
8J>PLICATION OF THE OBJECT -ORIENTED PARADIGM

TO THE MODELING OF A CONSTANT SPEED,

DISCRETELY SPACED, RECIRCULATING

CONVEYOR SYSTEM

By

SALOUA SMAOUI
II

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE

July, 1992

b'\'~)
\C\C\&
~Loo~_

APPLICATION OF THE OBJECT -ORIENTED PARADIGM

TO THE MODELING OF A CONSTANT SPEED,

DISCRETELY SPACED, RECIRCULATING

CONVEYOR SYSTEM

Thesis Approved:

Thesis Adviser r u. fib,.'=

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

As I conclude this research work I would like to thank each of the members of

my committee for their impact on my education and research. My major advisor, Dr.

Manjunath Kamath for his intelligent guidance, Dr. Palmer Terrell for encouraging me to

choose such a challenging research work, and Dr. Joe Mize not only for his guidance and

advice throughout this study, but also for the support, understanding and friendship he

has offered me during my difficult times. I would also like to thank Dr. Mize and Dr.

Kamath for the giving me the opportunity to be part of the CIM center at Oklahoma State

University eventhough I was doing my own research. I would like to extend my special

thanks to Hemant Bhuskute for his great technical help.

I would like to thank the Scientific Mission of Tunisia for their continuous

financial support throughout my academic career. I also would like to extend my

appreciation to the School of Industrial Engineering at Oklahoma State University for

offering me a teaching assistantship during my graduate studies.

I would like to express my deepest appreciation to all my friends, especially

the ones in Stillwater for holding my hand and walking with me through the darkness

during my hardship.

I would like to thank my sisters Sihem, Leila, Rakia, and their families, my

brother Imed for their unending support and belief in my capabilities, and the family's

friend Noureddine for his great and loyal friendship to the family.

Last, but not least, I would like to dedicate my modest work to the three most

precious people in my life: my brother Ahmed for being such a great second father and

the point where we all converge to stay as united as possible; my mother Aicha for her

iii

love, support, and understanding; and my father and my best friend Mohammed Salah

whom I lost unexpectedly during this study. Dad I owe you all what I am and all what I

will be. I have big faith in God that eventhough I cannot see you, I know that there is a

big proud smile on your face as I am finishing this work that meant the most to you. I

miss you dad very, very much!.

IV

Chapter

I.

II.

TABLE OF CONTENTS

INTRODUCTION .. .

PROBLEM STATEMENT .. .

Page

1

5

Introduction... 5
Research Motivation and Goal... 6
Description of the Target System... 7

III. INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING
AND MODELING.. 11

Introduction... 11
Object-Oriented Programming (OOP)...................................... 12
Benefits of Object-Oriented Programming............................... 15
Disadvantages of OOP... 16
Application of Object-Oriented Concepts to Modeling............ 17

IV. GOALS AND OBJECTIVES OF THE RESEARCH.......................... 21

V. RESEARCH PLAN AND PROCEDURES... 23

VI. DEVELOPMENT OF A PROTOTYPE OBJECT-ORIENTED
MODELING (OOM) ENVIRONMENT FOR A CONVEYOR
SYSTEM... 25

Conceptual Design and Implementation................................... 25
Simulation Model Operation.. 43
00 Simulation Object Linking.. 46
Smalltalk:-80 Class Implementation.. 47
Target System Simulation Model Representation:
An Illustrative Example.. 60

VII. EVALUATION OF THE OOM APPROACH THROUGH
ANALYTIC HIERARCHY PROCESS... 76

Analytic Hierarchy Process.. 76

v

Chapter Page

Summary... 89

VIII. CONCLUSIONS AND RECOMMENDATIONS............................... 90

Conclusions... 92
Recommendations For Future Implementations........................ 92
Contributions... 95

BIBLIOGRAPHY.. 97

APPENDIX A- SMALLTALK-80 CLASSES DEFINED................................... 102

APPENDIX B - USER MANUAL... 153

APPENDIX C - AHP CALCULATIONS... 155

vi

LIST OF TABLES

Table Page

I. Workstation Parameters Specification.. 61

IT. Continued Workstation Parameters Specification................................. 62

Ill. Conveyor Parameters Specification... 62

IV. Node 1.1.. 81

V. Node 2.1.. 81

VI. Node 2.2........... 82

VII. Node 2.3.. 83

VIII. Node 3.1.. 83

IX. Node 3.2.. 84

X. Node 3.3.. 84

XI. Node 3.4........................ 85

XII. Node 3.5.. 85

XITI. Node 3.6.. 86

XIV. Node 3.7.. 86

XV. Node 3.8.. 87

XVI. Node 3.9.. 87

XVIT. Node3.10.. 88

XVIll. Node3.11.. 88

Vll

Table Page

XIX. Final Weights.. 89

XX. Workstation Types... 153

viii

LIST OF FIGURES

Figure Page

1. A Manufacturing System... 3

2. Conveyor System Floor Plan... 8

3. A Single-Loop Conveyor System Selected for Experimentation........ 10

4. A Suggested Architecture for an Object-Oriented Simulation
Environment (Adelsberger et al., 1986)... 19

5. Simulation Classes for Ulgen and Thomasma's (1987) OOM
System.. 20

6. Conveyor System Object Diagram... 29

7. A Diagram of the Structure of the Simulation Classes....................... 31

8. A Diagram of the Structure of the Simulation Target System
Objects... 34

9. A Diagram of the Target Conveyor System....................................... 35

10. Conveyor Simulation Launcher View.. 41

11. WorkStation Definition View.. 41

12. Probability Definition View.. 42

13. Conveyor Definition View.. 42

14. Message Flow Diagram for the Cart Object....................................... 53

15. Message Diagram for the Conveyor Object....................................... 59

16. Result View... 64

17. Simulation Trace... 75

IX

Figure Page

18. AHP Simulation Language Comparison Model................................. 80

19. A Multi-loop Conveyor System... 94

20. A Multi-floor Conveyor System.. 96

X

CHAPTER I

INTRODUCTION

With the fast evolution in manufacturing processes, needs, and objectives, the

integration of computers in today's industrial environment emerged smoothly and

rapidly. The computer had to be exploited to the maximum. It was found to be the

savior of the modern manufacturing. In fact, it has been used in a variety of tasks. From

data storage to fully automated process monitoring, the computer showed an

extraordinary flexibility in solving many engineering problems and concerns. Computer

Integrated Manufacturing (CIM) systems, although still conceptual, seem to be the next

stage in the manufacturing evolution.

Pritsker defines computer simulation as the process of designing a mathematical

logical model of a real system and experimenting with this model on a computer

(Pritsker 1986). Another definition of simulation by Mize and Cox (as referenced in

Turner, Mize, and Case 1986) states that "simulation is the process of conducting

experiments on a model of a system in lieu of, either (1) direct experimentation with the

system itself or, (2) direct analytical solution of some problem associated with the

system". In order to understand these definitions we need to explain the terms, system

and model.

A system is a collection of interdependent elements which work cooperatively for

the purpose of achieving a common goal. Frequently, a system is characterized by

random, but statistically predictable, behavior. A model is a representation of a system.

If the model is expressed mathematically as a set of logical and functional relationships,

it is referred to as an abstract model. A computer based model is an abstract model

1

2

implemented on a computer upon which experiments are conducted for the purpose of

generating information useful in making decisions. Both definitions above agree that

simulation allows drawing conclusions about the system, without building it disturbing it,

or destroying it. Thus, a simulation model is very useful in both design and analysis of a

manufacturing system. In addition to being a manufacturing system planning and design

tool, simulation is currently being used for production planning and shop floor

scheduling. This involves testing a variety of input conditions on up-to-date factory

models for satisfactory output results.

A simulation of a manufacturing system, or even one part of it, can be a very

challenging and complex task. In fact, the external factors that can influence such a

system, and consequently any contingent decision, are enormous. Figure 1 is an

illustration of a manufacturing system and its standing in the environment.

Manufacturing systems in the future have to be reconfigurable to be responsive to

dynamic changes in the environment. Simulation modeling should be easily updated and

highly modular (changes to a model should be localized) (Beaumariage, 1990).

With the recognition of the importance of computer systems in improving

manufacturing productivity, there is a pressing need for good software modeling

approaches to support efficient design and control of manufacturing systems. Software

design concepts based on Object-Oriented Programming (OOP) are emerging as

powerful techniques for developing large scale software systems. This research presents

important features of object-oriented computing and the relevance of such an approach in

modeling and developing software for manufacturing systems such as a constant speed,

discretely spaced recirculating conveyor system.

The evaluation and comparison of OOM features (through the design and

implementation of a prototype OOM system) to traditional modeling approaches should

provide greater impetus for the development of commercial OOM capabilities and for

3

Environment

Manufacturing

Nature System
Politics

.Disasters
. People .Economy

(fires) . Material . Laws
. Tools

. Process

Competition . Organization Technology
. Information

Society
. Union Rules

. Demands

Figure 1. A Manufacturing System

simulation practitioners to pursue the use of the new and beneficial approaches to

modeling.

The availability of the advanced development environment present in the

Smalltalk-80 programming system in conjunction with the application oriented

discussions pursued in the Center for Computer Integrated Manufacturing result in a

favorable environment within which to pursue this research activity.

4

CHAPTER II

PROBLEM STATEMENT

Introduction

So far, one of the biggest drawbacks of simulation modeling is that models are

typically constructed as single use models. That is, once used for its original purpose, a

particular model is rarely used again. When a new problem is encountered, a new model

is generated from the beginning even though it may include elements contained in earlier

models. The cost of this approach, measured in both dollars and hours, causes many to

question the value of using simulation to model large complex systems (Pratt, 1992).

One can ask why is simulation still gaining popularity as a decision making tool in

today's highly complex systems. The answer is that it is clear that it is not due to the

increased power of simulation but due to the increased consensus on the

inappropriateness of analytical tools and increased computer literacy among decision

makers. Analytical models employ techniques from stochastic processes and queueing

theory to study system performance. They are generally the most efficient method of

investigation if they are applicable. They frequently yield explicit information about the

functional form of the relationships among system variables and, under some

circumstances, indicate whether a unique optimal solution exists. Unfortunately, some

real systems of interest are so complex that formulating and solving an exact analytical

model is either extremely difficult or impossible (Pratt, 1992).

Simulation modeling overcomes many of the disadvantages inherent in analytical

modeling. Unfortunately, as stated above, one of the big disadvantages of simulation is

5

the high expenditure of time and money. Therefore, in order for simulation to continue

its popularity (by reducing the time and money required by its implementation) it has to

address some requirements such as:

. High level of software reusability,

. Software modularity,

. Ability to implement urgent, detailed models,

. Low degree of abstraction,

. A graphical interactive development environment, and

. Ease of analysis of results.

These requirements are currently being sought by the so called revolutionary

approaches to simulation. These approaches are based on new programming paradigms

and knowledge representation methods along with new perspectives in viewing and

analyzing systems (Karacal, 1991). Within this class, the major interest areas are:

Object-Oriented Programming (OOP), Logic Programming and Expert Systems,

Distributed Simulation, and Knowledge Based Simulation (KBS).

Research Motivation and Goal

6

The purpose of this research is to illustrate the applicability of a revolutionary

approach to modeling manufacturing systems through the development of a prototype

environment to model a constant speed, discretely spaced, recirculating conveyor system.

A comparison between the traditional and revolutionary approach to simulation will be

presented. Since, an object-oriented modeling (OOM) environment is under

development within OSU' s Center for Computer integrated Manufacturing, the

revolutionary approach to simulation will be studied through the area of OOP. The

traditional approach will be represented by the simulation language SLAM II. The

comparison will be illustrated using an Analytic Hierarchy Process (AHP) model.

Description of the Target System

7

A particular conveyor system was selected to initiate the design and development

of the simulation model. The recirculating conveyor system originally chosen to initiate

this development is a sub-floor towline conveyor that moves finished goods to several

unload and load centers in a 500,000 square feet warehouse. The towline is a sub-floor

towline made up of an endless chain running in the floor with hooks spaced every

twenty-one feet along the chain. At any time a hook may or may not be pulling a cart

along with it. There are 380 carts in the system at all times (Terrell, 1977).

Figure 2 shows the floor plan diagram of the conveyor system. The conveyor

delivers the manufactured goods to storage or rail and truck docks. Incoming goods at

the rail and truck docks are delivered to storage. The main conveyor

loop is indicated by the dashed line. This loop is 5600 ft. long and the speed of the

towline is 70 ft. per minute. There are 20 destinations around the loop and a cart may be

programmed to any of these destinations. Carts are programmed manually by moving

the magnet tipped probes at the front of each cart. The carts will always arrive at their

destinations via the shortest route. The non-powered spurs at the end of the storage aisles

constitute the various unload and load stations and a cart arriving at one of these as its

destination is side-tracked into one of the non-powered spurs and a following cart pushes

it deeper into the spur.

A loaded cart joins the load station queue and waits on the unloading facility.

Carts are unloaded on a first come first-served basis. Upon completion of unloading,

the unloaded cart may be placed on the towline and assigned a new destination.

Sometimes it may be desirable to retain a certain number of empty carts in an unload and

23

Truck Dock 158'

Indicates Load &
158' 200'

UnloadStat.~ 1-- ____- --,

V, I 78' """"

From l 90' 80' 80' 57' I
Manufacturing 135' r-179' -..;. _ __ _ .,... - -r- 1 I -~---_ __,_ ______ -.1 _J _J -' ~

I
I

I
I

t I 126' I ! I I ~
I I - ;- 25' 80' 80' 80' 40' I I

78'
360'

Production

Programmer

I I - ~--~-.c._-'---'--' I
I : I '107' /""1
I I ,__ -- I I

55' I II II I 6 87' 120' 165' 120' 128'

I ----
_ \._

..__=-_-_____________ _ _=-_----_=-_---'I I
__ \._ _ _ 7.8' ~

6o· I
3

183' 325' 325' 137'

~----------~~------~~----------------------~~ ____,-;- ---- ~

----~--= - -
Rail Dock

Figure 2. Conveyor System Floor Plan

8

load station. IT this policy is adopted, an unloaded cart will be returned to the towline

only when the empty cart queue is full.

9

All carts except those retained at unload and load stations will be moving on the

towline. At any time, a cart may be loaded or unloaded. Finished goods from the

manufacturing area are dispatched to a destination in the warehouse by the production

programmer. Carts are loaded and unloaded by forklift trucks. After unloading a cart,

the forklift operator places the empty cart on the towline and programs it to a new

destination. An order for dispatching goods from a workstation other than the production

programming workstation is generated according to an arrival distribution. The forklift

operator executes this paper order and programs the loaded cart to the required

destination.

Transfer sections with bypasses are provided to enable a cart to avoid traveling

the entire distance on the main loop to arrive at a destination. There are decision points

in the system where the cart has to decide between the main loop and a bypass for its

subsequent movement. Bypasses also allow recirculation of empty carts in the system.

For this study, the system described above will be reduced to a single-loop

conveyor system with bypasses. However, with the concepts and nature of OOP

languages (reuse and extensions), the model can be easily extended to include all the

features and details of the system: multi-loop and multi-floor conveyor systems (a short

description of some possible extensions has been included in section VIII). The system

just described is therefore composed of: (1) a towline made up of chain and hooks,

which form the main loop, (2) .£a!1S. in the system, (3) unload and load stations, and (4)

bypasses. These system objects will be built individually, then the messages which make

up the language of interactions among them will be designed to build the overall

simulation program. Figure 3 shows the conveyor system that will be modeled in this

study.

Cart

-----~

1 '
.· BYPASS ·

§-o~~~

- - - - -> Cart Direction

~ - -Workstation
A
'

Input Queue

•

0
Hook

Cart
Generator

Figure 3. A Single Loop Conveyor System Selected for Experimentation

10

CHAPTER III

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

AND MODELING

The research being performed in the area of simulation methodology and

environments is very well detailed by Beaumariage (1990). He also presents a general

discussion on the research areas which hold promise for improving simulation

methodology. A review of the research being performed in the area of the OOP

paradigm and a presentation of the literature relating research on the application of the

object concept to simulation modeling is presented in this chapter. Also, a discussion of

the applicability of Object-Oriented Programming languages and concepts to simulation

modeling will be presented. The various benefits of this approach to simulation will also

be illustrated.

Introduction

Given that we are in a world in which resources and time are finite quantities, a

major advantage of simulation is that the development of a model and its translation into

computer terms can be performed in an efficient manner. Considering this from a life

cycle cost view point, we desire the ability to implement simulation models which satisfy

current and future needs with a minimum cost. Therefore, the most sought objective of

the new approaches to simulation is the ability of simulation models to be easily updated

and highly modular (changes to a model should be localized) (Beaumariage, 1990). This

11

will eliminate the cost of generating a new model from the beginning once a new

problem is encountered. As stated in Chapter II, OOM is a major area of this

revolutionary approach to simulation modeling.

12

Because of this desire and because of the information on complex systems which

can be gained, simulation methodology is an area experiencing continuing research

activity with one of the objectives being the improvement of simulation modeling

capabilities.

Object-Oriented Programming (OOP)

The principal idea associated with OOP is that all items (e.g., variables) in the

system are treated as "objects". An object is either a "class" or an instance of a class. A

class is a software module which provides a complete definition of the capabilities of its

members. These capabilities are either provided by the procedures and data storage

contained within the immediate class definition or inherited from other class definitions

to which this class is related. Moreover, a class in OOP is defined by specifying its four

specific elements:

1. Class variable names: these are locations which are allocated once and are

associated with the class.

2. Instance variable names: these are data storage locations which are

allocated uniquely for each instance of a class. Each object maintains it

own internal state. That is instances of the same class will have the same

instance variable allocations, but, most probably, will have different values

stored in their own locations.

3. Class methods: these methods are methods available to the class itself.

These methods typically manipulate class variables and provide for the

creation of new instances of a class.

4. Instance methods: these methods are methods available to instances of a

class. These methods will have direct access to the data associated with the

13

class instance receiving a message. Other instances from the same class are

unaffected by variable value changes made during an instance method

execution.

Smalltalk:-80, the original and purest OOP language, contains four key concepts

which result in making systems understandable, modifiable, and reusable (Wilson, 1987).

These concepts are: encapsulation, message passing, inheritance, and dynamic binding.

Encapsulation

Encapsulation means that an object's data and procedures are enclosed within a

tight boundary, one which cannot be broken by other objects. Encapsulation of

properties of an object is a side-effect of implementation of an object in OOP. In the

OOP paradigm objects are tightly encapsulated. The only way one can access the data is

through the relevant predefined operations. Encapsulation restricts the effects of change

by wrapping the data in a shield or a wall of code. All access to the data is handled by

procedures that were put there to control access to the data. It also makes the objects

relatively independent of their environment. The implication is that objects can be

designed and tested as stand-alone units without the knowledge of any particular

application. Another important side-effect of encapsulation leads to an effective

enforcement effect. A person who uses encapsulation may manipulate the objects only

through the operations that are defined. Direct manipulation of data in storage is not

allowed.

Messag-e Passing-

Message passing is a necessary result of encapsulation. It is the only way in

which objects can communicate with each other because the data stored within an object

14

is not shared or available to the procedures of other objects. In order for one object to

affect the internal condition of another object, the first object must tell the second object

to use one of its (the second object) procedures on itself. This is performed by sending a

message (somewhat comparable with procedure calling).

Inheritance

Objects belong to classes. Objects that have things in common are abstracted into

a "class". The subclasses inherit all the instance variables, methods of the super class.

This is the concept of inheritance. The subclasses may add their own methods and

variables that are appropriate to the more specialized objects. Also, one can override a

general method by adding another method with the same name at the specialized level.

Dynamic Bindin&

Binding is more than what most programmers call linking. It is the process where

operators and operands of different types, provided by suppliers, are functionally

integrated by the consumers of code (Adiga, 1989). Traditional languages use early

binding, in which binding is determined by the programmer and is performed when the

code is written. Declaring variables to be integer, real, logical, etc., is an example of the

type of early binding done in traditional programming. Dynamic binding (or late, or

delayed binding) occurs generally while the program is running. This means that the

decision as to which a compiled procedure will be invoked by a given procedure is not

made until run-time. For example consider the line of code active Robot move-part-

8772. This will execute a method (procedure) that will cause a robot to move a part.

The robot is told to move a part, and it will pick an appropriate procedure to do its job.

The decision is only known at execution time. This use of late binding gives OOP a

great deal of flexibility.

Benefits of Object-Oriented Programming

The domain of object-oriented programming offers many attractive features to

model elements of a manufacturing system. Some of the obvious correspondences

between the two domains follow.

The manufacturing system considered in this study consists of objects such as

workstations (workers), carts, and hooks in a towline. The state variables of these

objects change in response to events, such as the completion of the unloading of a cart;

these events occur at discrete points in time. There is a natural one-to-one

correspondence between physical objects in a factory and instances of software objects

that represent them. The encapsulation within software objects of local data (instance

variables) represent the state of the physical object and procedures (methods) for

updating the state variables provides modularity of software.

15

The use of the object-oriented programming paradigm of "send messages to

objects" in place of "procedure calls with parameters" is a convenient way to represent a

real-world event. For example, when the message getProcessedAtLocation is sent to the

object Cart, the Cart object will change its status from empty to loaded. The same

message can be sent to WorkStation object, which will change its status from busy to

idle. This emphasizes the fact that the same event is experienced by several objects of

different classes, and these objects react in ways appropriate to their individual natures.

Inheritance of methods and instance variables by use of hierarchical structure

permits the addition of complexity and functionality to simple objects as necessary by

creating subclasses of existing classes. This feature is particularly useful in constructing

special-purpose simulations for research purposes because it avoids unnecessary

complexity, permitting run-time efficiency, and also avoids confusing the researcher

(Adiga, 1988).

Finally, because the objects contain their own functionality, intelligence can be

built directly into this functionality using the techniques of Artificial Intelligence.

Disadvantages of OOP

OOP is no panacea! There are a few irritants that are integral to the approach.

16

The first one is that the productivity improvements through reusability starts only after a

library has been constructed. It also means that one must learn the library well before

doing any serious programming. This makes the need for good documentation

(something most programmers hate) very important. The cost of implementing the

concept of inheritance is high in terms of space for small applications that do not take

full advantage of the library.

It should also be noted that calling a procedure or subroutine is still faster than

sending a message (Retting, 1987). An early study by Cox (1986) indicated that message

passing is between 2 to 70 times slower than procedure calling. As mentioned earlier,

another disadvantage is that languages such as Smalltalk-80 demand extensive machine

resources. The run-time cost is more, hence is costly in space for small applications. But

if this is a major factor in an application, extensions of conventional languages such as C

offer other options for more efficient implementations (Adiga, 1986).

Application of Object-Oriented Concepts to Modeling

Many concepts of the OOP paradigm have their origins in SIMULA (Dahl and

Nygaar, 1966). Although SIMULA never achieved a large popularity (especially in the

United States), many of the concepts (instance, class, etc.) introduced in SIMULA

formed the foundation of OOP languages such as Smalltal.k:-80. So, it is not surprising

that OOP languages are good platforms for discrete event simulation.

17

True OOM implementations having a range of features have been described in a

number of articles. Knapp (1987) describes a system called SimTalk:, which is a discrete

event simulation environment implemented in Smalltal.k:-80. SimTalk: adds queuing

support, statistics collection, simulation graphics and interactive user interface to the

features that already exist in Smalltal.k:-80 (multiple process support, interactive

programming, graphics, etc.). A class called SimTalk provides central communication

and maintains the time queue and simulated clock. Another class, SimTalk:Object, is

used to present the classes of objects to be simulated. There are a large number of other

classes in SimTalk: that include random number generators, probability distributions,

statistics collectors, statistics analysis, etc. Bezivin (1987) describes another system

named SimTalk: which supports similar features and processes (the use of concurrent

processes and semaphore synchronization operations) in distributed simulation

environments by applying the TimeLock algorithm.

Researchers at Texas A&M University (Adelsberger et al., 1986) describe the

features available in a simulation environment under development at their university.

These features include:

. Graphical object creation along with a natural language interface aided by an
intelligent assistant.

. Simulation model as well as experiments are treated as objects .

. Interactive user interface .

. Run time model modification and display, automatic experimental designs and
statistical display .

. Consistency and completeness checks on model, experiments, and objects.

. Goal directed simulation .

. Selection of various abstraction levels of the simulation model and/or
experiment.

Figure 4 graphically represents the proposed architecture for such a system.

18

Ulgen and Thomasma (1987) implemented an object-oriented simulation system

in Smalltalk:-80. In this system, class simulator handles the initialization of

time and event scheduling. A class called Event associates a time with something to be

done. Since the system is manufacturing system simulation oriented, the other classes in

the system are designed to represent manufacturing entities such as work parts, work

stations, storage facilities, etc. Figure 5 shows the classes developed in this system.

A SIMULA based simulation system (Nyen, 1987) was developed in the

Norwegian Institute of Technology. This system defines three major object groups for

the simulation of manufacturing systems: Resource Objects, Entity Objects, and

Stationary Objects. In addition to the simulation kernel which actually executes the

simulation, five other segments are defined that interface the user to the simulation

system. The intelligent front and back end modules that carry out the actual user

interface are graphical and interactive.

Among several, some other object-oriented simulation systems are: a distributed

simulation system (Bezivin, 1987), a C++ based object library for parallel simulation

(Abrams, 1988), an interactive simulator for VLSI design implemented in Smalltalk

(VanderMeulen, 1989). Also, other simulation systems developed include: a system to

provide performance models for computer systems (Pazirandeh and Becker, 1987), a

computer system architecture modeling system (Ghaznavi-Collins and Thelen, 1988), a

simulator for a defense related autonomous land vehicle (Glicksman, 1986), and a

manufacturing OOM system (Nyen, 1987).

