
hLGORITHM DESIGN FOR REAL-TIME

DISTRIBUTED SYSTEMS

By

RAMASHOK VISWANATH
I;

Bachelor of Technology

Indian Institute of Technology

Madras, Taniilnadu

India

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1992

Oklahoma State Univ. lillrary

ALGORITHM DESIGN FOR REAL-TIME

DISTRIBUTED SYSTEMS

Thesis Approved:

ii

ACKNOWLEDGEMENTS

I wish to express my gratitude to my advisor, Dr. Gary Young for his guidance and

advice throughout the course of this study. Many thanks also go to Dr. Eduardo Misawa

for his helpful guidelines about literature research. To him and Dr. Hoberock, I extend my

sincere appreciation for serving on my graduate committee. Dr. Martin Hagan of the

Department of Electrical Engineering deserves special mention for the very helpful

discussions we had during the latter part of this study.

I am indebted to the Department of Mechanical Engineering for having supported

me over the major part of my graduate program. All my teachers whose stimulating lectures

have helped me gain the necessary foundation for this work are also acknowledged.

My friends and relatives deserve heartfelt thanks for their constant encouragement

which helped me in the study by no little measure.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. BACKGROUND . 4

Off-line Implementation of Algorithms . 4
Characteristics of Real-Time Systems . 4

ill. LITERATURE SURVEY . 7

IV. PROBLEM STATEMENT . 12

V. PARAMETER IDENTIFICATION . 14

Review of Optimal Least-Squares Algorithm 14
Sub-Optimal Identification . 15
Mathematical Validation of Sub-Optimal Identification 17
Simulation and Results . 18

Simulation of Interrupts . 18
Sample Systems for Simulation . 19
Simulation Results . 20

VI. STATE ESTIMATION . 21

Review of the Kalman Filter . 21
Sub-Optimal Estimation . 22
Mathematical Validation of Sub-Optimal Estimation 23
Choice of Sub-Optimal Scheme . 25
Simulation Results . 27

Vll. CONCLUSIONS AND RECOMMENDATIONS 30

A SELECTED BIBLIOGRAPHY . 31

APPENDIXES . 33

APPENDIX A - FIGURES . 34

APPENDIX B- MATI.AB CODE FOR PARAMETER
IDENTIFICATION . 48

APPENDIX C- MATLAB CODE FOR STATE ESTIMATION 59

lV

Table

1.

2.

3.

Figure

UST OF TABLES

Break-up of Computational Burden

Theoretical Prediction of Performance

Performance of Sub-Optimal Schemes

LIST OF FIGURES

1. Execution Time Allocation in a Sampling Period

Page

22

27

29

Page

35

2. Execution Time Allocation in a Sampling Period with Real-Time Interrupts 36

3. Execution Time Allocation in a Sampling Period with Real-Time Interrupts
Violating the Hard-Time Constraint . 37

4. Average Estimates for System (1)

5.

6.

RMS Errors for System (1)

Average Gain for System (1)

7. Average Estimates for System (2)

8.

9.

RMS Errors for System (2)

Average Gain for System (2)

38

39

40

41

42

43

10. Pattern of Gains . 44

11.

12.

13.

RMS Estimation Errors for System (3)

RMS Estimation Errors for System (4)

RMS Estimation Errors for System (5)

v

45

46

47

CHAPTER I

INTRODUCTION

Algorithms designed for implementation in an off-line environment do not always

maintain their performance level when implemented in a real-time distributed environment.

Definitions

The Oxford Dictionary of Computing gives the following definition of a real-time

system:

Any system in which the time at which the output is produced is significant. This is usually

because the input corresponds to some movement in the physical world, and the output has

to relate to that same movement The lag from input time to output time must be sufficiently

small for acceptable timeliness.

Young, S. J. [16] defines a real-time system to be:

any information processing activity or system which has to respond to externally-generated

stimuli within a finite and specified period.

These systems are further divided into two classes (Burns and Wellings, [13]).

Hard real-time systems are those where it is absolutely imperative that responses occur

within the specified deadline. Soft real-time systems are those where response times are

important but the system will still function correctly if deadlines are occasionally missed.

Also, in [13], a distributed computer system is defined to be:

a system of multiple autonomous processing elements, cooperating in a common purpose

or to achieve a common goal.

1

Motivation

The significance of real-time systems in everyday life is increasingly evident. The vast

range of application areas includes, in order of increasing complexity, controllers in

washing machines, air traffic control and air defense systems, control and safety systems

of nuclear power plants, and future military systems like the Strategic Defense Initiative

(SDI). Also, many new and challenging applications are being developed in the areas of

command and control systems, process control systems, automated manufacturing, flight

control systems, avionics, space shuttle avionics, the space station, shipboard systems,

submarine systems, visions and robotics, and teams of robots working in hazardous

environments. Further, as [15] points out, real-time systems are an integral part of

computer-integrated manufacturing systems (CIM), whose efficient utilization has a big

influence on the competitiveness and prosperity of entire nations. All this calls for

considerable effort in research and development of highly reliable real-time systems.

Too, recent advances in hardware and communications technology have made

distributed systems a viable alternative to uniprocessor and centralized systems in many

real-time application areas. As motivation for the use of distributed systems, [13] lists the

following potential advantages of distribution:

1) improved performance through the exploitation of parallelism;

2) increased availability and reliability through the exploitation of redundancy;

3) dispersion of computing power to the locations where it is used; and

4) the facility for incremental growth through the addition or enhancement of processors

and communications links.

Scope of Present Study

Consider that a solution method (algorithm) was sought for a particular class of

problems. Further assume that a study of the nature of the problem (either by analytical or

2

heuristic means) revealed an algorithm that provides results which are optimal in some

specified sense. Then, implementation of the algorithm in an off-line environment may be

reasonably expected to maintain optimality of the solution. In other words, a certain

performance level of the algorithm can be guaranteed when implemented off-line.

3

However, certain characteristics of real-time distributed systems (described in the

next chapter) impede the smooth execution of algorithms implemented on-line in a

networked environment. This results in a reduced performance level. Not all related

problems have been exhaustively addressed in the existing literature. This study attempts an

alternative approach toward problems caused by a particular nature of real-time

multiprocessing systems --- hard-time constraints, i.e., those constraints that absolutely

have to be met for successful system operation.

The plausibility of modifying the available algorithms to account for the real-time

nature of the problem is researched. The effect of such changes is analyzed statistically by

Monte Carlo simulations of sample systems in order to justify the modifications. Also,

mathematical analysis is done for a simplified case of such adaptation.

CHAPTER II

BACKGROUND

Off-line Implementation of Algorithms

Consider the basic assumption underlying the structure of a traditional computer program

used to implement an algorithm off-line. The flowchart mechanism behind the conversion

of an algorithm to a program reveals that execution of .the code is assumed to proceed

logically from statement to statement, beginning with the first and without discontinuities or

interruptions.

It is the invalidity of this premise, engendered by the interrupt-driven nature of

input/output {1/0) control mechanisms widely used in real-time distributed systems, that

leads to petformance degradation on-line. Discussion of this, as well as some of the other

characteristics of real-time distributed systems, associated problems and some available

solutions in the literature is contained in the following section.

Characteristics of Real-Time Systems

Deterministic Remonse

One of the requirements placed on a real-time system is that it be capable of

providing deterministic response to inputs. In a broader sense, it should be able to petform

particular tasks at certain prespecified instants of time. Because of the dynamic nature of the

external processes, the value of information degrades with time. Consequently, the

correctness of a real-time system depends not only on the logical result of the computation,

4

but also on the time at which the results are produced. Absence of such predictability may

result in a disaster. It is worthwhile to note that speed is not always the issue.

5

At this stage, it might occur that by tuning the computer program suitably to provide

deterministic response, say through the use of simple, static priority schemes, one would

satisfy the real-time constraint. However, it can be easily shown that, in general, fixed

priority assignments are incapable of meeting activity deadlines, even when the computing

capacity is far greater than the needs of the activities [14].

Asynchronous Input

This refers to the occurrence of input signals at non-sampling instants. Interrupts

from other processors and I or unscheduled higher priority tasks due to certain critical

events in other parts of the network fall under this category. An example of an interrupt can

be found in air flight control systems. If an aeroplane has experienced depressurization

there is an immediate need to give over all computing resources to handling the emergency.

It is essential that a processor be able to handle such interrupts in a responsible manner

while also executing its original task(s) within the allotted time. Failure to do so might lead

to instability of other dependent tasks.

