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CHAPTER I 

INTRODUCTION 

With the fast evolution in manufacturing processes, needs, and objectives, the 

integration of computers in today's industrial environment emerged smoothly and 

rapidly. The computer had to be exploited to the maximum. It was found to be the 

savior of the modern manufacturing. In fact, it has been used in a variety of tasks. From 

data storage to fully automated process monitoring, the computer showed an 

extraordinary flexibility in solving many engineering problems and concerns. Computer 

Integrated Manufacturing (CIM) systems, although still conceptual, seem to be the next 

stage in the manufacturing evolution. 

Pritsker defines computer simulation as the process of designing a mathematical

logical model of a real system and experimenting with this model on a computer 

(Pritsker 1986). Another definition of simulation by Mize and Cox (as referenced in 

Turner, Mize, and Case 1986) states that "simulation is the process of conducting 

experiments on a model of a system in lieu of, either (1) direct experimentation with the 

system itself or, (2) direct analytical solution of some problem associated with the 

system". In order to understand these definitions we need to explain the terms, system 

and model. 

A system is a collection of interdependent elements which work cooperatively for 

the purpose of achieving a common goal. Frequently, a system is characterized by 

random, but statistically predictable, behavior. A model is a representation of a system. 

If the model is expressed mathematically as a set of logical and functional relationships, 

it is referred to as an abstract model. A computer based model is an abstract model 
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implemented on a computer upon which experiments are conducted for the purpose of 

generating information useful in making decisions. Both definitions above agree that 

simulation allows drawing conclusions about the system, without building it disturbing it, 

or destroying it. Thus, a simulation model is very useful in both design and analysis of a 

manufacturing system. In addition to being a manufacturing system planning and design 

tool, simulation is currently being used for production planning and shop floor 

scheduling. This involves testing a variety of input conditions on up-to-date factory 

models for satisfactory output results. 

A simulation of a manufacturing system, or even one part of it, can be a very 

challenging and complex task. In fact, the external factors that can influence such a 

system, and consequently any contingent decision, are enormous. Figure 1 is an 

illustration of a manufacturing system and its standing in the environment. 

Manufacturing systems in the future have to be reconfigurable to be responsive to 

dynamic changes in the environment. Simulation modeling should be easily updated and 

highly modular (changes to a model should be localized) (Beaumariage, 1990). 

With the recognition of the importance of computer systems in improving 

manufacturing productivity, there is a pressing need for good software modeling 

approaches to support efficient design and control of manufacturing systems. Software 

design concepts based on Object-Oriented Programming (OOP) are emerging as 

powerful techniques for developing large scale software systems. This research presents 

important features of object-oriented computing and the relevance of such an approach in 

modeling and developing software for manufacturing systems such as a constant speed, 

discretely spaced recirculating conveyor system. 

The evaluation and comparison of OOM features (through the design and 

implementation of a prototype OOM system) to traditional modeling approaches should 

provide greater impetus for the development of commercial OOM capabilities and for 
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simulation practitioners to pursue the use of the new and beneficial approaches to 

modeling. 

The availability of the advanced development environment present in the 

Smalltalk-80 programming system in conjunction with the application oriented 

discussions pursued in the Center for Computer Integrated Manufacturing result in a 

favorable environment within which to pursue this research activity. 
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CHAPTER II 

PROBLEM STATEMENT 

Introduction 

So far, one of the biggest drawbacks of simulation modeling is that models are 

typically constructed as single use models. That is, once used for its original purpose, a 

particular model is rarely used again. When a new problem is encountered, a new model 

is generated from the beginning even though it may include elements contained in earlier 

models. The cost of this approach, measured in both dollars and hours, causes many to 

question the value of using simulation to model large complex systems (Pratt, 1992). 

One can ask why is simulation still gaining popularity as a decision making tool in 

today's highly complex systems. The answer is that it is clear that it is not due to the 

increased power of simulation but due to the increased consensus on the 

inappropriateness of analytical tools and increased computer literacy among decision 

makers. Analytical models employ techniques from stochastic processes and queueing 

theory to study system performance. They are generally the most efficient method of 

investigation if they are applicable. They frequently yield explicit information about the 

functional form of the relationships among system variables and, under some 

circumstances, indicate whether a unique optimal solution exists. Unfortunately, some 

real systems of interest are so complex that formulating and solving an exact analytical 

model is either extremely difficult or impossible (Pratt, 1992). 

Simulation modeling overcomes many of the disadvantages inherent in analytical 

modeling. Unfortunately, as stated above, one of the big disadvantages of simulation is 
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the high expenditure of time and money. Therefore, in order for simulation to continue 

its popularity (by reducing the time and money required by its implementation) it has to 

address some requirements such as: 

. High level of software reusability, 

. Software modularity, 

. Ability to implement urgent, detailed models, 

. Low degree of abstraction, 

. A graphical interactive development environment, and 

. Ease of analysis of results. 

These requirements are currently being sought by the so called revolutionary 

approaches to simulation. These approaches are based on new programming paradigms 

and knowledge representation methods along with new perspectives in viewing and 

analyzing systems (Karacal, 1991). Within this class, the major interest areas are: 

Object-Oriented Programming (OOP), Logic Programming and Expert Systems, 

Distributed Simulation, and Knowledge Based Simulation (KBS). 

Research Motivation and Goal 

6 

The purpose of this research is to illustrate the applicability of a revolutionary 

approach to modeling manufacturing systems through the development of a prototype 

environment to model a constant speed, discretely spaced, recirculating conveyor system. 

A comparison between the traditional and revolutionary approach to simulation will be 

presented. Since, an object-oriented modeling (OOM) environment is under 

development within OSU' s Center for Computer integrated Manufacturing, the 

revolutionary approach to simulation will be studied through the area of OOP. The 



traditional approach will be represented by the simulation language SLAM II. The 

comparison will be illustrated using an Analytic Hierarchy Process (AHP) model. 

Description of the Target System 

7 

A particular conveyor system was selected to initiate the design and development 

of the simulation model. The recirculating conveyor system originally chosen to initiate 

this development is a sub-floor towline conveyor that moves finished goods to several 

unload and load centers in a 500,000 square feet warehouse. The towline is a sub-floor 

towline made up of an endless chain running in the floor with hooks spaced every 

twenty-one feet along the chain. At any time a hook may or may not be pulling a cart 

along with it. There are 380 carts in the system at all times (Terrell, 1977). 

Figure 2 shows the floor plan diagram of the conveyor system. The conveyor 

delivers the manufactured goods to storage or rail and truck docks. Incoming goods at 

the rail and truck docks are delivered to storage. The main conveyor 

loop is indicated by the dashed line. This loop is 5600 ft. long and the speed of the 

towline is 70 ft. per minute. There are 20 destinations around the loop and a cart may be 

programmed to any of these destinations. Carts are programmed manually by moving 

the magnet tipped probes at the front of each cart. The carts will always arrive at their 

destinations via the shortest route. The non-powered spurs at the end of the storage aisles 

constitute the various unload and load stations and a cart arriving at one of these as its 

destination is side-tracked into one of the non-powered spurs and a following cart pushes 

it deeper into the spur. 

A loaded cart joins the load station queue and waits on the unloading facility. 

Carts are unloaded on a first come first-served basis. Upon completion of unloading, 

the unloaded cart may be placed on the towline and assigned a new destination. 

Sometimes it may be desirable to retain a certain number of empty carts in an unload and 
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load station. IT this policy is adopted, an unloaded cart will be returned to the towline 

only when the empty cart queue is full. 

9 

All carts except those retained at unload and load stations will be moving on the 

towline. At any time, a cart may be loaded or unloaded. Finished goods from the 

manufacturing area are dispatched to a destination in the warehouse by the production 

programmer. Carts are loaded and unloaded by forklift trucks. After unloading a cart, 

the forklift operator places the empty cart on the towline and programs it to a new 

destination. An order for dispatching goods from a workstation other than the production 

programming workstation is generated according to an arrival distribution. The forklift 

operator executes this paper order and programs the loaded cart to the required 

destination. 

Transfer sections with bypasses are provided to enable a cart to avoid traveling 

the entire distance on the main loop to arrive at a destination. There are decision points 

in the system where the cart has to decide between the main loop and a bypass for its 

subsequent movement. Bypasses also allow recirculation of empty carts in the system. 

For this study, the system described above will be reduced to a single-loop 

conveyor system with bypasses. However, with the concepts and nature of OOP 

languages (reuse and extensions), the model can be easily extended to include all the 

features and details of the system: multi-loop and multi-floor conveyor systems (a short 

description of some possible extensions has been included in section VIII). The system 

just described is therefore composed of: (1) a towline made up of chain and hooks, 

which form the main loop, (2) .£a!1S. in the system, (3) unload and load stations, and ( 4) 

bypasses. These system objects will be built individually, then the messages which make 

up the language of interactions among them will be designed to build the overall 

simulation program. Figure 3 shows the conveyor system that will be modeled in this 

study. 
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CHAPTER III 

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING 

AND MODELING 

The research being performed in the area of simulation methodology and 

environments is very well detailed by Beaumariage (1990). He also presents a general 

discussion on the research areas which hold promise for improving simulation 

methodology. A review of the research being performed in the area of the OOP 

paradigm and a presentation of the literature relating research on the application of the 

object concept to simulation modeling is presented in this chapter. Also, a discussion of 

the applicability of Object-Oriented Programming languages and concepts to simulation 

modeling will be presented. The various benefits of this approach to simulation will also 

be illustrated. 

Introduction 

Given that we are in a world in which resources and time are finite quantities, a 

major advantage of simulation is that the development of a model and its translation into 

computer terms can be performed in an efficient manner. Considering this from a life 

cycle cost view point, we desire the ability to implement simulation models which satisfy 

current and future needs with a minimum cost. Therefore, the most sought objective of 

the new approaches to simulation is the ability of simulation models to be easily updated 

and highly modular (changes to a model should be localized) (Beaumariage, 1990). This 
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will eliminate the cost of generating a new model from the beginning once a new 

problem is encountered. As stated in Chapter II, OOM is a major area of this 

revolutionary approach to simulation modeling. 

12 

Because of this desire and because of the information on complex systems which 

can be gained, simulation methodology is an area experiencing continuing research 

activity with one of the objectives being the improvement of simulation modeling 

capabilities. 

Object-Oriented Programming (OOP) 

The principal idea associated with OOP is that all items (e.g., variables) in the 

system are treated as "objects". An object is either a "class" or an instance of a class. A 

class is a software module which provides a complete definition of the capabilities of its 

members. These capabilities are either provided by the procedures and data storage 

contained within the immediate class definition or inherited from other class definitions 

to which this class is related. Moreover, a class in OOP is defined by specifying its four 

specific elements: 

1. Class variable names: these are locations which are allocated once and are 

associated with the class. 

2. Instance variable names: these are data storage locations which are 

allocated uniquely for each instance of a class. Each object maintains it 

own internal state. That is instances of the same class will have the same 

instance variable allocations, but, most probably, will have different values 

stored in their own locations. 

3. Class methods: these methods are methods available to the class itself. 

These methods typically manipulate class variables and provide for the 

creation of new instances of a class. 

4. Instance methods: these methods are methods available to instances of a 

class. These methods will have direct access to the data associated with the 
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class instance receiving a message. Other instances from the same class are 

unaffected by variable value changes made during an instance method 

execution. 

Smalltalk:-80, the original and purest OOP language, contains four key concepts 

which result in making systems understandable, modifiable, and reusable (Wilson, 1987). 

These concepts are: encapsulation, message passing, inheritance, and dynamic binding. 

Encapsulation 

Encapsulation means that an object's data and procedures are enclosed within a 

tight boundary, one which cannot be broken by other objects. Encapsulation of 

properties of an object is a side-effect of implementation of an object in OOP. In the 

OOP paradigm objects are tightly encapsulated. The only way one can access the data is 

through the relevant predefined operations. Encapsulation restricts the effects of change 

by wrapping the data in a shield or a wall of code. All access to the data is handled by 

procedures that were put there to control access to the data. It also makes the objects 

relatively independent of their environment. The implication is that objects can be 

designed and tested as stand-alone units without the knowledge of any particular 

application. Another important side-effect of encapsulation leads to an effective 

enforcement effect. A person who uses encapsulation may manipulate the objects only 

through the operations that are defined. Direct manipulation of data in storage is not 

allowed. 

Messag-e Passing-

Message passing is a necessary result of encapsulation. It is the only way in 

which objects can communicate with each other because the data stored within an object 
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is not shared or available to the procedures of other objects. In order for one object to 

affect the internal condition of another object, the first object must tell the second object 

to use one of its (the second object) procedures on itself. This is performed by sending a 

message (somewhat comparable with procedure calling). 

Inheritance 

Objects belong to classes. Objects that have things in common are abstracted into 

a "class". The subclasses inherit all the instance variables, methods of the super class. 

This is the concept of inheritance. The subclasses may add their own methods and 

variables that are appropriate to the more specialized objects. Also, one can override a 

general method by adding another method with the same name at the specialized level. 

Dynamic Bindin& 

Binding is more than what most programmers call linking. It is the process where 

operators and operands of different types, provided by suppliers, are functionally 

integrated by the consumers of code (Adiga, 1989). Traditional languages use early 

binding, in which binding is determined by the programmer and is performed when the 

code is written. Declaring variables to be integer, real, logical, etc., is an example of the 

type of early binding done in traditional programming. Dynamic binding (or late, or 

delayed binding) occurs generally while the program is running. This means that the 

decision as to which a compiled procedure will be invoked by a given procedure is not 

made until run-time. For example consider the line of code active Robot move-part-

8772. This will execute a method (procedure) that will cause a robot to move a part. 

The robot is told to move a part, and it will pick an appropriate procedure to do its job. 



The decision is only known at execution time. This use of late binding gives OOP a 

great deal of flexibility. 

Benefits of Object-Oriented Programming 

The domain of object-oriented programming offers many attractive features to 

model elements of a manufacturing system. Some of the obvious correspondences 

between the two domains follow. 

The manufacturing system considered in this study consists of objects such as 

workstations (workers), carts, and hooks in a towline. The state variables of these 

objects change in response to events, such as the completion of the unloading of a cart; 

these events occur at discrete points in time. There is a natural one-to-one 

correspondence between physical objects in a factory and instances of software objects 

that represent them. The encapsulation within software objects of local data (instance 

variables) represent the state of the physical object and procedures (methods) for 

updating the state variables provides modularity of software. 
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The use of the object-oriented programming paradigm of "send messages to 

objects" in place of "procedure calls with parameters" is a convenient way to represent a 

real-world event. For example, when the message getProcessedAtLocation is sent to the 

object Cart, the Cart object will change its status from empty to loaded. The same 

message can be sent to WorkStation object, which will change its status from busy to 

idle. This emphasizes the fact that the same event is experienced by several objects of 

different classes, and these objects react in ways appropriate to their individual natures. 

Inheritance of methods and instance variables by use of hierarchical structure 

permits the addition of complexity and functionality to simple objects as necessary by 

creating subclasses of existing classes. This feature is particularly useful in constructing 

special-purpose simulations for research purposes because it avoids unnecessary 



complexity, permitting run-time efficiency, and also avoids confusing the researcher 

(Adiga, 1988). 

Finally, because the objects contain their own functionality, intelligence can be 

built directly into this functionality using the techniques of Artificial Intelligence. 

Disadvantages of OOP 

OOP is no panacea! There are a few irritants that are integral to the approach. 
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The first one is that the productivity improvements through reusability starts only after a 

library has been constructed. It also means that one must learn the library well before 

doing any serious programming. This makes the need for good documentation 

(something most programmers hate) very important. The cost of implementing the 

concept of inheritance is high in terms of space for small applications that do not take 

full advantage of the library. 

It should also be noted that calling a procedure or subroutine is still faster than 

sending a message (Retting, 1987). An early study by Cox (1986) indicated that message 

passing is between 2 to 70 times slower than procedure calling. As mentioned earlier, 

another disadvantage is that languages such as Smalltalk-80 demand extensive machine 

resources. The run-time cost is more, hence is costly in space for small applications. But 

if this is a major factor in an application, extensions of conventional languages such as C 

offer other options for more efficient implementations (Adiga, 1986). 

Application of Object-Oriented Concepts to Modeling 

Many concepts of the OOP paradigm have their origins in SIMULA ( Dahl and 

Nygaar, 1966). Although SIMULA never achieved a large popularity (especially in the 



United States), many of the concepts (instance, class, etc. ) introduced in SIMULA 

formed the foundation of OOP languages such as Smalltal.k:-80. So, it is not surprising 

that OOP languages are good platforms for discrete event simulation. 
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True OOM implementations having a range of features have been described in a 

number of articles. Knapp (1987) describes a system called SimTalk:, which is a discrete 

event simulation environment implemented in Smalltal.k:-80. SimTalk: adds queuing 

support, statistics collection, simulation graphics and interactive user interface to the 

features that already exist in Smalltal.k:-80 (multiple process support, interactive 

programming, graphics, etc. ). A class called SimTalk provides central communication 

and maintains the time queue and simulated clock. Another class, SimTalk:Object, is 

used to present the classes of objects to be simulated. There are a large number of other 

classes in SimTalk: that include random number generators, probability distributions, 

statistics collectors, statistics analysis, etc. Bezivin (1987) describes another system 

named SimTalk: which supports similar features and processes (the use of concurrent 

processes and semaphore synchronization operations) in distributed simulation 

environments by applying the TimeLock algorithm. 

Researchers at Texas A&M University (Adelsberger et al., 1986) describe the 

features available in a simulation environment under development at their university. 

These features include: 

. Graphical object creation along with a natural language interface aided by an 
intelligent assistant. 

. Simulation model as well as experiments are treated as objects . 

. Interactive user interface . 

. Run time model modification and display, automatic experimental designs and 
statistical display . 

. Consistency and completeness checks on model, experiments, and objects. 



. Goal directed simulation . 

. Selection of various abstraction levels of the simulation model and/or 
experiment. 

Figure 4 graphically represents the proposed architecture for such a system. 
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Ulgen and Thomasma (1987) implemented an object-oriented simulation system 

in Smalltalk:-80. In this system, class simulator handles the initialization of 

time and event scheduling. A class called Event associates a time with something to be 

done. Since the system is manufacturing system simulation oriented, the other classes in 

the system are designed to represent manufacturing entities such as work parts, work 

stations, storage facilities, etc. Figure 5 shows the classes developed in this system. 

A SIMULA based simulation system (Nyen, 1987) was developed in the 

Norwegian Institute of Technology. This system defines three major object groups for 

the simulation of manufacturing systems: Resource Objects, Entity Objects, and 

Stationary Objects. In addition to the simulation kernel which actually executes the 

simulation, five other segments are defined that interface the user to the simulation 

system. The intelligent front and back end modules that carry out the actual user 

interface are graphical and interactive. 

Among several, some other object-oriented simulation systems are: a distributed 

simulation system (Bezivin, 1987), a C++ based object library for parallel simulation 

(Abrams, 1988), an interactive simulator for VLSI design implemented in Smalltalk 

(VanderMeulen, 1989). Also, other simulation systems developed include: a system to 

provide performance models for computer systems (Pazirandeh and Becker, 1987), a 

computer system architecture modeling system (Ghaznavi-Collins and Thelen, 1988), a 

simulator for a defense related autonomous land vehicle (Glicksman, 1986), and a 

manufacturing OOM system (Nyen, 1987). 
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CHAPTER IV 

GOALS AND OBJECTIVES OF THE RESEARCH 

The main objective of this research is to develop, validate, and document utility 

"plug-in" modular component computer simulation models which may be used to 

interpret and synthesize the operating characteristics of various types of complex 

recirculating conveyor systems, using a revolutionary approach to simulation such as 

Object-Oriented Programming. The author should be able to illustrate the benefits and 

disbenefits of this approach relative to the currently available simulation methodology (in 

this case SLAM). This effort is to be completed by accomplishing the following series 

of sub-objectives: 

1. Develop a library of reusable software: A hierarchical organization of 

classes necessary for the conveyor system at hand will be developed. This 

is accomplished by identifying the objects appearing in the problem at hand. 

Once the necessary objects are created, they should be classified according 

to their similarities and differences. Once the functions have been defined, 

the class hierarchy can be planned and implemented to take advantage of 

inheritance. 

2. Evaluate the value and qpality of the developed prototype: This will require 

the definition of tangible and intangible benefits of this new modeling 

methodology over traditional approaches. This objective will be achieved 

through the application of the Analytic Hierarchy Process (AHP) to evaluate 

various aspects, benefits, and disbenefits of the developed 00 simulation 

system. 
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3. Explore ways to expand the model developed to accommodate all the 

complexities that a conveyor system can incorporate: For this study, only 

the most important features of the system will be modeled. However, ways 

to expand the functionality and application of the classes developed by 

introducing the level of details desired will be explored. Bordiga et al. 

(1985) stated that the proper way in dealing with complex systems with 

high need for details such as manufacturing systems is to abstract out the 

most important ones and introduce the others in successive phases of a 

refinement process. This concept could be used in an Object-Oriented 

Paradigm which supports an incremental style of development. 



CHAPTERV 

RESEARCH PLAN AND PROCEDURES 

To achieve the goals and objectives outlined in chapter IV above, the research 

will be performed through several chronologically ordered phases as presented below. 

Phase I: 

Examining and analyzing the functional components that are common to 

representative existing recirculating conveyor systems: The particular conveyor system 

selected to initiate the design and development of this simulation program was explained 

in detail in chapter IT. 

Phase II: 

Specifying the types of interfacing that can occur between the functional 

components of a recirculating conveyor system: Determination of the object linking and 

model building procedures based upon the functional specifications from Phase I. 

Phase ITI: 

Developing and encoding within the general software environment (Smalltalk-80) 

a series of modular elements to represent the functioning of the objects and message 

passing among them previously described. 
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Phase IV: 

Incorporatin& the software simulation objects developed into flexible utility 

simulation systems that can be utilized to "build" complex conveyor system simulations. 

Phase Y: 

Use of the AHP model to compare the new environment and another commonly 

used environment (SLAM II): Conclusions drawn from this comparison should allow the 

researcher to determine the benefits and disbenefits of an object-oriented programming 

environment. 

Phase VI: 

Documentin& the software objects. including instmctions for their use in 

developin& modular utility simulation models of larger scale complex conveyor systems: 

Ways to expand the model developed to accommodate all the complexities that the 

conveyor system described above can incorporate will be explored. 

Phase VII: 

Summarize results and prepare final format: At the end of phase VII the research 

results will be summarized and documented. This phase represents the summary of the 

research activities and the presentation of results in final form. 



CHAPTER VI 

DEVELOPMENT OF A PROTOTYPE OBJECT-ORIENTED 

MODELING (OOM) ENVIRONMENT 

FOR A CONVEYOR SYSTEM 

This chapter presents the steps taken in the design and implementation of an 

OOM environment developed for the system at hand. Illustration of the features and 

capabilities of the resulting implementation will also be presented. 

Conceptual Design and Implementation 

This section describes the approach to the design of the software library, 

conveyor system, its structure, and some of the techniques used to enforce the design 

guidelines in implementing the objects. 

Relevance of Object-Oriented COO) Paradigm to the Model at Hand 

The 00 paradigm has been exploited for modeling manufacturing systems by 

several researchers (Adiga and Gadre, 1990; King and Fisher, 1986; Sanderson et al., 

1991). Adiga and Gadre (1990) describe modeling of a flexible manufacturing system. 

Their emphasis is on the modeling methodology and its translation into software using 

OOP. Adiga and Glassey (1986) present a conceptual design of a software library for 

simulation of semiconductor manufacturing systems. They have identified three goals in 

their research as (1) ease of assembling special purpose simulation models, (2) ease of 
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modification of object library and (3) the run time efficiency of the model assembled 

from the library of objects. The first two goals directly lead to reusability. Sanderson et 

al. (1991) describe design and implementation of a Hierarchical Simulation Language, 

which is interpreter based and hence offers certain advantages and disadvantages of 

portability and modifiability (during program execution) (Bhuskute et al., 1992). 

Reuse, extension, and maintenance of software objects are the main productivity 

benefits sought from our adoption of object-oriented programming technology. Software 

reusability is a goal of great promise. Designing for reusability includes identification of 

object behaviors that are reusable in more than one context. Also, class definitions must 

be written in such a way that the system object interconnection information can be 

supplied as parameters, routings, or values of instance variables to newly created 

instances of previously defined classes. The methods which are defined for the classes 

are written in such a manner that this generally specified linking information is accessed 

through instance variable locations or through responses to message requests. Designing 

for maintenance involves designing objects to be independent of others. A set of goals 

were formulated for the library of software objects needed to be built: 

1. The first goal is to make it easy to assemble special purpose simulation 

models, customized for individual research questions. This can be 

accomplished by designing a library of reusable software objects. With 

the right library of software objects, we expect that the work of designing 

simulations would be one of choosing and interconnecting objects of 

interest and linking those objects with code of one's own research strategy 

related to the problem at hand. 

