
PARALLELIZATION OF THE FAST 

ALGORITHM FOR COMPUTATION 

OF DOMINATORS IN A 

FLOW GRAPH 

By 

SHARMILA SHANKAR 
II 

Bachelor of Science 
University of Poona 

Poona, India 
1985 

Master of Science 
Indian Institute of Technology 

Bombay, India 
1987 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the degree of 

MASTER OF SCIENCE 
July, 1992 





PARALLELIZATION OF THE FAST 

ALGORITHM FOR COMPUTATION 

OF DOMINATORS IN A 

FLOW GRAPH 

Thesis Approved: 

eanof the Graduate College 

ii 



ACKNOWLEDGEMENTS 

I wish to express my sincere appreciation, thanks and 

deep sense of gratitude to Dr. Blayne Mayfield for his 

constant encouragement and advice throughout my thesis 

research. I wish to thank Dr. David Miller for his helpful 

suggestions throughout the study and for serving on my 

graduate committee. I would also like to place on record my 

thanks to Dr. John P. Chandler for serving on my graduate 

committee. 

I would also like to thank my sister Suchorita, and 

most of all my parents, Ashish and Kamala Mookerjee for 

their unflinching, unquestioned, and constant support in 

everything that I ha,ve done so far. I wish to thank my 

husband Shankar for his love, understanding, moral support 

and his strong belief in my abilities, which helped me to 

give my thesis the present orientation and form. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION. . . • . . . . . . . . . . • . • . . . . . . . . . . . • . . . . . . • . 1 

II. LITERATURE REVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . 7 

2.1 Graph Theory Preliminaries............. 7 
2.2 Fast Algorithm for Dominators.......... 9 
2.3 Parallel Depth-First Search in General 

Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

III. THE FAST ALGORITHM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

3.1 The Fast Algorithm Preliminaries ....... 13 
3.2 The Fast Algorithm •.................... 13 

IV. THE PARALLEL ALGORITHM. . . . . . . . . • . . . . • . • . . . . . . . . . . 19 

4.1 The Parallel Algorithm Preliminaries ... 19 
4.2 The Parallel Algorithm .•.•......•...... 21 

V. THE RANDOM GENERATION ALGORITHM .................. 25 

5.1 The Random Generation Preliminaries .... 25 
5.2 The Connectivity Algorithm •............ 25 
5.3 The Random Generation Algorithm ........ 26 

VI. RESULTS. . . . . . . . . . . . • . . . . . . • . • . . . . . • . • . . . . . • . . . . . . 2 7 

VII. SUMMARY AND CONCLUSIONS .......................... 29 

BIBLIOGRAPHY . .......•.....•.•••...•.•.. 8 • • • • • • • • • • • • • • • • 31 

APPENDIXES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 

APPENDIX A - EXAMPLES FOR THE FAST AND 
PARALLEL ALGORITHMS .••.............. 36 

APPENDIX B - RESULTS. • . . . . . . • . . . . • • . • . . . . . . . . . . . . 4 0 

APPENDIX C- FAST ALGORITHM PROGRAM LISTING ...... 53 

APPENDIX D- PARALLEL ALGORITHM PROGRAM LISTING .. 60 

APPENDIX E- RANDOM GENERATION PROGRAM LISTING ... 70 

iv 



APPENDIX F - USER MANUAL. • • • • • • • • • • • • • • • • • • • • • • • • 7 5 

v 



LIST OF TABLES 

Table Page 

I. Adjacency Matrix for Figure 6 ....•............. 38 

II. Dominator Table for Figure 6 ••••••••••••••••.•. 39 

III. Analysis of the Fast and Parallel Algorithms 
Processing Times in seconds .................. 41 

IV. Analysis of the Fast and Parallel Algorithms 
Average Processing Times in seconds .......... 48 

vi 



LIST OF FIGURES 

Figure Page 

1. Computer Program Modeled by a Graph............... 2 

2 • Block Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

3. Dominance Relations with each block pointing to 
its immediate predominator...................... 5 

4. A Flowgraph....................................... 10 

5. Dominator Tree of flowgraph in Figure 4 ........... 11 

6. Control Flow Graph [MCCA76] for # of 
vertices = 12 . .•.....••...• '· . . • . • . . . . • . . . . . . . . • . 3 7 

7. Number of Vertices vs. Processing Times for the 
vertex range 5-100. . . . . . . . . . . . . . • . . • . • . . . • . . . . . . 49 

8. Number of Vertices vs. Processing Times for the 
vertex range 50-150. . . . . . • • • . . • . . . . . . . . . . . • . . . • . 50 

9. Number of Vertices vs. Processing Times for the 
vertex range 5-100 for the parallel algorithm •.• 51 

10. Number of Vertices vs. Processing Times for the 
vertex range 50-150 for the parallel algorithm .. 52 

vii 



CHAPTER I 

INTRODUCTION 

It is imperative that software quality be a primary 

concern in any software development effort, the prime 

objective being the efficiency of computer programs. Every 

computer program can be visualized as a flowgraph {See 

definition in Section 2.1) of edges and vertices [ROBIBO] as 

shown in Figure 1 {page 2) with its branch {or decision 

points) represented by vertices, and the program codes 

between branch points represented by edges. The dominators 

{See definition in Section 2.1) problem arises in the study 

of global data flow analysis and object code optimization 

[LENG79]. 

The compilation process converts programs from a form 

which is flexible to a form which is efficient in a given 

computing environment. Compiler writers are challenged on 

the one hand by increasingly complex hardware and on the 

other hand by the fact that much of the complexity and 

rigidity of large, costly programs results from conscious 

efforts to build in efficiency. Methods of analyzing the 

control flow and data flow of programs during compilation 

are applied to transforming the program to improve object 

time efficiency. Dominance relationships, indicating which 

1 
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statements are necessarily executed before others, are used 

to do global common expression elimination and loop 

identification [LOWR69]. 

T 
I '! f(x) 

T 
u = g(v) 

Figure 1. Computer Program modeled by a graph 
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The class of problems arising while analyzing computer 

programs for code improvement known as the "global data flow 

analysis problems" [HECH75], involve the local collection of 

information distributed throughout the program. Some 

examples of global data flow analysis problems are 

"available expressions" (expressions such as A+B are 

available at point p in a flow graph if every sequence of 

branches which the program may take to p causes A+B to have 

been computed after the last computation of A or B), "live 

variables" (variables are live in a flow graph if their 

current value might be used before they are redefined), and 

"very busy variables" (variables are busy at a point in the 

program if at t~at point they contain data that will be 

subsequently fetched). 

In the arithmetic translator the program is broken into 

computational blocks whose relationship is represented by a 

directed graph (See definition in Section 2.1) that 

illustrates the flow of control through the program, with 

each block consisting of a sequence of statements, only the 

first of which may be branched to, and only the last of 

which contains a branch as shown in Figure 2 (page 4). 

The idea of dominance relations between the blocks of a 

program is suggested by Lowry and Medlock. A block I 

"predominates" a block J if every path along a sequence of 

successors from a program entry block to J always passes 

through I as shown in Figure 3 (page 5). The relation is 



transitive : If I predominates J and J predominates K, then 

I predominates K. 

(RETURN) 

Figure 2. Block structure 

4 



Figure 3. Dominance relations with each block pointing to 
its immediate predominator 

5 
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The dominators problem is relatively new and not much 

extensive study has been done in this area. Lengauer and 

Tarjan have developed a fast algorithm for finding 

dominators in a flowgraph using one of the useful tools in 

graph theory, the "backtracking technique", namely the 

depth-first search technique [TARJ72], a technique which not 

only gives the vertices reachable (See definition in Section 

2.1) from the start vertex of the search, but also enough 

information about the connectivity (See definition in 

Section 2.1) structure of the graph to efficiently determine 

the dominators [LENG79]. 

Concurrent (parallel) programming has become important 

in recent years because of its attractive feature of 

speeding up program execution [GEHA88]. Aggarwal, Anderson 

and Kao [AGGA90] have provided the parallel depth-first 

search algorithm for general directed graphs. 

This thesis involves the comparative analysis of the 

fast algorithm by Lengauer and Tarjan and the parallel 

algorithm in which case the depth-first search in the fast 

algorithm is replaced by the parallel depth-first search by 

Aggarwal, Anderson and Kao, both of which rely upon a graph­

theoretic matrix-based approach. 



CHAPTER II 

LITERATURE REVIEW 

2.1 Graph Theory Preliminaries 

This section introduces the graph theory preliminaries 

used throughout this thesis. It is essentially a 

compilation of all the graph-theoretic terminology used in 

this document. 

DIGRAPH (DIRECTED GRAPH): A digraph is an ordered pair 

(V,E) where V is a finite set of vertices, and E is a 

relation on V. The elements of E are called the edges of 

the digraph. For every pair of vertices u,v ~ V, the set of 

edges E will contain at most one edge (u,v) from u to v, and 

at most one edge (v,u) from v to u. If (u,v) ~ E, we say 

that u precedes v or is an antecedent of v [SKVA86]. 

STRONG COMPONENT: The set of vertices in a digraph D can be 

partitioned into equivalence classes, and by giving each 

equivalence class all the vertices connected to one another, 

the connected subgraphs of a graph, called its components, 

can be constructed [SKVA86]. 

If u is a point in a digraph D then the set of vertices 

that belong to the equivalence class of u is called the 

component (or, alternatively, a strong component) of u, 

which is symbolized by C(u). Since components are 

7 



8 

equivalence classes, the components defined by two points 

are either the same or have no points in common [ROBI80]. 

STRONGLY CONNECTED GRAPH: A digraph with one strong! 
I component is called strongly connected. : 

STRONGLY CONNECTED COMPONENTS: Graphs Gi = (Vi, Ei) are 

strongly connected components of a directed graph G = (V,E), 

where V is partitioned into equivalence classes Vi, ~ < i ~ 

r, such that vertic~s v and w are equivalent iff there is a 

path from v to w ~nd a path from w to v and Ei, 1 < i 5 r, 

the set of edges connecting the pairs of vertices in 'vi. 

SUBGRAPH: A graph G1 = (V1,E1) is a subgraph of G if V1 ~ V 

and E1 ~ E. 

FLOWGRAPH: G = (V, E, r) is a directed graph (V, E) with a 

distinguished start vertex r such that for any vertex v ~ V 

there is a path from r to v. 