Notice that frequent occurrence of interrupts as also lengthy interrupt service

routines take up a considerable amount of processor time. This leaves the processor with

little time for completion of the original task, say, an optimal control algorithm. In the

context of the Kalman filter (see Chapter VI for a detailed description), this problem can be

explained using Figures 1- 3. Fig. 1 shows the split-up of the time allocation for the

various steps in the algorithm. Notice that the time interval, denoted (4), that is left

unutilised by the algorithm, is the amount of time that may be spent on interrupt-handling

without violating the hard-time constraint. Fig. 2 shows the reduction in unutilised time due

to the occurence of interrupts A and B. Finally, Fig. 3 shows the violation of the hard-time

constraint, as depicted by the extra time required, but unavailable, in order to complete the

computations of the Kalman filter algorithm.

Intewrocessor Communication

6

The potential increase in reliability brought about by distribution was pointed out in

Chapter I. Then, it is paradoxical that, at the same time, distribution possibly introduces

more failures in the system. The concept of a partial system failure is a case in point: it is

possible for a single processor to fail while others continue to operate. In addition, the

propagation delay tprough the underlying communication networks is unpredictable and

messages may take various routes. This, in conjunction with an unreliable transmission

medium, may result in messages being lost, corrupted, or delivered in an order different

from the order in which they were sent Alternative strategies to be implemented in case of

lost or corrupted information, in order to sustain performance of the algorithm are

extensively available in existing literature [2] - [7]. These are briefly explained in the next

chapter.

However, there seems to be a lack of attention to the issue of interrupts in a hard

real time system. In this study, we address the need to design algorithms that are capable of

accommodating the inevitable interrupts while also serving to maintain reasonable

performance levels.

CHAPTER III

LITERATURE SURVEY

As indicated in the previous chapter, three salient features of a real-time distributed

environment are deterministic response, asynchronous inputs and interprocessor

communication. Such real-time problems that are caused by non-deterministic response

and/or improper interprocessor communication have been the subject of research for a

considerable time. In the context of a particular control problem, namely state estimation,

this nature of problems has been variously addressed as "uncertain observation",

"interrupted observation", "missing data", "loss of signals" etc. In applications related to

target tracking, such mishaps lead to a non-zero false-alarm probability associated with the

detection decision. In any case, a processor affected by such discrepancies will be unable to

perform its task optimally.

In 1968, Middleton and Esposito [1], among the earliest researchers in this field,

considered the problem of estimation (under uncertainty) of constant unknown signal

parameters in a single observation interval, in the broader context of simultaneous detection

and estimation.

Nahi [2] derived minimum mean-square estimators for two different forms of the

uncertain observation problem --- one where a probability of false-alarm is associated with

each individual observation, and the other where a probability of false-alarm is associated

with an entire set of signals. Both the estimators he derived are linear and recursive. Also,

necessary and sufficient conditions for the optimality of the estimators are derived,

assuming that the probability of false-alarm is known a priori. Effectively, these estimators

discount an estimated percentage of observations that lead to false-alarm. It may be noticed

7

that the linearity constraint on the estimators prevent optimality in the Bayes sense. This is

because a crucial factor in optimal estimation --- the conditional probability of false-alann

given the previous output history--- is non-linear with respect to observation. This

information cannot be utilised if the estimators are constrained to be linear. Hence, Nahi's

estimators are not Bayes optimal.

8

Srinath and Rajasekaran (1971) note in [3] that the observations may not contain the

signal because of either of the following reasons:

1) the signal was transmitted, but due to some cause such as a cut in the communication

link, the observation contained only noise, i.e., irrelevant data.

2) the signal was not transmitted, i.e., the signal was identically equal to zero.

The estimators in [1] relate more meaningfully to the latter case.

Whereas [3] applies the general likelihood ratio test for the minimum mean-square

estimation of the signal when the presence of the signal at the receiver is uncertain during

the entire observation interval, recursive Bayes optimal estimators are derived in [4] by

Jaffer and Gupta (1971) for a discrete stochastic process when there is uncertainty

regarding the presence of the signal at each stage of the observation sequence. It is noted

that the optimal recursive Bayes estimators are non-linear in the observations and require an

ever-growing amount of memory for their computation. The latter fact necessitates a

recourse to sub-optimum procedures. However, the same authors derive in [5], a recursive

optimal Bayes solution that does not require a growing amount of memory and computation

for its implementation but that, however, requires recursion on continuous functions to be

performed. Thus, actual implementation of the digital techniques would necessitate the

quantization of the spaces of the continuously distributed random vectors denoting the

process. The paper admits, however, that quantization is normally not feasible for

multidimensional processes since the number of quantized points, and consequently the

storage requirements, increase exponentially with the dimension of the process.

9

Comparison between the simulation results from its optimal estimators and from Nahi's

linear estimators is shown to indicate the superior performance of the non-linear estimators.

Sawaragi, Katayama and Fujishige (1972), [6], consider the problem of estimation

with interrupted observation and also derive Bayes optimal estimates, with a somewhat

different formulation of results.

Apart from [3], the likelihood ratio test has been used as a tool also by Van Trees

[7] for solving the detection problem in the face of uncertain observation.

All the above work use complicated estimation theory in deriving (sub)optimal

estimates. In contrast, for the case of missing measurement data, Chen (1990), [9]

suggests using the optimal predictor (which is readily available by simple open-loop

simulation of the process) to replace the unknown optimal filtering estimator which can be

calculated only if the measurement were available. The optimality of such an estimator,

under the mean-square criterion, is proved by Chen (1987) in [8]. The crucial issue of

analyzing the convergence of the proposed suboptimal filtering algorithm is also addressed

in [8], but the main drawback of the analysis is the assumption that only a single bit of data

(i.e., data at a single sampling period) is missing.

As is evident, the nature of problems addressed in the literature discussed above

relates to non-detenninistic responses and I or improper interprocessor communication.

Attention to the important issue of hard-time constraint that cripples the computations of an

algorithm, seems to be limited. However, on recognizing the reduction in the availability of

computational resources to be a direct consequence of interrupts in a hard-real time system,

the papers which deal with such modification of algorithms that leads to computational

savings may be considered relevant to the present study. In the context of the Kalman filter

several such papers are available in current literature. Singer and Sea's (1971) short paper,

[17] presents an iterative processing technique that, when the additive noise vector of the

system observation process can be partitioned into uncorrelated subvectors, can save upto

50 percent in computer time from the standard computational procedure. The technique

10

essentially replaces the covariance update equation (equation 8 in Chapter VI) with several

equations of the same form, say 8b, each involving corresponding matrices lower in

dimension than the original ones. The computational savings result because the time

required to compute a large matrix inverse (or multiplication) is greater than that to compute

several small inverses (or multiplications). The iterative method of the paper has the

additional advantage that the algorithm can be interrupted by a higher priority function

between the iterations of 8b with no loss of information. If the conventional method were

used, an interrupt would possibly cause a loss in data, thereby preventing the updating of

the covariance equation at that point.

In lieu of modifying the covariance equation, changes can be made in the gain

update equation. Friedland (1967), [10] simplifies the mechanization of a Kalman filter by

approximating the optimal gain. To evaluate the ef(ect of the erroneous gain, he derives an

expression for the increase in the covariance matrix of the estimate due to the difference

between the optimal gain and the nonoptimum gain actually employed. It must be noted that

he deals with a continuous-time system, rather than disrete. When the gain matrix is

approximated the innovations process gets colored. Scharf (1973), [11] examines, for

discrete-time systems, the state model of the pseudoinnovations process resulting from an

arbitrary gain modification, and shows that the level (or variance) of the process depends

linearly on the difference the gain matrix being employed and the optimum Kalman gain

matrix.

A specific change in the Kalman filter algorithm would be to replace the optimal

gain by its corresponding steady-state limit. The resultant is the Wiener filter. Singer and

Frost (1969), [18], aiming at sub-optimal filter design, derive upper and lower bounds on

the error covariance matrices of the Kalman and the Wiener filters for linear time-invariant

systems. The analytical results obtained for the general scalar problem indicate that there are

relatively few instances when the Kalman filter provides a significant improvement over the

performance of the corresponding Wiener filter.

11

These papers indicate that the computational burden in a hard-real time system is a

legitimate reason for studying the effects of approximations in an algorithm. However,

papers could not be found that, at once, study the relative performance of a number of

specific sub-optimal schemes, and are also directed at satisfying the hard-time constraints

of a real-time system. To fill this void is the need for the present work.

