
AN INTEGRATED PERSISTENT OBJECT MANAGER
::::

(!~9~) : A MODEL TO SUPPORT PERSISTENCE -<V--
AND DATA SHARING IN OBJECT-ORIENTED

DATABASE SYSTEMS

By

TEH-CHEN SHEN
II

Bachelor of Science

National Taiwan Institute of Technology

Taiwan, R.O.C.

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1992

Oklahoma State llnbt, lihrary

AN INTEGRATED PERSISTENT OBJECT MANAGER

(IPOM) : A MODEL TO SUPPORT PERSISTENCE

AND DATA SHARING IN OBJECT-ORIENTED

DATABASE SYSTEMS

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my utmost appreciation to my advisor

Dr. K. M. George. I appreciate not only the many hours of

time he spent on my thesis but also the continuous

encouragement and insight he gave me through my graduate

study in OSU. I extent sincere thanks to Dr. D. D. Fisher,

my thesis committee member and mentor, for his warm and

constant guidance in addition to valuable suggestions and

comments on this thesis. I would also like to express my

deep gratitude to Dr. Huizhu Lu for her assistance and for

being my thesis committee.

My special thanks go to my mother, Tao-Mei Shen-Wu for

her understanding and support. My deep appreciation is

extended to my wife, Hsiu-Feng Chang and to my son, Ian for

their love and patience.

iii

Teh-Chen Shen

osu

December, 1992

TABLE OF CONTENTS

Chapter page

I . INTRODUCTION•.............................. 1

Motivation for Studying OODB Systems 3
Problem Statement 6
Outline of the Study•................. 9

II. PERSISTENCE AND DATA SHARING 10

Definition of Persistence 10
Spectrum of Persistence•................ 13
Persistence in OOPLs 14
Persistence in DBS's and OODBPL's 17
Data Sharing in OODB Systems 20
Persistence Object Storage Systems 21

III. LITERATURE REVIEW································· .23

Introduction 23
Related Work 23

The EXODUS/E Storage System 23
The ObjectStore DBMS 24
The 0 2 DBMS ... 2 5
The Gemstone DBMS 25
The Arjuna OOPS 26
The OR! ON DBMS 2 6
The ONTOS DBMS 2 7
The ENCORE/Observer DBMS 27

IV. THE INTEGRATED PERSISTENT OBJECT MANAGER (IPOM) ····28

Introduction 2 8
The Generic Object Model 30
The System Architecture 32
Persistence and Data Sharing in IPOM 32
Persistent Object Interface Module (POIM) 35
Storage and Grouping Manager Module (SGMM) 38

Object Representations 38
Grouping Manager (GM) 40

Transaction and Lock Manager Module (TLMM) 44
Operation Scheduling Abstraction 46
Complex Object and Index Locking 49

Recovery and Log Manager Module (RLMM) 52
Buffer Manager Module (BMM) 56

iv

Chapter page

Cache Strategy Transactions 57
The Buffer Replacement Scheme 61

V. DISCUSSION AND COMPARISONS WITH OTHER MODELS 65

The Features of the IPOM Model 65
Archi teet ure 67
Storage and Grouping Module 70
The Buffer Manager Module 71

VI. CONCLUSIONS AND FUTURE WORK························76

BIBLIOGRAPHY·· 78

APPENDIX 83

v

LIST OF TABLES

Table page

I. The Primitives of the POIM 37

II. Comparison of IPOM and Other Models 69

vi

LIST OF FIGURES

Figure page

1. Functionalities and Requirements for Future Database
Applications 3

2 . The Memo Object 4

3. Languages in Persistence Space 15

4. Mapping in Extending RDBMs, OOPLs, and OOBPLs
Environments 18

5. The IPOM Architecture 33

6. The Object Representations 39

7. A Large Tuple Object 43

8. The Storage Structure of an Object 45

9. The TLM and RLM Modules 47

10. A Hierarchy of Granules SO

11. The Recovery Schemes 53

12. The Copy-based and Uncopy-based Interfaces 58

13. The Cache Strategy 60

14. The Buffering Algorithm with Simple Hint 63

15. The Buffering Algorithm with Simple Hint (Cont') 64

16. The Single-buffer Scheme without Copy-based
Translation 72

17. The Dual-buffer Scheme with Copy-based Translation ... 73

vii

CHAPTER I

INTRODUCTION

The next-generation (advanced) database applications

are expected to handle objects with complex data types and

complex relationships among them. Some of those

applications such as design databases for computer-aided

design (CAD) and computer-aided manufacturing (CAM) also

have the characteristics of long-duration and-aata sharing

among multiple users. According to some research,

traditional database systems are not adequate to support the

requirements of these applications due to their limited

modeling power, supporting only simple data types, and

short-transaction oriented characteristics [BER91, DEU91,

BEM89, BL087, MAI89]. Therefore, different research efforts

have been exploring alternative approaches to existing

methods in order to meet the needs of those new

applications. One of those approaches is to extend object

oriented programming languages (OOPLs) in the direction of

database languages.

An OOPL provides many new features not present in the

database languages (including general computation languages,

e.g. C and PL/1 etc., and interactive query languages, e.g.

SQL, QUEL, and QBE etc.) in traditional database systems.

1

These features include powerful modeling capability,

inheritance, encapsulation, reusability, rich data types

[STR86], etc. However, the objective of the OOPLs is to

support general purpose programming, that is, a

"computational model". Several properties necessary for

supporting database applications are not parts of OOPLs.

2

Figure 1 shows a classification of most of the database

functionalities for the next-generation database

applications. Among these functionalities, persistence and

data shari~g are two fundamental concepts to databases. The

need for the inclusion of these two concepts to the OOPL

paradigm to support an OOPL to be used as a basis for

database implementation and programming has been recognized

for quite some time [ATK83, COC83, BL087, FOR88]. With the

above mentioned as a goal, numerous persistent object

storage models have been proposed to directly support

persistent objects in object-oriented programming languages

[CAR89, LAM91, FOR88, HOR87, KIM89, DEU91, DIX89].

However, efficient and flexible mechanisms are still

being investigated. So, it is important to investigate a

persistent object storage model that provides support for

persistence and data sharing and also provides support for

access to large and persistent complex objects efficiently

for the underlying target languages.

Advance
OODBS

OODBS
(bas~s)

OOPLS

Other
funct~onal~ties

for advanced
database
appl~cations

Database mechanisms for data access
opt~m~zat~on c~ndex~ng/cluster~ng)

Data shar~ng
Permanence (Pers~stent store)
Concurrency control and recovery
Author~zat~on capab~l~ty

Query languages

Polymorph~sm and dynam~c b~nd~ng
Inher~tance and type h~erarch~es
Types(or classes)and encapsulat~on
R~ch data types
Model~ng capab~l~t~es
Compos~te obJects
ObJect ~dentif~cat~on
Mechan~sms for relat~on representat~on
(Aggregat~on and generalizat~on)
Reusab~l~ty mechan~sms (In~t~at~on &
~nher~tance)

Support for mult~language env~ronments
Support for schema evolut~on
Support for vers~on~ng mechan~sms
Support for long-durat~on transact~ons
Support for cooperat~ve work
(Heterogeneous, d~str~buted databases)
Conf~gurat~on management

RDBMS--Funct~onalit~es supported by relat~onal database systems
OOPLS--Funct~onal~t~es supported by obJect-or~nted programm~ng systems
OODBS--Funct~onal~t~es supported by obJect-or~ented database systems.

Figure 1. Functionalities and Requirements for
Advanced Database Applications

Motivation for Studying OODB Systems

The emergence of object-oriented database systems

3

(OODBSs) as a promising alternative to conventional database

systems capable of supporting the next-generation database

applications can be attributed to its powerful modeling

capability and rich data type definition mechanisms. With

OOPLs, most real-world complex objects with complex

relationships between their sub-objects can be modeled

naturally in OODBSs. A complex object representing an

object with one or more complex states (e.g. set-valued

attributes) which may be complex objects themselves are

often encountered in the real-world. For example, a simple

complex object (memo object) representing a real-world memo

entity is given in Figure 2. This object consists of some

complex attr~butes

Figure 2. The Memo Object

4

complex states (states depending on other object(s)) such as

the set of persons to send this memo to and objects with

user-defined data types such as text, bitmap, images.

Without sufficient modeling power, the relational model has

to resort to the join-after-decomposition (decompose and

then join) scheme. Such an approach to modeling real-world

complex objects is likely to lead to unnatural

interpretations of objects and unnecessary overhead due to

expensive join operations [ELM89] .

5

The OODBS proposes to fulfill the needs of advanced

database applications by combining its powerful modeling

capability with the advantages of traditional database

systems such as persistence and fine-grained data sharing,

etc. [JOS91, MCL89, BL087, SIL91]. However, many

researchers [BEM89, MCL89] have observed that the next

generation database systems largely differ from the

traditional database systems in the following: first, the

domains of their applications; second, the types of real

world objects to be modeled (thus, the need of new data

types such as text, bitmaps etc.); third, the existence of

complex relationships between these objects (thus, "the need

to capture complex semantics of interpreting and updating

the data" [MAI89]). These differences make it imperative

for object-oriented database system designers to rethink the

following critical issues. One is the "external modeling

functionalities" for a database system such as the

declarative and modeling powers of the underlying database

programming languages [JOE87]. Another is the "internal

functionalities" of a database system that are pertinent to

persistence and data sharing [COP84, BL087, CAR89]. These

functionalities are related to storage structures, indexing

and grouping, buffer management, and concurrency control and

recovery mechanisms of a database system. Therefore it is

necessary to have more research in these fields.

Problem Statement

As mentioned earlier, in order to combine the

advantages of object-oriented programming languages and

traditional databases to meet the next-generation database

applications, at least two critical extensions to OOPLs are

necessary [COP84]. One is the "external functionalities"

extension such as powerful type constructs, persistent

mechanisms, and declarative query or browsing

functionalities in the OOPL itself and its interface. The

other is the extension that incorporates the most important

database functionalities, persistence and data shar1ng into

an OOPL's underlying environment.

To achieve the above goals, the main concerns are as

follows:

1) to provide sets or other high-level language

constructs for easily modeling complex objects and

set-oriented operators or iterators for efficiently

accessing these objects;

6

2) to provide some declarative constructs in the target

OOPLs;

3) to provide persistent mechanisms to bind persistent

variables in the programming environment to

persistent objects in databases at compile time or

run time (Shen and George [SHE92] have described a

classification of persistent mechanism into four

types, that is, reachability-based, type-based,

universal, and inheritance-based persistent

mechanisms);

4) to provide an integrated persistent object storage

system that provides necessary functionalities to

support persistence and maintain the consistency of

the databases under the multi-user environment.

7

The first three are involved in extending existing

language syntaxes. They are called the "external extension"

of an OOPL. The last one is involved in providing

functional interfaces to the compiler or run time systems.

Supporting persistence and data sharing is called the

"internal extension" of an OOPL (more precisely, OOPL's

underlying environment) .

The persistent object storage system of an OODBS serves

as the basis for supporting the external extension of its

underlying target OOPL. It is used to implement interfaces

to create and store objects in persistent storage, move

objects between, the main memory and persistent storage, and

to enforce concurrency control and recovery. Maintenance of

indexing and grouping is also included in some designs

[DEU91, BUT91]. Therefore it is the persistent object

storage system that makes an OODBPL suitable as the database

programming and/or interactive query language of an OODBS.

The framework of an OODBS includes the persistent

storage model as an important component. Thus, research

related to persistent storage model has been reported in the

literature [CH085, HOR87, PUR87, FOR88, DEU90]. However,

efficient and flexible persistent object storage models that

8

provide support for persistence and data sharing are still

being investigated. In this thesis, a model of a persistent

storage system, namely an integrated persistent object

manager (IPOM), is proposed. The objective is to

investigate a persistent object storage model that provides

support for persistence and data sharing as part of the

environment of an OOPL. Also support for efficient access

to large and persistent complex objects for the underlying

target languages is another concern.

The IPOM storage model proposed in this thesis consists

of five modules:

1) the persistent object interface module (POIM);

2) the storage and grouping manager module (SGMM);

3) the transaction and lock manager module (TLMM);

4) the recovery and log manager module (RLMM); and

5) the buffer manager module (BMM) .

The design features of the IPOM include the follows:

1) direct support index for complex attributes;

2) storage structures supporting "total-retrieval" and

"partial retrieval" of complex objects or

attributes;

3) uncopy-based buffer interfaces with the "cache

strateg transaction mechanism"; and

4) local least-recently-used (LRU) buffer allocation

and replacement scheme with a simple hint.

Outline of the Study

This thesis is organized as follows. In this Chapter

the motivation and the statement of problem are addressed.

In Chapter 2, the spectrum of persistence is discussed.

