
VLSI DESIGN OF A TWIN REGISTER FILE FOR ----· -.... --
REDUCING THE EFFECTS OF CONDIDONAL

BRANCHES IN A PIPELINED

ARCHITECTURE

By

MANISH~HAH

Bachelor of Engineering

Maharaja Sayajirao University

Baroda, India

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1992

'.' ·· .. '; ..

VLSI DESIGN OF A TWIN REGISTER FILE FOR

REDUCING THE EFFECTS OF CONDmONAL

BRANCHES IN A PIPELINED

ARCIDTECTURE

Thesis Approved:

Dean of the Graduate College

11

PREFACE

Pipelining is a major organizational technique which has been used by computer

engineers to enhance the performance of computers. Pipelining improves the performance

of computer systems by exploiting the instruction level parallelism of a program. In a

pipelined processor the execution of instructions is overlapped, and each instruction is

executed in a different stage of the pipeline. Most pipelined architectures are based on a

sequential model of program execution in which a program counter sequences through

instructions one by one.

A fundamental disadvantage of pipelined processing is the loss incurred due to

conditional branches. When a conditional branch instruction is encountered, more than one

possible paths are following the instruction. The correct path can be known only upon the

completion of the conditional branch instruction. The execution of the next instruction

following a conditional branch cannot be started until the conditional branch instruction is

resolved, resulting in stalling of the pipeline. One approach to avoid stalling is to predict the

path to be executed and continue the execution of instructions along the predicted path. But

in this case an incorrect prediction results in the execution of incorrect instructions. Hence .
the results of these incorrect instructions have to be purged. Also, the instructions in the

various stages of the pipeline must be removed and the pipeline has to start fetching

instructions from the correct path. Thus incorrect prediction involves a flushing of the

pipeline.

This thesis proposes a twin processor architecture for reducing the effects of

conditional branches. In such an architecture, both the paths following a conditional branch

are executed simultaneously on two processors. When the conditional branch is resolved,

the results of the incorrect path are discarded. Such an architecture requires a special

111

purpose twin register file. It is the purpose of this thesis to design a twin register file

consisting of two register files which can be independently accessed by the two processors.

Each of the register files also has the capability of being copied into the other, making the

design of the twin register file a complicated issue.

The special pwpose twin register file is designed using layout tools Lager and

Magic. The twin register file consists of two three-port register files which are capable of

executing the 'read', 'write' and 'transfer' operations. The transfer of data from one

register f.tle to another is accomplished in a single phase of the cl<X!k. The functionality of a

32-word-by-16-bit twin register file is verified by simulating it on IRSIM. The timing

requirements for the read, write and transfer operations are detennined by simulating the

twin register file on SPICE.

I would like to express my sincere gratitude to my advisor, Dr. J. J. Lee, for the

guidance and encouragement he provided throughout my graduate program. I would also

like to express my deep appreciation to Dr. Louis Johnson for the technical assistance he

provided during the course of this study. His suggestions were of invaluable help to me, as

was the constant support and encouragement of Dr. James Baker, to whom special thanks

are due.

I would also like to thank my parents for their understanding, support, and love;

and my sisters and my brother for being a source of constant inspiration in my pursuit of .
excellence.

Finally, I am grateful to the faculty, staff, and students of the department of

Electrical Engineering at Oklahoma State University for the friendship, guidance, and help

they provided throughout my graduate studies.

iv

TABLE OF CONTENTS

Chapter Page

I. IN1'R.ODUCTION ;·.. 1

II. CONDI1riON~13~CII]jS .. 6

13ranch Penalty . 6
13ranch Cost 10
Conventiona1.13ranch Schemes . 11

13ranch Prediction . 11
13ranch Target 13uffer 13
~layed 13ranches 14
Forward Semantic 15

13ypassing Conditional13ranches 15

III. TWIN PROCESSOR ARCHITECTURE . 18

Twin Processor Machine . 18
13ranch Handling . 20
Effect of 13ranches 23

IV. DESIGN OF A TWIN REGISTER FILE 26

Three-Port Memory Cell . 26
Twin Register File . 29

Syste~ T~g 29
OrgaiUZation 32

Cell Placement 34
Twin Memory Cell 37

Transfer Operation . 40
Read Operation 42
Write Opemtion 45

Address Decoder 48
Line Drivers 52
Read,IW"rite Circuit 55
Layout of Twin Register File 59

V. SIMULATIONRESULTS ... 61

IRSIM Results 61
SPICE Simulation Results . 70

Wordline Delay 70

v

Chapter Page

Write Delay 71
Precharge Delay . 73
Read Delay . 7 4
Transfer Delay . 7 5

Vl. CONCLUSIONS .. 78

BffiLIOGRAPHY . 80

APPENDIXES . 83

APPENDIX A - TII.\tiLAGER C FILE FOR TWIN REGISTER FILE 84

APPENDIX B - SPICE FILE . 88

Vl

USTOFTABLES

Table Page

I. Simulation Data for Register File A . 62

II. Simulation Data for Register File B . 63

III. Transfer Data for Register B . 66

IV. Transfer Data for Register A . 68

Vll

LIST OF FIGURES

Figure Page

1. Space - Time Diagram for a Pipelined Machine . 3

2. Space -Time Diagram for a Non- Pipelined Machine . 3

3 . Typical Processor Pipeline . 7

4. Example of a Code Segment . 8

5 . Instruction Flow in a Pipeline o o • o o ••••• 0. 0 .. o •••• o o o o •• 0 ... o o • o ••••• o • o. • • 9