People Knowledge
Knowledge

NLP Object Editor

Graphics
(rule based)

Model/
Model

Template & View Model Editor

Edit (rule based)
Menu Interface D

Activity Specifications
Experimental
Frame Editor B

Language (rule based)

Dialogue Driver
M

Simulat- Run-time Run-time Run-time Monitor s
ion Display & & Conflict Simulator
Activity Output Detection

Figure 4. A Suggested Architecture for an Object-Oriented Simulation
Environment (Adelsberger et al., 1986)

19

20

Object

Simulator Part Event StationarySimulationObject

Workstation Storagefacility Router Source Sink

Figure 5. Simulation Classes for Ulgen and Thomasma's (1987) OOM System

CHAPTER IV

GOALS AND OBJECTIVES OF THE RESEARCH

The main objective of this research is to develop, validate, and document utility

"plug-in" modular component computer simulation models which may be used to

interpret and synthesize the operating characteristics of various types of complex

recirculating conveyor systems, using a revolutionary approach to simulation such as

Object-Oriented Programming. The author should be able to illustrate the benefits and

disbenefits of this approach relative to the currently available simulation methodology (in

this case SLAM). This effort is to be completed by accomplishing the following series

of sub-objectives:

1. Develop a library of reusable software: A hierarchical organization of

classes necessary for the conveyor system at hand will be developed. This

is accomplished by identifying the objects appearing in the problem at hand.

Once the necessary objects are created, they should be classified according

to their similarities and differences. Once the functions have been defined,

the class hierarchy can be planned and implemented to take advantage of

inheritance.

2. Evaluate the value and qpality of the developed prototype: This will require

the definition of tangible and intangible benefits of this new modeling

methodology over traditional approaches. This objective will be achieved

through the application of the Analytic Hierarchy Process (AHP) to evaluate

various aspects, benefits, and disbenefits of the developed 00 simulation

system.

21

22

3. Explore ways to expand the model developed to accommodate all the

complexities that a conveyor system can incorporate: For this study, only

the most important features of the system will be modeled. However, ways

to expand the functionality and application of the classes developed by

introducing the level of details desired will be explored. Bordiga et al.

(1985) stated that the proper way in dealing with complex systems with

high need for details such as manufacturing systems is to abstract out the

most important ones and introduce the others in successive phases of a

refinement process. This concept could be used in an Object-Oriented

Paradigm which supports an incremental style of development.

CHAPTERV

RESEARCH PLAN AND PROCEDURES

To achieve the goals and objectives outlined in chapter IV above, the research

will be performed through several chronologically ordered phases as presented below.

Phase I:

Examining and analyzing the functional components that are common to

representative existing recirculating conveyor systems: The particular conveyor system

selected to initiate the design and development of this simulation program was explained

in detail in chapter IT.

Phase II:

Specifying the types of interfacing that can occur between the functional

components of a recirculating conveyor system: Determination of the object linking and

model building procedures based upon the functional specifications from Phase I.

Phase ITI:

Developing and encoding within the general software environment (Smalltalk-80)

a series of modular elements to represent the functioning of the objects and message

passing among them previously described.

23

24

Phase IV:

Incorporatin& the software simulation objects developed into flexible utility

simulation systems that can be utilized to "build" complex conveyor system simulations.

Phase Y:

Use of the AHP model to compare the new environment and another commonly

used environment (SLAM II): Conclusions drawn from this comparison should allow the

researcher to determine the benefits and disbenefits of an object-oriented programming

environment.

Phase VI:

Documentin& the software objects. including instmctions for their use in

developin& modular utility simulation models of larger scale complex conveyor systems:

Ways to expand the model developed to accommodate all the complexities that the

conveyor system described above can incorporate will be explored.

Phase VII:

Summarize results and prepare final format: At the end of phase VII the research

results will be summarized and documented. This phase represents the summary of the

research activities and the presentation of results in final form.

CHAPTER VI

DEVELOPMENT OF A PROTOTYPE OBJECT-ORIENTED

MODELING (OOM) ENVIRONMENT

FOR A CONVEYOR SYSTEM

This chapter presents the steps taken in the design and implementation of an

OOM environment developed for the system at hand. Illustration of the features and

capabilities of the resulting implementation will also be presented.

Conceptual Design and Implementation

This section describes the approach to the design of the software library,

conveyor system, its structure, and some of the techniques used to enforce the design

guidelines in implementing the objects.

Relevance of Object-Oriented COO) Paradigm to the Model at Hand

The 00 paradigm has been exploited for modeling manufacturing systems by

several researchers (Adiga and Gadre, 1990; King and Fisher, 1986; Sanderson et al.,

1991). Adiga and Gadre (1990) describe modeling of a flexible manufacturing system.

Their emphasis is on the modeling methodology and its translation into software using

OOP. Adiga and Glassey (1986) present a conceptual design of a software library for

simulation of semiconductor manufacturing systems. They have identified three goals in

their research as (1) ease of assembling special purpose simulation models, (2) ease of

25

26

modification of object library and (3) the run time efficiency of the model assembled

from the library of objects. The first two goals directly lead to reusability. Sanderson et

al. (1991) describe design and implementation of a Hierarchical Simulation Language,

which is interpreter based and hence offers certain advantages and disadvantages of

portability and modifiability (during program execution) (Bhuskute et al., 1992).

Reuse, extension, and maintenance of software objects are the main productivity

benefits sought from our adoption of object-oriented programming technology. Software

reusability is a goal of great promise. Designing for reusability includes identification of

object behaviors that are reusable in more than one context. Also, class definitions must

be written in such a way that the system object interconnection information can be

supplied as parameters, routings, or values of instance variables to newly created

instances of previously defined classes. The methods which are defined for the classes

are written in such a manner that this generally specified linking information is accessed

through instance variable locations or through responses to message requests. Designing

for maintenance involves designing objects to be independent of others. A set of goals

were formulated for the library of software objects needed to be built:

1. The first goal is to make it easy to assemble special purpose simulation

models, customized for individual research questions. This can be

accomplished by designing a library of reusable software objects. With

the right library of software objects, we expect that the work of designing

simulations would be one of choosing and interconnecting objects of

interest and linking those objects with code of one's own research strategy

related to the problem at hand.

2. The second goal was that the library should be easily modified and

extended and that parts of it could be reused in other contexts.

Achievement of this objective depends to a large extent on identifying the

proper conceptual framework for the library of objects and on the use of

design principles that capitalized on the strengths of the object-oriented

programming paradigm.

3. The third, and last important goal is that the library must be easy to

understand, both the individual objects and the way they work together.

27

Smalltalk-80 was chosen to be the language of implementation for the simulation

model. This choice is due to the fact that Smalltalk-80 is one of the purest OOP

languages. Many of the object-oriented characteristics can be traced to SIMULA 1

language (Meyer, 1988). Simula though popular among the academia in Europe and

throughout the world, has never gained widespread use in the commercial environment

(Kreutzer, 1986). Smalltalk-80 added the message passing paradigm creating a

programming style well known as OOP (Kreutzer 1986, page 194; Meyer 1988, page

437). The concepts underlying OOP can be easily extended to simulation modeling

(King and Fisher 1986; Mize et al. 1989; Thomasama and Ulgen 1988; Ulgen et al.

1989). For details on the language Smalltalk-80 and OOP, readers may refer to Goldberg

and Robson (1989) or Cox (1987). The concepts object, class, message, and method

form the basis of programming in Smalltalk-80. The methodology for using Smalltalk-

80 consists of:

1. Identifying the objects appearing in the problem.

2. Classifying the objects according to their similarities and differences.

3. Designing messages which make up the language of interactions among

objects.

4. Implementing methods which are the algorithms that carry out the interaction

among the objects.

Desi&n of Approach: A Conceptual Framework

This section describes briefly the conceptual framework used for the discrete

event simulation of the conveyor system. In discrete event simulation, the time sequence

of real-world events is reproduced by the model; the state of the simulated system

changes only at the discrete times when events occur. After the state update has been

computed, the simulation clock is advanced to the time of the next event.

28

In Figure 6, the author illustrates an object diagram representing the topmost

structure of the system. Here the author asserts the existence of the objects named in the

earlier discussion of the system's description: (1) a towline (conveyor loop) made up of

chain and .h.Q.Qks., which form the main loop, (2) the carts in the system, (3) the unload

and load stations, and (4) the bypasses. The author has explicitly chosen not to show any

other relationship among the objects at this level. To do so during this phase of analysis

would be premature, since assertions of internal relationships generally denote design

decisions. These system objects will be built individually, and then the messages which

make up the language of interactions among them will be designed.

Desi~n of the Object Hierarchy

It is important at this stage in the software development life cycle to identify

reusable software components that can be used to build the system at hand, so that one

can build as much of the conveyor system as practical from existing components rather

than creating entirely new ones.

Actively looking for reusable software components that are relevant to a new

system is a very important activity in any development. This process is facilitated by

rich class libraries that are typically available for object-based and object-oriented

programming languages. However, these classes cannot be applied directly, because they

are domain dependent. Instead they must be tailored so that they express the vocabulary

of the conveyor system. After, studying the object library made available by ParcPlace

and OSU' s CIM Center research team, the author developed a set of classes that proved

relevant to the target system. The classes were developed by combining some classes

A Cart Acquire~.;f ··.. A Hook Transports
·······... A Cart A Hook-

.... ···
.. .. ··· ..

······································>
A WorkStation

Provides Service to Cart

..
···:....

Figure 6. Conveyor System Object Diagram

29

found within the software environment through the development of the appropriate

procedures. The Simulation Class library developed for the model at hand consists of

four categories:

1. Simulation Classes

2. Target System Simulation Elements

3. Class ConvModel

4. User Interface Classes

Simulation Classes. These classes collectively provide a basic framework for

discrete system simulation and statistics collection. The OOM classes discussed in this

section are of a highly abstract nature and represent the objects or concepts which must

be explicitly accomplished to make simulation work. Some of these classes, such as

Simulation, DelayedEvent, TrackedNumber, ObsTrackedNumber, Probability

Distribution, and RandomNumberGenerator, are as described in Goldberg and Robson

(1989). Figure 7 depicts the class hierarchy of these objects.

30

Simulation: The purpose of class Simulation is to manage the topology of simulation

objects and to schedule actions to occur according to simulated time. The event_Queue,

instance of class Simulation maintains a reference to a collection of SimObjects, to the

current simulated time and to a queue of events waiting to be invoked. The unit of time

appropriate to the simulation is saved in an instance variable called the Sim_Clock and

represented as a floating-point number. The unit might be in milliseconds, minutes, days,

etc. A simulation advances time by checking the event_Queue to determine when the

next event is scheduled to take place. If the event_ Queue is empty, then the simulation

terminates.

Smalltalk-80 message protocol provides a mechanism for defining arrival

schedules of simulation objects, managing scheduling of processes, and controlling the

execution of simulation. This subclass is further refined to define subclass

ConveyorSimulation.

31

(Object)
I

I I
(Delayed Event) (CartGenerator) Tracked- (Simulation) Number

I
WaitingSim- ObsTracked-

ulationObject Number Conveyor-

I Simulation

Time Tracked-
{ Simulation-) Number

Object

(Cart J

Figure 7. A Diagram of the Structure of the Simulation Classes

32

With its level of abstraction the Simulation object provides the structure through

which all communication between other system level objects within the simulated system

occurs. All system objects within the OOM at different level of abstraction communicate

indirectly with each other and directly with the Simulation Object. Therefore, the

Simulation object acts as the controller of system level of interaction for the entire model

run.

DelayedEvent: This is an active process, which when delayed for a specific amount of

time, is placed on the queue sorted with respect to the resumption time. This class

models the simulation entity and is an abstract class. It has to be further refined to

faithfully represent the system being modeled. The message protocol provides

mechanisms for entering the entities in the simulation, for executing the tasks

corresponding to the life cycle of the entity, and for terminating these entities.

Tracked Number: This class is defined as an abstract class. Its instance cannot be used

directly, but subclasses are further refined as needed. The tracked number is a repository

for statistics collected on a particular variable.

ObsTrackedNumber: This class collects statistics on observations. The message

protocol consists of methods for clearing statistics, collecting observations, calculation of

resulting statistics, and for printing the results.

Probability Distribution Classes and RandomNumberGenerator: Class

RandomNumberGenerator provides a stream of random numbers required for simulation,

whereas the probability distribution classes implement a variety of random variate

generators. For brevity reasons these classes were not included in figure 7.

CartGenerator: Another class definition needed is the CartGenerator class. This class

provides a behavior similar to a 'Create' node in SLAM II (Pritsker, 1986). It creates

SimulationObject instances and enters them into the simulation based on their arrival

distributions. The creation activity of theses instances is performed when the event is

initiated. The SimulationObject instances are then passed on to the next object. This

33

class is the same as the W orkFlowGenerator Class developed by the Computer Integrated

Manufacturing Center at Oklahoma State University.

Target System Simulation Element Objects. The simulation element objects,

covered in this section, round out the capabilities of the OOM environment by

representing the concrete elements present in the system of interest. Figure 8 depicts the

hierarchy of these classes. Instances of the simulation element classes are used as

building blocks in the construction of the simulation model. The simulation element

classes which have been developed are found necessary to implement a model of the

chosen target system. This target system is a Constant Speed, Discretely Spaced,

Recirculating Conveyor System. Figure 9 represents a rough sketch of the Conveyor

System.

The simulation model representation of this system requires several different

types of objects including the following:

Workstation: A loaded cart joins the unload station queue and waits on the unloading

facility. At the workstation, carts are unloaded on a first come- first served basis. On

completion of unloading, the unloaded cart may be placed on the towline and assigned a

new destination supplied by the workstation. Sometimes, it may be desirable to retain a

certain maximum number of empty carts in an unload and load station, so that if an order

to load goods arrives at the station it can be executed immediately using an empty cart

available at the station. If this policy is adopted, an unloaded cart will be returned to the

towline only when the empty cart queue is full. Therefore, Workstation class is set up to

process work flow items from a single queue of waiting items. The Workstation must be

able to accept the arrival of work flow items, determine if it can provide service if

it is idle, schedule the service operation, and transfer the item to the next processing

workstation. In addition, the Workstation class must keep statistics on its service and

provide for their output as requested.

34

Object

Resource WorkStation

WaitingSim- Capacitated
lationObject Queue

Conveyor

Figure 8. A Diagram of the Structure of the Simulation Target System Objects

-----~

1 '
.' BYPASS ·

Cart

@-o~~~

- - - - -> Cart Direction

~ - -Workstation

A
'

Input Queue

•

0
Figure 9. A Diagram of the Target Conveyor System

Hook

Cart
Generator

35

36

It is important at this point to define the different types of WorkStation instances

incorporated in the system and the type of service they provide. The system incorporates

five types of workstations based on the operation performed on an arriving cart (loading

or unloading). The types of unload and load stations that can be handled by the program

are as follows:

. Unload and load station with common service facility .

. Load station with assigned load time .

. Load station without assigned load time .

. Unload station .

. On-line unload station.

A special type of load station is the production programming and load station and

the object component bypass. Each type workstation is described below in more details.

- Production Pro&ramming and Load Station CPPLS): In a production warehouse system,

goods from the manufacturing plant are loaded at PPLS to be transported to various

locations in the warehouse. In general, PPLS is a central location from which goods are

transported to various unload stations in the system. The load and unload activities at

other stations may be considered as being initiated from PPLS. A PPLS is generally

served by an auxiliary power line which brings the empty carts from the main conveyor

to the loading area and delivers the loaded carts from the loading area to the main

conveyor line.

- Unload and Load Station With Common Service Facility CUALSC): Both unload and

load activities occur at UALSC. A loaded cart arriving at UALSC is unloaded and

assigned a new destination. An unloaded cart will be retained at UALSC if the empty

cart queue at the load station is not full. An empty cart arriving at UALSC is transferred

to the empty cart queue for being loaded.

All loaded carts arriving at UALSC join the station queue at first. If there is no

other cart that is being unloaded or loaded, unloading on the newly arrived cart begins

37

immediately. Otherwise, the newly arrived cart waits in the queue until all the preceding

carts are unloaded or loaded.

A certain maximum number of empty carts may be retained at the load station to

facilitate the availability of an empty cart for loading when a load order arrives. This

desired maximum number specifies the capacity of the empty cart queue. Load action is

initiated when a load order exists and an empty cart is available, provided the service

facility is free. A loaded cart is assigned a new destination and transferred to the

conveyor line. In UALSC, only one service facility is available for both unloading and

loading. Carts are unloaded and loaded following a first-come first-served (fcfs) policy.

-Load Station With Assi~ned Load Time CLSW AT): An empty cart arriving at LSW AT

joins the station queue first. Loading on the newly arrived car begins immediately if

there in no preceding cart at the station, provided a load order is available. When there

are empty carts in the station already, loading on the newly arrived cart is scheduled

when loading is completed on all the preceding carts. Load action will be initiated only

when a load order exists. The load orders are generated by the production programmer

or some other source in the real system, and are initiated in the simulation program by a

user defined distribution function.

-Load Station Without Assi~ned Load Time CLODST): The difference between

LSW AT arises in the mode of operation. LSWAT performs loading only when a load

order exists whereas LODST performs loading immediately after an empty cart arrives

provided the loading facility is free. A load order is not explicitly required in the case of

load station without assigned load time. It is implied that an empty cart arrival at

LODST brings a load order with it. In both LSW AT and LODST, carts are loaded on a

first come first served basis. A loaded cart is assigned a new destination and placed on

the conveyor chain.

38

- Unload Station CULST): A loaded cart arriving at an unload station joins the station

queue first. Unloading begins immediately, if there is no other cart in the station queue.

If there is one or more carts in the station queue, unloading is scheduled on the new

arrival after all the preceding carts are unloaded. The unloaded cart is assigned a new

destination and placed on the conveyor chain.

- OnLine Unload Station COLUNLOD): This is a special type of unload station where

goods are unloaded as the carts move along the conveyor chain. A special type of

unloading facility enables this operation. In certain warehouse applications, the

unloading device used for this type of operation employs a lever mechanism by which a

moveable unloading arm sweeps across the load and pushes it off the cart. It is also

possible to accomplish this type of unload using an overhead crane facility that can move

up and down and in the horizontal direction (Terrell, 1977). Several other unload

facilities of this type can be conceived. A few types are already in use and some may be

developed in the future. Regardless of the type of equipment used, a station that

performs unloading while the cart is moving on the conveyor is classified as on-line

unload station.

-Bypass (BYPASS): Bypass sections are provided for recirculating carts in the system

along the shortest route. If the station queue of a load or unload station is full, a cart

arriving at this facility recirculates and returns to the station after recirculating once via a

shorter route. If there is no bypass in the system, a cart has to travel the entire loop

before it arrives at the facility again. Bypass sections accommodate one cart at a time.

Hook/Conveyor: The Hook object is a subclass of theW orkstation class. However, this

object will be used as the material handler to allow the movement of the object Cart (to

be defined below) between the different workstations. All the hooks in the system will

make up the Conveyor object. Hooks in the Conveyor object will be discretely and

uniformly spaced. The Conveyor object will allow the movement of the hooks at a

constant speed specified by the user. The conveyor instance will also schedule the arrival

of hooks to the workstations. Hooks in front of the workstation's input queues will

check if they can "deliver carts" for service. At the same time hooks in front of the

workstation' s output queues will check if they can "accept carts" to transport them to

their desired destination.

39

Qm;: This object is actually an instance of SimulationObject with specific instance

variable values. All carts except those retained at unload and load stations will be

moving on the towline. At any time, a cart may be loaded or unloaded. After, a cart is

unloaded, it is placed on the towline and sent to its new destination. The destination

information is contained within instance variables carried by the cart. The cart's next

destination is acquired from the workstation at which it is currently being processed. An

arrival event to the next simulation model element specified by the destination attached

to the Cart instance is sent to the simulation object for scheduling on the event list.

Queue: This class provides one building block which may be used to construct specific

simulation element classes. The class is defined with the procedures to store other

objects within an ordered linked list, to remove objects from the front of the queue, to

search the queue for specific objects. When a new simulation element class needing

queuing features is to be defined, the class developer simply uses an instance of the

queue class as a component of the new simulation element and programs the correct

internal interaction mechanism.

QueueController: This is a subclass of object. Class QueueController creates a

controller through which a workstation communicates with its input and output queues.

The QueueController is created automatically when the WorkStation object is created.

Class ConvModel. This class (ConvModel) is responsible for providing a

template that holds information about the entire simulation model. Conv Model allows

the user to create, modify, add or delete portions of the modeL Before running an actual

simulation, ConvModel undergoes a consistency check for the newly created model and

then based on the user information it instantiates all the objects required for the execution

of the simulation. This arrangement separates model definition from the simulation

entities and enables the user to initiate a new simulation run by using the information

available in the templates provided by the Conv Model.

User Interface Classes. These classes collectively provide a variety of user

interface items for system model definition, modification, and simulation

experimentation with the conveyor system.

40

ConvView: This class offers the main menu for the modeling and simulation

environment. As depicted in Figure 10, the Conveyor Simulation Launcher view

provides a user with a list of options such as Workstation Definition.

WorkStationDefintionView: This class offers a user interface for workstation definition.

As depicted in Figure 11, the workstation definition view provides the user the

workstation database for quick workstation definition or reconfiguration. The

pop-up menus available in the workstation definition view provide the user a

mechanism to enter the required input parameters for the workstation.

Probability Definition View: This class offers the user interface for the workstation' s

probability definition. As depicted in Figure 12, the probability definition view

provides the user with database to specify the probabilities that a certain

workstation uses when specifying the next destination for the Cart instance.

ConveyorDefinition View: This class offers the user interface for conveyor definition.

As depicted in Figure 13, the ConveyorDefinition View provides the user with a

database to specify the required input parameters to initialize the Conveyor

ConveyorDefinition View.

ConvExperimentView: This class offers a user interface for defining the experimental

simulation parameters such as, simulation termination time, initial seed for the

random number stream, "Trace on" time, "Statistics clear" time, and histograms.

I vI ConveyorSimulation Launcher

WorkStation Defintion Browser

Conveyor Definition Browser

Probabilities Defintion Browser

Experiment

Results

Figure 10. Conveyor Simulation Launcher View

WorkStation Menu HIIM Workstation Defintion Browser

~
add a WorkStation

modify-review
rename

remove

j Workstations

WorkStation named: PPLS
l~Ml.&.mttatlfutWname.iniemwmsmii:mr~~mr~l~M

WorkStation named: UALS

Figure 11. WorkStation Definition View

41

42

II
Miit] Probability Definition Browser Probability Vector Menu

~ I
WorkStation named: PPLS

Specify Probabilities @),M.OfR§fdf!Mfftffitiffil§dMBWR:AS.S.Il~~fff~@~~~~~@~~~
WorkStation named: UALS

Figure 12. Probability Definition View

Conveyor Defintion

Speed Space

Track Size Num Workst.

No. of Carts

Figure 13. Conveyor Definition View

43

ConvResultView: This class offers user interface for depicting the simulation results.

The result view provides a summary report of all the statistics collected and trace

output for a simulation run.

Simulation Model Operation

At this point the major classes needed to develop a working simulation for the

target system have been described. The following section describes the manner in which

the objects will cooperate with one another during the simulation activity.

Time Advancement

The Simulation object in an OOP simulation system handles time advancement.

Time advance occurs by having the Simulation object loop through a portion of a method

to find the next event on the eventQueue. This event initialization method then sets the

new value of the current time instance variable and triggers the next event to occur by

executing the event initialization code retrieved from the event list. This sequence of

activities is performed repeatedly until no further events are scheduled or the specified

simulation run length has been achieved (designated by the end of execution event).

Entity Creation and Flow

The CartGenerator object, as mentioned earlier, is used to implement new

instances of entities and trigger their arrival to the simulation element instances which are

part of the model. The creation will be initiated when the message startUp invokes the

message defineArrivalSchedule which schedules the arrival of instances of Cart. Each

time the message proceed is sent to simulation, a Cart instance enters or exists.

The travel of Cart instances through the model is completely controlled by the

simulation control framework, sometimes referred to as the "life cycle" of the entity.

44

This framework involves the sequence of messages startUp, tasks, and finish Up. When

the Cart instance first arrives at the simulation, it is sent the message startUp. The

category task consists of messages the modeler can use in specifying the entity's sequence

of actions as it flows through the system. The Cart instance might be held for an

increment of time (holdFor:). It will also acquire access to another simulation object that

is playing the role of a resource (acquire: ofResource:) such as the element object

Workstation. Finally when the Cart instance carries out all its required tasks, it is sent

the message finish Up. This message will signal to the simulation class that the receiver

is done with its tasks and ready to exit the simulation.

Two separate processes are created in the model that will repeatedly schedule

specific sequences of actions according to specific arrival distributions.

The first process is the scheduling of the arrival of hooks to the input and output

queues of each workstation where each hook checks if it can deliver or pick up a cart.

The second process is the scheduling of the arrival of work orders to the loading

workstations.

Event Initiation and Scheduling-

The simulation approach adopted in this study is the process-oriented approach.

