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PREFACE 

In the fmite element simulation of metal forming processes the sources of errors that 

lead to volume change were studied. The study revealed that two major sources of error in 

volume change are the error in the velocity solution and the truncation error inherent in the 

updating scheme. Different methods for updating were implemented and simulation of 

experiments were carried out to compare with the experimental result. Effects of updating 

scheme on volume change and predicted loads were studied. The finite element 

formulation based on the penalty method leads to an excessive volume change if the penalty 

constant is not selected properly. A very large penalty constant leads to ill-condition of the 

stiffness matrix and the velocity solution does not converge. A simple method has been 

proposed to fmd an optimum value of the penalty constant that will ensure convergence of 

the velocity solution and effectively impose the incompressibility constraint. 
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NOMENCLATURE 

FEM 

AM-2 

At 

h 

ht(h) 

yk 

Yk 

y(n)(~) 

K 

Finite Element Method 

Adams-Moulton two-step 

time increment 

step size 

local truncation error 

true solution at the k1h step 

numerical solution at the k1h step 

nth derivative at ~ 

penalty constant 

c constant for the norm difference between the true and numerical solution using 

the penalty method 

m friction factor 

llvll2 Euclidean norm of vector v 

(~,Tt) natural coordinates 

(x,y) global coordinates 

J Jacobian matrix of coordinate transformation 

cr stress tensor 
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CHAPTER I 

INTRODUCTION 

The finite element method (FEM) provides an efficient tool for proper design and 

control of forming processes. For proper design and control the knowledge of detailed 

deformation mechanics and an accurate prediction of the forming load, as well as the 

distribution of stress, strain, and strain-rate are important. The rigid-viscoplastic material 

model based on the penalty constant approach is used for FEM simulation. This has been 

incorporated in a finite element based software ALPID (Analysis of Large Plastic 

Incremental Deformation) for two dimensional model [ALPID 2D, 1987] and three 

dimensional simulation model [ALPID 3D, 1987]. 

The formulation based on penalty constant approach gives excessive volume change 

if the value of the penalty constant is not selected properly. Maintaining the volume change 

within a small percentage of the total deforming volume is a serious consideration in the 

prediction of proper die filling, which is important in process design. The volume change 

occurs because of the numerical approximations used in finding the velocity solution and 

updating the geometry. To effectively control the volume change, error in the velocity 

solution and the error in updating the geometry should be compatible. In other words there 

is no advantage in reducing one of the errors far below the other because the larger one will 

dominate. 

Euler forward method, a first-order method, is commonly used [Kobayashi et al., 

1989] for updating state variables. In this method the current step geometry is based on the 

geometry and velocity at the previous step and the time increment. In the finite element 

simulation of a typical forging process with constant die-velocity, the previous step 
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generally has less nodal velocities and strain-rates than the current step. Hence Euler 

forward method always underpredicts values at the current step, which leads to significant 

volume loss and underpredicted load values. An extensive study was carried out to select 

an appropriate updating scheme to overcome the drawbacks present in the Euler forward 

method. Both explicit and implicit methods [Osak:ada and Nakano, 1982] [Atkinson, 

1989] [Hoff and Taylor, 1990] were examined for their suitability and ease of 

implementation on FEM programs. 

2 

The trapezoidal method and the Adams-Moulton 2-step (AM-2) method were 

selected to study their effect on volume change and predicted loads. The volume change 

during the compression of a simple 2-D element assuming constant rate of deformation was 

calculated. In this calculation the effects of friction and strain-hardening were neglected. 

Under ideal conditions both the trapezoidal and AM-2 methods are better than Euler 

forward method with respect to volume loss. The finite element based code SPID (Simple 

Plastic Incremental Deformation) by Kobayashi et al. [1989] was modified to implement 

the trapezoidal and AM-2 methods. Simulation of the cylinder upsetting experiments [Lee 

and Altan, 1972] was performed using SPID and its modified versions. The results 

obtained are better than those predicted by ALPID [Rusia and Gunasekara, 1989]. It is 

also observed that there is no significant difference in the results obtained between the 

trapezoidal and AM-2 methods. Simulation of the experiments by Lalli [1988] using the 

modified ALPID was carried out. In this simulation microhardness was updated using the 

trapezoidal method. 

Influence of various factors on the error in the velocity solution was studied. It was 

observed that the volumetric strain-rate is inversely proportional to the penalty constant 

[Oden, 1981] [FIDAP, 1991]. Theoretically the errorin the velocity solution can be 

reduced to any desired level by choosing a large penalty constant. However, with a very 

large penalty constant the velocity solution fails to converge because the stiffness matrix 

becomes ill-conditioned. Moreover, after a certain level, increasing the penalty constant 
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can not reduce volume change further because the truncation error inherent in the updating 

scheme dominates. The machine precision and the error tolerance specified have a very 

strong influence on K. The effect of tolerance on the convergence of the velocity solution 

was also studied. It was found that the condition number of the stiffness matrix increases 

with K. Hence, it is necessary to find an 'optimum' value for the penalty constant to 

impose the constraint of volume constancy and to ensure convergence of the velocity 

solution. A simple method is proposed for estimating the 'optimum' value of K, which can 

effectively impose the incompressibility condition as well as ensure convergence of the 

velocity solution. 



CHAP1ERII 

FINITE ELEMENT APPROACH 

Introduction -
Several methods of deformation analysis of metals have been developed, with 

various degrees of approximations and idealizations. The finite element method seems to 

be the most powerful tool for analyzing metal forming processes because of its flexibility, 

adaptability, and accuracy. In this chapter the finite element formulation required for 

deformation analysis is presented in brief. Heat transfer analysis should also be carried out 

for hot forming processes. The elasto-viscoplastic flow model and the rigid viscoplastic 

flow model are the two most popular models used in the FE simulation of metal forming 

processes. 

For plastic or viscoplastic materials in large deformation processes, elastic 

deformation can be considered to be negligible. The constitutive relations can be expressed 

[Zienkiewicz and Godbole, 1974] in an Eulerian form linking the stresses and current 

strain-rates. This is identical to the flow of viscous, non-Newtonian incompressible fluid 

because viscosity depends on the current strain-rates. The constitutive relation for a 

viscous, incompressible fluid is 

(2.1) 
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where cr'iJ are the deviatoric components of stress and the scalar Jl is the viscosity which 

can be a function of strain, strain-rate, and temperature. Metals have a well-defined plastic 

yield stress and Jl is given by 

Jl = (2.2) 

where p < 1, and cr, the effective stress, is a function of£, £ and T. "' = 0 for ideal plastic 

metals and hence Jl is given by 

Therefore Eqn. (2.1) becomes 

Jl = ~ 
3£ 

clJ' = .3._.&_ ,...,, • 
"' 2 a v lJ 

(2.3) 

(2.4) 

A detailed discussion of these equations are given in the sections to follow. The 

constitutive relation represented by Eqn. (2.4) is identical to the isotropic elastic relations 

for incompressible solids with strain-rates taking place of strains. Thus all methods in 

solid mechanics developed for incompressible elastic materials can be used for viscous 

flow problems. This can be done provided displacements are interpreted as velocities and 

strains (infinitesimal) as strain-rates. 

Basic Equations 

The theory of plasticity deals with the time independent behavior of material 

adequately, but not with the time-dependent behavior. For the analysis of time-dependent 



behavior of material in moderate range of temperatures, the theory of plasticity is 

generalized to cases which include strain-rate sensitivity. Assuming isotropy, negligible 

elastic deformation and Huber-Mises yield criterion, the constitutive relation can be 

expressed as 

6 

(2.5) 

where cr' and E are the deviatoric stress tensor and the strain-rate tensor, respectively. The 

effective stress 0: and effective strain-rate£ are defmed as 

0' = 
( 3 ,T , 112 
-0' 0') 
2 

(2.6) 

E = 
2 ·T • 1/2 

( 3E E) (2.7) 

The effective stress (flow stress) for a specific material is determined by uniaxial 

tension or compression tests as a function of strain, strain-rate, and temperature as 

-- ..!.. 

