
PARALLELIZATION OF THE FAST

ALGORITHM FOR COMPUTATION

OF DOMINATORS IN A

FLOW GRAPH

By

SHARMILA SHANKAR
II

Bachelor of Science
University of Poona

Poona, India
1985

Master of Science
Indian Institute of Technology

Bombay, India
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
July, 1992

PARALLELIZATION OF THE FAST

ALGORITHM FOR COMPUTATION

OF DOMINATORS IN A

FLOW GRAPH

Thesis Approved:

eanof the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation, thanks and

deep sense of gratitude to Dr. Blayne Mayfield for his

constant encouragement and advice throughout my thesis

research. I wish to thank Dr. David Miller for his helpful

suggestions throughout the study and for serving on my

graduate committee. I would also like to place on record my

thanks to Dr. John P. Chandler for serving on my graduate

committee.

I would also like to thank my sister Suchorita, and

most of all my parents, Ashish and Kamala Mookerjee for

their unflinching, unquestioned, and constant support in

everything that I ha,ve done so far. I wish to thank my

husband Shankar for his love, understanding, moral support

and his strong belief in my abilities, which helped me to

give my thesis the present orientation and form.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. . . • • . • • • . 1

II. LITERATURE REVIEW. • 7

2.1 Graph Theory Preliminaries............. 7
2.2 Fast Algorithm for Dominators.......... 9
2.3 Parallel Depth-First Search in General

Graphs. 11

III. THE FAST ALGORITHM. 13

3.1 The Fast Algorithm Preliminaries 13
3.2 The Fast Algorithm •.................... 13

IV. THE PARALLEL ALGORITHM. • • . • 19

4.1 The Parallel Algorithm Preliminaries ... 19
4.2 The Parallel Algorithm .•.•......•...... 21

V. THE RANDOM GENERATION ALGORITHM 25

5.1 The Random Generation Preliminaries 25
5.2 The Connectivity Algorithm •............ 25
5.3 The Random Generation Algorithm 26

VI. RESULTS. • • . • • . • • 2 7

VII. SUMMARY AND CONCLUSIONS 29

BIBLIOGRAPHY•.....•.•••...•.•.. 8 • • • • • • • • • • • • • • • • 31

APPENDIXES. 3 5

APPENDIX A - EXAMPLES FOR THE FAST AND
PARALLEL ALGORITHMS .••.............. 36

APPENDIX B - RESULTS. • • • • . • 4 0

APPENDIX C- FAST ALGORITHM PROGRAM LISTING 53

APPENDIX D- PARALLEL ALGORITHM PROGRAM LISTING .. 60

APPENDIX E- RANDOM GENERATION PROGRAM LISTING ... 70

iv

APPENDIX F - USER MANUAL. • 7 5

v

LIST OF TABLES

Table Page

I. Adjacency Matrix for Figure 6•............. 38

II. Dominator Table for Figure 6 ••••••••••••••••.•. 39

III. Analysis of the Fast and Parallel Algorithms
Processing Times in seconds 41

IV. Analysis of the Fast and Parallel Algorithms
Average Processing Times in seconds 48

vi

LIST OF FIGURES

Figure Page

1. Computer Program Modeled by a Graph............... 2

2 • Block Structure. 4

3. Dominance Relations with each block pointing to
its immediate predominator...................... 5

4. A Flowgraph....................................... 10

5. Dominator Tree of flowgraph in Figure 4 11

6. Control Flow Graph [MCCA76] for # of
vertices = 12 . .•.....••...• '· . . • . • • • . 3 7

7. Number of Vertices vs. Processing Times for the
vertex range 5-100. • . . • . • . . . • 49

8. Number of Vertices vs. Processing Times for the
vertex range 50-150. • • • . . • • . . . • . 50

9. Number of Vertices vs. Processing Times for the
vertex range 5-100 for the parallel algorithm •.• 51

10. Number of Vertices vs. Processing Times for the
vertex range 50-150 for the parallel algorithm .. 52

vii

CHAPTER I

INTRODUCTION

It is imperative that software quality be a primary

concern in any software development effort, the prime

objective being the efficiency of computer programs. Every

computer program can be visualized as a flowgraph {See

definition in Section 2.1) of edges and vertices [ROBIBO] as

shown in Figure 1 {page 2) with its branch {or decision

points) represented by vertices, and the program codes

between branch points represented by edges. The dominators

{See definition in Section 2.1) problem arises in the study

of global data flow analysis and object code optimization

[LENG79].

The compilation process converts programs from a form

which is flexible to a form which is efficient in a given

computing environment. Compiler writers are challenged on

the one hand by increasingly complex hardware and on the

other hand by the fact that much of the complexity and

rigidity of large, costly programs results from conscious

efforts to build in efficiency. Methods of analyzing the

control flow and data flow of programs during compilation

are applied to transforming the program to improve object

time efficiency. Dominance relationships, indicating which

1

2

statements are necessarily executed before others, are used

to do global common expression elimination and loop

identification [LOWR69].

T
I '! f(x)

T
u = g(v)

Figure 1. Computer Program modeled by a graph

3

The class of problems arising while analyzing computer

programs for code improvement known as the "global data flow

analysis problems" [HECH75], involve the local collection of

information distributed throughout the program. Some

examples of global data flow analysis problems are

"available expressions" (expressions such as A+B are

available at point p in a flow graph if every sequence of

branches which the program may take to p causes A+B to have

been computed after the last computation of A or B), "live

variables" (variables are live in a flow graph if their

current value might be used before they are redefined), and

"very busy variables" (variables are busy at a point in the

program if at t~at point they contain data that will be

subsequently fetched).

In the arithmetic translator the program is broken into

computational blocks whose relationship is represented by a

directed graph (See definition in Section 2.1) that

illustrates the flow of control through the program, with

each block consisting of a sequence of statements, only the

first of which may be branched to, and only the last of

which contains a branch as shown in Figure 2 (page 4).

The idea of dominance relations between the blocks of a

program is suggested by Lowry and Medlock. A block I

"predominates" a block J if every path along a sequence of

successors from a program entry block to J always passes

through I as shown in Figure 3 (page 5). The relation is

transitive : If I predominates J and J predominates K, then

I predominates K.

(RETURN)

Figure 2. Block structure

4

Figure 3. Dominance relations with each block pointing to
its immediate predominator

5

6

The dominators problem is relatively new and not much

extensive study has been done in this area. Lengauer and

Tarjan have developed a fast algorithm for finding

dominators in a flowgraph using one of the useful tools in

graph theory, the "backtracking technique", namely the

depth-first search technique [TARJ72], a technique which not

only gives the vertices reachable (See definition in Section

2.1) from the start vertex of the search, but also enough

information about the connectivity (See definition in

Section 2.1) structure of the graph to efficiently determine

the dominators [LENG79].

Concurrent (parallel) programming has become important

in recent years because of its attractive feature of

speeding up program execution [GEHA88]. Aggarwal, Anderson

and Kao [AGGA90] have provided the parallel depth-first

search algorithm for general directed graphs.

This thesis involves the comparative analysis of the

fast algorithm by Lengauer and Tarjan and the parallel

algorithm in which case the depth-first search in the fast

algorithm is replaced by the parallel depth-first search by

Aggarwal, Anderson and Kao, both of which rely upon a graph­

theoretic matrix-based approach.

CHAPTER II

LITERATURE REVIEW

2.1 Graph Theory Preliminaries

This section introduces the graph theory preliminaries

used throughout this thesis. It is essentially a

compilation of all the graph-theoretic terminology used in

this document.

DIGRAPH (DIRECTED GRAPH): A digraph is an ordered pair

(V,E) where V is a finite set of vertices, and E is a

relation on V. The elements of E are called the edges of

the digraph. For every pair of vertices u,v ~ V, the set of

edges E will contain at most one edge (u,v) from u to v, and

at most one edge (v,u) from v to u. If (u,v) ~ E, we say

that u precedes v or is an antecedent of v [SKVA86].

STRONG COMPONENT: The set of vertices in a digraph D can be

partitioned into equivalence classes, and by giving each

equivalence class all the vertices connected to one another,

the connected subgraphs of a graph, called its components,

can be constructed [SKVA86].

If u is a point in a digraph D then the set of vertices

that belong to the equivalence class of u is called the

component (or, alternatively, a strong component) of u,

which is symbolized by C(u). Since components are

7

8

equivalence classes, the components defined by two points

are either the same or have no points in common [ROBI80].

STRONGLY CONNECTED GRAPH: A digraph with one strong!
I component is called strongly connected. :

STRONGLY CONNECTED COMPONENTS: Graphs Gi = (Vi, Ei) are

strongly connected components of a directed graph G = (V,E),

where V is partitioned into equivalence classes Vi, ~ < i ~

r, such that vertic~s v and w are equivalent iff there is a

path from v to w ~nd a path from w to v and Ei, 1 < i 5 r,

the set of edges connecting the pairs of vertices in 'vi.

SUBGRAPH: A graph G1 = (V1,E1) is a subgraph of G if V1 ~ V

and E1 ~ E.

FLOWGRAPH: G = (V, E, r) is a directed graph (V, E) with a

distinguished start vertex r such that for any vertex v ~ V

there is a path from r to v.

SPANNING TREE: T if G = (V, E) is a graph and T = (V',E',r)

is a tree such that (V',E') is a subgraph of G and V = V'.

DOMINATOR: A vertex v is the dominator of another vertex w

tv in a flowgraph G = (V,E,r), r being the start vertex, if

every path from r to w contains v.

IMMEDIATE DOMINATOR: Vertex v is the immediate dominator of

w, if v dominates w and every other dominator of w dominates

v.

SEMIDOMINATOR: is min{vlthere is a path v = vo,v1,····,vk =
w such that Vi > w for 1 ~ i < k-1}.

REACHABLE: A vertex w is reachable from vertex v if there

is a path from v to w.

9

CONNECTIVITY: There is a path between any two vertices.

ADJACENCY MATRIX: Two nodes v 1 , v 2 ~ V in the digraph D =

(V,E) are adjacent if there exists either of the two edges:

(v1, v2) or (v2, v1) ~ E. Either a digraph D, its adjacency

matrix A(D), is defined by

A{D) = [aij]i

where aij =

i, j = 1, 2, ••• , n,

1, if {Vi,Vj) ~ E

o, otherwise

2.2 Fast Algorithm for Dominators

There have been several attempts made for finding

dominators in directed graphs.

Aho and Ullman [AH072) came up with the algorithm for

finding dominators by deleting each vertex v in turn from G

(a directed graph) and testing which vertices are reachable

from s (start vertex), thus showing that any reachable

vertex is not dominated by v. Their algorithm required

O{V(V+E)) time if the problem graph had V vertices and E

edges.