A process is defined as a sequence of events, together with a set of actions accompanying

each event. Thus the (potentially infinite) sequence of arrival events, together with the

associated creation of new entities, can be considered as a process. The behavior of a

system can be represented by a set of processes whose event sequences, when merged,

contain all events that occur in the system. Somewhere behind the scenes there is the

clock which is advanced from event to event, and the equivalent of an event list showing

45

what is scheduled to happen and when. However, the entries on that list are now

processes, ordered according to the time of the next events in their respective sequences

(Mitrani, 1982). In the process approach, the Simulation object itself has a control

framework similar to that described for the SimulationObject (Cart). The response to

startUp is to make the simulation the currently active one and then define the simulation

objects and arrival schedule. The inner loop of scheduled activity is given as the

response to the message proceed. Whenever the simulation receives the message

proceed, it checks the reference count of processes by sending the message

readyToContinue. If the reference count is not zero, then there are still processes active

for the current simulated time. Then the system-wide processor, Processor, is asked to

yield control and let these processes proceed. If the reference count is zero, then the

event queue is checked. If it is not empty, the next event is removed from the event

queue, time is changed, and the delayed process is resumed. When the simulation

method has completed its event list addition, control returns to the simulation element

instance methods, from which control will return to the simulation event initiation

method. Basically, what happens is that a hierarchy of messages to different methods is

established. Execution is returned to methods in reverse order when a method which

makes no call to another method is encountered. Each event is initiated by the simulation

object, processed through all needed methods, and finally execution control is returned to

the simulation object which then retrieves the next event on the eventQueue.

Summary

This discussion may lead one to the conclusion that an 00 simulation system will

be a very complex package. This perception is not really correct. Actually, the

interaction, which will be handled by the OOP environment, is the complex part. By

using the inheritance and encapsulation features in the OOP environment, the

46

development of the software needed is much easier than would typically be the case in a

traditional computer language. Once the basic units are developed (a library of

simulation element objects and the set of simulation process elements) and standard

procedures for element interactions are determined, the design and use of simulation

models within the OOM environment should be relatively straightforward and efficient.

00 Simulation Object Linking

Introduction

In the previous section the description of the classes was made from a perspective

internal to the classes without consideration of the way these classes communicate with

one another. The building of simulation models is essentially developing the

communication between these objects to fit one's purpose. The design of the interaction

between these objects should support generalized linking and the techniques used to

provide this linkage must be understood.

The Structure of Object-Oriented Models

The first step of object-oriented design which relies on the identification of the

topmost classes and objects is completed. Next, design decisions regarding the semantics

of each of these abstractions, as well as their relationships must be accomplished. Also

some mechanisms that exploit the commonalty among these objects to simplify our

overall design must be developed.

Since, the first goal of building the library of software objects is to make it easy

to assemble special purpose simulation models, customized for individual research

questions, designing the OOP environment should have as a main goal the design for

47

reusability of simulation elements. This could be accomplished by designing the model

structure to allow the separately developed simulation objects to exist and function

correctly together in any simulation model. A hierarchical organization (for the

communication links between objects in a model) of simulation model objects is

proposed based on the following characteristics: 1) the "stand alone" nature of objects

allows an object to be linked to a set of necessary (for correct functioning) objects and to

be unaffected by the presence or absence of other objects in the system and 2) a

hierarchical organization assumes that linkage (i.e., methods and variables inherited)

between system components are vertical (there are no horizontal links between subtrees

in hierarchical system) (Beaumariage, 1990). The first feature allows a hierarchical

structure to be used, and the second feature supports reusability of simulation objects.

Also, direct communication from a particular object is limited to other objects that exist

either one level higher or one level below in the same subtree structure. Interaction

between objects separated by more than one hierarchical level or on the same level of the

hierarchy occurs indirectly through an intermediate object or controller. The only

relaxation of these restrictions is that the Simulation class acts as the controller for

communication between different system levels.

Smalltalk-80 Class Implementation

This section discusses in some detail the implementation of several representative

simulation objects developed for the system at hand. This section however, only

provides the reader with a basic understanding for the structure of the simulation

software. The Smalltalk-80 implementations of each of these classes are available for

detailed examination in Appendix A.

As mentioned in detail in chapter ill, a class in OOP is defined by specifying its

four specific elements: 1) class variable names, 2) instance variable names, 3) class

methods, and 4) instance methods. The author will mention all the instance and class

methods but will only explain in detail the important ones.

Simulation Element Objects

48

For the reason of brevity , the simulation classes will not be explained here. The

description of theses classes is the same as the one included in Goldberg and Robson

(1989). The section below will discuss in detail each of the target system simulation

element objects:

ConveyorSimulation. This class is a subclass of the class Simulation. In addition

to the capabilities inherited from its superclass, ConveyorSimulation class will have

procedures designed specially for the system at hand .

.lla1a stora~e

Class variable names:

Instance variable names:
cartGenerator
outputStream
conveyor

The instance variable cartGenerator stores references to different cartGenerator

elements in the simulation model in an OrderedCollection instance (a class definition

already available in Smalltalk-80). The instance outputStream will be used to designate

the outputStream of the simulation. Finally, the instance variable conveyor will be used

to store the object Conveyor.

Software methods

Class methods:

1. examplecg

This method is used to develop an example for an experiment run. The model

developer will not have to type in all the input parameters through the user interface

every time he/she desires to run an experiment.

Instance methods:
1. addCartGenearator
2. cartGenerator add: aGenerator.
3. Cart initialize
4. finishUp
5. clearStatisticsAt: aTime
6. printResultsOn: aStream

49

The CartGenerator object is added to the simulation by using the method

addCartGenerator. Different types of cartGenerator(s) will be created and then stored in

the cartGenerator storage location by sending the message cartGenerator add:

aGenerator. The method initialize will initialize the Cart object so that "time in" statistics

could be collected for individual job types. This method will also allow the specification

of the outputStream where the results will be written. In addition to emptying the event

queue, the finish Up message will allow the printing of all the statistics collected during

the simulation run execution (these statistics are the ones specified by the user) by

invoking the message printResultsOn: aStream. The method clearStatisticsAt: aTime, is

a method which is typically scheduled to execute at some specified time (to remove the

effects of a simulation warm up period) by the model developer .

.Qm;. For the system at hand, the author created a subclass of SimulationObject.

This class will inherit all the capabilities of its superclass in addition to the features

needed for this study.

Data Storage

Class variable names:
1. CartUtilization
2. Count

The class variable CartUtilization is used to store the time persistent statistics

such as the utilization of the cart in a TimeTrackedNumber instance (a class definition

50

already available in Smalltalk:-80) . .Qmn1 is a location to store the serial number of the

Cart instance created in a Dictionary instance (a class already available in Smalltalk-80).

Instance variable names:
1. name
2. serial
3. entryTime
4. queueEntryTime
5. currentPosition
6. currentWorkStation
7. destination
8. destinationPosition
9. bypass
10. tempDestination
11. status
12.done
13. county

The instance variable name will store the name of the Cart instance created. Each

cart instance created will have a number attached to it to identify it from other instances.

This number is stored in the instance variable serial. The entryTime instance variable is

set equal to the creation time of each Cart instance created. The storage of this value

allows the time in system statistics to be collected for each cart passing through the

system. The instance variable queueEntryTime is set equal to the time the Cart instance

joins a queue of a workstation. The currentPosition instance variable is set equal to the

current position of the Cart instance. This position is the same as the position of the

workstation the Cart instance is currently getting serviced at. The current WorkStation is

set equal to the name of the workstation the cart instance is currently being processed at.

The destination is the instance variable that stores the next workstation for the cart. The

destinationPosition is the position of the cart' s destination. The instance variable bypass

stores the object named BYPASS. Bypasses are typically transfer lines that will allow a

cart to recirculate in the conveyor loop always via a shorter route. When the cart

51

instance chooses to move along a bypass to reach its destination, its original destination

is stored in a temporary storage location set equal to the instance variable

tempDestination. The instance variable ~ will store the status of the cart instance

which will have a value of one if the cart is carrying a load order or zero if the cart is

empty. The instance variable~ will be either equal to 'true' if the cart instance is done

with all its tasks or 'false' if the cart is not done with its tasks. Since the system is a

recirculating conveyor system this value will always have the value 'false' which allows

the cart instance to keep recirculating in the system till the simulation is terminated.

Software methods

Class methods
1. name: aN arne
2. initialize
3. returninstanceWithSerial: aSerial

The initialize method will initialize the class variable mentioned above to their

initial instances. The last method retuminstanceWithSerial: aSerial will return the cart

object with the serial number aSerial.

Instance methods:
1. initialize
2. initName: aName
3. accessing methods
4. initialize-release methods
5. pause
6. resume
7. startUp
8. tasks
9. checkShortestRouteFrom: a WorkStation
10. completeOperationsAt aLocation
11. finish Up

The first method, initialize, will initialize the cart instances as required by the

system. The instance variable currentWorkStation of all the created carts will be

initialized to PPLS since, all the carts will start at this workstation with an empty status.

For the sake of brevity, the author included all the methods that request and return the

52

values of an object instance variables under the accessin~ category. The methods under

this category will allow the access of all the instance variables in addition to the

resourceNeeded by the Cart instance and the amountNeeded of this resource. Moreover,

all the methods initializing these instance variables are grouped under the initialize

release category. The Cart instance in carrying its activities will follow the simulation

framework referred to as the "life cycle of the object" which involves the sequence

startUp_tasks_finishUp. When the Cart instance first arrives to the simulation it is sent

the message startUp which will set its entryTime to the Simulation active time and its

initial position to the PPLS workstation. Within the same method the Cart instance is

sent the method .Y!£ks,. The method .Y!£ks, will specify the sequence of actions the Cart

instance has to perform. First the Cart instance has to acquire a workstation

(acCJ,uireResourceg) and then request service. If this request is successful, the Cart

instance is sent the method complegteOpegrationsAtLocation: aLocation. At this point the

Cart instance will be serviced and assigned a new destination by the WorkStation. At the

end of this method the cart will be put in the output queue of the workstation waiting for

a hook to be available to carry it to its next destination. In order to allow the

recirculation of Cart instances the instance variable done is never set to true during the

simulation. Therefore, the tasks block of actions is repeatedly performed till the

simulation is terminated. Figure 14 illustrates the message flow diagram for the Cart

object. The message flow diagram is simply a network in which the nodes represent

objects and the arcs connecting them represent messages. The arcs are numbered

sequentially to show the order in which messages are sent.

WorkStation. This class embodies the behavior of a work station or machine. It

has three queues (input, output, and empty), a processor and a queue controller.

1.

startUp

Cart

finish Up

5.

2. tasks
v v

2. 1 acquireResource

2.2 completeOperations-
< Atlocation

3. putMelnOutput
Queue

~a use

>

Figure 14. Message Flow Diagram for the Cart Object

53

54

.Q.a1a Storage

Class variable names:

1. Destinations

This Destinations class variable is a storage location pointing to a Dictionary

instance (a general Smalltalk-80 class). This dictionary functions to allow the storage of

the pointers to the different workstations that could exist in the system (the pointers will

be the workstation names).

Instance variable names:
1. name
2. wsType
3. enterPosition
4. exitPosition
5. processTime
6. wsProcessingTimes
7. probabilities
8. wsQueueController
9. wsAmountAvailable
10. loadCount

The WorkStation' s type will be carried by the instance variable wsType. The

instance variables enter Position and exitPosition define respectively the position of the

input queue and the output queue of the WorkStation instance. The instance variable

processTime will be set equal to the time it takes a specific WorkStation instance to

service a cart. The instance variable probabilities is a storage location pointing to a

Dictionary instance. The locations in the Dictionary instance will carry the values of the

probabilities with which a WorkStation instance sends a Cart instance to another

WorkStation instance. The instance variable wsOueueController is an instance of the

object OueueController. The wsAmountA vailable is an integer set either to one when the

WorkStation instance is idle or zero otherwise.

55

Software methods

Class methods:

1. generateAndLoadOrders
2. returnlnstanceWithName: aName

The method generateAndLoadOrders will allow repeated scheduling of the arrival

of load orders according to a user specified probability distribution. Once the load order

is scheduled it should check if there is any empty cart available to start loading (through

the method tryToLoad) and schedule the next arrival of a load order. The last method

returninstanceWithName: aName will allow the WorkStation class to return the

Workstation instance with name aName.

Instance methods:
1. initializeWithName: aString andAmount: aN umber exitPosition:
ExitPositon enterPosition: aEnterPosition probabilities: a Vector
processTime: aTime type: aType

2. accessing methods
3. getaRandomNumber
4. getNextDestination
5. provideServiceTo: aCart
6. provideServices
7. release: anAmount
8. tryToLoad
9. printOn: aStream

10. printResultsOn: aStream

The first method will initialize all the instance variables of the WorkStation

instance. All the methods requesting the values of the instance variables were grouped

under the accessing category. In order for the WorkStation instance to assign a new

destination for the Cart instance it will get a random number by sending to itself the

method getaRandomNumber. The random number returned from this message will be

checked against the probabilities with which a WorkStation instance sends Cart instances

to other WorkStation instances. The destination for the Cart instance will be the

WorkStation instance in the DestinationList that satisfied a match between the

56

probability requirements and the random number generated. This will be done within the

method getNextDestination. When a cart acquires a resource (WorkStation instance), it

will ask it to provideService to it. In response to the message provideServiceTo: aCart,

the WorkStation instance delays the cart for the required amount of time (which

simulates the processing of the Cart at the WorkStation if the machine is idle). A busy

WorkStation enqueues the Cart requesting its service. Once the cart is serviced the

WorkStation instance should be made available (incrementing the number of

wsAmountAvailable by the amount that was acquired by the Cart instance). This is done

by sending the message release: anAmount to WorkStation instance. The method

tryToLoad is invoked whenever a load order is generated to check if loading is possible

(e.g. is there an empty cart available?). The last two methods are the methods needed to

print statistics on the WorkStation's utilization and its instance queues. The output form

of the WorkStation instance is defined through the method printOn: aStream.

Hook. Another important object in the simulation model is the Hook object.

This object will be created as a subclass of WorkStation object. In addition, Hook

instances will be specified by their positions and numbers in the conveyor loop. At any

time in the simulation the model developer should be able to identify the status and the

position of the Hook instance. These attributes of the Hook instance will be stored in its

instance variables. The next class to be considered is the class conveyor. This class will

allow a meaningful place to put methods dealing with all the Hook instances.

Data storage

Class variable names

Instance variable names
space
track
trackSize

inputPos
outputPos
num WorkStations

57

The instance variable~ is set equal to the distance between two consecutive

Hook instances. The .t.nl&k instance variable is a storage location pointing to a Dictionary

that functions to allow the storage of all the Hook instances created. Therefore, the

trackSize will always be equal to the number of Hook instances needed to be created in

the system. The inputPos is a storage location pointing to a Dictionary instance. This

Dictionary will store the positions of the input queues of the WorkStation instances in the

system. This explanation applies to the outl)utPos instance variable except that the

Dictionary stores the positions of the output queues of the WorkStation instances. The

numWorkStations is set equal to the number of WorkStations instances that will be

created in the system.

Software methods

Class methods:

1. new

The new method functions to allocate memory space for the representation of a

new Conveyor. In addition, it sends a message to the new Conveyor instance to initialize

itself through the use of the initialize instance method.

Instance methods:
1. initialize
2. accessing methods
3. updateHookPositions
4. move
5. accept Carts
6. deliverCarts

The initialize method will allow the storage of the Hook instances in the track

(this is the same thing as a conveyor loop). At this point a reference point is selected on

the track and Hook instances are assigned numbers sequentially starting form one. The

hookNumber (defined above) is the same as the hookPosition when no movement has

58

occurred yet. All the Hook instances start with an idle status. Accessing methods will be

used to return the values of the instance variables at any simulated time in the simulation

run. The instance method updateHookPositionsl: aN umber functions to update the Hook

instances positions after the conveyor has moved through a certain number of hook

spaces equal to aNumber. The Hook instances numbers (hookNumber) are not changed,

only their positions are changed (hookPosition). Cart instances will be transported to

their destinations by sending the message move: aN umber. This method will schedule

the arrival of Hook instances to the WorkStation instances repeatedly after a certain

number of hook spaces. At this point all the Hook instances in front of the input and

output queues of the WorkStation instances will check if they can deliver carts to the

WorkStations or accept to transport carts from their current workstation to their

destinations. In the method acceptCarts, the Conveyor checks the status of all the Hook

instances in front of the workstation's output queues. If a Hook instance is is not carrying

a cart it checks if there is a cart waiting for transportation. If a cart is waiting in the

output queue of the workstation, the Hook instance removes it and adds it to its input

queue. The Hook instance will always check whether or not the destination of the Cart

instance lies along the shortest route. After checking if the Hook instances can transport

carts to their destinations, the Conveyor checks if the Hook instances in front of the input

queues of the workstations can deliver the carts they are carrying. If there is space in the

workstation's input queue, the cart leaves the hook and joins the input queue for service

at the workstation. It is at this point and only at this point that the Cart instance is

resumed to carry out the block of actions in its method tasks one more time. If the

workstation does not have input space the cart is recirculated through the shortest route

before it tries to acquire the workstation again. Figure 15 illustrates the message diagram

for this object.

For the sake of brevity, and because its description will not help the reader or

give him/her more insight in understanding the simulation model, the class

initialize
l.j

move

2.

checkShourtest
Route

2.1.2

2.1 acceptCarts

2.2 deliverCarts

updateHookPositions

3.

WorkStat
ion

Figure 15. Message Diagram for the Conveyor Object

59

QueueController will not be explained here. Detailed description will however, be

included in Appendix A.

Summary

60

This section discussed in some detail the implementation of several representative

simulation processing and element objects. This coverage is intended to provide the

reader a basic understanding of the code listed in Appendix A.

Target System Simulation Model Representation:

An lllustrative Example

An lllustrative Example

In this section an example model is executed. The following tables include the

parameters specification of the different workstations and their probability vectors and

the conveyor object of the example model.

61

TABLE 1

WORKSTATION PARAMETERS SPECIFICATION

Facility Name Type Process Time Exit Position Enter Position

UALSC 1 Normal (4, 0.5) 8 7

LSWAT 2 Normal (4, 0.5) 24 23

LODST 3 Normal (4, 0.5) 38 37

OLUNLOD 4 0 43 42

ULST 5 Normal (3, 0.4) 32 31

BYPASS 6 8 44 17

PPLS 7 Normal (4, 0.5) 5 1

62

TABLE2

CONTINUED WORKSTATION PARAMETERS SPECIFICATION

Input Output Empty
Facility Name Queue Queue Queue

Cap. Cap. Cap. Prob. Vector *

UALS 5 5 2 _(0.0, 0.2, 0.1, 0.3, 0.3, 0.0, 0.1)

LSWAT 5 5 2 (0.2, 0.0, 0.0, 0.4, 0.4, 0.0, 0.0)

LODST 5 5 2 (0.2,0.0,0.0, 0.4, 0.4, 0.0, 0.0)

OLUNLOD 10 10 0 (0.2, 0.3, 0.3, 0.0, 0.0, 0.0, 0.2}

ULST 5 5 0 (0.2, 0.3, 0.3, 0.0, 0.0, 0.0, 0.2)

BYPASS 5 5 0 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, O.D)

PPLS 20 20 0 (0.4, 0.0, 0.0, 0.3, 0.3, 0.0, 0.0)

* The vector entries follow the order of the facility name column. That is for the Pro b.

Vector of the UALSC the 0.2 in the second entry represents the probability from which

the UALSC will send a cart to the workstation LSWAT.

TABLE 3

CONVEYOR PARAMETERS SPECIFICATION

Conveyor

Speed Space No. Hooks

1ft/min 10ft 48

The model will have 20 carts and a simulation end time of 700 minutes. The

results of executing this model in the Smalltalk-80 environment is shown in Figure 16.

63

Verification and Validation

Verification of the developed simulation software and validation of the OOM

conceptual approach to simulation model generation have been addressed. Verification

of the object-oriented simulation software was performed through the close scrutiny and

testing (debugging and tracing) of the simulation classes during the software

implementation phase. An additional measure of modeling construct verification was

achieved through the successful completion of the validation process. During the

construction of the simulation program, a systematic series of steps were used to validate

the program. The objective of validation was to establish that each system object

responded in a logical manner like an actual system.

The first phase of the program validation was accomplished during the early

stages of construction of software objects. The different situations which arise at each

module were first carefully examined and exhaustively enumerated. The system logic

was then simulated using Lotus 123 to insure its correctness before the coding of the

computer program.

The second phase of validation consisted of implementing each software object

by itself first to make sure that it was doing what it was intended to do by going to the

Workspace window and inspecting the values of all its class and instance variables. The

implementation of the software objects was also done with an incremental style of

development. That is, object capabilities were added incrementally to make sure that

every feature added to the object was functioning correctly. Several cases of software

object inputs (arrival distributions, processing times distributions, etc.) were

deterministically programmed and the output was analyzed to insure the correct

functioning of the software object under most situations.

A third phase of validation consisted of testing the relationship between objects to

verify that the program responds like a real system and exhibits the same logical

Simulation initiated at 11:58:36 am, 24 April 1992

Simulation Experimentation Seed : 1234 Simulation End Time : 700

Traced From : 0 Statistics Cleared At : 0

Statistics for WorlcStation: BYPASS

No.Obs. Average Std.Dev Minimum Maximum Current

--
Utilization: 5 0.0228571 0.149448 0.0 1.0 0.0

Proc.Time: 3 5.33333 4.6188 0.0 8 8

Input Queue:

Length: 5 0.0 0.0 0.0 1.0 0.0

Wait Time: 3 0.0 0.0 0.0 0.0 0.0

Output Queue:

Length: 5 0.00571429 0.0753766 0.0 1.0 0.0

Wait Time: 3 1.33333 1.1547 0.0 2.0 2.0

empty Queue:

Length: 0.0 0.0 0.0 0.0 0.0

Wait Time: 0.0 0.0 0.0 0.0 0.0

Statistics for W01kStation: LODST

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 7 0.0172491 0.130198 0.0 1.0 0.0

Proc.Time: 4 3.01859 2.02027 0.0 4.26975 3.95331

Input Queue:

Length: 7 0.0 0.0 0.0 1.0 0.0

Wait Time: 4 0.0 0.0 0.0 0.0 0.0

Output Queue:

Length: 7 0.025608 0.157963 0.0 1.0 0.0

Wait Time: 4 4.48141 2.99291 0.0 6.14868 6.04669

empty Queue:

Length: 0.0 0.0 0.0 0.0 0.0

Wait Time: 0.0 0.0 0.0 0.0 0.0

Statistics for WorlcStation: LSWAT

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 3 0.00614973 0.0781787 0.0 1.0 0.0

Proc.Time: 2 2.05385 2.90458 0.0 4.10769 4.10769

Input Queue:

Length: 3 0.0 0.0 0.0 1.0 0.0

Wait Time: 2 0.0 0.0 0.0 0.0 0.0

Output Queue:

Length: 3 0.00813599 0.089832 0.0 1.0 0.0

Wait Time: 2 2.8476 4.02711 0.0 5.69519 5.69519

empty Queue:

Length: 3 2.81634e-4 0.0167796 0.0 1.0 0.0

Wait Time: 2 0.0985718 0.139402 0.0 0.197144 0.197144

Figure 16. Result View

64

65

Statistics for WoikStation: OLUNLOD

No.Obs. Average Std.Dev Minimum Maximum Current

--
Utilization: 23 0.0 0.0 0.0 1.0 0.0

Proc.Tune: 12 0.0 0.0 0.0 0.0 0

Input Queue:

Length: 23 0.0 0.0 0.0 1.0 0.0

Wait Time: 12 0.0 0.0 0.0 0.0 0.0

Output Queue:

Length: 23 0.157143 0.363935 0.0 1.0 0.0

Wait Time: 12 9.16667 2.88675 0.0 10.0 10.0

empty Queue:

Length: 0.0 0.0 0.0 0.0 0.0

Wait Time: 0.0 0.0 0.0 0.0 0.0

Statistics for WoikStation: PPLS

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 50 0.14322 0.350297 0.0 1.0 0.0

Proc.Time: 25 4.01015 0.518814 3.05248 5.20612 4.0428

Input Queue:

Length: 49 1.10393 3.62384 0.0 19.0 0.0

Wait Time: 25 30.9101 26.5978 0.0 76.638 0.0

Output Queue:

Length: 51 1.86713 3.33182 0.0 12.0 0.0

Wait Time: 26 50.2689 38.4304 0.0 119.3 35.9572

empty Queue:

Length: 0.0 0.0 0.0 0.0 0.0

Wait Time: 0.0 0.0 0.0 0.0 0.0

Statistics for WoikStation: UALSC

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 17 0.0844311 0.278033 0.0 1.0 0.0

Proc.Time: 15 3.94012 1.12848 0.0 4.64781 4.50024

Input Queue:

Length: 17 0.0 0.0 0.0 1.0 0.0

Wait Time: 9 0.0 0.0 0.0 0.0 0.0

Output Queue:

Length: 17 0.0298546 0.170186 0.0 1.0 0.0

Wait Time: 9 2.32203 1.91283 0.0 5.49976 5.49976

empty Queue:

Length: 0.0 0.0 0.0 0.0 0.0

Wait Time: 0.0 0.0 0.0 0.0 0.0

Figure 16. (continued)

Statistics for WorkStation: ULST

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 19 0.0378806 0.190908 0.0 1.0 0.0

Proc.Time: 10 2.65165 0.967777 0.0 3.34706 3.14901

Input Queue:

Length: 19 0.0 0.0 0.0 1.0 0.0

Wait Time: 10 0.0 0.0 0.0 0.0 0.0

Output Queue:

Length: 19 0.0906908 0.287169 0.0 1.0 0.0

Wait Time: 10 6.34836 2.24589 0.0 7.58289 6.85101

empty Queue:

Length: 0.0 0.0 0.0 0.0 0.0

Wait Time: 0.0 0.0 0.0 0.0 0.0

Statistics for Hook: Hook #1

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

6

3

0.9 0.3 0.0

120.0 190.788 0.0

Statistics for Hook: Hook #2

1.0 1.0

340 340

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 4 0.928571 0.257539 0.0 1.0