0' = O'(E , E, T) (2.8) 

The deformation of a rigid-viscoplastic material obeying the constitutive relation, 

Eqn. (2.5), is associated with many boundary value problems e.g. forging, extrusion, 

rolling etc. 

A body of volume V is considered with traction f • prescribed on a part of the 

surface Sp and velocity v* prescribed on the remainder of the surface Sv. The deformation 

process is assumed as a static problem by neglecting the inertia effect and body force. The 

stress a and velocity field v satisfy the following relations. 
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(1) equilibrium equations; 

V·cr =0 (2.9) 

(2) constitutive equations; 

E = 3_cr'i = .1icr' (2.10a) 2 2 -a 

and 0" = cr(E , E , T) (2.10b) 

(3) incompressibility condition; 

Ev = V·v = 0 (2.11) 

(4) strain-rate velocity relations; 

. 1 T E = 2 (Vv + (Vv) ) (2.12) 

(5) boundary conditions; 

an= f ·on Sp (2.13a) 

V=V * on Sv (2.13b) 

where Ev is the volumetric strain-rate, and n is the unit vector normal to the corresponding 

surface. 

Thus the unknowns for the solution of a quasi-static plastic deformation process are 

six stress components, six strain-rate components, and three velocity components. The 

governing equations are three equilibrium equations, six strain-rate velocity relations, and 



six constitutive equations derived from the associated flow rule. The boundary conditions 

are prescribed in terms of velocity and traction [Kobayashi et al., 1989]. 

Since it is not possible to obtain an analytical, i.e., closed form solution, various 

approximate methods are used. Using the variational approach or the weighted residual 

method a simplified form can be obtained. 
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1 aT 8£ dV -i f 8v d S = 0 (2.14a) 

V Sp 

To obtain the weak form, the integrand of the first term is replaced with the deviatoric 

stress and the hydrostatic pressure, and the hydrostatic part with a large positive penalty 

function K in order to satisfy the incompressibility condition. Then the following is 

obtained 

1 a' T 8£ dV + K1 Ev 8ev dV-i f 8v dS = 0 
V V Sp 

(2.14b) 

Finite Element Discretization 

The weak form, Eqn. (2.14b), originated from the equilibrium equations associated 

with rigid-viscoplastic materials, is valid not only over the entire volume but also for any 

portion of the volume. If volume V is divided into M elements interconnected at N nodal 

points, then Eqn. (2.14) can be written at the element level as 

L(1 a'T&dV+K1 EvDEvdV-i f8vds) = 0 
e y(e) y(e) s<e) 

F 

(2.15) 
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where e represents summation over all the elements. 

Inside each element, the velocity distribution is approximated by a linear 

combination of certain interpolation functions with the nodal velocities at the element 

nodes. A linear function is used mostly because it yields a simple derivation to formulate 

the stiffness matrix and a lower degree of integration scheme (number of integration points) 

can be used. For higher accuracy and flexibility in the element deformation, higher order 

interpolation functions are used. A comprehensive discussion can be found in Ravi 

[1992]. 

For 2-D analysis with 4-node quadrilateral elements, the volume integral for the 

first term in Eqn. (2.15) was evaluated using 2 x 2 integration points whereas 1 x 1 

integration points was used for the second term. The line integral, i.e., the third term in 

Eqn. (2.15), was carried out using 1 integration point. 

Nonlinear solvers are used to obtain the velocity solution. Once the velocity 

solution is obtained the deformed geometry of the workpiece can be obtained by updating 

nodal coordinates. Currently Euler forward method is used as the updating scheme. There 

is a significant volume loss during the time increment after the geometry is updated. 

N umericallntegration 

All volume and surface integrations are performed by applying Gaussian quadrature 

formulas. As an example calculation of the deforming volume is presented in this section. 

Elemental volumes were calculated by numerical integration. These were then added to 

obtain the total volume. The formulas used in 2-D analysis for volume calculations are as 

follows: 

For plane-strain deformation 

A = ~ <f f dA) = ~ <f f ~I d~ drt) (2.16) 
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For axisymmetric deformation 

(2.17) 

where IJl is the determinant of the Jacobian matrix of coordinate transformation, and(~ , 11) 

is the natural coordinate system. The transformation from the natural(~ , 11) to the global 

coordinate (x, y) is 

and 

J = 

ax 

a~ 

ax 

dl1 

ax ay ay ax 
I J I = -----

a~ dl1 a~ i1ll 

(2.18) 

For isoparametric quadrilateral element with a bilinear shape function the elements of the 

Jacobian matrix is given as follows. 

ax ~ 1 
- = L 4 (1 +~a) (1 +11a11) Xa 
a~ a 

ay ~ 1 - = L- (l+~a~) 0+11a) Ya (2.19b) 
i1T1 a 4 

where (xa.Ya) are the coordinates associated with the ath node. 
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Since the derivatives of the shape functions are linear in ~ and 11, IJl is a bilinear 

function in~ and 11. In other words IJI is a combination of ~11, ~. 11, and 1. Similarly, r IJI 

is a quadratic function with combination of ~211, ~112, ~11, ~. 11, and 1. Thus for plane-

strain deformation, exact integration can be carried over a minimum of 1 x 1 integration 

point(s) whereas for axisymmetric deformation 2 x 2 integration points is required. In this 

study 2 x 2 integration points were used for volume calculation as the cylinder upsetting 

experiment was treated as a 2-D axisymmetric problem. 

Applying the Gaussian quadrature formula we have the finite element formulation 

for 2-D axisymmetric case is obtained in the following form. 

2 2 
V = 2 1t :2, ( :2, :2, r(~I.11I) ~(~,11~ WI WJ) 

e J=l I=l 
(2.20) 

where ~I and 111 are integration points and Wy are weighting factors. Integration points and 

associated weighting factors are listed in Table 2.1 [Kobayashi et al., 1989]. 



TABLE2.1 

INTEGRATION POINTS AND WEIGHTING FACTORS OF 
THE GAUSSIAN QUADRATURE FORMULA 

n XI 

1 0 

2 ±0.577 350 269 

3 ±0.774 596 669 

0.000 000 000 

4 ±0.861 136 312 

±0.339 981 044 

n = number of integration points 

xi = coordinate of integration points 

WI = integration weighting factors 

WI 

2.0 

1.0 

0.555 555 556 

0.888 888 889 

0.347 854 845 

0.652 145 155 
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CHAPTER Ill 

THEORETICAL ANALYSIS 

Review of Time Integration Schemes 

Extensive study was carried out to select a suitable time marching scheme that can 

be used for updating state variables in FE simulation of metal forming processes. Various 

textbooks were referred for standard numerical methods and research papers were studied 

to look for the latest developments in this area. Selecting an appropriate method requires 

the following aspects be taken into account [Hoff and Taylor, 1989]. 

1. The discretized partial differential equation has a truncation error composed of time and 

spatial approximation. In many cases the accuracy of spatial discretizations are no 

more than second order in space. Thus a higher order time step scheme will increase 

the cost without changing the spatial error. The objective in using higher order 

methods is to minimize the additional effort. In the current study the total error is 

composed of the error in velocity solution and in updating. Choice of a higher order 

method will reduce the error in updating. But this will lead to a better result only if 

velocity solution is of the same order or higher order accuracy than updating. 