2. The second goal was that the library should be easily modified and 

extended and that parts of it could be reused in other contexts. 

Achievement of this objective depends to a large extent on identifying the 

proper conceptual framework for the library of objects and on the use of 

design principles that capitalized on the strengths of the object-oriented 

programming paradigm. 



3. The third, and last important goal is that the library must be easy to 

understand, both the individual objects and the way they work together. 
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Smalltalk-80 was chosen to be the language of implementation for the simulation 

model. This choice is due to the fact that Smalltalk-80 is one of the purest OOP 

languages. Many of the object-oriented characteristics can be traced to SIMULA 1 

language (Meyer, 1988). Simula though popular among the academia in Europe and 

throughout the world, has never gained widespread use in the commercial environment 

(Kreutzer, 1986). Smalltalk-80 added the message passing paradigm creating a 

programming style well known as OOP (Kreutzer 1986, page 194; Meyer 1988, page 

437). The concepts underlying OOP can be easily extended to simulation modeling 

(King and Fisher 1986; Mize et al. 1989; Thomasama and Ulgen 1988; Ulgen et al. 

1989). For details on the language Smalltalk-80 and OOP, readers may refer to Goldberg 

and Robson (1989) or Cox (1987). The concepts object, class, message, and method 

form the basis of programming in Smalltalk-80. The methodology for using Smalltalk-

80 consists of: 

1. Identifying the objects appearing in the problem. 

2. Classifying the objects according to their similarities and differences. 

3. Designing messages which make up the language of interactions among 

objects. 

4. Implementing methods which are the algorithms that carry out the interaction 

among the objects. 

Desi&n of Approach: A Conceptual Framework 

This section describes briefly the conceptual framework used for the discrete 

event simulation of the conveyor system. In discrete event simulation, the time sequence 

of real-world events is reproduced by the model; the state of the simulated system 



changes only at the discrete times when events occur. After the state update has been 

computed, the simulation clock is advanced to the time of the next event. 
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In Figure 6, the author illustrates an object diagram representing the topmost 

structure of the system. Here the author asserts the existence of the objects named in the 

earlier discussion of the system's description: (1) a towline (conveyor loop) made up of 

chain and .h.Q.Qks., which form the main loop, (2) the carts in the system, (3) the unload 

and load stations, and (4) the bypasses. The author has explicitly chosen not to show any 

other relationship among the objects at this level. To do so during this phase of analysis 

would be premature, since assertions of internal relationships generally denote design 

decisions. These system objects will be built individually, and then the messages which 

make up the language of interactions among them will be designed. 

Desi~n of the Object Hierarchy 

It is important at this stage in the software development life cycle to identify 

reusable software components that can be used to build the system at hand, so that one 

can build as much of the conveyor system as practical from existing components rather 

than creating entirely new ones. 

Actively looking for reusable software components that are relevant to a new 

system is a very important activity in any development. This process is facilitated by 

rich class libraries that are typically available for object-based and object-oriented 

programming languages. However, these classes cannot be applied directly, because they 

are domain dependent. Instead they must be tailored so that they express the vocabulary 

of the conveyor system. After, studying the object library made available by ParcPlace 

and OSU' s CIM Center research team, the author developed a set of classes that proved 

relevant to the target system. The classes were developed by combining some classes 



A Cart Acquire~.;f ··.. A Hook Transports 
·······... A Cart A Hook ... ...-

.... ··· 
.. .. ··· .. 

······································> 
A WorkStation 

Provides Service to Cart 

.. .. . . . . .. 
··· ..... .:.... 

Figure 6. Conveyor System Object Diagram 

29 



found within the software environment through the development of the appropriate 

procedures. The Simulation Class library developed for the model at hand consists of 

four categories: 

1. Simulation Classes 

2. Target System Simulation Elements 

3. Class ConvModel 

4. User Interface Classes 

Simulation Classes. These classes collectively provide a basic framework for 

discrete system simulation and statistics collection. The OOM classes discussed in this 

section are of a highly abstract nature and represent the objects or concepts which must 

be explicitly accomplished to make simulation work. Some of these classes, such as 

Simulation, DelayedEvent, TrackedNumber, ObsTrackedNumber, Probability 

Distribution, and RandomNumberGenerator, are as described in Goldberg and Robson 

(1989). Figure 7 depicts the class hierarchy of these objects. 

30 

Simulation: The purpose of class Simulation is to manage the topology of simulation 

objects and to schedule actions to occur according to simulated time. The event_Queue, 

instance of class Simulation maintains a reference to a collection of SimObjects, to the 

current simulated time and to a queue of events waiting to be invoked. The unit of time 

appropriate to the simulation is saved in an instance variable called the Sim_Clock and 

represented as a floating-point number. The unit might be in milliseconds, minutes, days, 

etc. A simulation advances time by checking the event_Queue to determine when the 

next event is scheduled to take place. If the event_ Queue is empty, then the simulation 

terminates. 

Smalltalk-80 message protocol provides a mechanism for defining arrival 

schedules of simulation objects, managing scheduling of processes, and controlling the 

execution of simulation. This subclass is further refined to define subclass 

ConveyorSimulation. 
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With its level of abstraction the Simulation object provides the structure through 

which all communication between other system level objects within the simulated system 

occurs. All system objects within the OOM at different level of abstraction communicate 

indirectly with each other and directly with the Simulation Object. Therefore, the 

Simulation object acts as the controller of system level of interaction for the entire model 

run. 

DelayedEvent: This is an active process, which when delayed for a specific amount of 

time, is placed on the queue sorted with respect to the resumption time. This class 

models the simulation entity and is an abstract class. It has to be further refined to 

faithfully represent the system being modeled. The message protocol provides 

mechanisms for entering the entities in the simulation, for executing the tasks 

corresponding to the life cycle of the entity, and for terminating these entities. 

Tracked Number: This class is defined as an abstract class. Its instance cannot be used 

directly, but subclasses are further refined as needed. The tracked number is a repository 

for statistics collected on a particular variable. 

ObsTrackedNumber: This class collects statistics on observations. The message 

protocol consists of methods for clearing statistics, collecting observations, calculation of 

resulting statistics, and for printing the results. 

Probability Distribution Classes and RandomNumberGenerator: Class 

RandomNumberGenerator provides a stream of random numbers required for simulation, 

whereas the probability distribution classes implement a variety of random variate 

generators. For brevity reasons these classes were not included in figure 7. 

CartGenerator: Another class definition needed is the CartGenerator class. This class 

provides a behavior similar to a 'Create' node in SLAM II (Pritsker, 1986). It creates 

SimulationObject instances and enters them into the simulation based on their arrival 

distributions. The creation activity of theses instances is performed when the event is 

initiated. The SimulationObject instances are then passed on to the next object. This 
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class is the same as the W orkFlowGenerator Class developed by the Computer Integrated 

Manufacturing Center at Oklahoma State University. 

Target System Simulation Element Objects. The simulation element objects, 

covered in this section, round out the capabilities of the OOM environment by 

representing the concrete elements present in the system of interest. Figure 8 depicts the 

hierarchy of these classes. Instances of the simulation element classes are used as 

building blocks in the construction of the simulation model. The simulation element 

classes which have been developed are found necessary to implement a model of the 

chosen target system. This target system is a Constant Speed, Discretely Spaced, 

Recirculating Conveyor System. Figure 9 represents a rough sketch of the Conveyor 

System. 

The simulation model representation of this system requires several different 

types of objects including the following: 

Workstation: A loaded cart joins the unload station queue and waits on the unloading 

facility. At the workstation, carts are unloaded on a first come- first served basis. On 

completion of unloading, the unloaded cart may be placed on the towline and assigned a 

new destination supplied by the workstation. Sometimes, it may be desirable to retain a 

certain maximum number of empty carts in an unload and load station, so that if an order 

to load goods arrives at the station it can be executed immediately using an empty cart 

available at the station. If this policy is adopted, an unloaded cart will be returned to the 

towline only when the empty cart queue is full. Therefore, Workstation class is set up to 

process work flow items from a single queue of waiting items. The Workstation must be 

able to accept the arrival of work flow items, determine if it can provide service if 

it is idle, schedule the service operation, and transfer the item to the next processing 

workstation. In addition, the Workstation class must keep statistics on its service and 

provide for their output as requested. 
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It is important at this point to define the different types of WorkStation instances 

incorporated in the system and the type of service they provide. The system incorporates 

five types of workstations based on the operation performed on an arriving cart (loading 

or unloading). The types of unload and load stations that can be handled by the program 

are as follows: 

. Unload and load station with common service facility . 

. Load station with assigned load time . 

. Load station without assigned load time . 

. Unload station . 

. On-line unload station. 

A special type of load station is the production programming and load station and 

the object component bypass. Each type workstation is described below in more details. 

- Production Pro&ramming and Load Station CPPLS): In a production warehouse system, 

goods from the manufacturing plant are loaded at PPLS to be transported to various 

locations in the warehouse. In general, PPLS is a central location from which goods are 

transported to various unload stations in the system. The load and unload activities at 

other stations may be considered as being initiated from PPLS. A PPLS is generally 

served by an auxiliary power line which brings the empty carts from the main conveyor 

to the loading area and delivers the loaded carts from the loading area to the main 

conveyor line. 

- Unload and Load Station With Common Service Facility CUALSC): Both unload and 

load activities occur at UALSC. A loaded cart arriving at UALSC is unloaded and 

assigned a new destination. An unloaded cart will be retained at UALSC if the empty 

cart queue at the load station is not full. An empty cart arriving at UALSC is transferred 

to the empty cart queue for being loaded. 

All loaded carts arriving at UALSC join the station queue at first. If there is no 

other cart that is being unloaded or loaded, unloading on the newly arrived cart begins 
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immediately. Otherwise, the newly arrived cart waits in the queue until all the preceding 

carts are unloaded or loaded. 

A certain maximum number of empty carts may be retained at the load station to 

facilitate the availability of an empty cart for loading when a load order arrives. This 

desired maximum number specifies the capacity of the empty cart queue. Load action is 

initiated when a load order exists and an empty cart is available, provided the service 

facility is free. A loaded cart is assigned a new destination and transferred to the 

conveyor line. In UALSC, only one service facility is available for both unloading and 

loading. Carts are unloaded and loaded following a first-come first-served (fcfs) policy. 

-Load Station With Assi~ned Load Time CLSW AT): An empty cart arriving at LSW AT 

joins the station queue first. Loading on the newly arrived car begins immediately if 

there in no preceding cart at the station, provided a load order is available. When there 

are empty carts in the station already, loading on the newly arrived cart is scheduled 

when loading is completed on all the preceding carts. Load action will be initiated only 

when a load order exists. The load orders are generated by the production programmer 

or some other source in the real system, and are initiated in the simulation program by a 

user defined distribution function. 

-Load Station Without Assi~ned Load Time CLODST): The difference between 

LSW AT arises in the mode of operation. LSWAT performs loading only when a load 

order exists whereas LODST performs loading immediately after an empty cart arrives 

provided the loading facility is free. A load order is not explicitly required in the case of 

load station without assigned load time. It is implied that an empty cart arrival at 

LODST brings a load order with it. In both LSW AT and LODST, carts are loaded on a 

first come first served basis. A loaded cart is assigned a new destination and placed on 

the conveyor chain. 
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- Unload Station CULST): A loaded cart arriving at an unload station joins the station 

queue first. Unloading begins immediately, if there is no other cart in the station queue. 

If there is one or more carts in the station queue, unloading is scheduled on the new 

arrival after all the preceding carts are unloaded. The unloaded cart is assigned a new 

destination and placed on the conveyor chain. 

- OnLine Unload Station COLUNLOD): This is a special type of unload station where 

goods are unloaded as the carts move along the conveyor chain. A special type of 

unloading facility enables this operation. In certain warehouse applications, the 

unloading device used for this type of operation employs a lever mechanism by which a 

moveable unloading arm sweeps across the load and pushes it off the cart. It is also 

possible to accomplish this type of unload using an overhead crane facility that can move 

up and down and in the horizontal direction (Terrell, 1977). Several other unload 

facilities of this type can be conceived. A few types are already in use and some may be 

developed in the future. Regardless of the type of equipment used, a station that 

performs unloading while the cart is moving on the conveyor is classified as on-line 

unload station. 

-Bypass (BYPASS): Bypass sections are provided for recirculating carts in the system 

along the shortest route. If the station queue of a load or unload station is full, a cart 

arriving at this facility recirculates and returns to the station after recirculating once via a 

shorter route. If there is no bypass in the system, a cart has to travel the entire loop 

before it arrives at the facility again. Bypass sections accommodate one cart at a time. 

Hook/Conveyor: The Hook object is a subclass of theW orkstation class. However, this 

object will be used as the material handler to allow the movement of the object Cart (to 

be defined below) between the different workstations. All the hooks in the system will 

make up the Conveyor object. Hooks in the Conveyor object will be discretely and 

uniformly spaced. The Conveyor object will allow the movement of the hooks at a 

constant speed specified by the user. The conveyor instance will also schedule the arrival 



of hooks to the workstations. Hooks in front of the workstation's input queues will 

check if they can "deliver carts" for service. At the same time hooks in front of the 

workstation' s output queues will check if they can "accept carts" to transport them to 

their desired destination. 

39 

Qm;: This object is actually an instance of SimulationObject with specific instance 

variable values. All carts except those retained at unload and load stations will be 

moving on the towline. At any time, a cart may be loaded or unloaded. After, a cart is 

unloaded, it is placed on the towline and sent to its new destination. The destination 

information is contained within instance variables carried by the cart. The cart's next 

destination is acquired from the workstation at which it is currently being processed. An 

arrival event to the next simulation model element specified by the destination attached 

to the Cart instance is sent to the simulation object for scheduling on the event list. 

Queue: This class provides one building block which may be used to construct specific 

simulation element classes. The class is defined with the procedures to store other 

objects within an ordered linked list, to remove objects from the front of the queue, to 

search the queue for specific objects. When a new simulation element class needing 

queuing features is to be defined, the class developer simply uses an instance of the 

queue class as a component of the new simulation element and programs the correct 

internal interaction mechanism. 

QueueController: This is a subclass of object. Class QueueController creates a 

controller through which a workstation communicates with its input and output queues. 

The QueueController is created automatically when the WorkStation object is created. 

Class ConvModel. This class (ConvModel) is responsible for providing a 

template that holds information about the entire simulation model. Conv Model allows 

the user to create, modify, add or delete portions of the modeL Before running an actual 

simulation, ConvModel undergoes a consistency check for the newly created model and 

then based on the user information it instantiates all the objects required for the execution 



of the simulation. This arrangement separates model definition from the simulation 

entities and enables the user to initiate a new simulation run by using the information 

available in the templates provided by the Conv Model. 

User Interface Classes. These classes collectively provide a variety of user 

interface items for system model definition, modification, and simulation 

experimentation with the conveyor system. 
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ConvView: This class offers the main menu for the modeling and simulation 

environment. As depicted in Figure 10, the Conveyor Simulation Launcher view 

provides a user with a list of options such as Workstation Definition. 

WorkStationDefintionView: This class offers a user interface for workstation definition. 

As depicted in Figure 11, the workstation definition view provides the user the 

workstation database for quick workstation definition or reconfiguration. The 

pop-up menus available in the workstation definition view provide the user a 

mechanism to enter the required input parameters for the workstation. 

Probability Definition View: This class offers the user interface for the workstation' s 

probability definition. As depicted in Figure 12, the probability definition view 

provides the user with database to specify the probabilities that a certain 

workstation uses when specifying the next destination for the Cart instance. 

ConveyorDefinition View: This class offers the user interface for conveyor definition. 

As depicted in Figure 13, the ConveyorDefinition View provides the user with a 

database to specify the required input parameters to initialize the Conveyor 

ConveyorDefinition View. 

ConvExperimentView: This class offers a user interface for defining the experimental 

simulation parameters such as, simulation termination time, initial seed for the 

random number stream, "Trace on" time, "Statistics clear" time, and histograms. 
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ConvResultView: This class offers user interface for depicting the simulation results. 

The result view provides a summary report of all the statistics collected and trace 

output for a simulation run. 

Simulation Model Operation 

At this point the major classes needed to develop a working simulation for the 

target system have been described. The following section describes the manner in which 

the objects will cooperate with one another during the simulation activity. 

Time Advancement 

The Simulation object in an OOP simulation system handles time advancement. 

Time advance occurs by having the Simulation object loop through a portion of a method 

to find the next event on the eventQueue. This event initialization method then sets the 

new value of the current time instance variable and triggers the next event to occur by 

executing the event initialization code retrieved from the event list. This sequence of 

activities is performed repeatedly until no further events are scheduled or the specified 

simulation run length has been achieved (designated by the end of execution event). 

Entity Creation and Flow 

The CartGenerator object, as mentioned earlier, is used to implement new 

instances of entities and trigger their arrival to the simulation element instances which are 

part of the model. The creation will be initiated when the message startUp invokes the 

message defineArrivalSchedule which schedules the arrival of instances of Cart. Each 

time the message proceed is sent to simulation, a Cart instance enters or exists. 



The travel of Cart instances through the model is completely controlled by the 

simulation control framework, sometimes referred to as the "life cycle" of the entity. 
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This framework involves the sequence of messages startUp, tasks, and finish Up. When 

the Cart instance first arrives at the simulation, it is sent the message startUp. The 

category task consists of messages the modeler can use in specifying the entity's sequence 

of actions as it flows through the system. The Cart instance might be held for an 

increment of time (holdFor:). It will also acquire access to another simulation object that 

is playing the role of a resource (acquire: ofResource:) such as the element object 

Workstation. Finally when the Cart instance carries out all its required tasks, it is sent 

the message finish Up. This message will signal to the simulation class that the receiver 

is done with its tasks and ready to exit the simulation. 

Two separate processes are created in the model that will repeatedly schedule 

specific sequences of actions according to specific arrival distributions. 

The first process is the scheduling of the arrival of hooks to the input and output 

queues of each workstation where each hook checks if it can deliver or pick up a cart. 

The second process is the scheduling of the arrival of work orders to the loading 

workstations. 

Event Initiation and Scheduling-

The simulation approach adopted in this study is the process-oriented approach. 

A process is defined as a sequence of events, together with a set of actions accompanying 

each event. Thus the (potentially infinite) sequence of arrival events, together with the 

associated creation of new entities, can be considered as a process. The behavior of a 

system can be represented by a set of processes whose event sequences, when merged, 

contain all events that occur in the system. Somewhere behind the scenes there is the 

clock which is advanced from event to event, and the equivalent of an event list showing 
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what is scheduled to happen and when. However, the entries on that list are now 

processes, ordered according to the time of the next events in their respective sequences 

(Mitrani, 1982). In the process approach, the Simulation object itself has a control 

framework similar to that described for the SimulationObject (Cart). The response to 

startUp is to make the simulation the currently active one and then define the simulation 

objects and arrival schedule. The inner loop of scheduled activity is given as the 

response to the message proceed. Whenever the simulation receives the message 

proceed, it checks the reference count of processes by sending the message 

readyToContinue. If the reference count is not zero, then there are still processes active 

for the current simulated time. Then the system-wide processor, Processor, is asked to 

yield control and let these processes proceed. If the reference count is zero, then the 

event queue is checked. If it is not empty, the next event is removed from the event 

queue, time is changed, and the delayed process is resumed. When the simulation 

method has completed its event list addition, control returns to the simulation element 

instance methods, from which control will return to the simulation event initiation 

method. Basically, what happens is that a hierarchy of messages to different methods is 

established. Execution is returned to methods in reverse order when a method which 

makes no call to another method is encountered. Each event is initiated by the simulation 

object, processed through all needed methods, and finally execution control is returned to 

the simulation object which then retrieves the next event on the eventQueue. 

Summary 

This discussion may lead one to the conclusion that an 00 simulation system will 

be a very complex package. This perception is not really correct. Actually, the 

interaction, which will be handled by the OOP environment, is the complex part. By 

using the inheritance and encapsulation features in the OOP environment, the 
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development of the software needed is much easier than would typically be the case in a 

traditional computer language. Once the basic units are developed (a library of 

simulation element objects and the set of simulation process elements) and standard 

procedures for element interactions are determined, the design and use of simulation 

models within the OOM environment should be relatively straightforward and efficient. 

00 Simulation Object Linking 

Introduction 

In the previous section the description of the classes was made from a perspective 

internal to the classes without consideration of the way these classes communicate with 

one another. The building of simulation models is essentially developing the 

communication between these objects to fit one's purpose. The design of the interaction 

between these objects should support generalized linking and the techniques used to 

provide this linkage must be understood. 

The Structure of Object-Oriented Models 

The first step of object-oriented design which relies on the identification of the 

topmost classes and objects is completed. Next, design decisions regarding the semantics 

of each of these abstractions, as well as their relationships must be accomplished. Also 

some mechanisms that exploit the commonalty among these objects to simplify our 

overall design must be developed. 

Since, the first goal of building the library of software objects is to make it easy 

to assemble special purpose simulation models, customized for individual research 

questions, designing the OOP environment should have as a main goal the design for 
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reusability of simulation elements. This could be accomplished by designing the model 

structure to allow the separately developed simulation objects to exist and function 

correctly together in any simulation model. A hierarchical organization (for the 

communication links between objects in a model) of simulation model objects is 

proposed based on the following characteristics: 1) the "stand alone" nature of objects 

allows an object to be linked to a set of necessary (for correct functioning) objects and to 

be unaffected by the presence or absence of other objects in the system and 2) a 

hierarchical organization assumes that linkage (i.e., methods and variables inherited) 

between system components are vertical (there are no horizontal links between subtrees 

in hierarchical system) (Beaumariage, 1990). The first feature allows a hierarchical 

structure to be used, and the second feature supports reusability of simulation objects. 

Also, direct communication from a particular object is limited to other objects that exist 

either one level higher or one level below in the same subtree structure. Interaction 

between objects separated by more than one hierarchical level or on the same level of the 

hierarchy occurs indirectly through an intermediate object or controller. The only 

relaxation of these restrictions is that the Simulation class acts as the controller for 

communication between different system levels. 

Smalltalk-80 Class Implementation 

This section discusses in some detail the implementation of several representative 

simulation objects developed for the system at hand. This section however, only 

provides the reader with a basic understanding for the structure of the simulation 

software. The Smalltalk-80 implementations of each of these classes are available for 

detailed examination in Appendix A. 

As mentioned in detail in chapter ill, a class in OOP is defined by specifying its 

four specific elements: 1) class variable names, 2) instance variable names, 3) class 



methods, and 4) instance methods. The author will mention all the instance and class 

methods but will only explain in detail the important ones. 

Simulation Element Objects 
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For the reason of brevity , the simulation classes will not be explained here. The 

description of theses classes is the same as the one included in Goldberg and Robson 

(1989). The section below will discuss in detail each of the target system simulation 

element objects: 

ConveyorSimulation. This class is a subclass of the class Simulation. In addition 

to the capabilities inherited from its superclass, ConveyorSimulation class will have 

procedures designed specially for the system at hand . 

.lla1a stora~e 

Class variable names: 

Instance variable names: 
cartGenerator 
outputStream 
conveyor 

The instance variable cartGenerator stores references to different cartGenerator 

elements in the simulation model in an OrderedCollection instance (a class definition 

already available in Smalltalk-80). The instance outputStream will be used to designate 

the outputStream of the simulation. Finally, the instance variable conveyor will be used 

to store the object Conveyor. 

Software methods 

Class methods: 

1. examplecg 



This method is used to develop an example for an experiment run. The model 

developer will not have to type in all the input parameters through the user interface 

every time he/she desires to run an experiment. 

Instance methods: 
1. addCartGenearator 
2. cartGenerator add: aGenerator. 
3. Cart initialize 
4. finishUp 
5. clearStatisticsAt: aTime 
6. printResultsOn: aStream 
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The CartGenerator object is added to the simulation by using the method 

addCartGenerator. Different types of cartGenerator(s) will be created and then stored in 

the cartGenerator storage location by sending the message cartGenerator add: 

aGenerator. The method initialize will initialize the Cart object so that "time in" statistics 

could be collected for individual job types. This method will also allow the specification 

of the outputStream where the results will be written. In addition to emptying the event 

queue, the finish Up message will allow the printing of all the statistics collected during 

the simulation run execution (these statistics are the ones specified by the user) by 

invoking the message printResultsOn: aStream. The method clearStatisticsAt: aTime, is 

a method which is typically scheduled to execute at some specified time (to remove the 

effects of a simulation warm up period) by the model developer . 