Proc.Time: 2 185.0 261.63 0.0 370

Statistics for Hook: Hook #3

1.0

370

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 5 0.614286 0.486764 0.0 1.0 0.0

Proc.Time: 3 263.333 229.42 0.0 420 420

Statistics for Hook: Hook #4

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 6 0.942857 0.232115 0.0 1.0

Proc.Time: 3 116.667 132.035 0.0 260

Statistics for Hook: Hook #5

1.0

90

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

5 0.614286 0.486764

3 263.333 229.42

0.0

0.0

Figure 16. (continued)

1.0

420

0.0

420

66

Statistics for Hook: Hook #6

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 2 0.314286 0.464231 0.0 1.0 1.0

Proc.Time: 0.0 0.0 0.0 0.0 0.0

Statistics for Hook: Hook #7

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time:

1

1

0.0

0.0

Statistics for Hook: Hook #8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 2 0.342857 0.474664 0.0 1.0 1.0

Proc.Time: 0.0 0.0 0.0 0.0 0.0

Statistics for Hook: Hook #9

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time:

1 0.0

0.0

Statistics for Hook: Hook #10

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #11

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #12

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Figure 16. (continued)

0.0

0.0

67

Statistics for Hook: Hook #13

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #14

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #15

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

1

1

0.0

0.0

Statistics for Hook: Hook #16

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #17

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwu Maximum Current

Utilization:

Proc.Time:

3 0.0714286 0.257539

2 215.0 304.056

Statistics for Hook: Hook #18

0.0

0.0

1.0

430

0.0

430

No.Obs. Average Std.Dev Minimwn Maximwu Current

Utilization:

Proc.Time:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Statistics for Hook: Hook # 19

No.Obs. Average Std.Dev Minimwn Maximwu Current

Utilization: 3 0.0714286 0.257539 0.0 1.0 0.0

Proc.Time: 2 215.0 304.056 0.0 430 430

Figure 16. (continued)

68

Statistics for Hook: Hook #20

No.Obs. Average Std.Dev Minimwn Maximwn Current

Utilization: 2 0.514286 0.499796 0.0 1.0 1.0

Proc.Time: 1 0.0 0.0 0.0 0.0 0.0

Statistics for Hook: Hook #21

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #22

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximwn Current

Utilization: 4 0.528571 0.499183 0.0 1.0 1.0

Proc.Time: 2 130.0 183.848 0.0 260 260

Statistics for Hook: Hook #23

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #24

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

1

1

0.0

0.0

Statistics for Hook: Hook #25

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #26

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Figure 16. (continued)

0.0

0.0

69

Statistics for Hook: Hook #27

No.Obs. Average Std.Dev Minimwn Maximwn Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #28

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #29

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

1

1

0.0

0.0

Statistics for Hook: Hook #30

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #31

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

1

1

0.0

0.0

Statistics for Hook: Hook #32

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

0.0

0.0

Statistics for Hook: Hook #33

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization:

Proc.Time: 1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Figure 16. (continued)

0.0

0.0

70

Statistics for Hook: Hook #34

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 4 0.7 0.458258

Proc.Time: 2 130.0 183.848

0.0

0.0

1.0 1.0

260 260

Statistics for Hook: Hook #35

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 6 0.7 0.458258 0.0 1.0 1.0

Proc.Time: 3 103.333 137.961 0.0 260 50

Statistics for Hook: Hook #36

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 10 0.685714 0.464231 0.0 1.0 1.0

Proc.Time: 5 68.0 92.5743 0.0 230 40

Statistics for Hook: Hook #37

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 4 0.742857 0.437059 0.0 1.0 1.0

Proc.Time: 2 130.0 183.848 0.0 260 260

Statistics for Hook: Hook #38

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 4 0.757143 0.428809 0.0 1.0 1.0

Proc.Time: 2 185.0 261.63 0.0 370 370

Statistics for Hook: Hook #39

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 5 0.157143 0.363935 0.0 1.0 0.0

Proc.Time: 3 36.6667 47.2582 0.0 90 90

Statistics for Hook: Hook #40

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 6 0.771429 0.419913 0.0 1.0 1.0

Proc.Time: 3 243.333 210.792 0.0 370 360

Figure 16. (continued)

71

Statistics for Hook: Hook #41

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 5 0.157143 0.363935 0.0 1.0 0.0

Proc.Time: 3 36.6667 47.2582 0.0 90 90

Statistics for Hook: Hook #42

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization: 10 0.728571 0.444697 0.0 1.0 1.0

Proc.Time: 5 116.0 143.631 0.0 310 20

Statistics for Hook: Hook #43

No.Obs. Average Std.Dev Minimwn Maximum Current

Utilization:

Proc.Time:

4 0.828571 0.376883

2 185.0 261.63

Statistics for Hook: Hook #44

0.0

0.0

1.0

370

1.0

370

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 4 0.842857 0.363935 0.0 1.0 1.0

Proc.Time: 2 185.0 261.63 0.0 370 370

Statistics for Hook: Hook #45

No.Obs. Average Std.Dev Minimwn Maximwn Current

Utilization: 6 0.842857 0.363935 0.0 1.0 1.0

Proc.Time: 3 243.333 210.792 0.0 370 360

Statistics for Hook: Hook #46

No.Obs. Average Std.Dev Minimwu Maximum Current

Utilization: 6 0.857143 0.349927 0.0 1.0

Proc.Time: 3 103.333 137.961 0.0 260

Statistics for Hook: Hook #47

1.0

50

No.Obs. Average Std.Dev Minimum Maximum Current

Utilization: 4 0.885714 0.318158 0.0 1.0

Proc.Time: 2 185.0 261.63 0.0 370

Statistics for Hook: Hook #48

1.0

370

No.Obs. Average Std.Dev Minimwu Maximum Current

Utilization: 4 0.9 0.3 0.0 1.0 1.0

Proc.Time: 2 130.0 183.848 0.0 260 260

Average Utilization Of AllTI1e Hooks Is: 0.343155

Figure 16. (continued)

72

73

Utilization for Carts:

No.Obs. Average Std.Dev Minimum Maximum Current

cart serial # 1 3 0.9 0.3 0.0 1.0 1.0

cart serial # 2 3 0.422959 0.494029 0.0 1.0 1.0

cart serial # 3 3 0.887884 0.315509 0.0 1.0 1.0

cart serial # 4 2 0.567674 0.495399 0.0 1.0 0.0

cart serial # 5 4 0.569842 0.495098 0.0 1.0 0.0

cart serial # 6 2 0.427681 0.494742 0.0 1.0 0.0

cart serial # 7 2 0.593815 0.49112 0.0 1.0 0.0

cart serial # 8 3 0.87437 0.331432 0.0 1.0 1.0

cart serial # 9 3 0.769483 0.421164 0.0 1.0 1.0

cart serial # 10 2 0.621124 0.485107 0.0 1.0 0.0

cart serial # 11 2 0.627972 0.483346 0.0 1.0 0.0

cart serial # 12 7 0.666488 0.471467 0.0 1.0 1.0

cart serial# 13 5 0.366326 0.4818 0.0 1.0 0.0

cart serial# 14 3 0.738271 0.439576 0.0 1.0 1.0

cart serial # 15 4 0.38305 0.48613 0.0 1.0 0.0

cart serial # 16 2 0.669854 0.470265 0.0 1.0 0.0

cart serial # 17 2 0.521381 0.499543 0.0 1.0 0.0

cart serial # 18 6 0.594847 0.490922 0.0 1.0 0.0

cart serial # 19 3 0.809408 0.392768 0.0 1.0 1.0

cart serial # 20 2 0.54766 0.497723 0.0 1.0 0.0

Average Utilization Of All The Carts Is: 0.658669

Simulation Ended at #(24 April1992 12:04:10 pm)

Figure 16. (continued)

74

relationship between the interface and functional objects as in the actual system. In order

to accomplish this, the types of event occurrences were exhaustively enumerated and the

logic was traced by hand for each type of event.

The fourth phase of validation was accomplished by building a small hypothetical

conveyor system simulation model that consisted of at least one of each of the system

objects. A series of trial simulation runs were made. In addition, several model inputs

were deterministically programmed and the output was analyzed to insure the correctness

of logic under all situations. Using the simulation trace-on feature available in

Smalltalk:-80 (see Figure 17), the flow of carts through the system was checked to insure

that they follow the proper sequence.

Summary

The last few sections describe the procedure employed to validate the conceptual

organization of the OOM prototype environment for the generation of discrete simulation

models of a constant speed, discretely spaced recirculating conveyor system. In the next

chapter, the OOM environment will be evaluated through the use of both tangible and

intangible features within an organization structure made up of an Analytical Hierarchy

Process decision model.

31.3618
Cart cart serial# 8 released 5
Cart cart serial# 8 going to WorkStation named: ULST
cart is at: PPLS
Cart cart serial# 9 processing time required at WorkStation named: PPLS 3.85135
Cart cart serial# 9 obtained WorkStation named: PPLS
35.2132
Cart cart serial# 9 released 5
Cart cart serial# 9 going to WorkStation named: OLUNLOD
cart is at: PPLS
Cart cart serial# 10 processing time required at WorkStation named: PPLS 5.20612
Cart cart serial# 10 obtained WorkStation named: PPLS
39.3904
40.0
Cart cart serial# 4 obtained aHook2
a Conveyor all the hook positions are updated at 40.0
40.4193
Cart cart serial# 10 released 5
Cart cart serial# 10 going to WorkStation named: OLUNLOD
cart is at: PPLS
Cart cart serial# 11 processing time required at WorkStation named: PPLS 4.9199
Cart cart serial# 11 obtained WorkStation named: PPLS
45.3392
Cart cart serial# 11 released 5
Cart cart serial# 11 going to WorkStation named: OLUNLOD
cart is at: PPLS
Cart cart serial# 12 processing time required at WorkStation named: PPLS 3.91146
Cart cart serial# 12 obtained WorkStation named: PPLS

Figure 17. Simulation Trace

75

CHAPTER VII

EVALUATION OF THE APPROACH THROUGH ANALYTIC

HIERARCHY PROCESS

This chapter summarizes the Analytic Hierarchy Process used to compare the

proposed modeling approach against conventional simulation paradigm.

Analytic Hierarchy Process

This chapter describes the application of the Analytical Hierarchy Process

(AHP) to evaluate various aspects of the developed framework and the methodology

against the conventional simulation paradigm. A detailed explanation of the AHP

process will not be covered here and can be obtained from Saaty (1988). In simple

terms, AHP is a multi-criteria decision methodology that utilizes structured pair wise

comparisons among similar aspects of alternatives to reach a scale of preference. A more

comprehensive application of AHP for simulation environment evaluation purposes can

also be seen from the study done by Beaumariage (1990). In his study Beaumariage

compares object-oriented simulation environments against traditional environments such

as SLAM II and SIMAN. This study also provides a summarized guideline of the AHP

application process. Therefore, the process of developing an AHP model will not be

covered here, but can be obtained from one of the resources mentioned above.

The preliminary AHP model developed by the author was discussed,

critiqued, and iterated on by an AHP study group that consisted of Hemant Bhuskute,

Manoj Duse, Jagannath Gharpure (three PHD candidates in Industrial Engineering and

76

77

Management at Oklahoma State University), and the author. The group started by

developing the levels, the major aspects, and the criteria in terms of a set of nodes. The

next task was defining the linkages between these nodes. Finally, the group assigned

weights to the preference matrices resulting from the above two tasks. The following

paragraphs summarize the resulting level, major aspects, criteria and weight matrices of

the group's study.

Level 1 : Definition of the Problem

1.1 - Simulation Paradi~m. The goal of this analysis is the choice of the best

means of conceptualizing and representing the system in terms of a simulation model

along with underlying structures.

Level 2 : Major Aspects

2.1 - Model Effectiveness. This aspect is concerned with the ability of the model

to represent critical aspects of the real system. This includes the ability of the model to

manage future modeling extensions, alterations, and reuse needs, etc.

2.2 - Model Develqper's Capability and Modeling Effort. This aspect is

concerned with the capabilities of the model developer and the effectiveness of his/her

efforts. The person or task associated with simulation model development is involved in

the use of currently available constructs (new base code) within the development of

useful simulation models.

2.3 - Perfqrmance Cqnsideratiqns. This system aspect addresses basic hardware

related performance measures.

Level 3 : Criteria Cqnsidered

3.1 - Mqdel Reusability. This criteria mainly addresses the ability of specific

models or portions of models to be used through a change process. The capability of

78

developing models with different levels of detail without major model overhauls is also

part of the flexibility. This node links to 2.1 and 2.2.

3.2 - Change Management Capability. Because our concept of a simulation

environment is that of a growing, changing system, we must consider software change

management to be an important capability to allow for simulation model

reconfigurability. This node is linked to 2.1 and 2.2.

3.3 - Software Modularity. This is the simulation paradigm's ability to represent

physical, information, and control components of the system under study in a modular

fashion. This criteria increases the validity of the model, thereby promoting the

credibility of the whole simulation study (Karacal, 1991). This node links to 2.1 and 2.2.

3.4 - Output Provisions. This simulation criteria reefers to the degree of the

simulation model's support for both standard and special results output from a simulation

run. This criteria has a strong influence on model effectiveness and therefore is linked to

node 2.1.

3.5 - Model Debugging SupportNerification. This criteria addresses the features

provided for model debugging and verification and the degree of effectiveness achieved

by these features. This node links to 2.2.

3.6 - Graphics/User Interface Capability. This criteria is very important for

simulation environment enhancements. This node is linked to 2.1

3.7- Execution Speed. The CPU time required to run the simulation model

represents the execution speed. This criteria is linked to 2.3.

3.8 - Simulation Language Knowledge/Ease of Learning Effort Required. This

addresses the amount of knowledge needed to use a simulation system and the effort

required to learn the system. This node is linked to 2.2.

3.9 - Basic Memory Requirements. This criteria is concerned with computer

memory requirements. This characteristic addresses the amount of memory needed to

79

run the simulation environment for the smallest of models. This node is linked to node

2.3.

3. 10. - Model Representation Correspondence to the Real System. This aspect

evaluates how accurately the real system can be expressed in the model. As the degree of

model correspondence to the real system decreases, the degree of model abstraction

increases. Model abstraction refers to the degree to which the representation of the

system (the simulation model) is conceptually removed from the actual system. This

node is linked to 2.1 and 2.2.

3. 11. - Modeling Flexibility. This criterion addresses the kinds of features for

development of higher level constructs (the grouping of model portions in a way that

supports the conceptual grouping of a system) that are available and the manner in which

new constructs fit in with the normal simulation model specification mode.

Level4- Alternative Simulation Paradigms

4.1 - Traditional. Special Purpose Simulation Systems. This alternative

represents the standard simulation system typically used in discrete event modeling.

Simulation systems under this category are commercially available. This node is linked

to all the nodes at level3.

4.2 - OOP Simulation System. This alternative represents the new OOP

simulation system, for which the prototype system was developed. This node is linked to

all the nodes at level 3.

Figure 18 shows the AHP hierarchical diagram. Tables 4 through 18 show the

original weights of the AHP matrices agreed upon by the study group.

80

Levell Level2 Level3 Level4

Figure 18. AHP Simulation Language Comparison Model

NODE 1.1 - Simulation Paradigm
Links from Lower Level

TABLE4

NODE 1.1

1) Node 2.1 -Model effectiveness
2) Node 2.2- Model developer's potency and modeling effort
3) Node 2.3- Performance considerations

Original weights
Col 1 2 3

Row
1 1.000 7.000 9.000
2 0.143 1.000 5.000
3 0.111 0.200 1.000

TABLES

NODE 2.1

NODE 2.1- Model Effectiveness
Links from Lower Level

1) Node 3.1 -Model reusability
2) Node 3.4 - Output provisions
3) Node 3.6- Graphics/User interface capability

81

4) Node 3.10-Model representation correspondence to the real system
5) Node 3.11-Model flexibility

Original weights
Col 1 2 3 4 5

Row
1 1.000 0.200 1.000 0.200 0.143
2 5.000 1.000 5.000 3.000 1.000
3 1.000 0.200 1.000 0.200 0.167
4 5.000 0.333 5.000 1.000 4.000
5 7.000 1.000 6.000 0.250 1.000

TABLE 6

NODE2.2

NODE 2.2 - Model Developer's Potency and Modeling Effort
Links from Lower Level

1) Node 3.1- Model reusability
2) Node 3.2 - Change management capability
3) Node 3 3- Software modularity
4) Node 3.5- Model debugging support/Verification
5) Node 3.8 - Simulation language knowledge/Ease of learning effort

required
6) Node 3.10-Model representation correspondence to the real system
7) Node 3.11-Modeling flexibility

Original weights
Col 1 2 3 4 5 6 7

Row
1 1.000 3.000 2.000 0.250 0.167 0.333 1.000
2 0.333 1.000 2.000 0.250 0.500 0.500 0.333
3 0.500 0.500 1.000 0.250 0.333 1.000 0.500
4 4.000 4.000 4.000 1.000 1.000 3.000 2.000
5 6.000 2.000 3.000 1.000 1.000 3.000 2.000
6 3.000 2.000 1.000 0.333 0.333 1.000 1.000
7 1.000 3.000 2.000 0.500 0.500 1.000 1.000

82

TABLE 7

NODE2.3

NODE 2.3 - Performance Considerations
Links from Lower Level

Row

1) Node 3.7- Execution speed
2) Node 3.9- Basic memory requirements

Original weights
Col 1

1 1.000
2 8.000

2

0.125
1.000

TABLE 8

NODE 3.1

NODE 3.1- Model Reusability
Links from Lower Level

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 0.143
2 7.000 1.000

83

TABLE9

NODE3.2

NODE 3.2 - Change Management Capability
Links from Lower Level

Row

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col

1
2

1

1.000
5.000

2

0.200
1.000

TABLE 10

NODE 3.3

NODE 3.3 - Software Modularity
Links from Lower Level

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 0.333
2 3.000 1.000

84

TABLE 11

NODE3.4

NODE 3.4 - Output Provisions
Links from Lower Level

Row

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1

1 1.000
2 8.000

2

0.125
1.000

TABLE12

NODE3.5

NODE 3.5- Model Debugging Support/Verification
Links from Lower Level

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 0.125
2 8.000 1.000

85

TABLE 13

NODE3.6

NODE 3.6- Graphics/User interface capability
Links from Lower Level

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 0.167
2 6.000 1.000

TABLE14

NODE3.7

NODE 3.7- Execution Speed
Links from Lower Level

1) Node 4.1 - Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 6.000
2 0.167 1.000

86

TABLE 15

NODE 3.8

NODE 3.8 - Simulation Language K knowledge/Ease of Learning Effort Required
Links from Lower Level

Row

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col 1

1 1.000
2 0.200

2

5.000
1.000

TABLE16

NODE3.9

NODE 3.9- Basic Memory Requirements
Links from Lower Level

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 7.000
2 0.143 1.000

87

TABLE17

NODE 3.10

NODE 3.10 - Model Representation Correspondence to the Real System
Links from Lower Level

Row

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col 1

1 1.000
2 9.000

2

0.111
1.000

TABLE18

NODE 3.11

NODE 3.11- Modeling Flexibility
Links from Lower Level

1) Node 4.1 -Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 0.143
2 7.000 1.000

88

89

The next step in the AHP procedure was the calculation of the relative weights of

the decision elements. Appropriate spreadsheets were developed for this purpose. These

spreadsheets calculated the priorities for each of the above matrices along with matrix

consistencies (Appendix C). After, checking the consistencies, these relative weights

were aggregated through a series of matrix calculations to yield a solution to the

problem. Table 19 shows the resulting final weights.

TABLE19

FINAL WEIGHTS

Final Solution Weights

Traditional, special purpose simulation systems:

OOP simulation systems:

Summary

0.225

0.775

The results of final weights obtained from the AHP evaluation clearly indicate

that the OOP simulation systems are superior to the traditional special purpose simulation

systems in terms of the aspects and criteria considered in the AHP study. The conclusion

reached in this study is in agreement with Beaumariage's (1990) and Karacal's (1991)

results, which were obtained using a different set of factors.

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

This chapter summarizes the conclusions reached, research contributions, and

recommendations of this study.

Conclusions

The main objective of this research was to develop, validate, and document utility

"plug-in" modular component computer simulation models which may be used to

interpret and synthesize the operating characteristics of various types of complex

recirculating conveyor systems, using an Object-Oriented Modeling environment. To

achieve this objective, three sub-objectives had to be accomplished.

The first objective of this research was to develop a library of reusable software

objects which would provide the ability to generate the simulation model desired. In

order to fulfill this objective, several tasks had to be performed. First, the functional

components that are common to representative existing recirculating conveyor systems

were examined and analyzed. Next, the types of interfacing that can occur between the

functional components of a recirculating conveyor system were specified. Then, a series

of modular elements to represent the functioning of the objects and message passing

among them were developed and encoded within the general software environment

Smalltalk-80. Finally, the software simulation objects were incorporated into flexible

utility simulation systems that can be utilized to "build" complex conveyor system

simulations, thus successfully completing the first research objective.

90

91

The second objective of the research was to develop an approach which would

allow the comparison of modeling environments. In order to accomplish this, criteria for

comparing simulation modeling environments were developed. Using these criteria, the

decision problem, choosing the best simulation environment was addressed through the

application of the Analytic Hierarchy Process. For the problem of interest, namely

comparison of simulation environments, an AHP model was developed. This involved

the determination of an appropriate scheme for decision process decomposition along

with the linkages between elements in the decision model. This model will allow the

comparison of the new OOM system to traditional simulation systems. This will also

provide an evaluation of the quality of the developed prototype. In order to complete this

evaluation, a group of simulationists experienced in both of the alternatives provided the

many pairwise comparisons required by the Analytic Hierarchy Process and the

developed model. The comparisons were then manipulated to result in a final set of

weights concluding the preferable simulation approach. The conclusion from the AHP

evaluation was that an object-oriented modeling environment is superior to the traditional

simulation modeling environment. This completed the second objective successfully.

The third objective of this research was to explore ways to expand the model

developed to accommodate all the complexities that a conveyor system can incorporate.

Given the restricted time frame of completion of this work, the author was not able to

implement some of the features incorporated in the existing conveyor system. This

includes having multiple loops, multiple floors, and multiple bypasses. A detailed

description of how to incorporate these features in the developed model is presented in

the following section. This represents the accomplishment of the third research

objective.

The final conclusions from this research are :

92

1) Most simulation languages available today are well suited for developing a
model of a system from scratch. These languages are excellent and have met
and continue to meet the needs of many applications. However, the analyst
generally concentrates on the model building activities of a specific scenario.
Major changes in the system model such as changes in the structure of the
system and their impact on the system performance cannot be easily handled.
Thus, the traditional languages facilitate model reusability only to a limited
degree. Object-Oriented programming provides a framework for simulation
software implementation of a highly reusable modeling environment.

2) In general, object-oriented programming offers a lot of improvements in the
accomplishment of the traditional modeling tasks (these have been discussed
in the previous chapters). This should encourage simulation package
developers and simulation system users to pursue simulation modeling within
an object-oriented implementation.

Recommendations For Future Implementations

Developing software as complex as the Conveyor System model requires a lot of

research, insight, and especially time. It was clear from the start that a complete model

can never be achieved at this stage. But, all along the development of the Conveyor

· System model, serious considerations were anticipated to make the model manage the

future changes and reconfigurations without any major changes.

As described in Chapter VI, the model developed will only accommodate a single

loop conveyor system. Bypass sections may or may not exist depending upon the need

of the particular system. Taking the model a step further to accommodate multiple loops

and multiple floors will be illustrated below:

-Multi-loop Conveyor System: A conveyor which contains more than one closed

loop in a one-floor configuration is termed as multi-loop conveyor system. Such a

system includes transfer sections that deliver goods from one loop to another loop. A

typical multi-loop conveyor system is shown in Figure 19. A transfer section is different

from a bypass (description in chapter VI). A transfer section is used for moving carts

from one conveyor loop to another whereas a bypass is used for providing shorter routes

93

between sections on the same loop. A transfer section does not form a closed loop and in

this respect it is similar to a bypass. In this study it is assumed that a transfer section like

a bypass accommodates only one cart at a time. In order to accommodate this extra

feature, the modeler should add to all the classes developed, an instance variable that

would store the loop number. One also needs to make the transfer section a subclass of

WorkStation class (bypass is also a subclass of workstation). A cart needing to be

transferred to another loop will have the transfer section position as its destination. Once

the cart reaches the transfer section it leaves the hook and joins the transfer section's

input queue. At that point the cart's instance variable specifying its loop number should

be updated. Once the cart is delivered to the transfer section it will be held for an

amount of time equal to the time to travel the transfer section. At the end of this time the

cart should be in the next loop where it waits in the output queue of the transfer section

for a hook to be available to take it to its next destination in the current loop. Since the

different loops will have different hook numbers and speeds, the system designer should

have the ability to specify the number of loops desired and their parameters. Therefore,

depending on the loop number stored in the instance variable carried by the cart, the

program logic will use the parameters (number of hooks, conveyor loop speed, etc.)

specified for that conveyor loop. This is easily done due to the fact that the conveyor

loop parameters are not hard coded in the program logic.

-Multi-floor Conveyor System: A multi-floor conveyor system contains more than

one floor and goods are transported from one floor to another floor through an elevator.

The elevator carries only one cart at a time. It operates on a first-come first-served basis.

A typical multi-floor conveyor system is shown in Figure 20. Using the same concept as

in the case of the transfer section, the modeler needs to add to all the classes an instance

variable specifying the floor number. The modeler should also specify the elevator

object as a subclass of the WorkStation object. A cart needing to go to another floor will

-~-or------co--- Transfer

Loop 1

Section

Transfer
Section

Loop2

Figure 19. A Multi-loop Conveyor System

94

95

first be delivered by the hook at the elevator position. After, joining the elevator (in the

same way a cart joins a workstation) the cart is held for an amount of time equal to the

number of floors to be traveled times the travel time between two consecutive floors. At

the end of this specified time the cart leaves the elevator and joins the output queue of the

elevator station waiting for a hook available to carry it to its next destination. One of the

system's input parameters will be the number of floors desired by the system designer.