2. Higher order multistep methods need special starting procedures. The accuracy is 

maintained only when the higher derivatives of the right hand side function fulfill some 

continuity requirements. Hence proper care must be taken for application in problems 

where discontinuities occur, e.g., plasticity, fracture mechanics, and contact problems. 

These may not be useful for non-linear dynamic problems which require stringent 

13 



stability criteria. In this study the trapezoidal method was used to start the solution 

procedure for AM-2 method. 

14 

3. Function evaluations (calculation of velocities, forces etc.) are the most expensive part 

in non-linear problems which are discretized. Thus the required number of function 

evaluations reflects the usefulness of an algorithm. The utility of higher order 

extrapolation method requires large numbers of function evaluations to maintain 

accuracy especially when discontinuities occur. In the penalty constant approach the 

error in velocity solution can be reduced to any level by using a large penalty constant. 

If choice of a higher order method is made for updating, then the error in the velocity 

solution will have to be decreased. This decrease should be such that the error in the 

velocity is compatible with the truncation error of the updating method. To decrease 

the error in the velocity solution, a larger penalty constant must be used along with a 

smaller tolerance on the velocity solution. This will require more number of iterations 

for nonlinear solvers and thereby more time to obtain the velocity solution. 

The general algorithm for single step time marching [Zienkiewicz et al, 1984] is a 

series of general algorithms of order p. It not only covers most of the currently used 

schemes but also presents many new possibilities. This is suitable for use in dynamic or 

diffusion equations. It is easy to program in its universal form for all orders of 

approximation. It is computationally advantageous in many cases over the conventional 

procedures especially the Newmark algorithm [Bathe, 1982] and its variants. However, 

this algorithm requires higher derivatives and hence does not qualify for use in the current 

study. 

Investigation of higher order derivative, explicit one step methods by Hoff and 

Taylor [1990] showed that it is suitable for arbitrary non-linear analysis of structural 

dynamic problems. Their algorithm has acceleration at the current step as the primary 

unknown. Hence this method also cannot be used. 
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The Beta-m method as a generalization of the Newmark scheme by Katona and 

Zienkiewicz [1985] unifies the old and new methods and is computationally efficient. This 

method is not suitable in its general form for the current study because it requires 

acceleration at the current and previous step. In its simplest form it is Euler forward 

method, which is already in use. 

The variable-order variable-step algorithms for second order systems [Thomas and 

Gladwell, 1990] can be used with local error estimators based on embedding techniques. 

In one of its simplest forms it yields the trapezoidal method. The advantages offered by 

this method in its general form requires acceleration. Hence, this method cannot be used in 

the current study. 

Among higher order methods, the trapezoidal method and Adams-Moulton methods 

[Atkinson, 1989] can be used in this study. The order of these methods is higher than 

Euler forward method. Use of velocities from multiple steps, p, can be made to achieve a 

higher order of accuracy. But this will not be reflected in the result (volume change) after a 

certain increase in p because the error in velocity, which cannot be reduced after a certain 

level, will dominate. Hence only the trapezoidal method and Adams-Moulton 2-step 

method will be studied in greater detail and later implemented on FEM source codes. Their 

effect on the phenomenon of volume change and underpredicted loads will be analyzed. It 

will also be studied to ascertain their suitability in updating other state variables. 

Numerical Methods and Error Analysis 

PreliminarY analysis of both explicit and implicit numerical methods, which are 

used in time integration, was carried out. In this section three numerical methods for 

solving initial value problems, namely, Euler forward method, the trapezoidal method, and 

Adams-Moulton 2-step method (AM-2 method) are discussed The last two are implicit, 

higher order methods. 

Consider the following differential equation : 



Y'{t) = f ( t ,Y(t)) over [ Xn, Xn+l ] 

Integration ofEqn. (3.1) yields 

Y n+l = Y n + f ( t, Y(t)) dt lXn+l 

Xn 

where Y n+l denotes the true solution at xn+l· 

Theoretically all the three methods can be derived from Eqn. (3.2) using 

interpolation polynomials in the following form 
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(3.1) 

(3.2) 

Yn+l = Yn + f"'' Y'(t) dt = Yn + L"'' [ Pp(l) + Ep(t)] dt (3.3) 

where Pp(t) denotes a polynomial of degree~ p that interpolates Y'(t) at xn+o-p• ... , xn+o, 

with 8 = 0 for explicit methods and 8 = 1 for implicit methods; and Ep(t) is the error 

formula of the interpolating polynomial [Atkinson, 1989]. Pp(t) can be conveniently 

written in the form of Lagrange multiplier functions 4(t) as 

p 

Pp(t) = L 4(t) Y'{xn+oJ 
1 = 0 

(3.4) 

where i = 0, 1, ... 'p (3.5) 

Ep(t) can be expressed as 



Ep(t) = (t - xn+o-p) · · · (t- Xn+o) y(p+2)(~) 
(p + 1) ! 

Eqn. (3.3) becomes 
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(3.6) 

fXn+l p fXn+l 
Yn+1 = Yn + Jxn i~O Li_(t) Y'(xn+o-i}dt + Jxn Ep(t)dt (3.7) 

Using different values ofp in Eqn. (3.7), one can derive all the three numerical 

methods along with the associated truncation error. To derive the local truncation error, it 

is assumed that there is no difference between the numerical and true solutions at steps 

prior ton+ 1, i.e. Yi = Yi and y'i = Y'h i = n+o-p, ... , n. With p=O and o = 0, integration 

ofEqn. (3.7) yields 

Yn+1 = Yn + hY'n + ~ Y"(~) (3.8) 

where Xn :S ~ :S Xn+ 1 and h = Xn+ 1 - Xn is the step size. 

By dropping the error term, h2 Y" (~),often called the truncation error or the discretization 
2 

error [Atkinson,1989] at Xn+1• the formula for Euler forward method is obtained in the 

following form. 

Yn+1 = Yn + hy'n (3.9) 

where Yn+1 denotes the numerical solution at Xn+1· With Yn = Yn and y'n = Y'n the local 

truncation error ht(h) is 
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ht(h) = Yn+l- Yn+l = h; Y"(~) (3.10) 

Substituting 8 = 1 and p=1 in Eqn. (3.7), i.e. interpolating Y'(t) at the 2 points, 

Xn+ 1 and Xn, the trapezoidal method can be derived as 

(3.11) 

Neglecting the error term yields the trapezoidal method in the following form 

- h[ , , ] Yn+l - Yn + 2 Y n + Y n+l (3.12) 

The local truncation error ht(h) is written as 

ht(h) = Yn+l-Yn+l = ~(Y'n+l-Y'n+l]-f;Y<3l(~) (3.13) 

(3.14) 

where L is given as L = h [ Y'n+l- Y'n+l] = h af(ll) 
2 Yn+l- Yn+l 2 ay 

(3.15) 

Lipschitz condition requires that af(ll)/ay is a finite value, i.e. L = O(h) << 1. It will be 

seen later in this chapter that Lipschitz condition is satisfied by the state variable being 

updated. If the Lipschitz condition is satisfied then the following approximation can be 

made without any significant loss in accuracy. 
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h't(h) = -~ y(3) (~) (3.16) 

Adams-Moulton methods are the most widely used multistep methods. They are 

used to produce predictor-corrector algorithms in which the error is controlled by varying 

both step size h and order of the method. To derive AM-2 method the integral formula, 

Eqn. (3.7), is used again but now, Y'(t) = f ( t ,Y(t)) is interpolated at the three points, 

Xn+1• Xn and, Xn-1· Substituting p=2 and 8 = 1 in Eqn. (3.7) and integrating it yields 

Yn+1 = Yn + l~ [ 5 Y'n+l + 8 Y'n- Y'n-1 ] - f; Y(4) (~) (3.17) 

Dropping the error term leads to the numerical method associated with AM-2 method in the 

form given below. 