SPANNING TREE: T if G = (V, E) is a graph and T = (V',E',r) 

is a tree such that (V',E') is a subgraph of G and V = V'. 

DOMINATOR: A vertex v is the dominator of another vertex w 

tv in a flowgraph G = (V,E,r), r being the start vertex, if 

every path from r to w contains v. 

IMMEDIATE DOMINATOR: Vertex v is the immediate dominator of 

w, if v dominates w and every other dominator of w dominates 

v. 

SEMIDOMINATOR: is min{vlthere is a path v = vo,v1,····,vk = 
w such that Vi > w for 1 ~ i < k-1}. 

REACHABLE: A vertex w is reachable from vertex v if there 

is a path from v to w. 
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CONNECTIVITY: There is a path between any two vertices. 

ADJACENCY MATRIX: Two nodes v 1 , v 2 ~ V in the digraph D = 

(V,E) are adjacent if there exists either of the two edges: 

(v1, v2) or (v2, v1) ~ E. Either a digraph D, its adjacency 

matrix A(D), is defined by 

A{D) = [aij]i 

where aij = 

i, j = 1, 2, ••• , n, 

1, if {Vi,Vj) ~ E 

o, otherwise 

2.2 Fast Algorithm for Dominators 

There have been several attempts made for finding 

dominators in directed graphs. 

Aho and Ullman [AH072) came up with the algorithm for 

finding dominators by deleting each vertex v in turn from G 

(a directed graph) and testing which vertices are reachable 

from s (start vertex), thus showing that any reachable 

vertex is not dominated by v. Their algorithm required 

O{V(V+E)) time if the problem graph had V vertices and E 

edges. 

Purdom and Moore [PURD72] had the same time bound as 

the Aho and Ullman's algorithm. The algorithm by Tarjan 

[TARJ74] used depth-first search and efficient algorithms 

for computing disjoint set unions and manipulating priority 

queues to achieve a time bound of O{V log V + E) if V is the 

number of vertices and E is the number of edges in the 

graph. 
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Lengauer and Tarjan (LENG79] developed a fast algorithm 

using depth-first search for finding dominators in a 

flowgraph running in O(m log n) time, where m is the number 

of edges and n is the number of vertices in the problem 

graph. Given a arbitrary flowgraph as shown in Figure 4 

below, the algorithm constructs a dominator tree as shown in 

Figure 5 (page 12). 

Figure 4. A flowgraph 
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Figure 5. Dominator tree of flowgraph in Figure 4 

The fast algorithm carries out a sequential depth-first 

search of the problem graph, i.e. the construction of a 

depth-first spanning tree numbering the vertices as they are 

reached during the search, followed by the computation of 

the semidominators of all the vertices in decreasing order 

by number. Then the immediate dominator of each vertex is 

implicitly defined followed by the explicit definition of 

the immediate dominator of each vertex carrying out the 

computation vertex by vertex in increasing order by number. 

2.3 Parallel Depth-First Search in General 

Digraphs 

Depth-First Search or the "backtracking technique" is 

one of the most useful tools in graph theory. In the 



setting of parallel computation, various studies were 

conducted on this technique. 

12 

For lexicographic depth-first search, Ghosh and 

Bhattacharjee provided an algorithm (GHOS84]. For unordered 

depth-first search, Smith (SMIT86] provided with an 

algorithm for undirected graphs. He and Yesha (HE88] came 

up with an algorithm for undirected graphs. Aggarwal and 

Anderson (AGGA88] provide an algorithm for general 

undirected graphs. 

Aggarwal, Anderson and Kao (AGG90] have presented a 

general directed depth-first search algorithm which uses a 

"divide-and conquer" strategy which is similar to that used 

by Aggarwal and Anderson (AGGA88] for general undirected 

depth-first search. The concept of "directed cycle 

separators" defined by Kao (KA088] is used in this 

algorithm. 

At the highest level, the algorithm finds and removes a 

portion of a depth-first search tree of a directed graph. 

The algorithm then recurses on strongly connected components 

as well as certain weakly connected subgraphs of the 

resulting graph. The parallel computation model used for 

the algorithm is the EREW PRAM model, i.e., no two 

processors are allowed to simultaneously read from or write 

into the same memory cell. 



CHAPTER III 

THE FAST ALGORITHM 

3.1 The Fast Algorithm Preliminaries 

This chapter focuses on the graph-theoretic, matrix 

-based approach to study the fast algorithm by Lengauer and 

Tarjan to find dominators in a flowgraph. 

The approach used in this thesis makes the following 

assumptions: 

1. For a given program we can draw a directed graph (known 

as the program control flow graph) with unique entry and 

exit vertices; 

2. Each vertex in the graph corresponds to a block of code 

in the program with the flow within each block being 

sequential; 

3. Each edge in the directed graph corresponds to the 

branches taken in the program; and 

4. Each vertex can be reached from the entry vertex and 

each vertex can reach the.exit vertex. 

3.2 The Fast Algorithm 

This algorithm is aimed at construction of the 

dominator tree of an arbitrary flowgraph which represents a 

13 



program, from the adjacency matrix of its control flow 

graph. The algorithm is outlined below. 

1. Develop the directed graph representation (i.e., the 

control flow graph) of a given program. 

14 

2. Develop the adjacency matrix of the control flow graph. 

The adjacency matrix is the input. 

3. Carry out depth-first search of the problem graph. 

Number the vertices from 1 to n as they reached during 

search. Initialize the variables used in succeeding 

steps. This generates a spanning tree rooted at the 

start vertex with the vertices numbered in preorder. 

4. Compute the semidominators of all vertices. Carry out 

the computation vertex by vertex in decreasing order by 

number. 

5. Implicitly define the immediate dominator of each 

vertex. 

6. Explicitly define the immediate dominator of each 

vertex, carrying out the computation vertex by vertex in 

increasing order by number. 

The implementation of the algorithm uses the following 

arrays: 

Input 

succ(v): 

computed 

parent(w): 

The set of vertices w such that (v,w) 

is an edge of the graph. 

The vertex which is the parent of vertex 

w in the spanning tree generated by the 



pred(w): 

semi (w): 

vertex(i): 

bucket(w): 

dom(w) : 

15 

search. 

The set of vertices v such that (v,w} is 

an edge of the graph. 

A number defined as follows: 

(i} Before vertex w is numbered, 

semi(v} = 0. 

(ii) After w is numbered but before its 

semidominator is computed, semi(w} 

is the number of w. 

(iii} After the semi dominator of w is 

computed, semi(w} is the number of 

the semidominator of w. 

The vertex whose number is i. 

A set of vertices whose semi dominator is 

w. 

A vertex defined as follows: 

(i) After step 3, if the semidominator 

of w is its immediate dominator, 

then dom(w} is the immediate 

dominator of w. Otherwise dom(w} 

is a vertex v whose number is 

smaller than w and whose immediate 

dominator is also w's immediate 

dominator. 

(ii} After step 4, dom(w} is the 

immediate dominator of w. 
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The following is the complete listing of the Algol-like 

version of the fast algorithm: 

procedure DOMINATORS(integer set array succ{l::n);integer 

r,n;integer array dom(l::n)); 

begin 

integer array parent, ancestor, vertex{l::n); 

integer array label, semi(O::n); 

integer set array pred, bucket(1::n); 

integer u, v, x; 

procedure DFS(integer v);. 

begin 

semi(v) := n := n + 1; 

vertex(n) := label(v) := v; 

ancestor(v) := o; 

for each w ~ succ(v) do 

if semi(w) = 0 then parent(w) := v; DFS(w) fi; 

add v to pred(w) od 

end DFS; 

procedure COMPRESS(integer v); 

if ancestor(ancestor(v)) = o then 

COMPRESS (ancestor (v) ). ; 

if semi(label(ancestor(v))) < semi(label(v)) then 

label(v) := label(ancestor(v)) fi; 

ancestor(v) := ancestor(ancestor(v)) fi; 

integer procedure EVAL(integer v); 

if ancestor(v) = o then EVAL := v 

else COMPRESS(v); EVAL := label(v) fi; 



procedure LINK(integer v,w); 

ancestor(w) := v; 

step1: for v := 1 until n do 

pred(v) := bucket(v) := o; semi(v) := 0 od; 

n := o; 

DFS(r); 

for i := n by -1 until 2 do 

w := vertex(i); 

step2: for each v ~ pred(w) do 

u := EVAL(v); 

17 

if semi(u) < semi(w) then semi(w) := semi(u) fi od 

add w to bucket(vertex(semi(w))); 

LINK(parent(w),w); 

step3: for each v ~ bucket(parent(w)) do 

delete v from bucket(parent(w)); 

u := EVAL(v); 

dom(v) := if semi(u) < semi(v) then u 

else parent(w) fi od od; 

step4: i := 2 until n do 

w := vertex(i); 

if dom(w) = vertex(semi(w)) 

then dom(w) .- dom(dom(w)) fi od; 

dom(r) := o; 

end DOMINATORS; 

The algorithm uses path compression (the technique 

which changes the structure of the tree during a find 
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operation by moving vertices closer to the root) to improve 

its performance greatly [TARJ79]. 

The application of the fast algorithm to an example 

graph from McCabe's work [MCCA76] appears in Appendix A and 

the performance of the algorithm is seen in an graphical 

representation in the Figures 7 and 8 in Appendix B. 



CHAPTER IV 

THE PARALLEL ALGORITHM 

4.1 The Parallel Algorithm Preliminaries 

This section deals with the preliminaries required for 

the discussion of the parallel algorithm. The algorithm 

follows the same assumptions made for the fast algorithm in 

Section 3.1. 

The parallel algorithm makes use of the Sequent's 

(Sequent Symmetry S81 with 24 80386 processors running at 

20Mhz each with the Dynixfptx 1.3 as the operating system) 

support for parallelism and its characteristics [GUID85]. 