-Currently, the transfer sections and bypasses accommodate only one cart at a time.

Another option would be to make both of them subclasses of WorkStation with multiple

servers. The number of servers should be equal to the number of carts the user wants the

transfer section and the bypass to accommodate at one time. This could be done by

setting the instance variable wsAmount (workstation amount) to this desired number.

- A major area of improvement in the model developed is the user interface

implementation. The user should be able to get desired statistics in a histogram form.

- Other options that could be added to the model for greater flexibility are unreliable

workstations and hook failures.

-Currently, the destination of the carts is carried by the workstations and they are

randomly decided by each workstation. Another option could be to make the routing of

the carts through the system fixed and carried by the carts.

Contributions

The main contribution of this research to the body of simulation knowledge is the

development of an object-oriented simulation model of a constant speed, discretely

spaced, recirculating conveyor system. The evaluation of the quality of the model

developed through the application of the Analytic Hierarchy Process provided more

insights on the benefits and disbenefits of OOM over the traditional approaches to

simulation.

96

Floor No.2

Elevator

Floor No. 1

Figure 20. A Mulit-floor Conveyor System

BIBLIOGRAPHY

Abrams, M. "The Object Library for Parallel Simulation (OLPS)." Proceedin&s of The
1988 Winter Simulation Conference, San Diego, CA, 1988, pp. 210-219.

Adelsberger, H. H., U. W. Pooch, R. E. Ahannon, and G. N. Williams. "Rule Based
Object Oriented Simulation Systems." Intelli&ent Simulation Environments,
Proceedin&s of the Conference on Intelligent Simulation Environments, The
Society for Computer Simulation, San Diego, CA, 1986, pp. 107-112.

Adiga, S., "Software Modeling of Manufacturing Systems: A Case for an Object
Oriented Programming Approach." Working Paper, Department of Industrial
Engineering and Operations Research, University of California, Berkeley, CA,
1986.

Adiga, S., "Software Modeling of Manufacturing Systems: A Case for an Object
Oriented Programming Approach." Annals of Operations Research, 1989, Vol.
17' pp. 363-378.

Adiga, S. and M. Gadre, "Object-Oriented Software Modeling of a Flexible
Manufacturing System." Journal of Intelligent and Robotics Systems, ,1990, Vol.
3, pp. 147-165.

Adiga, S., Glassey, C. R. "Berkeley Library of Objects for Control and Simulation of
Manufacturing (BLOCS/M)." Working Paper, Department of Industrial
Engineering and Operations Research, University of California, Berkeley, CA,
1986.

Beaumariage, T. G. "Investigation of an Object Oriented Modeling Environment for the
Generation of Simulation Models." Unpublished Ph.D. Dissertation, School of IE
and Management, Oklahoma State University, Stillwater, OK, 1990.

Bezivin, J. "Timelock: A Concurrent Simulation Technique and its Description in
Smalltalk-80." Proceedin~s of the 1987 Winter Simulation Conference, Atlanta,
GA, 1987, pp. 503-506.

Bhuskute, H., M. Duse, J. Gharpure, D. Pratt, M. Kamath, J.H. Mize. "Design and
Implementation of a Highly Reusable Modeling and Simulation Framework for
Discrete Part Manufacturing Systems." Center for Computer Integrated
Manufacturing, Working Paper Series: CIM-WPS-92-HBl. Oklahoma State
University, 1992.

97

Bordiga, A., D. Greenspan and J. Mylopous, "Knowledge Representation as the Basis
for Requirements Specification." Computer, 1985, Vol. 4, pp. 82-91.

Cox, B. J., "Message/Object Programming: An Evolutionary Change in Programming
Technology." IEEE Software, 1984, pp 50-61.

98

Cox, B. J., Object-Oriented Pro&ramming-: An Evolutionaty Approach, Addison-Wesley,
Reading, MA, 1986.

Dahl, 0. J. and K. Nygaar. "Simula-An Algol Based Simulation Language."
Communications of the ACM, 1966, Vol. 9, pp. 123-145.

Ghaznavi-Collins, I. and D. Thelen. "An Object Oriented Approach toward System
Architecture Simulation." AI Paper. 1988. Proceeding-s of the Conference on AI
and Simulation. The Society for Computer Simulation, San Diego, CA, 1988, pp.
103-107.

Glicksman, J. "A Simulator Environment for an Autonomous Land Vehicle." Intellig-ent
Simulation Environments. Proceedings of the Conference on Intelligent
Simulation Environments. The Society for Computer Simulation, San Diego, CA,
1986, pp. 53-57.

Goldberg, A. and D. Robson. Smalltalk-80: The Language, Addison-Wesley, Reading,
MA, 1989.

Karacal, S. C. "The Development of an Integrative Structure for Discrete Event
Simulation, Object Oriented Modeling and Embedded Decision Processes."
Unpublished Ph.D. Dissertation School of Industrial Engineering and
Management, Oklahoma State University, Stillwater OK, 1991.

King, C.U. and E.L. Fisher. "Object-Oriented Shop-Floor Design, Simulation, and
Evaluation." Proceeding-s of the 1986 Fall Industrial Engineering- Conference.
Institute oflndustrial Engineers, Norcross, GA, 1986, pp. 131-137.

Knapp, V. E. "The Smalltlak Simulation Environment, Part II." Proceedings of the 1987
Winter Simulation Conference, Atlanta, GA, 1987, pp. 146-151.

Kreutzer, W., System Simulation: Pro&ramming Styles and Languages, Addison
Wesley, Reading, MA, 1986.

Meyer, B. Object-Oriented Software Construction, Prentice Hall International (UK)
Ltd., Hertforshire, Great Britain, 1988.

Mitrani, I. Simulation Techniques for Discrete Event Systems, Cambridge University
Press, Cambridge, 1982.

99

Mize, J.H., T.G. Beaumariage, S.C. Karacal. "Systems Modeling Using Object-Oriented
Programming." Proceedings of the 1989 Spring Conference Institute of Industrial
Enttineers, Norcross, GA, 1989, pp. 13-18.

Nyen, P. A. "A Comprehensive Environment to Object-Oriented Simulation of
Manufacturing Systems." Simulation in CIM and Artificial Intelligence
Techniques, The Society for Computer Simulation, San Diego, CA, 1987, pp. 21-
25.

Pazirandeh, M. and J. Becker. "Objet-Oriented Performance Models with Knowledge
Based Diagnostics." Proceedings of the 1987 Winter Simulation Conference,
Atlanta, GA, 1987, pp. 518-524.

Pratt, B. D. "Development of a Methodology for Hybrid Metamodeling of Hierarchical
Manufacturing Systems Within a Simulation Framework." Unpublished Ph.D.
Dissertation School of Industrial Engineering and Management, Oklahoma State
University, Stillwater OK, 1992.

Pritsker, A. A. B. Introduction to Simulation and SLAM II. Third edition. John
Wiley & Sons, New York, 1986.

Retting, M. "Using Smalltalk to Implement Frames." AI Expert, March 1987, pp. 15-
18.

Saaty, T. L. Decision Mak:ing: The Analytic Hierarchy Process. RWS Publications,
Pitsburg, PA, 1988.

Sanderson D.P., R. Sharma, R. Rozin, and S. Treu. "The Hierarchical Simulation
Language HSL: A Versatile Tool for Process-Oriented Simulation." ACM
Transactions on Modeling and Computer Simulation, 1991, pp. 113-153.

Shaw, M. "Abstraction Techniques in Modern Programming Languages. "IEEE
Software, October 1984, pp. 10-26.

Terrell, M. P., Principle Investigator. NSF Final Report Grant GK-43583, "Modular
System Analysis and Design for Utility Simulation of Constant Speed, Discretely
Spaced, Recirculating Conveyor System.", May 30, 1977.

Turner, W. C., J. H. Mize, and K. E, Case. Introduction to Industrial and Systems
Engineering, New Jersey: Prentice-Hall, Inc., 1986.

Thomasma, T. and 0. M. Ulgen. "Modeling of a Manufacturing Cell Using a Graphical
Simulation System Based on Smalltalk-80." Proceedings of the 1987 Winter
Simulation Conference, Atlanta, GA, 1987, pp. 683-691.

100

Thomasma, T. and 0. M. Ulgen. "Hierarchical, Modular Simulation Modeling in Icon
based Simulation Program Generators for Manufacturing." Proceedings of the
1988 Winter Simulation Conference, IEEE, Piscataway, NJ, 1988, pp. 254-262.

Ulgen, 0. M. and T. Thomasma. "A Graphical Simulation System in Smalltalk-80."
Simulation in CIM and Artificial Intelligence Simulation Environments, The
Society for Computer Simulation: San Diego, CA, 1987, pp. 53-58.

Ulgen, 0. M. and T. Thomasma, Y. Mao. "Object-Oriented Toolkits for Simulation
Program Generators." Proceedings of the 1989 Winter Simulation Conference,
IEEE Piscataway, NJ, 1989, pp. 593-600.

VanderMeulen, P. "Development of an Interactive Simulator in Smalltalk." Journal of
Object Oriented Pro~amming, January/February 1989, Vol. 1, No 5, pp.28-51.

Wilson, R. "Object-Oriented Languages Reorient Programming Techniques." Computer
Design, November 1, 1987, pp. 52-62.

APPENDICES

101

APPENDIX A

SMALLTALK-80 CLASSES DEFINED

102

103

Introduction

This appendix contains listings of Smalltal.k-80 code beginning on the next page.

The listings are relevant portions of new and/or modified classes and methods that were

used for the conveyor system.

The listings are separated by class. Within each class, there is a header section

followed by listings of methods. The header section contains the class hierarchy

specification as well as the names of all instance and class variables. A comment

segment concludes the header section.

The methods are divided into groups of related methods. This grouping is

arbitrary but provides insight as to the general intend of the methods in the group. The

group headers are designated by the character string "!classname methodsFor:

group name". The last grouping under a method (if listed) is the group for class methods.

These methods are used by the class rather than instances of the class. A good example

of their use is the creation of a new instance.

Methods listings always start with the method name including any incoming

parameters. The names are free form except that a colon is used to separate the

parameter(s) from the name. The code itself follows Smalltalk:-80 convention. Any text

within the method enclosed by quotation marks is a comment. All methods terminate

with an exclamation point(!).

SmallTalk:-80 Code For Class: QueueController

Object subclass: #QueueController
instanceVariableNames: 'inputQueue outputQueue emptyQueue loadQueue'
classVariableNames: II
poolDictionaries: 11

category: 'ConveyorSimulation'!
QueueController comment:
'Class QueueController creates a controller through which a machine
(resource) communicates with its input and output queues. The queue
controller is created automatically when the machine is created.'!

!QueueController methodsFor: 'initialize- release'!

emptyQueueCapacity: aNumber
"The input queue has limited capacity"

emptyQueue := CapacitatedQueue capacity: aNumber.

"output queues are adjacent to the workstation, and do not need reservation. a cart directly
moves into them, without worrying about other competition"
emptyQueue addWithoutReservation: aCart!

putlnOutput: aCart
"output queues are adjacent to the workstation, and do not need reservation.
Cart's directly move into them, without worrying about other competition"
outputQueue addWithoutReservation: aCart!

remove: aCart
"Remove the cart from the output queue"
AoutputQueue remove: aCart! !

!QueueController methodsFor: 'accessing'!

addToEmptyQueue: aCart
emptyQueue add: aCart.
A self!

addTolnputQueue: aCart
"add a cart to the input queue"
inputQueue add: aCart.
"self!

emptyQueueCapacity
"emptyQueue capacity!

emptyQueueEmpty
"emptyQueue isEmpty.!

emptyQueuequeueLength
"Answer the length of the queue"
AemptyQueue queueLength!

104

emptyQueueRemoveN ext: a Cart
"emptyQueue remove: aCart!

inputQueueCapacity
"inputQueue capacity!

inputQueueEmpty
"inputQueue isEmpty.!

inputQueueNextAmount
"Answer the amount needed for the next item in queue"
"inputQueue next amountNeeded!

inputQueuequeueLength
"Answer the length of the queue"
"inputQueue queueLength!

inputQueueRemoveNext
lqdisc I

next

nextl

self error: 'Obsolete code'.
qdisc := inputQueue whatlsQueueDiscipline.
"inputQueue remove: (self perform: qdisc)!

"Answer the next item to be processed from the input queue"
"inputQueue next!

"Answer the next item to be processed from the input queue"
"outputQueue next!

nextEmpty
"Answer the next item to be processed from the input queue"
"emptyQueue next!

outputQueueCapacity
"outputQueue capacity!

outputQueueEmpty2
"outputQueue isEmpty.!

setEmptyQDiscipline: aQDiscipline
"set the discipline of the empty queue for this controller"
emptyQueue setQDiscipline: aQDiscipline.
"self!

setlnputQDiscipline: aQDiscipline
"set the discipline of the input queue for this controller"
inputQueue setQDiscipline: aQDiscipline.
"self!

setOutputQDiscipline: aQDiscipline
"set the discipline of the output queue for this controller"
outputQueue setQDiscipline: aQDiscipline.
"self! !

105

!QueueController methodsFor: 'testing'!

emptyQueueHasSpace
"check if the empty queue is at its capacity "
"emptyQueue hasSpace!

inputHasSpace
"Does the input queue have space?"
"inputQueue hasSpace!

inputHasSpace: availableServers
"Does the input queue have space, considering so may servers are available?"
"inputQueue hasSpace: availableServers!

outputHasSpace
"Does the output queue have space?"
"outputQueue hasSpace! !

!QueueController methodsFor: 'statistics'!

printResultsOn: aStream
"print the length of queue and time in queue statistics for this queue controller"
aStream nextPutAII: 'Input Queue:'.
inputQueue printResultsOn: aStream.
aStream nextPutAll: 'Output Queue:'.
outputQueue printResultsOn: aStream.
aStream nextPutAII: 'empty Queue:'.
emptyQueue printResultsOn: aStreaml

.. ___ , -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
QueueController class

instanceVariableNames: "!
!QueueController class methodsFor: 'instance creation'!

new
"create a new instance of QueueController"
"super new initialize! !

SmallTalk:-80 Code For Class: WorkStation

Object subclass: #WorkStation
instanceVariableNames: 'wsAmountAvailable wsQueueController wsProcessingTimes

wsUtilization waitingForlnputQ blockingWFI blocked cart enterPosition wsType exitPosition name
probabilities processTime loadCount'

classVariableNames: 'Destinations LoadCount'
poolDictionaries: "
category: 'ConveyorSimulation'!

WorkStation comment:
'Class WorkStation is the class which represents a delayer to an object
being processed. This class and its subclasses are used to represent
machine resources in the system.'!

!WorkStation methodsFor: 'accessing'!

106

amountA vailable
"return the workstation amount available"
AwsAmountAvailable!

destinationPosition
"get the position for the next destination of the cart"
I adestination I
adestination :=WorkStation returninstanceWithName: WorkStation getNextDestination.
Aadestination enterPosition!

destinationPosition: aWorkStation
" get the position for the next destination of the cart from the workstation"
I adestination I
adestination :=WorkStation returninstanceWithName: (WorkStation getNextDestination:

a WorkStation).
A (adestination enterPosition)!

destinations
"Answer the destinations stored in the class variables"
I adestinationList I
adestinationList :=WorkStation DestinationList.
AadestinationList!

emptyQueueCapacity
"Answer the length of the queue"
AwsQueueController emptyQueueCapacity!

enterPosition
"answer the enter position of the workstation"
AenterPosition!

enterPosition: aEnterPosition
"set the workstation enter position to aEnterPosition"
enterPosition := aEnterPosition!

exitPosition
"answer the exit position of the workstation"
AexitPosition!

exitPosition: aExitPosition
"set the exit position of the workstation to aExitPosition"
exitPosition := aExitPosition!

getaRandomN umber
"return a random number from the Random number generator class"
I aRandom I
aRandom :=Random new.
AaRandom next!

getNextDestination: a WorkStation

107

"get the next destination of the cart from the workstation depending on certain probabilities of
routing"
Irs aConveyor wsNumber I

aConveyor := ConveyorSimulation active conveyor.
wsNumber := aConveyor numWorkStations.
r :=a WorkStation getaRandomNumber.
s := 0.
1 to: wsNumber do:

[:i I
s :=(a WorkStation probabilitiesVector at: i)

+ s.
r <= s iff rue: ["WorkStation DestinationList at: i]]!

inputQueueCapacity
"Answer the length of the queue"
"wsQueueController inputQueueCapacity!

load Count

name

"Answer the loadCount that is the number of orders to be loaded at a workstation"
"loadCount!

"Answer the name"
"name!

name: aString

next2

" set workstation name"
name := aString.!

"Answer the next cart in the output queue"
"wsQueueController nextl.!

outputQueueCapacity
"Answer the length of the queue"
"wsQueueController outputQueueCapacity!

probabilities
"return the probability vector for the destination routing"
"probabilities!

probabilities Vector
"probabilities!

process Time
"Answer the process time"
"processTime!

queueLength
"Answer the length of the queue"
"wsQueueController queueLength!

setName: aString
" set workstation name"
name := aString.!

setQDisciplineTo: aQDiscipline
"set the queues discipline of the workstation"

108

type

wsQueueController setBothQDisciplines: aQDiscipline!

"Answer the type of the workstation"
AwsType!

type: aType
"set the type of the workstation"
wsType := aType! !

!WorkStation methodsFor: 'statistics'!

printResultsHookOn: aStream with: aNumber
"print statistics for the Hookl instances created"
aStream cr; cr; nextPutAll: 'Statistics for Hook:', name,'#', aN umber printString; cr;

nextPutAll:' No.Obs. Average Std.Dev Minimum Maximum Current'; cr.
70 timesRepeat: [aStream nextPut: $-].
aStream cr.
aStream nextPutAll: 'Utilization:'.
wsUtilization printResultsOn: aStream.
aStream cr; nextPutAll: Proc.Time: '.
wsProcessingTimes printResultsOn: aStream.
aStream cr.
70 timesRepeat: ["wsQueueController printResultsOn: aStream."

aStream nextPut: $-].
aStream cr!

printResultsOn: aStream
"print statistics for the workstation"
aStream cr; cr; nextPutAll: 'Statistics for WorkStation:', name; cr; nextPutAll:'

No.Obs. Average Std.Dev Minimum Maximum Current'; cr.
70 timesRepeat: [aStream nextPut: $-].
aStream cr.
aStream nextPutAII: 'Utilization:'.
wsUtilization printResultsOn: aStream.
aStream cr; nextPutAll: Proc.Time: '.
wsProcessingTimes printResultsOn: aStream.
aStream cr.
wsQueueController printResultsOn: aStream.
70 timesRepeat: [aStream nextPut: $-].
aStream cr!

processTimel: aTime
"set the process time of the workstations"
wsProcessingTimes equals: aTime!

!WorkStation methodsFor: 'task language'!

generateAndLoadOrders
"This method is used to schedule the generation of the subsequent load
orders and try to load the current ones if possible"
I aConveyor a WS I
aConveyor := ConveyorSimulation active.
1 to: aConveyor numWorkStations do:

109

[:i I
aWS := selfreturnlnstanceWithName: (WorkStation DestinationList at: i).
aWS type= 1

ifTrue:

aWS type= 2
ifTrue:

aWS type= 3
ifTrue:

[self tryToLoad.
aWS loadCount: loadCount + 1].

[self tryToLoad.
aWS loadCount: loadCount + 1].

[self tryToLoad.
aWS loadCount: loadCount + 1].].

ConveyorSimulation active schedule: [self generateAndLoadOrders]
after: (Normal mean: 20 deviation: 4)!

produce: anAmount
"anAmount of the workstation resource is available"
wsAmountA vailable := wsAmountA vailable + anAmount.
self provideServices!

provideServices
"provide workstation resources to the next job in queue"
I waitingWFI I
[wsQueueController inputQueueEmpty not

and: [cart:= wsQueueController next.
cart amountNeeded <=self amountAvailable]]

while True:

provideServiceTo: aCart

[waitingWFI := wsQueueController inputQueueRemove: cart.
wsAmountAvailable := wsAmountAvailable- waitingWFI amountNeeded.
wsUtilization equals: wsUtilization value+ waitingWFI amountNeeded.
waitingWFI resume]!

"This wfi needs to be serviced. Put into the queue, and provide a server if possible"

110

wsQueueController addTolnputQueue: aCart. "SimScript cr; nextPutAll: aCart
printString, 'needs service at:',

self printString."
self provideServices.
aCart pause!

release: anAmount
"Some cart has released anAmount of the workstation resource"
wsUtilization equals: wsUtilization value- anAmount.
self produce: anAmount! !

!WorkStation methodsFor: 'initialize-release'!

initializeWithName: aString andAmount: aN umber exitPosition: aExitPosition enterPosition:
aEnterPosition probabilities: a Vector processTime: a Time

"Initialize the instance vars"
name := aString.
exitPosition := aExitPosition.

enterPosition := aEnterPosition.
wsAmountA vailable := aN umber.
wsQueueController := QueueController new.
wsProcessingTimes := ObsTrackedNumber new.
processTime := aTime.
wsUtilization := TimeTrackedNumber new.
waitingForinputQ := OrderedCollection new.
probabilities:= a Vector.
blocked := false.
loadCount := 0!

initializeWithName: aString andAmount: aNumber exitPosition: aExitPosition enterPosition:
aEnterPosition probabilities: a Vector processTime: aTime type: aType

"Initialize the instance vars"
name:= aString.
exitPosition := aExitPosition.
enterPosition := aEnterPosition.
wsAmountAvailable := aNumber.
wsQueueController := QueueController new.
wsProcessingTimes := ObsTrackedNumber new.
processTime := aTime.
wsUtilization := TimeTrackedNumber new.
waitingForlnputQ := OrderedCollection new.
probabilities:= aVector.
blocked := false.
loadCount := 0.
wsType := aType!

loadCount: aCount
"set the load count to aCount"
loadCount := aCount!

processTime: aTime
"set the process time to aTime"
processTime := aTime.
"self! !

!WorkStation methodsFor: 'printing'!

printOn: aStream
"Express the work station in printable characters"
aStream nextPutAll: 'WorkStation named:', name! !

!WorkStation methodsFor: 'queue capacity'!

emptyQueueAddCart: aCart
"add a cart to the empty queue"
wsQueueController putlnEmptyQueue: aCart.!

emptyQueueCapacity: aNumber
"Change the empty queue to a definite capacity"
wsQueueController emptyQueueCapacity: aNumber!
inputQueueAddCart: aCart
"add a cart to the empty queue"

111

wsQueueController addTolnputQueue: aCart!

inputQueueCapacity: aNumber
"Change the input queue to a definite capacity"
wsQueueController inputQueueCapacity: aN umber!

loadQueueCapacity: aNumber
"Change the load queue to a definite capacity"
wsQueueController loadQueueCapacity: aNumber!

outputQueueCapacity: aNumber
"Change the output queue to a definite capacity"
wsQueueController outputQueueCapacity: aN umber!

outputQueueEmpty
"Check if the output queue is empty or not"
AwsQueueController outputQueueEmpty2!

putMelnOutputQueue: aCart
"output queues are adjacent to the workstation,
and do not need reservation. Cart's directly move into them, without
worrying about other competition, if there is a space. If there is no space, they are blocked"
I trueS I
trueS := self hasOutputSpace.
trueS= True

iffrue: [wsQueueController putlnOutput: aCart]
itFalse:

remove2: aCart

["There is no place for this wfi. the workStation is blocked"
SimScript cr; nextPutAll: aCart printString , 'blocked the ' , self printString.
blocked := true.
blockingWFI := aCart.
aCart pause.
blocked := false.
wsQueueController putlnOutput: aCart]!

"The cart needs to be removed from the output queue of the workstation"
blocked iffrue: [blockingWFI resume].
AwsQueueController remove: aCart!

removeEmptyCart
"The cart needs to be removed from the output queue of the workstation"
AwsQueueController emptyQueueRemoveNext! !

!WorkStation methodsFor: 'simulation control'!

holdFor: aTimeDelay
"Schedule a delay of this period"
Simulation active delayFor: aTimeDelay! !

!WorkStation methodsFor: 'testing'!

hasEmptyQueueSpace
"Is there place in the output queue?"

112

113

"wsQueueController emptyQueueHasSpace!

has InputS pace
"There is space in the workStation if the input queue has space or if there is a server available"
"wsQueueController inputHasSpace!

hasOutputSpace
"Is there place in the output queue?"
"wsQueueController outputHasSpace!

isBlocked
"Answer if the workStation is blocked"
"blocked!

!WorkStation methodsFor: 'decisions'!

tryToLoad
"Allow service if there is a loading order waiting for service"
I aCart I
wsQueueController emptyQueueEmpty not

ifTrue:
[cart:= wsQueueController nextEmpty.
aCart := wsQueueController emptyQueueRemoveNext: cart.
SimScript cr; nextPutAll: selfprintString, 'satsified a laodOrder ',self

printString. aCart resume]! !
!WorkStation methodsFor: 'comparing'!

<=another
"work stations compare by name"
"name <= another name! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

WorkStation class
instanceVariableNames: "!

!WorkStation class methodsFor: 'instance creation'!