Having identified the definition and spectrum of the

persistence attribute, in Chapter 3, some related work is

reviewed. In Chapter 4, a proposed model of a persistent

object storage system is presented and the underlying

architecture is introduced. The proposed approach is

compared against existing models and architectures in

Chapter 5. Finally, conclusions of the thesis and

suggestions for future study are given in Chapter 6.

9

CHAPTER II

PERSISTENCE AND DATA SHARING

Definition of Persistence

"Persistence" is one of the essential concepts in

traditional databases. However, the term "persistence" is

rarely referred to explicitly in the traditional database

and programming language literature. It was first referred

to in the persistent programming paradigm a few years ago

[ATK83, COC83]. As such there has been confusion concerning

the terminology and definition of this concept.

From the programming language perspective, persistence

is a property of an object that determines how long it

should be kept. From this point of view, persistence has

been defined as the ability of an object to exist as long as

needed and the lifetime of the object beyond the lifetime of

the process that created or manipulated it [ATK83] . This

introduced the persistent object concept into the

programming environment. The major objective of a

persistent programming language is to manage the movement of

a persistent object between the persistent storage and

programming environments. The movement of an object between

these environments occurs automatically through persistent

mechanisms without the efforts of programmers.

10

11

The persistent mechanism is used in binding a pers1stent
'

variable or identifier in the programming environment to its

corresponding persistent object in the persistent storage

environment. Thus, the persistent programming languages and

OODB systems have at least one common goal. This common

goal is to eliminate the gap between persistent and non-

persistent (transient) objects. That is, from the user's

point of view there should be no difference between in-

memory objects and on-disk objects.

Furthermore, Kazerooni-zand and Fisher [KAZ88, KAZ89]

described a classification of the persistency of an object

into two types from non-persistent programming's point of

view. The first one is the existence persistency (Eper).

The other is the version persistency (Vper) . Eper allows

the lifetime of the object beyond the life cycle of the

program that created it. In this type of persistency, only

one version of the object is saved. Any change to an object

results in a replacement of the old object by a new one. On

the other hand, Vper allows different versions of one object

to co-exist, and each version is marked using a timestamp or

version number. The lifetime of a version may exceed the

lifetime of it's ancestor. However, in current OODBS's

versioning is considered to be an orthogonal issue to the

persistence from databases' point of view since its absence

from traditional database system (that is, the traditional

database systems do not support versioning) .

The notion of "existence persistence" as viewed by the

12

programming language is implicit in the database

environment. For example, in a traditional database system,

a tuple object of a relation can always be identified

through it's key identifier (if the key value is not allowed

to be modified) at each run of different application

programs or the same program. The existence of this kind of

object is independent of the lifetime of the processes that

create and manipulate it. Note that in the database

environment, the movement of a persistent object between the

main memory and persistent storage is automatically

accomplished by and under control of the DBS. Furthermore,

the database system guarantees that persistent objects can

survive from either software or hardware failure. The term

"persistence" traditionally also has been associated with

both the notion of "recoverability" and the notion of

"resilience" (permanence) in the database environment

[BER87, SIL91]. That is persistence means the ability of a

"database object" to be consistent under software failure

(recoverability) and the ability to endure hardware failures

(resilience) . In this thesis, the notion of persistence in

an OODBS is the combination of the notion of the existence

persistency (Eper) as viewed by the persistent programming

languages and the concepts of recoverability and resilience

from the database systems.

13

Spectrum of Persistence

Following [KH086], while treating persistence from the

programming perspective, there are at least two dimensions

involved in the spectrum of persistence, that is, the

"representation dimension" [KH086] and the "lifetime

dimension" of an object. The lifetime of an object denotes

the time interval between the time'it was created and the

time it becomes inaccessible (either by explicit destruction

or by accident) . Figure 3 illustrates this persistence

space. Some general purpose software systems and OODBPLs in

the spectrum are given. The representation dimension can be

classified as the data value identity, the user-defined name

identity, the built-in identity, the physical surrogate

identity, and the logical surrogate identity.

The lifetime dimension can be classified as the

existence identity of an object within an expression

evaluation, within a procedure or sub-transaction

activation, within a program or a transaction, between

various versions of transactions (an example of this is

UNIX™ shell variables which survive between various versions

of processes), or beyond the lifetime of the program that

created it (e.g., database objects). Based on these two

dimensions, persistence is a property of an object which is

associated with a persistent variable or identifier. Unlike

transient variables in general purpose programming

environments, persistent variables are maintained by the

systems that support persistence. With its persistent

14

variable, the object can be referenced throughout the system

and may exist beyond the scope of the process that created

or manipulated it.

Persistence in OOPLs

According to the discussion of persistence above, there

should exist a binding between a persistent variable (or a

persistent identifier of an object) in the computational

environment and it's corresponding persistent object on the

storage environment either at compile time (static binding)

or at run time (dynamic binding). However, most of the

traditional object-oriented programming languages such as

C++ [STR86], Smalltalk-80 [GOL83], and CLOS (the common Lisp

object system [KEE89]) are RAM-based. Even though they

provide powerful data modeling and computational

capabilities, they do not attempt to support persistence and

data sharing, as illustrated in Figure 3. They only provide

computational environments for general purpose programming

on top of the file system of the underlying operating

system. Therefore, there is no notion of persistent

variables of persistent objects in such environments. The

temporary identifiers of objects (i.e. user-supplied names,

such as local variable names or global variable names) are

temporarily mapped to objects in question in the storage

environment through interface software of the traditional

file systems. These identifiers no longer exist when the

process that created and manipulated them terminates.

Data that
outlJ.ves
the program

I.IFETIME

IMS
DB2

SQL

All talk
OPAL
PC LOS

UnJ.X RM/T

15

IRIS
Ontos 02

Ob]ectstore EXODUS
ORION Postgres
Ar]una

Data that
exJ.sts between
varJ.ous
versJ.ons of a QBE shell GEM PERSISTENT DATA
:e:;-~gF~ - - - - -

Data that
exJ.sts wJ.thJ.n
a program or
a transactJ.on

Local varJ.ables
J.n procedure
actJ.vatJ.ons

Pascal
Pro log
CIC++

LISP

Smalltalk-80
CLOS

ImperatJ.ve
programmJ.ng
languages

OBJ3

TRANSIENT DATA

TransJ.ent
results J.n
expressJ.on
evaluatJ.on

REPRESENTATION

Data User-defJ.ned BuJ.lt-
value name J.n

LogJ.cal
surrogate surrogate

Figure 3. Languages in Persistence Space (Adopted
and modified from [KH086])

In addition to the problem of lacking the notion of

persistent variables, there occurs the problem of

mismatching the representations of objects between the

OOPL's computational environment and its storage

environment. This is called "structural mismatch" in

[COP84] . In a traditional database environment, there is a

uniform data structure (e.g. the relation, a set of tuples

with the same data type) in both its "computational

environment" and "storage environment". In a general

16

purpose programming system, there is a rich set of data

structures to represent objects in its computational

environment to facilitate computation through efficient

algorithms. On the other hand, there is only one type of

object, the file object, in the storage environment. Since

the file object consists of typeless byte-strings, there

exists only the mapping between temporary variables and byte

offsets in file objects. The lack of persistent variable

notation and inconsistency in object representations between

their computational and storage environments incur two

problems in OOPLs. One is that its compiler can not bind

temporary variables directly to persistent objects in a

storage environment. The other is that the movement of a

persistent object can not be performed automatically by the

underlying file system. Therefore, traditional OOPLs like

their imperative counterparts have to resort to the

programmer's coding effort to preserve the states of objects

created or manipulated on volatile memory. To reuse these

objects, application programmers must convert their "in

file" representations back to their "in-memory"

representations again. According to Atkinson [ATK83],

typically 30% of the program space and programming effort is

required to map or translate the representations of objects

in both environments. Also reported in [JOE87], about 70%

of the code for a typical access method in INGRES [ST076]

database system is needed to map the representations between

computational and storage environments.

17

Persistence in DBS's and OODBPL's

Persistence in the database system seems to be a

necessary concept to achieve some important objectives in a

database system such as data independence, data abstraction,

and support of multiple user views [DAT86, ELM89] . To

achieve these objectives, the database management system

(DBMS) of a database system (in particular, the storage

system of a DBMS must take care of all accesses and stores

to the database objects. That is, the persistent storage

system of a DBS needs to function like a persistent

mechanism in the persistent programming paradigm. Thus,

this capability to abstract away or hide storage details

from users of the database not only eases the coding effort

but also increases productivity of application programmers

[JOE87, JOE89]. This is also one of the major

functionalities that makes a database system powerful and

different from traditional f~le systems [DAT84, ELM89,

MAI89]. The reason to support persistence in OODB's is to

achieve the same goal and thus allow an OOPL to be a basis

for database programming and implementation. Programming

with persistence support is then called an object-oriented

database programming language (OODBPLs) [JOS91].

Extended
RDBMs

- ·- ..
, ~~triev~.

' From
Where

OOPLs

... --._
, , Mapping () { •

18

OODBPLs

0
~---- ..

{ -.. -..
join():.
}

allocate-memo(); •
retrieve-object()~
extract-field(); •

• . build-memo () : l , '

',Address··
1-:ansl ati op'

The representati
of object memo
in nonvolatile
storage

• 1 •

.. -. - ... -
... - - -

Byte-

i1Yifi

Figure 4. Mapping in the Extended RDBM's, OOPL's,
and OODBPL's Environments

To illustrate the differences between traditional OOPLs

and object-oriented database programming languages (OODBPLs)

which support persistent objects, Figure 4 shows an

illustration of building a memo object in traditional OOPLs

and OODBPLs environments. The data members (states) of each

sub-object of the memo object have types. To store this

typed data, the programmer's code must explicitly map these

typed data to a stream of untyped byte-strings on a typeless

storage (typically, a file) by coding effort. This involves

19

coding that issues calls to conventional file system

interfaces and manually handling offset, length, and type

indicator information (e.g. length indicators or delimiters

[FOL87]). To bring a memo object into the computational

environment (volatile memory) from typeless storage, the

programmer's code must also create a memo object, explicitly

pick fields out of byte-strings from the storage and copy

them into data members of the memo object. This requires

the programmer's knowledge of the details of the storage

organizatfon which the memo object reside in [DAT86] .

On the other hand, in an object-oriented database

programming language environment which supports persistent

data, the compiler or run-time system is responsible for the

binding between persistent variables and persistent objects.

Only address translation (or "swizzling" [JOE89]) is needed

to access any type of persistent objects in a persistent

storage and this is performed automatically through the

persistence support of the underlying persistent object

storage system [ATW91]. Note that traditional DBMSs provide

support for only one type of persistent object, the relation

object. This type of object consists of a set of tuples

with limited base data types in their fields. In order to

support complex objects such as the memo object, an

extension effort should be made to the traditional DBMSs.

This is another alternative to cope with the requirements

imposed by next-generation database applications by

extending the relational data model to support complex

20

objects [CAR90] and is given here for comparison purpose.

Data Sharing in OODB Systems

One of the primary purposes of a database system is to

allow multiple users to use the correct database. So, data

sharing is supported in traditional database systems [JOS91,

SIL91]. In a database framework, "data sharing" means

allowing simultaneous use of database objects by multiple

users and ensuring the consistency of the objects stored in

the database [DAT86, ELM89] . The users of a database object

could be thought of as concurrently executing transactions.

This involves concurrency control and recovery activities

[BER87] .

On the other hand, traditional OOPLs generally do not

deal with the multi-user environment issue. The meaning of

data sharing in both paradigms is inconsistent. In the

object-oriented paradigm "data sharing" means the support

and maintenance of the references to shared objects. The

users of database objects are themselves objects in the

sense that an object may be shared by many other objects.

As such, objects must have some ways to refer to each other

through unambiguous references. Therefore a strong notion

of object identity is imposed in object-oriented paradigms

[KH086] .

However, this notion of object identity is quite

different from that of database paradigms. In the

relational data model, for example, a tuple is identified by

21

its contents within a relation and does not have explicit

identifiers. This identification content of a tuple is

unchangeable and must be used with the relation name;

otherwise, it's identity in the database is lost [MAI89].

Besides, the notion of data sharing through object identity

also facilitates relationship representation in object

oriented paradigms by storing the object identifier of the

related object. In this way, complex relationships among

objects can be represented easily and updates to attributes

of an object do not affect its object identifier.

Therefore, "referential integrity" [DAT86] is ensured. In

this thesis, data sharing concept in OODB's is considered to

be the same meaning as that of traditional database systems.