The algorithm makes use of some elements of parallel 

programming such as creation and termination of multiple 

processes, creation of shared and private data, scheduling, 

the division of computing tasks among parallel processes, 

task synchronization and mutual exclusion. The algorithm 

involves multitasking which is a programming technique that 

allows a single application to consist of multiple processes 

executing concurrently. The data partitioning multitasking 

programming method is used and involves creating multiple 

identical processes and assigning a portion of the data to 

each process. Dynamic scheduling for scheduling the tasks 

among processes is used by the algorithm because of its 

19 
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feature that each process checks for tasks at run time by 

examining a task queue or a "do-me-next" array-index and 

thus provides dynamic load balancing: all processes keep 

working as long as there is work to be done and since the 

work is evenly distributed among the processes, the work can 

be completed sooner. Thus dynamic scheduling has an 

advantage over static scheduling which provides static load 

balancing: since the division of tasks is statically 

determined, several processes may stand idle while one 

processor completes its share of job. The dynamic 

scheduling algorithm is: 

1. Wait until some tasks appear. 

2. Remove the first task from the list and do it. 

3. If there are any more tasks, go to step 2. Otherwise 

go to step 1. 

To protect code sections that contain dependent 

variables to yield correct results, thus providing mutual 

exclusion, locks (a semaphore -which ensures that only one 

process at a time can access a shared data structure or 

execute a critical region of code) are used. 

Synchronization of processes i.e, a process waits at a 

barrier .(A synchronization point) after finishing its job 

for the other processes to come and join, is done by the 

algorithm. since a fork operation involves a lot of CPU 

overhead (Time and computation not spent in calculating the 

result of a program) time, the child processes were parked 
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and then released whenever needed by the algorithm and only 

killed when the parallel depth first search was done. 

Reasonable typical model of parallel processing is 

considered [ECKS77]. There are k identical processors, each 

with a CPU capable of performing typical operations such as 

arithmetic, comparisons, and boolean operations and each 

with a label between 1 and k which identifies. A single 

arbitrary large memory is available to all the processes for 

manipulation of data. Different processors are not allowed 

to read from the same memory location simultaneously, may 

write into different memory locations but must not attempt 

to write into the same memory simultaneously. A global 

control unit must be capable of synchronizing the various 

processes. The code is delineated syntactically as: 

instruct processor(i); 1 <= i <= j; 

sequence of instructions; 

end instruction; 

and has j <= k processors executing simultaneously. 

Execution cannot resume after the end instruction until all 

the processors have completed execution of the delineated 

sequence of instructions. 

4.2 The Parallel Algorithm 

This algorithm is aimed at computing the dominators of 

a structured program from the adjacency matrix of its 

control flow graph. 
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The algorithm implements the depth first search in a 

parallel form [AGGA90]. The vertices of a graph G are 

represented by the integers 1 ·to n. An adjacency list 

matrix representation of G is constructed from the adjacency 

matrix, and is a n x (n-1) matrix ALM such that 1 <= i <= n, 

row i consists of the list of vertices that are heads of 

edges with tail i. Associated with the adjacency list 

matrix is an n-vector of end markers EM where EM(i) contains 

the index j of the last vertex in the ith row of the 

adjacency list matrix. This setup helps different 

processors to simultaneously examine successive vertices to 

see whether they are "unvisited" or not. An "unvisited" 

adjacency list U(v) is created which lists all the vertices 

adjacent to v and are still labeled "unvisited". As soon as 

a vertex w is "visited", it is removed from the adjacency 

lists U(v) for all v adjacent to w. All the "visited" 

vertices are added to the ARC LIST list and the "unvisited" 

vertices are added to the FROND LIST list. The deletion of 

a newly "visited" vertex v, from the lists U(w) for all w 

adjacent to v are performed in parallel. 

The Algol-like version code of the algorithm (PMDFS) is 

outlined below: 

begin 

for each v ~ V do initialize ARC_LIST(v) 

and FROND_LIST{v) as null lists; 

mark every vertex "unvisited"; 

v = start vertex; 
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FATHER(v) = 0; 

NUMB VERTICES VISITED = 0; 

pmdfs(v); 

procedure pmdfs(v); 

begin 

comment v is the vertex being searched from; 

mark v "visited"; 

NUMB VERTICES VISITED = NUMB VERTICES VISITED + 1; 

NUMBER(v) = NUMB_VERTICES_VISITED; 

instruct processor(i); 1 <= i <= k; 

for j = 1 to floor(EM(v)/k) do 

if (k * (j - 1) + i) <= EM(v) 

then begin 

w(i) = ALM(v,k * (j- 1) + i); 

delete v from U(w(i)); 

if w(i) is "unvisited" 

then add v to FROND_LIST(w(i)); 

end; 

end instruction; 

for w ~ U(v) do 

begin 

FATHER(w) = v; 

add w to ARC_LIST(v); 

remove v from the end of FROND_LIST(w); 

pmdfs(w); 

end· __ , 
end· __ , 
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end 

Thus the above algorithm replaces the sequential depth 

first search strategy in the fast algorithm by Lengauer and 

Tarjan. The start vertex is identified as the directed 

cycle separator since it is a cycle of length zero and the 

removal of this vertex separates the graph to start with. 

The implementation of the algorithm uses the same 

arrays as the fast algorithm given in Section 3.2. 

The application of the parallel algorithm to an example 

graph from Mccabe's work [MCCA76] appears in Appendix A and 

the performance of the algorithm running on different 

processors as well as the comparison of the algorithm with 

the fast algorithm is seen in the Figures 7, 8, 9 and 10 in 

Appendix B. 



CHAPTER V 

THE RANDOM GENERATION ALGORITHM 

5.1 The Random Generation Preliminaries 

This chapter focuses on the graph-theoretic, matrix­

based approach to generate random flowgraphs and use the 

generated flowgraphs to run the fast algorithm by Lengauer 

and Tarjan and the parallel algorithm developed using the 

parallel depth-first search algorithm by Aggarwal, Anderson 

and Kao to get comparative results. These comparative 

results are then graphically represented as shown in 

Appendix B. 

5.2 The Connectivity Algorithm 

The input to the fast and parallel algorithms is a 

connected graph. The Connectedness Algorithm [AH074] needs 

for its input a directed graph G = (V,E) and labeling 

function 1 which is defined as 

1, if(v,w) is an edge 

l(v,w) = 

0, if not 

and is the adjacency matrix for the given graph. For the 

connectedness of the given graph, the reflexive-transitive 
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closure of the graph has to be calculated. The output is 

the calculation of c(vi,Vj) which is the sum over all the 

paths from Vi to Vj of the label of the path. The algorithm 

will return c(vi,Vj) to be equal to 1 for all i and j 

between 1 and n if the graph is connected. 

The algorithm is as follows : 

begin 

for i = 1 until n do co .. 11 = 1 + l(Vi 1 Vj) 

for 1 <= i, j <= n and i = j do cO .. 1] = l(vi,Vj) 

for k = 1 until n do 

for 1 <= i, j <= n do 

ck .. = ck-1 .. + ck-1. . ck-1 . 
1) 1) 1k k] 

for 1 <= i, j <= n do c(vi,Vj) = en .. 1] 

5.3 The Random Generation Method 

The approach used in the algorithm is the generation of 

the random adjacency matrices which has as its contents O's 

and 1's. These O's and 1's are randomly obtained by running 

the random generator [PARK88). Then the adjacency matrices 

are tested for the property of connectedness using the 

connectedness algorithm described in Section 4.1. Only 

connected graphs are generated. Then using these adjacency 

matrices the fast and the parallel algorithms are run with 

the variable parameters - the adjacency matrix, the number 

of vertices, the start vertex and the number of processors 

asked for by the user (in the case of the parallel 

algorithm). 



CHAPTER VI 

RESULTS 

Experiments were performed in order to compare the 

performance of the fast algorithm with that of the parallel 

algorithm. The fast algorithm Algol version was translated 

into c. The parallel algorithm was developed by using the 

parallel depth-first search approach by Aggarwal, Anderson 

and Kao in the fast algorithm and translated in C. Both the 

programs were separately tested out initially on the 

flowgraphs given in the Mccabe's paper [MCCA76]. 

Rigorous testing was done by the development of an 

algorithm which generated 10 random flowgraphs (connected) 

per vertex for vertices ranging from 5 to 150 in steps of 5, 

in form of adjacency matrices. These matrices were then 

used to run the fast and the parallel programs (for the 

parallel program the number of processors varied from 1 to 

16 in powers of 12) and the processing times were formed in 

a tabular form. Tables III and IV and Figures 7, 8, 9, 10 

in Appendix B illustrate the results. 

TABLE IV was formed from TABLE III recording the 

average processing times. TABLE IV in Appendix B was then 

plotted into four graphs. Figure 7 shows the graphs of fast 

algorithm and the parallel algorithm running on one 

27 
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processor in the vertex range of 5 to 100. Figure 8 shows 

the graphs of fast algorithm and the parallel algorithm 

running on one processor in the vertex range of 50 to 150. 

Figure 9 shows the performance of the parallel algorithm 

running on number of processors = 1, 2, 4, 8, 16 with the 

vertex range between 5 to 100. Figure 10 shows the 

performance of the parallel algorithm running on number of 

processors = 1, 2, 4, 8, 16 with the vertex range between 50 

to 150. 

Figures 7 and 8 show that the fast algorithm has a 

better performance than the parallel algorithm for 

comparatively smaller graphs. As the number of vertices 

increase and the graphs become larger, the parallel 

algorithm beats the fast algorithm. 

Figures 9 and 10 show that the performance of the 

parallel algorithm improves with the number of processors 

increasing. 

Therefore for number of processors = 16, the 

performance of the parallel algorithm is the best. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The main theme of this thesis was the comparative 

analysis of the dominators fast algorithm by Lengauer and 

Tarjan and the parallel algorithm developed by using the 

algorithm by Aggarwal, Anderson and Kao in the fast 

algorithm, using a graph-theoretic matrix-based approach. 

The approach used in this thesis relies upon the following 

assumptions: 

1. For a given program we can draw a directed graph (known 

as the program control flow graph) with unique entry and 

exit vertices; 

2. Each vertex in the graph corresponds to a block of code 

in the program with the flow within each block being 

sequential; 

3. Each edge in the directed graph corresponds to the 

branches taken in the program; and 

4. Each vertex can be reached from the entry vertex and 

each vertex can reach the exit vertex. 

Essentially, these assum~tions convey the notion that 

the algorithms developed as part of this thesis apply only 

to structured programs. 

29 



The parallel algorithm approach proved to be the 

improved version of the fast algorithm. As the number of 

processors were increased, the parallel program performed 

even better. Looking at the trends which are seen in the 

graphs in Appendix B, the fast algorithm has a better 

performance than the parallel algorithm for smaller graphs 

but as the number of vertices increase, the performance of 

the parallel algorithm is better. 