.Qm;. For the system at hand, the author created a subclass of SimulationObject. 

This class will inherit all the capabilities of its superclass in addition to the features 

needed for this study. 

Data Storage 

Class variable names: 
1. CartUtilization 
2. Count 



The class variable CartUtilization is used to store the time persistent statistics 

such as the utilization of the cart in a TimeTrackedNumber instance (a class definition 
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already available in Smalltalk:-80) . .Qmn1 is a location to store the serial number of the 

Cart instance created in a Dictionary instance (a class already available in Smalltalk-80). 

Instance variable names: 
1. name 
2. serial 
3. entryTime 
4. queueEntryTime 
5. currentPosition 
6. currentWorkStation 
7. destination 
8. destinationPosition 
9. bypass 
10. tempDestination 
11. status 
12.done 
13. county 

The instance variable name will store the name of the Cart instance created. Each 

cart instance created will have a number attached to it to identify it from other instances. 

This number is stored in the instance variable serial. The entryTime instance variable is 

set equal to the creation time of each Cart instance created. The storage of this value 

allows the time in system statistics to be collected for each cart passing through the 

system. The instance variable queueEntryTime is set equal to the time the Cart instance 

joins a queue of a workstation. The currentPosition instance variable is set equal to the 

current position of the Cart instance. This position is the same as the position of the 

workstation the Cart instance is currently getting serviced at. The current WorkStation is 

set equal to the name of the workstation the cart instance is currently being processed at. 

The destination is the instance variable that stores the next workstation for the cart. The 

destinationPosition is the position of the cart' s destination. The instance variable bypass 

stores the object named BYPASS. Bypasses are typically transfer lines that will allow a 

cart to recirculate in the conveyor loop always via a shorter route. When the cart 
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instance chooses to move along a bypass to reach its destination, its original destination 

is stored in a temporary storage location set equal to the instance variable 

tempDestination. The instance variable ~ will store the status of the cart instance 

which will have a value of one if the cart is carrying a load order or zero if the cart is 

empty. The instance variable~ will be either equal to 'true' if the cart instance is done 

with all its tasks or 'false' if the cart is not done with its tasks. Since the system is a 

recirculating conveyor system this value will always have the value 'false' which allows 

the cart instance to keep recirculating in the system till the simulation is terminated. 

Software methods 

Class methods 
1. name: aN arne 
2. initialize 
3. returninstanceWithSerial: aSerial 

The initialize method will initialize the class variable mentioned above to their 

initial instances. The last method retuminstanceWithSerial: aSerial will return the cart 

object with the serial number aSerial. 

Instance methods: 
1. initialize 
2. initName: aName 
3. accessing methods 
4. initialize-release methods 
5. pause 
6. resume 
7. startUp 
8. tasks 
9. checkShortestRouteFrom: a WorkStation 
10. completeOperationsAt aLocation 
11. finish Up 

The first method, initialize, will initialize the cart instances as required by the 

system. The instance variable currentWorkStation of all the created carts will be 

initialized to PPLS since, all the carts will start at this workstation with an empty status. 

For the sake of brevity, the author included all the methods that request and return the 
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values of an object instance variables under the accessin~ category. The methods under 

this category will allow the access of all the instance variables in addition to the 

resourceNeeded by the Cart instance and the amountNeeded of this resource. Moreover, 

all the methods initializing these instance variables are grouped under the initialize

release category. The Cart instance in carrying its activities will follow the simulation 

framework referred to as the "life cycle of the object" which involves the sequence 

startUp_tasks_finishUp. When the Cart instance first arrives to the simulation it is sent 

the message startUp which will set its entryTime to the Simulation active time and its 

initial position to the PPLS workstation. Within the same method the Cart instance is 

sent the method .Y!£ks,. The method .Y!£ks, will specify the sequence of actions the Cart 

instance has to perform. First the Cart instance has to acquire a workstation 

(acCJ,uireResourceg) and then request service. If this request is successful, the Cart 

instance is sent the method complegteOpegrationsAtLocation: aLocation. At this point the 

Cart instance will be serviced and assigned a new destination by the WorkStation. At the 

end of this method the cart will be put in the output queue of the workstation waiting for 

a hook to be available to carry it to its next destination. In order to allow the 

recirculation of Cart instances the instance variable done is never set to true during the 

simulation. Therefore, the tasks block of actions is repeatedly performed till the 

simulation is terminated. Figure 14 illustrates the message flow diagram for the Cart 

object. The message flow diagram is simply a network in which the nodes represent 

objects and the arcs connecting them represent messages. The arcs are numbered 

sequentially to show the order in which messages are sent. 

WorkStation. This class embodies the behavior of a work station or machine. It 

has three queues (input, output, and empty), a processor and a queue controller. 
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.Q.a1a Storage 

Class variable names: 

1. Destinations 

This Destinations class variable is a storage location pointing to a Dictionary 

instance (a general Smalltalk-80 class). This dictionary functions to allow the storage of 

the pointers to the different workstations that could exist in the system (the pointers will 

be the workstation names). 

Instance variable names: 
1. name 
2. wsType 
3. enterPosition 
4. exitPosition 
5. processTime 
6. wsProcessingTimes 
7. probabilities 
8. wsQueueController 
9. wsAmountAvailable 
10. loadCount 

The WorkStation' s type will be carried by the instance variable wsType. The 

instance variables enter Position and exitPosition define respectively the position of the 

input queue and the output queue of the WorkStation instance. The instance variable 

processTime will be set equal to the time it takes a specific WorkStation instance to 

service a cart. The instance variable probabilities is a storage location pointing to a 

Dictionary instance. The locations in the Dictionary instance will carry the values of the 

probabilities with which a WorkStation instance sends a Cart instance to another 

WorkStation instance. The instance variable wsOueueController is an instance of the 

object OueueController. The wsAmountA vailable is an integer set either to one when the 

WorkStation instance is idle or zero otherwise. 
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Software methods 

Class methods: 

1. generateAndLoadOrders 
2. returnlnstanceWithName: aName 

The method generateAndLoadOrders will allow repeated scheduling of the arrival 

of load orders according to a user specified probability distribution. Once the load order 

is scheduled it should check if there is any empty cart available to start loading (through 

the method tryToLoad) and schedule the next arrival of a load order. The last method 

returninstanceWithName: aName will allow the WorkStation class to return the 

Workstation instance with name aName. 

Instance methods: 
1. initializeWithName: aString andAmount: aN umber exitPosition: 
ExitPositon enterPosition: aEnterPosition probabilities: a Vector 
processTime: aTime type: aType 

2. accessing methods 
3. getaRandomNumber 
4. getNextDestination 
5. provideServiceTo: aCart 
6. provideServices 
7. release: anAmount 
8. tryToLoad 
9. printOn: aStream 

10. printResultsOn: aStream 

The first method will initialize all the instance variables of the WorkStation 

instance. All the methods requesting the values of the instance variables were grouped 

under the accessing category. In order for the WorkStation instance to assign a new 

destination for the Cart instance it will get a random number by sending to itself the 

method getaRandomNumber. The random number returned from this message will be 

checked against the probabilities with which a WorkStation instance sends Cart instances 

to other WorkStation instances. The destination for the Cart instance will be the 

WorkStation instance in the DestinationList that satisfied a match between the 
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probability requirements and the random number generated. This will be done within the 

method getNextDestination. When a cart acquires a resource (WorkStation instance), it 

will ask it to provideService to it. In response to the message provideServiceTo: aCart, 

the WorkStation instance delays the cart for the required amount of time (which 

simulates the processing of the Cart at the WorkStation if the machine is idle). A busy 

WorkStation enqueues the Cart requesting its service. Once the cart is serviced the 

WorkStation instance should be made available (incrementing the number of 

wsAmountAvailable by the amount that was acquired by the Cart instance). This is done 

by sending the message release: anAmount to WorkStation instance. The method 

tryToLoad is invoked whenever a load order is generated to check if loading is possible 

(e.g. is there an empty cart available?). The last two methods are the methods needed to 

print statistics on the WorkStation's utilization and its instance queues. The output form 

of the WorkStation instance is defined through the method printOn: aStream. 

Hook. Another important object in the simulation model is the Hook object. 

This object will be created as a subclass of WorkStation object. In addition, Hook 

instances will be specified by their positions and numbers in the conveyor loop. At any 

time in the simulation the model developer should be able to identify the status and the 

position of the Hook instance. These attributes of the Hook instance will be stored in its 

instance variables. The next class to be considered is the class conveyor. This class will 

allow a meaningful place to put methods dealing with all the Hook instances. 

Data storage 

Class variable names 

Instance variable names 
space 
track 
trackSize 



inputPos 
outputPos 
num WorkStations 
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The instance variable~ is set equal to the distance between two consecutive 

Hook instances. The .t.nl&k instance variable is a storage location pointing to a Dictionary 

that functions to allow the storage of all the Hook instances created. Therefore, the 

trackSize will always be equal to the number of Hook instances needed to be created in 

the system. The inputPos is a storage location pointing to a Dictionary instance. This 

Dictionary will store the positions of the input queues of the WorkStation instances in the 

system. This explanation applies to the outl)utPos instance variable except that the 

Dictionary stores the positions of the output queues of the WorkStation instances. The 

numWorkStations is set equal to the number of WorkStations instances that will be 

created in the system. 

Software methods 

Class methods: 

1. new 

The new method functions to allocate memory space for the representation of a 

new Conveyor. In addition, it sends a message to the new Conveyor instance to initialize 

itself through the use of the initialize instance method. 

Instance methods: 
1. initialize 
2. accessing methods 
3. updateHookPositions 
4. move 
5. accept Carts 
6. deliverCarts 

The initialize method will allow the storage of the Hook instances in the track 

(this is the same thing as a conveyor loop). At this point a reference point is selected on 

the track and Hook instances are assigned numbers sequentially starting form one. The 

hookNumber (defined above) is the same as the hookPosition when no movement has 
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occurred yet. All the Hook instances start with an idle status. Accessing methods will be 

used to return the values of the instance variables at any simulated time in the simulation 

run. The instance method updateHookPositionsl: aN umber functions to update the Hook 

instances positions after the conveyor has moved through a certain number of hook 

spaces equal to aNumber. The Hook instances numbers (hookNumber) are not changed, 

only their positions are changed (hookPosition). Cart instances will be transported to 

their destinations by sending the message move: aN umber. This method will schedule 

the arrival of Hook instances to the WorkStation instances repeatedly after a certain 

number of hook spaces. At this point all the Hook instances in front of the input and 

output queues of the WorkStation instances will check if they can deliver carts to the 

WorkStations or accept to transport carts from their current workstation to their 

destinations. In the method acceptCarts, the Conveyor checks the status of all the Hook 

instances in front of the workstation's output queues. If a Hook instance is is not carrying 

a cart it checks if there is a cart waiting for transportation. If a cart is waiting in the 

output queue of the workstation, the Hook instance removes it and adds it to its input 

queue. The Hook instance will always check whether or not the destination of the Cart 

instance lies along the shortest route. After checking if the Hook instances can transport 

carts to their destinations, the Conveyor checks if the Hook instances in front of the input 

queues of the workstations can deliver the carts they are carrying. If there is space in the 

workstation's input queue, the cart leaves the hook and joins the input queue for service 

at the workstation. It is at this point and only at this point that the Cart instance is 

resumed to carry out the block of actions in its method tasks one more time. If the 

workstation does not have input space the cart is recirculated through the shortest route 

before it tries to acquire the workstation again. Figure 15 illustrates the message diagram 

for this object. 

For the sake of brevity, and because its description will not help the reader or 

give him/her more insight in understanding the simulation model, the class 



initialize 
l.j 

move 

2. 

checkShourtest 
Route 

2.1.2 

2.1 acceptCarts 

2.2 deliverCarts 

updateHookPositions 

3. 

WorkStat
ion 

Figure 15. Message Diagram for the Conveyor Object 

59 



QueueController will not be explained here. Detailed description will however, be 

included in Appendix A. 

Summary 
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This section discussed in some detail the implementation of several representative 

simulation processing and element objects. This coverage is intended to provide the 

reader a basic understanding of the code listed in Appendix A. 

Target System Simulation Model Representation: 

An lllustrative Example 

An lllustrative Example 

In this section an example model is executed. The following tables include the 

parameters specification of the different workstations and their probability vectors and 

the conveyor object of the example model. 
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TABLE 1 

WORKSTATION PARAMETERS SPECIFICATION 

Facility Name Type Process Time Exit Position Enter Position 

UALSC 1 Normal (4, 0.5) 8 7 

LSWAT 2 Normal (4, 0.5) 24 23 

LODST 3 Normal (4, 0.5) 38 37 

OLUNLOD 4 0 43 42 

ULST 5 Normal (3, 0.4) 32 31 

BYPASS 6 8 44 17 

PPLS 7 Normal (4, 0.5) 5 1 
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TABLE2 

CONTINUED WORKSTATION PARAMETERS SPECIFICATION 

Input Output Empty 
Facility Name Queue Queue Queue 

Cap. Cap. Cap. Prob. Vector * 

UALS 5 5 2 _(0.0, 0.2, 0.1, 0.3, 0.3, 0.0, 0.1) 

LSWAT 5 5 2 (0.2, 0.0, 0.0, 0.4, 0.4, 0.0, 0.0) 

LODST 5 5 2 (0.2,0.0,0.0, 0.4, 0.4, 0.0, 0.0) 

OLUNLOD 10 10 0 (0.2, 0.3, 0.3, 0.0, 0.0, 0.0, 0.2} 

ULST 5 5 0 (0.2, 0.3, 0.3, 0.0, 0.0, 0.0, 0.2) 

BYPASS 5 5 0 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O.D) 

PPLS 20 20 0 (0.4, 0.0, 0.0, 0.3, 0.3, 0.0, 0.0) 

* The vector entries follow the order of the facility name column. That is for the Pro b. 

Vector of the UALSC the 0.2 in the second entry represents the probability from which 

the UALSC will send a cart to the workstation LSWAT. 

TABLE 3 

CONVEYOR PARAMETERS SPECIFICATION 

Conveyor 

Speed Space No. Hooks 

1ft/min 10ft 48 

The model will have 20 carts and a simulation end time of 700 minutes. The 

results of executing this model in the Smalltalk-80 environment is shown in Figure 16. 
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Verification and Validation 

Verification of the developed simulation software and validation of the OOM 

conceptual approach to simulation model generation have been addressed. Verification 

of the object-oriented simulation software was performed through the close scrutiny and 

testing (debugging and tracing) of the simulation classes during the software 

implementation phase. An additional measure of modeling construct verification was 

achieved through the successful completion of the validation process. During the 

construction of the simulation program, a systematic series of steps were used to validate 

the program. The objective of validation was to establish that each system object 

responded in a logical manner like an actual system. 

The first phase of the program validation was accomplished during the early 

stages of construction of software objects. The different situations which arise at each 

module were first carefully examined and exhaustively enumerated. The system logic 

was then simulated using Lotus 123 to insure its correctness before the coding of the 

computer program. 

The second phase of validation consisted of implementing each software object 

by itself first to make sure that it was doing what it was intended to do by going to the 

Workspace window and inspecting the values of all its class and instance variables. The 

implementation of the software objects was also done with an incremental style of 

development. That is, object capabilities were added incrementally to make sure that 

every feature added to the object was functioning correctly. Several cases of software 

object inputs (arrival distributions, processing times distributions, etc.) were 

deterministically programmed and the output was analyzed to insure the correct 

functioning of the software object under most situations. 

A third phase of validation consisted of testing the relationship between objects to 

verify that the program responds like a real system and exhibits the same logical 



Simulation initiated at 11:58:36 am, 24 April 1992 

Simulation Experimentation Seed : 1234 Simulation End Time : 700 

Traced From : 0 Statistics Cleared At : 0 

Statistics for WorlcStation: BYPASS 

No.Obs. Average Std.Dev Minimum Maximum Current 

--------------------------------------------------------------------------------------------------
Utilization: 5 0.0228571 0.149448 0.0 1.0 0.0 

Proc.Time: 3 5.33333 4.6188 0.0 8 8 

Input Queue: 

Length: 5 0.0 0.0 0.0 1.0 0.0 

Wait Time: 3 0.0 0.0 0.0 0.0 0.0 

Output Queue: 

Length: 5 0.00571429 0.0753766 0.0 1.0 0.0 

Wait Time: 3 1.33333 1.1547 0.0 2.0 2.0 

empty Queue: 

Length: 0.0 0.0 0.0 0.0 0.0 

Wait Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for W01kStation: LODST 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 7 0.0172491 0.130198 0.0 1.0 0.0 

Proc.Time: 4 3.01859 2.02027 0.0 4.26975 3.95331 

Input Queue: 

Length: 7 0.0 0.0 0.0 1.0 0.0 

Wait Time: 4 0.0 0.0 0.0 0.0 0.0 

Output Queue: 

Length: 7 0.025608 0.157963 0.0 1.0 0.0 

Wait Time: 4 4.48141 2.99291 0.0 6.14868 6.04669 

empty Queue: 

Length: 0.0 0.0 0.0 0.0 0.0 

Wait Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for WorlcStation: LSWAT 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 3 0.00614973 0.0781787 0.0 1.0 0.0 

Proc.Time: 2 2.05385 2.90458 0.0 4.10769 4.10769 

Input Queue: 

Length: 3 0.0 0.0 0.0 1.0 0.0 

Wait Time: 2 0.0 0.0 0.0 0.0 0.0 

Output Queue: 

Length: 3 0.00813599 0.089832 0.0 1.0 0.0 

Wait Time: 2 2.8476 4.02711 0.0 5.69519 5.69519 

empty Queue: 

Length: 3 2.81634e-4 0.0167796 0.0 1.0 0.0 

Wait Time: 2 0.0985718 0.139402 0.0 0.197144 0.197144 

Figure 16. Result View 
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Statistics for WoikStation: OLUNLOD 

No.Obs. Average Std.Dev Minimum Maximum Current 

--------------------------------------------------------------------------------------------------
Utilization: 23 0.0 0.0 0.0 1.0 0.0 

Proc.Tune: 12 0.0 0.0 0.0 0.0 0 

Input Queue: 

Length: 23 0.0 0.0 0.0 1.0 0.0 

Wait Time: 12 0.0 0.0 0.0 0.0 0.0 

Output Queue: 

Length: 23 0.157143 0.363935 0.0 1.0 0.0 

Wait Time: 12 9.16667 2.88675 0.0 10.0 10.0 

empty Queue: 

Length: 0.0 0.0 0.0 0.0 0.0 

Wait Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for WoikStation: PPLS 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 50 0.14322 0.350297 0.0 1.0 0.0 

Proc.Time: 25 4.01015 0.518814 3.05248 5.20612 4.0428 

Input Queue: 

Length: 49 1.10393 3.62384 0.0 19.0 0.0 

Wait Time: 25 30.9101 26.5978 0.0 76.638 0.0 

Output Queue: 

Length: 51 1.86713 3.33182 0.0 12.0 0.0 

Wait Time: 26 50.2689 38.4304 0.0 119.3 35.9572 

empty Queue: 

Length: 0.0 0.0 0.0 0.0 0.0 

Wait Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for WoikStation: UALSC 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 17 0.0844311 0.278033 0.0 1.0 0.0 

Proc.Time: 15 3.94012 1.12848 0.0 4.64781 4.50024 

Input Queue: 

Length: 17 0.0 0.0 0.0 1.0 0.0 

Wait Time: 9 0.0 0.0 0.0 0.0 0.0 

Output Queue: 

Length: 17 0.0298546 0.170186 0.0 1.0 0.0 

Wait Time: 9 2.32203 1.91283 0.0 5.49976 5.49976 

empty Queue: 

Length: 0.0 0.0 0.0 0.0 0.0 

Wait Time: 0.0 0.0 0.0 0.0 0.0 

Figure 16. (continued) 



Statistics for WorkStation: ULST 

No.Obs. Average Std.Dev Minimwn Maximum Current 

---------------------------------------------------------------------------------------------------
Utilization: 19 0.0378806 0.190908 0.0 1.0 0.0 

Proc.Time: 10 2.65165 0.967777 0.0 3.34706 3.14901 

Input Queue: 

Length: 19 0.0 0.0 0.0 1.0 0.0 

Wait Time: 10 0.0 0.0 0.0 0.0 0.0 

Output Queue: 

Length: 19 0.0906908 0.287169 0.0 1.0 0.0 

Wait Time: 10 6.34836 2.24589 0.0 7.58289 6.85101 

empty Queue: 

Length: 0.0 0.0 0.0 0.0 0.0 

Wait Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for Hook: Hook #1 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

6 

3 

0.9 0.3 0.0 

120.0 190.788 0.0 

Statistics for Hook: Hook #2 

1.0 1.0 

340 340 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 4 0.928571 0.257539 0.0 1.0 

Proc.Time: 2 185.0 261.63 0.0 370 

Statistics for Hook: Hook #3 

1.0 

370 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 5 0.614286 0.486764 0.0 1.0 0.0 

Proc.Time: 3 263.333 229.42 0.0 420 420 

Statistics for Hook: Hook #4 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 6 0.942857 0.232115 0.0 1.0 

Proc.Time: 3 116.667 132.035 0.0 260 

Statistics for Hook: Hook #5 

1.0 

90 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

5 0.614286 0.486764 

3 263.333 229.42 

0.0 

0.0 

Figure 16. (continued) 

1.0 

420 

0.0 

420 
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Statistics for Hook: Hook #6 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 2 0.314286 0.464231 0.0 1.0 1.0 

Proc.Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for Hook: Hook #7 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 

1 

1 

0.0 

0.0 

Statistics for Hook: Hook #8 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 2 0.342857 0.474664 0.0 1.0 1.0 

Proc.Time: 0.0 0.0 0.0 0.0 0.0 

Statistics for Hook: Hook #9 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 

1 0.0 

0.0 

Statistics for Hook: Hook #10 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #11 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #12 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Figure 16. (continued) 
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Statistics for Hook: Hook #13 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #14 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #15 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

1 

1 

0.0 

0.0 

Statistics for Hook: Hook #16 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #17 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwu Maximum Current 

Utilization: 

Proc.Time: 

3 0.0714286 0.257539 

2 215.0 304.056 

Statistics for Hook: Hook #18 

0.0 

0.0 

1.0 

430 

0.0 

430 

No.Obs. Average Std.Dev Minimwn Maximwu Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Statistics for Hook: Hook # 19 

No.Obs. Average Std.Dev Minimwn Maximwu Current 

Utilization: 3 0.0714286 0.257539 0.0 1.0 0.0 

Proc.Time: 2 215.0 304.056 0.0 430 430 

Figure 16. (continued) 
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Statistics for Hook: Hook #20 

No.Obs. Average Std.Dev Minimwn Maximwn Current 

Utilization: 2 0.514286 0.499796 0.0 1.0 1.0 

Proc.Time: 1 0.0 0.0 0.0 0.0 0.0 

Statistics for Hook: Hook #21 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #22 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximwn Current 

Utilization: 4 0.528571 0.499183 0.0 1.0 1.0 

Proc.Time: 2 130.0 183.848 0.0 260 260 

Statistics for Hook: Hook #23 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #24 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

1 

1 

0.0 

0.0 

Statistics for Hook: Hook #25 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #26 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Figure 16. (continued) 
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Statistics for Hook: Hook #27 

No.Obs. Average Std.Dev Minimwn Maximwn Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #28 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #29 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

1 

1 

0.0 

0.0 

Statistics for Hook: Hook #30 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #31 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

1 

1 

0.0 

0.0 

Statistics for Hook: Hook #32 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

0.0 

0.0 

Statistics for Hook: Hook #33 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 

Proc.Time: 1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Figure 16. (continued) 
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Statistics for Hook: Hook #34 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 4 0.7 0.458258 

Proc.Time: 2 130.0 183.848 

0.0 

0.0 

1.0 1.0 

260 260 

Statistics for Hook: Hook #35 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 6 0.7 0.458258 0.0 1.0 1.0 

Proc.Time: 3 103.333 137.961 0.0 260 50 

Statistics for Hook: Hook #36 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 10 0.685714 0.464231 0.0 1.0 1.0 

Proc.Time: 5 68.0 92.5743 0.0 230 40 

Statistics for Hook: Hook #37 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 4 0.742857 0.437059 0.0 1.0 1.0 