Purdom and Moore [PURD72] had the same time bound as

the Aho and Ullman's algorithm. The algorithm by Tarjan

[TARJ74] used depth-first search and efficient algorithms

for computing disjoint set unions and manipulating priority

queues to achieve a time bound of O{V log V + E) if V is the

number of vertices and E is the number of edges in the

graph.

10

Lengauer and Tarjan (LENG79] developed a fast algorithm

using depth-first search for finding dominators in a

flowgraph running in O(m log n) time, where m is the number

of edges and n is the number of vertices in the problem

graph. Given a arbitrary flowgraph as shown in Figure 4

below, the algorithm constructs a dominator tree as shown in

Figure 5 (page 12).

Figure 4. A flowgraph

11

Figure 5. Dominator tree of flowgraph in Figure 4

The fast algorithm carries out a sequential depth-first

search of the problem graph, i.e. the construction of a

depth-first spanning tree numbering the vertices as they are

reached during the search, followed by the computation of

the semidominators of all the vertices in decreasing order

by number. Then the immediate dominator of each vertex is

implicitly defined followed by the explicit definition of

the immediate dominator of each vertex carrying out the

computation vertex by vertex in increasing order by number.

2.3 Parallel Depth-First Search in General

Digraphs

Depth-First Search or the "backtracking technique" is

one of the most useful tools in graph theory. In the

setting of parallel computation, various studies were

conducted on this technique.

12

For lexicographic depth-first search, Ghosh and

Bhattacharjee provided an algorithm (GHOS84]. For unordered

depth-first search, Smith (SMIT86] provided with an

algorithm for undirected graphs. He and Yesha (HE88] came

up with an algorithm for undirected graphs. Aggarwal and

Anderson (AGGA88] provide an algorithm for general

undirected graphs.

Aggarwal, Anderson and Kao (AGG90] have presented a

general directed depth-first search algorithm which uses a

"divide-and conquer" strategy which is similar to that used

by Aggarwal and Anderson (AGGA88] for general undirected

depth-first search. The concept of "directed cycle

separators" defined by Kao (KA088] is used in this

algorithm.

At the highest level, the algorithm finds and removes a

portion of a depth-first search tree of a directed graph.

The algorithm then recurses on strongly connected components

as well as certain weakly connected subgraphs of the

resulting graph. The parallel computation model used for

the algorithm is the EREW PRAM model, i.e., no two

processors are allowed to simultaneously read from or write

into the same memory cell.

CHAPTER III

THE FAST ALGORITHM

3.1 The Fast Algorithm Preliminaries

This chapter focuses on the graph-theoretic, matrix

-based approach to study the fast algorithm by Lengauer and

Tarjan to find dominators in a flowgraph.

The approach used in this thesis makes the following

assumptions:

1. For a given program we can draw a directed graph (known

as the program control flow graph) with unique entry and

exit vertices;

2. Each vertex in the graph corresponds to a block of code

in the program with the flow within each block being

sequential;

3. Each edge in the directed graph corresponds to the

branches taken in the program; and

4. Each vertex can be reached from the entry vertex and

each vertex can reach the.exit vertex.

3.2 The Fast Algorithm

This algorithm is aimed at construction of the

dominator tree of an arbitrary flowgraph which represents a

13

program, from the adjacency matrix of its control flow

graph. The algorithm is outlined below.

1. Develop the directed graph representation (i.e., the

control flow graph) of a given program.

14

2. Develop the adjacency matrix of the control flow graph.

The adjacency matrix is the input.

3. Carry out depth-first search of the problem graph.

Number the vertices from 1 to n as they reached during

search. Initialize the variables used in succeeding

steps. This generates a spanning tree rooted at the

start vertex with the vertices numbered in preorder.

4. Compute the semidominators of all vertices. Carry out

the computation vertex by vertex in decreasing order by

number.

5. Implicitly define the immediate dominator of each

vertex.

6. Explicitly define the immediate dominator of each

vertex, carrying out the computation vertex by vertex in

increasing order by number.

The implementation of the algorithm uses the following

arrays:

Input

succ(v):

computed

parent(w):

The set of vertices w such that (v,w)

is an edge of the graph.

The vertex which is the parent of vertex

w in the spanning tree generated by the

pred(w):

semi (w):

vertex(i):

bucket(w):

dom(w) :

15

search.

The set of vertices v such that (v,w} is

an edge of the graph.

A number defined as follows:

(i} Before vertex w is numbered,

semi(v} = 0.

(ii) After w is numbered but before its

semidominator is computed, semi(w}

is the number of w.

(iii} After the semi dominator of w is

computed, semi(w} is the number of

the semidominator of w.

The vertex whose number is i.

A set of vertices whose semi dominator is

w.

A vertex defined as follows:

(i) After step 3, if the semidominator

of w is its immediate dominator,

then dom(w} is the immediate

dominator of w. Otherwise dom(w}

is a vertex v whose number is

smaller than w and whose immediate

dominator is also w's immediate

dominator.

(ii} After step 4, dom(w} is the

immediate dominator of w.

16

The following is the complete listing of the Algol-like

version of the fast algorithm:

procedure DOMINATORS(integer set array succ{l::n);integer

r,n;integer array dom(l::n));

begin

integer array parent, ancestor, vertex{l::n);

integer array label, semi(O::n);

integer set array pred, bucket(1::n);

integer u, v, x;

procedure DFS(integer v);.

begin

semi(v) := n := n + 1;

vertex(n) := label(v) := v;

ancestor(v) := o;

for each w ~ succ(v) do

if semi(w) = 0 then parent(w) := v; DFS(w) fi;

add v to pred(w) od

end DFS;

procedure COMPRESS(integer v);

if ancestor(ancestor(v)) = o then

COMPRESS (ancestor (v)). ;

if semi(label(ancestor(v))) < semi(label(v)) then

label(v) := label(ancestor(v)) fi;

ancestor(v) := ancestor(ancestor(v)) fi;

integer procedure EVAL(integer v);

if ancestor(v) = o then EVAL := v

else COMPRESS(v); EVAL := label(v) fi;

procedure LINK(integer v,w);

ancestor(w) := v;

step1: for v := 1 until n do

pred(v) := bucket(v) := o; semi(v) := 0 od;

n := o;

DFS(r);

for i := n by -1 until 2 do

w := vertex(i);

step2: for each v ~ pred(w) do

u := EVAL(v);

17

if semi(u) < semi(w) then semi(w) := semi(u) fi od

add w to bucket(vertex(semi(w)));

LINK(parent(w),w);

step3: for each v ~ bucket(parent(w)) do

delete v from bucket(parent(w));

u := EVAL(v);

dom(v) := if semi(u) < semi(v) then u

else parent(w) fi od od;

step4: i := 2 until n do

w := vertex(i);

if dom(w) = vertex(semi(w))

then dom(w) .- dom(dom(w)) fi od;

dom(r) := o;

end DOMINATORS;

The algorithm uses path compression (the technique

which changes the structure of the tree during a find

18

operation by moving vertices closer to the root) to improve

its performance greatly [TARJ79].

The application of the fast algorithm to an example

graph from McCabe's work [MCCA76] appears in Appendix A and

the performance of the algorithm is seen in an graphical

representation in the Figures 7 and 8 in Appendix B.

CHAPTER IV

THE PARALLEL ALGORITHM

4.1 The Parallel Algorithm Preliminaries

This section deals with the preliminaries required for

the discussion of the parallel algorithm. The algorithm

follows the same assumptions made for the fast algorithm in

Section 3.1.

The parallel algorithm makes use of the Sequent's

(Sequent Symmetry S81 with 24 80386 processors running at

20Mhz each with the Dynixfptx 1.3 as the operating system)

support for parallelism and its characteristics [GUID85].

The algorithm makes use of some elements of parallel

programming such as creation and termination of multiple

processes, creation of shared and private data, scheduling,

the division of computing tasks among parallel processes,

task synchronization and mutual exclusion. The algorithm

involves multitasking which is a programming technique that

allows a single application to consist of multiple processes

executing concurrently. The data partitioning multitasking

programming method is used and involves creating multiple

identical processes and assigning a portion of the data to

each process. Dynamic scheduling for scheduling the tasks

among processes is used by the algorithm because of its

19

20

feature that each process checks for tasks at run time by

examining a task queue or a "do-me-next" array-index and

thus provides dynamic load balancing: all processes keep

working as long as there is work to be done and since the

work is evenly distributed among the processes, the work can

be completed sooner. Thus dynamic scheduling has an

advantage over static scheduling which provides static load

balancing: since the division of tasks is statically

determined, several processes may stand idle while one

processor completes its share of job. The dynamic

scheduling algorithm is:

1. Wait until some tasks appear.

2. Remove the first task from the list and do it.

3. If there are any more tasks, go to step 2. Otherwise

go to step 1.

To protect code sections that contain dependent

variables to yield correct results, thus providing mutual

exclusion, locks (a semaphore -which ensures that only one

process at a time can access a shared data structure or

execute a critical region of code) are used.

Synchronization of processes i.e, a process waits at a

barrier .(A synchronization point) after finishing its job

for the other processes to come and join, is done by the

algorithm. since a fork operation involves a lot of CPU

overhead (Time and computation not spent in calculating the

result of a program) time, the child processes were parked

21

and then released whenever needed by the algorithm and only

killed when the parallel depth first search was done.

Reasonable typical model of parallel processing is

considered [ECKS77]. There are k identical processors, each

with a CPU capable of performing typical operations such as

arithmetic, comparisons, and boolean operations and each

with a label between 1 and k which identifies. A single

arbitrary large memory is available to all the processes for

manipulation of data. Different processors are not allowed

to read from the same memory location simultaneously, may

write into different memory locations but must not attempt

to write into the same memory simultaneously. A global

control unit must be capable of synchronizing the various

processes. The code is delineated syntactically as:

instruct processor(i); 1 <= i <= j;

sequence of instructions;

end instruction;

and has j <= k processors executing simultaneously.

Execution cannot resume after the end instruction until all

the processors have completed execution of the delineated

sequence of instructions.

4.2 The Parallel Algorithm

This algorithm is aimed at computing the dominators of

a structured program from the adjacency matrix of its

control flow graph.

22

The algorithm implements the depth first search in a

parallel form [AGGA90]. The vertices of a graph G are

represented by the integers 1 ·to n. An adjacency list

matrix representation of G is constructed from the adjacency

matrix, and is a n x (n-1) matrix ALM such that 1 <= i <= n,

row i consists of the list of vertices that are heads of

edges with tail i. Associated with the adjacency list

matrix is an n-vector of end markers EM where EM(i) contains

the index j of the last vertex in the ith row of the

adjacency list matrix. This setup helps different

processors to simultaneously examine successive vertices to

see whether they are "unvisited" or not. An "unvisited"

adjacency list U(v) is created which lists all the vertices

adjacent to v and are still labeled "unvisited". As soon as

a vertex w is "visited", it is removed from the adjacency

lists U(v) for all v adjacent to w. All the "visited"

vertices are added to the ARC LIST list and the "unvisited"

vertices are added to the FROND LIST list. The deletion of

a newly "visited" vertex v, from the lists U(w) for all w

adjacent to v are performed in parallel.