Perslstent Object Storage Systems

The above study of persistence and data sharing from

both programming and database perspectives reveals the

following information. First, traditional programming

languages as well as OOPLs provide computational

environments for general purpose programming. They deal

with persistent objects (files) through explicit coding

effort and interfaces of traditional file systems. This

imposes a heavy coding burden on the application programmers

that use such languages without appropriate support for

persistence. Second, the traditional database systems

support persistence in a somewhat limited sense. There is

only one type of persistent object (the relation object

22

consisting of a set of tuples of the same type with limited

base data types such as integer, string, etc. in their

fields) supported. This makes it impossible to meet the

requirements of advanced database applications involving

complex objects without further extension. Third, the lack

of data sharing capability among many different programs in

OOPLs makes it unsuitable for a database environment without

data sharing extension.

Accordingly, the combinations of the advantages of

powerful modeling capabilities in OOPLs and the persistence

and data sharing functionalities in traditional database

systems will benefit the advanced database applications.

It is also clear that instead of a traditional file system,

a persistent object storage system for an OODBS is needed to

provide support for persistence and data sharing as well as

support for access to large and persistent complex objects

efficiently.

CHAPTER III

LITERATURE REVIEW

Introduction

In the previous Chapter we have indicated that the

general approach to building an object-oriented database

system has been to take the concepts of OOPLs and enrich

them with persistent features (external extensions) . Then,

the persistent storage system performs the management of

persistent objects such as providing interface facilities

for retrieval and storage of persistent objects, enforcing

concurrency control and maintaining the consistency of the

system (internal extensions) . Considerable research related

to persistent object storage design has been reported and

numerous storage models of OODBSs have been proposed. In

the next section these related systems will be reviewed.

Related Work

Xhe EXODUS/E Storage System

The object storage manager of EXODUS [JOE87, CAR89] is

a persistent object storage system proposed to support

persistence and data sharing in the E programming

environment. One of the objectives has been to ease the

23

24

design of application-specific database systems for database

implementors [HAN91]. EXODUS supports large objects which

span pages by using positional B-trees, in which indexed

keys are positions in the large objects. It supports

neither complex objects nor complex attribute indexing

directly. EXODUS adopted a single buffer management scheme

along with least-recently used (LRU) replacement algorithm.

This single buffer scheme (also known as the locate mode

[FOL87]) makes it possible to avoid the cost of copying

large objects in the system buffer to the application

address space. This scheme improves system performance

substantially.

~ ObjectStore llEMli

The ObjectStore database system [LAM91] like the E

programming language is a C++-based object-oriented database

system along with C++ extension libraries to support ad hoc

queries. ObjectStore differs from all other OODBSs in that

it's persistent object storage system uses a memory-mapped

scheme (e.g., the single-level memory scheme originally

adopted by the Multics operating system in early 1970) to

map portions of the database used by an application into

virtual memory and "fault-in" the necessary pages when there

is a page fault.

25

The persistent storage system in 02 [DEU90, DEU91] is a

modified WISS {Wisconsin storage system [CH085]). WISS

supports storage structures such as long data items,

sequential files, and B-tree indices which are used by 02 to

implement complex objects such as tuples, sets, and lists or

insertable arrays. Since 02 provides method execution

support in the storage server (in [JOS91], this kind of

server is called a type-based object server), the objects

(the message receivers) in the server to be applied for

method execution should be materialized or instantiated,

that is, retr1eved from the secondary storage into the

server. The cost of copying objects from the WISS buffer

pool into the server's object buffer have been benchmarked;

a drastic degradation of system performance in read/write

intensive applications is reported [DEU90].

~ Gemstone llEMS

In Gemstone [PUR87, BUT91], the "Stone subsystem" is a

persistent object storage system. The Stone object storage

model supports five storage formats for objects including

indexed formats for large arrays and non-sequenceable

collections such as bags and sets. Gemstone is based on a

pure object model. Thus objects in Gemstone consist of

small Smalltalk objects. Stone is also responsible for

clustering collections of related objects together on the

secondary storage, and concurrency control and recovery.

26

Gemstone also supports indexing on collections of objects .

.Ihe. Arjuna .Q..QE..S.

Arjuna [DIX89] is a distributed object-oriented

programming system (OOPS) that supports persistence and data

sharing. Arjuna supports persistence by using the

inheritance property of object-oriented programming [STR86].

The persistent object store in Arjuna is implemented via the

file system of the UNIX operating system. Consequently,

each simple object (no support for complex objects) has to

be kept in a file and the management of persistent objects

is supported by traditional file system interface software.

This causes severe performance penalties [DIX89] .

.Ihe. ORION .D..aMS_

The ORION DBMS [KIM89] is an OODBMS that supports

complex objects (called composite objects in ORION) directly

in its data model. In the ORION data model, class has the

meaning of both specification and extension. This means

that a class automatically has its own extent (a system

maintained extent) . Therefore, unlike Gemstone which

supports indexing on user-maintained extents called

collections, ORION supports indexing on classes 1nstead of

collections of objects. The storage subsystem in ORION uses

a dual buffer with an LRU replacement scheme and copy-based

interface.

27

.T.he ONTOS .D..aMS.

ONTOS [AND91] is an OODBMS and a successor of the

Vbase [AND87]. Like Arjuna, ONTOS supports persistence by

employing the inheritance property of the OOPL. The storage

server is also built on top of the file system of its

underlying UNIX operating system.

Ina ENCORE/Observer DBMS

The Observer object server [HOR87] is the persistent

object storage system of the ENCORE DBMS. The Observer is a

"typeless object server" according to [JOS91] and supports

only the notion of simple objects. The Observe is intended

to operate in a client-server network environment. Thus,

objects are clustered into segments which reside in the

database files and a segment is the unit of transfer between

the workstation and server in order to reduce transfer

overhead. The ENCORE/Observer database system does not

address complex object issues. However, Observer provides a

novel set of lock modes including notify locks to support

data sharing in the client/server environment.

CHAPTER IV

THE INTEGRATED PERSISTENT OBJECT

MANAGER (IPOM)

Introduction

The integrated persistent object manager (IPOM) is a

persistent object storage system to support both persistence

and data sharing in an OODBMS. The motivation for the

design has been to investigate the architecture and

mechanisms of a persistent object storage system in the

context of support for persistence and data sharing in

object-oriented programming languages. The IPOM storage

model proposed in this thesis differs from other models of

object storage system mainly in its design schemes. These

schemes include:

1) a direct support index for complex states

(attributes);

2) storage structures supporting "total-retrieval" and

"partial retrieval" of complex objects or

attributes;

3) uncopy-based buffer interfaces with selectively

copy-based option (cache strategy transactions);

and

4) local allocation and replacement buffer scheme with

28

a simple hint (either keep or discard) to the

buffer manager.

29

Direct support indexing on complex states (attributes)

and grouping storage structures provides efficient fetch and

store of a whole complex object or any state of a complex

object without retrieving the whole object into the memory

(this is especially useful when the complex attributes are

very large) . The use of non-copy-based interfaces provides

efficient retrieval and direct manipulation of objects

without further copying cost. The buffering scheme with a

simple hint (either KEEP or DISCARD) gives more flexibility

to the nontraditional database applications with dominant

"chain reference" (access sub-object via embedded object

identifiers rather than join) access patterns. The cache

strategy transaction mechanism provides support for

computation-intensive applications without incurring

excessive interfaces of crossing of a database system.

All these design features are expected to provide

appropriate support for large persistent complex objects,

efficient retrieval of entire or partial complex objects or

attributes, and access patterns that arise from advanced

database applications. A comprehensive scheme is presented

in this chapter which combines new ideas and adaptations of

some well-established concepts. That is, the proposed model

draws heavily from ideas developed by the research community

of traditional and object-oriented database systems in the

past. The uncopy-based interface scheme is borrowed from

30

the EXODUS storage system (originally from the system R

[AST76]) and extended with copy-based option (cache strategy

transactions) to solve the problem of excessive calls to the

persistent storage system in EXODUS. Especially, the

concurrency control and recovery modules are adopted from

that of the traditional database systems as other storage

models do. The only exception is that the buffer strategy

argument can be specified in the Trans_Begin command to

support cache strategy transactions.

The Generic Object Model

Since the proposed storage model is to be used as a

vehicle to implement an underlying target object-oriented

model, a generic object model is presented here. This

generic model combines the most common features of many of

the object-oriented models proposed in the past few years.

These common features include object identity, strong

typing, type constructors, and object references. In this

model, every instance of an object owns a system-wide object

identifier (OID) that can not be changed. The object

identifier is used by the system to reference its

corresponding object. This model also supports basic types

such as integer, string, float, bits, etc., two collection

type constructors, sets and lists, and the tuple

constructor. Each instance of the constructors is the

first-class object that owns a unique object identifier.

In this model, a unique set is defined as a collection

31

of objects with the same type. A "set-valued" attr1bute is

an attribute whose value is a set. A list is an object with

a sequence of elements of the same type and each element is

of atomic type. A "sequence-valued" attribute is an

attribute of list type; a tuple consists of a set of

attributes that are of different atomic types. A "tuple

valued" attribute is an attribute of tuple type. Attributes

that are not of atomic type are called complex attributes.

A complex object may consist of any combination of atomic

attribute (atomic-valued), complex attribute (e.g., set

valued, sequence-valued, or tuple-valued attribute), and

complex sub-object. In this sense, a complex object is a

tuple that has at least one non-atomic attribute which

itself may be a complex object. The object reference

concept allows a complex object to be a nested object. That

is the attribute of an object or an element of a set can be

itself an object. While a tuple can be viewed as a spec1al

case of the complex object type, a relation or table in

traditional databases can be viewed as a tuple-valued set.

To illustrate the concept of complex object, the object

memo given in the chapte'r I can be used as a simplified

example of a complex object. It contains three complex sub

objects, "Header", "Body", and "Trailer". The complex sub

object "Body" of memo consists of "sequence-valued"

attributes such as "Image" and "text" attributes. The

complex sub-object " Header" contains atomic attributes such

as "Date", "Status", "From", and a "set-valued" attribute

"TO" which consists of a set of tuple-valued elements.

The System Architecture

Figure 5 shows the general system architecture of the

IPOM. The functionalities of the IPOM can be included in

IPOM modules linked with the high-level language run-time

system layer or included as parts of the application run

time system. The IPOM consists of five modules: the

persistent object interface module (POIM), the transaction

and lock manager module (TLMM), the storage and grouping

manager module (SGMM), the recovery and log manager module

(RLMM), and the buffer manager module (BMM). The IPOM is

designed to be built on top of the physical I/O module

similar to the UNIX I/O system call interface level. The

five modules of IPOM are described below in top-down

fashion.

Persistence and Data Sharing in IPOM

32

Before introducing the IPOM, let us first informally

describe how the IPOM realizes the support for persistence

and data sharing. As mentioned in Chapter II, external and

internal extensions are needed to support persistence and

data sharing in OOPL environments. We use the Figure 5 to

describe the scenario of supporting persistence and data

sharing under the IPOM model. The process of supporting

persistence and data sharing can be classified into five

phases as follows:

High-level language 00 Application Laye

I

p

0

M

Run-time System

Persistent Object Interface (POI)

Grouping . Storage
Manager (GM) : Manager (SM)

Transaction
Manager (TM) ·

Lock Manager
(LM)

Recovery Manager (RM)

Buffer Manager

- - - - - - - - - - - - - - ~ - - - - - - - - -

Phsical I/0 Manager

Figure 5. The IPOM Architecture

33

34

1) the binding phase: In this phase, the binding

between persistent variables (names) in application

programs or query statements and persistent objects

in databases is established. This is always done

by persistent name server by searching persistent

name dictionaries and mapping a persistent name to

a unique identifier (UID) during the compiling

phase. The compiled codes or query evaluation

plans will contain the primitives provided by the

persistent object interface, in our case this will

be the persistent object interface module (POIM) .

2) the execution phase: The run-time system dispatches

compiled codes or query evaluation plans and

executes primitives provided by POIM and SGMM when

the object access or manipulation is needed.

3) the concurrency control phase: The object retrieval

and storage operations (read and write) invoked by

POIM primitives are sent to the transaction and

lock manager (TLM) . The TLM enforces the

concurrency control protocol and checks access

conflicting.

4) the locating and fetching phase: Before fetching the

desired object into the database buffer pool, its

location in the database must be located. This

involves mapping UID to PID (physical object

identifier) in case that logical identifiers are

used. The buffer manager module (BMM) performs the

35

buffer allocation and replacement tasks. Then the

physical I/0 operations provided by the underlying

operating system are issued and the page containing

the desired object is brought into the database

buffer pool.

5) the extracting or isolating phase: The location and

boundary of the desired object in the database are

determined according to object template information

(schema information) . A pointer to the object in

the buffer is returned to the user or query

processing algorithms that invoke the fetch or

store operations. In case of copy-based interface,

the desired object in the buffer must be translated

from its on-disk format into in-memory format and

then be copied into the user address space.