Proc.Time: 2 130.0 183.848 0.0 260 260 

Statistics for Hook: Hook #38 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 4 0.757143 0.428809 0.0 1.0 1.0 

Proc.Time: 2 185.0 261.63 0.0 370 370 

Statistics for Hook: Hook #39 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 5 0.157143 0.363935 0.0 1.0 0.0 

Proc.Time: 3 36.6667 47.2582 0.0 90 90 

Statistics for Hook: Hook #40 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 6 0.771429 0.419913 0.0 1.0 1.0 

Proc.Time: 3 243.333 210.792 0.0 370 360 

Figure 16. (continued) 
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Statistics for Hook: Hook #41 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 5 0.157143 0.363935 0.0 1.0 0.0 

Proc.Time: 3 36.6667 47.2582 0.0 90 90 

Statistics for Hook: Hook #42 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 10 0.728571 0.444697 0.0 1.0 1.0 

Proc.Time: 5 116.0 143.631 0.0 310 20 

Statistics for Hook: Hook #43 

No.Obs. Average Std.Dev Minimwn Maximum Current 

Utilization: 

Proc.Time: 

4 0.828571 0.376883 

2 185.0 261.63 

Statistics for Hook: Hook #44 

0.0 

0.0 

1.0 

370 

1.0 

370 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 4 0.842857 0.363935 0.0 1.0 1.0 

Proc.Time: 2 185.0 261.63 0.0 370 370 

Statistics for Hook: Hook #45 

No.Obs. Average Std.Dev Minimwn Maximwn Current 

Utilization: 6 0.842857 0.363935 0.0 1.0 1.0 

Proc.Time: 3 243.333 210.792 0.0 370 360 

Statistics for Hook: Hook #46 

No.Obs. Average Std.Dev Minimwu Maximum Current 

Utilization: 6 0.857143 0.349927 0.0 1.0 

Proc.Time: 3 103.333 137.961 0.0 260 

Statistics for Hook: Hook #47 

1.0 

50 

No.Obs. Average Std.Dev Minimum Maximum Current 

Utilization: 4 0.885714 0.318158 0.0 1.0 

Proc.Time: 2 185.0 261.63 0.0 370 

Statistics for Hook: Hook #48 

1.0 

370 

No.Obs. Average Std.Dev Minimwu Maximum Current 

Utilization: 4 0.9 0.3 0.0 1.0 1.0 

Proc.Time: 2 130.0 183.848 0.0 260 260 

Average Utilization Of AllTI1e Hooks Is: 0.343155 

Figure 16. (continued) 
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Utilization for Carts: 

No.Obs. Average Std.Dev Minimum Maximum Current 

cart serial # 1 3 0.9 0.3 0.0 1.0 1.0 

cart serial # 2 3 0.422959 0.494029 0.0 1.0 1.0 

cart serial # 3 3 0.887884 0.315509 0.0 1.0 1.0 

cart serial # 4 2 0.567674 0.495399 0.0 1.0 0.0 

cart serial # 5 4 0.569842 0.495098 0.0 1.0 0.0 

cart serial # 6 2 0.427681 0.494742 0.0 1.0 0.0 

cart serial # 7 2 0.593815 0.49112 0.0 1.0 0.0 

cart serial # 8 3 0.87437 0.331432 0.0 1.0 1.0 

cart serial # 9 3 0.769483 0.421164 0.0 1.0 1.0 

cart serial # 10 2 0.621124 0.485107 0.0 1.0 0.0 

cart serial # 11 2 0.627972 0.483346 0.0 1.0 0.0 

cart serial # 12 7 0.666488 0.471467 0.0 1.0 1.0 

cart serial# 13 5 0.366326 0.4818 0.0 1.0 0.0 

cart serial# 14 3 0.738271 0.439576 0.0 1.0 1.0 

cart serial # 15 4 0.38305 0.48613 0.0 1.0 0.0 

cart serial # 16 2 0.669854 0.470265 0.0 1.0 0.0 

cart serial # 17 2 0.521381 0.499543 0.0 1.0 0.0 

cart serial # 18 6 0.594847 0.490922 0.0 1.0 0.0 

cart serial # 19 3 0.809408 0.392768 0.0 1.0 1.0 

cart serial # 20 2 0.54766 0.497723 0.0 1.0 0.0 

Average Utilization Of All The Carts Is: 0.658669 

Simulation Ended at #(24 April1992 12:04:10 pm) 

Figure 16. (continued) 
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relationship between the interface and functional objects as in the actual system. In order 

to accomplish this, the types of event occurrences were exhaustively enumerated and the 

logic was traced by hand for each type of event. 

The fourth phase of validation was accomplished by building a small hypothetical 

conveyor system simulation model that consisted of at least one of each of the system 

objects. A series of trial simulation runs were made. In addition, several model inputs 

were deterministically programmed and the output was analyzed to insure the correctness 

of logic under all situations. Using the simulation trace-on feature available in 

Smalltalk:-80 (see Figure 17), the flow of carts through the system was checked to insure 

that they follow the proper sequence. 

Summary 

The last few sections describe the procedure employed to validate the conceptual 

organization of the OOM prototype environment for the generation of discrete simulation 

models of a constant speed, discretely spaced recirculating conveyor system. In the next 

chapter, the OOM environment will be evaluated through the use of both tangible and 

intangible features within an organization structure made up of an Analytical Hierarchy 

Process decision model. 



31.3618 
Cart cart serial# 8 released 5 
Cart cart serial# 8 going to WorkStation named: ULST 
cart is at: PPLS 
Cart cart serial# 9 processing time required at WorkStation named: PPLS 3.85135 
Cart cart serial# 9 obtained WorkStation named: PPLS 
35.2132 
Cart cart serial# 9 released 5 
Cart cart serial# 9 going to WorkStation named: OLUNLOD 
cart is at: PPLS 
Cart cart serial# 10 processing time required at WorkStation named: PPLS 5.20612 
Cart cart serial# 10 obtained WorkStation named: PPLS 
39.3904 
40.0 
Cart cart serial# 4 obtained aHook2 
a Conveyor all the hook positions are updated at 40.0 
40.4193 
Cart cart serial# 10 released 5 
Cart cart serial# 10 going to WorkStation named: OLUNLOD 
cart is at: PPLS 
Cart cart serial# 11 processing time required at WorkStation named: PPLS 4.9199 
Cart cart serial# 11 obtained WorkStation named: PPLS 
45.3392 
Cart cart serial# 11 released 5 
Cart cart serial# 11 going to WorkStation named: OLUNLOD 
cart is at: PPLS 
Cart cart serial# 12 processing time required at WorkStation named: PPLS 3.91146 
Cart cart serial# 12 obtained WorkStation named: PPLS 

Figure 17. Simulation Trace 
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CHAPTER VII 

EVALUATION OF THE APPROACH THROUGH ANALYTIC 

HIERARCHY PROCESS 

This chapter summarizes the Analytic Hierarchy Process used to compare the 

proposed modeling approach against conventional simulation paradigm. 

Analytic Hierarchy Process 

This chapter describes the application of the Analytical Hierarchy Process 

(AHP) to evaluate various aspects of the developed framework and the methodology 

against the conventional simulation paradigm. A detailed explanation of the AHP 

process will not be covered here and can be obtained from Saaty (1988). In simple 

terms, AHP is a multi-criteria decision methodology that utilizes structured pair wise 

comparisons among similar aspects of alternatives to reach a scale of preference. A more 

comprehensive application of AHP for simulation environment evaluation purposes can 

also be seen from the study done by Beaumariage (1990). In his study Beaumariage 

compares object-oriented simulation environments against traditional environments such 

as SLAM II and SIMAN. This study also provides a summarized guideline of the AHP 

application process. Therefore, the process of developing an AHP model will not be 

covered here, but can be obtained from one of the resources mentioned above. 

The preliminary AHP model developed by the author was discussed, 

critiqued, and iterated on by an AHP study group that consisted of Hemant Bhuskute, 

Manoj Duse, Jagannath Gharpure (three PHD candidates in Industrial Engineering and 
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Management at Oklahoma State University), and the author. The group started by 

developing the levels, the major aspects, and the criteria in terms of a set of nodes. The 

next task was defining the linkages between these nodes. Finally, the group assigned 

weights to the preference matrices resulting from the above two tasks. The following 

paragraphs summarize the resulting level, major aspects, criteria and weight matrices of 

the group's study. 

Level 1 : Definition of the Problem 

1.1 - Simulation Paradi~m. The goal of this analysis is the choice of the best 

means of conceptualizing and representing the system in terms of a simulation model 

along with underlying structures. 

Level 2 : Major Aspects 

2.1 - Model Effectiveness. This aspect is concerned with the ability of the model 

to represent critical aspects of the real system. This includes the ability of the model to 

manage future modeling extensions, alterations, and reuse needs, etc. 

2.2 - Model Develqper's Capability and Modeling Effort. This aspect is 

concerned with the capabilities of the model developer and the effectiveness of his/her 

efforts. The person or task associated with simulation model development is involved in 

the use of currently available constructs (new base code) within the development of 

useful simulation models. 

2.3 - Perfqrmance Cqnsideratiqns. This system aspect addresses basic hardware 

related performance measures. 

Level 3 : Criteria Cqnsidered 

3.1 - Mqdel Reusability. This criteria mainly addresses the ability of specific 

models or portions of models to be used through a change process. The capability of 
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developing models with different levels of detail without major model overhauls is also 

part of the flexibility. This node links to 2.1 and 2.2. 

3.2 - Change Management Capability. Because our concept of a simulation 

environment is that of a growing, changing system, we must consider software change 

management to be an important capability to allow for simulation model 

reconfigurability. This node is linked to 2.1 and 2.2. 

3.3 - Software Modularity. This is the simulation paradigm's ability to represent 

physical, information, and control components of the system under study in a modular 

fashion. This criteria increases the validity of the model, thereby promoting the 

credibility of the whole simulation study (Karacal, 1991). This node links to 2.1 and 2.2. 

3.4 - Output Provisions. This simulation criteria reefers to the degree of the 

simulation model's support for both standard and special results output from a simulation 

run. This criteria has a strong influence on model effectiveness and therefore is linked to 

node 2.1. 

3.5 - Model Debugging SupportNerification. This criteria addresses the features 

provided for model debugging and verification and the degree of effectiveness achieved 

by these features. This node links to 2.2. 

3.6 - Graphics/User Interface Capability. This criteria is very important for 

simulation environment enhancements. This node is linked to 2.1 

3.7- Execution Speed. The CPU time required to run the simulation model 

represents the execution speed. This criteria is linked to 2.3. 

3.8 - Simulation Language Knowledge/Ease of Learning Effort Required. This 

addresses the amount of knowledge needed to use a simulation system and the effort 

required to learn the system. This node is linked to 2.2. 

3.9 - Basic Memory Requirements. This criteria is concerned with computer 

memory requirements. This characteristic addresses the amount of memory needed to 
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run the simulation environment for the smallest of models. This node is linked to node 

2.3. 

3. 10. - Model Representation Correspondence to the Real System. This aspect 

evaluates how accurately the real system can be expressed in the model. As the degree of 

model correspondence to the real system decreases, the degree of model abstraction 

increases. Model abstraction refers to the degree to which the representation of the 

system (the simulation model) is conceptually removed from the actual system. This 

node is linked to 2.1 and 2.2. 

3. 11. - Modeling Flexibility. This criterion addresses the kinds of features for 

development of higher level constructs (the grouping of model portions in a way that 

supports the conceptual grouping of a system) that are available and the manner in which 

new constructs fit in with the normal simulation model specification mode. 

Level4- Alternative Simulation Paradigms 

4.1 - Traditional. Special Purpose Simulation Systems. This alternative 

represents the standard simulation system typically used in discrete event modeling. 

Simulation systems under this category are commercially available. This node is linked 

to all the nodes at level3. 

4.2 - OOP Simulation System. This alternative represents the new OOP 

simulation system, for which the prototype system was developed. This node is linked to 

all the nodes at level 3. 

Figure 18 shows the AHP hierarchical diagram. Tables 4 through 18 show the 

original weights of the AHP matrices agreed upon by the study group. 
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Levell Level2 Level3 Level4 

Figure 18. AHP Simulation Language Comparison Model 



NODE 1.1 - Simulation Paradigm 
Links from Lower Level 

TABLE4 

NODE 1.1 

1) Node 2.1 -Model effectiveness 
2) Node 2.2- Model developer's potency and modeling effort 
3) Node 2.3- Performance considerations 

Original weights 
Col 1 2 3 

Row 
1 1.000 7.000 9.000 
2 0.143 1.000 5.000 
3 0.111 0.200 1.000 

TABLES 

NODE 2.1 

NODE 2.1- Model Effectiveness 
Links from Lower Level 

1) Node 3.1 -Model reusability 
2) Node 3.4 - Output provisions 
3) Node 3.6- Graphics/User interface capability 
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4) Node 3.10-Model representation correspondence to the real system 
5) Node 3.11-Model flexibility 

Original weights 
Col 1 2 3 4 5 

Row 
1 1.000 0.200 1.000 0.200 0.143 
2 5.000 1.000 5.000 3.000 1.000 
3 1.000 0.200 1.000 0.200 0.167 
4 5.000 0.333 5.000 1.000 4.000 
5 7.000 1.000 6.000 0.250 1.000 



TABLE 6 

NODE2.2 

NODE 2.2 - Model Developer's Potency and Modeling Effort 
Links from Lower Level 

1) Node 3.1- Model reusability 
2) Node 3.2 - Change management capability 
3) Node 3 3- Software modularity 
4) Node 3.5- Model debugging support/Verification 
5) Node 3.8 - Simulation language knowledge/Ease of learning effort 

required 
6) Node 3.10-Model representation correspondence to the real system 
7) Node 3.11-Modeling flexibility 

Original weights 
Col 1 2 3 4 5 6 7 

Row 
1 1.000 3.000 2.000 0.250 0.167 0.333 1.000 
2 0.333 1.000 2.000 0.250 0.500 0.500 0.333 
3 0.500 0.500 1.000 0.250 0.333 1.000 0.500 
4 4.000 4.000 4.000 1.000 1.000 3.000 2.000 
5 6.000 2.000 3.000 1.000 1.000 3.000 2.000 
6 3.000 2.000 1.000 0.333 0.333 1.000 1.000 
7 1.000 3.000 2.000 0.500 0.500 1.000 1.000 
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TABLE 7 

NODE2.3 

NODE 2.3 - Performance Considerations 
Links from Lower Level 

Row 

1) Node 3.7- Execution speed 
2) Node 3.9- Basic memory requirements 

Original weights 
Col 1 

1 1.000 
2 8.000 

2 

0.125 
1.000 

TABLE 8 

NODE 3.1 

NODE 3.1- Model Reusability 
Links from Lower Level 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 0.143 
2 7.000 1.000 
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TABLE9 

NODE3.2 

NODE 3.2 - Change Management Capability 
Links from Lower Level 

Row 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 

1 
2 

1 

1.000 
5.000 

2 

0.200 
1.000 

TABLE 10 

NODE 3.3 

NODE 3.3 - Software Modularity 
Links from Lower Level 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 0.333 
2 3.000 1.000 
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TABLE 11 

NODE3.4 

NODE 3.4 - Output Provisions 
Links from Lower Level 

Row 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 

1 1.000 
2 8.000 

2 

0.125 
1.000 

TABLE12 

NODE3.5 

NODE 3.5- Model Debugging Support/Verification 
Links from Lower Level 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 0.125 
2 8.000 1.000 
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TABLE 13 

NODE3.6 

NODE 3.6- Graphics/User interface capability 
Links from Lower Level 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 0.167 
2 6.000 1.000 

TABLE14 

NODE3.7 

NODE 3.7- Execution Speed 
Links from Lower Level 

1) Node 4.1 - Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 6.000 
2 0.167 1.000 
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TABLE 15 

NODE 3.8 

NODE 3.8 - Simulation Language K knowledge/Ease of Learning Effort Required 
Links from Lower Level 

Row 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 1 

1 1.000 
2 0.200 

2 

5.000 
1.000 

TABLE16 

NODE3.9 

NODE 3.9- Basic Memory Requirements 
Links from Lower Level 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 7.000 
2 0.143 1.000 
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TABLE17 

NODE 3.10 

NODE 3.10 - Model Representation Correspondence to the Real System 
Links from Lower Level 

Row 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 1 

1 1.000 
2 9.000 

2 

0.111 
1.000 

TABLE18 

NODE 3.11 

NODE 3.11- Modeling Flexibility 
Links from Lower Level 

1) Node 4.1 -Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 0.143 
2 7.000 1.000 
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The next step in the AHP procedure was the calculation of the relative weights of 

the decision elements. Appropriate spreadsheets were developed for this purpose. These 

spreadsheets calculated the priorities for each of the above matrices along with matrix 

consistencies (Appendix C). After, checking the consistencies, these relative weights 

were aggregated through a series of matrix calculations to yield a solution to the 

problem. Table 19 shows the resulting final weights. 

TABLE19 

FINAL WEIGHTS 

Final Solution Weights 

Traditional, special purpose simulation systems: 

OOP simulation systems: 

Summary 

0.225 

0.775 

The results of final weights obtained from the AHP evaluation clearly indicate 

that the OOP simulation systems are superior to the traditional special purpose simulation 

systems in terms of the aspects and criteria considered in the AHP study. The conclusion 

reached in this study is in agreement with Beaumariage's (1990) and Karacal's (1991) 

results, which were obtained using a different set of factors. 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the conclusions reached, research contributions, and 

recommendations of this study. 

Conclusions 

The main objective of this research was to develop, validate, and document utility 

"plug-in" modular component computer simulation models which may be used to 

interpret and synthesize the operating characteristics of various types of complex 

recirculating conveyor systems, using an Object-Oriented Modeling environment. To 

achieve this objective, three sub-objectives had to be accomplished. 

The first objective of this research was to develop a library of reusable software 

objects which would provide the ability to generate the simulation model desired. In 

order to fulfill this objective, several tasks had to be performed. First, the functional 

components that are common to representative existing recirculating conveyor systems 

were examined and analyzed. Next, the types of interfacing that can occur between the 

functional components of a recirculating conveyor system were specified. Then, a series 

of modular elements to represent the functioning of the objects and message passing 

among them were developed and encoded within the general software environment 

Smalltalk-80. Finally, the software simulation objects were incorporated into flexible 

utility simulation systems that can be utilized to "build" complex conveyor system 

simulations, thus successfully completing the first research objective. 
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The second objective of the research was to develop an approach which would 

allow the comparison of modeling environments. In order to accomplish this, criteria for 

comparing simulation modeling environments were developed. Using these criteria, the 

decision problem, choosing the best simulation environment was addressed through the 

application of the Analytic Hierarchy Process. For the problem of interest, namely 

comparison of simulation environments, an AHP model was developed. This involved 

the determination of an appropriate scheme for decision process decomposition along 

with the linkages between elements in the decision model. This model will allow the 

comparison of the new OOM system to traditional simulation systems. This will also 

provide an evaluation of the quality of the developed prototype. In order to complete this 

evaluation, a group of simulationists experienced in both of the alternatives provided the 

many pairwise comparisons required by the Analytic Hierarchy Process and the 

developed model. The comparisons were then manipulated to result in a final set of 

weights concluding the preferable simulation approach. The conclusion from the AHP 

evaluation was that an object-oriented modeling environment is superior to the traditional 

simulation modeling environment. This completed the second objective successfully. 

The third objective of this research was to explore ways to expand the model 

developed to accommodate all the complexities that a conveyor system can incorporate. 

Given the restricted time frame of completion of this work, the author was not able to 

implement some of the features incorporated in the existing conveyor system. This 

includes having multiple loops, multiple floors, and multiple bypasses. A detailed 

description of how to incorporate these features in the developed model is presented in 

the following section. This represents the accomplishment of the third research 

objective. 

The final conclusions from this research are : 
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1) Most simulation languages available today are well suited for developing a 
model of a system from scratch. These languages are excellent and have met 
and continue to meet the needs of many applications. However, the analyst 
generally concentrates on the model building activities of a specific scenario. 
Major changes in the system model such as changes in the structure of the 
system and their impact on the system performance cannot be easily handled. 
Thus, the traditional languages facilitate model reusability only to a limited 
degree. Object-Oriented programming provides a framework for simulation 
software implementation of a highly reusable modeling environment. 

2) In general, object-oriented programming offers a lot of improvements in the 
accomplishment of the traditional modeling tasks (these have been discussed 
in the previous chapters). This should encourage simulation package 
developers and simulation system users to pursue simulation modeling within 
an object-oriented implementation. 

Recommendations For Future Implementations 

Developing software as complex as the Conveyor System model requires a lot of 

research, insight, and especially time. It was clear from the start that a complete model 

can never be achieved at this stage. But, all along the development of the Conveyor 

· System model, serious considerations were anticipated to make the model manage the 

future changes and reconfigurations without any major changes. 

As described in Chapter VI, the model developed will only accommodate a single 

loop conveyor system. Bypass sections may or may not exist depending upon the need 

of the particular system. Taking the model a step further to accommodate multiple loops 

and multiple floors will be illustrated below: 

-Multi-loop Conveyor System: A conveyor which contains more than one closed 

loop in a one-floor configuration is termed as multi-loop conveyor system. Such a 

system includes transfer sections that deliver goods from one loop to another loop. A 

typical multi-loop conveyor system is shown in Figure 19. A transfer section is different 

from a bypass (description in chapter VI). A transfer section is used for moving carts 

from one conveyor loop to another whereas a bypass is used for providing shorter routes 
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between sections on the same loop. A transfer section does not form a closed loop and in 

this respect it is similar to a bypass. In this study it is assumed that a transfer section like 

a bypass accommodates only one cart at a time. In order to accommodate this extra 

feature, the modeler should add to all the classes developed, an instance variable that 

would store the loop number. One also needs to make the transfer section a subclass of 

WorkStation class (bypass is also a subclass of workstation). A cart needing to be 

transferred to another loop will have the transfer section position as its destination. Once 

the cart reaches the transfer section it leaves the hook and joins the transfer section's 

input queue. At that point the cart's instance variable specifying its loop number should 

be updated. Once the cart is delivered to the transfer section it will be held for an 

amount of time equal to the time to travel the transfer section. At the end of this time the 

cart should be in the next loop where it waits in the output queue of the transfer section 

for a hook to be available to take it to its next destination in the current loop. Since the 

different loops will have different hook numbers and speeds, the system designer should 

have the ability to specify the number of loops desired and their parameters. Therefore, 

depending on the loop number stored in the instance variable carried by the cart, the 

program logic will use the parameters (number of hooks, conveyor loop speed, etc.) 

specified for that conveyor loop. This is easily done due to the fact that the conveyor 

loop parameters are not hard coded in the program logic. 

-Multi-floor Conveyor System: A multi-floor conveyor system contains more than 

one floor and goods are transported from one floor to another floor through an elevator. 

The elevator carries only one cart at a time. It operates on a first-come first-served basis. 

A typical multi-floor conveyor system is shown in Figure 20. Using the same concept as 

in the case of the transfer section, the modeler needs to add to all the classes an instance 

variable specifying the floor number. The modeler should also specify the elevator 

object as a subclass of the WorkStation object. A cart needing to go to another floor will 
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Figure 19. A Multi-loop Conveyor System 
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first be delivered by the hook at the elevator position. After, joining the elevator (in the 

same way a cart joins a workstation) the cart is held for an amount of time equal to the 

number of floors to be traveled times the travel time between two consecutive floors. At 

the end of this specified time the cart leaves the elevator and joins the output queue of the 

elevator station waiting for a hook available to carry it to its next destination. One of the 

system's input parameters will be the number of floors desired by the system designer. 

-Currently, the transfer sections and bypasses accommodate only one cart at a time. 

Another option would be to make both of them subclasses of WorkStation with multiple

servers. The number of servers should be equal to the number of carts the user wants the 

transfer section and the bypass to accommodate at one time. This could be done by 

setting the instance variable wsAmount (workstation amount) to this desired number. 

- A major area of improvement in the model developed is the user interface 

implementation. The user should be able to get desired statistics in a histogram form. 

- Other options that could be added to the model for greater flexibility are unreliable 

workstations and hook failures. 

-Currently, the destination of the carts is carried by the workstations and they are 

randomly decided by each workstation. Another option could be to make the routing of 

the carts through the system fixed and carried by the carts. 

Contributions 

The main contribution of this research to the body of simulation knowledge is the 

development of an object-oriented simulation model of a constant speed, discretely 

spaced, recirculating conveyor system. The evaluation of the quality of the model 

developed through the application of the Analytic Hierarchy Process provided more 

insights on the benefits and disbenefits of OOM over the traditional approaches to 

simulation. 
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Introduction 

This appendix contains listings of Smalltal.k-80 code beginning on the next page. 