The Algol-like version code of the algorithm (PMDFS) is

outlined below:

begin

for each v ~ V do initialize ARC_LIST(v)

and FROND_LIST{v) as null lists;

mark every vertex "unvisited";

v = start vertex;

23

FATHER(v) = 0;

NUMB VERTICES VISITED = 0;

pmdfs(v);

procedure pmdfs(v);

begin

comment v is the vertex being searched from;

mark v "visited";

NUMB VERTICES VISITED = NUMB VERTICES VISITED + 1;

NUMBER(v) = NUMB_VERTICES_VISITED;

instruct processor(i); 1 <= i <= k;

for j = 1 to floor(EM(v)/k) do

if (k * (j - 1) + i) <= EM(v)

then begin

w(i) = ALM(v,k * (j- 1) + i);

delete v from U(w(i));

if w(i) is "unvisited"

then add v to FROND_LIST(w(i));

end;

end instruction;

for w ~ U(v) do

begin

FATHER(w) = v;

add w to ARC_LIST(v);

remove v from the end of FROND_LIST(w);

pmdfs(w);

end· __ ,
end· __ ,

24

end

Thus the above algorithm replaces the sequential depth

first search strategy in the fast algorithm by Lengauer and

Tarjan. The start vertex is identified as the directed

cycle separator since it is a cycle of length zero and the

removal of this vertex separates the graph to start with.

The implementation of the algorithm uses the same

arrays as the fast algorithm given in Section 3.2.

The application of the parallel algorithm to an example

graph from Mccabe's work [MCCA76] appears in Appendix A and

the performance of the algorithm running on different

processors as well as the comparison of the algorithm with

the fast algorithm is seen in the Figures 7, 8, 9 and 10 in

Appendix B.

CHAPTER V

THE RANDOM GENERATION ALGORITHM

5.1 The Random Generation Preliminaries

This chapter focuses on the graph-theoretic, matrix­

based approach to generate random flowgraphs and use the

generated flowgraphs to run the fast algorithm by Lengauer

and Tarjan and the parallel algorithm developed using the

parallel depth-first search algorithm by Aggarwal, Anderson

and Kao to get comparative results. These comparative

results are then graphically represented as shown in

Appendix B.

5.2 The Connectivity Algorithm

The input to the fast and parallel algorithms is a

connected graph. The Connectedness Algorithm [AH074] needs

for its input a directed graph G = (V,E) and labeling

function 1 which is defined as

1, if(v,w) is an edge

l(v,w) =

0, if not

and is the adjacency matrix for the given graph. For the

connectedness of the given graph, the reflexive-transitive

25

26

closure of the graph has to be calculated. The output is

the calculation of c(vi,Vj) which is the sum over all the

paths from Vi to Vj of the label of the path. The algorithm

will return c(vi,Vj) to be equal to 1 for all i and j

between 1 and n if the graph is connected.

The algorithm is as follows :

begin

for i = 1 until n do co .. 11 = 1 + l(Vi 1 Vj)

for 1 <= i, j <= n and i = j do cO .. 1] = l(vi,Vj)

for k = 1 until n do

for 1 <= i, j <= n do

ck .. = ck-1 .. + ck-1. . ck-1 .
1) 1) 1k k]

for 1 <= i, j <= n do c(vi,Vj) = en .. 1]

5.3 The Random Generation Method

The approach used in the algorithm is the generation of

the random adjacency matrices which has as its contents O's

and 1's. These O's and 1's are randomly obtained by running

the random generator [PARK88). Then the adjacency matrices

are tested for the property of connectedness using the

connectedness algorithm described in Section 4.1. Only

connected graphs are generated. Then using these adjacency

matrices the fast and the parallel algorithms are run with

the variable parameters - the adjacency matrix, the number

of vertices, the start vertex and the number of processors

asked for by the user (in the case of the parallel

algorithm).

CHAPTER VI

RESULTS

Experiments were performed in order to compare the

performance of the fast algorithm with that of the parallel

algorithm. The fast algorithm Algol version was translated

into c. The parallel algorithm was developed by using the

parallel depth-first search approach by Aggarwal, Anderson

and Kao in the fast algorithm and translated in C. Both the

programs were separately tested out initially on the

flowgraphs given in the Mccabe's paper [MCCA76].

Rigorous testing was done by the development of an

algorithm which generated 10 random flowgraphs (connected)

per vertex for vertices ranging from 5 to 150 in steps of 5,

in form of adjacency matrices. These matrices were then

used to run the fast and the parallel programs (for the

parallel program the number of processors varied from 1 to

16 in powers of 12) and the processing times were formed in

a tabular form. Tables III and IV and Figures 7, 8, 9, 10

in Appendix B illustrate the results.

TABLE IV was formed from TABLE III recording the

average processing times. TABLE IV in Appendix B was then

plotted into four graphs. Figure 7 shows the graphs of fast

algorithm and the parallel algorithm running on one

27

28

processor in the vertex range of 5 to 100. Figure 8 shows

the graphs of fast algorithm and the parallel algorithm

running on one processor in the vertex range of 50 to 150.

Figure 9 shows the performance of the parallel algorithm

running on number of processors = 1, 2, 4, 8, 16 with the

vertex range between 5 to 100. Figure 10 shows the

performance of the parallel algorithm running on number of

processors = 1, 2, 4, 8, 16 with the vertex range between 50

to 150.

Figures 7 and 8 show that the fast algorithm has a

better performance than the parallel algorithm for

comparatively smaller graphs. As the number of vertices

increase and the graphs become larger, the parallel

algorithm beats the fast algorithm.

Figures 9 and 10 show that the performance of the

parallel algorithm improves with the number of processors

increasing.

Therefore for number of processors = 16, the

performance of the parallel algorithm is the best.

CHAPTER VII

SUMMARY AND CONCLUSIONS

The main theme of this thesis was the comparative

analysis of the dominators fast algorithm by Lengauer and

Tarjan and the parallel algorithm developed by using the

algorithm by Aggarwal, Anderson and Kao in the fast

algorithm, using a graph-theoretic matrix-based approach.

The approach used in this thesis relies upon the following

assumptions:

1. For a given program we can draw a directed graph (known

as the program control flow graph) with unique entry and

exit vertices;

2. Each vertex in the graph corresponds to a block of code

in the program with the flow within each block being

sequential;

3. Each edge in the directed graph corresponds to the

branches taken in the program; and

4. Each vertex can be reached from the entry vertex and

each vertex can reach the exit vertex.

Essentially, these assum~tions convey the notion that

the algorithms developed as part of this thesis apply only

to structured programs.

29

The parallel algorithm approach proved to be the

improved version of the fast algorithm. As the number of

processors were increased, the parallel program performed

even better. Looking at the trends which are seen in the

graphs in Appendix B, the fast algorithm has a better

performance than the parallel algorithm for smaller graphs

but as the number of vertices increase, the performance of

the parallel algorithm is better.

30

Therefore it can concluded that the parallel depth­

first search strategy by Aggarwal, Anderson and Kao improved

the performance of the fast algorithm by Lengauer and

Tarjan.

BIBLIOGRAPHY

[AGGA88]
A. Aggarwal and R. J. Anderson, "A Random NC Algorithm For
Depth First Search", Combinatorica, Vol. 8, pp. 1-12, 1988.

[AGGA90]
Alok Aggarwal, Richard J. Anderson and Ming-Yang Kao,
"Parallel Depth-First Search in General Directed Graphs",
SIAM Journal on Computing, Vol. 19, ~o. 2, pp. 397-409,
April 1990.

[AH072]
A. V. Aho and J. D. Ullman, The Theory of Parsing,
Translation, and Compiling, Vol II: Compiling, Prentice­
Hall, Englewood Cliffs, N.J., 1972.

[AH074]
A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading MA,
1974.

[ANDE87]
R. Anderson, "A Parallel Algorithm For The Maximal Path
Problem", Combinatorica, Vol. 7, No. 4, pp. 315-326, 1987.

[COPP87]
Don Coppersmith and Shmuel Winograd,, "Matrix Multiplication
Via Arithmetic Progressions", Proc. 19th Anuual ACM
Symposium on Theory of Computing, Association For Computing
Machinery, pp. 1-6, 1987.

[ECKS77]
Denise M. Eckstein and Donald -A. Alton, "Parallel Graph
Processing Using Depth-First Search", Proceedings of a
Conference on Computer Science, pp. 21-29, 1977.

[EVEN75]
Shimon Even and R. E. Tarjan, "Network Flow And Testing
Graph Connectivity", SIAM Journal on Computing, Vol. 4, No.
4, pp. 507-518, December 1975.

[GAZI87]
Hiller Gazit and Gary L. Miller, "A Parallel Algorithm For
Finding A Separator In Planar Graphs", IEEE Symposium on
Foundations of Computer science, pp. 238-248, 1987.

31

(GEHA88]
Narain Gehani and Andrew D. McGettrick, Concurrent
Programming, AT&T Bell Laboratories, 1988.

[GHOS84]
Ratan K. Ghosh and G. P. Bhattacharjee, "A Parallel Search
Algorithm For Directed Acyclic Graphs", BIT, Vol. 24, pp.
134-150, 1984.

[GUID85]

32

Guide To Parallel Programming On Sequent Computer Systems,
Prentice Hall, Englewood Cliffs, New Jersey, Third Edition,
1985.

(HE88]
Xin He and Yaacov Yesha, "A Nearly Optimal Parallel
Algorithm For Constructing Depth First Spanning Trees in
Planar Graphs", SIAM Journal on computing, Vol. 17, pp. 486-
491, 1988.

[HECH75]
Matthew S. Hecht and Jeffrey D. Ullman, "A Simple Algorithm
For Global Data Flow Analysis Problems", SIAM Journal on
Computing, Vol. 4, No. 4, pp. 519-532, December 1975.

[H084]
Hon s. Ho, "Graph Theoretic Modeling and Analysis in
Software Engineering", Handbook of Software Engineering, Van
Nostrand Reinhold Company, pp. 26-37, 1984.

(KA088]
M. Y. Kao, "All graphs have cycle separators and planar
directed depth-first search is in DNC", Proc. 3rd Aegean
Workshop on Computing, Corfu. Greece, J. H. Reif, ed.;
Lecture Notes in Computer Science 319, Springer-Verlag,
Berlin, New York, pp. 53-63, 1988.

[KARP86]
R. M. Karp, E. Upfal and A. Wigderson, "Constructing A
Perfect Matching Is In Random NC", Combinatorica, Vol. 6,
No. 1, pp. 35-48, 1986.

[LENG79]
Thomas Lengauer and Robert Endre Tarjan, "A Fast Algorithm
for Finding Dominators in a Flowgraph", ACM Transactions on
Programming Languages and Systems, Vol. 1, No. 1, pp. 121-
141, July 1979.