30 

Therefore it can concluded that the parallel depth­

first search strategy by Aggarwal, Anderson and Kao improved 

the performance of the fast algorithm by Lengauer and 

Tarjan. 
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APPENDIX A 

EXAMPLES FOR THE FAST AND 

PARALLEL ALGORITHMS 

36 



Figure 6. Control Flow Graph [MCCA76] for # 
of vertices = 12 
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TABLE I 

ADJACENCY MATRIX FOR FIGURE 6 

1 2 3 4 5 6 7 8 9 10 11 12 

1 0 1 1 1 1 1 1 0 0 0 0 0 

2 0 0 0 0 0 0 0 1 0 0 0 0 

3 0 0 0 0 0 0 0 1 0 0 0 0 

4 0 0 0 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 0 0 0 1 0 0 0 0 

6 0 0 0 0 0 0 0 1 0 0 0 0 

7 0 1 0 0 0 0 0 0 0 0 1 0 

8 0 0 0 0 0 0 0 0 1 1 0 0 

9 0 0 0 0 0 0 0 0 0 1 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 0 0 1 

12 0 0 0 0 0 0 0 0 0 0 0 0 

row labels represent vertex numbers 
column labels represent vertex numbers 
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TABLE II 

DOMINATOR TABLE FOR FIGURE 6 

Vertex 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Dominator 

0 
1 
1 
1 
1 
1 
1 
1 
8 
8 
7 
1 
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Verts 

5 

10 

15 

20 

25 

TABLE III 

ANALYSIS OF THE FAST AND PARALLEL 
ALGORITHMS PROCESSING TIMES 

IN SECONDS 

Seq Algo Par Algo 
# of processors 

1 2 4 8 

0.02 0.41 0.100 0.030 0.010 
0.03 0.41 0.100 0.030 0.010 
0.03 0.41 0.100 0.030 0.020 
0.03 0.41 0.100 0.030 0.020 
0.03 0.41 0.100 0.030 0.020 
0.03 0.41 0.100 0.030 0.020 
0.03 0.41 0.100 0.030 0.020 
0.04 0.41 0.100 0.030 0.020 
0.04 0.41 0.100 0.030 0.020 
0.04 0.41 0.100 0.040 0.020 
0.05 0.42 0.100 0.040 0.020 
0.05 0.42 0.110 0.040 0.020 
0.06 0.42 0.110 0.040 0.020 
0.06 0.42 0.110 0.040 0.020 
0.06 0.42 0.110 0.040 0.020 
0.06 0.42 0.110 0.040 0.020 
0.07 0.42 0.110 0.040 0.020 
0.07 0.43 0.110 0.040 0.020 
0.07 0.43 0.110 0.040 0.020 
0.07 0.43 0.110 0.040 0.020 
0.11 0.43 0.110 0.040 0.030 
0.12 0.43 0.110 0.040 0.030 
0.12 0.43 0.110 0.040 0.030 
0.12 0.43 0.110 0.040 0.030 
0.12 0.43 0.110 0.040 0.030 
0.12 0.43 0.110 0.040 0.030 
0.12 0.44 0.110 0.040 0.030 
0.12 0.44 0.110 0.040 0.030 
0.12 0.44 0.120 0.040 0.030 
0.12 0.44 0.120 0.040 0.030 
0.17 0.44 0.120 0.050 0.030 
0.18 0.45 0.120 0.050 0.030 
0.18 0.45 0.120 0.050 0.040 
0.18 0.45 0.120 0.050 0.040 
0.18 0.45 0.120 0.050 0.040 
0.18 0.45 0.120 0.050 0.040 
0.18 0.45 0.120 0.050 0.040 
0.19 0.46 0.130 . 0.050 0.040 
0.19 0.47 0.130 0.060 0.040 
0.19 0.47 0.140 0.060 0.040 
0.27 0.48 0.140 0.070 0.050 

41 

16 

0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.010 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.020 
0.030 
0.030 
0.030 
0.030 
0.030 
0.030 
0.030 
0.030 
0.030 
0.030 
0.050 
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TABLE III (Continued) 

Verts Seq Algo Par Algo 
# of processors 

1 2 4 8 16 

0.27 0.48 0.140 0.070 0.050 0.050 
0.27 0.48 0.150 0.070 0.050 0.050 
0.27 0.48 0 .150. 0.070 0.050 0.050 
0.27 0.49 0.150 0.070 0.050 0.050 
0.27 0.49 0.150 0.070 0.050 0.050 
0. 28 0.49 0.150 0.070 0.050 0.050 
0.28 0.50 0.150 0.070 0.050 0.050 
0.28 0.50 0.150 0.070 0.050 0.050 
0.28 0.50 0.160 0.070 0.050 0.050 

30 0.37 0.50 0.160 0.080 0.070 0.070 
0.37 0.50 0.160 0.080 0.070 0.070 
0.37 0.50 0.160 0.080 0.070 0.070 
0.38 0.51 0.160 0.090 0.070 0.070 
0.38 0.51 0.160 0.090 0.070 0.070 
0.38 0.51 0.170 0.090 0.070 0.070 
0.38 0.51 0.170 0.090 0.070 0.070 
0.38 0.52 0.170 0.090 0.070 0.070 
0.38 0.52 0.170 0.090 0.070 0.070 
0.38 0.53 0.180 0.090 0.070 0.070 

35 0.49 0.53 0.180 0.110 0.090 0.090 
0.49 0.53 0.180 0.110 0.090 0.090 
0.49 0.53 0.190 0.110 0.090 0.090 
0.49 0.53 0.190 0.110 0.090 0.090 
0.50 0.53 0.190 0.110 0.100 0.090 
0.50 0.54 0.190 0.110 0.100 0.090 
0.50 0.54 0.190 0.110 0.100 0.090 
0.50 0.54 0.190 0.110 0.100 0.090 
0.50 0.56 0.190 0.110 0.100 0.090 
0.50 0.57 0.210 0.110 0.100 0.090 

40 0.62 0.58 0.210 0.130 0.130 0.120 
0.63 0.58 0.210 0.130 0.130 0.120 
0.63 0.58 0.220 0.130 0.130 0.120 
0.63 0.58 0.220 0.130 0.130 0.120 
0.63 0.59 0.220 0.130 0.130 0.120 
0.63 0.59 0.220 0.130 0.130 0.120 
0.63 0.59 0.220 0.130 0.130 0.120 
0.63 0.60 0.220 0.130 0.130 0.120 
0.64 0.62 0.220 0.130 0.130 0.120 
0.64 0.62 0.240 0.130 0.130 0.120 

45 0.77 0.62 0.250 0.170 0.160 0.150 
0.78 0.62 0.250 0.170 0.160 0.150 
0.78 0.62 0.250 0.170 0.160 0.150 
0.78 0.62 0.250 0.170 0.160 0.150 
0.78 0.63 0.250 0.170 0.160 0.150 
0.78 0.63 0.250 0.170 0.160 0.150 
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TABLE III (Continued) 

Verts Seq Algo Par Algo 
# of processors 

1 2 4 8 16 

0.78 0.63 0.250 0.170 0.170 0.150 
0.79 0.63 0.260 0.170 0.170 0.150 
0.79 0.63 0.260 0.170 0.170 0.150 
0.79 0.64 0.280 0.170 0.170 0.150 

50 0.95 0.66 0.290 0.210 0.190 0.180 
0.95 0.67 0.290 0.210 0.190 0.180 
0.95 0.67 0.290 0.210 0.190 0.180 
0.95 0.67 0.290 0.210 0.190 0.180 
0.95 0.68 0.290 0.210 0.190 0.180 
0.95 0.68 0.290 0.210 0.190 0.180 
0.95 0.68 0.290 0.210 0.190 0.180 
0.95 0.68 0.290 0.210 0.190 0.180 
0.96 0.69 0.290 o. 210 0.190 0.190 
0.97 0.69 0.330 0.210 0.200 0.190 

55 1.13 0.74 0.330 0.260 0.230 0.230 
1.13 0.74 0.330 0.270 0.230 0.230 
1.14 0.74 0.330 0.270 0.240 0.230 
1.14 0.74 0.330 0.270 0.240 0.230 
1.15 0.74 0.330 0.270 0.240 0.230 
1.15 0.74 0.330 0.270 0.240 0.230 
1.15 0.74 0.330 0.270 0.240 0.230 
1.15 0.77 0.340 0.270 0.240 0.230 
1.15 0.77 0.370 0.270 0.240 0.230 
1.16 0.79 0.370 0.270 0.260 0.250 

60 1.34 0.79 0.380 0.320 0.280 0.270 
1. 34 0.80 0.380 0.320 0.280 0.270 
1. 34 0.80 0.380 0.320 0.280 0.270 
1.34 0.80 0.380 0.320 0.280 0.270 
1.34 0.81 0.380 0.320 0.280 0.270 
1. 35 0.82 0.380 0.320 0.280 0.270 
1. 35 0.82 0.380 0.320 0.280 0.270 
1. 35 0.82 0.390 0.320 0.280 0.270 
1. 37 0.83 0.420 0.320 0.280 0.270 
1.38 0.84 0.420 0.330 0.320 0.270 

65 1.57 0.86 0.430 0.390 0.330 0.320 
1.57 0.86 0.430 0.390 0.330 0.320 
1.57 0.86 0.430 0.390 0.330 0.330 
1. 57 0.87 0.430 0.390 0.330 0.330 
1.58 0.87 0.430 0.390 0.330 0.330 
1.58 0.88 0.430 0.390 0.330 0.330 
1.58 0.88 0.430 0.390 0.330 0.330 
1.58 0.88 0.440 0.390 0.330 0.330 
1.59 0.89 0.490 0.390 0.330 0.330 
1.60 0.95 0.490 0.390 0.330 0.330 

70 1.79 0.95 0.490 0.480 0.390 0.380 



44 

TABLE III (Continued) 

Verts Seq Algo Par Algo 
# of processors 

1 2 4 8 16 

1.81 0.95 0.490 0.480 0.390 0.380 
1.81 0.96 0.490 0.480 0.390 0.390 
1.83 0.96 0.490 0.480 0.390 0.390 
1.83 0.99 0.500 0.480 0.390 0.390 
1.83 0.96 0.500 . 0. 480 0.390 0.390 
1.83 0.96 0.500 0.480 0.390 0.390 
1.83 0.97 0.500 0.480 0.390 0.390 
1.83 0.98 0.520 0.480 0.400 0.390 
1.85 1.02 0.590 0.480 0.400 0.390 