The listings are relevant portions of new and/or modified classes and methods that were 

used for the conveyor system. 

The listings are separated by class. Within each class, there is a header section 

followed by listings of methods. The header section contains the class hierarchy 

specification as well as the names of all instance and class variables. A comment 

segment concludes the header section. 

The methods are divided into groups of related methods. This grouping is 

arbitrary but provides insight as to the general intend of the methods in the group. The 

group headers are designated by the character string "!classname methodsFor: 

group name". The last grouping under a method (if listed) is the group for class methods. 

These methods are used by the class rather than instances of the class. A good example 

of their use is the creation of a new instance. 

Methods listings always start with the method name including any incoming 

parameters. The names are free form except that a colon is used to separate the 

parameter(s) from the name. The code itself follows Smalltalk:-80 convention. Any text 

within the method enclosed by quotation marks is a comment. All methods terminate 

with an exclamation point(!). 



SmallTalk:-80 Code For Class: QueueController 

Object subclass: #QueueController 
instanceVariableNames: 'inputQueue outputQueue emptyQueue loadQueue' 
classVariableNames: II 
poolDictionaries: 11 

category: 'ConveyorSimulation'! 
QueueController comment: 
'Class QueueController creates a controller through which a machine 
(resource) communicates with its input and output queues. The queue 
controller is created automatically when the machine is created.'! 

!QueueController methodsFor: 'initialize- release'! 

emptyQueueCapacity: aNumber 
"The input queue has limited capacity" 

emptyQueue := CapacitatedQueue capacity: aNumber. 

"output queues are adjacent to the workstation, and do not need reservation. a cart directly 
moves into them, without worrying about other competition" 
emptyQueue addWithoutReservation: aCart! 

putlnOutput: aCart 
"output queues are adjacent to the workstation, and do not need reservation. 
Cart's directly move into them, without worrying about other competition" 
outputQueue addWithoutReservation: aCart! 

remove: aCart 
"Remove the cart from the output queue" 
AoutputQueue remove: aCart! ! 

!QueueController methodsFor: 'accessing'! 

addToEmptyQueue: aCart 
emptyQueue add: aCart. 
A self! 

addTolnputQueue: aCart 
"add a cart to the input queue" 
inputQueue add: aCart. 
"self! 

emptyQueueCapacity 
"emptyQueue capacity! 

emptyQueueEmpty 
"emptyQueue isEmpty.! 

emptyQueuequeueLength 
"Answer the length of the queue" 
AemptyQueue queueLength! 

104 



emptyQueueRemoveN ext: a Cart 
"emptyQueue remove: aCart! 

inputQueueCapacity 
"inputQueue capacity! 

inputQueueEmpty 
"inputQueue isEmpty.! 

inputQueueNextAmount 
"Answer the amount needed for the next item in queue" 
"inputQueue next amountNeeded! 

inputQueuequeueLength 
"Answer the length of the queue" 
"inputQueue queueLength! 

inputQueueRemoveNext 
lqdisc I 

next 

nextl 

self error: 'Obsolete code'. 
qdisc := inputQueue whatlsQueueDiscipline. 
"inputQueue remove: (self perform: qdisc)! 

"Answer the next item to be processed from the input queue" 
"inputQueue next! 

"Answer the next item to be processed from the input queue" 
"outputQueue next! 

nextEmpty 
"Answer the next item to be processed from the input queue" 
"emptyQueue next! 

outputQueueCapacity 
"outputQueue capacity! 

outputQueueEmpty2 
"outputQueue isEmpty.! 

setEmptyQDiscipline: aQDiscipline 
"set the discipline of the empty queue for this controller" 
emptyQueue setQDiscipline: aQDiscipline. 
"self! 

setlnputQDiscipline: aQDiscipline 
"set the discipline of the input queue for this controller" 
inputQueue setQDiscipline: aQDiscipline. 
"self! 

setOutputQDiscipline: aQDiscipline 
"set the discipline of the output queue for this controller" 
outputQueue setQDiscipline: aQDiscipline. 
"self! ! 
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!QueueController methodsFor: 'testing'! 

emptyQueueHasSpace 
"check if the empty queue is at its capacity " 
"emptyQueue hasSpace! 

inputHasSpace 
"Does the input queue have space?" 
"inputQueue hasSpace! 

inputHasSpace: availableServers 
"Does the input queue have space, considering so may servers are available?" 
"inputQueue hasSpace: availableServers! 

outputHasSpace 
"Does the output queue have space?" 
"outputQueue hasSpace! ! 

!QueueController methodsFor: 'statistics'! 

printResultsOn: aStream 
"print the length of queue and time in queue statistics for this queue controller" 
aStream nextPutAII: 'Input Queue:'. 
inputQueue printResultsOn: aStream. 
aStream nextPutAll: 'Output Queue:'. 
outputQueue printResultsOn: aStream. 
aStream nextPutAII: 'empty Queue:'. 
emptyQueue printResultsOn: aStreaml 

.. ___ , -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 
QueueController class 

instanceVariableNames: "! 
!QueueController class methodsFor: 'instance creation'! 

new 
"create a new instance of QueueController" 
"super new initialize! ! 

SmallTalk:-80 Code For Class: WorkStation 

Object subclass: #WorkStation 
instanceVariableNames: 'wsAmountAvailable wsQueueController wsProcessingTimes 

wsUtilization waitingForlnputQ blockingWFI blocked cart enterPosition wsType exitPosition name 
probabilities processTime loadCount' 

classVariableNames: 'Destinations LoadCount' 
poolDictionaries: " 
category: 'ConveyorSimulation'! 

WorkStation comment: 
'Class WorkStation is the class which represents a delayer to an object 
being processed. This class and its subclasses are used to represent 
machine resources in the system.'! 

!WorkStation methodsFor: 'accessing'! 
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amountA vailable 
"return the workstation amount available" 
AwsAmountAvailable! 

destinationPosition 
"get the position for the next destination of the cart" 
I adestination I 
adestination :=WorkStation returninstanceWithName: WorkStation getNextDestination. 
Aadestination enterPosition! 

destinationPosition: aWorkStation 
" get the position for the next destination of the cart from the workstation" 
I adestination I 
adestination :=WorkStation returninstanceWithName: (WorkStation getNextDestination: 

a WorkStation). 
A (adestination enterPosition)! 

destinations 
"Answer the destinations stored in the class variables" 
I adestinationList I 
adestinationList :=WorkStation DestinationList. 
AadestinationList! 

emptyQueueCapacity 
"Answer the length of the queue" 
AwsQueueController emptyQueueCapacity! 

enterPosition 
"answer the enter position of the workstation" 
AenterPosition! 

enterPosition: aEnterPosition 
"set the workstation enter position to aEnterPosition" 
enterPosition := aEnterPosition! 

exitPosition 
"answer the exit position of the workstation" 
AexitPosition! 

exitPosition: aExitPosition 
"set the exit position of the workstation to aExitPosition" 
exitPosition := aExitPosition! 

getaRandomN umber 
"return a random number from the Random number generator class" 
I aRandom I 
aRandom :=Random new. 
AaRandom next! 

getNextDestination: a WorkStation 
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"get the next destination of the cart from the workstation depending on certain probabilities of 
routing" 
Irs aConveyor wsNumber I 



aConveyor := ConveyorSimulation active conveyor. 
wsNumber := aConveyor numWorkStations. 
r :=a WorkStation getaRandomNumber. 
s := 0. 
1 to: wsNumber do: 

[:i I 
s :=(a WorkStation probabilitiesVector at: i) 

+ s. 
r <= s iff rue: ["WorkStation DestinationList at: i]]! 

inputQueueCapacity 
"Answer the length of the queue" 
"wsQueueController inputQueueCapacity! 

load Count 

name 

"Answer the loadCount that is the number of orders to be loaded at a workstation" 
"loadCount! 

"Answer the name" 
"name! 

name: aString 

next2 

" set workstation name" 
name := aString.! 

"Answer the next cart in the output queue" 
"wsQueueController nextl.! 

outputQueueCapacity 
"Answer the length of the queue" 
"wsQueueController outputQueueCapacity! 

probabilities 
"return the probability vector for the destination routing" 
"probabilities! 

probabilities Vector 
"probabilities! 

process Time 
"Answer the process time" 
"processTime! 

queueLength 
"Answer the length of the queue" 
"wsQueueController queueLength! 

setName: aString 
" set workstation name" 
name := aString.! 

setQDisciplineTo: aQDiscipline 
"set the queues discipline of the workstation" 
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type 

wsQueueController setBothQDisciplines: aQDiscipline! 

"Answer the type of the workstation" 
AwsType! 

type: aType 
"set the type of the workstation" 
wsType := aType! ! 

!WorkStation methodsFor: 'statistics'! 

printResultsHookOn: aStream with: aNumber 
"print statistics for the Hookl instances created" 
aStream cr; cr; nextPutAll: 'Statistics for Hook:', name,'#', aN umber printString; cr; 

nextPutAll:' No.Obs. Average Std.Dev Minimum Maximum Current'; cr. 
70 timesRepeat: [aStream nextPut: $-]. 
aStream cr. 
aStream nextPutAll: 'Utilization:'. 
wsUtilization printResultsOn: aStream. 
aStream cr; nextPutAll: Proc.Time: '. 
wsProcessingTimes printResultsOn: aStream. 
aStream cr. 
70 timesRepeat: ["wsQueueController printResultsOn: aStream." 

aStream nextPut: $-]. 
aStream cr! 

printResultsOn: aStream 
"print statistics for the workstation" 
aStream cr; cr; nextPutAll: 'Statistics for WorkStation:', name; cr; nextPutAll:' 

No.Obs. Average Std.Dev Minimum Maximum Current'; cr. 
70 timesRepeat: [aStream nextPut: $-]. 
aStream cr. 
aStream nextPutAII: 'Utilization:'. 
wsUtilization printResultsOn: aStream. 
aStream cr; nextPutAll: Proc.Time: '. 
wsProcessingTimes printResultsOn: aStream. 
aStream cr. 
wsQueueController printResultsOn: aStream. 
70 timesRepeat: [aStream nextPut: $-]. 
aStream cr! 

processTimel: aTime 
"set the process time of the workstations" 
wsProcessingTimes equals: aTime! 

!WorkStation methodsFor: 'task language'! 

generateAndLoadOrders 
"This method is used to schedule the generation of the subsequent load 
orders and try to load the current ones if possible" 
I aConveyor a WS I 
aConveyor := ConveyorSimulation active. 
1 to: aConveyor numWorkStations do: 
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[:i I 
aWS := selfreturnlnstanceWithName: (WorkStation DestinationList at: i). 
aWS type= 1 

ifTrue: 

aWS type= 2 
ifTrue: 

aWS type= 3 
ifTrue: 

[self tryToLoad. 
aWS loadCount: loadCount + 1]. 

[self tryToLoad. 
aWS loadCount: loadCount + 1]. 

[self tryToLoad. 
aWS loadCount: loadCount + 1].]. 

ConveyorSimulation active schedule: [self generateAndLoadOrders] 
after: (Normal mean: 20 deviation: 4)! 

produce: anAmount 
"anAmount of the workstation resource is available" 
wsAmountA vailable := wsAmountA vailable + anAmount. 
self provideServices! 

provideServices 
"provide workstation resources to the next job in queue" 
I waitingWFI I 
[ wsQueueController inputQueueEmpty not 

and: [cart:= wsQueueController next. 
cart amountNeeded <=self amountAvailable]] 

while True: 

provideServiceTo: aCart 

[waitingWFI := wsQueueController inputQueueRemove: cart. 
wsAmountAvailable := wsAmountAvailable- waitingWFI amountNeeded. 
wsUtilization equals: wsUtilization value+ waitingWFI amountNeeded. 
waitingWFI resume]! 

"This wfi needs to be serviced. Put into the queue, and provide a server if possible" 
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wsQueueController addTolnputQueue: aCart. "SimScript cr; nextPutAll: aCart 
printString, 'needs service at:', 

self printString." 
self provideServices. 
aCart pause! 

release: anAmount 
"Some cart has released anAmount of the workstation resource" 
wsUtilization equals: wsUtilization value- anAmount. 
self produce: anAmount! ! 

!WorkStation methodsFor: 'initialize-release'! 

initializeWithName: aString andAmount: aN umber exitPosition: aExitPosition enterPosition: 
aEnterPosition probabilities: a Vector processTime: a Time 

"Initialize the instance vars" 
name := aString. 
exitPosition := aExitPosition. 



enterPosition := aEnterPosition. 
wsAmountA vailable := aN umber. 
wsQueueController := QueueController new. 
wsProcessingTimes := ObsTrackedNumber new. 
processTime := aTime. 
wsUtilization := TimeTrackedNumber new. 
waitingForinputQ := OrderedCollection new. 
probabilities:= a Vector. 
blocked := false. 
loadCount := 0! 

initializeWithName: aString andAmount: aNumber exitPosition: aExitPosition enterPosition: 
aEnterPosition probabilities: a Vector processTime: aTime type: aType 

"Initialize the instance vars" 
name:= aString. 
exitPosition := aExitPosition. 
enterPosition := aEnterPosition. 
wsAmountAvailable := aNumber. 
wsQueueController := QueueController new. 
wsProcessingTimes := ObsTrackedNumber new. 
processTime := aTime. 
wsUtilization := TimeTrackedNumber new. 
waitingForlnputQ := OrderedCollection new. 
probabilities:= aVector. 
blocked := false. 
loadCount := 0. 
wsType := aType! 

loadCount: aCount 
"set the load count to aCount" 
loadCount := aCount! 

processTime: aTime 
"set the process time to aTime" 
processTime := aTime. 
"self! ! 

!WorkStation methodsFor: 'printing'! 

printOn: aStream 
"Express the work station in printable characters" 
aStream nextPutAll: 'WorkStation named:', name! ! 

!WorkStation methodsFor: 'queue capacity'! 

emptyQueueAddCart: aCart 
"add a cart to the empty queue" 
wsQueueController putlnEmptyQueue: aCart.! 

emptyQueueCapacity: aNumber 
"Change the empty queue to a definite capacity" 
wsQueueController emptyQueueCapacity: aNumber! 
inputQueueAddCart: aCart 
"add a cart to the empty queue" 
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wsQueueController addTolnputQueue: aCart! 

inputQueueCapacity: aNumber 
"Change the input queue to a definite capacity" 
wsQueueController inputQueueCapacity: aN umber! 

loadQueueCapacity: aNumber 
"Change the load queue to a definite capacity" 
wsQueueController loadQueueCapacity: aNumber! 

outputQueueCapacity: aNumber 
"Change the output queue to a definite capacity" 
wsQueueController outputQueueCapacity: aN umber! 

outputQueueEmpty 
"Check if the output queue is empty or not" 
AwsQueueController outputQueueEmpty2! 

putMelnOutputQueue: aCart 
"output queues are adjacent to the workstation, 
and do not need reservation. Cart's directly move into them, without 
worrying about other competition, if there is a space. If there is no space, they are blocked" 
I trueS I 
trueS := self hasOutputSpace. 
trueS= True 

iffrue: [wsQueueController putlnOutput: aCart] 
itFalse: 

remove2: aCart 

["There is no place for this wfi. the workStation is blocked" 
SimScript cr; nextPutAll: aCart printString , 'blocked the ' , self printString. 
blocked := true. 
blockingWFI := aCart. 
aCart pause. 
blocked := false. 
wsQueueController putlnOutput: aCart]! 

"The cart needs to be removed from the output queue of the workstation" 
blocked iffrue: [blockingWFI resume]. 
AwsQueueController remove: aCart! 

removeEmptyCart 
"The cart needs to be removed from the output queue of the workstation" 
AwsQueueController emptyQueueRemoveNext! ! 

!WorkStation methodsFor: 'simulation control'! 

holdFor: aTimeDelay 
"Schedule a delay of this period" 
Simulation active delayFor: aTimeDelay! ! 

!WorkStation methodsFor: 'testing'! 

hasEmptyQueueSpace 
"Is there place in the output queue?" 
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"wsQueueController emptyQueueHasSpace! 

has InputS pace 
"There is space in the workStation if the input queue has space or if there is a server available" 
"wsQueueController inputHasSpace! 

hasOutputSpace 
"Is there place in the output queue?" 
"wsQueueController outputHasSpace! 

isBlocked 
"Answer if the workStation is blocked" 
"blocked! 

!WorkStation methodsFor: 'decisions'! 

tryToLoad 
"Allow service if there is a loading order waiting for service" 
I aCart I 
wsQueueController emptyQueueEmpty not 

ifTrue: 
[cart:= wsQueueController nextEmpty. 
aCart := wsQueueController emptyQueueRemoveNext: cart. 
SimScript cr; nextPutAll: selfprintString, 'satsified a laodOrder ',self 

printString. aCart resume]! ! 
!WorkStation methodsFor: 'comparing'! 

<=another 
"work stations compare by name" 
"name <= another name! ! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

WorkStation class 
instanceVariableNames: "! 

!WorkStation class methodsFor: 'instance creation'! 

DestinationList 
"return the destination list" 
"Destinations! 

newWithName: aString andAmount: aN umber exitPosition: aExitPosition enterPosition: aEnterPosition 
probabilities: a Vector process Time: a Time type: aType 

"initialize instance vars" 
"(self new) 

initializeWithName: aString 
andAmount: aNumber 
exitPosition: aExitPosition 
enterPosition: aEnterPosition 
probabilities: aVector 
processTime: aTime 
type: aType; yourself! 

probability Vector 
""probabilities"! 



setDestinations: aDestDectionary 
"set the destination list to the list of workstations input by the user through 
the user interface" 
Destinations := aDestDectionary! ! 

!WorkStation class methodsFor: 'schedulingOrders'! 

generateAndLoadOrders 
"This method is used to schedule the generation of the subsequent load 
orders and try to load the current ones if possible" 
I aConveyor a WS I 
aConveyor := ConveyorSimulation active conveyor. 
1 to: aConveyor num WorkStations do: 

[:i I 
aWS := selfreturnlnstanceWithName: (WorkStation DestinationList at: i). 
aWS type= 1 

ifTrue: 

aWS type= 2 
ifTrue: 

aWS type= 3 
ifTrue: 

[aWS tryToLoad. 
aWS loadCount: aWS loadCount + 1]. 

[aWS tryToLoad. 
aWS loadCount: aWS loadCount+ 1]. 

[aWS tryToLoad. 
aWS loadCount: aWS loadCount + 1].]. 

SimScript cr; nextPutAll: self printString , ' generated ordersAt: ' , self printString. 
ConveyorSimulation active schedule: [self generateAndLoadOrders] 

after: (Normal mean: 10 deviation: 2) next! I 

!WorkStation class methodsFor: 'getAnlnstance'! 

returninstanceWithName: aName 
"return the WorkStation instance with the name aName" 
WorkStation alllnstances. 
A WorkStation alllnstances detect: [:each I each name= aName]! ! 

SmallTalk-80 Code For Class: Hookl 

WorkStation subclass: #Hook1 
instanceVariableNames: 'hookPosition hookNumber cartHeld hookStatus hookUtilization' 
classVariableNames:" 
poolDictionaries: " 
category: 'ConveyorSimulation'l 

!Hook1 methodsFor: 'accessing'! 

cartHeld 
"Return the cart held in the hook" 
AcartHeld! 

hookNumber 
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"Return the hook number of the hook instance" 
Ahook:Numberl 

hookPosition 
"Return the hook position of the hook instance" 
AhookPositionl 

hookStatus 
"Return the hook status of the hook" 
AhookStatus! ! 

!Hookl methodsFor: 'initialize-release'! 

cartDispose 
"After delivering the cart to its destination the storage location of the cart 
held is changed to empty and the hookStatus is changed to idle" 
cartHeld := nil. 
hookStatus := 0! 

cartHeld: aCart 
"Store the cart to be transported in the storage location cartHeld." 
cartHeld := aCart! 

hook:Number: aNumber 
"Set the hook number to aNumber" 
hook:Number := aNumber! 

hookPosition: aPosition 
"set the hook position to aPosition" 
hookPosition := aPosition! 

hookProcess: aTime 
"Set the process time of the hook to aHook" 
wsProcessingTimes equals: aTime! 

hookStatus: aStatus 
"Set the hook status of the hook to aStatus" 
hookStatus := aStatus! 
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initializeWithName: aString andAmount: aNumber hook:Number: aNumberl hookPosition: aNumber2 
hookStatus: aStatus 

"Initialize the instance vars" 
name := aString. 
wsAmountAvailable := aNumber. 
wsQueueController := QueueController new. 
wsProcessingTimes := ObsTrackedNumber new. 
wsUtilization := TimeTrackedNumber new. 
hook:Number := aNumberl. 
hookPosition := aNumber2. 
hookStatus := aStatus. 
wsQueueController inputQueueCapacity: 5; outputQueueCapacity: 51 

uitlizationl: aNumber 
"calculating the workstation utilization" 



wsUtilization equals: wsUtilization value+ aNumber! 

uitlization: aNumber 
"Calculating the workstation utilization" 
wsUtilization equals: wsUtilization value- 1! ! 

!Hookl methodsFor: 'task language'! 

provideServices 
"provide a Hookl instance to the next job in queue" 
I waiting cart I 
[ wsQueueController inputQueueEmpty not 

and: [cart:= wsQueueController next. 
cart amountNeeded <= wsAmountAvailable]] 

while True: 

provideServiceTo: aCart 

[waiting:= wsQueueController inputQueueRemove: cart. 
wsAmountAvailable := wsAmountAvailable- waiting amountNeeded. 
waiting resume]! 

"This cart needs to be serviced. Put into the queue, and provide a hook if possible" 
wsQueueController addTolnputQueue: aCart. 
self provideServices. 
aCart pause. 
wsUtilization equals: wsUtilization value+ aCart amountNeeded! 

release: anAmount at: aLocation 
"release anAmount of the hook at aLocation" 
wsUtilization equals: wsUtilization value- anAmount. 
"SimScript cr; nextPutAll: name,' is at:', aLocation name." 
self hookStatus: 0. 
self produce: anAmount! ! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

Hookl class 
instanceVariableNames: "! 

!Hookl class methodsFor: 'instance creation'! 

newWithName: aString andAmount: aN umber hookNumber: aNumberl hookPosition: aNumber2 
hookStatus: aStatus 

"Create a new hook at this location" 
"self new 

initializeWithName: aString 
andAmount: aNumber 
hookNumber: aNumberl 
hookPosition: aNumber2 
hookStatus: aStatus! ! 

SmallTalk-80 Code For Class: CartGenerator 

Object subclass: #CartGenerator 
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instanceVariableNames: 'name firstTime distribution lastTime totalCount initialCount county' 
classVariableNames: " 



poolDictionaries: " 
category: 'ConveyorSimulation'! 

CartGenerator comment: 
'Class WorkFlowGenerator creates supply-driven workflowitems into the 
system. This works like a create node in SLAM.'! 

!CartGenerator methodsFor: 'accessing'! 

name 
"Answer the name of the job that it generates" 
"name! 

total Count 
"Answer the totalCount of the job that it generates" 
"totalCount! ! 

!CartGenerator methodsFor: 'initialize-release'! 

frrstTime: timellastTime: time2 
"Initialize the frrst time of creation, last time of creation, initial number 
of carts created, and the maximum number of carts to be created" 
frrstTime := timel. 
lastTime := time2. 
"self! 

frrstTime: timellastTime: time2 initialCount: countl totalCount: count2 
"Initialize the first time of creation, last time of creation, initial number 
of carts created, and the maximum number of the Carts to be created" 
firstTime := timel. 
lastTime := time2. 
initialCount := countl. 
totalCount := count2. 
"self! 

initialize 
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"Default values of the frrst time, last time of creation, and the initial count and final count of the 
Carts to be created. The system is initialized to have 20 Carts" 

firstTime := 0.0. 
lastTime := 1000000000. 
totalCount := 19. 
initialCount := 0. 
name:= 'Cart'. 
"self! 

name: aName distribution: aDistribution 
"Set the name and the distribution according to which the Cart instances will be created with" 
name := aName. 
distribution := aDistribution. 
"self! 

totalCount: count 
"Initialize the initial number of carts created, and the maximum number of the Carts to be 

created" 
I aCount I 



aCount := count asNumber - 1. 
initialCount := 0. 
totalCount := aCount . 
Aself! ! 