[LIPT77]
Richard J. Lipton and Robert E. Tarjan, "A Separator Theorem
For Planar Graph", Proceedinas of a Conference on Computer
Science, pp. 1-10, 1977.

[LOVA85]
L. Lovasz, "Computing Ears And Branchings", IEEE Symposium
on Foundations of Computer Science, pp. 464-467, 1985.

[LOWR69]
Edward s. Lowry and c. W. Medlock, "Object Code
Optimization", Communications of the ACM, Vol. 12, No. 1,
pp. 13-22, January 1969.

[MCCA76]

33

Thomas J. McCabe, "A Complexity Measure", IEEE Transactions
on Software Engineering, Vol SE-2, No. 4, pp. 308-320,
December 1976.

[MULM87]
Ketan Mulmuley, Umesh V. Vazirani and Vijay V. Vazirani,
"Matching Is As Easy As Matrix Inversion", Combinatorica,
Vol. 7, No. 1, pp. 105-113, 1987.

[PARK88]
Stephen K. Park and Keith W. Miller, "Random Number
Generators: Good Ones Are Hard To Find", Communications of
the ACM, Vol. 31, No. 10, pp. 1192-1201, October 1988.

[PURD72]
Paul W. Purdom and Edward F. Moore, "Algorithm 430:
Immediate Predominators in a Directed Graph", communications
of the ACM, Vol. 15, No. 8, pp. 777-778, August 1972.

[REGH78]
E. Reghbati and D. Corneil, "Parallel Computations In Graph
Theory", SIAM Journal on Computing, Vol. 7, No. 2, pp. 230-
237, May 1978.

[REIF77]
John H. Reif, "Code Motion", Proceedings of a Conference on
Computer Science, pp. 11-20, 1977.

[ROBI80]
D. F. Robinson and L. R. Foulds, Digraphs: Theory and
Techniques, Gordon and Breach Science Publishers, New York,
1980.

[SKVA86]
Romualdas Skvarcius and William B. Robinson, Discrete
Mathematics with Computer Science Applications, The
Benjamin/Cummings Publishing Company, Inc., 1986.

[SMIT86)
Justin R. Smith, "Parallel Algorithms For Depth-First
Searches I. Planar Graphs", SIAM Journal on Computing, Vol.
15, pp. 814-830, 1986.

[TARJ72]
Robert Tarjan, "Depth-First Search And Linear Graph
Algorithms", SIAM Journal on Computing, Vol. 1, No. 2, pp.
146-160, June 1972.

[TARJ74]

34

Robert Tarjan, "Finding Dominators In Directed Graphs", SIAM
Journal on Computing, Vol. 3, No. 1, pp. 62-89, March 1974.

[TARJ79]
Robert Endre Tarjan, "Applications Of Path Compression On
Balanced Trees", Journal of the Association for Computing
Machinery, Vol. 26, No. 4, pp. 690-715, October 1979.

[TARJ84]
R. E. Tarjan and U. Vishkin, "Finding Biconnected Components
And Computing Tree Functions In Logarithmic Parallel Time",
25th Annual Symposium on Foundations of Computer Science,
pp. 12-20, 1984.

APPENDIXES

35

APPENDIX A

EXAMPLES FOR THE FAST AND

PARALLEL ALGORITHMS

36

Figure 6. Control Flow Graph [MCCA76] for #
of vertices = 12

37

TABLE I

ADJACENCY MATRIX FOR FIGURE 6

1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 1 1 1 1 1 0 0 0 0 0

2 0 0 0 0 0 0 0 1 0 0 0 0

3 0 0 0 0 0 0 0 1 0 0 0 0

4 0 0 0 0 0 0 0 1 0 0 0 0

5 0 0 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 0 1 0 0 0 0

7 0 1 0 0 0 0 0 0 0 0 1 0

8 0 0 0 0 0 0 0 0 1 1 0 0

9 0 0 0 0 0 0 0 0 0 1 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0 1

12 0 0 0 0 0 0 0 0 0 0 0 0

row labels represent vertex numbers
column labels represent vertex numbers

38

TABLE II

DOMINATOR TABLE FOR FIGURE 6

Vertex

1
2
3
4
5
6
7
8
9

10
11
12

Dominator

0
1
1
1
1
1
1
1
8
8
7
1

39

APPENDIX B

RESULTS

40

Verts

5

10

15

20

25

TABLE III

ANALYSIS OF THE FAST AND PARALLEL
ALGORITHMS PROCESSING TIMES

IN SECONDS

Seq Algo Par Algo
of processors

1 2 4 8

0.02 0.41 0.100 0.030 0.010
0.03 0.41 0.100 0.030 0.010
0.03 0.41 0.100 0.030 0.020
0.03 0.41 0.100 0.030 0.020
0.03 0.41 0.100 0.030 0.020
0.03 0.41 0.100 0.030 0.020
0.03 0.41 0.100 0.030 0.020
0.04 0.41 0.100 0.030 0.020
0.04 0.41 0.100 0.030 0.020
0.04 0.41 0.100 0.040 0.020
0.05 0.42 0.100 0.040 0.020
0.05 0.42 0.110 0.040 0.020
0.06 0.42 0.110 0.040 0.020
0.06 0.42 0.110 0.040 0.020
0.06 0.42 0.110 0.040 0.020
0.06 0.42 0.110 0.040 0.020
0.07 0.42 0.110 0.040 0.020
0.07 0.43 0.110 0.040 0.020
0.07 0.43 0.110 0.040 0.020
0.07 0.43 0.110 0.040 0.020
0.11 0.43 0.110 0.040 0.030
0.12 0.43 0.110 0.040 0.030
0.12 0.43 0.110 0.040 0.030
0.12 0.43 0.110 0.040 0.030
0.12 0.43 0.110 0.040 0.030
0.12 0.43 0.110 0.040 0.030
0.12 0.44 0.110 0.040 0.030
0.12 0.44 0.110 0.040 0.030
0.12 0.44 0.120 0.040 0.030
0.12 0.44 0.120 0.040 0.030
0.17 0.44 0.120 0.050 0.030
0.18 0.45 0.120 0.050 0.030
0.18 0.45 0.120 0.050 0.040
0.18 0.45 0.120 0.050 0.040
0.18 0.45 0.120 0.050 0.040
0.18 0.45 0.120 0.050 0.040
0.18 0.45 0.120 0.050 0.040
0.19 0.46 0.130 . 0.050 0.040
0.19 0.47 0.130 0.060 0.040
0.19 0.47 0.140 0.060 0.040
0.27 0.48 0.140 0.070 0.050

41

16

0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.010
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.020
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.030
0.050

42

TABLE III (Continued)

Verts Seq Algo Par Algo
of processors

1 2 4 8 16

0.27 0.48 0.140 0.070 0.050 0.050
0.27 0.48 0.150 0.070 0.050 0.050
0.27 0.48 0 .150. 0.070 0.050 0.050
0.27 0.49 0.150 0.070 0.050 0.050
0.27 0.49 0.150 0.070 0.050 0.050
0. 28 0.49 0.150 0.070 0.050 0.050
0.28 0.50 0.150 0.070 0.050 0.050
0.28 0.50 0.150 0.070 0.050 0.050
0.28 0.50 0.160 0.070 0.050 0.050

30 0.37 0.50 0.160 0.080 0.070 0.070
0.37 0.50 0.160 0.080 0.070 0.070
0.37 0.50 0.160 0.080 0.070 0.070
0.38 0.51 0.160 0.090 0.070 0.070
0.38 0.51 0.160 0.090 0.070 0.070
0.38 0.51 0.170 0.090 0.070 0.070
0.38 0.51 0.170 0.090 0.070 0.070
0.38 0.52 0.170 0.090 0.070 0.070
0.38 0.52 0.170 0.090 0.070 0.070
0.38 0.53 0.180 0.090 0.070 0.070

35 0.49 0.53 0.180 0.110 0.090 0.090
0.49 0.53 0.180 0.110 0.090 0.090
0.49 0.53 0.190 0.110 0.090 0.090
0.49 0.53 0.190 0.110 0.090 0.090
0.50 0.53 0.190 0.110 0.100 0.090
0.50 0.54 0.190 0.110 0.100 0.090
0.50 0.54 0.190 0.110 0.100 0.090
0.50 0.54 0.190 0.110 0.100 0.090
0.50 0.56 0.190 0.110 0.100 0.090
0.50 0.57 0.210 0.110 0.100 0.090

40 0.62 0.58 0.210 0.130 0.130 0.120
0.63 0.58 0.210 0.130 0.130 0.120
0.63 0.58 0.220 0.130 0.130 0.120
0.63 0.58 0.220 0.130 0.130 0.120
0.63 0.59 0.220 0.130 0.130 0.120
0.63 0.59 0.220 0.130 0.130 0.120
0.63 0.59 0.220 0.130 0.130 0.120
0.63 0.60 0.220 0.130 0.130 0.120
0.64 0.62 0.220 0.130 0.130 0.120
0.64 0.62 0.240 0.130 0.130 0.120

45 0.77 0.62 0.250 0.170 0.160 0.150
0.78 0.62 0.250 0.170 0.160 0.150
0.78 0.62 0.250 0.170 0.160 0.150
0.78 0.62 0.250 0.170 0.160 0.150
0.78 0.63 0.250 0.170 0.160 0.150
0.78 0.63 0.250 0.170 0.160 0.150

43

TABLE III (Continued)

Verts Seq Algo Par Algo
of processors

1 2 4 8 16

0.78 0.63 0.250 0.170 0.170 0.150
0.79 0.63 0.260 0.170 0.170 0.150
0.79 0.63 0.260 0.170 0.170 0.150
0.79 0.64 0.280 0.170 0.170 0.150

50 0.95 0.66 0.290 0.210 0.190 0.180
0.95 0.67 0.290 0.210 0.190 0.180
0.95 0.67 0.290 0.210 0.190 0.180
0.95 0.67 0.290 0.210 0.190 0.180
0.95 0.68 0.290 0.210 0.190 0.180
0.95 0.68 0.290 0.210 0.190 0.180
0.95 0.68 0.290 0.210 0.190 0.180
0.95 0.68 0.290 0.210 0.190 0.180
0.96 0.69 0.290 o. 210 0.190 0.190
0.97 0.69 0.330 0.210 0.200 0.190

55 1.13 0.74 0.330 0.260 0.230 0.230
1.13 0.74 0.330 0.270 0.230 0.230
1.14 0.74 0.330 0.270 0.240 0.230
1.14 0.74 0.330 0.270 0.240 0.230
1.15 0.74 0.330 0.270 0.240 0.230
1.15 0.74 0.330 0.270 0.240 0.230
1.15 0.74 0.330 0.270 0.240 0.230
1.15 0.77 0.340 0.270 0.240 0.230
1.15 0.77 0.370 0.270 0.240 0.230
1.16 0.79 0.370 0.270 0.260 0.250