Note that persistence and data sharing support by the

IPOM is transparent to the user. Persistence is supported

as in the persistent programming environment in which the

programmers specify which object is to be accessed or

manipulated without explicit coding how to do it. In

addition, data sharing is supported as in a traditional

database system.

Persistent Object Interface Module (POIM)

The objective of the POIM is to provide primitives for

the run-time system or compiler as an interface to access

and manipulate persistent objects in the database. Since

36

the high-level object model supports complex objects with

arbitrary levels, the POIM should support primitives to

access and manipulate various types of large complex objects

with potentially unlimited si~e. This imposes several

different invariants for access methods according to the

semantics of the operations on different types of complex

attributes or objects (tuples, sets, lists, etc.).

Therefore, the POIM provides a set of primitive operations

on tuples, sets, and lists to access and manipulate these

types of persistent objects. This is based on the three

types outlined earlier.

In addition ~o the basic operations on complex objects

in a file or group such as retrieval, insertion, deletion,

and creation of an entire complex object, the POIM also

supports primitives to operate on portion(s) of a complex

object. These "partial-object" operations include the

following primitives: retrieve only selected attributes of a

complex object (or a large tuple); update only single or

selected attribute(s) of a complex object; retrieve only

selected elements of a set-valued attribute of a complex

object; delete only selected elements of a set-valued

attribute of a complex object; update only selected elements

of a set-valued attribute of a complex object; and insert

elements into a set-valued attribute of a complex object. A

set of primitives (operations) on complex objects proposed

in our design of POIM is depicted in Table 1. These

primitives allow portion(s) of an entire complex object to

TABLE I

THE PRIMITIVES OF THE POIM

Primitives of the Persistent Object Interface Module

Primitive name

CREATE_ TUPLE ()

RETRIEVE-TUPLE()

PROJECT_ TUPLE ()

DELETE_ TUPLE ()

UPDATE_ATTR ()

RELEASE-TUPLE()

CREATE_SET ()

INSERT_ELEMENT ()

DELETE_ELEMENT()

UPDATE_ELEMENT()

RETRIEVE_SET ()

RETRIEVE_ELEMENT()

SCAN_ELEMENT ()

EXIST_TEST ()

GET_RANGE ()

APPEND_LIST ()

UPDATE_LIST ()

DELETE_LIST ()

Functions

create a new tuple

retr1eve an ent1re tuple

retr1eve only selected
attr1butes of a tuple

delete a tuple

update the content of
an attr1bute

unf1x a tuple 1n the buffer

create a new set

1nsert an element 1nto a set

delete an element of a set

update the content of an element

retr1eve an ent1re set

retr1eve an element of a set

scan all the elements of a set

test for the presence of a
part1cular element 1n the set

get the elements wh1ch are
gual1f1ed 1n the spec1f1ed range

append elements to a l1st

replace elements of a l1st

delete elements of a l1st

37

38

be retrieved. This kind of partial-retrieval of a complex

object can not be done by storage systems that rely on

traditional file systems or relational storage systems which

do not support complex objects. Usually, the whole complex

object, i~plemented as a file, has to be retrieved from

secondary storage and translated into its in-memory format

record-by-record.

Storage and Grouping Manager Module (SGMM)

Object Representations

The advanced database applications are expected to

handle complex objects with complex relationship among them.

Also the attributes of a complex object may not be like that

of simple objects with fixed and small size and of atomic

valued attributes. The object representations of storage

structures for complex objects should consider the

characteristics of these complex objects. These

characteristics include objects of different types, objects

of variable-length, and objects with potentially unlimited

size. This implies that extended storage structures are

needed. Therefore, there are different object

representations for different type of objects in the IPOM

storage model (refer to Figure 6) . The basic type of object

representation is that of the basic type construct tuple, as

illustrated in Figure 6(b). There are three parts in a

tuple object: the tuple prefix, the attribute list, and

variable-length attribute value parts. The tuple prefix

39

contains the following information:

1) the unique object identifier for the tuple,

2) the type (or class) of the tuple (object),

3) the length of the tuple (object), or a tag to

indicate that this attribute (object) is a large

complex attribute (object), or/and

4) the page list of the tuple if the tuple is large.

Large complex "Tuple-valued"
attribute attribute

"Set-valued"
attribute

Variable
length atomic
attribute

UID UID

Type

Camp tag

Type

Length I Length I offset!

Page List Attr List

Attr.List Attr 1

Attr. 1 Attr 2
Attr. 2
Var -leng
Attribute

Vallles

.

Var -leng
Attribute

Val.ues

Value I lthe 2nd element!

(c) A Small Set (d) A Variable-(a) A Large
Complex
Attribute

(b) A Tuple
Attribute Attribute length Atomic

Attribute

Figure 6. The Object Representations

The attTibute list part contains all the attribute

information of the tuple. This part contains the following

information:

1) the value of fixed-length atomic types such as

integer, float, and char etc.,

2) the information of each variable-length attribute

including its size and the offset in the variable

length attribute part, and

40

3) the information of small set-value attribute or

UID's of large complex attributes. The former

includes the type of the set, the number of elements

in the set, and the pointer to the first element in

the set.

The variable-length attribute part contains the values

of the variable-length attributes and a list of set elements

of small set-value attributes that link each other together.

Grouping Manager ~

One of the major goals of the SGM is to improve the

performance of retrieval of an entire large complex object

or part of it actually needed from secondary storage. We

call these "total-retrieval" and 'partial-retrieval" of

complex objects, respectively. Storing a complex object in

a file as in existing CAD/CAM applications [KAT90] would

require that whole complex object be retrieved from the

secondary storage and then the actually needed portion of

that complex object be extracted. This will lead to the

waste of expensive disk I/0 and the waste of main memory

space. Therefore, the storage structures of large complex

objects are important in the context of "partial retrieval"

of large complex objects.

As mentioned above, the generic model supports complex

objects possibly with "set-valued", "sequence-valued", and

41

"tuple-valued" attributes. In order to reduce disk I/O in

retrieving an entire complex attribute, an internal grouping

strategy is heeded. This grouping technique is used to

facilitate the "total-retrieval" of a large complex

attribute. It also will group the instances of a complex

attribute in the same storage extent (an extent is a number

of contiguous blocks on the secondary storage) as possible.

This grouping technique is a kind of "inter-object" grouping

strategy that groups objects of the same type (e.g. a class)

together. The SGMM module supports internal grouping. That

is instances of a complex attribute (a set-valued, a

sequence-valued, or a tuple-valued) are grouped together.

This grouping hint is given by the user when an element is

to be inserted into a group with a "near hint" in the

argument of the insert primitive. The SGMM module then will

try to insert that element into or near the indicated group

as possible. If a group is very large "set-oriented I/O"

such as "scatter read/write I/0" supported by IBM/370

systems is useful [KAT86]. However, in some environments

such as UNIX this kind of benefit is not available

currently. It is also not guaranteed that contiguous blocks

can be allocated on disk. The alternative approach is to

use a page list in the prefix part of each group root page.

The page list is a list of physical page numbers of the

entire complex attributes. This page list can be used to

facilitate the prefetching of the complex object.

A complex object with potentially unlimited size may

42

have large complex attributes that themselves are complex

objects. Thus, the number of elements of a "set-valued"

attribute may be very large. For example, in CAD design, a

VLSI chip consists of 25 sections which contains 164 cells

and each cell contains about 2000 transistors. Each

transistor may contain 40 to 100 bytes. In addition, the

number of elements of a "sequence-valued" attribute may be

unlimited in size. For example, in multimedia database in

office information applications, a bit map of a digitized

8.5" X 11" image can consume up to 4 Mbyte of storage

[WOE86]. Also in clinical databases or medical databases, a

large patient or gene sequence record with hundreds of

attributes is possible [SIL91].

With the large complex attributes as discussed above,

the efficient retrieval of small portion of or one single

element of such large complex attribute depends on indexing

techniques. Direct indexing on a complex attribute of a

complex object provides a way to efficiently access any

instance (state) of a complex attribute. However, the

criteria for indexing on instances of a complex attribute is

according to its size. If the size of a complex attribute

is larger than a disk page then it is suitable to be

indexing according to its type ch~racteristic. For example,

a large "set-valued" attribute (an unique large set) can be

represented as a B+ tree index [COM79]. A large "sequence

valued" attribute (there are different terms in literature

such as a list, a sequence, an indexible list, insertable

43

array, variable-length array [CAR88], or ordered collection

[LAM91]) can be represented as a positional B tree in wh1ch

the search keys are the positions of the elements within the

list [CAR89] . It is used to model ordered complex objects

such as texts or documents (type of strings), bitmaps (type

of bits) etc. The above two indexing techniques have been

used by some current OODB systems that support "sets" such

as 02 and Objectstore.

However, the representation of a large tuple with large

amounts of attributes has not been proposed. The SGMM

module adopts the positional B-tree to represent a large

tuple. In this case, we use the attribute number of each

attribute in a large tuple as the search key instead of the

position of an element of a list. The storage structure of

a large tuple adopted by SGMM is shown in Figure 7.

The root page

89
90 to
150

Figure 7. A Large Tuple Attribute

44

To illustrate the object representation on disk, the

storage structure for a complex object memo is shown in

Figure 8. The size of a complex attribute is smaller than a

disk page, the instances of the complex attribute are

organized as a linked list on the disk. For example, in

Figure 8 the instances of the complex attribute "CC" of the

complex object "memo" are linked together. On the other

hand, if the size of a complex attribute is larger than the

size of a disk page, the complex attribute is grouped

according its type. In Figure 8, for example, the complex

attribute "To" of the complex object "memo" is grouped as a

B+ tree. Since the SMM understands the structures of

complex attribute, or object, it serves the request for

retrieving or updating any portion(s) of a complex object or

a complex attribute or object. To achieve this, rthe SMM

provides support for sequential single-element scan or range

scan to a group. The Module also provides primitives for

POIM and SGMM to update or insert an element into a group.

Transaction and Lock Manager Module (TLMM)

Data sharing is one of the most fundamental concepts

and handled well in traditional database systems. The DB

system provides data sharing capability while ensuring

database integrity. To achieve th1s, the DB system must

ensure that each transaction concurrently executed to be

executed atomically. Another major concept in databases is

to support database consistency in the presence of

~ - - - - - - - - - - - -
UID

(Memo)
Com lex

Com lex
Page list

Date
Status
From
To#

SubJeCt

~~T;,e~x;t~~=4~~UID
[_!D~r~a~w~i:!n!..SL::::t-;--:;;.. u I D

Image -+-~;;. UID

Attachment

Leaf
pages

the root page
of group "To"

Leaf
pages

Leaf
pages

45

II

• • •

CC --~--~UID
~--~----~ ~--~~~~--~~

CJ].-7 •••

The root page of the
instance of "Memo"

Figure 8. The Storage Structure of an Object

concurrency and system failures, either software or

hardware. The latter is the notion of "strictness" and the

former "serializability". The st!ictness or "recoverability

and cascadelessness" ensures that the results of partially

completed transactions will not be visible to other

transactions [BER87}. The serializability ensures that each

concurrently executed transaction accessing shared data does

not interfere with each other. Therefore, database models

should incorporate concurrency control and recovery

mechanism to enforce some protocols such as locking protocol

46

to achieve above requirements.

Operation Scheduling AbStraction

The traditional concurrency control and recovery

techniques such as locking and logging have a good

foundation. So, the transaction and recovery manager module

(TRM) of the IPOM adopts the locking and logging schemes

from traditional DB systems to support concurrency control

and recovery in multi-user database environment. This

module is illustrated for the sake of completeness of IPOM

design and to show its relationship with other modules. To

ensure serializability, operations issued by transactions

are scheduled based on the "strict two-phase locking

protocol". As shown in Figure 9, the operation scheduling

abstraction can be described as follows:

1) The transaction manager (TM) receives the operation

requests from the high-level, persistent object

interface module (POIM) . The primitives of the

POIM are called by high-level software such as

query processing algorithms, programming language

operations, or end user's queries. These

primitives rely on the underlying system's

persistent mechanism to map the UID of the object

to be read or written to its location on disk.

There are only two database operations, read() and

write, to be issued to the TM. The run-time system

also can issue transaction operations based on the

behavior of the user's application programs or

users themselves. The transaction operations

supported are Trans_Begin (Buffer-strategy),

Trans_Cornrnit(), and Trans_Abort().

Trans_str () ••• Read() Write()

.. - Transaction
Manager (TM)

Ack .: Tran_str ()
. Commit ()
• Abort()

Read()
Write()

Lock Manager
(LM)

Acquire_Lock ()
.._ .. - - - - - - - - - - -.- - - -

Release-lock' () .
I'

Recovery & Log __ ~
Manager (RLM) Ack. committing

the transaction

Fix() Fetch()
Unfix() Flush()

Buffer Mgr.
(BM)

Read()
Write ()

Database

,_ - - -
Hash (volumet)

Log buffer

:~

.
,

The list of
lock tables

Ptr to a
queue heade.r

~tr to a
!waiting list

.