!CartGenerator methodsFor: 'scheduling'! 

scheduleArrival 
"This is the message to schedule the creation of entities by this Cart generator." 
I sim aBlock I 
aBlock :=[(Cart name: name) startUp]. 
sim := Simulation active. 
sim 

newProcessFor: 
[I count I 
1 to: initialCount do: [sim newProcessFor: aBlock copy]. 
sim delayUntil: firstTime. 
sim newProcessFor: aBlock copy. 
count:= 0. 
[sim time< lastTime & count< self total Count] 

while True: 
[count:= count+ 1. 
sim delayFor: distribution next. 
sim newProcessFor: aBlock copy]]! ! 

n __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 
CartGenerator class 

instanceVariableNames: "! 

!CartGenerator class methodsFor: 'instance creation'! 

name: aName distribution: aDistribution 
"Create an instance of CartGenerator" 
I anObject I 

new 

anObject := self new. 
anObject name: aName distribution: aDistribution. 
AanObject! 

Asuper new initialize! ! 

SmallTalk:-80 Code For Class: Cart 

SimulationObject subclass: #Cart 
instanceVariableNames: 'name entryTime currentPosition workStation queueEntryTime 

currentW orkStation destination bypass tempDestination destinationPosition status serial done county 
cartUtilization ' 

classVariableNames: 'CartUtilization Count EntryTime MaterialHandling TimelnSystem' 
poolDictionaries: " 
category: 'ConveyorSimulation'! 

!Cart methodsFor: 'initialize-release'! 

cartUtilization: aNumber 
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self destination name = bypass name 
ifFalse: [ self status = 1 
ifi'rue: [cartUtilization equals: cartUtilization value- 1] 
ifFalse: [cartUtilization equals: cartUtilization value+ 1 ]].! 

initialize 
"The workflowitem starts from the buffer 'storage"' 
currentPosition := 1. 
currentWorkStation := 'WS1'. 
status:= 0. 
done := false. 
county:= 0. 
bypass :=WorkStation returnlnstanceWithName: 'BYPASS'. 
super initialize! 

initName: aName 
"The workflowitem is given a name" 
self initialize. 
self name: aName. 
cartUtilization := TimeTrackedNumber new. 

(Count includesKey: aName) ifi'rue: [serial:= Count at: aName put: ((Count at: aName) + 1)] 
ifFalse: [serial:= Count at: aName put: 1]. 
SimScript cr; nextPuWl: self printString, ' created'! I 

!Cart methodsFor: 'accessing'! 

amountNeeded 
"return the amount needed by a cart" 
AamountNeededl 

bypass 
Abypassl 

county 
Acountyl 

currentProcessTime 
"Answer the expected value of the current process time" 
AcurrentWorkStation processTime mean! 

currentWorkStation 
"Answer the name of the current workstation of the Cart " 
AcurrentWorkStationl 

currentWorkStation: aName 
"set the name of the current workstation of the Cart " 
currentWorkStation := aNamel 

destination 
"Answer the destination of the Cart" 
Adestinationl 

destination: a WorkStation 
"Set the destination of the Cart" 
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destination:= a WorkStation! 

done 
"done! 

name: aName 

position 

name := aName. 
"self! 

"Answer the current position of the Cart " 
"currentPosition! 

position: aPosition 
"Answer the current position of the Cart " 
currentPosition := aPosition.! 

queueEntryTime 
"queueEntryTime! 

resource Needed 
"resource Needed! 

resourceNeeded: aResource 
resourceNeeded := aResource! 

serial 
"serial! 

status 
"status! 

status: aS tatus 
status := aStatus. 
"self! 

tempDestination 
"tempDestination! 

tempDestination: aDestination 
tempDestination := aDestination! 

timeStamp 
" put time stamp to the entry time to the queue" 
queueEntryTime := Simulation active time! ! 

!Cart methodsFor: 'simulation control'! 

holdFor: aTimeDelay 

pause 

Simulation active delayCart: self for: aTimeDelay! 

"Pause the process of this cart" 
Simulation active stopProcess. 
resumptionSemaphore wait! 
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resume 
"Resume the process of this work flow item" 
Simulation active startProcess. 
resumptionSemaphore signal! ! 

!Cart methodsFor: 'testing'! 

checkShortestRouteFrom: a WorkStation 
"This method is to check if the shourtest route lies along a bypass" 
I aDestination aDestinationPosition bypassPosition exitl exit2 I 
aDestination := self destination. 
self currentWorkStation =bypass name 

itFalse: [aDestinationPosition := aDestination enterPosition. 
bypassPosition := bypass enterPosition. 

exitl := aDestination exitPosition. 
exit2 := bypass exitPosition. 

aDestinationPosition > bypassPosition & (exitl< exit2) 
itFalse: [ self position > aDestinationPosition & (self position < bypassPosition) 

iiTrue:[tempDestination :=destination. 
destination :=bypass. SimScript cr; nextPutAII: self printString , ' changed 

destination to bypass', destination printString.] 
itFalse: [self position< aDestinationPosition & (exit1 > exit2) 

iiTrue: [tempDestination := destination. 
destination :=bypass. SimScript cr; nextPutAII: self printString , ' changed 

destination to bypass ' , destination printString.].]]].! ! 

!Cart methodsFor: 'task language'! 

acquireResource: aResource 
"the cart should try to acquire a resource " 
resourceNeeded := aResource. 
amountNeeded := 1. 
aResource provideServiceTo: self! 

complete0perationsAtLocation1 
"The wfi has arrived at a resource, and acquired it. Now complete all the 
operations that are assigned at this location. This is done at the UALSC" 
I a WorkStation destname aStatus true2 true3 I 
a WorkStation:= destination. 
self currentWorkStation: destination name. 
self position: destination exitPosition. 
aStatus := self status. 
aStatus = 0 

iiTrue: [a WorkStation loadCount > 0 
iiTrue: 

[self getProcessedAtLocation. 
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a WorkStation loadCount: a WorkStation loadCount- 1. self status: 1.] 
itFalse: 

[true2 :=a WorkStation hasEmptyQueueSpace. 
true2= True 

iiTrue: 
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[a WorkStation emptyQueueAddCart: self. 
self pause. self getProcessedAU-ocation. self status: 1. a WorkStation loadCount: a WorkStation 
loadCount - 1. 

SimScript cr; nextPutAll: self printString , 1 joined the emptyQueue I , currentPosition 
printString.]]] 

ifFalse: 
[self gefProcessedAU-ocation. 
self status: 0. 
aWorkStation loadCount> 0 

iff rue: 
[self getProcessedAtLocation. 
a WorkStation loadCount: a WorkStation loadCount- 1. 
self status: 1. ] 

ifFalse: [true3 :=a WorkStation hasEmptyQueueSpace. 
true3 =True 

iff rue: 
[a WorkStation emptyQueueAddCart: self. 

SimScript cr; nextPutAll: self printString , I joined the emptyQueue I , currentPosition printString. 
self pause. 
"self acquireResource: a WorkStation." 
self getProcessedAtLocation. 
self status: 1. a WorkStation loadCount: 

a WorkStation loadCount- 1. SimScript cr; nextPutAll: self printString, I satisfied an order 1
, 

currentPosition printString.]]]. 
county := county + 1. 
destname :=a WorkStation getNextDestination: a WorkStation. 
destination:= WorkStation returninstanceWithName: destname. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAll: self printString , I released I , currentPosition printString. 
SimScript cr; nextPutAll: selfprintString, I going to I, destination printString. 
self releaseResource! 

complete0perationsAtLocation2 
"The wfi has arrived at a resource, and acquired it. Now complete all the 
operations that are assigned at this location. This is done at the LSW AT" 
I a WorkStation destname aStatus true3 I 
a WorkStation:= destination. 
self currentWorkStation: destination name. 
self position: destination exitPosition. 
aStatus := self status. 
aStatus = 0 iiTrue: [ " [a WorkStation loadCount > 0 

iiTrue: 

1. self status: 1. 

[self getProcessedAU-ocation. 
a WorkStation loadCount: a WorkStation loadCount- 1. 
self status: 1. ] 

ifFalse: [" true3 := aWorkStation hasEmptyQueueSpace. 
true3 =True 

iff rue: 
[a WorkStation emptyQueueAddCart: self. 
self pause. 

self getProcessedAtLocation. 
a WorkStation loadCount: a WorkStation loadCount-
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SimScript cr; nextPutAll: self printString , 1 satisfied a load order 1 , currentPosition printString]] 
county := county + 1. 
destname :=a WorkStation getNextDestination: a WorkStation. 
destination:= WorkStation returnlnstanceWithName: destname. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAll: self printString , 1 released 1 , currentPosition printString. 
SimScript cr; nextPutAll: selfprintString, I going to 1 , destination printString. 
self releaseResource! 

completeOperationsAtLocation3 
"The wfi has arrived at a resource, and acquired it. Now complete all the 
operations that are assigned at this location. This subroutine is for the LODST" 
I a WorkStation destname aStatus I 
a WorkStation:= destination. 
self currentWorkStation: destination name. 
self position: destination exitPosition. 
aStatus :=self status. 
aStatus = 0 

ifTrue: [self getProcessedAtLocation. 

county := county + 1. 

"aWorkStation loadCount: a WorkStation loadCount- 1." 
self status: 1. ]. 

destname := aWorkStation getNextDestination: a WorkStation. 
destination:= WorkStation returnlnstanceWithName: destname. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAII: selfprintString, I released I, currentPosition printString. 
SimScript cr; nextPutAll: selfprintString, I going to I, destination printString. 
self releaseResource! 

complete0perationsAtLocation4 
"The wfi has arrived at a resource, and acquired it. Now complete all the 
opemtions that are assigned at this location. This subroutine is for the OLUNLOD WS9" 
I a WorkStation destname aStatus I 
aWorkStation :=destination. 
self currentWorkStation: destination name. 
self position: destination exitPosition. 
aStatus := self status. 
"aStatus = 1 

ifTrue: ["self getProcessedAtLocation. self status: 0. 
county := county + 1. 
destname :=a WorkStation getNextDestination: a WorkStation. 
destination:= WorkStation returnlnstanceWithName: destname. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAll: self printString , I released 1 , currentPosition printString. 
SimScript cr; nextPutAll: selfprintString, 1 going to I, destination printString. 
self releaseResource! 

completeOperationsAtLocationS 
"The wfi has arrived at a resource, and acquired it. Now complete all the 
opemtions that are assigned at this location. This subroutine is for the ULST" 
I a WorkStation destname aStatus I 
aWorkStation :=destination. 
self currentW orkStation: destination name. 
self position: destination exitPosition. 



-------

aStatus := self status. 
aStatus = 1 

iffrue: [self getProcessedAtLocation. 

county := county + 1. 

a WorkStation loadCount: a WorkStation loadCount- 1. 
self status: 0. ]. 

destname :=a WorkStation getNextDestination: a WorkStation. 
destination:= WorkStation returnlnstanceWithName: destname. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAll: self printString , ' released ' , currentPosition printString. 
SimScript cr; nextPutAll: self printString , ' going to ' , destination printString. 
self releaseResource! 

complete0perationsAtLocation6 
"The wfi has arrived at a resource, and acquired it. Now complete all the 
operations that are assigned at this location. This subroutine is for the BYPASS" 
I a WorkStation I 
a WorkStation:= destination. 
self currentWorkStation: destination name. 
self position: destination exitPosition. 
self getProcessedAtLocation. county := county + 1. 
destination := self tempDestination. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAll: self printString , ' released ' , currentPosition printString. 
SimScript cr; nextPutAll: selfprintString, 'going to', destination printString. 
self releaseResource! 

complete0perationsAtLocation8 

fmishUp 

"The wfi has arrived at a resource, and acquired it. Now complete all the 
operations that are assigned at this location. This is done at the PPLS workstation" 
I a WorkStation destname I 
a WorkStation:= destination. 
self currentWorkStation: destination name. 
self position: destination exitPosition. 
self getProcessedAtLocation. 
county := county + 1. 
destname :=a WorkStation getNextDestination: a WorkStation. 
destination:= WorkStation retumlnstanceWithName: destname. 
self status: 1. 
a WorkStation putMelnOutputQueue: self. 
SimScript cr; nextPutAll: self printString , 'released' , currentPosition printString. 
SimScript cr; nextPutAll: selfprintString, 'going to', destination printString. 
self releaseResource! 

super finish Up! 

getProcessedAtLocation 
"The wfi has arrived at a resource, and acquired it. Now complete the current operation" 
I resource time aType I 
resource:= WorkStation retumlnstanceWithName: self currentWorkStation. 
a Type :=resource type. 

aType= 4 
iffrue: [time := 0.] 
itFalse: [ time := resource processTime next. ]. 
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self cartUtilization: self status. 
SimScript cr; nextPutAll: self printString , 1 processing time required at I , resource printString , 

1 I , time printString. 
SimScript cr; nextPutAll: self printString , I obtained I , resource printString. 

resource processTime1: time. 
self holdFor: time! 

release: aHook 
"release the hook when the cart gets to its destination at aPosition" 
aHook hookStatus: 0.! 

releaseResource 

startUp 

tasks 

"release the hook when the cart gets to its destination at aPosition" 
SimScript cr; nextPutAll: name, I is at: 1 , currentWorkStation. 
resourceNeeded release: amountNeeded. 
amountNeeded := 0! 

"The initial start up message for the work flow item" 
entryTime :=Simulation active time. 
self position: 5. 
self currentWorkStation: 1PPLS 1

• 

county:= 0. 
self tasks. 
self finish Up! 

I aWorkStation aType I 
[done] 

whileFalse: 
[a WorkStation:= WorkStation retumlnstanceWithName: self currentWorkStation. 

county= 0 
iiTrue: 

[destination:= a WorkStation. 
destinationPosition := destination enterPosition] 

itFalse: [a WorkStation:= destination]. 
aType :=a WorkStation type. 
aType= 1 

iiTrue: 

aType= 2 
iiTrue: 

aType = 3 
iiTrue: 

aType= 4 
iiTrue: 

aType = 5 

[self acquireResource: a WorkStation. 
self completeOperationsAtLocation 1]. 

[self acq uireResource: a WorkStation. 
self com plete0perationsAtLocation2]. 

[self acquireResource: a WorkStation. 
self complete0perationsAtLocation3]. 

[self acquireResource: a WorkStation. 
self completeOperationsAtLocation4]. 



iff rue: 

aType = 6 
iffrue: 

aType=7 
iff rue: 

self pause]! 

!Cart methodsFor: 'printing'! 

printOn: aStream 
"Printable form of this cart" 

[self acquireResource: a WorkStation. 
self complete0perationsAtLocation5]. 

[self acquireResource: a WorkStation. 
self com pleteOperationsAtLocation6]. 

[self acquireResource: a WorkStation. 
self com pleteOperationsAtLocation 7]. 

aStream nextPutAll: 'Cart', name,' serial#', serial printString! 
printResultsOn: aStream 
aStream cr. 
"nextPutAll: 'Utilization for:', name,' serial #',serial printString; cr; 
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nextPutAll:' No.Obs. Average Std.Dev Minimum Maximum Current'; cr. 

aStream 
70 timesRepeat: [aStream nextPut: $-]. aStream cr." 

nextPutAll: ",name,' serial# ',serial printString. 
cartUtilization printResultsOn: aStream. 
aStream cr. 

70 timesRepeat: [aStream nextPut: $-]. aStream cr.! ! 
u __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

Cart class 
instanceVariableNames: "! 

!Cart class methodsFor: 'instance creation'! 

name: aName 
I anObject I 

anObject := super new initName: aN arne. 
AanObject! 

!Cart class methodsFor: 'initialize-release'! 

initialize 
CartUtilization := TimeTrackedNumber new. 
Count:= Dictionary new.! ! 

!Cart class methodsFor: 'getAnlnstance'! 

count 
ACount! 

returnlnstance With Serial: aSerial 
Cart alllnstances. 
ACart alllnstances detect: [:each I each serial= aSerial]! ! 



SmallTalk:-80 Code For Class: ConveyorSimulation 

Simulation subclass: #ConveyorSimulation 
instanceVariableNames: 'cartGenerator outputStream conveyor' 
classVariableNames:" 
poolDictionaries: " 
category: 'ConveyorSimulation'! 

ConveyorSimulation comment: 
'The actual Simulation model is represented by this object. '! 

!ConveyorSimulation methodsFor: 'initialize'! 

addCartGenerator: aGenerator 
"Include a new CartGenerator in the set. CartGenerator 
merely send Cart Items into the simulation with time between 
arrivals given by a distribution" 

cartGenerator add: aGenerator! 
addConveyor: aConveyor 

"Include a new Conveyor in the set." 
conveyor := aConveyor! 

conveyor 

initialize 

"Return the known conveyor in the set." 
"conveyor! 

"Cart is initialized so that time in system statistics could be collected 
for individual job types. CartGenerator sends work through the 
system. outputStream is where the simulation results are written." 
Cart initialize. 
cartGenerator := OrderedCollection new. 
outputStream _ TextStream on: (String new: 512). 
super initialize! ! 

!ConveyorSimulation methodsFor: 'simulation control'! 

defineArrivalSchedule 
"The CartGenerator needs to schedule the first and subsequent arrivals of its Cart Items" 
cartGenerator do: [:creator I creator scheduleArrival]. 
super defineArrivalSchedule! 

delayCart: cart for: timeDelay 
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"This method is to delay the evaluation of the next block of action of the Cart object until the 
simulation time reaches the appropriate simulated time." 
self delayCart: cart until: currentTime + timeDelay! 

delayCart: cart until: aTime 
"This method is to delay the evaluation of the next block of action of the Cart object until the 
simulation time reaches the appropriate simulated time" 
cart resumption Time: a Time. 
eventQueue add: cart. 



fmishUp 

startUp 

cart pause! 

"We need to empty out the event queue." 
super finish Up. 
self printResultsOn: outputStream! 

"start up of simulation run" 
I dateAndTime I 
dateAndTime :=Time dateAndTimeNow. 
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outputStream nextPuWl: 'Simulation initiated at', (dateAndTime at: 2) 
(dateAndTime at: 1) printString. 

printString , ', ', 

super startUp! 

time: aTime 
"This message is for debugging purposes only" 
currentTime := aTime! ! 

!ConveyorSimulation methodsFor: 'accessing'! 

includesPart: partName 
"Answer if the partName is used in this simulation" 
cartGenerator do: [:cart I cart name= partName iffrue: ["true]]. 
"false! 

outputStream 
"Answer the current outputStream" 
"outputStream! 

outputStream: aStream 
"Designate aStream as the outputStream of the simulation" 
outputStream _ aStream! ! 

!ConveyorSimulation methodsFor: 'statistics'! 

clearStatisticsAt: aTime 
"Method to clear all the collected statistics at a specified time" 
self 

schedule: 

clearS tatistics]. 

[ObsTrackedNumber alllnstances do: [:aNumber I aNumber clearStatistics]. 
TimeTrackedNumber alllnstances do: [:aNumber I aNumber clearStatistics]. 
TrackedNumberWithCollection alllnstances do: [:aNumber I aNumber 

TrackedNumberWithHistogram allinstances do: [:aNumber I aN umber 
clearStatistics]] at: aTime! 

printResultsOn: aStream 
"print the collected statistics for the workstations, hooks, and carts" 
I aConveyor workStation aCart hooks aGenerator I 
aConveyor := ConveyorSimulation active conveyor. 
workStation:= Dictionary new. 
1 to: aConveyor numWorkStations do: [:i I workStation at: i put: (WorkStation 
returnlnstanceWithName: (WorkStation DestinationList at: i))]. 



1 to: aConveyor numWorkStations do: [:i I (workStation at: i) printResultsOn: aStream]. 
hooks:= Dictionary new. 
1 to: aConveyor trackSize do: [:i I hooks at: i put: (aConveyor track at: i)]. 
1 to: aConveyor trackSize do: [:i I (hooks at: i) 

printResultsHookOn: aStream with: (hooks at: i) hookNumber]. 
aStream cr; cr; nextPutAll: 'Utilization for Carts:'; cr; cr; nextPutAll: ' No.Obs. 
Average Std.Dev Minimum Maximum Current'; cr. 
70 timesRepeat: [aStream nextPut: $-]. 
aStream cr. 

aGenerator := cartGenerator at: 1. 
1 to: (( aGenerator totalCount) + 1) do: 

[:i I 
aCart :=Cart returnlnstanceWithSerial: i. 
aCart printResultsOn: aStream]. 

aStream cr; nextPutAll: 'Simulation Ended at'; nextPutAll: Date dateAndTimeNow printString; cr! ! 

! ConveyorSimulation methodsFor: 'tracing'! 

trace Off 
"Switch the trace on" 

SimScript := DummyTextStream new! 

trace On 
"Switch the trace on" 
SimScript := TextStream on: (String new: 512)! 

traceOnAt: aTime 
"Switch the trace on" 
Simulation active schedule: [ 
SimScript := TextStream on: (String new: 512)] at: aTime! ! 
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

ConveyorSimulation class 
instanceVariableNames: "! 

!ConveyorSimulation class methodsFor: 'instance creation'! 

new 

" Method to create a new instance of ConveyorSimulation " 
"super new initialize! ! 

!ConveyorSimulation class methodsFor: 'examples'! 

examplecg: aTime 
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"This example does not use BOM or assembly station, and is not consistent any more with the 
simulation codes" 

I a Vector aWorkStation bVectorbWorkStation gVector gWorkStation hVector hWorkStation 
iVector iWorkStation sim aConveyor aCartjVector jWorkStation dVector dWorkStation fVector 
fW orkStation I 
aCart := CartGenerator name: 'cart' distribution: (Deterministic value: 0). 
a Vector:= Dictionary new. 



0.2. 

0. 

0. 
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a Vector at: 1 put: 0; at: 2 put: 0.3; at: 3 put: 0.3; at: 4 put: 0; at: 5 put: 0.2; at: 6 put: 0; at: 7 put: 

a WorkStation:= WorkStation new. 
aWorkStation initializeWithName: 'PPLS' 

andAmount: 1 
exitPosition: 5 
enterPosition: 1 
probabilities: aVector 
processTime: (Normal mean: 4 deviation: 0.5) 
type: 9; emptyQueueCapacity: 0; inputQueueCapacity: 20; outputQueueCapacity: 20. 

bVector :=Dictionary new. 
bVector at: 1 put: 0.4; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0.3; at: 5 put: 0; at: 6 put: 0.3; at: 7 put: 

bWorkStation :=WorkStation new. 
bWorkStation initializeWithName: 'WS2' 

andAmount: 1 
exitPosition: 9 
enterPosition: 8 
probabilities: bVector 
processTime: (Normal mean: 4 deviation: 0.5) 
type: 1; emptyQueueCapacity: 5; inputQueueCapacity: 10; outputQueueCapacity: 20. 

dVector :=Dictionary new. 
dVector at: 1 put: 0.6; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0; at: 5 put: 0; at: 6 put: 0.4; at: 7 put: 0. 
dWorkStation :=WorkStation new. 
dWorkStation initializeWithName: 'WS3' 

andAmount: 1 
exitPosition: 15 
enterPosition: 14 
probabilities: dVector 
processTime: (Normal mean: 3 deviation: 0.4) 
type: 2; emptyQueueCapacity: 5; inputQueueCapacity: 5; outputQueueCapacity: 20. 

tV ector:= Dictionary new. 
tV ector at: 1 put: 0; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0; at: 5 put: 0.5; at: 6 put: 0; at: 7 put: 0.5. 
!WorkStation:= WorkStation new. 
!WorkStation initializeWithName: 'WS4' 

andAmount: 1 
exitPosition: 23 
enterPosition: 22 
probabilities: fVector 
processTime: (Normal mean: 4 deviation: 0.5) 
type: 3; emptyQueueCapacity: 5; inputQueueCapacity: 5; outputQueueCapacity: 20. 

gVector :=Dictionary new. 
gVector at: 1 put: 0.5; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0.5; at: 5 put: 0; at: 6 put: 0; at: 7 put: 

gWorkStation :=WorkStation new. 
gWorkStation initializeWithName: 'WS5' 

andAmount: 1 
exitPosition: 31 
enterPosition: 30 
probabilities: gVector 
processTime: (Normal mean: 3 deviation: 0.4) 
type: 5; emptyQueueCapacity: 0; inputQueueCapacity: 5; outputQueueCapacity: 20. 

hVector :=Dictionary new. 
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hVector at: 1 put: 0; at: 2 put: 0.25; at: 3 put: 0.25; at: 4 put: 0; at: 5 put: 0.25; at: 6 put: 0; at: 7 
put: 0.25. 

hWorkStation :=WorkStation new. 
hWorkStation initializeWithName: 'WS6' 

andAmount: 1 
exitPosition: 37 
enterPosition: 36 
probabilities: hVector 
processTime: (Normal mean: 4 deviation: 0.5) 
type: 5; emptyQueueCapacity: 5; inputQueueCapacity: 5; outputQueueCapacity: 20. 

iVector :=Dictionary new. 
iVector at: 1 put: 0.3; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0.7; at: 5 put: 0; at: 6 put: 0; at: 7 put: 0. 
iWorkStation :=WorkStation new. 
iWorkStation initializeWithName: 'WS7' 

andAmount: 1 
exitPosition: 44 
enterPosition: 43 
probabilities: iVector 
processTime: (Normal mean: 4 deviation: 0.5) 
type: 6; emptyQueueCapacity: 0; inputQueueCapacity: 10; outputQueueCapacity: 10. 

jVector :=Dictionary new. 
jVector at: 1 put: 0; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0; at: 5 put: 0; at: 6 put: 0; at: 7 put: 0. 
jWorkStation :=WorkStation new. 
jWorkStation initializeWithName: 'BYPASS' 

andAmount: 1 
exitPosition: 42 
enterPosition: 17 
probabilities: jVector 
processTime: (Deterministic value: 8) 
type: 7; emptyQueueCapacity: 0; inputQueueCapacity: 111; outputQueueCapacity: 111. 

aConveyor :=Conveyor new. 
aConveyor space: 10; speed: 1; trackSize: 48; numWorkStations: 8. 
sim := ConveyorSimulation new. 
sim activate. 
sim outputStream: Transcript. 
sim addCartGenerator: aCart. 
sim addConveyor: aConveyor. 
sim traceOn. 
sim startUp. 
sim schedule: [aConveyor move: 1] after: 10. 
sim schedule: [WorkStation generateAnd.LoadOrders] 

after: (Normal mean: 20 deviation: 4) next. 
sim clearStatisticsAt: 0.0. 
[sim time< aTime] 

whileTrue: [sim proceed]. 
sim finishUp. 
Transcript endEntry! ! 