Yn+l = Yn+ 1~[5y'n+1+8y'n-Y1n-1] 

The local truncation error h't(h) is given as 

where L is given by L = 5h-[Y'n+l-Y'n+l] 
12 Yn+l-Yn+l 

With Lipschitz condition, L = O(h) << 1, the local truncation error is 

h't(h) = -f; y<4) (~) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 
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Euler forward method is an explicit method as Yn+l doesn't depend on itself. 

However, the trapezoidal method and AM-2 method represented by Eqn. (3.12) and Eqn. 

(3.18), respectively, are implicit methods as Yn+l appears as an argument on the right-hand 

side. The local truncation error for Euler forward method is of order 0(h2), for the 

trapezoidal method it is of order 0(h3), and for AM-2 method it is of order O(h4). Thus, it 

can be concluded that as far as local truncation error is concerned AM-2 method and the 

trapezoidal method are superior to Euler forward method. Both Euler forward method and 

the trapezoidal method are single step methods whereas AM-2 method is a multiple step 

method. Multiple step methods require a special starting procedure. In this study the 

trapezoidal method was used to start the solution procedure for AM-2 method. 

Geometry Updating and Volume Loss 

Volume change during compression of a simple axisymmetric 2-D element 

assuming uniform deformation was calculated. In the analysis of uniform deformation 

processes, effects of friction and strain-hardening are completely neglected. Error formulas 

were derived based on the local truncation error to estimate the total volume change after a 

certain amount of reduction. Volume change was calculated after updating the geometry 

using all the three methods. These were compared with the volume change calculated using 

error formulas. All the required data was generated using computer programs with floating 

point numbers of 64 bits. It can be seen from Eqn. (3.12) and Eqn. (3.18) that Yn+l 

depends on itself. Hence both the implicit methods are nonlinear with root Yn+ 1· The 

simple direct iteration method, the most convenient method for solving for nonlinear roots, 

was used to find the solution. Previous step solution Yn was taken as an initial guess of the 

solution Yn+ 1· To avoid any possible scaling effects fraction norm was calculated as 

Y(J) - y< j+l) 
n+l n+l $ E 

Y(j+l) 
n+l 

(3.22) 
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where the superscript denotes the iteration number and E = 10-8 is the tolerance specified. 

A maximum of 7 iterations was required to achieve an accuracy of eight decimal digits in 

the solution. Thus, in the current study simple direct iteration method turned out to be 

convenient and quite efficient too. As an example the calculations discussed above was 

performed for the axisymmetric case. Extension to the plane-strain case is straightforward. 

Pertinent equations for both cases are given in the following sections. 

Plane-Strain Case 

There is a change in volume of elements after the geometry is updated with time 

increment At. Consider the two-dimensional plane-strain uniform deformation of a 

rectangular element, as shown in Fig. 3.1, where the element (1234) with a width ofWo 

and a height of Ho is deformed to the shape (12'3' 4') with a width W 1 and height H 1 after a 

time increment At. 

The volume constancy requires [Kobayashi, 1989] that 

V = WH = const. (3.23) 

where Vis the volume of the element. Differentiating Eqn. (3.23) with respect to time 

gives 

w = _:H: 
W H (3.24) 

Repeating differentiation of Eqn. (3.24) with respect to time yields 

wC3) = -6w(Mt; (3.25) 
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4 Wo43 
~--------------------r 

1 2 2' 

Figure 3.1 Two-Dimensional Uniform Deformation of a Rectangular Element 

The change in height after a time increment L\t is given by 

(3.26) 

There is no error involved in updating the coordinate H using any of the methods because 

the velocity remains constant i.e. Ho = H1 = const., during a uniform deformation process. 

Mter a time L\t, the volume change can be calculated using 

L\Vl = Wlhl-WlHl:::: _L\t't(L\t) 
V W1H1 W1 (3.27) 
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where w 1 and h 1 represent numerical solutions of width and height, respectively and 11 V 1 

is the amount of volume change during the time increment /1t. Eqn. (3.27) can be 

simplified and is presented in Table 3.1. 

Thus there is a volume loss during a time increment when geometry is updated by 

Euler forward method, which is indicated by the negative sign on 11 V tN. But there is a 

gain in volume when using AM-2 method as indicated by the positive sign on 11 V 1N. For 

the trapezoidal method the sign on volume change is governed by the sign of /1H. The 

volume loss rate is proportional to (11Jir for Euler forward method, (11Jir for the 

trapezoidal method, and (11Jir for AM-2 method. 

TABLE 3.1 

ERROR FORMULAS FOR PLAIN-STRAIN CASE 

Euler forward trapezoidal AM-2 

method method method 

Wt = Wo + 11t Wo Wo + ~t (wo + w1) 
Wo + ~~ ( 5 wo + 

+ 8 w1- w-1) 

Wt- W1 = 2 3 4 
(11t) w<2>(~) _ (11t) w(3>(~) - (/1t) w<4)(~) 

11t t(/1t) = 2 12 24 

11Vt ::::: -(t~r _1_(11H r (~r v 2 Ho 



24 

Axisymmetric Case 

Consider the axisymmetric uniform deformation of a rectangular element, as shown 

in Fig. 3.2 where the element (1234) with a radius ofRo and a height ofHo is deformed to 

the shape (12'3' 4') with a radius R 1 and height H 1 after a time increment ~t. In this case 

volume constancy requires 

V = 1tR 2H = con st. (3.28) 

where R and H is the radius and height of the element, respectively, and V is the volume. 

4 

I 
·~ I . 
I~ 

1 2 2' 

Figure 3.2 Axisymmetric Uniform Deformation of a Rectangular Element 
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Differentiating Eqn. (3.28) with respect to time gives 

(3.29) 

where dot represents time derivative and H = Ho = const., since velocity remains constant 

during uniform deformation. Repeating differentiation ofEqn. (3.29) with respect to time 

yields 

R(3) = _liR(ii)3. 
8 H ' 

Mter a time ~t, volume change can be calculated using 

where r1 and h1 are the numerical solutions of radius and height, respectively. 

Once again since uniform deformation is considered there is no error in updating the 

(3.30) 

(3.31) 

coordinate H irrespective of the method selected for updating. Since h1 = H1, Eqn. (3.31) 

can be further simplified, using the relation r1 = R1 - ~t 't(~t) and neglecting the higher 

order terms, as 

~ V 1 = - 21t~t 't(~t)R1H1 2~t 't(~t) = -
V - 1tRtH1 (3.32) 

Eqn. (3.32) can be simplified for different methods and is listed in Table 3.2. 

Table 3.2 shows that volume is lost after updating for Euler forward method 

whereas there is a gain in volume for AM-2 method. Once again for the trapezoidal method 

this depends on ~H. Comparison of volume loss formulas for axisymmetric deformation 
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with those of plane-strain deformation shows that, the volume loss rate is of the same order 

for a given method irrespective of the type of uniform deformation. 

TABLE3.2 

ERROR FORMULAS FOR AXISYMMETRIC CASE 

Euler forward trapezoidal AM-2 

method· method method 

rl = Ro + .1t io Ro + ~t (io + i1) 
Ro +ff< 5 i 1 + 

+ 8 io- i_l ) 

R1- r1 ::: 2 3 4 
(.1t) R (2)(~) - (.1t) R (3)(~) - (.1t) R (4)(~) 

.1t 't(.1t) = 2 12 24 

.1Vl = _3_(.1Hr - 2_(.1Ht 35 (£\Hr v 4 Ho 16 H0 64 H0 

Example 

The results obtained from compression of a simple axisymmetric 2-D element 

assuming uniform deformation is presented in this section. The total volume loss at any 

step is found by subtracting the current volume from the initial volume. The estimated 
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incremental volume loss was also calculated at every step. This was done using the error 

estimation formulas listed in Table 3.2. 