75 2.08 1.06 0.590 0.570 0.470 0.460 
2.09 1.06 0.590 0.570 0.480 0.460 
2.09 1.06 0.590 0.570 0.480 0.460 
2.09 1.07 0.590 0.570 0.480 0.460 
2.09 1.07 0.590 0.570 0.480 0.460 
2.09 1.07 0.590 0.570 0.480 0.460 
2.09 1.07 0.590 0.580 0.480 0.460 
2.10 1.07 0.590 0.580 0.480 0.460 
2.10 1.09 0.590 0.580 0.480 0.460 
2.11 1.13 0.660 0.580 0.480 0.460 

80 2.36 1.13 0.660 0.620 0.530 0.510 
2.36 1.14 0.660 0.620 0.530 0.510 
2.37 1.15 0.660 0.630 0.530 0.510 
2.37 1.15 0.660 0.630 0.530 0.510 
2.37 1.15 0.660 0.630 0.530 0.510 
2.37 1.16 0.660 0.630 0.530 0.510 
2.38 1.16 0.670 0.630 0.530 0.510 
2.38 1.16 0.670 0.630 0.530 0.510 
2.38 1.18 0.670 0.640 0.540 0.520 
2.38 1.19 0.790 0.660 0.540 0.520 

85 2.65 1.24 0.790 0.710 0.620 0.590 
2.65 1.25 0.790 0.710 0.620 0.590 
2.65 1.26 0.790 0.710 0.620 0.590 
2.65 1.26 0.790 0.710 0.620 0.590 
2.65 1.26 0.790 0.710 0.620 0.590 
2.66 1.27 0.790 0.710 0.630 0.590 
2.66 1.27 0.790 0.710 0.630 0.590 
2.66 1.27 0.790 0.710 0.630 0.600 
2.66 1.29 0.790 0.720 0.630 0.600 
2.67 1.34 0.890 0.720 0.630 0.600 

90 2.96 1.35 0.890 0.780 0.700 0.650 
2.96 1.36 0.890 0.780 0.700 0.660 
2.96 1.36 0.890 0.780 0.700 0.660 
2.96 1.36 0.890 0.790 0.700 0.660 
2.96 1.36 0.890 0.790 0.700 0.660 
2.96 1.36 0.890 0.790 0.700 0.660 
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TABLE III (Continued) 

Verts Seq Algo Par Algo 
# of processors 

1 2 4 8 16 

2.96 1. 37 0.890 0.790 0.700 0.660 
2.97 1.37 0.890 0.790 0.700 0.660 
2.97 1. 38 0.890 0.790 0.710 0.660 
2.97 1.39 1.000 0.830 0.710 0.680 

95 3.27 1.50 1. 050 0.890 0.820 0.760 
3.28 1.51 1.050 0.900 0.820 0.760 
3.29 1.51 1.050 0.900 0.820 0.760 
3.29 1.51 1.050 0.900 0.820 0.760 
3.29 1.51 1.050 0.900 0.820 0.760 
3.30 1.51 1.050 0.900 0.820 0.760 
3.30 1.51 1.050 0.900 0.820 0.760 
3.30 1.51 1.050 0.910 0.820 0.770 
3.31 1. 53 1.050 0.910 0.820 0.770 
3.31 1.55 1.050 0.910 0.820 0.770 

100 3.61 1.61 1.150 0.970 0.890 0.830 
3.61 1.61 1.160 0.980 0.890 0.830 
3.62 1. 62 1. ,160 0.980 0.890 0.830 
3.62 1.62 1.160 0.980 0.900 0.830 
3.62 1.62 1.160 0.980 0.900 0.830 
3.62 1.62 1.160 0.980 0.900 0.840 
3.62 1. 62 1.160 0.980 0.900 0.840 
3.63 1. 63 1.160 0.980 0.900 0.840 
3.63 1.63 1.160 0.980 0.900 0.840 
3.65 1.64 1.170 0.990 0.900 0.840 

105 3.80 1.77 1.310 1. 080 1.020 0.930 
3.80 1.78 1.330 1.080 1.020 0.940 
3.80 1.78 1.330 1.080 1.020 0.940 
3.80 1.78 1.330 1.090 1.020 0.940 
3.80 1.79 1. 330 1. 090 1.020 0.940 
3.81 1. 79 1.330 1. 090 1.020 0.940 
3.81 1.79 1.330 1.090 1.020 0.940 
3.81 1.79 1.330 1. 090 1.020 0.950 
3.81 1.80 1.340 1.090 1.030 0.970 
3.82 1.81 1.360 1.100 1.040 0.970 

110 4.36 1.90 1.510 1.200 1.150 1. 050 
4.36 1.90 1.510 1.200 1.150 1.050 
4.36 1.91 1.510 1.200 1.150 1. 050 
4.37 1.91 1.510 1.200 1.150 1.050 
4.37 1.91 1.510 1.200 1.150 1. 050 
4.37 1.91 1.510 1.200 1.150 1.050 
4.38 1.91 1.520 1.200 1.150 1. 050 
4.38 1.92 1.520 1.200 1.150 1. 060 
4.38 1.92 1.520 1.200 1.160 1. 060 
4.39 2.07 1. 520 1.210 1.160 1.060 

115 4.75 2.07 1. 720 1.330 1.300 1.180 
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TABLE III (Continued) 

Verts Seq Algo Par Algo 
# of processors 

1 2 4 8 16 

4.75 2.07 1.720 1. 330 1.300 1.180 
4.76 2.07 1. 720 1.330 1. 300 1.180 
4.76 2.07 1. 720 1.340 1.300 1.180 
4.76 2.08 1.720 1.340 1. 300 1.180 
4.77 2.08 1.730 1.340 1. 310 1.180 
4.77 2.08 1.730 1. 340 1. 310 1.180 
4.77 2.08 1.730 1.340 1. 310 1.180 
4.78 2.08 1.730 1. 340 1.310 1.180 
4.78 2.27 1. 730 1.340 1. 310 1.190 

120 5.15 2.28 1. 980 . 1.490 1.470 1.330 
5.16 2.28 1.980 1.490 1.470 1.330 
5.16 2.29 1.980 1.500 1.470 1. 330 
5.17 2.29 1.980 1.500 1.480 1.340 
5.17 2.29 1.980 1.500 1.480 1.340 
5.19 2.29 1.980 1.500 1.480 1. 340 
5.19 2.29 1.980 1.500 1.480 1.340 
5.20 2.30 1.980 1.500 1. 480 1.340 
5.21 2.30 1.980 1.500 1.480 1. 340 
5.21 2.44 1.980 1.510 1.490 1.340 

125 5.61 2.44 2.180 1.620 1.620 1.460 
5.61 2.44 2.180 1.630 1.620 1.460 
5.61 2.45 2.180 1.630 1.630 1.460 
5.61 2.45 2.180 1.630 1.630 1.460 
5.62 2.45 2.180 1. 630 1.630 1.460 
5.62 2.46 2.180 1.640 1. 630 1.460 
5.63 2.46 2.180 1.640 1.630 1.460 
5.63 2.48 2.180 1.640 1. 630 1.470 
5.65 2.48 2.190 1. 640 1.630 1.470 
5.65 2.58 2.190 1.640 1.640 1.470 

130 6.05 2.59 2.360 1.750 1. 730 1.560 
6.06 2.59 2.360 1. 750 1. 740 1.570 
6.06 2.60 2.360 1. ?50 1. 740 1.570 
6.07 2.60 2.360 1.750 1. 740 1. 570 
6.08 2.60 2.360 1.750 1.740 1. 570 
6.08 2.60 2.360 1.750 1.740 1.570 
6.09 2.61 2.360 1.750 1.740 1.570 
6.10 2.61 2.360 1. 760 1.740 1.570 
6.12 2.61 2.360 1.760 1.740 1.580 
6.13 2.63 2.360 1.760 1. 750 1. 580 

135 6.54 2.87 2.750 2.020 1. 970 1.790 
6.55 2.88 2.750 2.020 1.970 1.790 
6.55 2.89 2.750 2.020 1.980 1.790 
6.56 2.89 2.750 2.020 1.980 1.790 
6.56 2.89 2.760 2.030 1.980 1.800 
6.57 2.89 2.760 2.030 1.980 1.800 
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TABL~ III (Continued) 

Verts Seq Algo Par Algo 
# of processors· 

1 2 4 8 16 

6.59 2.90 2.760 2.030 1.980 1.810 
6.59 2.90 2.760 2.030 1. 980 1. 810 
6.62 2.90 2.760 2.030 1.990 1.810 
6.62 2.92 2.760 2.030 2.000 1. 850 

140 7.03 3.03 2.930 2.140 2.080 1.900 
7.03 3.04 2.930 2.150 2.080 1. 910 
7.03 3.04 2.930 2.150 2.090 1.910 
7.03 3.04 2.930 2.150 2.090 1. 910 
7.03 3.05 2.930 2.150 2.100 1.910 
7.05 3.05 2.940 2.150 2.100 1.910 
7.07 3.06 2.940 2.150 2.100 1. 910 
7.07 3.06 2.940 2.160 2.100 1.910 
7.08 3.06 2.940 2.160 2.100 1.910 
7.08 3.15 2.940 2.160 2.100 1.920 

145 7.53 3.15 3.070 2.260 2.170 1. 990 
7.53 3.15 3.070 2.260 2.180 1. 990 
7.54 3.15 3.080 2.270 2.180 1. 990 
7.54 3.16 3.080 2.270 2.180 2.000 
7.54 3.16 3.080 2.270 2.180 2.000 
7.55 3.18 3.080 2.270 2.190 2.000 
7.55 3.19 3.080 2.270 2.200 2.000 
7.55 3.19 3.080 2.270 2.210 2.000 
7.58 3.22 3.080 2.290 2.240 2.010 
7.60 3.53 3.100 2.370 2.270 2.010 

150 8.06 3.54 3.570 2.590 2.480 2.290 
8.06 3.54 3.570 2.600 2.480 2.290 
8.07 3.54 3.580 2.600 2.480 2.300 
8.07 3.54 3.580 2.600 2.480 2.300 
8.07 3.57 3.580 2.600 2.480 2.300 
8.09 3.68 3.580 2.600 2.490 2.300 
8.11 3.79 3.580 2.600 2.490 2.300 
8.11 3.92 3.580 2.600 2.490 2.300 
8.12 3.99 3.580 2.610 2.510 2.310 
8.13 4.12 3.590 2.610 2.510 2.320 