.

.

Ptr to a
queue heade.r

Ptr to a
waiting list

.

.

.

Figure 9. The TLM and RLM Modules

47

48

2) The TM performs required preprocessing and adds an

appropriate transaction identifier to each

operation. When it receives a database operation,

it sends the appropriate lock request for the

database operation to the lock manager (LM); when it

receives a transaction operation (Trans_Cornrnit or

Trans_Abort), it requests LM to release all locks

(logical locks) held by the transaction.

3) The LM is responsible for maintaining a set of lock

tables, which shows the locks that each active

transaction holds or is waiting for. It also

provides locking(Trans_ID, OBJ, Mode) and unlocking

(Trans_ID, OBJ) operations for objects. The OBJ can

be an object, a group, or a storage unit. The LM

either accepts or rejects the lock request from the

TM according to the lock compatible and lock table

information. If the lock request does not conflict

with any lock hold by another transaction, the LM

accepts the lock request and sends the accepted

database operation to the recovery manager.

Otherwise, it reports rejecting the lock request to

the TM and puts the lock request into its

appropriate lock waiting list.

4) The recovery and log manager module (RLMM) is

responsible for transaction commit and abortion. It

is also responsible for initiating the database

operations upon receiving them from the TLMM. The

RLMM interface is defined by four procedures:

1. RLMM_Fetch(Trans_ID, OBJ): Fetch the object OBJ,

2. RLMM_Flush(Trans_ID, OBJ, PTR_OBJ1): Store the

OBJ1 into OBJ,

3. RLMM_Comrnit(Trans_ID): Commit the transaction

with transaction identifier Trans_ID, and

49

4. RLMM_Abort(Trans_ID): Abort the transaction with

transaction identifier Trans ID.

Complex Object And Index Locking

The TLM module also uses the granularity-hierarchy

locking protocol proposed by Gray [GRA78] with strict two

phase locking protocol. This is to control all concurrent

accesses and manipulations to complex objects. A complex

object can be viewed as a structural collection of sub

objects. It is possible to form an abstract structure

hierarchy by constructing the set of its sub-objects. For

example, the complex object "memo" form a hierarchy of lock

granules (a directed acyclic graph), as shown in Figure 10.

To minimize the locks to be set in accessing a complex

object, it is better to set one lock for the entire memo

object rather than one lock for each sub-object. There are

five lock modes provided, that is, shared (S), exclusive

(X), intention share (IS), intention exclusive (IX), and

shared intention exclusive (SIX). According to [GRA78,

BER87], for a given dag of locking hierarchy G, the locking

protocol for the lock manager (LM) to set and release locks

50

Database

Ftlel Ftle2 • • •

Group tndex Memo • • •

~
Header

~
Index entry To

~t
Tuple

Figure 10. A Hierarchy of Granules

for each transaction, Trans_ID, is described as follows:

1) If a lockable granule g is not the root of G, then

to set S or IS lock on g, Trans_ID must set an IS or

IX on all direct ancestors of g first.

2) If g is not the root of G, then to set X or IX lock

on g, Trans ID must set an IX lock on all direct

ancestors of g.

3) To write g, Trans ID must have an X lock for some

ancestor of g, for any path from the root of G to g.

To read g, Trans_ID must have an S or X lock on some

ancestor of g. Locks must be set in root-to leaf

order.

4) Trans ID must release all logical locks in leaf-to-

root order before commit or in any order after

transaction commit.

51

Since object locking granularity can be as low as the

storage unit level, lock table contention may occur. When

this situation takes place a number of lock requests may be

blocked waiting for the lock semaphore for the lock table.

We propose to use a list of lock tables, each for a single

device and handled by one semaphore server. When a lock is

requested by the TM, a hash function is applied using the

volume number of an object identifier as hashing key. Then

the semaphore server responsible for that volume takes care

of the lock request. With such an approach, lock request

congestion can be avoided.

Though the two-phase locking protocol is used by the

TLMM, it is not suitable for some search structures. The

reason is that it does not take advantage of the predictable

access patterns of search structures. So it is too

restrictive to be suitable for search structures such as B

tree or B+ tree. In addition, in advanced database

applications, the access paths may become "hot spot" that

would result from two-phase locking (2PL) hot resources

[PAU87]. When hot spot objects occur a number of

transactions may be blocked waiting for these hot spot

objects. To increase the degree of concurrency, the non

two-phase index locking protocol (lock coupling or top-down

locking) proposed by Bayer [BAY77] is used for searching and

updating these indexing structures.

52

Recovery and Log Manager Module (RLMM)

As for the recovery mechanism, "strictness" (or

loosely speaking "recoverability'') can be enforced at

different levels. The recovery mechanisms of OODB's are

similar to those of conventional DB systems [JOS91] . So

OODB's designers do not concern themselves with this issue.

Current commercial and prototype OODB's use variants of

write-ahead-log (WAL) or shadowing mechanisms as the

conventional DB systems do. The selection of recovery

mechanisms may be based on the application-orientation

concerned. According to [HAE83, BER87], there are four

categories of recovery schemes:

1) STEAL/-FORCE (UNDO/REDO),

2) STEAL/FORCE (UNDO only},

3) -STEAL/-FORCE (REDO only), and

4) -STEAL/FORCE (-UNDO/-REDO).

These schemes are illustrated pictorially, as shown in

Figure 11. The STEAL/-FORCE scheme allows modified pages be

flushed and propagated at any time, as shown in Figure

11(a}. The buffer manager flushes modified pages according

to the buffer occupation. This scheme complicates recovery

processing since pages modified by incomplete transactions

may be flushed to the stable storage. Thus, before image

(for undo purpose) and after image (for redo purpose)

loggings are required.

53

Add T1 to the comnut hst

Elapse ofT1
r ... - -•

'IV
Log buffer A A f A A F t F F
(before & 1-1 --1--------4--------'------'-__:......--t1 - - '- - -- '
after Images)

Database
buffer

w w F w W F w F F
I

~----~--------~----------~------~------4 -- _I_ - - J

(a) The STEAL/-FORCE (UNDO/REDO) Scheme

Add T1 to the comnut hst

ElapseofT1 ~--~
r - - _,

'V

~0~ffer ~~-----+A _________ A~ _____ f ____ -4A _______ A+----~---4~ tF
Image only)

Database
buffer

w w F w

(b) The STEAL/FORCE (UNDO/-REDO) Scheme

Add T1 to the comnut hst

ElapseofT1 ~--~
r - - -•

'V'

Log buffer A A F A A If Ar
(m~ rl --~------~---·--~----~----~-
Image only)

Differenbal
file t------w~------~w~----------w~-----w~-----4~~- -~

(c) The -STEAL/-FORCE (-UNDO/REDO) Scheme

Add T1 to the comrmt hst

Elapse of T1 ~---1

Shadow
pages

r .. - -•
v

w w w w p

(d) The -STEAL/FORCE (-UNDO/-REDO) Scheme

Legend:A. Append the log entry
W. Update m the database buffer, differential file, or shadow page
F Flush the dirty page(s)
P: Propagation (not m-place)
P In-place propagation

Figure 11. The Recovery Schemes

54

The STEAL/FORCE scheme flushes all pages modified by

transaction Ti before adding Ti to the commit list, as shown

in Figure ll(b). That is, if transaction Ti is committed

all pages modified by Ti are already in the stable storage.

Thus, after image for redo purpose is not required, but

before image for undo is needed in case that pages modified

by incomplete transactions have been flushed into stable

storage. The above two schemes also use an update-in-place

approach where modified pages are flushed into the same

blocks. Therefore flushing dirty pages and propagating

control structures take place at the same time.

The -STEAL/-FORCE scheme may requires redo but never

requires undo. That is pages modified by uncommitted

transactions are not flushed into the stable storage until

the end of transaction. To keep all dirty pages of

uncommitted transactions in the database buffer, a very

large database buffer would be required. The alternative is

using a "differential file" that records all modified pages.

Then, propagation can be repeated as often as wished, as

shown in Figure ll(c).

The -STEAL/FORCE scheme is to avoid redo and undo

operations. This requires that none of the pages modified

by transaction Ti can be flushed into the stable storage

before Ti is committed and all of these pages must be

flushed into the stable storage by the time Ti is committed.

To achieve the above goal, the shadow pages are needed to

preserve the old state of the materialized database and all

55

modified pages are written into their new blocks (not

update-in-place) . The major drawback of this scheme is that

it potentially destroys the physical grouping (clustering)

that have existed in the database.

In pragmatic sense, the last scheme is not appropriate

for IPOM since it violates the principle of grouping complex

attributes (objects) for total-retrieval of complex objects.

The -STEAL/-FORCE (REDO only) scheme is not adopted in IPOM

since a very large database buffer is required (for long

duration update transactions). However, supporting rich

data types in OODB's can influence their recovery

mechanisms. For example, in case that multimedia objects

such as texts, graphics, and bitmaps are supported, the cost

of logging the before and after images of every changed

multimedia object is expensive. Therefore, for

implementation simplicity, we prefer the STEAL/FORCE (UNDO

only) scheme to the others.

The RLMM is responsible for the logging of changes to

objects (create, delete, and update) within a transaction.

It keeps only the UNDO log (before image) of transaction Ti

in the log buffer when Ti is active. When transaction Ti

commits, the RLMM sends FLUSH(Ti) operation to the buffer

manager to flush the changes to objects within transaction

Ti to disk. Then the RLMM appends the Ti to the commit list

(appends the commit record to the log buffer) . The RLMM

then forces the log to the disk and acknowledges the

transaction commit to the TM.

56

It is not necessary to log every change to "hot spot

data", index pages such as B tree or B+ tree search

structures everytime during update operations on these

structures. Thus, a special log mechanism is needed to

avoid excessive logging. The traditional operation-oriented

(logical) log [BER87] can be used to avoid logging every

affected change to such search structures in case that a

page split or concatenation is necessary to maintain the

search structure invariants. However, undo and redo

procedures to reverse the insertion and deletion operat1ons

must be provided in case of transaction abort.

Buffer Manager Module (BMM)

The buffer manager module (BMM) is one of the most

important modules in the IPOM. It maintains a sufficiently

large database buffer pool of pages as the final destination

of objects to be processed except for "cache strategy

transactions". In the IPOM model, it is involved at the

locating and fetching p~ase of the persistence and data

sharing process. When an object fetch request is issued to

the buffer manager module (BMM), the buffer manager locates

the desired page in the database buffer pool; otherwise it

fetches the desired page from the disk if there is a buffer

fault. It also enforces replacement policies specified by

higher level softwares, e.g. the query processing routines

or clients (clients can specify the Keep/Discard replacement

policy in the transaction attribute when Trans_Begin()

57

command is explicitly coded in a user's application

programs) . In addition to specifying the buffer replacement

policy, the application programmer can specify which

buffering interface (uncopy-based or copy-based) to use to

retrieve a large complex object into the user's address

space. This is to avoid performance problems with excessive

interface crossing between application programs and the

IPOM. We will describe this problem below.

Cache Strategy Transactions

According to [ST081, DEU90], it is expensive to copy

and translate every object from the database buffer pool

into the application address space and later translate and

perform a copy back. This overhead is the side-effect of

environments such as heap-based programming and traditional

computational-intensive environment due to copy-based

interfaces in traditional file systems. The copy-based and

uncopy-based interfaces are illustrated in Figure 12.

However, sometimes there are some computation-intensive

applications in advanced database applications that require

intensive computation on some objects. In object-oriented

database systems with noncopy-based buffer interface such as

EXODUS/E, the cost to call persistent object storage

interfaces excessively is high. It is inefficient to

repeatedly fix an already resident page when an object is

referenced frequently in a program loop. With copy-based

buffer interfaces, most heap-oriented database programming

58

languages such as Smalltalk-based or CLOS-based database

programming in Gemstone and ORION do not have thi s problem.

USER I

lc~~;;;
.trans. ,
····~····· .

,

DBMS

USERm

Query
processing
algorithms

- .. - - ·- .. - - .. - - - - .. ~ - - .. -,

Figure 12. The Copy-base and Uncopy-base
Interfaces

59

The objective of a copy-based interface is to avoid

fixing setting a physical lock on the page which the

object being accessed or manipulated is resident in) a large

number of pages in the database buffer pool during the

potentially long-duration of computation. Therefore, on the

one hand we want to reduce the CPU costs of copying objects

from the database buffer pool into the application address

space and delay propagating updated pages into the database

buffer pool. On the other hand, we want to avoid excessive

calls to fixing page frames in the database buffer pool that

arises from repeatedly referencing the same object in a

program loop.

