ 
!* Error occured during init */ 

%s\n", grapherrormsg( ErrorCode ) >; 

!* Read the palette'from board */ 
I* Read maximum number of colors*/ 

!* Read size of screen *I 

getaspectratio( &xasp, &yasp ); /* read the hardware aspect */ 
AspectRatio = Cdouble)xasp I (double)yasp; /* Get correction factor */ 

} 

I* 
!* 
!* 

LINERELDEMO: Display pattern using moverel and linerel cmds. 

void LineRelDemo(void) 
{ 

struct viewporttype vp; 
int h, w, dx, dy, ex, cy; 
struct PTS outs tn; 

getviewsettings( &vp >: 

setfillstyle( SOLID_FILL, 6 ); 
bar( 0, 0, vp.right-vp.left, vp.bottom-vp.top ); 
setcolor(BLACIO; 
ganmay=MaxY/10; 
copyright(); 
setfillstyle( SOLID_FILL, RED ); 

/* Draw backgnd */ 

*I 
*I 
*I 

bar( 0, 0, vp.right-vp.left, vp.bottom-vp.top ); !* Draw backgnd */ 
setcolor(BLACK); 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,4); settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(MaxX/2,10,"S PAR G E R REACT 0 R"); 
betax =( MaXX )/2; 
betay =( MaxY) /2; 
ganmay=MaxY/10; 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY -8*ganmay, 11Sparger reactors are bubble"); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY -7*ganmay,"coli.IIVls and are used in the"); 
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settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY -6*ganmay,"manufacture of OMT used as a raw"); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY -5*ganmay, 11material for polymers like nylon.">; 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,2); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY - 4*ganmay,"OPERATING CONDITIONS"); 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY - 3*ganmay,"Tet!p!rature: 140 - 170\'z C"); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(betax + betax/2,MaxY - 2*ganmay, 11Pressure: 4 - 8 atms."); 
setcolor(BLUE); 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
outtextxyCMaxX/2,MaxY -25, 11Press any key to continue"); 
setcolor(WHITE); 
line(50,MaxY -40,MaxX/2 - 50,MaxY -40); 
line(50,80,MaxX/2- 50,80); 
lineC50,80,50,MaxY- 40); 
line(MaxX/2 - 50,80,MaxX/2 -50,MaxY - 40); 

line(40,100,80,100); 
line(80,100,80,MaxY - 60); 
line(80,MaxY -60,40,MaxY - 60); 
line(40,107,70,107); 
line(70,107,70,MaxY -68); 
line(70,MaxY -68,40,MaxY -68>; 

line(MaxX/2- 40,100,MaxX/2 -80,100); 
line(MaxX/2 -80,100,MaxX/2 -80,MaxY -60); 
line(MaxX/2 -80,MaxY -60,MaxX/2 -40,MaxY -60); 
line(MaXX/2 -40,107,MaxX/2 -70,107); 
line(MaxX/2 -70,107,MaxX/2 -70,MaxY -68); 
line(MaxX/2 -70,MaxY -68,MaXX/2 -40,MaxY -68); 

line(MaxX/2 -220,MaxY -67,MaxX/2 -90,MaxY- 67); 
line(MaxX/2 -155,MaxY -67,MaxX/2 -155,MaxY -30); 
mradius = 10; 
while ( lkbhit()) { 

for(j = 1;j<=20;j++) < 
setcolor(WHITE); 

x[j] = MaxX/2 - 225 + random(MaxX/2 -190); 
y[j] = MaxY -90 - random(MaxY -187); 
r[j] = random(mradius); 

circle(x[j] ,y[j] ,r[j]); 
} 

setcolor(RED); 
for(j = 1;j<=30;j++) 

circle(x[j],y[j],r[j] ); 
} 

restorecrtmode(); 
pausefO; 
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} 

void changetextstyle(int font, int direction, int charsize) 
{ 

int ErrorCode; 

graphresul t(); 
settextstyle(font, direction, 
ErrorCode = graphresult(); 
if( ErrorCode != grOk ){ 
closegraphO; 

I* clear error code 
charsize); 

I* check result 
I* if error occured 

printf(" Graphics System Error: %s\n", grapherrorrnsg( ErrorCode ) ); 
exit( 1 >; 

} 

} 

void inti() 
{ 

} 

int g_driver,g_mode,g_error; 
detectgraph(&g_dri¥er,&g_mode); 
if(g_mode == EGAHI) 
g_mocle = EGALO; 
initgraph(&g_driver,&g_mode,"">; 
g_error = graphresult(); 

i f(g_error < 0 ) 
{ 

printf("graphics system error: %s\n">; 
exit(1); 
} 

void copyright(void) 
{ 

changetextstyle(TRIPLEX_FONT,HORIZ_DIR,4); 
settextjustify(CENTER_TEXT,TOP_TEXT); 
outtextxy(MaXXI2,20, 11S P A R G E R R E A C T 0 R"); 
changetextstyle(3,HORIZ_DIR,4); 
outtextxy(MaxX/2,MaxY -7*ganmay-30,"Hodeled By:">; 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,3); 
outtextxy(MaxX/2,MaxY -7*ganmay,"W, Venkatesh"); 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 

*I 

*I 
*I 

outtextxyCMaxXI2,MaxY -3.5*ganmay-60, 11Master's Thesis (1992) 11 ); 

outtextxy(MaXX12,MaxY -3.5*ganmay-30, 11School of Chemical Engineering"); 
outtextxy(MaXX12,MaxY-3.5*ganmay,"Oklahoma State University">; 
while ( !kbhit() ) { 
changetextstyle(TRIPLEX_FONT,HORIZ_DIR,1); 
outtextxy(MaxXI2,MaxY -30,"Press any key to continue"); 

pause(); 
cleardevice(); 

} 

void pause(void) 
{ 

int c; 

} 
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} 

c = getch(); 

if(O==c){ 

c = getchO; 
} 

void pausef(void) 
{ 

int c; 
c = getchO; 

} 

ifCO==c){ 

c = getch(); 
closegraphO; 

} 
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I* Read a character from kbd *I 

I* Did use hit a non-ASCII key? *I 

I* Read a character from kbd *I 

I* Did use hit a non-ASCII key? *I 
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