CHAPTER IV

PROBUffiMSTATEMENT

With the background provided by the previous sections, the problem addressed in

this study is now stated.

How can the performance level of an algorithm be maintained at an acceptable level

in the face of interrupts that violate the hard-time constraint, using only the available

computing resources?

The performance level of an algorithm relates to the optimality of the results that it

produces. When an algorithm is designed for a class of control problems, minimization of a

certain cost-function is usually the criterion. If a theoretical lower bound can be identified it

serves as an ideal measure of the performance level of the implemented algorithm. Lower

the cost-function during implementation (i.e., closer to the lower bound), better the

performance level is said to be.

By "available computing resources" is implied that it is not sought to solve the

hard-time constraint by recourse to enhanced data-processing ability, such as due to a faster

CPU. Such augmentation of resources is assumed to be unwarranted because interrupts

violating the hard-time constraint may, in some cases, be expected to occur only over short

periods of time.

The approach taken in the study is to compromise on the optimality of an algorithm

(in the sense described above) while maintaining its stability. In other words, a non

minimal value of the cost-function provided by a sub-optimal algorithm is tolerated if the

results of interest do not deviate largely from those of the optimal algorithm. Since the

12

choice of the cost-function is problem-specific, typical examples of control problems are

presented in the following chapters.

1 3

CHAPfERV

PARAMETER IDENTIFICATION

Review of Optimal Least-Squares Algorithm

Consider the discrete-time system

Linear
v(k) ~ ~ y(k)

System

It is described by the equation

where,

y(k) = aty(k-1) + a2y(k-2) + ... + apy(k-p) + v(k)

i.e., y(k) = cl>(k)8 + v(k)

<I>(k) = [y(k-1) y(k-2) . . . y(k-p)], the regressor vector;

8 = [at a2 . . . ap]T, the vector of unknown parameters;

v(k) is the system input;

y(k) is the output;

and k is the time-index of the discrete-time system.

The autoregressive system is said to be of order p. y(k) is of size n x 1, <I> is n x p, and 8

is p x 1.

We want to estimate 8, using measurements of the output, y(k). Let 8 be the estimate of

e.
.......

Defining the error, e(k) = y(k) - y(k), where y(k) = cl>(k) 8(k), we then make the

choice of the cost-function that is to to be minimized. As is typical, we consider the

magnitude of the error.

14

15

""
Minimize J(8) = £ T £.

Setting

{)J(8) = 0
......

ae
and proceeding with the derivation, we arrive at a set of equations (not shown here) that

make up the least-squares identification algorithm. Converting them into a recursive form to

enable on-line implementation, we have

where

and

e (k+ 1) = e (k) + K(k) e(k),

K(k) = P(k)~T(k)[l + ~(k)P(k)~T(k)]-1

P(k+ 1) = [I - K(k)~(k)]P(k)

----- 1

----- 2

----- 3

Equations 1, 2 & 3 constitute the optimal recursive least-squares algorithm (refer equations

4-24 to 4-26, [12]).

We see that equation 1 is in the form of an update, with the second term on the right

side providing the correction. The optimality of this correction is obtained from equation 2,

which calculates the gain matrix, K(k), each time-step. The covariance of the estimation

error is given by P(k), which is computed every time-step by equation 3.

Sub-Optimal Identification

In the above algorithm, we recognize that equation 2 is the most crucial one, for it is

that gain matrix which provides optimality of the estimates. However, also note that it has

the maximum cost in computation time, as shown below by simple arithmetic:

equation 1 requires 2np number of operations;

equation 2 requires n3 + np(2n+p) operations; and

equation 3 requires p2[n + (p+ 1)!2] operations.

Now, from a stability point of view, it is essential that equation 1 always be computed

since typically, some other task is dependent on a value for the parameter estimate. Then, it

1 6

is clear that in the event of external interrupts during a time-step, most time can be saved for

the interrupt service routines by substituting equation 2 with a sub-optimal gain equation.

In seeking to simplify the gain-equation for time-steps with interrupts, we have the

following options:

(i) we could set the value of the gain matrix to zero. This amounts to not updating

the parameter estimate in equation 1, i.e.,

K(k) = 0;

and 9(k+1) = 9(k).

In other words, the parameter estimate found in the last step is used for the current step

also. Let us call this the "zero gain when interrupt" scheme.

(ii) we may utilize the previous value of the gain matrix for the current step also.

That is, we now update the estimate of the parameter using the last value of the gain matrix,

i.e., K(k) = K(k-1). For this scheme, we shall use the term "last gain when interrupt".

Notice that both these schemes would help keep the algorithm going, even with

little cost in computation time. However, they involve an insurance cost in that equation 1

will have to be computed with a sub-optimal gain at the beginning of every time period.

This is because of the unpredictable nature of the interrupts, which does not guarantee safe

completion of the computations at any time-step. Once a sub-optimal estimate is available,

we may proceed to calculate, using equations 2 and 3, the correction needed to make it

optimal. That way, if computation of the correction is interrupted a sub-optimal estimate

would still be available. In other words, we flrst calculate the hard-constraint portion given

by 9(k+ 1) = 9(k) + Ksub-opt(k) E(k)

and then update this estimate using

9(k+1) = 9(k+1) + [K(k)- Ksub-opt(k)]E(k),

which is only a soft-constraint.

The cost of this insurance results from adding and subtracting the sub-optimal correction

term, Ksub-op1(k) e(k), which requires np number of operations for its computation.

It remains to be verified whether the results provided by such adapted algorithms

are acceptable. If so, we seek to make a comparison between them and to choose a

particular scheme as worthy of recommendation. We attempt to do this first by

mathematical analysis. Then, bearing in mind the random nature of interrupts, we shall

employ the technique of Monte Carlo simulation to verify our analysis.

Mathematical Validation of Sub-Optimal Identification

1 7

In this section, the aim is to establish the convergence of the sub-optimal algorithms

with respect to optimal one, for the case of a single hard-time interrupt occurring at an

arbitrary time-step.

Consider the least-squares algoritlnD for parameter identification, equations 1 - 3. At an

arbitrary time-step, ko, optimally

S(ko) = S(ko-1) + K(ko-1)[y(ko-1)- <l>(ko-1)8(ko-1)].

With an interrupt, the zero-gain scheme gives

e zg(ko) = e (ko-1).

Then the estimation error with reference to the optimal algorithm is

Ezg(ko) = K(ko-1)[y(ko-1)- <l>(ko-1)8(ko-1).

At the next step,

8(ko+1) = S(ko) + K(ko)[y(ko)- <l>(ko)S(ko)].

Assuming no interrupt at this time-step, we get from the zero-gain scheme

Szg(ko+ 1) = Szg<ko) + K(ko)[y(ko) - <l>(ko)Szg(ko)].

Now, the error is

Ezg(ko+ 1) = [I- K(ko)<l>(ko)]Ezg(ko).

In general then, at time-step (ko+l),

Ezg(ko+l) =[I- K(ko+l-l)<l>(ko+I-1)] ... [I- K(ko)Cl>(ko)]Ezg(ko)

or, Ezg(ko+l) =[I- K(ko+I-1)Cl>(ko+l-1)]ezg(ko+l-1). ----- 4

1 8

The aim is to prove that the above error tends to zero as l--7 oo. We notice that the

above equation for error propagation is of the same structure as for the error covariance,

equation 3. Reference [20] indicates that, for an observable system with bounded

measurement noise level, the error covariance of the least-squares algorithm converges.

From this knowledge of the convergence of error covariance, we conclude that the error in

equation 4 also vanishes.

Next, considering the last-gain scheme, the error is

Etg(ko) = [K(ko-1)- K(ko-2)] [y(ko-1)- Cl>(ko-1)8(ko-1).

Then the error propagation equation is the same as for the other scheme, i.e.,

equation 4. Only the initial value of the error is different. Convergence to the optimal

algorithm is again evident

The relative speed of convergence of the two sub-optimal schemes is clearly a

function only of the initial error, i.e., during the interrupt time-step, due to gain adaptation.

Therefore, closer the sub-optimal gain to the optimal value, smaller the initial error and

hence quicker the convergence.

Simulation and Results

Simulation of Interrupts

In order to simulate the sub-optimal algorithms and study their performance in a

hard-time constrained environment, it is necessary to simulate the occurrence of random

interrupts. This was done in the following way:

A random-number generator was initially set to generate numbers uniformly

distributed in the interval [0, 1]. At each time-step of simulation, a random number was

generated. If its value lay in a specific quarter, say [0, 0.25], of the possible range then an

interrupt was assumed to have occurred.