Given the above seemingly conflicting objectives, we

propose a cache strategy to solve the above problem. The

buffer manager module retains the single-buffer (uncopy

based) scheme as the default scheme. It also allows a copy

based scheme, the cache strategy, to be used by explicitly

specifying it in the variable declaration. The scenario of

a cache strategy is illustrated in Figure 13. This can be

accomplished by using the embedded object cache construct

provided by the underlying object-oriented database

programming language (OODBPL) to declare the object to be

cached. The handle of the object to be cached must be

declared with the keyword CACHE, for example, CACHE OBJ TYPE

*obj_handle. Then the preprocessor automatically enables

the object initiation routines to generate the attribute

part of a complex object and issues calls to the POIM to

NO

Calls uncopy-based
nterface routmes

Figure 13. The Cache Strategy

60

61

retrieve the entire complex object. The buffer pool to

stage the objects to be cached will be unfixed after the

desired objects are copied into the application address

space. When the cached objects are retrieved and copied

into the user address space, they are locked in read mode.

When the cache strategy transaction is to be committed, the

changes to any object must be first written to the log

before they are written into the disk.

Ihe Buffer Replacement Scheme

In the traditional database systems, query

optimizations frequently use sophisticated join that may

span severar tables. As such the buffer replacement scheme

of a database system plays an important role in query

optimization processing based on the disk I/0 cost.

However, in object-oriented database systems, the

traditional join approach based on matching attribute value

is less important since a complex object can be viewed as a

pre-computed join. Rather the object access via reference

chains is dominant and the indexing structures are to

maintain the information about the reference chains.

Therefore, in OODB systems the reusage patterns of indexing

in optimizing query processing tends to be more

straightforward than those of traditional DB systems.

However, B trees or B+ trees will be used frequently in

the databases as base index structures. The "keep-the-root

strategy" or "keep-the-highest-levels-strategy" replacement

62

policy is identified to be useful [FOL87]. Therefore, high

level index pages are better to be ignored by the buffer

pool replacement policy (usually, the LRU or MRU replacement

scheme) . In this way either temporarily or permanently hot

pages (e.g., index pages used often within a transaction or

root index pages of B+ trees that are always hot) are kept

in buffer pools as long as possible when they are not

physically locked.

We propose a local buffering scheme with simple hint,

either keep or discard. The original local buffer

allocation and replacement algorithm is proposed by Sacco

[SAC86, pp 489-490]. This algorithm does not take into

account the difference between "hot spot" resources and

regular data. The simple "KEEP/DISCARD hint" scheme is

added to the algorithm, as shown in Figure 14 and Figure 15.

When buffer pages are allocated to the transaction that

requests buffer pages, "the KEEP hint" can make these pages

be put into the top of the local LRU stack. Thus these page

will remain in the local LRU stack as normal LRU replacement

scheme. When the "DISCARD hint" is issued at the time that

buffer pages are requested and allocated by the buffer

manager, these buffer pages will be put into the bottom of

the local LRU stack. In this case, these pages will remain

in the LRU stack for a short time and are ready to be

replaced. The size of the buffer pool to be allocated is

either specified by the client or from the query evaluation

routines similar to the "hot-set size" in the hot-set model

PROCEDURE Alloc_Replace_Algor~thm (
TID, Buffer_strategy, Page_Request

VAR TID_Stack_L~st, Free_Buffer_L~st,

BEGIN
1 IF (TID ~s not ~n TID_Stack_L~st) DO

BEGIN
PUT TID to an empty TID_Stack_l~st slot,
SET TID_Request_page = Page_Request;
SET TID_no_Page_Alloc = 0,

END 1~ End of 1 */

2 IF (TID 1s already 1n the TID_Stack_L1st) DO
BEGIN

2.1 IF (TID_Page_Request > TID~o_Page_Alloc) DO
BEGIN

2 1.1 IF (page 1s ~n the Local LRU stack) DO
BEGIN

2 1 2

2 1 3

2 1 3 1

2 1 3.2

IF (Buffer_strategy '= DISCARD) THEN
PUT page to the top of the local LRU stack,

ELSE
PUT page to the bottom of local LRU stack,

END 1~ End of 2 1 1 */

IF (page 1s 1n the Free_Buffer_L~st) DO
BEGIN

IF (Buffer_strategy '= DISCARD) THEN
PUT page ~n the top of the local LRU stack,

ELSE
PUT page to the bottom of the local LRU stack;

UNLINK ~t from the Free_Buffer_L~st,
TID_NO_page_Alloc += 1,

END 1~ End of 2 1 2 */

IF (page fault occurs) DO
BEGIN

IF (Free_Buffer_L~st = empty) DO 1~ Replacement */
BEGIN

IF (Buffer_Strategy '= DISCARD) THEN
PUT the bottom page 1n the local LRU stack
~nto the top of the local LRU stack,

ELSE
KEEP the bottom page as repacement page;

END 1~ End of 2 1 3 1 */

IF (Free_Buffer_l1st '= empty) DO
BEGIN

IF (Buffer_strategy '= DISCARD) THEN
PUT the bottom page of the Free_Buffer_L1st
~nto the top of the local LRU stack,

ELSE
PUT the bottom page of the Free_Buffer_L1st
~nto the bottom of the local LRU stack,

TID_No_page_Alloc += 1,
END 1~ End of 2 1 3 2 */

END 1~ End of 2 1 3 */
END 1~ End of the 2 1 */

(Cant')

Figure 14. The Buffering Algorithm with
Simple Hint

63

2.2 IF (TID_Page_Request <= TID_No_Page_Alloc) DO
BEGIN

2.2.1 IF (page ~s ~n the Local LRU stack) DO
BEGIN

2.2.2

IF (Buffer_strategy I= DISCARD) THEN
PUT page to the top of the local LRU stack,

ELSE
PUT page to the,bottom of local LRU stack,

END /* ENd of the 2 2 1 */

IF (page ~s found ~n the Free_Buffer_L~st) DO
BEGIN

PUT bottom page of the local LRU stack
~nto the top of the Free_Buffer_L~st,

IF {Buffer_strategy 1: DISCARD) THEN
PUT found page ~n the top of the local LRU stack,

ELSE

64

PUT found page to the bottom of the local LRU stack,
UNLINK found page from the Free_Buffer_L~st,

2.2.3

END
END

END

END /* End of the 2.2.2 */

IF (page fault occurs) DO /* Do replacement */
BEGIN

END

PUT the bottom page ~n the local LRU stack
~nto the top of the Free_Buffer_L~st,

IF (Buffer_Strategy I= DISCARD) THEN

ELSE

PUT the bottom page of the Free_Buffer_l~st
to the top of the local LRU stack,

PUT the bottom page of the Free_Buffer_L~st
to the bottom of the local LRU stack,

I* End of the 2 2 3 */
I* End of the 2 2 *I
I* End of 2 */

I* End of the procedure *I

Figure 15. The Buffering Algorithm with
Simple Hint (Con't)

[SAC86]. The elegance of this scheme is that a hint can be

given when an access pattern is known by either the high

level software or the user and does not incur the complexity

of the buffering algorithm.

CHAPTER V

DISCUSSION AND COMPARISON WITH

OTHER MODELS

The Features of the IPOM Model

In this Chapter, a comparison between the design

schemes of the IPOM and that of other storage models is

presented. The design decision of the IPOM is made by first

surveying related models of storage systems, second

identifying the pros and cons of these models, and then

investigating possible design solutions to solve existing

problems. Based on this design approach, the design of the

IPOM is motivated by the following observations:

1) limited modeling pow8r: Some of current OODB systems

suffer from limited modeling power because they do

not directly support large and complex objects of

arbitrary levels.

2) indexing internally: Some of current OODB systems do

not support indexing objects internally. This may

contribute to the side-effect of supporting only

simple objects in their models.

3) partial-retrieval capability: None of current OODB

systems provide the flexibility for both "total

retrieval" and "partial retrieval" of large complex

65

attributes (objects) for efficiency.

4) inefficient file systems: Some of current OODB

systems suffer from poor performance due to

inefficient storage systems based on traditional

UNIX™ file systems.

66

5) copy-based interface: Most of OODB systems use copy

based interfaces [ST081] that affect performance

dramatically. It is expensive to copy and translate

every object in the database buffer pool into the

user address space.

6) buffering schemes: The buffer allocation and

replacement schemes (e.g. the global LRU

replacement scheme) of most OODB systems do not

consider the access patterns of some "hot spot

objects" such as indexing structures.

7) limited application domains: Most of current OODB

systems limit their application domain to

load/work/save (LWS) applications only. Query

processing capability is either not supported or

performed poorly. The latter is due to excessively

copying of every object between the database buffer

pool and query processing algorithms.

The IPOM storage model proposed differs from other

models of object storage systems mainly in its schemes to

solve the above problems. These schemes include the

following:

1) direct indexing support for complex attributes,

67

2) storage structures supporting "total-retrieval" and

"partial retrieval" of complex attributes including

tuples with large amounts of attributes,

3) uncopy-based buffer interfaces with cache strategy

option (selectively copy-based interfaces),

4) local allocation and replacement algorithm with

simple hint (KEEP/DISCARD) scheme.

A summary of comparison between the IPOM and other

models is given in Table 2. The rationale for IPOM to adopt

above schemes are discussed.(largely analysis) in the

following sections.

Architecture

The design of the architecture of the integrated

persistent object manager (IPOM) is inspired by those of

system R [AST76], EXODUS [CAR89], 02 [DEU90], ORION [KIM90],

Zeitgeist [FOR88]. These can be summarized as follows:

1) the research storage system (RSS) of the system R:

a. the relational storage interface (RSI) provides

simple record-at-a-time operators on relations

(the SQL cursor concept),

b. the transaction manager (TM) provides transaction

management concepts (transaction consistency and

locking, recovery), and

c. the database manager (DM) provides cache

Management, mapping persistent database objects

into main memory objects.

2) the storage manager of EXODUS provides support for

buffering, concurrency control and recovery, and

interfaces for manipulation of simple objects and

large objects.

3) the storage subsystem and transaction subsystem in

ORION provide support for persistent object

management and data sharing:

a. the transaction subsystem consists of deadlock

manager, lock manager, recovery manager, and log

manager.

68

b. the storage subsystem consists of access manager,

object buffer manager, page buffer manager, and

storage manager.

4) the persistent object store (POS) of Zeitgeist

consists of client interface, object translation

mechanism, the transport subsystem, the transaction

subsystem, and the storage server(s).

5) the storage system of 02 is an extension of the

Wisconsin Storage System (WISS) which provides

support for persistent structures, transaction, and

write-ahead log for recovery.

The latter three models of storage have the same

feature that employs a translation mechanism to translate

the database objects into in-memory objects.

69

TABLE II

COMPARISON OF IPOM AND OTHER MODELS

1\!JSistelt Cblqjex ' Bulfer Allocalion Concurrenc3 Recowry
SYSTEM OVec:t Attribl.t.e & Control SelEnE

Interlace ~ Buffering SciEI11!S

Complex Local

& Internally with a Smgle buffer
ftl(M set- groupmg keep/ copy&cachc: 2PL Undo log

onented mdexmg discard strategy
hmt

Srmple&
No Local

Smgle buffer Undo/Redo
EXODUS/E large non-copy 2PL log &

objects shadowmg

Sunple & No large "

ObjectStore complex tuple Global Memory
2PL Wnte-ahead

mapped log objects mdexmg scheme

Simple & Opttrmsttc
Collect! or Global Dual buffers & Shadowmg

Gemstone complex mdexmg copy-based pessumsttc mechanism objects (2PL)

Simple & No large Dual buffers
02 complex tuple Global copy-based 2PL Redo log

objects mdexmg

Arjuna Simple No Global
Dual buffers 2PL No objects copy-based

ORION
Simple & Smgle

Undo log& complex class Global Dual buffers Extended
objects mdexmg copy-based 2PL shadowmg

Simple No Global
Dual buffers 2PL No Zeitgeist objects copy-based

Stmple & No large
Opttrmstlc

Dual buffers &
ONTOS complex tuple Global copy-based pessumsttc Checkpomt

objects mdexmg (2PL)

Extended
ENCORE/ Simple No Dual buffers 2PL &

No
Observer objects Global copy-based comm.

modes

70

Storage and Grouping Module

It is obvious that storage models that do not support

complex objects will have limited modeling power. For

example, EXODUS/E, ENCORE/Observer, Arjuna, and Zeitgeist,

support only the simple object concept. As a consequence,

application programmers must take substantial coding efforts

to simulate the complex object notation. At the same time,

application programmers have to take care of the internal

structures of complex objects and indexing details related

to these complex objects in these systems.