The initial height and radius is 1m and the velocity is 1m/s, Ho = ii = -1.0 rn/s. 

Time increments of 0.01 and 0.05 were used. The numerical values of Lis calculated as 

follows: 

For the trapezoidal method 

aR.· I ., L = ~t - 1 ~ - ~t H. = 0.0125 << 1 
2 dRi 4 Hi max (3.33) 

For AM-2 method 

L = .i.ill. aR.i ~ 1- .5..At ii I = o.o14 << 1 
12 ()R1 24 Hi max (3.34) 

where subscript i represents the step number. 

Thus the use of error formulas is justified because the Lipschitz condition is 

satisfied by both the trapezoidal and AM-2 methods and there is no precondition required 

for Euler forward method. The total estimated volume change at any step is found by 

summing the estimated incremental volume change. The total volume change as a function 

of deformation for step sizes of ~H/Ho of 0.01 and 0.05 is plotted in Figs. 3.3, 3.4, and 

3.5 for Euler forward method, the trapezoidal method, and AM-2 method, respectively. It 

is observed that estimated volume change using error formulas from Table 3.2 compares 

well with the actual volume change found by updating the geometry for all three methods. 

Hence it can be concluded that, preliminary analysis can be carried out using error 

estimation formulas which require less computational effort and time. 
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Figure 3.3 Volume Loss with Reduction in Height for Euler Forward Method 
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Figure 3.4 Volume Loss with Reduction in Height for the Trapezoidal Method 
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Figure 3.5 Volume Loss with Reduction in Height for AM-2 Method 
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Thus for updating geometry, AM-2 method results in the least volume change. It is 

also observed that the trapezoidal method is superior to Euler forward method with respect 

to volume change. In short both the higher order methods can be used in time integration 

schemes to give better results than Euler forward method. 

Euler forward method has already been implemented in many of the FEM codes 

currently available, e.g., SPID, ALPID 2.0 etc. Both the aforementioned higher order 

methods will be implemented on SPID. The trapezoidal method requires the current and 

previous step velocities whereas AM-2 method additionally requires the velocity of the step 

before the previous step. Hence AM-2 method needs special starting procedure. As will 

be seen later, predicted forming load compares better with experimental data when strain is 

updated from the strain-rate solution using the,trapezoidal method or AM-2 method. 

Penalty Method 

Introduction 

Mathematically the penalty formulation can be equated to simulating the flow of a 

very slightly compressible fluid [FIDAP, 1986]. Since the governing differential equation 

cannot be solved analytically, numerical methods like FEM are used. Theoretically the 

velocity solution can be found to any desired accuracy provided the penalty constant, K, is 

large enough. Numerical procedures used to find the velocity solution impose some 

restrictions on the choice of Kin the penalty formulation. The accuracy of the numerical 

solution can be increased by increasing K. But with a very large K, the stiffness matrix 

becomes ill-conditioned and the velocity solution fails to converge. This is also influenced 

by the machine precision and the error tolerance specified on the velocity solution. The 

geometry is updated after/during the velocity solution procedure. The updating process 

involves some error due to the truncation error of the updating method. 
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Thus, two sources of error that lead to volume change during simulation are the 

error in the velocity solution and the error of the updating scheme. The two errors should 

be compatible, i.e., they should be of the same order. This will optimize the number of 

function evaluation required to fmd the velocity solution and result in the least volume 

change. In short, an optimum value of K has to be selected to assure convergence of 

velocity solution and to effectively impose the incompressibility constraint. 

Numerical studies show that the norm of the volumetric strain-rate is inversely 

proportional to the penalty constant. To avoid nonuniform deformation and strain

hardening effects, volumetric strain-rate is examined at t = 0. To neglect the effects of 

friction, m = 0 was used; with die-velocity of 25.4 mm/s (1 in./s) and time-increment 

~t = 0.01. The following equation was used in calculating the flow stress during the 

simulation. 

cr = 21,936 (£ )0·245 psi = 151.25 (£ )0·245 MPa (3.35) 

Using these parameters in SPID, simulation result was obtained for cylinder upsetting 

experiment by Lee and Altan [1972] (presented in detail in Chapter IV). The result is 

shown in Fig. 3.6. This shows that the norm of the volumetric strain-rate decreases with 

penalty constant and their relation can be expressed as 

(3.36) 

where II v ll2 represents the Euclidean norm of vector v. 
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Figure 3.6 Norm of Volumetric Strain-Rate vs Penalty Constant at Timet= 0 

Penalty Constant 

Consider Euler forward method as the updating scheme and as before let Y and y 

denote the true and numerical solutions, respectively. Assuming Yn = Y n. the error in the 

numerical solution can be written as 

Yn+l- Yn+l = h ( Y'n- y'n) + O(h2) (3.37) 

where h is the step size. 

If [ h ( Y' n - y' n ) ] is of the order higher than 2, then the following approximation can be 

made. 
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Y Y .:::: O(h2) n+l - n+l (3.38) 

Eqn. (3.38) implies that Y n+l - Yn+l is almost entirely due to the local truncation error 

inherent in the updating scheme. According to the penalty method Y' n - y' n' corresponding 

to the difference between the true and numerical solution, can be reduced to any desired 

level with a large K. Similar to Eqn. (3.36), this may be mathematically expressed as 

Y'n- y'n oo i (3.39) 

This can be rewritten as 

(3.40) 

where c is a constant vector. 

Eqn (3.40) can be rewritten as 

I Y' n - y' n I = £. 
K (3.41) 

In vector form Eqn. (3.41) can be rewritten as 

(3.42) 

where Vr and Vr are numerical and true nodal velocities, respectively, for node I, lx>ld face 

implies a vector and II v ll2 represents the Euclidean norm of vector v. 

Once again SPID was used for numerical evaluation of the constant c. Since the 

true solution cannot be found, the velocity solution which converges for the largest value of 



K, K = K2, was taken as the true solution. To neglect other factors velocity solution at 

time t = 0 is considered. The following equation was proposed to estimate the numerical 

value of c 

35 

(3.43) 

where K1 is the penalty constant used in obtaining the velocity solution VI. The flow stress 

used is given by Eqn (3.35). The result with time increment 8t = 0.01, friction factor 

m=O, tolerance on the velocity solution of 10-5, and die-velocities of 25.4 mm/s (1 in./s), 

254 mm/s, and 2.54 cm/s is presented in Table 3.3. This shows that there is no significant 

difference in the velocity solution with increasing K beyond l.OE6 for the simualtion with a 

velocity of 25.4 mm/s. Thus, for this particular step an optimum value of the penalty 

constant is l.OE6. 



TABLE 3.3 

NUMERICAL VALUE OF C FOR DIFFERENT 
VALUES OF PENALTY CONSTANT 

K1 1.0E3 l.OE4 l.OE5 1.0E6 

c {v = 1 in/s} 3.63 3.63 3.61 3.63 
K2 = 109 

c {v = 1 in/s) 3.63 3.63 3.61 3.66 
K2 = 108 

c{v = 1 in/s} 
K2 = 107 . 

3.63 3.63 3.63 3.59 

The tolerance E is expressed as 

36 

l.OE7 

0.0 

0.0 

0.0 

(3.44) 

Since E = w-5, VI has only 5 significant decimal digits and for K ;::: 106 there is no further 

reduction in the error !l. v. Thus by increasing K beyond l.OE6 it is not possible to attain 

any more significant decimal digits in the velocity solution. 