1 9

Notice that this specific choice results in an overall interrupt rate of 25%, i.e., about

a fourth of the time-steps have hard-time constraints. Now, since the interrupts are made

random in order to duplicate the real-world scenario as closely as possible, the time-steps at

which they occur are not known a priori. Different simulation runs would yield different

sequences of interrupts. Clearly an interrupt occurring during the initial (transient) steps of

the identification process is more critical than the later ones as it contributes to a larger error

in the sub-optimal schemes. In order to study the effect due to an "average" interrupt

sequence, the technique of Monte Carlo simulation is used.

Sample Systems for Simulation

A number of systems were used to study the performance of the sub-optimal

schemes relative to the optimal scheme. Two samples are shown here and the

corresponding results presented in the next section. An autoregressive model of second

order was chosen for the study, i.e., two parameters were to be identified. An interrupt rate

of 25% was used for all simulations. This rate was considered high enough to correspond

to a real-world system, since typical real-time systems software would not be expected to

be designed with a hard-time constraint that might be violated much more frequently.

Sample System 1. Denoted system (1) hereafter, its parameters were chosen as 1

and -0.1, i.e.,

8 = [1]
-0.1

The noise level for v(k) was set at 0.01.

The initial conditions were set as y(l) = 1 and y(2) = 1.
'

Sample System 2. System (2) was chosen as having

8 = (0.6]
0.3

20

The other conditions were the same as for system (1).

Simulation Results

The results of the Monte Carlo simulation with 1000 runs are shown in the Figures

section of the Appendix. Figure 4 displays the running values of the estimates of parameter

(1) in system (1), due to the optimal as well as sub-optimal schemes. We see that, as

expected, the optimal scheme gives the fastest and closest convergence to the true

parameter. Of the two sub-optimal schemes the zero-gain-when-interrupt scheme comes

closer to the optimal one. However, since the statistical mean (expectation) is not a

sufficient measure of a random variable (process), the mean square estimation error is

considered. Figure 5 shows that the zero-gain scheme again has a smaller error than the

last-gain scheme.

In order to gain a better understanding of the reason for these trends, we look at the

fundamental difference, namely the gain matrix. Figure 6 shows the running statistical

mean values of the first element in the gain matrix. It can be seen that the sequence of gains

is distorted less by the zero-gain scheme than by the last-gain scheme.

The corresponding results for parameter (1) in system (2) are shown in Figures 7, 8

and 9. The same trends as discussed above are again evident. Though not shown here

parameter (2), for both systems, revealed similar trends.

These trends can be interpreted as follows: when an interrupt occurs at an arbitrary

time-step during the identification process the optimal gain is, on an average, closer to zero

than to the previous value. This leads to better estimates from the zero-gain scheme.

CHAPTER VI

STATE ESTIMATION

Review of the Kalman Filter

Consider the discrete-time system

Linear
u(k) -7 -7 y(k)

System

It is described by the set of equations

X(k+ 1) = <I>X(k) + 'Pu(k) + rv(k)

y(k) = C X(k) + Du(k) + e(k),

where v(k) and e(k) are independent white noise sequences with intensities R 1 and R2

respectively, k is the time-index, X is of size n x 1, u is I x 1, andy ism x 1.

We want to estimate the state vector X(k), using the measurements ofu(k) and y(k).

X(k) is the estimate of X(k).

Estimation error, X(k) = X(k) - X(k).

We look for a solution of the form

X(k+1) = X(k+11k) + K(k+1)[y(k+1)- CX(k+11k)], where

X(k+11k) = <I>X(k) + 'Pu(k)

Choose K(k) to minimize the variance of the estimation error, P(k).

Then, the following set of equations is obtained (cf. [12], equations 17-11 to 17-14):

where

X(k+1) = X(k+11k) + K(k+1)[y(k+1)- CX(k+11k)]

K(k+1) = P(k+11k)CT[CP(k+11k)CT + R2]-l

P(k+ 11k) = <I>P(klk)<I>T + rQrT

21

----- 5

----- 6

----- 7

22

P(k+llk+l) = [I-K(k+l)C]P(k+llk) ----- 8

The above equations 5 - 8 constitute the optimal recursive stochastic estimator, commonly

known as the Kalman filter.

Equation 5 yields the update of the estimate. It has two parts to it, the first term on

the right side corresponding to the open-loop simulation (prediction), and the latter to the

correction due to the prediction error. The optimal gain for this correction is provided by

equation 6. The covariance of the estimation error is computed in equation 8.

Computational Reguiremems:- Each of the steps in the Kalman filter algorithm places a

computational burden on the processor, as indicated in Table 1 below:

TABLEt

BREAK-UP OF COMPUTATIONAL BURDEN

Equation# Number of operations

5 n2+nl + 2mn

6 mn[m+2n+(m+ 1)/2] + m3

7 2n2(n+l)

8 mn(n+l)/2

Note that the use of canonical forms can simplify the <I» matrix such that the computations

for equation 7 are negligible relative to those for equations 6 and 8. Clearly then, equation 6

(gain update) requires the most number of operations for its computation.

Sub-Optimal Estimation

As in the case of parameter identification, we find that also in the algorithm for the

Kalman filter, the equation for gain update is tqe most time-consuming one. The rationale

23

for gain-modification in the event of interrupts therefore holds for this case equally. The

first two of the following options for the sub-optimal schemes are then familiar.

(i) zero gain when interrupt,

(ii) last gain when interrupt,

(iii) steady-state gain when interrupt.

This third scheme is motivated by the fact that in the Kalman Filter algorithm

P(k+l) = P(k) = Ps

and K(k+ 1) = K(k) = K8, for large k (see [9] for proof):.

This value of the gain is undoubtedly the best choice for the sub-optimal scheme, at

least during the steady state. It might be worth studying its performance during interrupts at

random points over the entire estimation process.

Again, we shall begin with a mathematical analysis and then use Monte Carlo

simulations for verification.

Mathematical Validation of Sub-Optimal Estimation

In this section, we establish that the results from the sub-optimal algorithms

converge to those from the optimal Kalman filter algorithm for the case where an arbitrary

time-step has an interrupt violating the hard-time constraint.

Refer to the Kalman fllter algorithm in equations 5 - 8. At an arbitrary time-step, ko,

the optimal estimate is given as

X(ko) = <I>X(ko-1) + 'Pu(ko-1) + K(ko)[y(ko)- CX(kolko-1)]

With an interrupt, the zero-gain scheme gives

X(ko) = <I>X(ko-1) + 'Pu(ko-1)

----- 9

----- 10

The estimator in equation 10 imitates the one in equation 3 in [9], where it is used as an

optimal estimator when measurement data y(ko) is missing. On recognizing this fact, we

see that the proof of convergence of our zero-gain scheme (for a single interrupt) derives

from that of equation 3 in [9]. Though that proof will not be reproduced here, we shall state

24

the error propagation equation in order to extend the proof to the last-gain scheme. First,

the relative error between the optimal and zero-gain estimates at ko is

Ezg(ko) = K(ko)[y(ko)- CX(kolko-1)]. ----- 11

Assuming no interrupts thereafter, at the time-step ko+l, we have

Ezg(ko+l) = [[I - K(ko+I)C]cf> ... [I - K(ko+ l)C]cf>]ezg(ko). ----- 12

The following lemma is used to prove that the covariance of the error tends to zero

exponentially.

Lemma. Consider a linear time-invariant system which is both completely controllable and

observable. Let {K(k)} be the sequence of the Kalman gain matrices, which converges to

the limiting Kalman gain matrix K8• Then, for any sufficiently small o > 0, there exists an

integer N > 0 such that an eigenvalues of all matrices P[I-K(I)C] with I ~ N are of

magnitude less than or equal to 1-o.

This lemma is used in Theorem 1 of [9] to establish the exponential convergence of the

covariance of the error (in equation 12) to zero as I tends to infinity.

We then consider the last-gain scheme. The error between the optimal and the last-gain

schemes at ko is

Etg(ko) = [K(ko)- K(ko-1)] [y(ko)- CX(kolko-1)]. ----- 13

However, the propagation equation for the error is the same as that for the zero-gain

scheme, equation 12. Hence, the same proof as referenced above applies here to guarantee

convergence of the last-gain estimate to the optimal estimate.