60 1.34 0.79 0.380 0.320 0.280 0.270
1. 34 0.80 0.380 0.320 0.280 0.270
1. 34 0.80 0.380 0.320 0.280 0.270
1.34 0.80 0.380 0.320 0.280 0.270
1.34 0.81 0.380 0.320 0.280 0.270
1. 35 0.82 0.380 0.320 0.280 0.270
1. 35 0.82 0.380 0.320 0.280 0.270
1. 35 0.82 0.390 0.320 0.280 0.270
1. 37 0.83 0.420 0.320 0.280 0.270
1.38 0.84 0.420 0.330 0.320 0.270

65 1.57 0.86 0.430 0.390 0.330 0.320
1.57 0.86 0.430 0.390 0.330 0.320
1.57 0.86 0.430 0.390 0.330 0.330
1. 57 0.87 0.430 0.390 0.330 0.330
1.58 0.87 0.430 0.390 0.330 0.330
1.58 0.88 0.430 0.390 0.330 0.330
1.58 0.88 0.430 0.390 0.330 0.330
1.58 0.88 0.440 0.390 0.330 0.330
1.59 0.89 0.490 0.390 0.330 0.330
1.60 0.95 0.490 0.390 0.330 0.330

70 1.79 0.95 0.490 0.480 0.390 0.380

44

TABLE III (Continued)

Verts Seq Algo Par Algo
of processors

1 2 4 8 16

1.81 0.95 0.490 0.480 0.390 0.380
1.81 0.96 0.490 0.480 0.390 0.390
1.83 0.96 0.490 0.480 0.390 0.390
1.83 0.99 0.500 0.480 0.390 0.390
1.83 0.96 0.500 . 0. 480 0.390 0.390
1.83 0.96 0.500 0.480 0.390 0.390
1.83 0.97 0.500 0.480 0.390 0.390
1.83 0.98 0.520 0.480 0.400 0.390
1.85 1.02 0.590 0.480 0.400 0.390

75 2.08 1.06 0.590 0.570 0.470 0.460
2.09 1.06 0.590 0.570 0.480 0.460
2.09 1.06 0.590 0.570 0.480 0.460
2.09 1.07 0.590 0.570 0.480 0.460
2.09 1.07 0.590 0.570 0.480 0.460
2.09 1.07 0.590 0.570 0.480 0.460
2.09 1.07 0.590 0.580 0.480 0.460
2.10 1.07 0.590 0.580 0.480 0.460
2.10 1.09 0.590 0.580 0.480 0.460
2.11 1.13 0.660 0.580 0.480 0.460

80 2.36 1.13 0.660 0.620 0.530 0.510
2.36 1.14 0.660 0.620 0.530 0.510
2.37 1.15 0.660 0.630 0.530 0.510
2.37 1.15 0.660 0.630 0.530 0.510
2.37 1.15 0.660 0.630 0.530 0.510
2.37 1.16 0.660 0.630 0.530 0.510
2.38 1.16 0.670 0.630 0.530 0.510
2.38 1.16 0.670 0.630 0.530 0.510
2.38 1.18 0.670 0.640 0.540 0.520
2.38 1.19 0.790 0.660 0.540 0.520

85 2.65 1.24 0.790 0.710 0.620 0.590
2.65 1.25 0.790 0.710 0.620 0.590
2.65 1.26 0.790 0.710 0.620 0.590
2.65 1.26 0.790 0.710 0.620 0.590
2.65 1.26 0.790 0.710 0.620 0.590
2.66 1.27 0.790 0.710 0.630 0.590
2.66 1.27 0.790 0.710 0.630 0.590
2.66 1.27 0.790 0.710 0.630 0.600
2.66 1.29 0.790 0.720 0.630 0.600
2.67 1.34 0.890 0.720 0.630 0.600

90 2.96 1.35 0.890 0.780 0.700 0.650
2.96 1.36 0.890 0.780 0.700 0.660
2.96 1.36 0.890 0.780 0.700 0.660
2.96 1.36 0.890 0.790 0.700 0.660
2.96 1.36 0.890 0.790 0.700 0.660
2.96 1.36 0.890 0.790 0.700 0.660

45

TABLE III (Continued)

Verts Seq Algo Par Algo
of processors

1 2 4 8 16

2.96 1. 37 0.890 0.790 0.700 0.660
2.97 1.37 0.890 0.790 0.700 0.660
2.97 1. 38 0.890 0.790 0.710 0.660
2.97 1.39 1.000 0.830 0.710 0.680

95 3.27 1.50 1. 050 0.890 0.820 0.760
3.28 1.51 1.050 0.900 0.820 0.760
3.29 1.51 1.050 0.900 0.820 0.760
3.29 1.51 1.050 0.900 0.820 0.760
3.29 1.51 1.050 0.900 0.820 0.760
3.30 1.51 1.050 0.900 0.820 0.760
3.30 1.51 1.050 0.900 0.820 0.760
3.30 1.51 1.050 0.910 0.820 0.770
3.31 1. 53 1.050 0.910 0.820 0.770
3.31 1.55 1.050 0.910 0.820 0.770

100 3.61 1.61 1.150 0.970 0.890 0.830
3.61 1.61 1.160 0.980 0.890 0.830
3.62 1. 62 1. ,160 0.980 0.890 0.830
3.62 1.62 1.160 0.980 0.900 0.830
3.62 1.62 1.160 0.980 0.900 0.830
3.62 1.62 1.160 0.980 0.900 0.840
3.62 1. 62 1.160 0.980 0.900 0.840
3.63 1. 63 1.160 0.980 0.900 0.840
3.63 1.63 1.160 0.980 0.900 0.840
3.65 1.64 1.170 0.990 0.900 0.840

105 3.80 1.77 1.310 1. 080 1.020 0.930
3.80 1.78 1.330 1.080 1.020 0.940
3.80 1.78 1.330 1.080 1.020 0.940
3.80 1.78 1.330 1.090 1.020 0.940
3.80 1.79 1. 330 1. 090 1.020 0.940
3.81 1. 79 1.330 1. 090 1.020 0.940
3.81 1.79 1.330 1.090 1.020 0.940
3.81 1.79 1.330 1. 090 1.020 0.950
3.81 1.80 1.340 1.090 1.030 0.970
3.82 1.81 1.360 1.100 1.040 0.970

110 4.36 1.90 1.510 1.200 1.150 1. 050
4.36 1.90 1.510 1.200 1.150 1.050
4.36 1.91 1.510 1.200 1.150 1. 050
4.37 1.91 1.510 1.200 1.150 1.050
4.37 1.91 1.510 1.200 1.150 1. 050
4.37 1.91 1.510 1.200 1.150 1.050
4.38 1.91 1.520 1.200 1.150 1. 050
4.38 1.92 1.520 1.200 1.150 1. 060
4.38 1.92 1.520 1.200 1.160 1. 060
4.39 2.07 1. 520 1.210 1.160 1.060

115 4.75 2.07 1. 720 1.330 1.300 1.180

46

TABLE III (Continued)

Verts Seq Algo Par Algo
of processors

1 2 4 8 16

4.75 2.07 1.720 1. 330 1.300 1.180
4.76 2.07 1. 720 1.330 1. 300 1.180
4.76 2.07 1. 720 1.340 1.300 1.180
4.76 2.08 1.720 1.340 1. 300 1.180
4.77 2.08 1.730 1.340 1. 310 1.180
4.77 2.08 1.730 1. 340 1. 310 1.180
4.77 2.08 1.730 1.340 1. 310 1.180
4.78 2.08 1.730 1. 340 1.310 1.180
4.78 2.27 1. 730 1.340 1. 310 1.190

120 5.15 2.28 1. 980 . 1.490 1.470 1.330
5.16 2.28 1.980 1.490 1.470 1.330
5.16 2.29 1.980 1.500 1.470 1. 330
5.17 2.29 1.980 1.500 1.480 1.340
5.17 2.29 1.980 1.500 1.480 1.340
5.19 2.29 1.980 1.500 1.480 1. 340
5.19 2.29 1.980 1.500 1.480 1.340
5.20 2.30 1.980 1.500 1. 480 1.340
5.21 2.30 1.980 1.500 1.480 1. 340
5.21 2.44 1.980 1.510 1.490 1.340

125 5.61 2.44 2.180 1.620 1.620 1.460
5.61 2.44 2.180 1.630 1.620 1.460
5.61 2.45 2.180 1.630 1.630 1.460
5.61 2.45 2.180 1.630 1.630 1.460
5.62 2.45 2.180 1. 630 1.630 1.460
5.62 2.46 2.180 1.640 1. 630 1.460
5.63 2.46 2.180 1.640 1.630 1.460
5.63 2.48 2.180 1.640 1. 630 1.470
5.65 2.48 2.190 1. 640 1.630 1.470
5.65 2.58 2.190 1.640 1.640 1.470

130 6.05 2.59 2.360 1.750 1. 730 1.560
6.06 2.59 2.360 1. 750 1. 740 1.570
6.06 2.60 2.360 1. ?50 1. 740 1.570
6.07 2.60 2.360 1.750 1. 740 1. 570
6.08 2.60 2.360 1.750 1.740 1. 570
6.08 2.60 2.360 1.750 1.740 1.570
6.09 2.61 2.360 1.750 1.740 1.570
6.10 2.61 2.360 1. 760 1.740 1.570
6.12 2.61 2.360 1.760 1.740 1.580
6.13 2.63 2.360 1.760 1. 750 1. 580

135 6.54 2.87 2.750 2.020 1. 970 1.790
6.55 2.88 2.750 2.020 1.970 1.790
6.55 2.89 2.750 2.020 1.980 1.790
6.56 2.89 2.750 2.020 1.980 1.790
6.56 2.89 2.760 2.030 1.980 1.800
6.57 2.89 2.760 2.030 1.980 1.800

47

TABL~ III (Continued)

Verts Seq Algo Par Algo
of processors·

1 2 4 8 16

6.59 2.90 2.760 2.030 1.980 1.810
6.59 2.90 2.760 2.030 1. 980 1. 810
6.62 2.90 2.760 2.030 1.990 1.810
6.62 2.92 2.760 2.030 2.000 1. 850

140 7.03 3.03 2.930 2.140 2.080 1.900
7.03 3.04 2.930 2.150 2.080 1. 910
7.03 3.04 2.930 2.150 2.090 1.910
7.03 3.04 2.930 2.150 2.090 1. 910
7.03 3.05 2.930 2.150 2.100 1.910
7.05 3.05 2.940 2.150 2.100 1.910
7.07 3.06 2.940 2.150 2.100 1. 910
7.07 3.06 2.940 2.160 2.100 1.910
7.08 3.06 2.940 2.160 2.100 1.910
7.08 3.15 2.940 2.160 2.100 1.920