Fig. 3.7 shows the volume loss(%) with reduction in height(%) for different 

values of K. In this case simulation for cylinder upsetting experiment was performed with 

lit= 0.01, m = 0, die-velocity of 25.4 mm/s (1 in./sec), and the flow stress is given by 

Eqn. (3.35). Euler forward method is used as the updating scheme. It is observed that 

after a certain increase in K there is no significant decrease in the volume loss with 

increasing K. This is again due to the limitations posed by the machine precision being 
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used and the tolerance specified on the velocity solution. Thus an optimum value forK can 

be found which can effectively impose the condition of incompressibility. In this case an 

optimum value K of is l.OE7. This is called optimum because for K ~ 10 7, the error in the 

velocity solution is too high and the incompressibility constraint is not imposed properly, 

and forK ~ 107, there is no further improvement in the accuracy of the velocity solution. 

The floating point word lengths used [FIDAP, 1986] and the tolerance specified on the 

velocity solution have a strong relation to the above phenomenon. 
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---11---- K = c/E = 3.44 x 105 / 
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Figure 3.7 Volume Loss with Deformation for Different Values of 
Penalty Constant 
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Condition Number 

A system of n linear equations can be written as A x = b, where A is a real or 

complex square matrix of order n and x and b are vectors of size n. In the current study A 

is the stiffness matrix, which is banded symmetric, b is the load vector, and x 

contains the velocity vector. The condition number x:(A) is a quantity which 

measures the sensitivity of the solution x to errors in the matrix A and the right side b. The 

condition number is defmed as 

(3.45) 

II x - x ll1 ~ (A) II E ll1 
II X Ill 1C II A Ill (3.46) 

where IIAII1 represents the L1 norm of matrix A, xis the numerical solution and E is the 

purturbation error in A. 

If · . A . f . II E 111 h th 1 . . be the relanve error m 1s o s1ze E, E = 11 A 111 , t en e resu tmg error m x can 

as large as EK(A). Since it is expensive to compute the inverse of a matrix, the condition 

number is only estimated. Usually an estimate of the reciprocal condition number, 1/K(A), 

is computed. If the condition number is approximately lQd then the elements of x can 

usually be expected to have d fewer significant figures of accuracy than the elements of A. 

If the estimated condition number is greater than liE (where E is the machine precision) then 

very small changes in A can cause very large changes in the solution x. But if the 

reciprocal condition number is so small that in floating point arithmetic it is negligible 
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compared to 1.0, then x may not have any significant figures. This condition is tested by 

the following logical expression. 

( 1.0 + 1/x:(A) ) .EQ. 1.0 (3.47) 

If the above is true then the matrix can be considered to be singular to working precision. 

An attempt was made to study the effect of K on the condition number of the 

stiffness matrix. The condition number was estimated using the IMSL (International 

Mathematical and Statistical Library) subroutine LFCRG [IMSL, 1989]. Simulation for 

cylinder upsetting experiment was performed with L\t = 0.01, m = 0, die-velocity of 25.4 

mm/s (1 in./sec), and the flow stress is given by Eqn. (3.35). The result at timet= 0 is 

taken and is shown in Fig. 3.8. This was repeated with different tolerances on the velocity 

solution. It was found that for a constant K there is a lower limit on the tolerance that can 

be specified. Below this tolerance the velocity solution fails to converge. This is shown 

for different Kin Fig. 3.9. Similarily with a constant tolerance there is upperbound on K 

beyond which convergence is not acheived (Fig. 3.8).Thus a proper combinatin of 

tolerance and K must be selected to ensure convergence. Fig. 3.8 shows that the condition 

number increases with K. It was observed that with £ = I0-3 the velocity solution at timet 

= 0 fails to converge for penalty constant larger than l.OE 10 i.e. for K > 1010. 
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Figure 3.8 Condition Number of the Stiffness Matrix vs Penalty Constant 

Example 

Simulation of the cylinder upsetting experiment was done using the optimum value 

of K. It is assumed that the 64-bit representation of floating point numbers gives 16 

significant decimal places and the condition number of the stiffness matrix is approximately 

107• Under the conditions assumed, the tolerance specified on the velocity solution should 

be greater than 1 o-7. Euler forward method is used as the updating scheme and thereby the 

error in updating is O(h2) = 10-4. The approximation given by Eqn. (3.38) is satisfied if 

h( Y'- y') :5 10-5, i.e. E :5 10-3. Hence simulation was performed using E = l0-5. The 

parameters used for simulation are ~t = 0.01, m = 0, die-velocity of 25.4 mrn/s (1 in./sec), 
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and the flow stress is given by Eqn. (3.35). The penalty constant was evaluated using the 

following equation. 

K = ~ = 3.44 x 1o-s 
£ 

(3.48) 

The result is shown in Fig. 3. 7 . This shows that the optimum value of K can be obtained 

using Eqn. (3.48) provided the choice of£ is proper. This value of K is quite efficient in 

ensuring the convergence of the velocity solution and in maintaining the volume loss within 

a small percentage of the deforming volume. 
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Figure 3.9 Condition Number vs Tolerance 
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Conclusions 

Thus it can be concluded that the choice of K is influenced by several factors. The 

major factors that influence the choice of K are listed below. 

1. In the general form the difference between the true and numerical solution can be 

written as 

Yn+l- Yn+l = ah ( y'n- Yn) + h't(h) (3.49) 

where h't(h) is the local truncation error of the updating scheme and a is a constant. 

The two terms on the R.H.S. should be compatible. Once the updating scheme and 

the step size has been selected then the order of the first term, ah ( Y~ - Yn ), has to 

be adjusted according to order of the updating method i.e. order of [ht(h)]. 

2. The tolerance specified on the velocity solution determines the number of significant 

decimal places in the velocity solution. Thus a very large K will not yield better 

accuracy in the solution. Moreover with the choice of a very small tolerance 

velocity solution fails to converge. 

3. Choice of a very large K leads to ill-condition of the resulting stiffness matrix. The 

stiffness matrix becomes singular and the velocity solution fails to converge. 

4. For a 64-bit floating point representation there can be approximately 16 significant 

decimal places. The exact figure is machine dependent. It signifies the largest 

number a and the smallest number ~ on which an operation, e.g., addition can be 

carried out without any loss in the number of significant digits. This limits the 

largest K that can be used to get a convergent velocity solution. 



CHAPTERN 

RESULTS AND DISCUSSION 

Introduction 

Validation of results obtained in simulation of axisymmetric uniform deformation 

process was carried out. Both the trapezoidal method and AM-2 method were implemented 

on a finite element based software, SPID [Kobayashi et al., 1989] (Simple Plastic 

Incremental Deformation). SPID uses rigid-viscoplastic material model based on the 

penalty constant approach. In this model the elastic effects are completely neglected. The 

time integration scheme used in this software for updating state variables is based on Euler 

forward method. The original subroutines were modified to incorporate the trapezoidal 

method and AM-2 method. 

The following equations were used as time integration schemes for updating the 

geometry: 

where xr (t) and vr(t) are nodal coordinates and nodal velocities, respectively, for element 

I at timet, and ~tis the time increment. Eqns. (4.1), (4.2), and (4.3) represent geometry 
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updating schemes based on Euler forward method, the trapezoidal method, and AM-2 

method, respectively. The strain is updated in a similar manner from the strain-rate 

solution. 
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In the original program (SPID and ALPID) the geometry was updated for the next 

time step once the convergence of the velocity solution was achieved as shown in Fig. 4.1. 