Though the same argument can be extended to the steady-gain scheme, [8] already contains

proof of its convergence for a 100% interrupt rate. There, chapter 6, "Limiting Kalman

Filter" considers replacing the optimal gain at every time-step by the constant, steady-state

gain matrix in order to save computation time. In that chapter, theorem 6.2 shows that the

resultant estimate is an asymptotically optimal estimate of the actual system states, i.e.,

u lx<k) -Xs8<k>C = u lx<k) -x<kf
k ---700 k ---700

25

Next, theorem 6.3 shows that the error between the optimal and steady-gain schemes also

tends to zero exponentially fast, i.e.,

nfx(k) - Xsg(k~ ~ Crk
'

where C is a positive constant independent of k, and r is a real number, 0 < r < 1.

Having discussed the stability of the sub-optimal schemes, we now turn to their relative

performance.

Choice of Sub-Optimal Scheme

One of the earlier research papers, [10], derives the following expression for the increase in

the estimation covariance due to a difference, A, between the optimal gain, K, and a sub-

optimal gain, K, actually employed:

dS/dt = (A-KC)S + S(A-KC)T +A R.AT

where A is the transition matrix of the continuous-time system,

C is the observation matrix,

R is the measurement noise matrix, and

(.)T denotes transposition.

----- 14

Also, [11] further indicates that, in a discrete-time system, this increase is linearly

dependent upon the deviation, A. Clearly, a larger deviation in the value of the gain will

produce a larger increase in the covariance matrix. We wish to use this fact to identify the

sub-optimal scheme that will result in the least increase in the covariance. Evidently, we

need to choose that scheme which distorts the gain by the least amount. This is done by the

following procedure, developed in this study.

Consider a scalar, discrete-time system, with the same notation as indicated in the

beginning of the chapter. Let the optimal gain at the first step of the estimation process be

K(l). Also, let Ks denote the steady-state gain. Referring to Fig. 10, we see that the

optimal gain at the second time-step would lie in the region AD. Stated mathematically,

Ks < K(2) < K(l).

26

Notice that the value of the last-gain at this time-step is K(l). If K(2) lay closer to K8 than

to K(l), i.e., if K(2) lay in the region AC, where Cis the mid-point of AD, then the

steady-gain would be a closer approximation to the optimal gain than would the last-gain

be, i.e., I K(2)- Ks I< I K(2)- K(l) I. The choice of the steady-gain would hence lead to

less gain-distortion and in turn to a lower increase in estimation covariance.

On the other hand, if K(2) lay in CD, its proximity to K(l) would make the last-gain a

better choice than the steady-gain. In that case, we would have IK(2) - K(l)l < I K(2) - K8 I.

We see that the point C serves as a point of demarcation, separating regions of different

choices for the sub-optimal scheme.

Using the same approach as above, this time to compare the last-gain and zero-gain

schemes, it is evident that the point B, representing a one-half value ofK(l), serves as the

demarcation point.lfK(2) lay in AB, zero-gain would preferable to last-gain, while the

latter is to be chosen if BD contained K(2).

Also, by inspection we see that, since K(2) always lies in AD, the steady-gain is always

closer than zero-gain to the optimal gain, i.e., I K(2) - Ks I < K(2). Hence, lower estimation

errors would always result from the steady-gain rather than the zero-gain scheme.

Combining the three results derived above, we arrive at the following preferences for the

sub-optimal schemes (shown in Table 2 on next page).

Remarks:-

1. For systems with a negative value of gain, the same discussion and results as above

apply, on considering the mirror-image of the graph (in Fig. 1 0) about the x -axis.

2. Even though the above discussion analyses the pattern of the gains occuring only at the

second time-step, thereby seeming to ignore the effects due to possibly contradictory

patterns over subsequent time-steps, its validity is strengthened by the following facts

considered together:

27

a) owing to the nature of the equations describing the optimal gain as well as the locus of

the demarcation points (denoted Band C in the above discussion), the pattern of gains does

not change more than once, if at all, over the entire estimation process, and

b) the pattern of gains established at the second time-step is dominant in its effect, not only

because of the larger magnitude of the gain during this initial transient period, but also

because its effect accumulates over successive time-steps, as indicated by the integral term

in equation (14) of [10].

TABLE2

THEORETICAL PREDICI'ION OF PERFORMANCE

Range of optimal gain, K(2) Order of preference of sub-optimal schemes

a. steady-gain

1. K(2) < K(l) I 2 b. zero-gain

c. last-gain

a. steady-gain

2. K(l) I 2 < K(2) < (K(l) + K8) 12 b. last-gain

c. zero-gain

a. last-gain

3. K(2) > (K(l) + Ks) I 2 b. steady-gain

c. zero-gain

Simulation Results

To test the hypothesis derived above, regarding the choice of the sub-optimal

schemes, Monte Carlo simulations were carried out Results from three systems, each

providing a different pattern of gains, are documented here for discussion. The Monte

Carlo simulations involved 500 runs, each with an interrupt rate of 25%.

Sample System 3. Referred to as system (3) hereafter (the previous chapter

contained the first two systems), it was chosen with the following parameters:

ci> = 0.8;

r=C= 1;

D=O;

The noise levels were set as R1 = R2 = 1;

P(O) = 1o4.

A unit step input was chosen, i.e., u = 1.

Sample System 4.

ci> = 0.8;

r=c = 1;

D=O;

R1 = 1; R2 = 100;

P(O) = 108.

28

Sample System 5. This system only differed from system (4) in that it had P(O) =

50.

Discussion of Results. Calculation of K(1), K(2) and Ks for each of the above three

systems using the Kalman fllter algorithm enables the following predictions regarding the

relative performance of the schemes. (shown in Table 3).

Referring to the rms errors in figures 11- 13 respectively for systems 3- 5, we see that

these predictions are indeed realized. In system 3, the covariance has the least magnitude

when the "steady gain when interrupt" scheme, rather than one of the other two, is

employed. Also, the last-gain scheme performs better than the zero-gain scheme. Similarly,

systems 4 and 5 reveal covariance trends that correlate with the predictions in the above

table. This strengthens the belief that the theory developed in this study will apply to other

scalar systems also. In other words, a priori calculation of the steady-state gain as also the

optimal gain at the first two time-steps (all these from the knowledge of the system

parameters alone) seems to enable a proper choice of the sub-optimal scheme for state

estimation in hard-time systems with interrupts.

TABLE3

PERFORMANCE OF SUB-OPTIMAL SCHEMES

System# cnderofperformance

steady-gain

3 last-gain

zero-gain

steady-gain

4 zero-gain

last-gain

last-gain

5 steady-gain

zero-gain

29

CHAPTERVll

CONCLUSIONS AND RECOMMENDATIONS

The plausibility of using certain sub-optimal control algorithms for implementation

in a real-time distributed environment is verified. From mathematical analysis as well as

extensive Monte Carlo simulations of several sample systems, it is concluded that with a

small cost in the optimality of results, the hard-time constraint of the real-time problem can

be effectively satisfied by the judicious simplification of certain complex computational

steps, for instance, through splitting a hard-constraint into hard and soft-constraint

portions. Such adaptation is especially feasible when dealing with recursive algorithms

(such as the example cases considered) or lattice filters. Based on the results of this study,

the following suggestions for the choice of the sub-optimal schemes are made.

The "zero gain when interrupt" scheme may be used for the least-squares parameter

identification algorithm.

For the Kalman filter algorithm, the various combinations of possible values for the

system parameters influence the choice of the sub-optimal scheme. Therefore, Table 2 in

the previous chapter should be used as a guide for making the right choice.

It is to be noted that due to the heuristic nature of the choice of the sub-optimal

schemes selected for consideration in this study, it is not possible to recommend any

particular scheme as the "best" one. In other words, the existence of other sub-optimal

schemes with better performance is not ruled out Hence, it is recommended that further

work be done toward determining the "best" sub-optimal scheme for the various classes of

control problems.

30

A SELECIED BffiUOGRAPHY

[1] Middleton, D., and Esposito, R. Simultaneous Optimum Detection and Estimation of
Signals in Noise, IEEE Transactions on Information Theory, vol. IT-14, May 1968, pp
434-444.

[2] Nahi, N. E. Optimal Recursive Estimation with Uncertain Observation, IEEE
Transactions on Information Theory, 1969.

[3] Srinath, M. D., and Rajasekaran, P. K. Estimation of Randomly Occurring Stochastic
Signals in Gaussian Noise, IEEE Transactions on Information Theory (Correspondence),
vol. IT-17, Mar. 1971, p 206.

[4] Jaffer, A. G., and Gupta, S.C. Recursive Bayesian Estimation with Uncertain
Observation, IEEE Transactions on Information Theory (Correspondence), vol. IT-17,
Sept. 1971, pp 614- 616.