SmallTalk-80 Code For Class: Queue 

Object subclass: #Queue 
instanceVariableNames: 'queue queueDiscipline queueLength timeinQueue entryTime' 
classVariableNames: " 



poolDictionaries: " 
category: 'ConveyorSimulation'! 

Queue comment: 
'This is a Queue object with 
queueDiscipline: Describes the Queue displine (LIFO, FIFO, ... etc.) (Default: FIFO)'! 

!Queue methodsFor: 'removing'! 
remove: anObject 
"remove a particular item from the queue" 
queueLength equals: (queueLength value- 1). 
timeinQueue equals: (Simulation active time- anObject queueEntryTime). 
"'queue remove: anObject .! 

removeFirst 
"Answer the first item in the queue, and remove it" 
ljobl 
job := queue removeFirst. 
queueLength equals: (queueLength value- 1). 
timelnQueue equals: (Simulation active time- job queueEntryTime). 
"'job! 

removeLast 
"Answer the first item in the queue, and remove it" 
ljobl 
job := queue removeLast. 
queueLength equals: (queueLength value- 1). 
timelnQueue equals: (Simulation active time- job queueEntryTime). 
"'job! ! 

!Queue methodsFor: 'initialize-release'! 

initialize 
"Set up the statistics collection object, the queue itself is an ordered collection" 
queueLength := TimeTrackedNumber new. 
timeinQueue := ObsTrackedNumber new. 
queue:= OrderedCollection new. 
"'self! ! 

!Queue methodsFor: 'adding'! 

add:aJob 
"Add to the ordered collection, and collect statistics" 
aJob timeStamp. 
queue add: aJob. 
queueLength equals: (queueLength value+ 1).! 

!Queue methodsFor: 'testing'! 

hasSpace 
"Unless overridden, queues have unlimited capacity" 
"'true! 

isEmpty 
"Answer whether the queue is empty" 
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"queue isEmpty! 

!Queue methodsFor: 'statistics'! 
display 

"display results" 
timeinQueue display! 

printResultsOn: aStream 

results 

"answer the statistics on the stream in a formatted style" 
aStream cr; nextPutAll: 'Length: ' 
queueLength printResultsOn: aStream. 
aStream cr; nextPutAll: Wait Time: '. 
timeinQueue printResultsOn: aStream. 
aStream cr! 

"Answer the statistics in an array of size 2" 
I stats I 
stats := Array new: 2. 
stats at: 1 put: queueLength results; at: 2 put: timeinQueue results. 
"stats! ! 

!Queue methodsFor: 'accessing'! 

ftrst 

last 

"First item in the queue" 
"queue first! 

"Answer the last item in the queue" 
"queue last! 

queueLength 
"Answer the current queue length" 
"queueLength value! ! 

!Queue methodsFor: 'task language'! 

fifo 

lifo 

next 

"Implement FIFO discipline" 
"queue first! 

"Implement LIFO discipline" 
"queue last! 

"self perform: queueDiscipline! 

setQDiscipline: aQDiscipline 
"set queue discipline" 
queueDiscipline := aQDiscipline. 
"self! 
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"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

Queue class 
instanceVariableNames: 11! 

!Queue class methodsFor: 'instance creation'! 
new 
II create a new queue " 
/\super new initialize! ! 

SmallTalk-80 Code For Class: CapacitatedQueue 

Queue subclass: #CapacitatedQueue 
instanceVariableNames: 'capacity' 
classVariableNames: 11 

poolDictionaries: " 
category: 'ConveyorSimulation'! 

!CapacitatedQueue methodsFor: 'testing'! 

hasSpace 
"Answer if there is enough place in the queue" 
queueLength value < capacity 

iffrue: [/\True] 
ifFalse: [/\False]! ! 

!CapacitatedQueue methodsFor: 'initialize-release'! 

capacity 
"initialize the instance vars of superclasses and set the capacity" 
super initialize. 
/\capacity! 

initCapacity: anAmount 
"initialize the instance vars of superclasses and set the capacity" 
super initialize. 
capacity := anAmount! ! 

!CapacitatedQueue methodsFor: 'adding'! 

add: aJob 
"This job had reserved a place. Now it has entered. Add to the queue." 
queueLength value> capacity iffrue: [self error: 'Queue capacity exceeded']. 
super add: aJob! ! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

CapacitatedQueue class 
instanceVariableNames: "! 

!CapacitatedQueue class methodsFor: 'instance creation'! 

capacity: amount 
"Create a capacitated queue with capacity amount" 
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Asuper new initCapacity: amount! ! 

SmallTalk-80 Code For Class: Conveyor 

Resource subclass: #Conveyor 
instanceVariableNarnes: 'space speed trackSize track inputPos outputPos numWorkStations 

hook Utilization ' 
classVariableNames:" 
poolDictionaries: " 
category: 'ConveyorSimulation'! 

!Conveyor methodsFor: 'initialize-release'! 

initializeWith: anArray 
"This is to initialize the instance vars of the Conveyor class from the array 
defined through the user input. This will also store all the Hook1 instances 
in the conveyor loop." 
I aWS1 aPos1 aWS2 aPos21 
space := (anArray at: 2) asNumber. 
speed:= (anArray at: 1) asNumber. 
trackSize := (anArray at: 3) asNumber. 
numWorkStations := (anArray at: 4) asNumber. 
track:= Dictionary new. 
inputPos :=Dictionary new. 
outputPos :=Dictionary new. 
1 to: trackSize do: [:i I track at: i put: (Hook1 
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newWithName: 'Hook' andAmount: 1 hookNumber: i hookPosition: i 
hookStatus: 0)]. 

1 to: numWorkStations do: 
[:i I aWS 1 :=WorkStation retumlnstanceWithNarne: (WorkStation DestinationList at:i). 
aPos1 := aWS1 enterPosition. 
inputPos at: i put: aPos1]. 

1 to: numWorkStations do: 
[:i I aWS2 :=WorkStation retumlnstanceWithNarne: (WorkStation DestinationList at:i). 
aPos2 := aWS2 exitPosition. 
outputPos at: i put: aPos2]! 

numWorkStations: aNumber 
"This is to initialize the number of workstations needed in the conveyor loop." 
numWorkStations := aNumber! 

space: aSpace 
"initialize the space between two consecutive hooks" 
space := aSpace! 

speed: aSpeed 
"initialize the speed of the conveyor loop" 
speed := aSpeed! 

trackSize: aSize 
"initialize the track size that is the number ofHook1 instances desired in the conveyor system." 
trackSize := aSize! ! 



!Conveyor methodsFor: 'accessing'! 

numWorkStations 

space 

speed 

track 

"return the number of workstations desired in the system" 
Anum WorkStations! 

"return the space between two hooks in the conveyor loop." 
Aspacel 

"return the speed of the conveyor loop." 
Aspeedl 

"return the track object that is all the hooks stored in the track (conveyor loop)" 
Atrackl 

trackSize 
"return the number of hooks in the conveyor system" 
AtrackSizel I 

!Conveyor methodsFor: 'task language'! 

move: aNumber 
"updates all the hook positions at a regular interval of time" 

self acceptCarts. 
self deliverCarts. 
self updateHookPositions 1: aN umber. 
ConveyorSimulation active schedule: [self move: aNumber] after: 10.1 

release: aHook at aPosition 
"release the hook when the cart gets to its destination at aPosition" 
"nothing to do" 

"SimScript cr; nextPuWl: name,' is at:', aPosition name."! 

updateHookPositions1: numHookSpaces 
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"after moving a numHookSpaces we have to update the hook positions. The hook numbers stay 
the same only their positions in the conveyor loop change." 

i)]. 

I hook tempTrack I 
SimScript cr; nextPuWl: self printString , ' all the hook positions are updated at ' , 
ConveyorSimulation active time printString. 
[numHookSpaces >self trackSize] 

whileTrue: [numHookSpaces = numHookSpaces- selftrackSize]. 
tempTrack :=Dictionary new. 
1 to: numHookSpaces do: [:i I tempTrack at: i put: (track at: self trackSize- numHookSpaces + 

self trackS ize to: 1 by: -1 
do: [:i I i > numHookSpaces 

1 to: self trackSize do: 

iiTrue: [track at: i put: (track at: i- numHookSpaces)] 
ifFalse: [track at: i put: (tempTrack at: i)]]. 

[:i I hook := self returnHookA vailableAtPosition: i. 
hook hookPosition + numHookSpaces > self trackSize 
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ifTrue: [hook hookPosition: hook hookPosition + numHookSpaces - self 
trackSize] 

ifFalse: [hook hookPosition: hook hookPosition + numHookSpaces]]! ! 

!Conveyor methodsFor: 'testing'! 

acceptCarts 
"This method is to allow the hook to grap a cart from the output queue of 
and transport it to its next destination" 

the workstation 

I aHook aWS1 cart I 
1 to: numWorkStations do: 

[:i I aHook :=track at: (outputPos at: i). 
aHook hookStatus = 0 

ifTrue: 
[aWS1 :=WorkStation retumlnstanceWithName: (WorkStation 

DestinationList at: i). 
a WS 1 outputQueueEmpty not 

ifTrue: 
[cart:= aWS1 next2. 
aHook cartHeld: (a WS 1 remove2: cart). 
cart checkShortestRouteFrom: a WS 1. 
aHook hookStatus: 1. 
aHook uitlization1: aHook hookStatus. 
SimScript cr; nextPutAll: cart printString , ' obtained 

aHook' , aHook hookN umber printS tring]]]! 

deliverCarts 
"This method is to allow the hook to deliver a cart to the input queue of the workstation and 
allow it to get serviced" 
I aHook aWS1 aWS2 aCart true3 pos1 pos2 travelTime I 
1 to: numWorkStations do: 

[:i I aHook := track at: (inputPos at: i). 
aHook hookS tatus = 1 

ifTrue: [aWS1 :=WorkStation returnlnstanceWithName: (WorkStation 
DestinationList at: i). 

a WS2 := aHook cartHeld destination. 
true3 := a WS 1 haslnputSpace. 
(aWS2 name= aWS1 name and: [true3 =True]) 

ifTrue: [aCart := aHook cartHeld. 
aHook cartDispose. 
aHook hookStatus: 0. 
aHook uitlization: aHook hookStatus. 
pos1 :=(WorkStation returnlnstanceWithName: 

aCart currentWorkStation) exitPosition. 
pos2 := aWS2 enterPosition. 
travelTime:= (pos2- pos1 * (self space I self 

speed)) abs. 
aHook hookProcess: travelTime. 
SimScript cr; nextPutAll: aCart printString , 'left the 

Hook' , aHook hookNumber printString. aCart resume]]]! 

isHookA vailableAtPosition: aPosition 
"This method is to check if the hook at a certain position is idle. If it is then 
service to a cart waiting for service" 

it can provide 



(track at: aPosition) hookStatus = 0 
iiTrue: [ATrue] 
ifFalse: [AFalse]! 

returnHookA vailableAtPosition: aPosition 
"return a Hook instance at a position" 
Atrack at: aPosition! ! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

Conveyor class 
instance V ariableNames: "! 

!Conveyor class methodsFor: 'instance creation'! 

newWith: anArray 
"Create an instance of conveyor by using the data provided by the user through the user 
interface" 
Asuper new initialize With: anArray! ! 

Cart initialize! 

SmallTalk:-80 Code For Class: ConExperimentView 
'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:13:25 pm'! 

View subclass: #ConExperimentView 
instanceVariableNames:" 
classVariableNames: " 
poolDictionaries: " 
category: 'ConveyorSimulation Interface'! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

ConExperimentView class 
instanceVariableNames: "! 

!ConExperimentView class methodsFor: 'instance creation'! 

openOn: convModel 
"Open a dialog view to ask question about the experiment" 
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I theModel top doneModel ctrll ctrl2 ctrl3 ctrl4 listView listWrapper plug done launch Window 
height origin I 

"conv Model resetExperiment." 
doneModel := ValueHolder with: false. 
theModel := ValueHolder with: (Array new: 6). 
(top:= Dialog View model: doneModel) leftlndent: 10; addVerticalSpace: 3; addTextLabel: 

'SIMULATION EXPERIMENT'. 
top yPosition: 30; leftlndent: 10; rightlndent: 130; addTextLabel: 'Seed for the experiment'; 

yPosition: 30; leftlndent: 150; rightlndent: 270; addTextLabel: 'Termination time'. 
top yPosition: 50; leftlndent: 10; rightlndent: 130. 
ctrll :=top addTextFieldOn: ((PluggableAdaptor on: theModel) 

collectionlndex: 1) initially: ". 
top yPosition: 50; leftlndent: 150; rightlndent: 270. 
ctr12 := top addTextFieldOn: ( (PluggableAdaptor on: theModel) 
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collectionlndex: 2) initially: 11
• 

top yPosition: 80; leftlndent: 10; rightlndent: 130; addTextLabel: 'Clear statistics at'; yPosition: 
80; leftlndent: 150; rightlndent: 270; addTextLabel: 'Trace on at'. 

done) 

top yPosition: 100; leftlndent: 10; rightlndent: 130. 
ctr13 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) 

collectionlndex: 3) initially: 11
• 

top yPosition: 100; leftlndent: 150; rightlndent: 270. 
ctrl4 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) 

collectionlndex: 4) initially: 11
• 

done := LabeledBoolean View new model: (plug := (PluggableAdaptor on: doneModel) 
selectValue: true). 

done be Visual: 'DONE ' asComposedText. 
done controller beTriggerOn Up. 
top addVerticalSpace: 4; leftlndent: 10; rightlndent: 270; addWrapper: ((BorderedWrapper on: 

inset: 2) 
atX: 0.5. 

plug 
putBlock: 

ctrll crBlock: []. 
ctrl2 crBlock: []. 
ctrl3 crBlock: []. 
ctrl4 crBlock: []. 
top width: 280. 

[:m :vI 
ctrll accept. 
ctrl2 accept. 
ctrl3 accept. 
ctrl4 accept. 
m value: v]. 

launch Window:= ScheduledControllers activeController view. 
height:= launch Window extent y. 
origin:= launch Window globalOrigin +(50@ (height+ 150)). 
top openAt: origin. 
convModel carryOutExperimentWith: theModel value. 

!ConExperimentView class methodsFor: 'printing'! 

printString 
"'Experiment'! ! 

SmallTalk:-80 Code For Class: ConResultView 
'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:13:38 pm'! 

View subclass: #ConResultView 
instanceVariableNames: II 

classVariableNames:" 
poolDictionaries: II 

category: 'ConveyorSimulation Interface'! 

II-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- II! 

ConResultView class 



instanceVariableNames: "! 

!ConResultView class methodsFor: 'instance creation'! 

openOn: conveyorModel 
"Display the results" 
I menu action I 
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menu := PopUpMenu labels: 'Show Statistics\Show Histograms\Show Trace' withCRs lines: #(2 
). 

action := menu startUp. 
action = 0 ifFalse: [action = 1 

iffrue: [conveyorModel showStatistics] 
ifFalse: [action = 2 

iffrue: [conveyorModel showHistograms] 
ifFalse: [conveyorModel showTrace]]]! ! 

!ConResultView class methodsFor: 'printing'! 

printString 
AResults'! ! 

SmallTalk-80 Code For Class: ConveyorDefinition View 
From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:13:52 pm'! 

View subclass: #ConveyorDefinition View 
instance V ariableNames: " 
classVariableNames:" 
poolDictionaries: " 
category: 'ConveyorSimulation Interface'! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

ConveyorDefinition View class 
instanceVariableNames: "! 

!ConveyorDefinitionView class methodsFor: 'comparing'! 

<=another 
Aself name <= another name! ! 

!ConveyorDefinitionView class methodsFor: 'instance creation'! 

openOn: convModel 
I theModel top doneModel ctrll plug done ctrl2launchWindow height origin ctr13 ctrl4 ctr15 I 
doneModel := ValueHolder with: false. 
theModel := ValueHolder with: (Array new: 5). 
(top:= Dialog View model: doneModel) addVerticalSpace: 3; addTextLabel: 'Conveyor 

Definition'. 
top yPosition: 30; leftlndent: 10; rightlndent: 130; addTextLabel: 'Speed'; yPosition: 30; 

leftlndent: 150; rightlndent: 270; addTextLabel: 'Space'. 
top yPosition: 50; leftlndent: 10; rightlndent: 130. 
ctrll :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 1) initially: ". 

top yPosition: 50; leftlndent: 150; rightlndent: 270. 
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ctrl2 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 2) initially: ". 
top yPosition: 80; leftlndent: 10; rightlndent: 130; addTextLabel: 'TackSize'; yPosition: 80; 

leftlndent: 150; rightlndent: 270; addTextLabel: 'Num WorkStat'. 
top yPosition: 100; leftlndent: 10; rightlndent: 130. 

ctrl3 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 3) initially: ". 
top yPosition: 100; leftlndent: 150; rightlndent: 270. 
ctrl4 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 4) initially:". 

top yPosition: 120; leftlndent: 10; rightlndent: 130; addTextLabel: 'No. of Carts'. 
top yPosition: 140; leftlndent: 10; rightlndent: 130. 

done) 

ctrlS :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 5) initially: ". 
done := LabeledBoolean View new model: (plug := (PluggableAdaptor on: doneModel) 

done be Visual: 'DONE ' asComposedText. 
done controller beTriggerOnUp. 

selectValue: true). 

top addVerticalSpace: 4; leftlndent: 10; rightlndent: 270; addWrapper: ((BorderedWrapper on: 

inset: 2) 
atX: 0.5. 

plug 
putBlock: 

ctrll crBlock: []. 
ctrl2 crBlock: []. 
ctrl3 crBlock: []. 
ctrl4 crBlock: []. 
ctrl5 crBlock: []. 
top width: 280. 

[:m :vI 
ctrll accept. 
ctrl2 accept. 
ctr13 accept. 
ctrl4 accept. 
ctrl5 accept. 
m value: v]. 

launch Window:= ScheduledControllers activeController view. 
height:= launch Window extent y. 
origin:= launch Window globalOrigin +(50@ (height+ 150)). 
top openAt: origin. 
convModel informSimulationWith: theModel value.! ! 

!ConveyorDefinitionView class methodsFor: 'printing'! 

printString 
NConveyor Definition Browser'! ! 

SmallTalk-80 Code For Class: ConveyorView 
'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:14:16 pm'! 

View subclass: #ConveyorView 
instance V ariableNames: " 
classVariableNames:" 
poolDictionaries: " 
category: 'ConveyorSimulation Interface'! 



,. __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

ConveyorView class 
instanceVariableNames: "! 

!ConveyorView class methodsFor: 'instance creation'! 

open 
I window topView launchWindow origin height convModell 
convModel := ConvModel new. 
window := ScheduledWindow new. 
window label: 'ConveyorSimulation Launcher'. 
window minimumSize: 200@ 100. 
top View:= CompositePart new. 
top View add: (Look:Preferences edgeDecorator on: (SelectionlnListView 

on: convModel 
printltems: true 
oneltem: false 
aspect: #view Name 
change: #viewChange: 
list: #viewList 
menu: nil 
initialSelection: #viewName)) 

borderedln: (0@0 extent: 1@ 1). 
window component: topView. 
launch Window:= ScheduledControllers activeController view. 
height:= launch Window extent y. 
origin:= launch Window globalOrigin +(50@ (height+ 10)). 

window o enAt: ori in! ! 

SmallTalk-80 Code For Class: ConvModel 
'From Objectworks(r)\Smalltalk, Release 4 of25 February 1991 on 21 April1992 at 12:14:28 pm'! 

Model subclass: #ConvModel 
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instanceVariableNames: 'workStationSelection workStationMenu currentObject viewSelection 
processTimeSelection wsSelection histogramSelection histograms histogramNameList 
histogramStationList workstations arrivalDistributions probability Menu probabilities aConveyorVector 
probability Selection providedHistogramList processTimereset processTimeselection processTime ' 

classVariableNames: 'TextMenu' 
pooiDictionaries: " 
category: 'ConveyorSimulation Interface'! 

!ConvModel methodsFor: 'launching views'! 

viewChange: aView 

view List 

"The user wants to open a view" 
a View isNil 

ifTrue: [viewSelection :=nil] 
itFalse: [viewSelection :=a View. a View openOn: self]! 

I list I 
list := OrderedCollection new: 5. 
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list add: WorkStationDefmition View; add: Conveyor Definition View; add: ProbabilitiesDefinition View; 
add: ConExperimentView; add: ConResultView. 
"list! 

view Name 
"viewSelection! ! 

!ConvModel methodsFor: 'initialize-release'! 

initialize 
"Initialize the model" 
workstations:= Dictionary new.! ! 

!ConvModel methodsFor: 'workstation definition'! 

add: a WorkStation 
"Add a workstation to the workstation list" 
workstations at: a WorkStation name put: aWorkStation.! 

addWorkStation 
"Add a new workstation to the work station list of this model" 
self addWorkStation: #workStation! 

addWorkStation: aWorkStation 
"Add a new workstation to the workstation list of this model" 
I description in out em exit enter tipe a Vector workst I 

a Vector:= Dictionary new. 
workst :=WorkStation new. 
processTimereset := false. 
currentObject := workst. 
currentObject :=WorkStation newWithName: 'current' andAmount: 1 exitPosition: 1 enterPosition: 1 
probabilities: a Vector processTime: 0 type: 1. 
self add: currentObject. 

description:= DialogView getWorkStationWithDefault: #(WorkStationName' 11 0 0 3 0 0 0) 
at: self dialogDisplayPoint model: self. 

(description at: 1) 
=" itFalse: 

["currentObject name: (description at: 1)." 
workstations do: [:workstation I workstation name= (description at: 1) 

iff rue: 

already exists') startUp. "self]]]. 
(description at: 1) =" 

[(PopUpMenu labels: 'WorkStation with that name 

itFalse:[self renameWorkStationNamed: 'current' to: (description at: 1). 
in:= (description at: 2) asNumber. 
currentObject inputQueueCapacity: in. 
out:= (description at: 3) asNumber. 
currentObject outputQueueCapacity: out. 
em := (description at: 4) asNumber. 
tipe :=(description at: 5) asNumber. 
currentObject type: tipe. 
currentObject emptyQueueCapacity: em. 
exit:= (description at: 6) asNumber. 
currentObject exitPosition: exit. 



enter:= (description at: 7) asNumber. 
currentObject enterPosition: enter.]. 

self changed: #workStationNamel 
dialogDisplayPoint 

"Place to show a dialog view" 
I window height origin I 
window:= ScheduledControllers activeController view. 
height := window extent y. 
origin:= window globalOrigin + (0@ (height/ 2)) + (170@ 60). 
origin x: origin x rounded. 
origin y: origin y rounded. 
Aoriginl 

initialProcessTime 
"Answer the process time distribution of the current operation" 
self workStationName isNil 
iffrue: [Anil] 
itFalse: [Aself workStationName processTime]l 

modifyWorkStation 
"Add a new plant to the plant list of this model" 
I description oldDescription I 
currentObject := workStationSelection. 
oldDescription := Array new: 7. 
oldDescription at: 1 put: currentObject name. 
oldDescription at: 2 put: currentObject inputQueueCapacity. 
oldDescription at: 3 put: currentObject outputQueueCapacity. 
oldDescription at: 4 put: currentObject emptyQueueCapacity. 
oldDescription at: 5 put: currentObject type. 
oldDescription at: 6 put: currentObject exitPosition. 
oldDescription at: 7 put: currentObject enterPosition. 

description :=Dialog View 
getWorkStationWithDefault: oldDescription at: self dialogDisplayPoint model: self. 