Since the modified updating schemes are based on implicit methods, it was proposed to 

update both the geometry and the effective strain simultaneously during the solution 

iteration. This approach of updating the state variables during the solution iteration is 

shown in Fig. 4.2. It was observed that the number of iterations required to solve for the 
' 

velocities did not increase significantly. 
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Figure 4.1 Block Diagram for Simulation Using Euler Forward Method 
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Figure 4.2 Block Diagram for Simulation Using the Trapezoidal Method 
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Simulation Results 

Simulation of the cylinder upsetting experiments performed by Lee and Altan 

[1972] was carried out using both SPID and the modified versions to compare and contrast 

the application and the limitations of the different time integration schemes being considered 

in this study. Upset forging of a strain-hardening material, 1100 F aluminum alloy, was 

carried out at room temperature in the experiments. Cylinders with a 38.1 mm (1.5-in.) 

dia. x 57.15 mm (2.25-in.) height (HID= 1.5) were machined from bars that were 

annealed at 454.4° C (850 F) for 1.5 hr and furnace cooled. Cylinder samples were upset 

between hardened flat, parallel steel plates under a 889.6 kN (200,000-lb) Instron machine 

at 304.8 mm/s (0.2-in/min) ram speed. The magnitude of elastic deflection of the testing 

machine under load was 0.762 mm (0.030 in.) per 444.8 kN (100,000 lb). Consequently, 

the displacement measured on the testing machine was corrected in calculating strain 

e = In ~~' i.e. the actual height h 1 of the deformed sample had to be used in calculating E. 

Experiments were performed under three lubrication conditions and simulation under all the 

three has been carried out. The following exponential form of cr-e relationship [Lee and 

Altan, 1972] used in calculating the flow stress for simulation : 

cr = 21,936 ( e )0·245 psi = 151.25 ( e )0 245 MPa (4.4) 

Taking advantage of symmetry only a quarter was taken for simulation purpose. 

This is shown hatched in Fig. 4.3. This was treated as a 2-D axisymmetric problem. The 

initial mesh with 56 nodes and 42 elements is shown in Fig. 4.4. Velocity boundary 

condition of -2.54 mm/s (-0.1 in/sec) was imposed along with friction boundary condition 

on the nodes touching the die. The penalty constant used during simulation was evaluated 

at every iteration of the nonlinear solver using the following expression 



I . 
·- ·- ·1- ·- · · 2.25" (57.15 mm) 

Figure 4.3 Illustration of the Quarter Taken for Simulation 

> 
r 

Figure 4.4 Initial Mesh Used in FE Analysis of Cylinder Upsetting 
[56 Nodes and 42 Elements] 
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K = ~ 1000 
E 

(4.5) 

and the tolerance specified on the velocity solution was E = Io-5• 

Results of the three lubrication conditions are : 

1. Teflon. In their experiments, cylinders were upset to a total of approximately 50 

percent reduction in height under uniform upsetting conditions. For this purpose, Teflon 

0.254 mm (0.010-in.) thick was placed at the upper and lower interfaces after each 

incremental cumulative reduction of about 20, 30, 40 percent. Simulation was performed 

using a friction factor m = 0.0, time-increment At= 0.1, and die-velocity of 2.54 mm/s 

(0.1 in/sec). The load-displacement curves for 0 to 62 steps of modified programs and 

SPID with the same data file are given in Fig. 4.5. Experimental results corresponding to 

teflon lubrication condition are taken for comparison. Simulation results for all the three 

updating schemes agree well with experimental result. But as can be seen from Fig. 4.5, 

load is underpredicted by Euler forward method whereas the load values predicted by the 

trapezoidal and AM-2 methods are closer to the experimental values. For a reduction in 

height of 50 % (28.56 mm) the load predicted by Euler method is 6 % less than the 

experimental value, whereas, the load predicted by the two implicit methods differs by less 

than 3%. In this experiment bulging in upsetting of cylinders was completely eliminated 

and the simulation results match well with experimental result. The bulge profiles differ for 

different updating methods but only at a very high magnification. Hence no conclusion 

could be drawn from this observation and as such the associated figures are not presented. 

Plots of volume change versus stroke for modified programs and SPID with the 

same input data file are shown in Fig. 4.6. Volume change in SPID results seem to be 

excessive whereas the volume change in the results of modified programs is close to zero. 

For a reduction in height of 50% (l-in.), volume change in using Euler forward method is 
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0.7 %, whereas, volume change using the trapezoidal and AM-2 method is only 0.02%. 

This shows that better results are obtained when geometry is updated using the trapezoidal 

method or AM-2 method than while using Euler forward method. 
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Figure 4.5 Load vs Displacement for Friction Factor of m = 0.0 
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Figure 4.6 Volume Loss vs Height Reduction(%) for Friction Factor m = 0.0 
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2. Molybdenum Disulphide. In this experiment MoS2 spray was sprayed on all surfaces 

of the samples and on the top and bottom dies. Simulation was performed using a friction 

factor m = 0.25. The load-displacement curves for 0 to 57 steps of modified programs and 

SPID with the same data file are given in Fig. 4. 7. Experimental results corresponding to 

MoS2 lubrication condition are taken for comparison. For a reduction in height of 50 % the 

load predicted by Euler forward method is 3 % less than the experimental value, whereas, 

the load predicted by the implicit methods differs by less than 0.5%. Plots of volume 

change versus stroke for modified programs and SPID with the same input data file are 

shown in Fig. 4.8. This shows that the volume loss in simulations by Rusia et al [1989] 

using ALPID is close to that given by Eulr forward method using SPID. The volume loss 



given by the trapezoidal and AM-2 methods is close to zero for 50 % reduction in height 

whereas for the same reduction it is 0.6 % for Euler forward method. 
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Figure 4. 7 Load vs Displacement for Friction Factor of m = 0.25 
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Figure 4.8 Volume Loss vs Height Reduction(%) for Friction Factor m = 0.25 

3. Dry. In this experiment upsetting was performed for sticking friction. For this 
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purpose, all surfaces of the samples were cleaned with acetone and dried in air. Simulation 

was performed with friction factor m=l.O. The load-displacement curves for 0 to 51 steps 

of modified programs and SPID with the same data file are given in Fig. 4.9. Experimental 

results corresponding to dry lubrication condition are taken for comparison. For a 

reduction in height of 45 %, the load predicted by Euler method is 5 % less than the 

experimental value, whereas, the load predicted by the implicit methods differs by less than 

3 %. 

Plots of volume change versus stroke for modified programs and SPID with the 

same input data file are shown in Fig. 4.10. The conclusion from these figures is same as 

that for the experiment with teflon-film lubrication. 
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Figure 4.9 Load vs Displacement for Friction Factor of m = 1.0 
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Figure 4.10 Volume Loss vs Height Reduction(%) for Friction Factor m = 1.0 

It is observed that for all the conditions tested, both the trapezoidal and AM-2 

methods yield better results compared to Euler forward method. The difference is 

significant for volume loss and there is an improvement in the loads predicted. It is also 
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seen that there is no significant difference in the results between the trapezoidal and AM-2 

methods. This shows that using a higher order method need not necessarily give better 

results and the reason behind this has been explained in Chapter III. 

The trapezoidal method was implemented on ALPID 2.0 (Analysis of Large 

Plastic Incremental Deformation), an FE based software package for 2D simulation model. 

The approach used in implementing is similar to that mentioned earlier. The efficacy of the 

trapezoidal method as time integration scheme for other state variables was also put to test. 