[5] Jaffer, A. G., and Gupta, S.C. Optimal Sequential Estimation of Discrete Processes
with Markov Interrupted Observations, IEEE Transactions on Automatic Control, vol. AC-
16, No. 5, 1971, pp. 471 - 475.

[6] Sawaragi, Y., Katayama, T., and Fujishige, S. Sequential State Estimation with
Interrupted Observation, Information and Control , 1972.

[7] Van Trees, H. L. Detection, Estimation and Modulation Theory, Part 1, John Wiley,
NewYork, 1968.

[8] Chui, C. K., and Chen, G. Kalman Filtering With Real-Time Applications. New
York: Springer Verlag, 1987.

[9] Chen, G. A Simple Treatment for Suboptimal Kalman Filtering in Case of
Measurement Data Missing, IEEE Transactions on Aerospace and Electronic Systems,
1990.

[10] Friedland, B. On the Effect of Incorrect Gain in Kalman Filter, IEEE Transactions on
Automatic Control, Oct. 1967, p 610.

[11] Scharf, L. L. State Model of a Pseudoinnovations Process, IEEE Transactions on
Automatic Control, Oct 1973, pp 547- 548.

[12] Mendel, J. M. Lessons in Digital Estimation Theory. Prentice Hall, New Jersey,
1987.

[13] Burns, A., and Wellings A. Real-Time Systems and Their Programming Languages.
Addison-Wesley, Wokingham, England, 1990.

3 1

32

[14] Northcutt, I. D. Mechanisms for Reliable Distributed Real-Time Operating Systems.
Academic Press, Florida, 1987.

[15] Editorial, The Journal of Real-Time Systems 1, Kluwer Academic Publishers,
Boston, 1989.

[16] Young, S. J. Real-Time Languages: Design and Development. Chichester: Ellis
Horwood, 1982.

[17] Singer, R. A., and Sea, R. G. Increasing the Computational Efficiency of Discrete
Filters, IEEE Transactions on Automatic Control, June 1971, pp 254- 257.

[18] Singer, R. A., and Frost, P. A. On the Relative Performance of the Kalman and
Wiener Filters, IEEE Transactions on Automatic Control, Aug. 1969, pp 390- 394.

[19] Chen, G. Convergence Analysis for Inexact Mechanization of Kalman Filtering,
IEEE Transactions on Aerospace and Electronic Systems, vol. 28, no. 3, July 1992, pp
612-621.

[20] Gelb (editor), Applied Optimal Estimation. The MIT Press, Massachusetts, 1974, p
343.

APPENDIXES

33

APPENDIX A

FIGURES

34

•
(3) (4)

(5)

(1) Time for the calculation of covariance matrix, P

(2) Time for the calculation of state update, X

(3) Time for the calculation of optimal gain, K

(4) Time available for interrupt service routines

(5) Total time of a sampling period

Figure 1. Execution Time Allocation in a Sampling Period

35

sampling period

(1) Interrupt A service routine

(2) Interrupt B service routine

(3) Time left in a sampling period

Figure 2. Execution Time Allocation in a Sampling Period with
Real-Time Interrupts

36

sampling period

(1) Interrupt A service routine

(2) Interrupt B service routine

(3) Interrupt C service routine

(4) Extra time needed to get the optimal result

Figure 3. Execution Time Allocation in a Sampling Period with
Real-Time InteiTUpts Violating the Hard-Time Constraint

37

1.2

1

~

~

-~ 0.8
c;n
~

.....-4
=II: 0.6
t

I 0.4
Cot

0.2

5 10

time-step (k)

15

Figure 4. Average Estimates for System (1)

38

20

optimal gain

zero gain

last gain

0.8
1-< g
0

""' 0.6 §
......
=#:

1-<
B 0.4
~
~
~

0.2

5 10

time-step (k)

Figure 5. RMS Errors for System (1)

15

39

20

optimal gain

zero gain

last gain

2

0

-2

·~
-4

0
-6

-8

-10

-12
0 5 10

time-step (k)

Figure 6. Average Gain for System (1)

15

40

20

optimal gain

zero gain

last gain

0.7

0.6

.I 0.5

Cl)

0.4 G) -=#:
£ 0.3

! 0.2 tl..

0.1

0
0 5 10

time-step (k)

15

Figure 7. Average Estimates for System (2)

41

20

optimal gain

zero gain

last gain

6 a
fl)

§ -=#:
~

B

~
Cl..

0.6~--------~~--------~----------~------------

0.5

0.4

0.3

0.2
t--c..-- _

5 10

time-step (k)

Figure 8. RMS Errors for System (2)

15 20

optimal gain

zero gain

last gain

42

2

0

-2

·~
-4

0
-6

-8

-10

-12
0 5

10

time-step (k)

Figure 9. Average Gain for System (2)

15

43

20

optimal gain

zero gain

last gain

7

6

Gain
5

4

3

2
Ks

1

1 2 3
time-step

Figure 10. Pattern of Gains

44

1.6

fS 1.4
a
rll

El 1.2

1

5 10

time-step (k)

15

-·-·
Figure 11. RMS Estimation Errors for System (3)

20

optimal gain

steady gain

htst gain

zero gain

45

10

8

6

4

2

5 10

time-step (k)

15

Figure 12. RMS Estimation Errors for System (4)

20

optimal gain

steady gain

last gain

zero gain

46

12~--------~~--------~----------~-----------.

10

8

6

4

5

- - - --·--·--

10

time-step (k)

15

-·-·
Figure 13. RMS Estimation Errors for System (5)

20

optimal gain

steady gain

last gain

zero gain

47

APPENDIXB

MATLAB CODEFORPARAMETER

IDENTIFICATION

48

% A MA 1LAB function to perform Monte Carlo simulation of real-time

% parameter identification.

%

%Format:

% [a, b, c, d, e, f, g, h, i] = mcs(runs)

%

% Input: number of simulation runs (runs)

%Outputs:- (Monte Carlo averages)

% 1st element: optimal gain history (a)

% 2nd element: last gain history (b)

% 3rd element: zero gain history (c)

% 4th element: optimal parameter estimates (d)

% 5th element: last gain estimates (e)

% 6th element: zero gain estimates (f)

% 7th element: optimal errors (g)

% 8th element: last gain errors (h)

% 9th element: zero gain errors (i)

%

% Function called: pariden(no. of time steps in each run)

%

%Note: Checks validity of simulation for inclusion

function [mean_k, mean_k_l, mean_k_z, mean_t, mean_t_l, mean_t_z, ...

rms_err_t, rms_err_t_l, rms_err_t_z] = mcs(runs)

% n = no. of time steps in each run

49

disp(");

n = input('Enter number of time steps in each run:'); % read n

mat_ theta = ones(n+ 1, 2) * [0.6 0; 0 0.3];

sum_t = zeros(n+ 1, 2);

sum_t_l = zeros(n+ 1, 2);

sum_t_z = zeros(n+ 1, 2);

sum_sq_err_t = zeros(n+ 1, 2);

sum_sq_err_t_l = zeros(n+ 1, 2);

sum_sq_err_t_z = zeros(n+1, 2);

sum_k = zeros(n+ 1, 2);

sum_k_l = zeros(n+1, 2);

sum_k_z = zeros(n+ 1, 2);

sum_sq_err_k_l = zeros(n+ 1, 2);

sum_sq_err_k_z = zeros(n+ 1, 2);

count=O;

t = [0: n]';

fork= 1: runs,

disp('run =');

disp(k);

[vec_k, vec_k_l, vec_k_z, t_opt, t_l, t_z] = pariden(n);

50

if [vec_k, vec_k_l, vec_k_z] <50,

sum_t = sum_t + t_opt;

sum_t_l = sum_t_l + t_l;

sum_t_z = sum_t_z + t_z;

err_t = mat_theta - t_opt;

sq_err_t = err_t ."2;

sum_sq_err_t = sum_sq_err_t + sq_err_t;

sum_k = sum_k + vec_k;

err_t_l = mat_theta - t_l;

sq_err_t_l = err_t_l."2;

sum_sq_err_t_l = sum_sq_err_t_l + sq_err_t_l;

sum_k_l = sum_k_l + vec_k_l;

err_k_l = vec_k - vec_k_l;

sq_err_k_l = err_k_l."2;

sum_sq_err_k_l = sum_sq_err_k_l + sq_err_k_l;

err_t_z = mat_theta - t_z;

sq_err_t_z = err_t_z ."2;

sum_sq_err_t_z = sum_sq_err_t_z + sq_err_t_z;

sum_k_z = sum_k_z + vec_k_z;