Verts 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 

TABLE IV 

ANALYSIS OF THE FAST AND PARALLEL 
ALGORITHMS AVERAGE PROCESSING 

TIMES IN SECONDS 

Seq Algo Par Algo 
# of processors 

1 2 4 8 

0.032 0.410 0.100 0.031 0.018 
0.062 0.423 0.109 0.040 0.020 
0.119 0.434 0.112 0.040 0.030 
0.182 0.454 0.124 0.052 0.038 
0.274 0.489 0.149 0.070 0.050 
0.377 0.511 0.166 0.087 0.070 
0.496 0.540 0.190 0.110 0.096 
0.631 0.593 0.220 0.130 0.130 
0.782 0.627 0.255 0.170 0.164 
0.953 0.677 0.294 0.210 0.191 
1.145 0.751 0.339 0.269 0.240 
1.350 0.813 0.389 0.321 0.284 
1.579 0.880 0.443 0.390 0.330 
1. 824 0.967 0.507 0.480 0.392 
2.093 1.075 0.597 0.574 0.479 
2.372 1.157 0.676 0.632 0.532 
2.656 1.271 0.800 0. 712 0.625 
2.963 1.366 0.901 0.791 0.702 
3.294 1.515 1. 050 0.902 0.820 
3.623 1. 622 1.160 0.980 0.897 
3.806 1.788 1.332 1.088 1.023 
4.372 1.926 1.514 1.201 1.152 
4.765 2.095 1.725 1.337 1.305 
5.181 2.305 1.980 1.499 1.478 
5.624 2.469 2.182 1. 634 1.629 
6.084 2.604 2.360 1.753 1.740 
6.575 2.893 2.756 2.026 1.981 
7.050 3.058 2.935 2.152 2.094 
7.551 3.208 3.080 2.280 2.200 
8.089 3.723 3.579 2.601 2.489 
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16 

0.010 
0.011 
0.020 
0.030 
0.050 

' 0.070 
0.090 
0.120 
0.150 
0.182 
0.232 
0.270 
0.328 
0.388 
0.460 
0.512 
0.593 
0.661 
0.763 
0.835 
0.946 
1. 053 
1.181 
1. 337 
1.463 
1.571 
1.804 
1. 910 
1.999 
2.301 
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/* program = domfast.c */ 
/**********************************************************/ 
I* *I 
/* Dominators Fast Algorithm Program Listing */ 
I* */ 
/**********************************************************/ 
I* *I 
f* Author: Sharmila Shankar */ 
I* Date: 02/20/92 */ 
/* Class: COMSC 5000 - Thesis */ 
f* Adviser: Dr. Blayne Mayfield */ 
/* *I 
/**********************************************************/ 
/* This is the fast algorithm for finding dominators in a */ 
f* flowgraph. The algorithm uses depth-first search and */ 
f* an efficient method of computing functions defined on */ 
/* paths in trees */ 
/* *I 
f* The implementation of the algorithm uses the following */ 
/* arrays */ 
f* Input */ 
f* succ(v}: The set of vertices w such that (v,w) is */ 
/* an edge of the graph */ 
I* *I 
/* Computed */ 
f* parent(w): The vertex which is the parent of vertex w*/ 
f* in the spanning tree generated by the search */ 
I* *I 
f* pred(w): The set of vertices v such that (v,w) is */ 
/* an edge of the graph */ 
f* semi(w}: A number defined as follows: */ 
f* (i) Before vertex w is numbered, semi(v) = 0 *I 
f* {ii) After w is numbered but before its semi- */ 
f* dominator is computed, semi(w) is the number */ 
/* of w */ 
f* {iii) After the semidominator of w is computed, */ 
f* semi{w) is the number of the semidominator of */ 
I* w */ 
f* vertex(i): The vertex whose number is i */ 
f* bucket(w): A set of vertices whose semidominator is w*/ 
f* dom{w): A vertex defined as follows: */ 
f* {i) After step 3, if the semidominator of w is its */ 
f* immediate dominator, then dom(w) is the imme- */ 
f* diate dominator of -w. Otherwise dom(w) is a */ 
f* vertex v whose number is smaller than w and */ 
f* whose immediate dominator is also w's immediate*/ 
f * dominator *I 
f* (ii) After step 4, dom(w) is the immediate dominator*/ 
/* of w */ 
/**********************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
int **succ, **pred, **bucket, *dom; 



int *parent, *ancestor, *vertex, *label, *semi; 
int r,n,u,v,x,w,i,j, start time, end_time, exec_time; 
FILE *fp, *fopen(); -
char fname[20]; 

I* beginning of the main program *I 

main(argc, argv) 
int argc; 
char *argv[]; 
{ 

start time= clock(); 
printf("The adjacency matrix file name: "); 
strcpy(fname, argv[1]); 
printf("%s\n",fname); 
if{(fp = fopen(fname, "r")) ==NULL) 

{ 

} 

printf{"CANNOT OPEN FILE •.. PROGRAM ABORTED\n\n"); 
exit(O); 

printf("The number of vertices: "); 
n = atoi(argv[2]); 
printf("%d\n",n); 
printf("The start vertex: "); 
r = atoi(argv[3]); 
printf("%d\n",r); 

I* allocate pointer arrays : set succ, pred, bucket to 
address of newly allocated matrices *I 
/* allocate data arrays : set first element of succ, pred, 
bucket to address of first element of newly allocated data 
arrays *I 
I* initialise pointer arrays : set each element of succ, 
pred, bucket to address of corresponding element of data 
arrays *I 

succ = (int**)malloc{(n+1)*(sizeof(int*))); 
succ[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

succ[i] = succ[O] + ((n+1) * i); 

pred = (int**)malloc((n+1)*(sizeof(int*))); 
pred[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

pred[i] = pred[O] + ((n+1) * i); 

bucket= (int**)malloc((n+1)*(sizeof{int*))); 
bucket[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

bucket[i] = bucket[OJ + {(n+1) * i); 

dom = (int *)malloc((n+1) * (sizeof{int))); 
parent = (int *)malloc{(n+1) * (sizeof(int))); 
ancestor = {int *)malloc({n+1) * (sizeof(int))); 
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label = (int *)malloc((n+1) * (sizeof(int))); 
vertex = (int *)malloc((n+1) * (sizeof(int))); 
semi = (int *)malloc((n+1) *(sizeof(int))); 

I* read in the adjacency matrix *I 

for(i = 1; i <= n; i++) 
for(j = 1; j <= n; j++) 
fscanf(fp, "%d", &succ[i][j]); 

printf("\nThe adjacency matrix for n = %d vertices is 
\n\n",n); 

for(i = 1; i <= n; i++) 
{ 
printf("%2d ",i); 

for(j = 1; j <= n; j++) 
printf("%d ", succ[i][j]); 
printf("\n"); 

} 

I* step 1 *I 
I* This uses the recursive procedure DFS below to carry 

out the depth-first search *I 

for(v = 1; v <= n; v++) 
{ 

} 

semi[v] = o; 
for(w = 1; w <= n; w++) 

{ 

} 

pred[v][w] = 0; 
bucket[v][w] = 0; 

x = n; 
n = o; 
DFS(r); 

for(i = n; i >= 2; i--) 
{ 
w = vertex[i]; 

I* step 2 *I 
for (v = 1; v <= x; v++) 

{ 

} 

if(pred[w][v] == 1) 
{ 

} 

u = EVAL(v); 
if(semi[u] < semi[w]) 

semi[w] = semi[u]; 

bucket[vertex[semi[w]]][w] = 1; 
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LINK(parent[w], w); 

I* step 3 *I 

for (v = 1; v <= x; v++) 
{ 

}' 
} 

if(bucket[parent[w]][v] == 1) 
{ 

} 

bucket[parent[w]][v] = 0; 
u = EVAL(v) i 
if(semi[u] < semi[v]) 

dom(v] = u; 
else 

dom[v] = parent(w]; 

I* step 4 *I 
for(i = 2; i <= n; i++) 

{ 

} 

w = vertex[i]; 
if(dom[w] != vertex(semi(w]]) 

dom(w] = dom(dom[w]]; 

dom[r] = o; 

printf("\nThe Dominators of the Flowgraph are \n\n"); 
for(i = 1; i <= x; i++) 

printf("(%d, %d) \n", i, dom(i]); 

fclose(fp); 

I* free all allocated memory *I 

free(succ); 
free(pred); 
free(bucket); 
free(dom); 
free(parent); 
free(ancestor); 
free(label); 
free(vertex); 
free(semi); 

end time= clock(); 
exec time = end time - start time; 
printf("\n The execution time is %2.2f 

\n\n", (float) (exec_time)I1000000); 

} 
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I********************************************************** I 
I* *I 
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I* DFS */ 
I* */ 
/* This procedure conducts the depth-first search */ 
/**********************************************************/ 

DFS(v) 
int v; 
{ 
int w; 
semi[v] = n = n+1; 
vertex(n] = label[v] = v; 
ancestor(v] = o; 
for(w = 1; w <= x; w++) 

{ 

} 

if(succ(v][w] == 1} 
{ 
if(semi(w] == 0) 

{ 

} 

parent[w] = v; 
DFS(w); 

pred[w](v] = 1; 
} 

}/* end of DFS */ 

I********************************************************* I 
/* */ 
/* COMPRESS */ 
/* -------- */ 
/* This procedure carries out path compression */ 
/*********************************************************/ 

COMPRESS(v) 
int v; 
{ 
if(ancestor[ancestor[v]] != 0) 

{ 
COMPRESS(ancestor[v]); 

if(semi[label[ancestor(v])J < semi[label(v]]) 
label[v] = label[ancestor[v]]; 

ancestor[v] = ancestor[ancestor[v]]; 
} 
} /* end of COMPRESS */ 

/**********************************************************/ 
/* *I 
I* EVAL */ 
I* *I 
/* This procedure returns v if v is the root in the forest*/ 
/* Otherwise it returns any vertex u not equal to r(the */ 
/* root of the tree in the forest} of minimum semi(u) on */ 
f* the path from r to v */ 
/**********************************************************/ 



int EVAL(v} 
int v; 
{ 
if (ancestor[v] 0} 

return v; 
else 

{ 

} 

COMPRESS(v}; 
return(label[v]}; 