Without directly indexing on complex states, some

models also suffer from waste of buffer space and I/O

bandwidth when retrieving the whole large complex state

within a complex object. We think support for direct

indexing on complex attributes is important due to the

following reasons:

1) First, such a scheme makes it possible to retrieve

the parts of a complex object that are actually

needed for applications without incurring

unnecessary disk I/O bandwidth and main memory

consumption;

2) Second, s~nce the index pages and data pages can be

distinguished by the storage system, it is possible

to employ more efficient concurrency control

protocol such as non-two phase concurrency control

mechanisms;

3) Third, in advance database applications, a large

71

tuple with large number of attributes is possible,

direct indexing can benefit retrieval and update of

any attribute of such structure.

The instances of a set is represented with a linked

list structure on disk in ORION. With large sets of

instances of a complex attribute, retrieving a specific

instance or some range of instances in the set's keyed

indexing structures such as B+ trees is more efficient than

it would be with only linked list structures which are

employed in ORION. None of the other models address or

handle the large tuple case. IPOM supports indexing on all

kinds of complex attributes including large tuples.

The Buffer Manager Module

One of the major objectives of the buffer manager

module of the IPOM is to avoid copying every object from the

database buffer pool and the user application space. We

adopt the uncopy-based buffer interface, as illustrated in

Figure 16, from the research system R [AST76]and EXODUS/E

[CAR89] with extension to support complex objects and the

cache strategy (selective copy-based interface) . The copy

based interface is illustrated in Figure 17. There are

three major drawbacks to using the copy-based interface

(dual buffer scheme) :

USER I

Direct

l
~i~ter

.

USERn

• • •

DBMS

.. -· - -·- ... - - - - - - - .. -

(a) Single-buffer scheme with
pointers that can directly
access objects in the buffer

USER I

I~
. .

USERn

• • •

DBMS

- _,_ -·- - - - - - - - .. - - - - - - - - -

(b) Single buffer scheme with
handles that can indirectly
access objects in the buffer

Fi gure 16. The Single Buffer Scheme wi thout
Copy-based Translat i on

72

USER! USERm USER! USERn

Handle

ID~t 1-; ~r
• • • I

Object Object Object
pool : pool pool : pool

~ (~.C2 ~ ~ It ~ 0

DBMS DBMS

- - - -·- - - - - - - - - - - - - - - ... - -

~ ... ~ ~ ... ~
~~ ~~

II \ l1' Jt"' '\'

(c) Dual-buffer scheme with
pointers to access objects
in the object buffer pool
within the user's address
space.

(d) Dual-buffer scheme with
handles to access objects
in the object buffer pool
within the user's address
space.

Figure 17 . The Dual-buffer Scheme with
Copy-based translation

73

74

1) The cost of copying objects from the system buffer

pool into the user application space is expensive.

According to Stonebreaker [ST081], the cost of

copying one byte (512 bytes) from the system buffer

pool into the user cache is about 1800 (5000)

instructions in PDP-11/70 running UNIX. Suppose a

fast CPU with 50Mhz clock rate (the system can

retrieve one instruction from the DRAM in 20

nanoseconds) is available, then it will take

approximately 36 ms to copy one byte. This is

about one disk I/O cost (average 25-50 ms) . More

precise simulation results also have been reported.

For example, Kim [KIM88] reported that the cost of

copying an object with a size of 30-150 bytes from

database buffer pool to user address space is

approximately the same as that of a disk retrieval.

2) The second major drawback of the dual buffer scheme

as indicated in [KIM90], is that query evaluations

must evaluate predicates twice, once in the object

buffer pool, the other in the database. This makes

the evaluation algorithms complicated because of

the different object formats in the object buffer

and database.

3) The third major drawback is the conversion cost

(translate the on-disk format of the whole complex

object into in-memory format) . It loads a complex

object into memory page by page. The incremental

75

transformation technique is not used in this case.

All other models except EXODUS/E use copy-based

approach partially due to their heap-based programming
\

environments. EXODUS/E does not support the complex object

concept and suffers from the problem of excessive calls to

its storage systems. IPOM not only extends uncopy-based

interface with the complex object concept but also uses the

cache strategy scheme to avoid unnecessary interface

crossing.

Finally, the traditional global LRU allocation and

replacement algorithm does not take into account database

access patterns. Stonebreaker [ST081] argued that the LRU

algorithm is not suitable as a database buffer replacement

algorithm and that some form of advice from the database

system is necessary. Our approach is to give this advice

from the system software (query evaluation plans) or users.

This hint is to KEEP the requested pages either on the top
\

or in the bottom of the local LRU stack. This scheme not

only makes buffer management more efficient but also does

not add too much complexity to the buffering algorithm.

CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In the past few years, OODB systems have received

great popularity in database community. A number of new

data models have also been proposed. Unfortunately, there

is little agreement about what an object-oriented database

system should be. Generally, OODB systems are criticized

for doing a poor job in terms of performance [JOS89] . This

is largely due to disk I/0, excessive interface crossing

between application programs and DB systems, without

partial-retrieval capability, and object translation cost.

The object translation cost includes the copy cost between

the database buffer pool and the object buffer pool in the

user address space. These problems are related to the

internal functionalities of an OODB system, that is, the

design of the persistent object storage system.

In this thesis, a persistent object storage model,

namely the integrated persistent object manager (IPOM) that

can be integrated into OOPL environment, is proposed. The

objective of IPOM design is to investigate a persistent

object storage system that provides support for persistence,

large and complex objects, efficient object management in

the buffer, and data sharing. We believe that the following

76

77

design factors can improve the performance of an OODB

system: first, the efficient and selective retrieval of sets

of complex objects; second, reduction of unnecessary copy

cost between the database buffer pool and the user address

space; third, an appropriate buffering scheme reducing

buffer contention between hot spot resource and regular data

with a simple hint algorithm. All these are pertinent to

the design of an integrated persistent object manager

(IPOM). The major contribution of this thesis is largely in

its analysis of how some ideas are useful for solving some

problems that arise in the context of the design of an OODB

system. The future work is to do some simulation studies

and subject to the results of these studies to implement a

prototye of the IPOM that uses these design schemes. At the

same time, the external functionality extension of the

target OOPL such as programming constructs to support the

generic model, the binding mechanism, and the user's

interface also need to be investigated.

It should be pointed out while the design of the

persistent object storage system is deemed important, there

are some important performance related research topics. For

example, query processing and selection of access paths in

OODB systems is one of the important directions. Parallel

processing in a multipropcessor environment is also an

important performance issue. Another research topic is to

investigate a single-level store scheme with potentially

unlimited main memory to improve performance.

BIBLIOGRAPHY

[AND87] Andrew, T. and Harris, C. "Combining Language and
Database advances in an Object-Oriented Development
Environment," Procs. ACM OOPSLA'87, 430-440,
(1987).

[AND91] Andrews, T., Harris, C., and Sinkel, K. "ONTOS: A
Persistent Database for C++," in Gupta R. and
Horowitz, E., editors, Object-Oriented Databases
~ Applications tQ ~' Networks, and YLSI ~'
387-406, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[AGR89] Agrawal, R. and Gehani, N. "ODE (Object Database
and Environment): The Language and the Data Model,"
Procs. ACM SIGMOD Conf. Qil Management Qf ~' 36-
45, Portland, Ore., (May 1989).

[ATK83] Atkinson, M. P., Chisholm, K. J., Cockshott, w. P.
and Marshall, R. "Algorithms for a Persistent
Heap," Soft. Pract. Experience, 13, 259-271 (1983).

[ATW91] Atwood, T. M. "The case for object-oriented
database," .l.E.EE. Spectrum, 44-47 (February 1991).

[AST76] Astrahan, M. M. et. al. "System R: Relational
Approach to Database Management," ACM Trans, Qil

Database Systems, 1(2), 97-137 (June 1976).

[BEM89] Bernstein, P. A. et al. "Future Directions in DBMS
Research," ACM SIGMOD, 18(1), 17-26 (March 1989).

[BER91] Bertino, E. and Martino, L. "Object-Oriented
Database Management Systems: Concepts and Issues,"
.l.E.EE. Computer, 33-47 (April 1991) .

[BL087] Bloom T. and Zdonik S. B. "Issues in the Design of
Object-Oriented Database Programming Languages,"
Procs, ACM OOPSLA'87, 441-451 (October 1987).

[BUT91] Butterworth, P., Otis, A., and Stein, J. "The
Gemstone Object Database Management System," ,CACM,
34(10), 64-77 (October 1991).

[CAR89] Carey, M. J., Dewitt, D. J., Richardson, J. E., and
Shekita, E .. J. "Storage Management for Objects in
EXODUS," in Kim, W. and Lochovsky, F. H., editors,

78

Object-Oriented Concepts, Databases, and
Applications, ACM Press, New York, NY, 341-370,
1989.

79

[CAR90] Carey, M. and Haas, L. "Extensible Database
Management Systems," AQ1 SIGMOD Record, 19(4), 54-
60 (December 1990).

[CH085] Chou, H-T., Dewitt J. D., Kate, R. H., and Klug, A.
C. "Design and Implementation of the Wisconsin
Storage System," Soft. Pract. Experience, 15(10),
943-962 (October 1985) .

[COC83] Cockshott, W. P. "Orthogonal Persistence," Ph.D.
Thesis, University of Edinburgh, February 1983.

[COM79] Comer, D. "The Ubiquitous B-tree," AC.M Computing
Suryeys, 11(2) 121-137 (June 1979).

[COP84] Copeland, G. and Maier, D. "Making Smalltalk a
Database System," Procs. ACM SIGMOD Conf. nn .t..he.
Management Qf ~' 316-325 (1984).

[DAT86] Date, C. J. An Introduction LQ Database Systems.
Volume 1, 4th ed., Addison-Wesley, 1986.

[DEU90] Deux, D. et al. "The Story of 02," .IEEE. Trans. nn
Knowledge and uata Engineering, 2(1), 91-108 (March
1990).

[DEU91] Deux, D. et al. "The 02 System," .cACM, 34 (10) , 34-48
(October 1991) .

[DIX89] Dixon, G. N., Parrington, G. D., Shrivastava, S.
K., and Wheater, S. M. "The Treatment of Persistent
Objects in Arjuna," Computer .J:......, 32(4), 323-332
(1989).

[EFF84] Effelsberg, W. and Haerder, T. "Principals of
Database Buffer Management," AC.M Trans . .Qll Database
Systems, 9(4), 560-595 (December 1984).

[ELM89] Elmasri, R. and Navathe S. B. Fundamentals Qf
Database Systems. Benjamin/Cummings, CA, 1989.

[FOL87] Folk, M. J. and Zoellick B. ~ Structures: A
Conceptual Toolkit. Addison-Wesley, 1987.

[FOR88] Ford, S. et. al. "ZEITGEIST: Database Support for
Object-Oriented Programming," Proc. Second Int.
Workshop on Object-Oriented Database Syst., Lecture
Notes in Computer Science, Springer-Verlag, 23-42,
1988.

[GRA78] Gray, J. Notes on Database Operating Systems.
Operating Systems: An Adyanced Course. Spring
verlag, New York, (1979).

[GOL83] Goldberg, A. and Robison, D. Smalltalk-80: Ihe
Language and ~ Implementation. Addison-Wesley,
Reading, MA 1983.

[HAN91] Hanson, E. N., Harvey, T. M., and Roth M. A.

80

"Experiences in DBMS Implementation Using an
Object-oriented Persistent Programming Language and
a Database Toolkit," Procs. ACM OOPSLA'91, 314-328,
(1991).

[HAE83] Haerder, T. and Reuter, A. "Principals of
Transaction-Oriented Database Recovery," ACM
Computing Surveys, 15(4), 287-317(December 1983).

[HOR87] Hornick, M. F. and Zdonik, S. B. "A Shared,
Segmented Memory System for an Object-Oriented
Database," ACM Trans . .Q.D. Office Info. Syst. 5(1),
70-95 (January 1987).

[JOE87] Joel, E. R. and Carey, M. J. "Programming
Constructors for Database system Implementation in
EXODUS," Procs. ACM SIGMOD Conf. nn Management .Q.t.
uata, 208-219 (May 1987).

[JOE89] Joel, E. R. and Carey, M. "Persistence in the E
Language: Issues and Implementation," Soft. Pract.
Experience, 19(12), 1115-1150 (December 1989).

[JOS91] Joseph, J. V., Thatte, S. M., Thompson, C. w., and
Wells, D. L. "Object-Oriented Databases: Design and
Implementation," Procs . .I.EE.E., 79 (1), 42-64 (1991) .

[KAT86) Katzan H. Operating System: A Pragmatic Approach.
Van Nostrand Reinhold Company Inc., 1986.