Simulation of tapered compression experiments by Lalli [1988] was carried out in which 
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microhardness was updated using the trapezoidal method. Volume change with reduction 

in height is shown in Fig. 4.11 and load vs stroke is shown in Fig. 4.12. 
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Figure 4.11 Volume Loss with Stroke (mm) Using ALPID 2.0 
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Figure 4.12 Load vs Stroke Plot Using ALPID 2.0 

For comparison, simulation results [Shiau et al., 1991] using Lalli's [1988] 

constitutive with microhardness as an internal state variable was taken. As such simulation 

results were obtained using the same input data file as that used by Shiau et al [1991]. It is 

observed that the volume change using the trapezoidal rule is certainly less than that given 

by Euler forward method. There is no significant difference observed in the predicted load 

values. Plots of microhardness is presented in Fig. 4.13. The microhardness distribution 

predicted using the trapezoidal method is in close agreement with those predicted by Shiau 

et al. [1991] and a~es well with the experimental result. 
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Figure 4.13 Measured Microhardness Contours, ALPID Predictions with Single 
Internal-State-Variable Model (Upper Right Quadrant) and ALPID 
Predictions Using the Trapezoidal Method for Updating 
Microhardness (Lower Right Quadrant) for Height Reduction of 
14.48 mm at 255° C 



CHAPTERV 

CONCLUSIONS AND RECOMMENDATIONS 

Two higher order methods were selected and successfully incorporated into well 

known finite element based programs, as time integration schemes for updating the state 

variables. The different criteria used in selection were discussed in detail. The methods 

selected, the trapezoidal and Adams-Moulton 2-step (AM-2) method, are implicit 

methods. Hence updating of the state variables (geometry, strain, etc.) was carried out 

during the velocity solution process. Simulation of experiments showed that the higher 

order methods yield better results as far as volume loss and predicted loads are 

concerned. 

Influence of various parameters on the choice of penalty constant were studied It 

was observed that the choice of K is influenced by the order of the method, step size, 

tolerance specified on the velocity solution, and machine precision used. A simple 

method has been presented to find the optimum value of penalty constant K, which is 

necessary to effectively impose the incompressibility condition as well as ensure 

convergence of the velocity solution. 

Simulation results show that the trapezoidal method yields better results when 

compared to Euler forward method with respect to volume loss and predicted loads. The 

microhardness distribution obtained using the trapezoidal method compares well with the 

experimental data. The optimum value of K minimizes the volume loss and ensures the 

convergence of the velocity solution. 
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Further study needs to be done to quantify more precisely effects of various 

parameters on the choice of K. Application to other areas like fluid dynamics can be 

envisaged. 
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APPENDIX A 

ROUTINES FOR VOLUME CALCULATION FOR AXISYM1viETRIC 

UNIFORM DEFORMATION PROCESS USING 

EULER FORWARD ME1HOD AND 

TRAPEZOIDAL ME1HOD 
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C TRAPEZ RULE VS EULER FORWARD METHOD ( UPDATING 
C VOL BY UPDATING THE GEOMETRY AND ERROR FORMULA 
C TIME-INCREMENT IS CONSTANT 

IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H, 0-Z) 
DATA HDOT/-1.0/, DT/.01/, ERROR/1.E-8/ 
DATA PI/3.1415926535898D0/ 
DATA ROE/1.0/, ROI/1.0/, H0/1.0/ 

MSSG 6 
OPEN(MSSG,FILE='anl.01',STATUS='UNKNOWN',FORM='FORMATTED') 

C** VOL IS THE INITIAL VOLUME 

VOL = PI * ROE*ROE*HO 
DH = DT* HDOT 
DH2 = DH*DH 
DH3 = DH**3.0 
VLNE 0.0 
VLNI = 0.0 

DO 100 I = 1,100 
H1 = HO + DH 
ROEDOT = -0.5 * ROE * HDOT / HO 
R1E = ROE + DT * ROEDOT 
DVOLE = PI * R1E*R1E*H1 
PDVOLE = -(DVOLE-VOL)/VOL*100.0 

VLNE = VLNE + (-0.75 * DH2)/(HO*HO) *PI* ROE *ROE* HO 
PVLNE = -VLNE/VOL *100.0 

ROIDOT = -0.5 * ROI * HDOT /HO 
RIT = ROI 

DO 50 J =1,100 
R1DOT = -0.5 * RIT * HDOT / H1 
R1I = ROI + 0.5 * DT * ( R1DOT + ROIDOT ) 
CHK = ABS((RIT-R1I)/R1I) 
IF(CHK .LT. ERROR) GO TO 80 
RIT = Rli 

50 CONTINUE 
80 CONTINUE 

R1I = RIT 
DVOLI = PI * R1I*R1I*H1 
PDVOLI = -(DVOLI-VOL) /VOL *100.0 
VLNI = VLNI + (-5./16.) *( DH3/(HO*HO*HO))*PI*ROI*ROI*HO 
PVLNI = -VLNI/VOL *100.0 
PHT = (1.0 - H1 ) *100.0 
WRITE(MSSG,1000) PHT, PDVOLE ,PDVOLI,PVLNE,PVLNI 

1000 FORMAT(f6.2,4(',',2x,f15.7)) 
IF(H1 .LT. 0.2) GO TO 110 
HO = H1 
ROE = R1E 
ROI = Rli 

100 CONTINUE 
110 CONTINUE 

STOP 
END 
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APPENDIX B 

ROUTINES FOR VOLUME CALCULATION FOR AXISYMMETRIC 

UNIFORM DEFORMATION PROCESS 

USING AM-2 METHOD 
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C TIME-INCREMENT IS A CONSTANT 

IMPLICIT INTEGER*4 (I-N), REAL*8 (A-H, 0-Z) 
DATA HDOTI-1.01, DTI.051, ERRORI1.E-81 

C DATA PII3.1415926535898DOI 
DATA ROI1.0I, HOI1.01 

MSSG 18 
ibug = 10 
OPEN(MSSG, FILE='adam.05',STATUS='UNKNOWN',FORM='FORMATTED') 
OPEN(ibug, FILE='buggy',STATUS='UNKNOWN',FORM='FORMATTED') 

PI = 4.0*datan(1.d0) 
C write(*,*) pi 

VOL = PI * RO*RO*HO 
DH = DT* HDOT 
DH3 = DH**3.0 
DH4 = DH**4.0 
VLNI = 0.0 

H1 = HO + DH 
RODOT = -0.5 * RO * HDOT IHO 
RIT = RO 

DO 50 J =1,1000 
R1DOT = -0.5 * RIT * HDOT I H1 
R1 = RO + 0.5 * DT * ( R1DOT + RODOT ) 
CHK = ABS((RIT-R1)IR1) 
IF(CHK .LT. ERROR) GO TO 80 
RIT = R1 

50 CONTINUE 

80 CONTINUE 
VLNI = VLNI + (-5.116.) *( DH3I(HO*HO*HO))*PI*RO*RO*HO 

C write(*,*) r1 

R1DOT = -0.5 * R1 * HDOT I H1 

DO 150 i 1, 100 
H2 H1 + DH 
RT = R1 

do 65 j = 1, 100 
r2dot = -0.5 * rt * hdot I h2 

C write(ibug,*) r2 
r2 = r1 + (DTI12.) * (5.0 * r2dot + 8.0 * r1dot - rodot) 
chk = abs((rt-r2)lr2) 
IF(CHK.LT.ERROR) GOTO 86 
rt = r2 

65 continue 

86 CONTINUE 
C write(*,*) 'j=',j 

write(ibug,*) h2,r2 
r2dot = -0.5 * r2 * hdot I h2 
DVOLI = PI * R2*R2*H2 
PDVOLI = ((vo1-DVOLI) I VOL) * 100.0 
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VLNI = VLNI + (35./64.)* (DH4/(Ho**4.0))*(pi*ro*ro*ho) 
PVLNI = -(VLNI/vol) * 100.0 

PHT = (1.0 - H2 ) * 100.0 
WRITE(MSSG,1200) PHT,PDVOLI,PVLNI 

IF(H2 .LT. 0.2) GO TO 211 

rodot= r1dot 
r1dot = r2dot 
ro r1 
r1 r2 
ho h1 
h1 h2 

150 continue 
211 continue 
1200 FORMAT(f6.2,4(', ',2x,f15.9)) 

STOP 
END 
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