} I* end .of EVAL *I 
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1******************~***************************************1 
I* *I 
I* LINK *I 
I* ---- *I 
I* This procedure adds the edge (v,w} to the forest *I 
I********************************************************** I 

LINK(v,w} 
int v, w; 
{ 
ancestor[w] = v; 

}I* end of LINK *I 
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I* program = dompar.c *I 
1**********************************************************1 
I* *I 
I* Parallel Algorithm Program Listing *I 
I* *I 
I********************************************************** I 
I* *I 
I* Author: Sharmila Shankar *I 
I* Date: 02120192 *I 
I* Class: COMSC 5000 - Thesis *I 
I* Adviser: Dr. Blayne Mayfield *I 
I* *I 
1**********************************************************1 
I* This is the parallel algorithm for finding dominators *I 
I* in a flowgraph. The algorithm uses the parallel depth *I 
I* first search strategy by Aggarwal, Anderson and Kao *I 
I* *I 
I* The implementation of the algorithm uses the following *I 
I* arrays *I 
I* *I 
I* Input *I 
I* succ(v): The set of vertices w such that (v,w) is an *I 
I* edge of the graph *I 
I* *I 
I* ALM(v): The list of vertices which are heads of the *I 
I* edges with tail v *I 
I* *I 
I* U(v): The list of vertices which are adjacent to v and *I 
I* and are still unvisited *I 
I* *I 
I* arc list: The list of visited vertices *I 
I* *I 
I* frond list: The list of unvisited vertices *I 
I* *I 
I* Computed *I 
I* parent(w): The vertex which is the parent of vertex */ 
I* w in the spanning tree generated by the search *I 
I* pred(w): The set of vertices v such that (v,w) is *I 
I* an edge of the graph *I 
I* semi(w): A number defined as follows: *I 
I* (i) Before vertex w is numbered, semi(v) = o *I 
I* (ii) After w is numbered but before its semi- *I 
I* dominator is computed, semi(w) is the number *I 
I* of w *I 
I* (iii) After the semidominator of w is computed, *I 
I* semi(w) is the number of the semidominator of *I 
I* w */ 
I* vertex(i): The vertex whose number is i */ 
I* bucket(w): A set of vertices whose semidominator is w*l 
I* dom(w): A vertex defined as follows: *I 
I* (i) After step 3, if the semidominator of w is its *I 
I* immediate dominator, then dom(w) is the imme- *I 
I* diate dominator of w. Otherwise dom(w) is a *I 
I* vertex v whose number is smaller than w and *I 
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/* whose immediate dominator is also w's immediate*/ 
I* dominator *I 
/* (ii) After step 4, dom(w) is the immediate dominator*/ 
/* of w */ 
/**********************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
#include <math.h> 
#include <paralleljmicrotask.h> 
#include <paralleljparallel.h> 

int **succ, **pred, *dom, *parent, *ancestor, *vertex; 
int *label, **bucket, flr(); 
shared int *semi, **arc list, **frond_list, **U, *EM, *el; 
shared sbarrier t *barrier; 
shared int **ALM,n,x; 
shared slock t magiclock, *lp = &magiclock; 
int r,u,v,w,I,j,k,start time, end_time, exec_time; 
FILE *fp, *fopen(); -
char fname[20]; 
int nprocs, m_rele_procs(), m_park_procs(); 

f* beginning of the main program */ 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 

void main process(); 
char *shmalloc(); 
printf("The adjacency matrix file name: "); 
strcpy(fname,argv[l]); 
printf("%s\n",fname); 
if((fp = fopen(fname, "r")) ==NULL) 

{ 

} 

printf("CANNOT OPEN FILE .•• PROGRAM ABORTED\n\n"); 
exit(O); 

printf("The number of vertices: "); 
n = atoi(argv[2]); 
printf("%d\n",n); 
printf("The start vertex: "); 
r = atoi(argv[3]); 
printf("%d\n",r); 
printf("Number of processors available: 

%d\n",cpus online()); · 
printf("The number of processes asked for: "); 
nprocs = atoi(argv[4]); 
printf("%d\n 11 ,nprocs); 

I* shared memory allocation *I 
I* allocate pointer arrays : set succ, pred, bucket to 
address of newly allocated matrices *I 



I* allocate data arrays : set first element of succ, pred, 
bucket to address of first element of newly allocated data 
arrays *I 
I* initialise pointer arrays : set each element of succ, 
pred, bucket to address of corresponding element of data 
arrays *I 

start time= clock(); 

succ = (int**)shmalloc((n+1)*(sizeof(int*))); 
succ[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

succ[i] = succ[O] + ((n+1) * i); 

ALM = (int**)shmalloc((n+1)*(sizeof(int*))); 
ALM[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

ALM[i] = ALM[O] + ((n+1) * i); 

pred = (int**)shmalloc((n+1)*(sizeof(int*))); 
pred[OJ = (int*)shmalloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

pred[i] = pred[OJ + ((n+1) * i); 

bucket= (int**)malloc((n+1)*(sizeof(int*))); 
bucket[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

bucket[i] = bucket[O] + ((n+1) * i); 

arc list= (int**)shmalloc((n+1)*(sizeof(int*))); 
arc-list[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int))); 
for-(i = 1; i <= n; i++) 

arc_list[i] = arc_list[O] + ((n+1) * i); 

63 

frond list= (int**)shmalloc((n+1)*(sizeof(int*))); 
frond-list[OJ = (int*)shmalloc((n+1)*(n+1)*(sizeof(int))); 
for (I = 1; i <= n; i++) 

frond_list[i] = frond_list[O] + ((n+1) * i); 

U = (int**)shmalloc((n+l)*(sizeof(int*))); 
U[O] = (int*)shmalloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

U[i] = U[O) + ((n+1) * i); 

el = (int *)malloc((n+1) * (sizeof(int))); 
EM= (int *)shmalloc((n+1) * (sizeof(int))); 
dom = (int *)malloc((n+1) * (sizeof(int))); 
parent = (int *)shmalloc((n+1) * (sizeof(int))); 
ancestor = (int *)shmalloc((n+1) * (sizeof(int))); 
label = (int *)shmalloc((n+1) * (sizeof(int))); 
vertex = (int *)shmalloc((n+1) * (sizeof(int))); 
semi = (int *)shmalloc((n+1) *(sizeof(int))); 

for (i = 1; i <= n; i++) 



for (j = 1; j <= n; j++) 
{ ALM[i][j] = 0; 

EM[i] = o; 
} 

for(i = 1; i <= n; i++) 
{ 

} 
} 

for(j = 1; j <= n; j++) 
{ 
fscanf(fp, "%d", &succ[i][j]); 
U[i][j] = succ[i][j]; 
if(succ[i][j] == 1) 

{ 

} 

k = 1; 
while (1) 

{ 

} 

if (ALM[j][k] == 0) 
{ 

} 
else 

ALM[j] [k++] = i; 
break; 

k++; 

EM[j] = k - 1; 

printf("\nThe adjacency matrix for n = %d vertices is 
\n\n",n); 

for(i = 1; i <= n; i++) 
{ 
printf("%2d ",i); 

for(j = 1; j <= n; j++) 
printf("%d ", succ[i][j]); 
printf("\n"); 

} 

I* step 1 *I 
I* This step conducts the depth-first search *I 

for(v = 1; v <= n; v++) 
{ 

} 

semi[v] = o; 
for(w = 1; w <= n; w++) 

{ 

} 

pred [v] [w] = o; 
bucket[v][w] = o; 
arc list[v][w] = o; 
frond_list[v][w] = o; 

x = n; 
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I* NUMB_VERTICES_VISITED IS n *I 

I* set number of processes and initialize the barriers */ 

m set procs{nprocs); 
s=init_barrier{&barrier,nprocs); 
n = o; 
parent[r] = o; 
PMDFS{r); 
m_kill_procs{); /*kill the child processes*/ 

for(i = x; i >= 2; i--) 
{ 
w = vertex[i]; 

I* step 2 *I 
for (v = 1; v <= x; v++) 

{ 

} 

if(pred[w][v] == 1) 
{ 

} 

u = EVAL(v); 
if(semi[u] < semi[w]) 

semi[w] = semi[u]; 

bucket[vertex[semi[w]]][w] = 1; 
LINK(parent[w], w); 

I* step 3 */ 

for (v = 1; v <= x; v++) 
{ 

} 
} 

if(bucket[parent[w]][v] == 1) 
{ 

} 

bucket[parent[w]][v] = o; 
u = EVAL(v); 
if(semi[u] < semi[v]) 

dom[v] = u; 
else 

dom[v] = parent[w]; 

I* step 4 */ 

for(i = 2; i <= n; i++) 
{ 

} 

w = vertex[i]; 
if(dom[w] != vertex[semi[w]]) 

dom[w] = dom[dom[w]]; 
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dom(r] = o; 

printf("\nThe Dominators of the Flowgraph are \n\n"); 
for(i = 1; i <= x; i++) 

printf("(%d, %d) \n", i, dom[i]); 

fclose(fp); 

I* free the shared memory allocation and the other 
allocations *I 

shfree(succ); 
shfree(ALM); 
shfree(pred); 
free(bucket); 
free (dom); 
shfree(arc list); 
shfree(frond list); 
shfree(U); -
shfree(parent); 
shfree(ancestor); 
shfree(label); 
shfree(vertex); 
shfree(semi); 
shfree(EM); 
free(el); 

end time= clock(); 
exec time = end time - start time; 
printf("\nThe execution time-is: %2.2f 

\n", (float) (exec_time)I(1000000)); 

} 
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1**********************************************************1 
I* PMDFS *I 
I* ----- *I 
I* This procedure carries out the parallel depth-first *I 
I* search *I 
1**********************************************************1 

PMDFS (v) 
int v; 
{ 
int w; 
semi[v] = n = n + 1; 
vertex(n] = label(v] = v; 
ancestor(v] = o; 

I* release if any parked child processes *I 
m rele procs; 
m-fork(main process,v); 

I* park the child processes for future use *I 
m_park_procs; 



for(w = 1; w <= x; w++) 
{ 

} 

if(U[v][w] == 1) 
{ 

} 

parent[w] = v; 
arc list[v][w] = 
frond list[w][v] 
PMDFS{w); 

pred[w][v] = 1; 

}/* end of PMDFS */ 

1• , 
= o; 