[KAT90] Kate, R. H. "Toward a Unified Framework for version
Modeling in Engineering Databases," .ru:l1 Computing
Surveys, 22(4), 375-408 (December 1990).

[KAZ88] Kazerooni-Zand, M. and Fisher, D. D. "Space
efficient Persistent B-tree," Procs. ACM Second
Workshop .Q.D. Applied Computing'88, Oklahoma, 295-318
(March 1988).

[KAZ89] Kazerooni-Zand, M. and Fisher, D. D. "Deletion on
Persistent B-tree," Procs. ACM Workshop .on Applied
Computing'89, Oklahoma, 90-96 (1989).

[KEE89] Keene, S. E. ObJect-Oriented Programming in COMMON
LIS£, Addison-Wesley, Reading, MA, 1989.

[KH086] Khoshaflan S. N. and Copeland, G. P. "ObJect
Identity," Procs. ACM OOPSAL'86 Conf., 406-416
(1986).

81

[KIM88] Kim, W., Chou, H., and Banerjee, J. "Operations and
Implementation of Complex Objects," .IEEE. Trans, nn
Software~' 14(7), 985-996 (July 1988).

[KIM89] Kim, w., Kim, K-C., and Dale, A. "Indexing
Techniques for Object-Oriented Database," in Kim,
W. and Lochovsky, F. H., editors, Object-Oriented
Concepts, Databases, and Applications, ACM Press,
New York, NY, 341-370, 1989.

[KIM90] Kim, W. Introduction ~ Object-Oriented Databases.
The MIT Press, MA, 1990.

[LAM91] Lamb, C., Landis, G., Orenstein, J., and Weinreb,
D. "The Objectstore Database System," .cACM, 34(10),
50-63 (October 1991).

[MAI89] Maier, D. "Making Database Systems Fast Enough for
CAD Applications," in Kim, w. and Lochovsky, F. H.,
editors, Object-Oriented Concepts, Databases, and
Applications, ACM Press, New York, NY, 573-582,
1989.

[MAI89] Maier D. ~ Isn't There an Object-Oriented~
Model? Computer Science TR CS/E-89-002, Oregon
Graduate Center, May 1989.

[MCL89] Mcleod, D. "1988 VLDB Panel on "Future Directions
in DBMS Research: A Brief, Informal Summary," .M:M
SIGMOD Record, 18(1), 27-30 (March 1989).

[PAU87] Paul, H.B. et al. "Architecture and Implementation
of the Darmstadt Database Kernel System," Procs,
ACM SIGMOD Conf. nn Management Qf ~' 196-207,
1987.

[PUR87] Purdy, A., Schuchardt, B., and Maier, D.
"Integrating an Object Server with Other Worlds,"
ACM Trans . ..Qll Office Info. Syst. 5(1), 27-47
(January 1987).

[SAC86] Sacco G. M. and Schkolnick, M. "Buffer Management
in Relational Database System," ACM Trans. nn
Database Systems, 11(4), 473-498 (December 1986).

[SHE92] Shen, T-C. and George, K. M. "A Taxonomy of Object
Oriented Database Systems Based on Persistence and
Data Sharing," Procs. International Association ..f.Qr.
Computer Information Systems, New Orleans, August
1992.

82

[SIL91] Silberschatz, A., Stonebraker, M. and Ullman, J.
"Database Systems: Achievements and Opportunities,"
~' 34(10), 110-120 (October 1991).

[STA84] Stamos, J. W. "Static Grouping of Small Objects to
Enhance Performance of a Paged Virtual Memory," ACM
Trans.~ Computer Systems, 2(2), 155-180 (May
1984).

[ST076] Stonebraker, M., Wong, E., and Kreps, P. "The
Design and Implementation of INGRES," ACM Trans.~
Database Systems, 1(3), 189-222 (September 1976).

[ST081] Stonebraker, M. "Operating System Support for
Database Management Systems,"~' 24(7), 412-418
(July 1981).

[STR86] Stroustrup, B. Iha ~ Programming Language. Addison
Wesley, 1986.

[WOE86] Woelk, D., Kim, W., and Luther, W. "Object-Oriented
Approach to Multimedia Database," Procs. ACM SIGMOD
Conf. ~ Management Qf ~' 311-325, May 1986.

APPENDIX

GLOSSARY

After image. The after image of object obj with respect to
transaction Ti is the (last) value written into obj by Ti.
It can be used to perform a redo operation.

Arjuna. Arjuna is an object-oriented programming system.

Atomicity. A series of database operations has an all or
nothing effect on the database: either all operations of a
transaction succeed or fail.

Bag. A bag is a set (collection) of elements of the same
data type with duplicates.

Binding. The process of connecting or applying the
description of the data (object) to the data (object)
itself.

Before image. The before image of a write(obj) operation is
the value of obj just before this operation executed. It
can be used to perform a undo operation.

Cascadelessness. A synonym for "avoiding of cascading
aborts."

Checkpointing. An activity that writes information to
stable storage during normal operation in order to reduce
the amount of work restart has to do after a failure.

Database operations. Operations on object that are
supported by a database system, typically read(obj) and
write(obj).

Class. A class is a set of objects that share a common
structure and a common behavior. It is an implementation of
an abstract data type.

Complex attribute. A complex attribute consists of any
combination of simple and complex attributes (set-valued,
tuple-valued, or sequence-valued attributes) •

83

84

Complex object. A complex object is an object that is
composed of a number of component objects, each of which may
in turn be composed of other component objects.

Data value identity. An object is identified by its content
as in relational databases where tuple objects are
identified by primary or secondary keys.

Dirty pages. A page whose dirty bit is set (iff the value
of the object(s) stored in that page was updated since it
was last flushed) is called a dirty page.

Encapsulation. Encapsulation is the process of hiding all
of the details of an object such as the structure of an
object and the implementation of its methods.

Extent. A number of contiguous physical storage blocks in
secondary storage.

Fixing(x). The buffer manager dperation that makes a buffer
slot x unavailable for flushing.

Flush. The buffer manager operation that writes an object
from a (dirty) page to stable storage.

FORCE. The FORCE scheme means that all modified pages are
written and propagated during end of transaction processing.
In this case no redo logging is required.

~FORCE (NO-FORCE) • The -FORCE scheme means that no
propagation is triggered during end of transaction
processing. In this case a redo logging is required in case
there is a system crash before the propagation is completed.

Granularity-hierarchy locking protocol. A locking method
where different transactions can lock different granularity
objects (data items) .

Hot spot. A portion of the database that is accessed very
frequently.

Inheritance. Inheritance is a mechanism for sharing
properties and methods among classes, subclasses, and
objects automatically. The subclass of a class (superclass)
inherits properties and methods from its superclass.

KEEP/DISCARD hint. An advice from the system or user to the
buffer manager indicating that the requested pages should be
kept either in the top or bottom of the local LRU stack.

Lifetime dimension. The lifetime dimension of an object
denotes the time interval between the time it was created
and the time it becomes inaccessible.

Lock coupling. The tree locking technique whereby a
transaction obtains locks on a node N's children before
releasing its lock on N.

Logical surrogate identity. The object identifier of an
object contains no information about location on secondary
storage (e.g., <node-ID>, <class-ID>, instance-ID)

85

Notify locks. A notify lock is issued by a transaction that
modifies an object locked by another transaction. Then,
this notification can be used by the lock holder to either
trigger a reread of the object or necessary operations to
resolve any inconsistencies.

Object. Generally, a conceptual entity is modeled as an
object. An object has state, behavior, and identity. In
our generic data model, an instance of tuple-valued, set
valued, or list-valued data type is an obJect.

Persistence. The property of an object by which exists
beyond the scope of the process that created or manipulated
it. That is, the maintenance of object over long periods of
time, independent of any programs that access the object.

Physical surrogate identity. The object identifier of an
object is a persistent object identifier such as a record
identifier or tuple identifier that represents stable
storage location (e.g., volume-ID, page/segment-ID, slot-Id,
<unique-ID/timestamp>) .

Pinning(x). See fixing(x).

Positional B tree. A positional B tree is a B tree index on
byte position with a large object and is used to represent
the large object .

Propagation. If dirty pages are not written to the same
blocks (not update-in-place), the procedure that writes an
updated control structure for mapping logical updated
page(s) to new block(s) into a stable storage after writing
dirty pages into new blocks, is called propagation. If
dirty pages are stored in different blocks (update-not-in
place), propagation can be repeated as often as wished.

Propagation-in-place. If dirty pages are always written to
the same blocks (update-in-place), the control structure for
mapping logical updated pages to the same physical blocks is
not changed. Thus, writing dirty pages into the same
physical blocks implicitly is the equivalent of propagation.

Redo scheme. The redo scheme states that before a
transaction can commit, the value it produced for each
object it wrote must be in stable storage (e.g. in the

stable database or the log) .

Recoverability. Recoverability means that the results of
partially completed transactions will not be visible to
other transactions. That is transaction Ti cannot commit
until all transactions that wrote values read by Ti are
committed.

86

Replacement strategy. The criterion according to which the
buffer manager chooses a page to flush in order to make room
for an object being fetched.

Representation dimens1on. The representation dimension of
an object denotes the mechanism to make an object
distinguishable from other objects. This can be a data
value identity, a user-defined name identity, a logical
surrogate identity, or a physical surrogate identity.

Resilience. The ability of an object to survive hardware
crashes and software errors without sustaining loss or
becoming inconsistent.

Reusability. In object-oriented paradigm, instantiation and
inheritance are two reusability mechanisms that make it
possible to reuse the same definition to generate objects
with the same structure and behavior.

Serializability. The serializability means that the result
of two interleaved transactions is as if one ran to complete
before the other started.

Simple attribute. A simple attribute is an attribute with
integer, string, Boolean, or float value.

Shadow page scheme. The shadow page scheme maintains two
copies of page tables. One is the current page table, the
other is the shadow page table which preserves the old state
of the database. New pages are created to reflect the
changes of a transaction and written to new blocks. If the
transaction aborts, the current page table is discarded and
the shadow page remains intact. When the transaction
commits the current page table replaces the shadow page
table to reflect the current state of the database.

Simple object. A simple object is a tuple-valued object
where each attribute is of atomic-value attribute.

STEAL. Modified pages may be flushed into stable storage
and/or propagated at any time. In this case undo logging is
required in case that the transaction is aborted.

~sTEAL (NO-STEAL) . Modified pages are kept in buffer at
least until the end of the transaction. In this case no

undo logging is required.

Strict 2PL. A two-phase locking protocol where the lock
manager releases all of the transaction's locks together,
after the transaction commits or aborts.

Strictness. A transaction is strict if it is recoverable
and cascadeless (avoiding cascading aborts.)

87

Structural mismatch. The data manipulation language of a
database does not support the same data types as a general
purpose computational language.

Swizzle. The procedure that translates the physical
identity format of an object into a virtual memory address
format is called "swizzling".

Typeless storage. In traditional file system, the file
object has no notion of data types except the notion of
uninterpreted byte-strings.

Two-phase locking (2PL) protocol. The locking protocol in
which each transaction obtains a read (or write) lock on
each object before it reads (or writes) that object, and
does not obtain any locks after it has released some locks.

Undo scheme. The undo scheme states that if an object's
location in the stable database presently contains the last
committed value of the object, then that value must be saved
in stable storage before being overwritten in the stable
storage by an uncommitted value.

Onfix(x). The buffer manager operation that makes a
previously pinned page x again available for flushing.

Onpin(x). See Unfix(x).

Write-ahead-log (WAL) . The WAL protocol requires undo
information be written to the log file before the
corresponding updates are written to the stable storage. If
a transaction is incomplete, the undo log is used to
rollback the transaction.

Zeitgeist. An object-oriented database system developed by
Texas Instruments.

J

VITA

TEH-CHEN SHEN

Cand~date for the Degree of

Master of Science

Thesis: AN INTEGRATED PERSISTENT OBJECT MANAGER (IPOM): A
MODEL TO SUPPORT PERSISTENCE AND DATA SHARING IN
OBJECT-ORIENTED DATABASE SYSTEMS

"
Major Field: Computer Science

Biographical:

Personal Data: Born in Taiwan, February 29, 1960, the
son of La-Sheng Shen and Tao-Mei Shen-Wu.

Education: Graduated from Ming-Hsin Engineering
College, Taiwan, in June 1980; received Bachelor
of Science Degree in Mechanical Engineering from
National Taiwan Institute of Technology, Taiwan,
ROC, June 1985; completed requirements for the
Master of Science Degree at Oklahoma State
University in December 1992.

Professional Experience: Mechanical Technician,
Department of IC Production, RCA Ltd. Corp.,
Taiwan, ROC, June 1982, to July 1983; Mechanical
Engineer, Department of Operation, Shen-Ao Steam
Power Plant, Taiwan Power Company, Taiwan, ROC,
June 1985, to July 1990.