145 7.53 3.15 3.070 2.260 2.170 1. 990
7.53 3.15 3.070 2.260 2.180 1. 990
7.54 3.15 3.080 2.270 2.180 1. 990
7.54 3.16 3.080 2.270 2.180 2.000
7.54 3.16 3.080 2.270 2.180 2.000
7.55 3.18 3.080 2.270 2.190 2.000
7.55 3.19 3.080 2.270 2.200 2.000
7.55 3.19 3.080 2.270 2.210 2.000
7.58 3.22 3.080 2.290 2.240 2.010
7.60 3.53 3.100 2.370 2.270 2.010

150 8.06 3.54 3.570 2.590 2.480 2.290
8.06 3.54 3.570 2.600 2.480 2.290
8.07 3.54 3.580 2.600 2.480 2.300
8.07 3.54 3.580 2.600 2.480 2.300
8.07 3.57 3.580 2.600 2.480 2.300
8.09 3.68 3.580 2.600 2.490 2.300
8.11 3.79 3.580 2.600 2.490 2.300
8.11 3.92 3.580 2.600 2.490 2.300
8.12 3.99 3.580 2.610 2.510 2.310
8.13 4.12 3.590 2.610 2.510 2.320

Verts

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150

TABLE IV

ANALYSIS OF THE FAST AND PARALLEL
ALGORITHMS AVERAGE PROCESSING

TIMES IN SECONDS

Seq Algo Par Algo
of processors

1 2 4 8

0.032 0.410 0.100 0.031 0.018
0.062 0.423 0.109 0.040 0.020
0.119 0.434 0.112 0.040 0.030
0.182 0.454 0.124 0.052 0.038
0.274 0.489 0.149 0.070 0.050
0.377 0.511 0.166 0.087 0.070
0.496 0.540 0.190 0.110 0.096
0.631 0.593 0.220 0.130 0.130
0.782 0.627 0.255 0.170 0.164
0.953 0.677 0.294 0.210 0.191
1.145 0.751 0.339 0.269 0.240
1.350 0.813 0.389 0.321 0.284
1.579 0.880 0.443 0.390 0.330
1. 824 0.967 0.507 0.480 0.392
2.093 1.075 0.597 0.574 0.479
2.372 1.157 0.676 0.632 0.532
2.656 1.271 0.800 0. 712 0.625
2.963 1.366 0.901 0.791 0.702
3.294 1.515 1. 050 0.902 0.820
3.623 1. 622 1.160 0.980 0.897
3.806 1.788 1.332 1.088 1.023
4.372 1.926 1.514 1.201 1.152
4.765 2.095 1.725 1.337 1.305
5.181 2.305 1.980 1.499 1.478
5.624 2.469 2.182 1. 634 1.629
6.084 2.604 2.360 1.753 1.740
6.575 2.893 2.756 2.026 1.981
7.050 3.058 2.935 2.152 2.094
7.551 3.208 3.080 2.280 2.200
8.089 3.723 3.579 2.601 2.489

48

16

0.010
0.011
0.020
0.030
0.050

' 0.070
0.090
0.120
0.150
0.182
0.232
0.270
0.328
0.388
0.460
0.512
0.593
0.661
0.763
0.835
0.946
1. 053
1.181
1. 337
1.463
1.571
1.804
1. 910
1.999
2.301

• ,
c
0
v • •
c -• • E
t=
a-c -• • • !
G.

• a-
! • l

Number of Vertices vs. Processing Times

4

3.5 -
3 -

2.5 -
2 1-

1.5 ~

1 ~

0.5 -
0

,..

""' "" ,..

""
,. ,. ,. ,. ,.

"' '"' "' "' "' "' "' "'
.. "'

- • J .J. Iii "' ~ !- ~ .. • .. loo IIIII

5 15 25 35 45 55 65 75 as •s
10 20 30 40 60 70 eo •o 100

f of vertic••
sequential algo.

Figure 7. Number of Vertices vs. Processing Times for the
vertex range 5-100

• ,
c:
0

" • •
.5
• • e
I=
Gl c:
1i • • " e
IL

• Gl
2 • ~

Number of Vertices vs. Processing Times

•
a ~

7 ~

6 -
5 -
• ~
3 ~

2 ~

1 ~

0 ~

i-

I'!'
1-

...
... ...

... ...
I"' "'

[["'
~

""
~ .. ~ ~

'"' "" "" ""
..

50 60 70 80 •o 100 110 120 130 140 150
55 65 75 85 •5 105 115 125 135 145

I of vertic••
sequential algo. arollel olgo.

Figure a. Number of Verti ces vs. Processing Times for the
vertex range 50-150 L1l

0

• .,
c
0 :
c -
I
E
I=

"' c
1i • • " e
CL

& e
I c

Number of Vertices vs. Processing Times
Par. AJvo running on diff. proceaaof'8

1.7 ~--,
1.6

1.5

1.4

1.3
1.2

1.1

1

0.1
o.a
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0'--.....................

10

proc. - 2

I of vertic••
proc. = 4 proc. - 8 proc. = 16

Figure 9. Number of Vertices vs. Processing Times for the
vertex range 5-100 for the parallel algori thm

• 'a c
0
u
I
.e
• • E
I=
Gl c
"i • • e
G.

• 0
e
I c

Number of Vertices vs. Processing Times

3.S

3

2.S

2

1.S

1

o.s

0

roc. - 1

Par. A19o runnin9 on diff. proceaaon1

7S 13S

proc. - 2

10S
I of verticea

p roc. = 4 - proc.- 8 proc. - 16

Figure 10. Number of Vertices vs. Processing Times for the
vertex range 50-150 for the parallel algorithm

APPENDIX C

FAST ALGORITHM PROGRAM LISTING

53

54

/* program = domfast.c */
/**/
I* *I
/* Dominators Fast Algorithm Program Listing */
I* */
/**/
I* *I
f* Author: Sharmila Shankar */
I* Date: 02/20/92 */
/* Class: COMSC 5000 - Thesis */
f* Adviser: Dr. Blayne Mayfield */
/* *I
/**/
/* This is the fast algorithm for finding dominators in a */
f* flowgraph. The algorithm uses depth-first search and */
f* an efficient method of computing functions defined on */
/* paths in trees */
/* *I
f* The implementation of the algorithm uses the following */
/* arrays */
f* Input */
f* succ(v}: The set of vertices w such that (v,w) is */
/* an edge of the graph */
I* *I
/* Computed */
f* parent(w): The vertex which is the parent of vertex w*/
f* in the spanning tree generated by the search */
I* *I
f* pred(w): The set of vertices v such that (v,w) is */
/* an edge of the graph */
f* semi(w}: A number defined as follows: */
f* (i) Before vertex w is numbered, semi(v) = 0 *I
f* {ii) After w is numbered but before its semi- */
f* dominator is computed, semi(w) is the number */
/* of w */
f* {iii) After the semidominator of w is computed, */
f* semi{w) is the number of the semidominator of */
I* w */
f* vertex(i): The vertex whose number is i */
f* bucket(w): A set of vertices whose semidominator is w*/
f* dom{w): A vertex defined as follows: */
f* {i) After step 3, if the semidominator of w is its */
f* immediate dominator, then dom(w) is the imme- */
f* diate dominator of -w. Otherwise dom(w) is a */
f* vertex v whose number is smaller than w and */
f* whose immediate dominator is also w's immediate*/
f * dominator *I
f* (ii) After step 4, dom(w) is the immediate dominator*/
/* of w */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int **succ, **pred, **bucket, *dom;

int *parent, *ancestor, *vertex, *label, *semi;
int r,n,u,v,x,w,i,j, start time, end_time, exec_time;
FILE *fp, *fopen(); -
char fname[20];

I* beginning of the main program *I

main(argc, argv)
int argc;
char *argv[];
{

start time= clock();
printf("The adjacency matrix file name: ");
strcpy(fname, argv[1]);
printf("%s\n",fname);
if{(fp = fopen(fname, "r")) ==NULL)

{

}

printf{"CANNOT OPEN FILE •.. PROGRAM ABORTED\n\n");
exit(O);

printf("The number of vertices: ");
n = atoi(argv[2]);
printf("%d\n",n);
printf("The start vertex: ");
r = atoi(argv[3]);
printf("%d\n",r);

I* allocate pointer arrays : set succ, pred, bucket to
address of newly allocated matrices *I
/* allocate data arrays : set first element of succ, pred,
bucket to address of first element of newly allocated data
arrays *I
I* initialise pointer arrays : set each element of succ,
pred, bucket to address of corresponding element of data
arrays *I

succ = (int**)malloc{(n+1)*(sizeof(int*)));
succ[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

succ[i] = succ[O] + ((n+1) * i);

pred = (int**)malloc((n+1)*(sizeof(int*)));
pred[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

pred[i] = pred[O] + ((n+1) * i);

bucket= (int**)malloc((n+1)*(sizeof{int*)));
bucket[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

bucket[i] = bucket[OJ + {(n+1) * i);

dom = (int *)malloc((n+1) * (sizeof{int)));
parent = (int *)malloc{(n+1) * (sizeof(int)));
ancestor = {int *)malloc({n+1) * (sizeof(int)));

55

label = (int *)malloc((n+1) * (sizeof(int)));
vertex = (int *)malloc((n+1) * (sizeof(int)));
semi = (int *)malloc((n+1) *(sizeof(int)));

I* read in the adjacency matrix *I

for(i = 1; i <= n; i++)
for(j = 1; j <= n; j++)
fscanf(fp, "%d", &succ[i][j]);

printf("\nThe adjacency matrix for n = %d vertices is
\n\n",n);

for(i = 1; i <= n; i++)
{
printf("%2d ",i);

for(j = 1; j <= n; j++)
printf("%d ", succ[i][j]);
printf("\n");

}

I* step 1 *I
I* This uses the recursive procedure DFS below to carry

out the depth-first search *I

for(v = 1; v <= n; v++)
{

}

semi[v] = o;
for(w = 1; w <= n; w++)

{

}

pred[v][w] = 0;
bucket[v][w] = 0;

x = n;
n = o;
DFS(r);

for(i = n; i >= 2; i--)
{
w = vertex[i];

I* step 2 *I
for (v = 1; v <= x; v++)

{

}

if(pred[w][v] == 1)
{

}

u = EVAL(v);
if(semi[u] < semi[w])

semi[w] = semi[u];

bucket[vertex[semi[w]]][w] = 1;

56

LINK(parent[w], w);

I* step 3 *I

for (v = 1; v <= x; v++)
{

}'
}

if(bucket[parent[w]][v] == 1)
{

}

bucket[parent[w]][v] = 0;
u = EVAL(v) i
if(semi[u] < semi[v])

dom(v] = u;
else

dom[v] = parent(w];

I* step 4 *I
for(i = 2; i <= n; i++)