DestinationList
"return the destination list"
"Destinations!

newWithName: aString andAmount: aN umber exitPosition: aExitPosition enterPosition: aEnterPosition
probabilities: a Vector process Time: a Time type: aType

"initialize instance vars"
"(self new)

initializeWithName: aString
andAmount: aNumber
exitPosition: aExitPosition
enterPosition: aEnterPosition
probabilities: aVector
processTime: aTime
type: aType; yourself!

probability Vector
""probabilities"!

setDestinations: aDestDectionary
"set the destination list to the list of workstations input by the user through
the user interface"
Destinations := aDestDectionary! !

!WorkStation class methodsFor: 'schedulingOrders'!

generateAndLoadOrders
"This method is used to schedule the generation of the subsequent load
orders and try to load the current ones if possible"
I aConveyor a WS I
aConveyor := ConveyorSimulation active conveyor.
1 to: aConveyor num WorkStations do:

[:i I
aWS := selfreturnlnstanceWithName: (WorkStation DestinationList at: i).
aWS type= 1

ifTrue:

aWS type= 2
ifTrue:

aWS type= 3
ifTrue:

[aWS tryToLoad.
aWS loadCount: aWS loadCount + 1].

[aWS tryToLoad.
aWS loadCount: aWS loadCount+ 1].

[aWS tryToLoad.
aWS loadCount: aWS loadCount + 1].].

SimScript cr; nextPutAll: self printString , ' generated ordersAt: ' , self printString.
ConveyorSimulation active schedule: [self generateAndLoadOrders]

after: (Normal mean: 10 deviation: 2) next! I

!WorkStation class methodsFor: 'getAnlnstance'!

returninstanceWithName: aName
"return the WorkStation instance with the name aName"
WorkStation alllnstances.
A WorkStation alllnstances detect: [:each I each name= aName]! !

SmallTalk-80 Code For Class: Hookl

WorkStation subclass: #Hook1
instanceVariableNames: 'hookPosition hookNumber cartHeld hookStatus hookUtilization'
classVariableNames:"
poolDictionaries: "
category: 'ConveyorSimulation'l

!Hook1 methodsFor: 'accessing'!

cartHeld
"Return the cart held in the hook"
AcartHeld!

hookNumber

114

"Return the hook number of the hook instance"
Ahook:Numberl

hookPosition
"Return the hook position of the hook instance"
AhookPositionl

hookStatus
"Return the hook status of the hook"
AhookStatus! !

!Hookl methodsFor: 'initialize-release'!

cartDispose
"After delivering the cart to its destination the storage location of the cart
held is changed to empty and the hookStatus is changed to idle"
cartHeld := nil.
hookStatus := 0!

cartHeld: aCart
"Store the cart to be transported in the storage location cartHeld."
cartHeld := aCart!

hook:Number: aNumber
"Set the hook number to aNumber"
hook:Number := aNumber!

hookPosition: aPosition
"set the hook position to aPosition"
hookPosition := aPosition!

hookProcess: aTime
"Set the process time of the hook to aHook"
wsProcessingTimes equals: aTime!

hookStatus: aStatus
"Set the hook status of the hook to aStatus"
hookStatus := aStatus!

115

initializeWithName: aString andAmount: aNumber hook:Number: aNumberl hookPosition: aNumber2
hookStatus: aStatus

"Initialize the instance vars"
name := aString.
wsAmountAvailable := aNumber.
wsQueueController := QueueController new.
wsProcessingTimes := ObsTrackedNumber new.
wsUtilization := TimeTrackedNumber new.
hook:Number := aNumberl.
hookPosition := aNumber2.
hookStatus := aStatus.
wsQueueController inputQueueCapacity: 5; outputQueueCapacity: 51

uitlizationl: aNumber
"calculating the workstation utilization"

wsUtilization equals: wsUtilization value+ aNumber!

uitlization: aNumber
"Calculating the workstation utilization"
wsUtilization equals: wsUtilization value- 1! !

!Hookl methodsFor: 'task language'!

provideServices
"provide a Hookl instance to the next job in queue"
I waiting cart I
[wsQueueController inputQueueEmpty not

and: [cart:= wsQueueController next.
cart amountNeeded <= wsAmountAvailable]]

while True:

provideServiceTo: aCart

[waiting:= wsQueueController inputQueueRemove: cart.
wsAmountAvailable := wsAmountAvailable- waiting amountNeeded.
waiting resume]!

"This cart needs to be serviced. Put into the queue, and provide a hook if possible"
wsQueueController addTolnputQueue: aCart.
self provideServices.
aCart pause.
wsUtilization equals: wsUtilization value+ aCart amountNeeded!

release: anAmount at: aLocation
"release anAmount of the hook at aLocation"
wsUtilization equals: wsUtilization value- anAmount.
"SimScript cr; nextPutAll: name,' is at:', aLocation name."
self hookStatus: 0.
self produce: anAmount! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Hookl class
instanceVariableNames: "!

!Hookl class methodsFor: 'instance creation'!

newWithName: aString andAmount: aN umber hookNumber: aNumberl hookPosition: aNumber2
hookStatus: aStatus

"Create a new hook at this location"
"self new

initializeWithName: aString
andAmount: aNumber
hookNumber: aNumberl
hookPosition: aNumber2
hookStatus: aStatus! !

SmallTalk-80 Code For Class: CartGenerator

Object subclass: #CartGenerator

116

instanceVariableNames: 'name firstTime distribution lastTime totalCount initialCount county'
classVariableNames: "

poolDictionaries: "
category: 'ConveyorSimulation'!

CartGenerator comment:
'Class WorkFlowGenerator creates supply-driven workflowitems into the
system. This works like a create node in SLAM.'!

!CartGenerator methodsFor: 'accessing'!

name
"Answer the name of the job that it generates"
"name!

total Count
"Answer the totalCount of the job that it generates"
"totalCount! !

!CartGenerator methodsFor: 'initialize-release'!

frrstTime: timellastTime: time2
"Initialize the frrst time of creation, last time of creation, initial number
of carts created, and the maximum number of carts to be created"
frrstTime := timel.
lastTime := time2.
"self!

frrstTime: timellastTime: time2 initialCount: countl totalCount: count2
"Initialize the first time of creation, last time of creation, initial number
of carts created, and the maximum number of the Carts to be created"
firstTime := timel.
lastTime := time2.
initialCount := countl.
totalCount := count2.
"self!

initialize

117

"Default values of the frrst time, last time of creation, and the initial count and final count of the
Carts to be created. The system is initialized to have 20 Carts"

firstTime := 0.0.
lastTime := 1000000000.
totalCount := 19.
initialCount := 0.
name:= 'Cart'.
"self!

name: aName distribution: aDistribution
"Set the name and the distribution according to which the Cart instances will be created with"
name := aName.
distribution := aDistribution.
"self!

totalCount: count
"Initialize the initial number of carts created, and the maximum number of the Carts to be

created"
I aCount I

aCount := count asNumber - 1.
initialCount := 0.
totalCount := aCount .
Aself! !

!CartGenerator methodsFor: 'scheduling'!

scheduleArrival
"This is the message to schedule the creation of entities by this Cart generator."
I sim aBlock I
aBlock :=[(Cart name: name) startUp].
sim := Simulation active.
sim

newProcessFor:
[I count I
1 to: initialCount do: [sim newProcessFor: aBlock copy].
sim delayUntil: firstTime.
sim newProcessFor: aBlock copy.
count:= 0.
[sim time< lastTime & count< self total Count]

while True:
[count:= count+ 1.
sim delayFor: distribution next.
sim newProcessFor: aBlock copy]]! !

n __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!
CartGenerator class

instanceVariableNames: "!

!CartGenerator class methodsFor: 'instance creation'!

name: aName distribution: aDistribution
"Create an instance of CartGenerator"
I anObject I

new

anObject := self new.
anObject name: aName distribution: aDistribution.
AanObject!

Asuper new initialize! !

SmallTalk:-80 Code For Class: Cart

SimulationObject subclass: #Cart
instanceVariableNames: 'name entryTime currentPosition workStation queueEntryTime

currentW orkStation destination bypass tempDestination destinationPosition status serial done county
cartUtilization '

classVariableNames: 'CartUtilization Count EntryTime MaterialHandling TimelnSystem'
poolDictionaries: "
category: 'ConveyorSimulation'!

!Cart methodsFor: 'initialize-release'!

cartUtilization: aNumber

118

self destination name = bypass name
ifFalse: [self status = 1
ifi'rue: [cartUtilization equals: cartUtilization value- 1]
ifFalse: [cartUtilization equals: cartUtilization value+ 1]].!

initialize
"The workflowitem starts from the buffer 'storage"'
currentPosition := 1.
currentWorkStation := 'WS1'.
status:= 0.
done := false.
county:= 0.
bypass :=WorkStation returnlnstanceWithName: 'BYPASS'.
super initialize!

initName: aName
"The workflowitem is given a name"
self initialize.
self name: aName.
cartUtilization := TimeTrackedNumber new.

(Count includesKey: aName) ifi'rue: [serial:= Count at: aName put: ((Count at: aName) + 1)]
ifFalse: [serial:= Count at: aName put: 1].
SimScript cr; nextPuWl: self printString, ' created'! I

!Cart methodsFor: 'accessing'!

amountNeeded
"return the amount needed by a cart"
AamountNeededl

bypass
Abypassl

county
Acountyl

currentProcessTime
"Answer the expected value of the current process time"
AcurrentWorkStation processTime mean!

currentWorkStation
"Answer the name of the current workstation of the Cart "
AcurrentWorkStationl

currentWorkStation: aName
"set the name of the current workstation of the Cart "
currentWorkStation := aNamel

destination
"Answer the destination of the Cart"
Adestinationl

destination: a WorkStation
"Set the destination of the Cart"

119

destination:= a WorkStation!

done
"done!

name: aName

position

name := aName.
"self!

"Answer the current position of the Cart "
"currentPosition!

position: aPosition
"Answer the current position of the Cart "
currentPosition := aPosition.!

queueEntryTime
"queueEntryTime!

resource Needed
"resource Needed!

resourceNeeded: aResource
resourceNeeded := aResource!

serial
"serial!

status
"status!

status: aS tatus
status := aStatus.
"self!

tempDestination
"tempDestination!

tempDestination: aDestination
tempDestination := aDestination!

timeStamp
" put time stamp to the entry time to the queue"
queueEntryTime := Simulation active time! !

!Cart methodsFor: 'simulation control'!

holdFor: aTimeDelay

pause

Simulation active delayCart: self for: aTimeDelay!

"Pause the process of this cart"
Simulation active stopProcess.
resumptionSemaphore wait!

120

resume
"Resume the process of this work flow item"
Simulation active startProcess.
resumptionSemaphore signal! !

!Cart methodsFor: 'testing'!

checkShortestRouteFrom: a WorkStation
"This method is to check if the shourtest route lies along a bypass"
I aDestination aDestinationPosition bypassPosition exitl exit2 I
aDestination := self destination.
self currentWorkStation =bypass name

itFalse: [aDestinationPosition := aDestination enterPosition.
bypassPosition := bypass enterPosition.

exitl := aDestination exitPosition.
exit2 := bypass exitPosition.

aDestinationPosition > bypassPosition & (exitl< exit2)
itFalse: [self position > aDestinationPosition & (self position < bypassPosition)

iiTrue:[tempDestination :=destination.
destination :=bypass. SimScript cr; nextPutAII: self printString , ' changed

destination to bypass', destination printString.]
itFalse: [self position< aDestinationPosition & (exit1 > exit2)

iiTrue: [tempDestination := destination.
destination :=bypass. SimScript cr; nextPutAII: self printString , ' changed

destination to bypass ' , destination printString.].]]].! !

!Cart methodsFor: 'task language'!

acquireResource: aResource
"the cart should try to acquire a resource "
resourceNeeded := aResource.
amountNeeded := 1.
aResource provideServiceTo: self!

complete0perationsAtLocation1
"The wfi has arrived at a resource, and acquired it. Now complete all the
operations that are assigned at this location. This is done at the UALSC"
I a WorkStation destname aStatus true2 true3 I
a WorkStation:= destination.
self currentWorkStation: destination name.
self position: destination exitPosition.
aStatus := self status.
aStatus = 0

iiTrue: [a WorkStation loadCount > 0
iiTrue:

[self getProcessedAtLocation.

121

a WorkStation loadCount: a WorkStation loadCount- 1. self status: 1.]
itFalse:

[true2 :=a WorkStation hasEmptyQueueSpace.
true2= True

iiTrue:

122

[a WorkStation emptyQueueAddCart: self.
self pause. self getProcessedAU-ocation. self status: 1. a WorkStation loadCount: a WorkStation
loadCount - 1.

SimScript cr; nextPutAll: self printString , 1 joined the emptyQueue I , currentPosition
printString.]]]

ifFalse:
[self gefProcessedAU-ocation.
self status: 0.
aWorkStation loadCount> 0

iff rue:
[self getProcessedAtLocation.
a WorkStation loadCount: a WorkStation loadCount- 1.
self status: 1.]

ifFalse: [true3 :=a WorkStation hasEmptyQueueSpace.
true3 =True

iff rue:
[a WorkStation emptyQueueAddCart: self.

SimScript cr; nextPutAll: self printString , I joined the emptyQueue I , currentPosition printString.
self pause.
"self acquireResource: a WorkStation."
self getProcessedAtLocation.
self status: 1. a WorkStation loadCount:

a WorkStation loadCount- 1. SimScript cr; nextPutAll: self printString, I satisfied an order 1
,

currentPosition printString.]]].
county := county + 1.
destname :=a WorkStation getNextDestination: a WorkStation.
destination:= WorkStation returninstanceWithName: destname.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAll: self printString , I released I , currentPosition printString.
SimScript cr; nextPutAll: selfprintString, I going to I, destination printString.
self releaseResource!

complete0perationsAtLocation2
"The wfi has arrived at a resource, and acquired it. Now complete all the
operations that are assigned at this location. This is done at the LSW AT"
I a WorkStation destname aStatus true3 I
a WorkStation:= destination.
self currentWorkStation: destination name.
self position: destination exitPosition.
aStatus := self status.
aStatus = 0 iiTrue: [" [a WorkStation loadCount > 0

iiTrue:

1. self status: 1.

[self getProcessedAU-ocation.
a WorkStation loadCount: a WorkStation loadCount- 1.
self status: 1.]

ifFalse: [" true3 := aWorkStation hasEmptyQueueSpace.
true3 =True

iff rue:
[a WorkStation emptyQueueAddCart: self.
self pause.

self getProcessedAtLocation.
a WorkStation loadCount: a WorkStation loadCount-

123

SimScript cr; nextPutAll: self printString , 1 satisfied a load order 1 , currentPosition printString]]
county := county + 1.
destname :=a WorkStation getNextDestination: a WorkStation.
destination:= WorkStation returnlnstanceWithName: destname.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAll: self printString , 1 released 1 , currentPosition printString.
SimScript cr; nextPutAll: selfprintString, I going to 1 , destination printString.
self releaseResource!

completeOperationsAtLocation3
"The wfi has arrived at a resource, and acquired it. Now complete all the
operations that are assigned at this location. This subroutine is for the LODST"
I a WorkStation destname aStatus I
a WorkStation:= destination.
self currentWorkStation: destination name.
self position: destination exitPosition.
aStatus :=self status.
aStatus = 0

ifTrue: [self getProcessedAtLocation.

county := county + 1.

"aWorkStation loadCount: a WorkStation loadCount- 1."
self status: 1.].

destname := aWorkStation getNextDestination: a WorkStation.
destination:= WorkStation returnlnstanceWithName: destname.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAII: selfprintString, I released I, currentPosition printString.
SimScript cr; nextPutAll: selfprintString, I going to I, destination printString.
self releaseResource!

complete0perationsAtLocation4
"The wfi has arrived at a resource, and acquired it. Now complete all the
opemtions that are assigned at this location. This subroutine is for the OLUNLOD WS9"
I a WorkStation destname aStatus I
aWorkStation :=destination.
self currentWorkStation: destination name.
self position: destination exitPosition.
aStatus := self status.
"aStatus = 1

ifTrue: ["self getProcessedAtLocation. self status: 0.
county := county + 1.
destname :=a WorkStation getNextDestination: a WorkStation.
destination:= WorkStation returnlnstanceWithName: destname.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAll: self printString , I released 1 , currentPosition printString.
SimScript cr; nextPutAll: selfprintString, 1 going to I, destination printString.
self releaseResource!

completeOperationsAtLocationS
"The wfi has arrived at a resource, and acquired it. Now complete all the
opemtions that are assigned at this location. This subroutine is for the ULST"
I a WorkStation destname aStatus I
aWorkStation :=destination.
self currentW orkStation: destination name.
self position: destination exitPosition.

aStatus := self status.
aStatus = 1

iffrue: [self getProcessedAtLocation.

county := county + 1.

a WorkStation loadCount: a WorkStation loadCount- 1.
self status: 0.].

destname :=a WorkStation getNextDestination: a WorkStation.
destination:= WorkStation returnlnstanceWithName: destname.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAll: self printString , ' released ' , currentPosition printString.
SimScript cr; nextPutAll: self printString , ' going to ' , destination printString.
self releaseResource!

complete0perationsAtLocation6
"The wfi has arrived at a resource, and acquired it. Now complete all the
operations that are assigned at this location. This subroutine is for the BYPASS"
I a WorkStation I
a WorkStation:= destination.
self currentWorkStation: destination name.
self position: destination exitPosition.
self getProcessedAtLocation. county := county + 1.
destination := self tempDestination.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAll: self printString , ' released ' , currentPosition printString.
SimScript cr; nextPutAll: selfprintString, 'going to', destination printString.
self releaseResource!

complete0perationsAtLocation8

fmishUp

"The wfi has arrived at a resource, and acquired it. Now complete all the
operations that are assigned at this location. This is done at the PPLS workstation"
I a WorkStation destname I
a WorkStation:= destination.
self currentWorkStation: destination name.
self position: destination exitPosition.
self getProcessedAtLocation.
county := county + 1.
destname :=a WorkStation getNextDestination: a WorkStation.
destination:= WorkStation retumlnstanceWithName: destname.
self status: 1.
a WorkStation putMelnOutputQueue: self.
SimScript cr; nextPutAll: self printString , 'released' , currentPosition printString.
SimScript cr; nextPutAll: selfprintString, 'going to', destination printString.
self releaseResource!

super finish Up!

getProcessedAtLocation
"The wfi has arrived at a resource, and acquired it. Now complete the current operation"
I resource time aType I
resource:= WorkStation retumlnstanceWithName: self currentWorkStation.
a Type :=resource type.

aType= 4
iffrue: [time := 0.]
itFalse: [time := resource processTime next.].

124

125

self cartUtilization: self status.
SimScript cr; nextPutAll: self printString , 1 processing time required at I , resource printString ,

1 I , time printString.
SimScript cr; nextPutAll: self printString , I obtained I , resource printString.

resource processTime1: time.
self holdFor: time!

release: aHook
"release the hook when the cart gets to its destination at aPosition"
aHook hookStatus: 0.!

releaseResource

startUp

tasks

"release the hook when the cart gets to its destination at aPosition"
SimScript cr; nextPutAll: name, I is at: 1 , currentWorkStation.
resourceNeeded release: amountNeeded.
amountNeeded := 0!

"The initial start up message for the work flow item"
entryTime :=Simulation active time.
self position: 5.
self currentWorkStation: 1PPLS 1

•

county:= 0.
self tasks.
self finish Up!

I aWorkStation aType I
[done]

whileFalse:
[a WorkStation:= WorkStation retumlnstanceWithName: self currentWorkStation.

county= 0
iiTrue:

[destination:= a WorkStation.
destinationPosition := destination enterPosition]

itFalse: [a WorkStation:= destination].
aType :=a WorkStation type.
aType= 1

iiTrue:

aType= 2
iiTrue:

aType = 3
iiTrue:

aType= 4
iiTrue:

aType = 5

[self acquireResource: a WorkStation.
self completeOperationsAtLocation 1].

[self acq uireResource: a WorkStation.
self com plete0perationsAtLocation2].

[self acquireResource: a WorkStation.
self complete0perationsAtLocation3].

[self acquireResource: a WorkStation.
self completeOperationsAtLocation4].

iff rue:

aType = 6
iffrue:

aType=7
iff rue:

self pause]!

!Cart methodsFor: 'printing'!

printOn: aStream
"Printable form of this cart"

[self acquireResource: a WorkStation.
self complete0perationsAtLocation5].

[self acquireResource: a WorkStation.
self com pleteOperationsAtLocation6].

[self acquireResource: a WorkStation.
self com pleteOperationsAtLocation 7].

aStream nextPutAll: 'Cart', name,' serial#', serial printString!
printResultsOn: aStream
aStream cr.
"nextPutAll: 'Utilization for:', name,' serial #',serial printString; cr;

126

nextPutAll:' No.Obs. Average Std.Dev Minimum Maximum Current'; cr.

aStream
70 timesRepeat: [aStream nextPut: $-]. aStream cr."

nextPutAll: ",name,' serial# ',serial printString.
cartUtilization printResultsOn: aStream.
aStream cr.

70 timesRepeat: [aStream nextPut: $-]. aStream cr.! !
u __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Cart class
instanceVariableNames: "!

!Cart class methodsFor: 'instance creation'!

name: aName
I anObject I

anObject := super new initName: aN arne.
AanObject!

!Cart class methodsFor: 'initialize-release'!

initialize
CartUtilization := TimeTrackedNumber new.
Count:= Dictionary new.! !

!Cart class methodsFor: 'getAnlnstance'!

count
ACount!

returnlnstance With Serial: aSerial
Cart alllnstances.
ACart alllnstances detect: [:each I each serial= aSerial]! !

SmallTalk:-80 Code For Class: ConveyorSimulation

Simulation subclass: #ConveyorSimulation
instanceVariableNames: 'cartGenerator outputStream conveyor'
classVariableNames:"
poolDictionaries: "
category: 'ConveyorSimulation'!

ConveyorSimulation comment:
'The actual Simulation model is represented by this object. '!

!ConveyorSimulation methodsFor: 'initialize'!

addCartGenerator: aGenerator
"Include a new CartGenerator in the set. CartGenerator
merely send Cart Items into the simulation with time between
arrivals given by a distribution"

cartGenerator add: aGenerator!
addConveyor: aConveyor

"Include a new Conveyor in the set."
conveyor := aConveyor!

conveyor

initialize

"Return the known conveyor in the set."
"conveyor!

"Cart is initialized so that time in system statistics could be collected
for individual job types. CartGenerator sends work through the
system. outputStream is where the simulation results are written."
Cart initialize.
cartGenerator := OrderedCollection new.
outputStream _ TextStream on: (String new: 512).
super initialize! !

!ConveyorSimulation methodsFor: 'simulation control'!

defineArrivalSchedule
"The CartGenerator needs to schedule the first and subsequent arrivals of its Cart Items"
cartGenerator do: [:creator I creator scheduleArrival].
super defineArrivalSchedule!

delayCart: cart for: timeDelay

127

"This method is to delay the evaluation of the next block of action of the Cart object until the
simulation time reaches the appropriate simulated time."
self delayCart: cart until: currentTime + timeDelay!

delayCart: cart until: aTime
"This method is to delay the evaluation of the next block of action of the Cart object until the
simulation time reaches the appropriate simulated time"
cart resumption Time: a Time.
eventQueue add: cart.

fmishUp

startUp

cart pause!

"We need to empty out the event queue."
super finish Up.
self printResultsOn: outputStream!

"start up of simulation run"
I dateAndTime I
dateAndTime :=Time dateAndTimeNow.

128

outputStream nextPuWl: 'Simulation initiated at', (dateAndTime at: 2)
(dateAndTime at: 1) printString.

printString , ', ',

super startUp!

time: aTime
"This message is for debugging purposes only"
currentTime := aTime! !

!ConveyorSimulation methodsFor: 'accessing'!

includesPart: partName
"Answer if the partName is used in this simulation"
cartGenerator do: [:cart I cart name= partName iffrue: ["true]].
"false!

outputStream
"Answer the current outputStream"
"outputStream!

outputStream: aStream
"Designate aStream as the outputStream of the simulation"
outputStream _ aStream! !

!ConveyorSimulation methodsFor: 'statistics'!

clearStatisticsAt: aTime
"Method to clear all the collected statistics at a specified time"
self

schedule:

clearS tatistics].

[ObsTrackedNumber alllnstances do: [:aNumber I aNumber clearStatistics].
TimeTrackedNumber alllnstances do: [:aNumber I aNumber clearStatistics].
TrackedNumberWithCollection alllnstances do: [:aNumber I aNumber

TrackedNumberWithHistogram allinstances do: [:aNumber I aN umber
clearStatistics]] at: aTime!

printResultsOn: aStream
"print the collected statistics for the workstations, hooks, and carts"
I aConveyor workStation aCart hooks aGenerator I
aConveyor := ConveyorSimulation active conveyor.
workStation:= Dictionary new.
1 to: aConveyor numWorkStations do: [:i I workStation at: i put: (WorkStation
returnlnstanceWithName: (WorkStation DestinationList at: i))].

1 to: aConveyor numWorkStations do: [:i I (workStation at: i) printResultsOn: aStream].
hooks:= Dictionary new.
1 to: aConveyor trackSize do: [:i I hooks at: i put: (aConveyor track at: i)].
1 to: aConveyor trackSize do: [:i I (hooks at: i)

printResultsHookOn: aStream with: (hooks at: i) hookNumber].
aStream cr; cr; nextPutAll: 'Utilization for Carts:'; cr; cr; nextPutAll: ' No.Obs.
Average Std.Dev Minimum Maximum Current'; cr.
70 timesRepeat: [aStream nextPut: $-].
aStream cr.

aGenerator := cartGenerator at: 1.
1 to: ((aGenerator totalCount) + 1) do:

[:i I
aCart :=Cart returnlnstanceWithSerial: i.
aCart printResultsOn: aStream].

aStream cr; nextPutAll: 'Simulation Ended at'; nextPutAll: Date dateAndTimeNow printString; cr! !