(description at: 1) = " 
itFalse: [selfrenameWorkStationNamed: currentObject name to: (description at: 1). 

currentObject inputQueueCapacity: (description at: 2) asNumber. 
currentObject outputQueueCapacity: (description at: 3) asNumber. 
currentObject emptyQueueCapacity: (description at: 4) asNumber. 
currentObject type: (description at: 5) asNumber. 
currentObject exitPosition: (description at: 6) asNumber. 
currentObject enterPosition: (description at: 7) asNumber. 

currentObject := nil. 
self changed: #workStationNamel 

probabilitiesList 
"Answer the list of objects for which probabilities are needed" 
I list I 
A self wsListl 

process Time 
"Answer the name of the process time distribution currently selected" 
AprocessTimeselectionl 

processTimeChange: aDist 
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"The user of the operation definition dialog view has changed the selection of the distribution" 
aDist isNil 

iffrue: [processTimeselection := nil. processTimereset := false] 
itFalse: 

[processTimereset 
iffrue: [processTimereset :=false] 
itFalse: [aDist getParameters. 

processTimeList 

currentObject processTime: aDist]. 
processTimeselection := aDist]! 

"Answer the list of process time for the current operations " 
AcurrentObject processTimeList! 

remove WorkStation 
"the user wants to remove a workStation from the workStation list" 
I workstation I 
workstation := workStationSelection. 
workStationSelection :=nil. 

workstations removeKey: workstation name. 
self changed: #workStationName! 

rename WorkStation 
"the user wants to rename a workStation from the workStation list. " 
laName I 
aName :=Dialog View request: 'New name for the workStation?'. 
aName =" iffrue: [Aself]. 
selfrenameWorkStationNamed: workStationSelection name to: aName. 
self changed: #workStationName! 

renameWorkStationNamed: oldName to: aName 
"the user wants to rename a workCenter from the workCenter list. " 
I name workStation I 
oldName = aName itFalse: [workStation :=workstations at: oldName. 
name := aName. 
[workstations includesKey: name] 
whileTrue: [name:= (Dialog View request: 'This name is already used. Provide another name')]. 
workstations removeKey: oldName. 
workStation name: name. 
workstations at: name put: workStation]! 

workStationChange: a WorkStation 
"The user of the workstation definition window has changed the selection of the workstation. 
Inform the dependent lists" 
a WorkStation isNil 

iffrue: [ workStationSelection := nil] 
itFalse: [workStationSelection := aWorkStation]. 

self changed: #text! 

workStationMenu 
"Answer an ActionMenu of operations on workStations that is to be displayed 
when the operate menu button is pressed." 
workStationSelection isNil 

iffrue: [ workStationMenu _ ActionMenu labels: 'add a work station' withCRs 



lines:#() selectors: #(#addWorkStation)] 
ifFalse: [(workStationSelection isKindOf: WorkStation) 

ifi'rue: [ workStationMenu _ ActionMenu 
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labels: 'add a workStation\modify-review\remove\rename' withCRs lines: #(2 ) 
selectors: #(#addWorkStation #modifyWorkStation #remove WorkStation #rename WorkStation)] 

ifFalse: [workStationMenu _ ActionMenu 
labels: 'add a workStation\modify-review\remove\rename' withCRs lines: #(2 ) 

selectors: #(#addWorkStation #modifyWorkStation #removeWorkStation #renameWorkStation )]]. 
"workStationMenul 

workStationName 

wsList 

"Answer the list of workstations defined so far" 
"workStationSelectionl 

"Answer the list of workstations defined so far" 
"workstations values asSortedCollection. 

!ConvModel methodsFor: 'accessing'! 

conveyor Vector 
"aConveyorVectorl 

workstation 
lnameWorkStation I 
workstations isEmpty 

ifFalse: [name WorkStation :=Dialog View request: 'Name of workstation'. 
"workstations at: nameWorkStation put (WorkStation new name: nameWorkStation)]. 
"workstations values asOrderedCollection at: 11 I 

!ConvModel methodsFor: 'information'! 

inform Simulation With: anArray 
aConveyorVector := anArray. 

!ConvModel methodsFor: 'probability definition'! 

probability Menu 
"Answer an ActionMenu of operations on workStations that is to be displayed 
when the operate menu button is pressed." 
(workStationSelection isKindOf: WorkStation) ifi'rue: [probability Menu_ ActionMenu 

labels: 'Specify Probabilities' withCRs 
lines: #(2) 
selectors: #( #specifyProbabilities)]. 

"probability Menu! 

specify Probabilities 
I aList aSize anObject a Vector anArray bList I 
aList := workstations values asSortedCollection. 
aSize := aList size. 
anObject := workStationSelection. 
anArray :=Array new: aSize. 
a Vector:= DialogView getProbabilitiesWithDefault: anArray 
at: self dialogDisplayPoint model: self. 



1 to: aSize do: [: il ( anObject probabilities) at: i put: (a Vector at: i) asNumber]. 
bList :=Dictionary new. 
1 to: (aList size) do: [:i I bList at: i put: ((aList at: i) name)]. 
WorkStation setDestinations: bList.!! 

!ConvModel methodsFor: 'experimenting'! 

carryOutExperimentWith: anArray 
I aCart sim bArray aConveyor aGen I 
sim := ConveyorSimulation new. 
bArray :=self conveyorVector. 
aGen := CartGenerator new. 
aGen totaiCount: (bArray at: 5). 
aCart :=aGen name: 'cart' distribution: (Deterministic value: 0). 
bArray :=self conveyorVector. 
aConveyor := Conveyor new With: bArray. 
sim activate. 
sim addConveyor: aConveyor. 
sim outputStream: Transcript. 
sim addCartGenerator: aCart. 
sim startUp. 
sim clearStatisticsAt: (anArray at: 3) asNumber. 
sim schedule: [aConveyor move: 1] after: 10. 
sim schedule: [WorkStation generateAndLoadOrders] 

after: (Normal mean: 10 deviation: 2) next. 
Cursor execute showWhile: [[sim time< (anArray at: 2) asNumber] 

whileTrue: [sim proceed]]. 
sim finish Up. 
Transcript endEntry! ! 

.. __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

ConvModel class 
instanceVariableNames: "! 

!ConvModel class methodsFor: 'instance creation'! 

new 
"Create an instance of the sim model" 
Asuper new initialize! ! 

!ConvModel class methodsFor: 'initialize-release'! 

initialize 
"The menu to appear in the code view" 
TextMenu := 

ActionMenu 

ConvModel initialize! 

labelList: #((again undo) (copy cut paste) (accept cancel)) 
selectors: #(again undo copySelection cut paste accept cancel)! ! 

SmallTalk:-80 Code For Class: ProbabilitiesDefintion View 
'From Objectworks(r)\Smalltalk, Release 4 of25 February 1991 on 21 April1992 at 12:48:37 pm'! 
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View subclass: #ProbabilitiesDefinition View 
instanceVariableNames: 'topView' 
classVariableNames: " 
poolDictionaries: " 
category: 'ConveyorSimulation Interface'! 

!ProbabilitiesDefinition View methodsFor: 'initialize-release'! 

openOn: aModel 
"Open a workstation definition window on the model." 
I window buttonOffset launch Window height origin I 
buttonOffset := LabeledBoolean View defaultHeight negated. 
window:= ScheduledWindow new. 
window label: 'Probability Definition Browser'. 
window minimumSize: 300@ 150. 
top View:= CompositePart new. 
topView add: selfborderedln: ((LayoutFrame new) leftOffset: 0.0; topFraction: 0.0; 

rightFraction: 1.0; bottomFraction: 0.0 offset: buttonOffset negated+ 4). 
top View add: (LookPreferences edgeDecorator on: (SelectionlnListView 

on: aModel 
printltems: true 
oneltem: false 
aspect: #workStationName 
change: #workStationChange: 
list: #wsList 
menu: #probabilityMenu 
initial Selection: #workS tationName)) 

in: ((LayoutFrame new) leftFraction: 0.0; leftOffset: 0.0; topFraction: 0.0 offset: 
buttonOffset negated + 4; rightFraction: 0.66; bottomFraction: 1 offset: buttonOffset). 

window component: top View. 
launch Window:= ScheduledControllers activeController view. 
height:= launch Window extent y. 
origin:= launch Window globalOrigin + (0@ (height+ 5)). 
window openAt: origin! ! 

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "! 

ProbabilitiesDefinition View class 
instanceVariableNames: "! 

!ProbabilitiesDefinitionView class methodsFor: 'printing'! 

printString 
"'Probabilities Definition Browser'! ! 

!ProbabilitiesDefinitionView class methodsFor: 'comparing'! 

<=another 
"self name <= another name! ! 

!ProbabilitiesDefinitionView class methodsFor: 'instance creation'! 

openOn: aModel 
"Open a plant definition window on a SimModel" 
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I view I 
view := self new initialize. 
view model: aModel. 
view openOn: aModel! ! 

SmallTalk:-80 Code For Class: StringListView 
From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:48:53 pm'! 

SelectioninListView subclass: #StringinListView 
instance V ariableNames: " 
classVariableNames: " 
poolDictionaries: " 
category: 'ConveyorSimulation Interface'! 

!StringinListView methodsFor: 'list access'! 

displayableLinesFrom: anArray 
"Answer a collection of displayable lines from anArray." 

"printltems 
iffrue: [anArray collect: 

[:each I each copyUpTo: Character cr]] 
ifFalse: [anArray]! ! 

SmallTalk:-80 Code For Class: WorkStationDefintionView 
From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:49:14 pm'! 

View subclass: #WorkStationDefinitionView 
instanceVariableNames: 'code View box View top View buttonSelection' 
classVariableNames: " 
poolDictionaries:" 
category: 'ConveyorSimulation Interface'! 

!WorkStationDefinition View methodsFor: 'initialize-release'! 

openOn: aModel 
"Open a workstation definition window on the model." 
"WorkStationDefinitionView openOn: ConveyorModel new" 
I window buttonOffset launch Window height origin I 
buttonOffset := LabeledBoolean View defaultHeight negated. 
window := ScheduledWindow new. 
window label: Workstation Definition Browser'. 
window minimumSize: 300 @ 150. 
top View:= CompositePart new. 
top View add: selfborderedln: ((LayoutFrame new) leftOffset: 0.0; topFraction: 0.0; 

rightFraction: 1.0; bottomFraction: 0.0 offset: buttonOffset negated+ 4). 
top View add: (LookPreferences edgeDecorator on: (SelectioninListView 

on: aModel 
printltems: true 
oneltem: false 
aspect: #workStationName 
change: #workStationChange: 
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list: #wsList 
menu: #workStationMenu 
initialSelection: #workStationName)) 

in: ((LayoutFrame new) leftFraction: 0.0; leftOffset: 0.0; topFraction: 0.0 offset: 
buttonOffset negated+ 4; rightFraction: 0.66; bottomFraction: 1 offset: buttonOffset). 

window component: topView. 
launch Window:= ScheduledControllers activeController view. 
height:= launch Window extent y. 
origin:= launch Window globalOrigin + (0@ (height+ 5)). 
window openAt: origin! I 

IWorkStationDefinitionView methodsFor: 'displaying'! 

displayOn: aGraphicsContext 

"Create or refresh the view. All the subview take care of 
themselves. The function of this message is to write the heading 
ofthe lists" 

I aRectangle cellLabel width height xCoord yCoord I 

aRectangle := Rectangle origin: Point zero extent: self container bounds extent. 
cellLabel := 'Workstations' asText allBold asComposedText. 
width := cellLabel width. 
height := cellLabel height. 
xCoord := (aRectangle width * 0.33 - width) I 2 . 
yCoord := (aRectangle height -height)/ 2 -1. 
cellLabel displayOn: aGraphicsContext at: (xCoord @yCoord).l I 
It-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- II! 

W orkStationDefinition View class 
instanceVariableNames: "I 

IWorkStationDefinitionView class methodsFor: 'printing'! 

printString 
"WorkStation Definition Browser'! I 

!WorkStationDefinitionView class methodsFor: 'instance creation'! 

openOn: aModel 
"Open a workstation definition window on a ConveyorModel" 
I view I 
view := self new initialize. 
view model: aModel. 
view openOn: aModelll 

IWorkStationDefinitionView class methodsFor: 'comparing'! 

<=another 
"self name <= another name! I 
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A single-loop conveyor system is the simplest conveyor system configuration. 

The system does not have an elevator or a transfer section. However, the system can 

have bypass sections for providing shorter routes between stations on the conveyor loop. 

The following appendix will provide the user with information that will guide him/her in 

entering the conveyor system model parameters. This information will be divided in 

three sections: (1) workstation parameters specification, (2) conveyor parameters 

specification , and (3) probability vector specifications. Theses three sections are 

represented by three browsers in the user interface. 

Workstation parameters specification: Each workstation has to be defined by the 

following parameters: 

- N arne: The name of the workstation is specified as desired by the user except in 

the case of the Production Programming and Load Station (PPLS) and the ByPass section 

(BYPASS). If a Production Programming and Load Station is to be included in the 

model it has to have the name PPLS. A ByPass section should also have the name 

BYPASS. 

-Input/Output/Empty queues capacities: The only restrictions on the queue 

capacities is in the case of the PPLS workstation. Both the input and output queues 

should have capacities equal to the number of carts included in the model. 

- Type: The model accommodates seven types of workstations. The following 

table illustrates the numbers assigned for the different types of workstations: 



TABLE 20 

WORKSTATION TYPES 

Workstation N arne Type 

UALSC 1 

LSWAT 2 

LODST 3 

OLUNLOD 4 

ULST 5 

BYPASS 6 

PPLS 7 

- Process time: The workstation browser provides a list of probability 

distributions that the user can use. 
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- Exit/Enter positions: Each workstation will have an entering position where 

carts get delivered by the hooks (this position is the same as the input queue position) and 

an exiting position where carts get picked up by the hooks (this position is the same as 

the output queue position). The user has to enter a number between 1 and the number of 

hooks included in the model. The exit position is always smaller than the entering 

position of the workstation (this is explained in details in Chapter VI). 

Conveyor Parameters Specification: Each conveyor will have the following 

parameters: 

- Speed: The user can enter any speed with any units desired for the conveyor 

system. 
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- Space: The user should enter the space desired between two consecutive hooks. 

The unit of the space should match the unit of the speed. For example if the speed is 

specified in ft/min., the space should be specified in ft. 

- track size: The user should enter the maximum number of hooks to be included 

in the conveyor loop. This number when multiplied by the space specified will result in 

the length of the conveyor loop. 

-No. of Carts: The user should enter the number of carts to be accommodated by 

the model. 

Probability Vector Specification: As explained in chapter VI, each workstation 

will have a probability vector that will specify the probability with which a workstation 

sends a specific cart to another workstation. The probability vector for the BYPASS 

section should be the vector zero. Also each other workstation will have a zero 

probability of sending a cart to the BYPASS. The probability vector for a specific 

workstation has to have zero in the entry of this specific workstation; since a workstation 

does not send carts to itself. The user has to make sure that the sum of all the 

probabilities add up to one. 
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AHP Matrix Calculation Set 1 

NODE 1.1- Simulation Paradigm 

Links from Lower Level: 

1) Node 2.1- Model effectiveness 
2) Node 2.2- Model developer's potency and modeling effort 
3) Node 2.3- Performance considerations 

Original weights 
Col 1 2 3 

Row 
1 1.000 7.000 9.000 
2 0.143 1.000 5.000 
3 0.111 0.200 1.000 

Normalized weights 
Col 1 2 3 Weights 

Row 
1 0.797 0.853 0.600 0.750 
2 0.114 0.122 0.333 0.189 
3 0.089 0.024 0.066 0.059 

Estimation of matrix consistency: 

Lambda max: 3.210 

Consistency index: 0.105 

Consistency ratio: 0.181 
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AHP Matrix Calculation Set 2 

NODE 2.1- Model Effectiveness 

Links from Lower Level: 

1) Node 3.1 -Model reusability 
2) Node 3.4- Output provisions 
3) Node 3.6- Graphics/User interface capability 
4) Node 3.10-Model representation correspondence to the real system 
5) Node 3.11-Model flexibility 

Original weights 
Col 1 2 3 4 5 

Row 
1 1.000 0.200 1.000 0.200 0.143 
2 5.000 1.000 5.000 3.000 1.000 
3 1.000 0.200 1.000 0.200 0.167 
4 5.000 0.333 5.000 1.000 4.000 
5 7.000 1.000 6.000 0.250 1.000 

Normalized columns 
Col 1 2 3 4 5 Weights 

Row 
1 0.053 0.073 0.055 0.043 0.023 0.049 
2 0.263 0.366 0.277 0.645 0.158 0.342 
3 0.053 0.073 0.055 0.043 0.026 0.050 
4 0.263 0.121 0.277 0.215 0.633 0.302 
5 0.368 0.365 0.333 0.053 0.158 0.255 

Estimation of matrix consistency: 

Lambda max: 5.637 

Consistency index: 0.159 

Consistency ratio: 0.142 
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AHP Matrix Calculation Set 3 

NODE 2.2 - Model Developer's Potency and Modeling Effort 

Links from Lower Level: 

1) Node 3.1 -Model reusability 
2) Node 3.2- Change management capability 
3) Node 3 3- Software modularity 
4) Node 3.5- Model debugging support/Verification 
5) Node 3.8 -Simulation language knowledge/Ease of learning effort 

required 
6) Node 3.10-Model representation correspondence to the real system 
7) Node 3.11-Modeling flexibility 

Original weights 
Col 1 2 3 4 5 6 7 

Row 
1 1.000 3.000 2.000 0.250 0.167 0.333 1.000 
2 0.333 1.000 2.000 0.250 0.500 0.500 0.333 
3 0.500 0.500 1.000 0.250 0.333 1.000 0.500 
4 4.000 4.000 4.000 1.000 1.000 3.000 2.000 
5 6.000 2.000 3.000 1.000 1.000 3.000 2.000 
6 3.000 2.000 1.000 0.333 0.333 1.000 1.000 
7 1.000 3.000 2.000 0.500 0.500 1.000 1.000 

Normalized Columns 
Col 1 2 3 4 5 6 7 Weights 

Row 
1 0.063 0.193 0.133 0.069 0.043 0.033 0.127 0.094 
2 0.021 0.064 0.133 0.069 0.130 0.051 0.042 0.073 
3 0.031 0.032 0.067 0.069 0.086 0.101 0.063 0.064 
4 0.252 0.258 0.266 0.279 0.260 0.305 0.255 0.027 
5 0.378 0.129 0.200 0.279 0.260 0.305 0.255 0.258 
6 0.189 0.129 0.067 0.093 0.086 0.101 0.127 0.113 
7 0.063 0.193 0.133 0.139 0.130 0.101 0.127 0.126 

Estimation of matrix consistency: 

Lambda max: 7.590 

Consistency index: 0.098 

Consistency ratio: 0.074 
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AHP Matrix Calculation Set 4 

NODE 2.3- Performance Considerations 

Links from Lower Level: 

1) Node 3.7 -Execution speed 
2) Node 3.9- Basic memory requirements 

Original weights 
Col 1 2 

Row 
1 1.000 0.125 
2 8.000 1.000 

Normalized Columns 
Col 1 2 Weights 

Row 
1 0.111 0.111 0.111 
2 0.889 0.889 0.889 



AHP Matrix Calculation Set 5 

NODE 3.1 - Model Reusability 

Links from Lower Level: 

1) Node 4.1 - Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
7.000 

1 

0.125 
0.875 

2 

0.143 
1.000 

2 Weigths 

0.125 0.125 
0.875 0.875 
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AHP Matrix Calculation Set 6 

NODE 3.2 - Change Management Capability 

Links from Lower Level: 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
5.000 

1 

0.167 
0.833 

2 

0.200 
1.000 

2 Weights 

0.167 0.167 
0.833 0.833 
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AHP Matrix Calculation Set 7 

NODE 3.3 - Software Modularity 

Links from Lower Level: 

1) Node 4.1 -Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
3.000 

1 

0.250 
0.750 

2 

0.333 
1.000 

2 Weights 

0.250 0.250 
0.750 0.750 
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AHP Matrix Calculation Set 8 

NODE 3.4 - Output Provisions 

Links from Lower Level: 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
8.000 

1 

0.111 
0.888 

2 

0.125 
1.000 

2 Weights 

0.111 0.111 
0.888 0.888 
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AHP Matrix Calculation Set 9 

NODE 3.5- Model Debugging Support/Verification 

Links from Lower Level: 

1) Node 4.1 - Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
8.000 

1 

0.111 
0.888 

2 

0.125 
1.000 

2 Weights 

0.111 0.111 
0.888 0.888 
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AHP Matrix Calculation Set 10 

NODE 3.6- Graphics/User interface capability 

Links from Lower Level: 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
6.000 

1 

0.143 
0.857 

2 

0.167 
1.000 

2 Weights 

0.143 0.143 
0.857 0.857 

165 



166 

AHP Matrix Calculation Set 11 

NODE 3. 7 - Execution Speed 

Links from Lower Level: 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 1 2 

Row 
1 1.000 6.000 
2 0.167 1.000 

Normalized Columns 
Col 1 2 Weights 

Row 
1 0.857 0.857 0.857 
2 0.143 0.143 0.143 



AHP Matrix Calculation Set 12 

NODE 3.8 - Simulation Language K knowledge/Ease of Learning Effort Required 

Links from Lower Level: 

1) Node 4.1 -Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
0.200 

1 

0.833 
0.167 

2 

5.000 
1.000 

2 Weights 

0.833 0.833 
0.167 0.167 
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AHP Matrix Calculation Set 13 

NODE 3.9 - Basic Memory Requirements 

Links from Lower Level: 

1) Node 4.1- Traditional, special purpose simulation systems 
2) Node 4.2 - OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
0.143 

1 

0.875 
0.125 

2 

7.000 
1.000 

2 Weights 

0.875 0.875 
0.125 0.125 
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AHP Matrix Calculation Set 14 

NODE 3.10 - Model Representation Correspondence to the Real System 

Links from Lower Level: 

1) Node 4.1 -Traditional, special purpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Normalized Columns 
Col 

Row 
1 
2 

1 

1.000 
9.000 

1 

0.100 
0.900 

2 

0.111 
1.000 

2 Weights 

0.100 0.100 
0.900 0.900 
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AHP Matrix Calculation Set 15 

NODE 3.11- Modeling Flexibility 

Links from Lower Level: 

1) Node 4.1- Traditional, special pmpose simulation systems 
2) Node 4.2- OOP simulation systems 

Original weights 
Col 

Row 
1 
2 

Original weights 
Col 

Row 
1 
2 

1 

1.000 
7.000 

1 

0.125 
0.875 

2 

0.143 
1.000 

2 Weights 

0.125 0.125 
0.875 0.875 
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Matrix1 

3.1 3.2 3.3 3.4 

4.1 .125 .167 .250 .111 

4.2 .875 .833 .750 .888 

Matrix 2 

3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

3.10 
3.11 

Matrix3 

3.5 3.6 

.111 .143 

.888 .875 

2.1 2.2 

0.049 0.094 
0.073 
0.064 

0.342 
0.027 

0.05 

0.258 

0.302 0.113 
0.255 0.126 

1.1 

2.1 0.750 
2.2 0.189 
2.3 0.059 
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3.7 3.8 3.9 3.10 3.11 

.875 .833 .875 .100 .125 

.143 .167 .125 .900 .875 

2.3 

0.111 

0.889 
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Matrix 4 = (Matrix 1) *(Matrix 2) 

2.1 2.2 2.3 

4.1 .113 .284 .875 

4.2 .885 .470 .127 

Matrix 4 = (Matrix 4) * (Matrix 3) 

1.1 

4.1 0.225 

4.2 0.775 
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