{

}

w = vertex[i];
if(dom[w] != vertex(semi(w]])

dom(w] = dom(dom[w]];

dom[r] = o;

printf("\nThe Dominators of the Flowgraph are \n\n");
for(i = 1; i <= x; i++)

printf("(%d, %d) \n", i, dom(i]);

fclose(fp);

I* free all allocated memory *I

free(succ);
free(pred);
free(bucket);
free(dom);
free(parent);
free(ancestor);
free(label);
free(vertex);
free(semi);

end time= clock();
exec time = end time - start time;
printf("\n The execution time is %2.2f

\n\n", (float) (exec_time)I1000000);

}

57

I** I
I* *I

58

I* DFS */
I* */
/* This procedure conducts the depth-first search */
/**/

DFS(v)
int v;
{
int w;
semi[v] = n = n+1;
vertex(n] = label[v] = v;
ancestor(v] = o;
for(w = 1; w <= x; w++)

{

}

if(succ(v][w] == 1}
{
if(semi(w] == 0)

{

}

parent[w] = v;
DFS(w);

pred[w](v] = 1;
}

}/* end of DFS */

I*** I
/* */
/* COMPRESS */
/* -------- */
/* This procedure carries out path compression */
/***/

COMPRESS(v)
int v;
{
if(ancestor[ancestor[v]] != 0)

{
COMPRESS(ancestor[v]);

if(semi[label[ancestor(v])J < semi[label(v]])
label[v] = label[ancestor[v]];

ancestor[v] = ancestor[ancestor[v]];
}
} /* end of COMPRESS */

/**/
/* *I
I* EVAL */
I* *I
/* This procedure returns v if v is the root in the forest*/
/* Otherwise it returns any vertex u not equal to r(the */
/* root of the tree in the forest} of minimum semi(u) on */
f* the path from r to v */
/**/

int EVAL(v}
int v;
{
if (ancestor[v] 0}

return v;
else

{

}

COMPRESS(v};
return(label[v]};

} I* end .of EVAL *I

59

1******************~***************************************1
I* *I
I* LINK *I
I* ---- *I
I* This procedure adds the edge (v,w} to the forest *I
I** I

LINK(v,w}
int v, w;
{
ancestor[w] = v;

}I* end of LINK *I

- - ------------

APPENDIX D

PARALLEL ALGORITHM PROGRAM LISTING

60

61

I* program = dompar.c *I
1**1
I* *I
I* Parallel Algorithm Program Listing *I
I* *I
I** I
I* *I
I* Author: Sharmila Shankar *I
I* Date: 02120192 *I
I* Class: COMSC 5000 - Thesis *I
I* Adviser: Dr. Blayne Mayfield *I
I* *I
1**1
I* This is the parallel algorithm for finding dominators *I
I* in a flowgraph. The algorithm uses the parallel depth *I
I* first search strategy by Aggarwal, Anderson and Kao *I
I* *I
I* The implementation of the algorithm uses the following *I
I* arrays *I
I* *I
I* Input *I
I* succ(v): The set of vertices w such that (v,w) is an *I
I* edge of the graph *I
I* *I
I* ALM(v): The list of vertices which are heads of the *I
I* edges with tail v *I
I* *I
I* U(v): The list of vertices which are adjacent to v and *I
I* and are still unvisited *I
I* *I
I* arc list: The list of visited vertices *I
I* *I
I* frond list: The list of unvisited vertices *I
I* *I
I* Computed *I
I* parent(w): The vertex which is the parent of vertex */
I* w in the spanning tree generated by the search *I
I* pred(w): The set of vertices v such that (v,w) is *I
I* an edge of the graph *I
I* semi(w): A number defined as follows: *I
I* (i) Before vertex w is numbered, semi(v) = o *I
I* (ii) After w is numbered but before its semi- *I
I* dominator is computed, semi(w) is the number *I
I* of w *I
I* (iii) After the semidominator of w is computed, *I
I* semi(w) is the number of the semidominator of *I
I* w */
I* vertex(i): The vertex whose number is i */
I* bucket(w): A set of vertices whose semidominator is w*l
I* dom(w): A vertex defined as follows: *I
I* (i) After step 3, if the semidominator of w is its *I
I* immediate dominator, then dom(w) is the imme- *I
I* diate dominator of w. Otherwise dom(w) is a *I
I* vertex v whose number is smaller than w and *I

62

/* whose immediate dominator is also w's immediate*/
I* dominator *I
/* (ii) After step 4, dom(w) is the immediate dominator*/
/* of w */
/**/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include <paralleljmicrotask.h>
#include <paralleljparallel.h>

int **succ, **pred, *dom, *parent, *ancestor, *vertex;
int *label, **bucket, flr();
shared int *semi, **arc list, **frond_list, **U, *EM, *el;
shared sbarrier t *barrier;
shared int **ALM,n,x;
shared slock t magiclock, *lp = &magiclock;
int r,u,v,w,I,j,k,start time, end_time, exec_time;
FILE *fp, *fopen(); -
char fname[20];
int nprocs, m_rele_procs(), m_park_procs();

f* beginning of the main program */

main(argc,argv)
int argc;
char *argv[];
{

void main process();
char *shmalloc();
printf("The adjacency matrix file name: ");
strcpy(fname,argv[l]);
printf("%s\n",fname);
if((fp = fopen(fname, "r")) ==NULL)

{

}

printf("CANNOT OPEN FILE .•• PROGRAM ABORTED\n\n");
exit(O);

printf("The number of vertices: ");
n = atoi(argv[2]);
printf("%d\n",n);
printf("The start vertex: ");
r = atoi(argv[3]);
printf("%d\n",r);
printf("Number of processors available:

%d\n",cpus online()); ·
printf("The number of processes asked for: ");
nprocs = atoi(argv[4]);
printf("%d\n 11 ,nprocs);

I* shared memory allocation *I
I* allocate pointer arrays : set succ, pred, bucket to
address of newly allocated matrices *I

I* allocate data arrays : set first element of succ, pred,
bucket to address of first element of newly allocated data
arrays *I
I* initialise pointer arrays : set each element of succ,
pred, bucket to address of corresponding element of data
arrays *I

start time= clock();

succ = (int**)shmalloc((n+1)*(sizeof(int*)));
succ[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

succ[i] = succ[O] + ((n+1) * i);

ALM = (int**)shmalloc((n+1)*(sizeof(int*)));
ALM[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

ALM[i] = ALM[O] + ((n+1) * i);

pred = (int**)shmalloc((n+1)*(sizeof(int*)));
pred[OJ = (int*)shmalloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

pred[i] = pred[OJ + ((n+1) * i);

bucket= (int**)malloc((n+1)*(sizeof(int*)));
bucket[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

bucket[i] = bucket[O] + ((n+1) * i);

arc list= (int**)shmalloc((n+1)*(sizeof(int*)));
arc-list[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int)));
for-(i = 1; i <= n; i++)

arc_list[i] = arc_list[O] + ((n+1) * i);

63

frond list= (int**)shmalloc((n+1)*(sizeof(int*)));
frond-list[OJ = (int*)shmalloc((n+1)*(n+1)*(sizeof(int)));
for (I = 1; i <= n; i++)

frond_list[i] = frond_list[O] + ((n+1) * i);

U = (int**)shmalloc((n+l)*(sizeof(int*)));
U[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

U[i] = U[O) + ((n+1) * i);

el = (int *)malloc((n+1) * (sizeof(int)));
EM= (int *)shmalloc((n+1) * (sizeof(int)));
dom = (int *)malloc((n+1) * (sizeof(int)));
parent = (int *)shmalloc((n+1) * (sizeof(int)));
ancestor = (int *)shmalloc((n+1) * (sizeof(int)));
label = (int *)shmalloc((n+1) * (sizeof(int)));
vertex = (int *)shmalloc((n+1) * (sizeof(int)));
semi = (int *)shmalloc((n+1) *(sizeof(int)));

for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)
{ ALM[i][j] = 0;

EM[i] = o;
}

for(i = 1; i <= n; i++)
{

}
}

for(j = 1; j <= n; j++)
{
fscanf(fp, "%d", &succ[i][j]);
U[i][j] = succ[i][j];
if(succ[i][j] == 1)

{

}

k = 1;
while (1)

{

}

if (ALM[j][k] == 0)
{

}
else

ALM[j] [k++] = i;
break;

k++;

EM[j] = k - 1;

printf("\nThe adjacency matrix for n = %d vertices is
\n\n",n);

for(i = 1; i <= n; i++)
{
printf("%2d ",i);

for(j = 1; j <= n; j++)
printf("%d ", succ[i][j]);
printf("\n");

}

I* step 1 *I
I* This step conducts the depth-first search *I

for(v = 1; v <= n; v++)
{

}

semi[v] = o;
for(w = 1; w <= n; w++)

{

}

pred [v] [w] = o;
bucket[v][w] = o;
arc list[v][w] = o;
frond_list[v][w] = o;

x = n;

64

I* NUMB_VERTICES_VISITED IS n *I

I* set number of processes and initialize the barriers */

m set procs{nprocs);
s=init_barrier{&barrier,nprocs);
n = o;
parent[r] = o;
PMDFS{r);
m_kill_procs{); /*kill the child processes*/

for(i = x; i >= 2; i--)
{
w = vertex[i];

I* step 2 *I
for (v = 1; v <= x; v++)

{

}

if(pred[w][v] == 1)
{

}

u = EVAL(v);
if(semi[u] < semi[w])

semi[w] = semi[u];

bucket[vertex[semi[w]]][w] = 1;
LINK(parent[w], w);

I* step 3 */

for (v = 1; v <= x; v++)
{

}
}

if(bucket[parent[w]][v] == 1)
{

}

bucket[parent[w]][v] = o;
u = EVAL(v);
if(semi[u] < semi[v])

dom[v] = u;
else

dom[v] = parent[w];

I* step 4 */

for(i = 2; i <= n; i++)
{

}

w = vertex[i];
if(dom[w] != vertex[semi[w]])

dom[w] = dom[dom[w]];

65

dom(r] = o;

printf("\nThe Dominators of the Flowgraph are \n\n");
for(i = 1; i <= x; i++)

printf("(%d, %d) \n", i, dom[i]);

fclose(fp);

I* free the shared memory allocation and the other
allocations *I

shfree(succ);
shfree(ALM);
shfree(pred);
free(bucket);
free (dom);
shfree(arc list);
shfree(frond list);
shfree(U); -
shfree(parent);
shfree(ancestor);
shfree(label);
shfree(vertex);
shfree(semi);
shfree(EM);
free(el);

end time= clock();
exec time = end time - start time;
printf("\nThe execution time-is: %2.2f

\n", (float) (exec_time)I(1000000));

}

66

1**1
I* PMDFS *I
I* ----- *I
I* This procedure carries out the parallel depth-first *I
I* search *I
1**1

PMDFS (v)
int v;
{
int w;
semi[v] = n = n + 1;
vertex(n] = label(v] = v;
ancestor(v] = o;