5 1

end;

err_k_z = vec_k - vec_k_z;

sq_err_k_z = err_k_z ."2;

sum_sq_err_k_z = sum_sq_err_k_z + sq_err_k_z;

count= count+ 1;

end;

disp('count = ');

disp(count);

disp(");

disp('Press any key to continue!');

pause;

mean_t = sum_t I count;

mean_t_l = sum_t_ll count;

mean_t_z = sum_t_z I count;

mean_sq_err_t = sum_sq_err_t I count;

mean_sq_err_t_l = sum_sq_err_t_ll count;

mean_sq_err_t_z = sum_sq_err_t_z I count;

rms_err_t = mean_sq_err_t ."0.5;

rms_err_t_l = mean_sq_err_t_l ."0.5;

rms_err_t_z = mean_sq_err_t_z ."0.5;

52

mean_k = sum_k I count;

mean_k_l = sum_k_l I count;

mean_k_z = sum_k_z I count;

mean_sq_err_k_l = sum_sq_err_k_l I count;

mean_sq_err_k_z = sum_sq_err_k_z I count;

%plot gains

clg;

subplot(121);

plot(t, mean_k(:,l), 'w+', t, mean_k_l(:,l), 'r-', t, mean_k_z(:,l), 'w-.');

title(' gains: +++opt; --- last-gain; -.-. zero-gain');

subplot(122);

plot(t, mean_k(:,2), 'w+', t, mean_k_l(:,2), 'r-', t, mean_k_z(:,2), 'w-.');

pause;

% plot mean square errors in gains

clg;

subplot(l21);

plot(t, mean_sq_err_k_l(:,l), 'r-', t, mean_sq_err_k_z(:,l), 'w-.')

title('mean sq err of gains');

subplot(l22);

plot(t, mean_sq_err_k_l(:,2), 'r-', t, mean_sq_err_k_z(:,2), 'w-.')

pause

53

% plot estimates

clg;

subplot(l21);

plot(t, mean_t(:,1), 'w+', t, mean_t_l(:,1), 'r-', t, mean_t_z(:,1), 'w-.')

title('+++ optimal; ---last gain; -.-. zero gain')

xlabel('time-step (25% interrupt rate)')

ylabel('Parameter #1 Estimate')

subplot(122);

plot(t, mean_t(:,2), 'w+', t, mean_t_l(:,2), 'r-', t, mean_t_z(:,2), 'w-.')

xlabel('time-step (25% interrupt rate)')

ylabel('Parameter #2 Estimate'), pause

% estimation errors

clg;

subplot(121);

plot(t, rms_err_t(:,1), 'w+', t, rms_err_t_l(:,l), 'r-', t, rms_err_t_z(:,l), 'w-.')

xlabel('time-step (25% interrupt rate)')

ylabel('Parameter #1 rms error'),

title('+++ optimal; --- last gain; -.-. zero gain')

subplot(122);

plot(t, rms_err_t(:,2), 'w+', t, rms_err_t_l(:,2), 'r-', t, rms_err_t_z(:,2), 'w-.')

ylabel('Parameter #2 rms error'), pause

54

% This is a program for Real-Time parameter identification using recursive

% least-squares algorithm.

%

%Format:

% [a, b, c, d, e, f] = pariden(n)

%

% Input: no. of time steps

%Outputs:-

% 1st element: optimal gain history

% 2nd element: last gain history

% 3rd element: zero gain history

% 4th element: optimal estimates

% 5th element: last gain estimates

% 6th element: zero gain estimates

%

% Functions called : NONE

% Three methods are considered:

% (i) optimal gain

% (ii) last gain when interrupt

% (iii) zero gain when interrupt

%

(n)

(a)

(b)

(c)

(d)

(e)

(f)

% The system considered is of the form:

% x(k+1) = 0.6 * x(k) + 0.3 * x(k-1) + vk,

% i.e., y = phi* theta+ vk;

%

%

vk is system noise;

'theta' is to be identified.

55

56

function [vec_k, vec_k_last, vec_k_zero, vec_tetahat, vec_tetahat_last, vec_tetahat_zero] =

pariden(n)

% Note:- unsuffixed variables refer to optimal scheme

theta = [0.6; 0.3];

p = 1 Oe6 * eye(2);

p_last_k_int = 10e6 * eye(2);

p_zero_k_int = 10e6 * eye(2);

tetahat = [0; 0]; % initial estimate of parameters

tetahat_last_k_int = [0; 0];

tetahat_zero_k_int = [0; 0];

vec_tetahat = tetahat';

vec_tetahat_last = tetahat_last_k_int';

vec_tetahat_zero = tetahat_zero_k_int';

k = [0; 0];

k_last_k_int = [0; 0]; % initialise gain to create vector

k_zero_k_int = [0; 0];

vec_k = k';

vec_k_last = k_last_k_int';

vec_k_zero = k_zero_k_int';

x(l) = 1; x(2) = 1;

rand('uniform');

% initial state of the system

intr = rand(n, 1);

intr(1, 1) = 0;

rand('normal');

% interrupt sequence generation

vk = 0.1 *rand(n, 1); % system noise ; noise level = 0.1 A2

fori=1:n;

phi= [x(i+1) x(i)];

x(i+2) =phi * theta+ vk(i, 1); % System Simulation

y(i+ 1) = x(i+2); % Data Point Generation

k = p * phi'/(1 + phi * p * phi');

ifintr(i,1) < 0.750 %checking for interrupt

k_last_k_int = p_last_k_int * phi'/(1 +phi * p_last_k_int * phi');

k_zero_k_int = p_zero_k_int * phi'/(1 + phi * p_zero_k_int * phi');

else

k_last_k_int = k_last_k_int;

k_zero_k_int = [0; 0];

end

p = (eye(2)- k *phi)* p;

p_last_k_int = (eye(2) - k_4tst_k_int * phi) * p_last_k_int;

p_zero_k_int = (eye(2)- k_zero_k_int *phi)* p_zero_k_int;

tetahat = tetahat + k * (y(i+ 1)- phi * tetahat);

57

tetahat_last_k_int = tetahat_last_k_int + k_last_k_int * (y(i+ 1) - phi * tetahat_last_k_int);

tetahat_zero_k_int = tetahat_zero_k_int + k_zero_k_int * (y(i+ 1) - phi *
tetahat_zero_k_int);

vec_k = [vec_k; k'];

vec_k_last = [vec_k_last; k_last_k_int'];

vec_k_zero = [vec_k_zero; k_zero_k_int'];

vec_tetahat = [vec_tetahat; tetahat'];

vec_tetahat_last = [vec_tetahat_last; tetahat_last_k_int'];

vec_tetahat_zero = [vec_tetahat_zero; tetahat_zero_k_int'];

end

58

APPENDIXC

MA1LAB CODE FOR STATE ESTIMATION

59

% This is a Matlab function to perform Monte Carlo simulation of

% state estimation for a first order system.

%

%Format:

% [a, b, c, d, e, f, g] = mck(runs)

%

% Input: number of simulation runs

%Outputs:-

(runs)

% 1st element: optimal-gain rms error (a)

% 2nd element: last-gain rms error (b)

% 3rd element: zero-gain rms error (c)

% 4th element: steady-gain rms error (d)

% 5th element: optimal gain (e)

% 6th element: ave. oflast and steady gains (f)

% 7th element: ave. of last and zero gains (g)

%

% Functions called: kal(number of time steps in each run, phi, k_steady)

function [h_rms_err, h_rms_err_stdy, h_rms_err_last, ...

h_rms_err_zero, h_k, h_k_ls, h_k_lz] = mck(runs)

% n = no. of time steps in each run

disp(")

n = input('Enter number of time steps in each run:'); % read n

phi = 0.8; gama = 1;

60

c = 1;

p = 1e6*eye(1);

r1 = 1 *eye(l);

r2 = 1;

k=O;

h_k = k';

for i = 1 :n, % find k_steady

pp = phi*p*phi' + gama*r1 *gama';

k = pp*c'*inv(c*pp*c' + r2);

p = (eye(1)- k*c) * pp;

h_k = [h_k; k'];

end;

k_steady = k,

disp('Hit any key!');

pause

h_k = h_k(2:n+1,:); %actual gain

long_k_steady = ones(n, 1)* k_steady';

h_k_ls = O.S*(h_k + long_k_steady);

h_k_ls = [h_k(1,:); h_k_ls(l :n-1,:)];

h_k_lz = 0.5 * h_k;

h_k_lz = [h_k(1,:); h_k_lz(1:n-1,:)];

t = [1: n];

plot(t, h_k, t, h_k_ls, '--', t, h_k_lz, ':');

pause;

sum_x = zeros(n+1, 1);