! ConveyorSimulation methodsFor: 'tracing'!

trace Off
"Switch the trace on"

SimScript := DummyTextStream new!

trace On
"Switch the trace on"
SimScript := TextStream on: (String new: 512)!

traceOnAt: aTime
"Switch the trace on"
Simulation active schedule: [
SimScript := TextStream on: (String new: 512)] at: aTime! !
"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ConveyorSimulation class
instanceVariableNames: "!

!ConveyorSimulation class methodsFor: 'instance creation'!

new

" Method to create a new instance of ConveyorSimulation "
"super new initialize! !

!ConveyorSimulation class methodsFor: 'examples'!

examplecg: aTime

129

"This example does not use BOM or assembly station, and is not consistent any more with the
simulation codes"

I a Vector aWorkStation bVectorbWorkStation gVector gWorkStation hVector hWorkStation
iVector iWorkStation sim aConveyor aCartjVector jWorkStation dVector dWorkStation fVector
fW orkStation I
aCart := CartGenerator name: 'cart' distribution: (Deterministic value: 0).
a Vector:= Dictionary new.

0.2.

0.

0.

130

a Vector at: 1 put: 0; at: 2 put: 0.3; at: 3 put: 0.3; at: 4 put: 0; at: 5 put: 0.2; at: 6 put: 0; at: 7 put:

a WorkStation:= WorkStation new.
aWorkStation initializeWithName: 'PPLS'

andAmount: 1
exitPosition: 5
enterPosition: 1
probabilities: aVector
processTime: (Normal mean: 4 deviation: 0.5)
type: 9; emptyQueueCapacity: 0; inputQueueCapacity: 20; outputQueueCapacity: 20.

bVector :=Dictionary new.
bVector at: 1 put: 0.4; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0.3; at: 5 put: 0; at: 6 put: 0.3; at: 7 put:

bWorkStation :=WorkStation new.
bWorkStation initializeWithName: 'WS2'

andAmount: 1
exitPosition: 9
enterPosition: 8
probabilities: bVector
processTime: (Normal mean: 4 deviation: 0.5)
type: 1; emptyQueueCapacity: 5; inputQueueCapacity: 10; outputQueueCapacity: 20.

dVector :=Dictionary new.
dVector at: 1 put: 0.6; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0; at: 5 put: 0; at: 6 put: 0.4; at: 7 put: 0.
dWorkStation :=WorkStation new.
dWorkStation initializeWithName: 'WS3'

andAmount: 1
exitPosition: 15
enterPosition: 14
probabilities: dVector
processTime: (Normal mean: 3 deviation: 0.4)
type: 2; emptyQueueCapacity: 5; inputQueueCapacity: 5; outputQueueCapacity: 20.

tV ector:= Dictionary new.
tV ector at: 1 put: 0; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0; at: 5 put: 0.5; at: 6 put: 0; at: 7 put: 0.5.
!WorkStation:= WorkStation new.
!WorkStation initializeWithName: 'WS4'

andAmount: 1
exitPosition: 23
enterPosition: 22
probabilities: fVector
processTime: (Normal mean: 4 deviation: 0.5)
type: 3; emptyQueueCapacity: 5; inputQueueCapacity: 5; outputQueueCapacity: 20.

gVector :=Dictionary new.
gVector at: 1 put: 0.5; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0.5; at: 5 put: 0; at: 6 put: 0; at: 7 put:

gWorkStation :=WorkStation new.
gWorkStation initializeWithName: 'WS5'

andAmount: 1
exitPosition: 31
enterPosition: 30
probabilities: gVector
processTime: (Normal mean: 3 deviation: 0.4)
type: 5; emptyQueueCapacity: 0; inputQueueCapacity: 5; outputQueueCapacity: 20.

hVector :=Dictionary new.

131

hVector at: 1 put: 0; at: 2 put: 0.25; at: 3 put: 0.25; at: 4 put: 0; at: 5 put: 0.25; at: 6 put: 0; at: 7
put: 0.25.

hWorkStation :=WorkStation new.
hWorkStation initializeWithName: 'WS6'

andAmount: 1
exitPosition: 37
enterPosition: 36
probabilities: hVector
processTime: (Normal mean: 4 deviation: 0.5)
type: 5; emptyQueueCapacity: 5; inputQueueCapacity: 5; outputQueueCapacity: 20.

iVector :=Dictionary new.
iVector at: 1 put: 0.3; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0.7; at: 5 put: 0; at: 6 put: 0; at: 7 put: 0.
iWorkStation :=WorkStation new.
iWorkStation initializeWithName: 'WS7'

andAmount: 1
exitPosition: 44
enterPosition: 43
probabilities: iVector
processTime: (Normal mean: 4 deviation: 0.5)
type: 6; emptyQueueCapacity: 0; inputQueueCapacity: 10; outputQueueCapacity: 10.

jVector :=Dictionary new.
jVector at: 1 put: 0; at: 2 put: 0; at: 3 put: 0; at: 4 put: 0; at: 5 put: 0; at: 6 put: 0; at: 7 put: 0.
jWorkStation :=WorkStation new.
jWorkStation initializeWithName: 'BYPASS'

andAmount: 1
exitPosition: 42
enterPosition: 17
probabilities: jVector
processTime: (Deterministic value: 8)
type: 7; emptyQueueCapacity: 0; inputQueueCapacity: 111; outputQueueCapacity: 111.

aConveyor :=Conveyor new.
aConveyor space: 10; speed: 1; trackSize: 48; numWorkStations: 8.
sim := ConveyorSimulation new.
sim activate.
sim outputStream: Transcript.
sim addCartGenerator: aCart.
sim addConveyor: aConveyor.
sim traceOn.
sim startUp.
sim schedule: [aConveyor move: 1] after: 10.
sim schedule: [WorkStation generateAnd.LoadOrders]

after: (Normal mean: 20 deviation: 4) next.
sim clearStatisticsAt: 0.0.
[sim time< aTime]

whileTrue: [sim proceed].
sim finishUp.
Transcript endEntry! !

SmallTalk-80 Code For Class: Queue

Object subclass: #Queue
instanceVariableNames: 'queue queueDiscipline queueLength timeinQueue entryTime'
classVariableNames: "

poolDictionaries: "
category: 'ConveyorSimulation'!

Queue comment:
'This is a Queue object with
queueDiscipline: Describes the Queue displine (LIFO, FIFO, ... etc.) (Default: FIFO)'!

!Queue methodsFor: 'removing'!
remove: anObject
"remove a particular item from the queue"
queueLength equals: (queueLength value- 1).
timeinQueue equals: (Simulation active time- anObject queueEntryTime).
"'queue remove: anObject .!

removeFirst
"Answer the first item in the queue, and remove it"
ljobl
job := queue removeFirst.
queueLength equals: (queueLength value- 1).
timelnQueue equals: (Simulation active time- job queueEntryTime).
"'job!

removeLast
"Answer the first item in the queue, and remove it"
ljobl
job := queue removeLast.
queueLength equals: (queueLength value- 1).
timelnQueue equals: (Simulation active time- job queueEntryTime).
"'job! !

!Queue methodsFor: 'initialize-release'!

initialize
"Set up the statistics collection object, the queue itself is an ordered collection"
queueLength := TimeTrackedNumber new.
timeinQueue := ObsTrackedNumber new.
queue:= OrderedCollection new.
"'self! !

!Queue methodsFor: 'adding'!

add:aJob
"Add to the ordered collection, and collect statistics"
aJob timeStamp.
queue add: aJob.
queueLength equals: (queueLength value+ 1).!

!Queue methodsFor: 'testing'!

hasSpace
"Unless overridden, queues have unlimited capacity"
"'true!

isEmpty
"Answer whether the queue is empty"

132

"queue isEmpty!

!Queue methodsFor: 'statistics'!
display

"display results"
timeinQueue display!

printResultsOn: aStream

results

"answer the statistics on the stream in a formatted style"
aStream cr; nextPutAll: 'Length: '
queueLength printResultsOn: aStream.
aStream cr; nextPutAll: Wait Time: '.
timeinQueue printResultsOn: aStream.
aStream cr!

"Answer the statistics in an array of size 2"
I stats I
stats := Array new: 2.
stats at: 1 put: queueLength results; at: 2 put: timeinQueue results.
"stats! !

!Queue methodsFor: 'accessing'!

ftrst

last

"First item in the queue"
"queue first!

"Answer the last item in the queue"
"queue last!

queueLength
"Answer the current queue length"
"queueLength value! !

!Queue methodsFor: 'task language'!

fifo

lifo

next

"Implement FIFO discipline"
"queue first!

"Implement LIFO discipline"
"queue last!

"self perform: queueDiscipline!

setQDiscipline: aQDiscipline
"set queue discipline"
queueDiscipline := aQDiscipline.
"self!

133

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Queue class
instanceVariableNames: 11!

!Queue class methodsFor: 'instance creation'!
new
II create a new queue "
/\super new initialize! !

SmallTalk-80 Code For Class: CapacitatedQueue

Queue subclass: #CapacitatedQueue
instanceVariableNames: 'capacity'
classVariableNames: 11

poolDictionaries: "
category: 'ConveyorSimulation'!

!CapacitatedQueue methodsFor: 'testing'!

hasSpace
"Answer if there is enough place in the queue"
queueLength value < capacity

iffrue: [/\True]
ifFalse: [/\False]! !

!CapacitatedQueue methodsFor: 'initialize-release'!

capacity
"initialize the instance vars of superclasses and set the capacity"
super initialize.
/\capacity!

initCapacity: anAmount
"initialize the instance vars of superclasses and set the capacity"
super initialize.
capacity := anAmount! !

!CapacitatedQueue methodsFor: 'adding'!

add: aJob
"This job had reserved a place. Now it has entered. Add to the queue."
queueLength value> capacity iffrue: [self error: 'Queue capacity exceeded'].
super add: aJob! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

CapacitatedQueue class
instanceVariableNames: "!

!CapacitatedQueue class methodsFor: 'instance creation'!

capacity: amount
"Create a capacitated queue with capacity amount"

134

Asuper new initCapacity: amount! !

SmallTalk-80 Code For Class: Conveyor

Resource subclass: #Conveyor
instanceVariableNarnes: 'space speed trackSize track inputPos outputPos numWorkStations

hook Utilization '
classVariableNames:"
poolDictionaries: "
category: 'ConveyorSimulation'!

!Conveyor methodsFor: 'initialize-release'!

initializeWith: anArray
"This is to initialize the instance vars of the Conveyor class from the array
defined through the user input. This will also store all the Hook1 instances
in the conveyor loop."
I aWS1 aPos1 aWS2 aPos21
space := (anArray at: 2) asNumber.
speed:= (anArray at: 1) asNumber.
trackSize := (anArray at: 3) asNumber.
numWorkStations := (anArray at: 4) asNumber.
track:= Dictionary new.
inputPos :=Dictionary new.
outputPos :=Dictionary new.
1 to: trackSize do: [:i I track at: i put: (Hook1

135

newWithName: 'Hook' andAmount: 1 hookNumber: i hookPosition: i
hookStatus: 0)].

1 to: numWorkStations do:
[:i I aWS 1 :=WorkStation retumlnstanceWithNarne: (WorkStation DestinationList at:i).
aPos1 := aWS1 enterPosition.
inputPos at: i put: aPos1].

1 to: numWorkStations do:
[:i I aWS2 :=WorkStation retumlnstanceWithNarne: (WorkStation DestinationList at:i).
aPos2 := aWS2 exitPosition.
outputPos at: i put: aPos2]!

numWorkStations: aNumber
"This is to initialize the number of workstations needed in the conveyor loop."
numWorkStations := aNumber!

space: aSpace
"initialize the space between two consecutive hooks"
space := aSpace!

speed: aSpeed
"initialize the speed of the conveyor loop"
speed := aSpeed!

trackSize: aSize
"initialize the track size that is the number ofHook1 instances desired in the conveyor system."
trackSize := aSize! !

!Conveyor methodsFor: 'accessing'!

numWorkStations

space

speed

track

"return the number of workstations desired in the system"
Anum WorkStations!

"return the space between two hooks in the conveyor loop."
Aspacel

"return the speed of the conveyor loop."
Aspeedl

"return the track object that is all the hooks stored in the track (conveyor loop)"
Atrackl

trackSize
"return the number of hooks in the conveyor system"
AtrackSizel I

!Conveyor methodsFor: 'task language'!

move: aNumber
"updates all the hook positions at a regular interval of time"

self acceptCarts.
self deliverCarts.
self updateHookPositions 1: aN umber.
ConveyorSimulation active schedule: [self move: aNumber] after: 10.1

release: aHook at aPosition
"release the hook when the cart gets to its destination at aPosition"
"nothing to do"

"SimScript cr; nextPuWl: name,' is at:', aPosition name."!

updateHookPositions1: numHookSpaces

136

"after moving a numHookSpaces we have to update the hook positions. The hook numbers stay
the same only their positions in the conveyor loop change."

i)].

I hook tempTrack I
SimScript cr; nextPuWl: self printString , ' all the hook positions are updated at ' ,
ConveyorSimulation active time printString.
[numHookSpaces >self trackSize]

whileTrue: [numHookSpaces = numHookSpaces- selftrackSize].
tempTrack :=Dictionary new.
1 to: numHookSpaces do: [:i I tempTrack at: i put: (track at: self trackSize- numHookSpaces +

self trackS ize to: 1 by: -1
do: [:i I i > numHookSpaces

1 to: self trackSize do:

iiTrue: [track at: i put: (track at: i- numHookSpaces)]
ifFalse: [track at: i put: (tempTrack at: i)]].

[:i I hook := self returnHookA vailableAtPosition: i.
hook hookPosition + numHookSpaces > self trackSize

137

ifTrue: [hook hookPosition: hook hookPosition + numHookSpaces - self
trackSize]

ifFalse: [hook hookPosition: hook hookPosition + numHookSpaces]]! !

!Conveyor methodsFor: 'testing'!

acceptCarts
"This method is to allow the hook to grap a cart from the output queue of
and transport it to its next destination"

the workstation

I aHook aWS1 cart I
1 to: numWorkStations do:

[:i I aHook :=track at: (outputPos at: i).
aHook hookStatus = 0

ifTrue:
[aWS1 :=WorkStation retumlnstanceWithName: (WorkStation

DestinationList at: i).
a WS 1 outputQueueEmpty not

ifTrue:
[cart:= aWS1 next2.
aHook cartHeld: (a WS 1 remove2: cart).
cart checkShortestRouteFrom: a WS 1.
aHook hookStatus: 1.
aHook uitlization1: aHook hookStatus.
SimScript cr; nextPutAll: cart printString , ' obtained

aHook' , aHook hookN umber printS tring]]]!

deliverCarts
"This method is to allow the hook to deliver a cart to the input queue of the workstation and
allow it to get serviced"
I aHook aWS1 aWS2 aCart true3 pos1 pos2 travelTime I
1 to: numWorkStations do:

[:i I aHook := track at: (inputPos at: i).
aHook hookS tatus = 1

ifTrue: [aWS1 :=WorkStation returnlnstanceWithName: (WorkStation
DestinationList at: i).

a WS2 := aHook cartHeld destination.
true3 := a WS 1 haslnputSpace.
(aWS2 name= aWS1 name and: [true3 =True])

ifTrue: [aCart := aHook cartHeld.
aHook cartDispose.
aHook hookStatus: 0.
aHook uitlization: aHook hookStatus.
pos1 :=(WorkStation returnlnstanceWithName:

aCart currentWorkStation) exitPosition.
pos2 := aWS2 enterPosition.
travelTime:= (pos2- pos1 * (self space I self

speed)) abs.
aHook hookProcess: travelTime.
SimScript cr; nextPutAll: aCart printString , 'left the

Hook' , aHook hookNumber printString. aCart resume]]]!

isHookA vailableAtPosition: aPosition
"This method is to check if the hook at a certain position is idle. If it is then
service to a cart waiting for service"

it can provide

(track at: aPosition) hookStatus = 0
iiTrue: [ATrue]
ifFalse: [AFalse]!

returnHookA vailableAtPosition: aPosition
"return a Hook instance at a position"
Atrack at: aPosition! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

Conveyor class
instance V ariableNames: "!

!Conveyor class methodsFor: 'instance creation'!

newWith: anArray
"Create an instance of conveyor by using the data provided by the user through the user
interface"
Asuper new initialize With: anArray! !

Cart initialize!

SmallTalk:-80 Code For Class: ConExperimentView
'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:13:25 pm'!

View subclass: #ConExperimentView
instanceVariableNames:"
classVariableNames: "
poolDictionaries: "
category: 'ConveyorSimulation Interface'!

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ConExperimentView class
instanceVariableNames: "!

!ConExperimentView class methodsFor: 'instance creation'!

openOn: convModel
"Open a dialog view to ask question about the experiment"

138

I theModel top doneModel ctrll ctrl2 ctrl3 ctrl4 listView listWrapper plug done launch Window
height origin I

"conv Model resetExperiment."
doneModel := ValueHolder with: false.
theModel := ValueHolder with: (Array new: 6).
(top:= Dialog View model: doneModel) leftlndent: 10; addVerticalSpace: 3; addTextLabel:

'SIMULATION EXPERIMENT'.
top yPosition: 30; leftlndent: 10; rightlndent: 130; addTextLabel: 'Seed for the experiment';

yPosition: 30; leftlndent: 150; rightlndent: 270; addTextLabel: 'Termination time'.
top yPosition: 50; leftlndent: 10; rightlndent: 130.
ctrll :=top addTextFieldOn: ((PluggableAdaptor on: theModel)

collectionlndex: 1) initially: ".
top yPosition: 50; leftlndent: 150; rightlndent: 270.
ctr12 := top addTextFieldOn: ((PluggableAdaptor on: theModel)

139

collectionlndex: 2) initially: 11
•

top yPosition: 80; leftlndent: 10; rightlndent: 130; addTextLabel: 'Clear statistics at'; yPosition:
80; leftlndent: 150; rightlndent: 270; addTextLabel: 'Trace on at'.

done)

top yPosition: 100; leftlndent: 10; rightlndent: 130.
ctr13 :=top addTextFieldOn: ((PluggableAdaptor on: theModel)

collectionlndex: 3) initially: 11
•

top yPosition: 100; leftlndent: 150; rightlndent: 270.
ctrl4 :=top addTextFieldOn: ((PluggableAdaptor on: theModel)

collectionlndex: 4) initially: 11
•

done := LabeledBoolean View new model: (plug := (PluggableAdaptor on: doneModel)
selectValue: true).

done be Visual: 'DONE ' asComposedText.
done controller beTriggerOn Up.
top addVerticalSpace: 4; leftlndent: 10; rightlndent: 270; addWrapper: ((BorderedWrapper on:

inset: 2)
atX: 0.5.

plug
putBlock:

ctrll crBlock: [].
ctrl2 crBlock: [].
ctrl3 crBlock: [].
ctrl4 crBlock: [].
top width: 280.

[:m :vI
ctrll accept.
ctrl2 accept.
ctrl3 accept.
ctrl4 accept.
m value: v].

launch Window:= ScheduledControllers activeController view.
height:= launch Window extent y.
origin:= launch Window globalOrigin +(50@ (height+ 150)).
top openAt: origin.
convModel carryOutExperimentWith: theModel value.

!ConExperimentView class methodsFor: 'printing'!

printString
"'Experiment'! !

SmallTalk:-80 Code For Class: ConResultView
'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:13:38 pm'!

View subclass: #ConResultView
instanceVariableNames: II

classVariableNames:"
poolDictionaries: II

category: 'ConveyorSimulation Interface'!

II-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- II!

ConResultView class

instanceVariableNames: "!

!ConResultView class methodsFor: 'instance creation'!

openOn: conveyorModel
"Display the results"
I menu action I

140

menu := PopUpMenu labels: 'Show Statistics\Show Histograms\Show Trace' withCRs lines: #(2
).

action := menu startUp.
action = 0 ifFalse: [action = 1

iffrue: [conveyorModel showStatistics]
ifFalse: [action = 2

iffrue: [conveyorModel showHistograms]
ifFalse: [conveyorModel showTrace]]]! !

!ConResultView class methodsFor: 'printing'!

printString
AResults'! !

SmallTalk-80 Code For Class: ConveyorDefinition View
From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:13:52 pm'!

View subclass: #ConveyorDefinition View
instance V ariableNames: "
classVariableNames:"
poolDictionaries: "
category: 'ConveyorSimulation Interface'!

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ConveyorDefinition View class
instanceVariableNames: "!

!ConveyorDefinitionView class methodsFor: 'comparing'!

<=another
Aself name <= another name! !

!ConveyorDefinitionView class methodsFor: 'instance creation'!

openOn: convModel
I theModel top doneModel ctrll plug done ctrl2launchWindow height origin ctr13 ctrl4 ctr15 I
doneModel := ValueHolder with: false.
theModel := ValueHolder with: (Array new: 5).
(top:= Dialog View model: doneModel) addVerticalSpace: 3; addTextLabel: 'Conveyor

Definition'.
top yPosition: 30; leftlndent: 10; rightlndent: 130; addTextLabel: 'Speed'; yPosition: 30;

leftlndent: 150; rightlndent: 270; addTextLabel: 'Space'.
top yPosition: 50; leftlndent: 10; rightlndent: 130.
ctrll :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 1) initially: ".

top yPosition: 50; leftlndent: 150; rightlndent: 270.

141

ctrl2 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 2) initially: ".
top yPosition: 80; leftlndent: 10; rightlndent: 130; addTextLabel: 'TackSize'; yPosition: 80;

leftlndent: 150; rightlndent: 270; addTextLabel: 'Num WorkStat'.
top yPosition: 100; leftlndent: 10; rightlndent: 130.

ctrl3 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 3) initially: ".
top yPosition: 100; leftlndent: 150; rightlndent: 270.
ctrl4 :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 4) initially:".

top yPosition: 120; leftlndent: 10; rightlndent: 130; addTextLabel: 'No. of Carts'.
top yPosition: 140; leftlndent: 10; rightlndent: 130.

done)

ctrlS :=top addTextFieldOn: ((PluggableAdaptor on: theModel) collectionlndex: 5) initially: ".
done := LabeledBoolean View new model: (plug := (PluggableAdaptor on: doneModel)

done be Visual: 'DONE ' asComposedText.
done controller beTriggerOnUp.

selectValue: true).

top addVerticalSpace: 4; leftlndent: 10; rightlndent: 270; addWrapper: ((BorderedWrapper on:

inset: 2)
atX: 0.5.

plug
putBlock:

ctrll crBlock: [].
ctrl2 crBlock: [].
ctrl3 crBlock: [].
ctrl4 crBlock: [].
ctrl5 crBlock: [].
top width: 280.

[:m :vI
ctrll accept.
ctrl2 accept.
ctr13 accept.
ctrl4 accept.
ctrl5 accept.
m value: v].

launch Window:= ScheduledControllers activeController view.
height:= launch Window extent y.
origin:= launch Window globalOrigin +(50@ (height+ 150)).
top openAt: origin.
convModel informSimulationWith: theModel value.! !

!ConveyorDefinitionView class methodsFor: 'printing'!

printString
NConveyor Definition Browser'! !

SmallTalk-80 Code For Class: ConveyorView
'From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:14:16 pm'!

View subclass: #ConveyorView
instance V ariableNames: "
classVariableNames:"
poolDictionaries: "
category: 'ConveyorSimulation Interface'!

,. __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ConveyorView class
instanceVariableNames: "!

!ConveyorView class methodsFor: 'instance creation'!

open
I window topView launchWindow origin height convModell
convModel := ConvModel new.
window := ScheduledWindow new.
window label: 'ConveyorSimulation Launcher'.
window minimumSize: 200@ 100.
top View:= CompositePart new.
top View add: (Look:Preferences edgeDecorator on: (SelectionlnListView

on: convModel
printltems: true
oneltem: false
aspect: #view Name
change: #viewChange:
list: #viewList
menu: nil
initialSelection: #viewName))

borderedln: (0@0 extent: 1@ 1).
window component: topView.
launch Window:= ScheduledControllers activeController view.
height:= launch Window extent y.
origin:= launch Window globalOrigin +(50@ (height+ 10)).

window o enAt: ori in! !

SmallTalk-80 Code For Class: ConvModel
'From Objectworks(r)\Smalltalk, Release 4 of25 February 1991 on 21 April1992 at 12:14:28 pm'!

Model subclass: #ConvModel

142

instanceVariableNames: 'workStationSelection workStationMenu currentObject viewSelection
processTimeSelection wsSelection histogramSelection histograms histogramNameList
histogramStationList workstations arrivalDistributions probability Menu probabilities aConveyorVector
probability Selection providedHistogramList processTimereset processTimeselection processTime '

classVariableNames: 'TextMenu'
pooiDictionaries: "
category: 'ConveyorSimulation Interface'!

!ConvModel methodsFor: 'launching views'!

viewChange: aView

view List

"The user wants to open a view"
a View isNil

ifTrue: [viewSelection :=nil]
itFalse: [viewSelection :=a View. a View openOn: self]!

I list I
list := OrderedCollection new: 5.

143

list add: WorkStationDefmition View; add: Conveyor Definition View; add: ProbabilitiesDefinition View;
add: ConExperimentView; add: ConResultView.
"list!

view Name
"viewSelection! !

!ConvModel methodsFor: 'initialize-release'!

initialize
"Initialize the model"
workstations:= Dictionary new.! !