I* release if any parked child processes *I
m rele procs;
m-fork(main process,v);

I* park the child processes for future use *I
m_park_procs;

for(w = 1; w <= x; w++)
{

}

if(U[v][w] == 1)
{

}

parent[w] = v;
arc list[v][w] =
frond list[w][v]
PMDFS{w);

pred[w][v] = 1;

}/* end of PMDFS */

1• ,
= o;

67

/**/
/* COMPRESS */
I* -------- *I
/* This procedure carries out path compression */
/**/

COMPRESS(v)
int v;
{
if(ancestor[ancestor[v]] != 0)

{
COMPRESS(ancestor[v]);

if(semi[label[ancestor[v]]] < semi[label[v]])
label[v] = label[ancestor[v]];

ancestor[v] = ancestor[ancestor[v]];
}

} /* end of COMPRESS */

/**/
I* EVAL */
/* *I
f* This procedure returns v if v is the root in the forest*/
f* Otherwise it returns any vertex u not equal to r(the */
f* root of the tree in the fo~est) of minimum semi(u) on */
I* the path from r to v */
/**/

int 'EVAL(v)
int v;
{
if (ancestor[v] -- 0)

return v;
else

{

}

COMPRESS(v);
return(label[v]);

} /* end of EVAL */
/**/

68

I* LINK *I
I* ---- *I
I* This procedure adds the edge (v,w) to the forest *I
1**1

LINK(v,w)
int v, w;
{
ancestor[w] = v;

} I* end of LINK *I

1**1
I* main process *I
I* ----=------- *I I* This procedure carries out the parallel search and *I
I* deletions from the unvisited list matrix in parallel. *I
I* Dynamic Scheduling multitasking is adopted *I
1**1

void main process(v)
int v; -
{

}
}

int procs;
int i, j,base,top;

procs = m_get_numprocs(); I* number of processors *I

while((base = 1 * (m_next() - 1)) < x)
{

top = base + 1;
if(top >= x) top = x - 1;
for (i =base; i <top; i++);

{
for (j = 1; j <= flr(EM(v]lprocs); j++)

{
if(((procs * (j - 1)) + i) <= EM[v])

{

}
}

m lock();
el[i] = ALM[v][(procs * (j- 1)) + i];
U[el[i]](v] = o;
if(semi[el[i]] == 0)

frond list[el(i]][v] = 1;
m_unlock();

s_wait_barrier(&barrier); I* synchronization point *I

} I* end of main process */

1**1
I* flr *I

69

I* --- *I
I* This procedure returns the floor of a number */
I** I

int flr(num)
int num;
{

return(num + 1);
} I* end of flr *I

APPENDIX E

RANDOM GENERATION PROGRAM LISTING

70

71

I* program = rand flow.c *I
1**1
I* *I
I* Random Generation of Flow Graphs Driver Listing *I
I* *I
I** I
I* *I
I* Author: Sharmila Shankar *I
I* Date: 04120192 *I
I* Class: COMSC 5000 - Thesis *I
I* Adviser: Dr. Blayne Mayfield *I
I* *I
1**1
I* This program generates 10 random flow graphs for nodes *I
I* 5 to 150 in steps of 5 and is the driver routine for *I
I* the execution of the fast algorithm and the parallel *I
I* algorithm. Here Node means vertex *I
1**1
#include <stdio.h> ·
#include <string.h>
#define LOW LIM NODE 5
#define HIGH LIM NODE 100
#define NODE-STEP 5
#define MAX PROCS 16
#define MAX-FLOW GRAPHS PER NODE 10
float seed~ 1.0;
float rand_num_generator{);

main{)
{
int procs = o, node = o, count = O, node count = O,

line count = o;
int-rand numb = o;
FILE *fp~ *fopen{);
char fname(20], temp[4], faststr[40], parstr[40];
for (node = LOW_LIM_NODE; node <= HIGH_LIM_NODE; node =

node + NODE STEP)
for(coun~ ~ 1; count <= MAX_FLOW_GRAPHS_PER_NODE; count++)

{
strcpy(fname, 1111);

strcpy { fname, 11 adj 11). ;

strcpy (temp, 1111) ;

sprintf{temp,"%d",node);
strcat{fname,temp);
strcat{fname, 11 11);

strcpy(temp, 1111"');

sprintf(temp, 11 %d",count);
strcat{fname,temp);

I* continue generating till a connected graph is got *I

while (1)
{
fp = fopen{fname,"w");

}

node count = 1;
line-count = 1;
while(line count <= node)

{ -
rand_numb = rand_num_generator() * node;
if((rand_numb% 2) == 0)

fprintf(fp,"1 ");
else

fprintf(fp,"O ");
if((node_count% node) -- O)

{
fprintf(fp,"\n");
line_count++;

}
node_count++;
}
fclose(fp);

I* testing of connectivity *I

if(conn(fname,node) == 1)

72

break; I* graph is connected, so exit from loop *I
}
strcpy(faststr,"");
strcpy(faststr,"domfast ");
strcat(faststr,friame);
strcat(faststr," ");
strcpy(temp,"");
sprintf(temp,"%d",node);
strcat(faststr,temp);
strcat(faststr," 1 ");
system(faststr);

for(procs = 1; procs <= MAX_PROCS; procs = procs * 2)
{

}
}

strcpy(parstr,"");
strcpy(parstr,"dompar ");
strcat(parstr,fname);
strcat(parstr," ");
strcpy(temp,"");
sprintf(temp,"%d",node);
strcat(parstr,temp);
strcat(parstr," 1 ");
strcpy(temp,"");
sprintf(temp,"%d",procs);
strcat(parstr,temp);
system(parstr);

1**1
I* procedure : rand num generator() *I
I* This procedure returns a random number *I
1**1

float rand num generator()
{ - - '

float a,q,r,m,value,lo,test;
int hi;
a= 16807;
m = 2147483647.0;
q = 127773.0;
r = 2836.0;

hi = seedlq;
lo = seed - q * hi;
test = a * lo - r * hi;
if(test > 0.0)

seed = test;
else

seed = test + m;
value = seedlm;
return value;

}I* end of rand_num_generator *I

73

I** I
I* *I
I* conn *I
I* ---- *I
I* This procedure tests out the connectivity of a given *I
I* adjacency matrix and returns a flag *I
1**1
conn(fp,n)
char fname(20];
int n;
{
int **1, **c, i,j,k,flag;
struct Cost {

int **succ;
} *C;

FILE *fp, * fopen();
strcpy(fname, fp);
printf("The name of the adjacency matrix: %s",fname);
if((fp = fopen(fname, "r")) ==NULL)

{

}

printf("CANNOT OPEN FILE ... PROGRAM ABORTED\n\n");
exit(O);

printf("The number of vertices: ");
printf("%d\n",n);

C = (struct *)malloc((n+1) * sizeof(struct));
c.succ = (int**)malloc((n+1)*(sizeof(int*)));
c.succ(OJ = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

c.succ[i] = c.succ(O] + ((n+1) * i);

1 = (int**)malloc((n+1)*(sizeof(int*)));

1[0] = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

l[i] = 1[0] + ((n+1) * i);

c = (int**)malloc((n+1)*(sizeof(int*)));
c[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int)));
for (i = 1; i <= n; i++)

c[i] = c[O] + ((n+1) * i);

for(i = 1; i <= n; i++)
for(j = 1; j <= n; j++)
fscanf(fp, "%d", &l[i][j]);

printf("\n The adjacency matrix for n = %d vertices is
\n\n",n);

for(i = 1; i <= n; i++)
{
printf("%2d ",i);

for(j = 1; j <= n; j++)
printf("%d ", l[i][j]);
printf("\n");

}

for(i = 1; i <= n; i++)
{

C[O].succ[i][i] = 1 + l[i][i];
}

for(i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
if (i != j)

C[O].succ[i][j] = l[i,j];

for (k = 1; k <= n; k++)
for(i = 1; i <= n; i++)
for(j = 1; j <= n; j++)
C[k].succ[i][j] = C[k- 1].succ[i][j] +

C[k- 1]succ[i][k] * C[k-
1].succ[k][j];

for(i = 1; i <= n; i++)
for (j = 1; j <= n; j++)

c[i][j] = C[n].succ[i][j];

flag = 1;
for(i = 1; i <= n; i++)

for (j = 1; j <= n; j++)
if(c[i] [j] != 1)

flag = o;
fclose(fp);
return flag;
} /* end of conn */

74

APPENDIX F

USER MANUAL

75

76

USER MANUAL

The fast, parallel and the random generation programs were

run on the Sequent. The following abbreviations are used.

Adj Mat is the adjacency matrix, vertices are the number of

vertices, vertex is the start vertex and the procs is the

number of processors asked for.

Part 1: Fast Program

At the Sequent prompt type

domfast <adj mat> <vertices> <vertex> <Enter>

The program will display the adjacency matrix, the

number of vertices, the start vertex and the pairs of the

dominators in the form (vertex, its dominator) on the

screen, in that order.

Part 2: Parallel Program

At the Sequent prompt type

dompar <adj mat> <vertices> <vertex> <procs> <Enter>

The program will display the adjacency matrix, the

number of vertices, the start vertex, the number of

processors available, the number of processors asked for and

the pairs of the dominators in the form (vertex, its

dominator) on the screen, in that order.

Part 3: Random Generation Program

At the Sequent prompt type

rand flow <Enter>

The program will display the adjacency matrices, the

number of vertices, the start vertex, the number of

processors available, the number of processors asked for

and the pairs of the dominators in the form (vertex, its

dominator) on the screen, in that order for the respective

programs being run.

77

VITA~

Sharmila Shankar

Candidate for the Degree of

Master of Science

Thesis: PARALLELIZATION OF THE FAST ALGORITHM FOR
COMPUTATION OF DOMINATORS IN A FLOWGRAPH

Major Field: Computer Science

Biographical:

Personal Data: Born in Agra, Uttar Pradesh, India,
August 4, 1964, the daughter of Ashish Kumar
Mookerjee and Kamala Mookerjee and the wife of
Shankar Narayanaswamy.

Education: Graduated from St. Helena's High School,
Poona, India, in June 1982; received Bachelor of
Science Degree in Mathematics from University of
Poona at Poona in June 1985; received Master of
Science Degree in Mathematics with specialization
in Computer Science from Indian Institute of
Technology, Bombay, India in July 1987; completed
requirements for the Master of Science degree at
Oklahoma State University in July 1992.

Professional Experience: Programmer, M.N. Dastur & Co.
Ltd., Bombay, India, July 1987 to August 1988.
Systems Executive, Mahindra British Telecom Ltd.,
Bombay, India and Cardiff, United Kingdom,
September 1988 to August 1990. Graduate Assistant,
Computer Services, Department of Agricultural
Economics, Oklahoma State University, April 1991
to August 1992.