6 1

sum_x_hat = zeros(n+1, 1);

sum_x_hat_last = zeros(n+1, 1);

sum_x_hat_zero = zeros(n+1, 1);

sum_x_hat_stdy = zeros(n+1, 1);

h_sum_sq_err = zeros(n+1, 1);

h_sum_sq_err_last = zeros(n+1, 1);

h_sum_sq_err_zero = zeros(n+ 1, 1);

h_sum_sq_err_stdy = zeros(n+1, 1);

t = [0: n]';

for r = 1: runs,

disp('run =');

disp(r);

62

[h_x, h_x_hat, h_x_hat_last, h_x_hat_zero, h_x_hat_stdy] = kal(n, phi, k_steady);

sum_x = sum_x + h_x;

sum_x_hat = sum_x_hat + h_x_hat;

sum_x_hat_last = sum_x_hat_last + h_x_hat_last;

sum_x_hat_zero = sum_x_hat_zero + h_x_hat_zero;

sum_x_hat_stdy = sum_x_hat_stdy + h_x_hat_stdy;

h_err = h_x - h_x_hat;

h_sq_err = h_err . A2;

h_sum_sq_err = h_sum_sq_err + h_sq_err;

h_err_last = h_x - h_x_hat_last;

end;

h_sq_err_last = h_err_last .'•2;

h_sum_sq_err_last = h_sum_sq_err_last + h_sq_err_last;

h_err_zero = h_x - h_x_hat_zero;

h_sq_err_zero = h_err_zero ."2;

h_sum_sq_err_zero = h_sum_sq_err_zero + h_sq_err_zero;

h_err_stdy = h_x - h_x_hat_stdy;

h_sq_err_stdy = h_err_stdy ."2;

h_sum_sq_err_stdy = h_sum_sq_err_stdy + h_sq_err_stdy;

h_x = sum_x I runs;

h_x_hat = sum_x_hat I runs;

h_x_hat_last = sum_x_hat_last I runs;

h_x_hat_zero = sum_x_hat_zero I runs;

h_x_hat_stdy = sum_x_hat_stdy I runs;

h_mean_sq_err = h_sum_sq_err I runs;

h_mean_sq_err_last = h_sum_sq_err_last I runs;

h_mean_sq_err_zero = h_sum_sq_err_zero I runs;

h_mean_sq_err_stdy = h_sum_sq_err_stdy I runs;

h_rms_err = h_mean_sq_err ."().5;

h_rms_err_last = h_mean_sq_err_last ."().5;

h_rms_err_zero = h_mean_sq_err_zero ."().5;

63

h_rms_err_stdy = h_mean_sq_err_stdy ."0.5;

%plot

clg;

%state

plot(t, h_x(:,l), 'r-', t, h_x_hat(:,l), 'w+', t, h_x_hat_last(:,l), 'r:', ...

t, h_x_hat_zero(:,l), 'wo', t, h_x_hat_stdy(:,l), 'bx');

xlabel('time-step (25% interrupt rate)')

ylabel('Estimate')

title('--- actual;+++ opt k; ... last k; ooo zero k; xxx stdy k');

pause

%error

plot(t, h_rms_err(:,l), 'w+', t, h_rms_err_last(:,l), 'r-', ...

t, h_rms_err_zero(:,l), 'wo', t, h_rms_err_stdy(:,l), 'bx');

xlabel('time-step')

ylabel('Estimation rms error')

title('+++ opt k; ---last k; ooo zero k; xxx stdy k');

pause

clg

64

% This is a Matlab function to perform real-time state estimation

% for a ftrst order system.

%

%Format:

% [a, b, c, d, e] = kal(number of time steps, phi, k_steady)

%

% Input: number of time steps, phi, steady gain

%Outputs:-

% 1st element: actual states (a)

% 2nd element: optimal estimates (b)

% 3rd element: last-gain estimates (c)

% 4th element: zero-gain estimates (d)

% 5th element: steady-gain estimates (e)

%

% Functions called: NONE

65

function [h_x, h_x_hat, h_x_hat_last, h_x_hat_zero, h_x_hat_stdy] = kal(n,phi,k_steady)

% n = no. of time steps

gama= 1;

c= 1;

d=O;

u = 1;

rand('uniform');

intr = rand(n, 1); % generate interrupt sequence

intr(l,l) = 0;

rand('normal');

% no interrupt first step

r1 = 1; % noise levels

r2 = 1;

v = rand(n,1);

e = rand(n,l);

pO = le6*eye(l); %initial covariance

p=pO;

p_last = pO;

p_zero = pO;

p_stdy =pO;

% initialise system

x = (r2A0.5) * rand;

h_x = x';

x_hat=O;

h_x_hat = x_hat';

x_hat_last = 0;

h_x_hat_1ast = x_hat_last';

x_hat_zero = 0;

h_x_hat_zero = x_hat_zero';

x_hat_stdy = 0;

h_x_hat_stdy = x_hat_stdy';

66

fori= 1: n;

y = c*x + 1 *e(i,1); % system simulation

x = phi*x + u + 1 *v(i,:)';

h_x = [h_x; x'];

pp = phi*p*phi' + gama*r1 *gama';

k = pp*c'*inv(c*pp*c' + r2);

p = (eye(l)- k*c) * pp;

ifintr(i,1) > 0.750 %on interrupt

% optimal scheme

pp_last = phi*p_last*phi' + gama*r1 *gama';

k_last = k_last;

p_last = (eye(1)- k_last*c) * pp_last;

pp_zero = phi*p_zero*phi' + gama*r1 *gama';

k_zero = 0;

p_zero = (eye(1)- k_zero*c) * pp_zero;

pp_stdy = phi*p_stdy*phi' + gama*r1 *gama';

k_stdy = k_steady;

p_stdy = (eye(1)- k_stdy*c) * pp_stdy;

else

pp_last = phi*p_last*phi' + gama*r1 *gama';

k_last = pp_last*c'*inv(r2 + c*pp_last*c');

p_last = (eye(l) - k_last*c) * pp_last;

pp_zero = phi*p_zero*phi' + gama*r1 *gama';

k_zero = pp_zero*c'*inv(r2 + c*pp_zero*c');

p_zero = (eye(l)- k_zero*c) * pp_zero;

67

pp_stdy = phi*p_stdy*phi' + gama*rl *gama';

k_stdy = pp_stdy*c'*inv(r2 + c*pp_stdy*c');

p_stdy = (eye(l)- k_stdy*c) * pp_stdy;

end;

xx_hat = phi *x_hat + u;

x_hat = xx_hat + k*(y- c*xx_hat);

h_x_hat = [h_x_hat; x_hat'];

xx_hat_last = phi *x_hat_last + u;

x_hat_last = xx_hat_last + k_last*(y - c*xx_hat_last);

h_x_hat_last = [h_x_hat_last; x_hat_last'];

xx_hat_zero = phi*x_hat_zero + u;

x_hat_zero = xx_hat_zero + k_zero*(y- c*xx_hat_zero);

h_x_hat_zero = [h_x_hat_zero; x_hat_zero'];

xx_hat_stdy = phi*x_hat_stdy + u;

x_hat_stdy = xx_hat_stdy + k_stdy*(y- c*xx_hat_stdy);

h_x_hat_stdy = [h_x_hat_stdy; x_hat_stdy'];

end; % end for loop

end;

68

"d ...
VITA

Ram Ashok Viswanath

Candidate for the Degree of

Master of Science

Thesis: ALGORITIIM DESIGN FOR REAL-TIME DISTRIBUTED SYSTEMS

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Tirunelveli, Tamilnadu, India, June 05, 1968, the son of
Ram Balaji and Lakshrni Viswanath.

Education: Graduated from DA V Higher Secondary School, Madras, India, in
June 1985; received Bachelor of Technology degree in Mechanical
Engineering from Indian Institute of Technology at Madras in May 1990;
completed requirements for the Master of Science degree at Oklahoma State
University in December 1992.

Professional Experience: Research Assistant, Dr. Gary Young, Department of
Mechanical Engineering, Oklahoma State University, May 1991, to
December 1991; Teaching Assistant, Department of Mechanical
Engineering, Oklahoma State University, January 1991, to May 1992.

Professional Organizations: American Society of Mechanical Engineers.