67 

/**********************************************************/ 
/* COMPRESS */ 
I* -------- *I 
/* This procedure carries out path compression */ 
/**********************************************************/ 

COMPRESS(v) 
int v; 
{ 
if(ancestor[ancestor[v]] != 0) 

{ 
COMPRESS(ancestor[v]); 

if(semi[label[ancestor[v]]] < semi[label[v]]) 
label[v] = label[ancestor[v]]; 

ancestor[v] = ancestor[ancestor[v]]; 
} 

} /* end of COMPRESS */ 

/**********************************************************/ 
I* EVAL */ 
/* *I 
f* This procedure returns v if v is the root in the forest*/ 
f* Otherwise it returns any vertex u not equal to r(the */ 
f* root of the tree in the fo~est) of minimum semi(u) on */ 
I* the path from r to v */ 
/**********************************************************/ 

int 'EVAL(v) 
int v; 
{ 
if (ancestor[v] -- 0) 

return v; 
else 

{ 

} 

COMPRESS(v); 
return(label[v]); 

} /* end of EVAL */ 
/**********************************************************/ 
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I* LINK *I 
I* ---- *I 
I* This procedure adds the edge (v,w) to the forest *I 
1**********************************************************1 

LINK(v,w) 
int v, w; 
{ 
ancestor[w] = v; 

} I* end of LINK *I 

1**********************************************************1 
I* main process *I 
I* ----=------- *I I* This procedure carries out the parallel search and *I 
I* deletions from the unvisited list matrix in parallel. *I 
I* Dynamic Scheduling multitasking is adopted *I 
1**********************************************************1 

void main process(v) 
int v; -
{ 

} 
} 

int procs; 
int i, j,base,top; 

procs = m_get_numprocs(); I* number of processors *I 

while((base = 1 * (m_next() - 1)) < x) 
{ 

top = base + 1; 
if(top >= x) top = x - 1; 
for (i =base; i <top; i++); 

{ 
for (j = 1; j <= flr(EM(v]lprocs); j++) 

{ 
if(((procs * (j - 1)) + i) <= EM[v]) 

{ 

} 
} 

m lock(); 
el[i] = ALM[v][(procs * (j- 1)) + i]; 
U[el[i]](v] = o; 
if(semi[el[i]] == 0) 

frond list[el(i]][v] = 1; 
m_unlock(); 

s_wait_barrier(&barrier); I* synchronization point *I 

} I* end of main process */ 

1**********************************************************1 
I* flr *I 



69 

I* --- *I 
I* This procedure returns the floor of a number */ 
I********************************************************** I 

int flr(num) 
int num; 
{ 

return(num + 1); 
} I* end of flr *I 



APPENDIX E 

RANDOM GENERATION PROGRAM LISTING 
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I* program = rand flow.c *I 
1**********************************************************1 
I* *I 
I* Random Generation of Flow Graphs Driver Listing *I 
I* *I 
I********************************************************** I 
I* *I 
I* Author: Sharmila Shankar *I 
I* Date: 04120192 *I 
I* Class: COMSC 5000 - Thesis *I 
I* Adviser: Dr. Blayne Mayfield *I 
I* *I 
1**********************************************************1 
I* This program generates 10 random flow graphs for nodes *I 
I* 5 to 150 in steps of 5 and is the driver routine for *I 
I* the execution of the fast algorithm and the parallel *I 
I* algorithm. Here Node means vertex *I 
1**********************************************************1 
#include <stdio.h> · 
#include <string.h> 
#define LOW LIM NODE 5 
#define HIGH LIM NODE 100 
#define NODE-STEP 5 
#define MAX PROCS 16 
#define MAX-FLOW GRAPHS PER NODE 10 
float seed~ 1.0; 
float rand_num_generator{); 

main{) 
{ 
int procs = o, node = o, count = O, node count = O, 

line count = o; 
int-rand numb = o; 
FILE *fp~ *fopen{); 
char fname(20], temp[4], faststr[40], parstr[40]; 
for (node = LOW_LIM_NODE; node <= HIGH_LIM_NODE; node = 

node + NODE STEP) 
for(coun~ ~ 1; count <= MAX_FLOW_GRAPHS_PER_NODE; count++) 

{ 
strcpy(fname, 1111 ); 

strcpy { fname, 11 adj 11 ). ; 

strcpy (temp, 1111 ) ; 

sprintf{temp,"%d",node); 
strcat{fname,temp); 
strcat{fname, 11 11 ); 

strcpy(temp, 1111"'); 

sprintf(temp, 11 %d",count); 
strcat{fname,temp); 

I* continue generating till a connected graph is got *I 

while (1) 
{ 
fp = fopen{fname,"w"); 



} 

node count = 1; 
line-count = 1; 
while(line count <= node) 

{ -
rand_numb = rand_num_generator() * node; 
if((rand_numb% 2) == 0) 

fprintf(fp,"1 "); 
else 

fprintf(fp,"O "); 
if((node_count% node) -- O) 

{ 
fprintf(fp,"\n"); 
line_count++; 

} 
node_count++; 
} 
fclose(fp); 

I* testing of connectivity *I 

if(conn(fname,node) == 1) 
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break; I* graph is connected, so exit from loop *I 
} 
strcpy(faststr,""); 
strcpy(faststr,"domfast "); 
strcat(faststr,friame); 
strcat(faststr," "); 
strcpy(temp,""); 
sprintf(temp,"%d",node); 
strcat(faststr,temp); 
strcat(faststr," 1 "); 
system(faststr); 

for(procs = 1; procs <= MAX_PROCS; procs = procs * 2) 
{ 

} 
} 

strcpy(parstr,""); 
strcpy(parstr,"dompar "); 
strcat(parstr,fname); 
strcat(parstr," "); 
strcpy(temp,""); 
sprintf(temp,"%d",node); 
strcat(parstr,temp); 
strcat(parstr," 1 "); 
strcpy(temp,""); 
sprintf(temp,"%d",procs); 
strcat(parstr,temp); 
system(parstr); 

1**********************************************************1 
I* procedure : rand num generator() *I 
I* This procedure returns a random number *I 
1**********************************************************1 



float rand num generator() 
{ - - ' 

float a,q,r,m,value,lo,test; 
int hi; 
a= 16807; 
m = 2147483647.0; 
q = 127773.0; 
r = 2836.0; 

hi = seedlq; 
lo = seed - q * hi; 
test = a * lo - r * hi; 
if(test > 0.0) 

seed = test; 
else 

seed = test + m; 
value = seedlm; 
return value; 

}I* end of rand_num_generator *I 
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I********************************************************** I 
I* *I 
I* conn *I 
I* ---- *I 
I* This procedure tests out the connectivity of a given *I 
I* adjacency matrix and returns a flag *I 
1**********************************************************1 
conn(fp,n) 
char fname(20]; 
int n; 
{ 
int **1, **c, i,j,k,flag; 
struct Cost { 

int **succ; 
} *C; 

FILE *fp, * fopen(); 
strcpy(fname, fp); 
printf("The name of the adjacency matrix: %s",fname); 
if((fp = fopen(fname, "r")) ==NULL) 

{ 

} 

printf("CANNOT OPEN FILE ... PROGRAM ABORTED\n\n"); 
exit(O); 

printf("The number of vertices: "); 
printf("%d\n",n); 

C = (struct *)malloc((n+1) * sizeof(struct)); 
c.succ = (int**)malloc((n+1)*(sizeof(int*))); 
c.succ(OJ = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

c.succ[i] = c.succ(O] + ((n+1) * i); 

1 = (int**)malloc((n+1)*(sizeof(int*))); 



1[0] = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

l[i] = 1[0] + ((n+1) * i); 

c = (int**)malloc((n+1)*(sizeof(int*))); 
c[O] = (int*)malloc((n+1)*(n+1)*(sizeof(int))); 
for (i = 1; i <= n; i++) 

c[i] = c[O] + ((n+1) * i); 

for(i = 1; i <= n; i++) 
for(j = 1; j <= n; j++) 
fscanf(fp, "%d", &l[i][j]); 

printf("\n The adjacency matrix for n = %d vertices is 
\n\n",n); 

for(i = 1; i <= n; i++) 
{ 
printf("%2d ",i); 

for(j = 1; j <= n; j++) 
printf("%d ", l[i][j]); 
printf("\n"); 

} 

for(i = 1; i <= n; i++) 
{ 

C[O].succ[i][i] = 1 + l[i][i]; 
} 

for(i = 1; i <= n; i++) 
for (j = 1; j <= n; j++) 
if (i != j) 

C[O].succ[i][j] = l[i,j]; 

for (k = 1; k <= n; k++) 
for(i = 1; i <= n; i++) 
for(j = 1; j <= n; j++) 
C[k].succ[i][j] = C[k- 1].succ[i][j] + 

C[k- 1]succ[i][k] * C[k-
1].succ[k][j]; 

for(i = 1; i <= n; i++) 
for (j = 1; j <= n; j++) 

c[i][j] = C[n].succ[i][j]; 

flag = 1; 
for(i = 1; i <= n; i++) 

for (j = 1; j <= n; j++) 
if(c[i] [j] != 1) 

flag = o; 
fclose(fp); 
return flag; 
} /* end of conn */ 
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USER MANUAL 

The fast, parallel and the random generation programs were 

run on the Sequent. The following abbreviations are used. 

Adj Mat is the adjacency matrix, vertices are the number of 

vertices, vertex is the start vertex and the procs is the 

number of processors asked for. 

Part 1: Fast Program 

At the Sequent prompt type 

domfast <adj mat> <vertices> <vertex> <Enter> 

The program will display the adjacency matrix, the 

number of vertices, the start vertex and the pairs of the 

dominators in the form (vertex, its dominator) on the 

screen, in that order. 

Part 2: Parallel Program 

At the Sequent prompt type 

dompar <adj mat> <vertices> <vertex> <procs> <Enter> 

The program will display the adjacency matrix, the 

number of vertices, the start vertex, the number of 

processors available, the number of processors asked for and 

the pairs of the dominators in the form (vertex, its 

dominator) on the screen, in that order. 



Part 3: Random Generation Program 

At the Sequent prompt type 

rand flow <Enter> 

The program will display the adjacency matrices, the 

number of vertices, the start vertex, the number of 

processors available, the number of processors asked for 

and the pairs of the dominators in the form (vertex, its 

dominator) on the screen, in that order for the respective 

programs being run. 
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