!ConvModel methodsFor: 'workstation definition'!

add: a WorkStation
"Add a workstation to the workstation list"
workstations at: a WorkStation name put: aWorkStation.!

addWorkStation
"Add a new workstation to the work station list of this model"
self addWorkStation: #workStation!

addWorkStation: aWorkStation
"Add a new workstation to the workstation list of this model"
I description in out em exit enter tipe a Vector workst I

a Vector:= Dictionary new.
workst :=WorkStation new.
processTimereset := false.
currentObject := workst.
currentObject :=WorkStation newWithName: 'current' andAmount: 1 exitPosition: 1 enterPosition: 1
probabilities: a Vector processTime: 0 type: 1.
self add: currentObject.

description:= DialogView getWorkStationWithDefault: #(WorkStationName' 11 0 0 3 0 0 0)
at: self dialogDisplayPoint model: self.

(description at: 1)
=" itFalse:

["currentObject name: (description at: 1)."
workstations do: [:workstation I workstation name= (description at: 1)

iff rue:

already exists') startUp. "self]]].
(description at: 1) ="

[(PopUpMenu labels: 'WorkStation with that name

itFalse:[self renameWorkStationNamed: 'current' to: (description at: 1).
in:= (description at: 2) asNumber.
currentObject inputQueueCapacity: in.
out:= (description at: 3) asNumber.
currentObject outputQueueCapacity: out.
em := (description at: 4) asNumber.
tipe :=(description at: 5) asNumber.
currentObject type: tipe.
currentObject emptyQueueCapacity: em.
exit:= (description at: 6) asNumber.
currentObject exitPosition: exit.

enter:= (description at: 7) asNumber.
currentObject enterPosition: enter.].

self changed: #workStationNamel
dialogDisplayPoint

"Place to show a dialog view"
I window height origin I
window:= ScheduledControllers activeController view.
height := window extent y.
origin:= window globalOrigin + (0@ (height/ 2)) + (170@ 60).
origin x: origin x rounded.
origin y: origin y rounded.
Aoriginl

initialProcessTime
"Answer the process time distribution of the current operation"
self workStationName isNil
iffrue: [Anil]
itFalse: [Aself workStationName processTime]l

modifyWorkStation
"Add a new plant to the plant list of this model"
I description oldDescription I
currentObject := workStationSelection.
oldDescription := Array new: 7.
oldDescription at: 1 put: currentObject name.
oldDescription at: 2 put: currentObject inputQueueCapacity.
oldDescription at: 3 put: currentObject outputQueueCapacity.
oldDescription at: 4 put: currentObject emptyQueueCapacity.
oldDescription at: 5 put: currentObject type.
oldDescription at: 6 put: currentObject exitPosition.
oldDescription at: 7 put: currentObject enterPosition.

description :=Dialog View
getWorkStationWithDefault: oldDescription at: self dialogDisplayPoint model: self.

(description at: 1) = "
itFalse: [selfrenameWorkStationNamed: currentObject name to: (description at: 1).

currentObject inputQueueCapacity: (description at: 2) asNumber.
currentObject outputQueueCapacity: (description at: 3) asNumber.
currentObject emptyQueueCapacity: (description at: 4) asNumber.
currentObject type: (description at: 5) asNumber.
currentObject exitPosition: (description at: 6) asNumber.
currentObject enterPosition: (description at: 7) asNumber.

currentObject := nil.
self changed: #workStationNamel

probabilitiesList
"Answer the list of objects for which probabilities are needed"
I list I
A self wsListl

process Time
"Answer the name of the process time distribution currently selected"
AprocessTimeselectionl

processTimeChange: aDist

144

145

"The user of the operation definition dialog view has changed the selection of the distribution"
aDist isNil

iffrue: [processTimeselection := nil. processTimereset := false]
itFalse:

[processTimereset
iffrue: [processTimereset :=false]
itFalse: [aDist getParameters.

processTimeList

currentObject processTime: aDist].
processTimeselection := aDist]!

"Answer the list of process time for the current operations "
AcurrentObject processTimeList!

remove WorkStation
"the user wants to remove a workStation from the workStation list"
I workstation I
workstation := workStationSelection.
workStationSelection :=nil.

workstations removeKey: workstation name.
self changed: #workStationName!

rename WorkStation
"the user wants to rename a workStation from the workStation list. "
laName I
aName :=Dialog View request: 'New name for the workStation?'.
aName =" iffrue: [Aself].
selfrenameWorkStationNamed: workStationSelection name to: aName.
self changed: #workStationName!

renameWorkStationNamed: oldName to: aName
"the user wants to rename a workCenter from the workCenter list. "
I name workStation I
oldName = aName itFalse: [workStation :=workstations at: oldName.
name := aName.
[workstations includesKey: name]
whileTrue: [name:= (Dialog View request: 'This name is already used. Provide another name')].
workstations removeKey: oldName.
workStation name: name.
workstations at: name put: workStation]!

workStationChange: a WorkStation
"The user of the workstation definition window has changed the selection of the workstation.
Inform the dependent lists"
a WorkStation isNil

iffrue: [workStationSelection := nil]
itFalse: [workStationSelection := aWorkStation].

self changed: #text!

workStationMenu
"Answer an ActionMenu of operations on workStations that is to be displayed
when the operate menu button is pressed."
workStationSelection isNil

iffrue: [workStationMenu _ ActionMenu labels: 'add a work station' withCRs

lines:#() selectors: #(#addWorkStation)]
ifFalse: [(workStationSelection isKindOf: WorkStation)

ifi'rue: [workStationMenu _ ActionMenu

146

labels: 'add a workStation\modify-review\remove\rename' withCRs lines: #(2)
selectors: #(#addWorkStation #modifyWorkStation #remove WorkStation #rename WorkStation)]

ifFalse: [workStationMenu _ ActionMenu
labels: 'add a workStation\modify-review\remove\rename' withCRs lines: #(2)

selectors: #(#addWorkStation #modifyWorkStation #removeWorkStation #renameWorkStation)]].
"workStationMenul

workStationName

wsList

"Answer the list of workstations defined so far"
"workStationSelectionl

"Answer the list of workstations defined so far"
"workstations values asSortedCollection.

!ConvModel methodsFor: 'accessing'!

conveyor Vector
"aConveyorVectorl

workstation
lnameWorkStation I
workstations isEmpty

ifFalse: [name WorkStation :=Dialog View request: 'Name of workstation'.
"workstations at: nameWorkStation put (WorkStation new name: nameWorkStation)].
"workstations values asOrderedCollection at: 11 I

!ConvModel methodsFor: 'information'!

inform Simulation With: anArray
aConveyorVector := anArray.

!ConvModel methodsFor: 'probability definition'!

probability Menu
"Answer an ActionMenu of operations on workStations that is to be displayed
when the operate menu button is pressed."
(workStationSelection isKindOf: WorkStation) ifi'rue: [probability Menu_ ActionMenu

labels: 'Specify Probabilities' withCRs
lines: #(2)
selectors: #(#specifyProbabilities)].

"probability Menu!

specify Probabilities
I aList aSize anObject a Vector anArray bList I
aList := workstations values asSortedCollection.
aSize := aList size.
anObject := workStationSelection.
anArray :=Array new: aSize.
a Vector:= DialogView getProbabilitiesWithDefault: anArray
at: self dialogDisplayPoint model: self.

1 to: aSize do: [: il (anObject probabilities) at: i put: (a Vector at: i) asNumber].
bList :=Dictionary new.
1 to: (aList size) do: [:i I bList at: i put: ((aList at: i) name)].
WorkStation setDestinations: bList.!!

!ConvModel methodsFor: 'experimenting'!

carryOutExperimentWith: anArray
I aCart sim bArray aConveyor aGen I
sim := ConveyorSimulation new.
bArray :=self conveyorVector.
aGen := CartGenerator new.
aGen totaiCount: (bArray at: 5).
aCart :=aGen name: 'cart' distribution: (Deterministic value: 0).
bArray :=self conveyorVector.
aConveyor := Conveyor new With: bArray.
sim activate.
sim addConveyor: aConveyor.
sim outputStream: Transcript.
sim addCartGenerator: aCart.
sim startUp.
sim clearStatisticsAt: (anArray at: 3) asNumber.
sim schedule: [aConveyor move: 1] after: 10.
sim schedule: [WorkStation generateAndLoadOrders]

after: (Normal mean: 10 deviation: 2) next.
Cursor execute showWhile: [[sim time< (anArray at: 2) asNumber]

whileTrue: [sim proceed]].
sim finish Up.
Transcript endEntry! !

.. __ -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ConvModel class
instanceVariableNames: "!

!ConvModel class methodsFor: 'instance creation'!

new
"Create an instance of the sim model"
Asuper new initialize! !

!ConvModel class methodsFor: 'initialize-release'!

initialize
"The menu to appear in the code view"
TextMenu :=

ActionMenu

ConvModel initialize!

labelList: #((again undo) (copy cut paste) (accept cancel))
selectors: #(again undo copySelection cut paste accept cancel)! !

SmallTalk:-80 Code For Class: ProbabilitiesDefintion View
'From Objectworks(r)\Smalltalk, Release 4 of25 February 1991 on 21 April1992 at 12:48:37 pm'!

147

View subclass: #ProbabilitiesDefinition View
instanceVariableNames: 'topView'
classVariableNames: "
poolDictionaries: "
category: 'ConveyorSimulation Interface'!

!ProbabilitiesDefinition View methodsFor: 'initialize-release'!

openOn: aModel
"Open a workstation definition window on the model."
I window buttonOffset launch Window height origin I
buttonOffset := LabeledBoolean View defaultHeight negated.
window:= ScheduledWindow new.
window label: 'Probability Definition Browser'.
window minimumSize: 300@ 150.
top View:= CompositePart new.
topView add: selfborderedln: ((LayoutFrame new) leftOffset: 0.0; topFraction: 0.0;

rightFraction: 1.0; bottomFraction: 0.0 offset: buttonOffset negated+ 4).
top View add: (LookPreferences edgeDecorator on: (SelectionlnListView

on: aModel
printltems: true
oneltem: false
aspect: #workStationName
change: #workStationChange:
list: #wsList
menu: #probabilityMenu
initial Selection: #workS tationName))

in: ((LayoutFrame new) leftFraction: 0.0; leftOffset: 0.0; topFraction: 0.0 offset:
buttonOffset negated + 4; rightFraction: 0.66; bottomFraction: 1 offset: buttonOffset).

window component: top View.
launch Window:= ScheduledControllers activeController view.
height:= launch Window extent y.
origin:= launch Window globalOrigin + (0@ (height+ 5)).
window openAt: origin! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

ProbabilitiesDefinition View class
instanceVariableNames: "!

!ProbabilitiesDefinitionView class methodsFor: 'printing'!

printString
"'Probabilities Definition Browser'! !

!ProbabilitiesDefinitionView class methodsFor: 'comparing'!

<=another
"self name <= another name! !

!ProbabilitiesDefinitionView class methodsFor: 'instance creation'!

openOn: aModel
"Open a plant definition window on a SimModel"

148

I view I
view := self new initialize.
view model: aModel.
view openOn: aModel! !

SmallTalk:-80 Code For Class: StringListView
From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:48:53 pm'!

SelectioninListView subclass: #StringinListView
instance V ariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'ConveyorSimulation Interface'!

!StringinListView methodsFor: 'list access'!

displayableLinesFrom: anArray
"Answer a collection of displayable lines from anArray."

"printltems
iffrue: [anArray collect:

[:each I each copyUpTo: Character cr]]
ifFalse: [anArray]! !

SmallTalk:-80 Code For Class: WorkStationDefintionView
From Objectworks(r)\Smalltalk, Release 4 of 25 February 1991 on 21 April1992 at 12:49:14 pm'!

View subclass: #WorkStationDefinitionView
instanceVariableNames: 'code View box View top View buttonSelection'
classVariableNames: "
poolDictionaries:"
category: 'ConveyorSimulation Interface'!

!WorkStationDefinition View methodsFor: 'initialize-release'!

openOn: aModel
"Open a workstation definition window on the model."
"WorkStationDefinitionView openOn: ConveyorModel new"
I window buttonOffset launch Window height origin I
buttonOffset := LabeledBoolean View defaultHeight negated.
window := ScheduledWindow new.
window label: Workstation Definition Browser'.
window minimumSize: 300 @ 150.
top View:= CompositePart new.
top View add: selfborderedln: ((LayoutFrame new) leftOffset: 0.0; topFraction: 0.0;

rightFraction: 1.0; bottomFraction: 0.0 offset: buttonOffset negated+ 4).
top View add: (LookPreferences edgeDecorator on: (SelectioninListView

on: aModel
printltems: true
oneltem: false
aspect: #workStationName
change: #workStationChange:

149

list: #wsList
menu: #workStationMenu
initialSelection: #workStationName))

in: ((LayoutFrame new) leftFraction: 0.0; leftOffset: 0.0; topFraction: 0.0 offset:
buttonOffset negated+ 4; rightFraction: 0.66; bottomFraction: 1 offset: buttonOffset).

window component: topView.
launch Window:= ScheduledControllers activeController view.
height:= launch Window extent y.
origin:= launch Window globalOrigin + (0@ (height+ 5)).
window openAt: origin! I

IWorkStationDefinitionView methodsFor: 'displaying'!

displayOn: aGraphicsContext

"Create or refresh the view. All the subview take care of
themselves. The function of this message is to write the heading
ofthe lists"

I aRectangle cellLabel width height xCoord yCoord I

aRectangle := Rectangle origin: Point zero extent: self container bounds extent.
cellLabel := 'Workstations' asText allBold asComposedText.
width := cellLabel width.
height := cellLabel height.
xCoord := (aRectangle width * 0.33 - width) I 2 .
yCoord := (aRectangle height -height)/ 2 -1.
cellLabel displayOn: aGraphicsContext at: (xCoord @yCoord).l I
It-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- II!

W orkStationDefinition View class
instanceVariableNames: "I

IWorkStationDefinitionView class methodsFor: 'printing'!

printString
"WorkStation Definition Browser'! I

!WorkStationDefinitionView class methodsFor: 'instance creation'!

openOn: aModel
"Open a workstation definition window on a ConveyorModel"
I view I
view := self new initialize.
view model: aModel.
view openOn: aModelll

IWorkStationDefinitionView class methodsFor: 'comparing'!

<=another
"self name <= another name! I

150

APPENDIXB

USER MANUAL

151

152

A single-loop conveyor system is the simplest conveyor system configuration.

The system does not have an elevator or a transfer section. However, the system can

have bypass sections for providing shorter routes between stations on the conveyor loop.

The following appendix will provide the user with information that will guide him/her in

entering the conveyor system model parameters. This information will be divided in

three sections: (1) workstation parameters specification, (2) conveyor parameters

specification , and (3) probability vector specifications. Theses three sections are

represented by three browsers in the user interface.

Workstation parameters specification: Each workstation has to be defined by the

following parameters:

- N arne: The name of the workstation is specified as desired by the user except in

the case of the Production Programming and Load Station (PPLS) and the ByPass section

(BYPASS). If a Production Programming and Load Station is to be included in the

model it has to have the name PPLS. A ByPass section should also have the name

BYPASS.

-Input/Output/Empty queues capacities: The only restrictions on the queue

capacities is in the case of the PPLS workstation. Both the input and output queues

should have capacities equal to the number of carts included in the model.

- Type: The model accommodates seven types of workstations. The following

table illustrates the numbers assigned for the different types of workstations:

TABLE 20

WORKSTATION TYPES

Workstation N arne Type

UALSC 1

LSWAT 2

LODST 3

OLUNLOD 4

ULST 5

BYPASS 6

PPLS 7

- Process time: The workstation browser provides a list of probability

distributions that the user can use.

153

- Exit/Enter positions: Each workstation will have an entering position where

carts get delivered by the hooks (this position is the same as the input queue position) and

an exiting position where carts get picked up by the hooks (this position is the same as

the output queue position). The user has to enter a number between 1 and the number of

hooks included in the model. The exit position is always smaller than the entering

position of the workstation (this is explained in details in Chapter VI).

Conveyor Parameters Specification: Each conveyor will have the following

parameters:

- Speed: The user can enter any speed with any units desired for the conveyor

system.

154

- Space: The user should enter the space desired between two consecutive hooks.

The unit of the space should match the unit of the speed. For example if the speed is

specified in ft/min., the space should be specified in ft.

- track size: The user should enter the maximum number of hooks to be included

in the conveyor loop. This number when multiplied by the space specified will result in

the length of the conveyor loop.

-No. of Carts: The user should enter the number of carts to be accommodated by

the model.

Probability Vector Specification: As explained in chapter VI, each workstation

will have a probability vector that will specify the probability with which a workstation

sends a specific cart to another workstation. The probability vector for the BYPASS

section should be the vector zero. Also each other workstation will have a zero

probability of sending a cart to the BYPASS. The probability vector for a specific

workstation has to have zero in the entry of this specific workstation; since a workstation

does not send carts to itself. The user has to make sure that the sum of all the

probabilities add up to one.

APPENDIXC

AHP CALCULATIONS

155

156

AHP Matrix Calculation Set 1

NODE 1.1- Simulation Paradigm

Links from Lower Level:

1) Node 2.1- Model effectiveness
2) Node 2.2- Model developer's potency and modeling effort
3) Node 2.3- Performance considerations

Original weights
Col 1 2 3

Row
1 1.000 7.000 9.000
2 0.143 1.000 5.000
3 0.111 0.200 1.000

Normalized weights
Col 1 2 3 Weights

Row
1 0.797 0.853 0.600 0.750
2 0.114 0.122 0.333 0.189
3 0.089 0.024 0.066 0.059

Estimation of matrix consistency:

Lambda max: 3.210

Consistency index: 0.105

Consistency ratio: 0.181

157

AHP Matrix Calculation Set 2

NODE 2.1- Model Effectiveness

Links from Lower Level:

1) Node 3.1 -Model reusability
2) Node 3.4- Output provisions
3) Node 3.6- Graphics/User interface capability
4) Node 3.10-Model representation correspondence to the real system
5) Node 3.11-Model flexibility

Original weights
Col 1 2 3 4 5

Row
1 1.000 0.200 1.000 0.200 0.143
2 5.000 1.000 5.000 3.000 1.000
3 1.000 0.200 1.000 0.200 0.167
4 5.000 0.333 5.000 1.000 4.000
5 7.000 1.000 6.000 0.250 1.000

Normalized columns
Col 1 2 3 4 5 Weights

Row
1 0.053 0.073 0.055 0.043 0.023 0.049
2 0.263 0.366 0.277 0.645 0.158 0.342
3 0.053 0.073 0.055 0.043 0.026 0.050
4 0.263 0.121 0.277 0.215 0.633 0.302
5 0.368 0.365 0.333 0.053 0.158 0.255

Estimation of matrix consistency:

Lambda max: 5.637

Consistency index: 0.159

Consistency ratio: 0.142

158

AHP Matrix Calculation Set 3

NODE 2.2 - Model Developer's Potency and Modeling Effort

Links from Lower Level:

1) Node 3.1 -Model reusability
2) Node 3.2- Change management capability
3) Node 3 3- Software modularity
4) Node 3.5- Model debugging support/Verification
5) Node 3.8 -Simulation language knowledge/Ease of learning effort

required
6) Node 3.10-Model representation correspondence to the real system
7) Node 3.11-Modeling flexibility

Original weights
Col 1 2 3 4 5 6 7

Row
1 1.000 3.000 2.000 0.250 0.167 0.333 1.000
2 0.333 1.000 2.000 0.250 0.500 0.500 0.333
3 0.500 0.500 1.000 0.250 0.333 1.000 0.500
4 4.000 4.000 4.000 1.000 1.000 3.000 2.000
5 6.000 2.000 3.000 1.000 1.000 3.000 2.000
6 3.000 2.000 1.000 0.333 0.333 1.000 1.000
7 1.000 3.000 2.000 0.500 0.500 1.000 1.000

Normalized Columns
Col 1 2 3 4 5 6 7 Weights

Row
1 0.063 0.193 0.133 0.069 0.043 0.033 0.127 0.094
2 0.021 0.064 0.133 0.069 0.130 0.051 0.042 0.073
3 0.031 0.032 0.067 0.069 0.086 0.101 0.063 0.064
4 0.252 0.258 0.266 0.279 0.260 0.305 0.255 0.027
5 0.378 0.129 0.200 0.279 0.260 0.305 0.255 0.258
6 0.189 0.129 0.067 0.093 0.086 0.101 0.127 0.113
7 0.063 0.193 0.133 0.139 0.130 0.101 0.127 0.126

Estimation of matrix consistency:

Lambda max: 7.590

Consistency index: 0.098

Consistency ratio: 0.074

159

AHP Matrix Calculation Set 4

NODE 2.3- Performance Considerations

Links from Lower Level:

1) Node 3.7 -Execution speed
2) Node 3.9- Basic memory requirements

Original weights
Col 1 2

Row
1 1.000 0.125
2 8.000 1.000

Normalized Columns
Col 1 2 Weights

Row
1 0.111 0.111 0.111
2 0.889 0.889 0.889

AHP Matrix Calculation Set 5

NODE 3.1 - Model Reusability

Links from Lower Level:

1) Node 4.1 - Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
7.000

1

0.125
0.875

2

0.143
1.000

2 Weigths

0.125 0.125
0.875 0.875

160

AHP Matrix Calculation Set 6

NODE 3.2 - Change Management Capability

Links from Lower Level:

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
5.000

1

0.167
0.833

2

0.200
1.000

2 Weights

0.167 0.167
0.833 0.833

161

AHP Matrix Calculation Set 7

NODE 3.3 - Software Modularity

Links from Lower Level:

1) Node 4.1 -Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
3.000

1

0.250
0.750

2

0.333
1.000

2 Weights

0.250 0.250
0.750 0.750

162

AHP Matrix Calculation Set 8

NODE 3.4 - Output Provisions

Links from Lower Level:

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
8.000

1

0.111
0.888

2

0.125
1.000

2 Weights

0.111 0.111
0.888 0.888

163

AHP Matrix Calculation Set 9

NODE 3.5- Model Debugging Support/Verification

Links from Lower Level:

1) Node 4.1 - Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
8.000

1

0.111
0.888

2

0.125
1.000

2 Weights

0.111 0.111
0.888 0.888

164

AHP Matrix Calculation Set 10

NODE 3.6- Graphics/User interface capability

Links from Lower Level:

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
6.000

1

0.143
0.857

2

0.167
1.000

2 Weights

0.143 0.143
0.857 0.857

165

166

AHP Matrix Calculation Set 11

NODE 3. 7 - Execution Speed

Links from Lower Level:

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col 1 2

Row
1 1.000 6.000
2 0.167 1.000

Normalized Columns
Col 1 2 Weights

Row
1 0.857 0.857 0.857
2 0.143 0.143 0.143

AHP Matrix Calculation Set 12

NODE 3.8 - Simulation Language K knowledge/Ease of Learning Effort Required

Links from Lower Level:

1) Node 4.1 -Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
0.200

1

0.833
0.167

2

5.000
1.000

2 Weights

0.833 0.833
0.167 0.167

167

AHP Matrix Calculation Set 13

NODE 3.9 - Basic Memory Requirements

Links from Lower Level:

1) Node 4.1- Traditional, special purpose simulation systems
2) Node 4.2 - OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
0.143

1

0.875
0.125

2

7.000
1.000

2 Weights

0.875 0.875
0.125 0.125

168

AHP Matrix Calculation Set 14

NODE 3.10 - Model Representation Correspondence to the Real System

Links from Lower Level:

1) Node 4.1 -Traditional, special purpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col

Row
1
2

Normalized Columns
Col

Row
1
2

1

1.000
9.000

1

0.100
0.900

2

0.111
1.000

2 Weights

0.100 0.100
0.900 0.900

169

AHP Matrix Calculation Set 15

NODE 3.11- Modeling Flexibility

Links from Lower Level:

1) Node 4.1- Traditional, special pmpose simulation systems
2) Node 4.2- OOP simulation systems

Original weights
Col

Row
1
2

Original weights
Col

Row
1
2

1

1.000
7.000

1

0.125
0.875

2

0.143
1.000

2 Weights

0.125 0.125
0.875 0.875

170

Matrix1

3.1 3.2 3.3 3.4

4.1 .125 .167 .250 .111

4.2 .875 .833 .750 .888

Matrix 2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11

Matrix3

3.5 3.6

.111 .143

.888 .875

2.1 2.2

0.049 0.094
0.073
0.064

0.342
0.027

0.05

0.258

0.302 0.113
0.255 0.126

1.1

2.1 0.750
2.2 0.189
2.3 0.059

171

3.7 3.8 3.9 3.10 3.11

.875 .833 .875 .100 .125

.143 .167 .125 .900 .875

2.3

0.111

0.889

172

Matrix 4 = (Matrix 1) *(Matrix 2)

2.1 2.2 2.3

4.1 .113 .284 .875

4.2 .885 .470 .127

Matrix 4 = (Matrix 4) * (Matrix 3)

1.1

4.1 0.225

4.2 0.775

VITA()-

Saloua Smaoui

Candidate for the Degree of

Master of Science

Thesis: APPLICATION OF AN OBJECT -ORIENTED PARADIGM TO THE
MODELING OF A CONSTANT SPEED, DISCRETELY SPACED,
RECIRCULATING CONVEYOR SYSTEM

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Gafsa, Tunisia, September 26, 1967, the daughter
of Mr. and Mrs. Mohamed Salah Smaoui.

Education: Graduated from Houssine Bouzaine Primary School, June 1978;
Lycee-Mixte Gafsa High School: Baccalaureate, June 1986;
Oklahoma State University: Bachelor of Science in Industrial
Engineering, May 1990; completed requirements for the Master of
Science in Industrial Engineering in July, 1992.

Professional Experience: Teaching Assistance, 1990-1992, School of
Industrial Engineering, Oklahoma State University; Research
Engineer, summers 1988!1990, Companyie De Phosphates Gafsa,
Tunisia.