6. System Configuration of a Twin Processor Machine . 0 0 0 0 0 ... 0.... 19

7. Instruction Flow in a Twin Processor Machine 0 .. 0 ... 0 .. 0 0 0 o. 0 .. o o o o 0 22

8. Pseudo Three-Port RAM .. 0. o •••••••••• 0. 0 0. 0 0 0 0 0 0 0. 0 0 0 0 ... o o o o o 0 o o o o o 27

9 0 System Timing . 0 0 0 0 o o 0 0 o 0 o 0 0 0 0 0 0 0 0 .. 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 o o 0 o 0 0 o 0 .. 0 0 0 0 0 .. 0 0 0 o 0 0 0 0 0 o o 30

10 0 Twin Register File Architecture o 0 o o 0 0 0 ... 0 ... 0 0 0 0 0 0 0 .. 0 0 0 0 0 0 0 0 .. 0 .. o 0 o. 0 0 0 o o •• o o ••••••• 0 33

11. Cell Placement in a 32-Word.-by-16-Bit Twin Register File . 00. o ••••••• o ••• o. o 00. o 0. 36

12. Twin Memory Cell .. o .. o .. o .. o o .. o..... 38

13. Layout of a Twin Memory Cell . 0 0 0 .. 0 0 ... 0 0 0 0 . 0 0 0 ... 0 0 0 39

14. Equivalent Circuit During Transfer Operation 0 0 ... 0 . 0 .. 0 .. 0 0 0 0. 0 0. 0 o o o •• 0 o 0 o o o 41

15. Equivalent Circuit During Read Operation 0 0 0 0 0 o • o • 0 . o 0 o • o • o o o o o o o • o o o o o o •••• o • o o o o o 0 0 o o 4 3

160 Equivalent Circuit During Write Operation o. oo .o .o o ••• • • • •• •• •• • • •• • • •• •• •• • • • •• • • 47

17. A 2-to-4 Line Precharged NOR Decoder .. o o o o o o o o o o 0 0 0 o o o o o o o 0 o o o o o o o o ••••• o o o • o o •••• o 50

18. Layout of a 2-to-4 Line Interleaved Decoder 0. 0 0 . 0 0 o 0 51

19. Wordline and Transfer Line Driver 0 0..... 53

20. Layout ofWordline and Transfer Line Driver oo···· ••••• •• • • ••• • • 54

21. Write Circuit oooooooo•. o•o• o• •• 000 0000000 o •• oooo. 000000 ooo ••• o ••• o... •• • •• • • 56

Vlll

Figure Page

22. Read Circuit.. 57

23. Layout of Read/Write Circuit 58

24. Layout of a 32-Word-by-16-Bit Twin Register File 60

25. Read/Write Operation of Twin Register File . 64

26. Transfer Operation from Register File A to Register File B . 67

27. Transfer Operation from Register File B to Register File A . 69

28. Wordline Delay . 71

29. Write Delay 72

3 0. Precharge Delay . 73

31. Read Delay 75

32. Transferring 'high'.. 76

3 3. Transferring 'low' . 77

ix

CHAPTER!

INTRODUCTION

Computer performance has been steadily improved over the past two decades by

exploiting advances in semiconductor processing technology and by making architectural

innovations. This evolution has led to high-performance machines which execute more than

one instruction simultaneously by exploiting the parallelism available at the instruction level

of the program.

One major approach for incorporating a higher parallelism in computer systems has

been the pipelined processing, which is defmed as "the technique of decomposing a

repeated sequential process into subprocesses, each of which can be executed efficiently on

a special dedicated autonomous module that operates concurrently with others" [1]. The .
advantage of pipelining is that it provides a way of starting a new process before the old

one has been completed. Therefore, in a pipelined computer the completion rate of

instructions is not a function of the latency of each instruction, but rather of how soon an

instruction can be initiated [2].

An example of pipelined processing is the execution of instructions in a typical

computer. The execution process consists of five steps: fetching an instruction (IF),

decoding it (ID), reading operands (OP RD), performing arithmetic or logical operations

(EXE), and finally writing the results back (OP WR). In a non-pipelined machine these five

steps must be completed before the next instruction can be issued, while in a pipelined

machine the successive instructions can be executed in an overlapped fashion. Since the

execution of the instruction is divided into five subprocesses and each subprocess is

executed in five different stages of the pipeline, we can have five instructions executing in

1

parallel. This principle is illustrated in Figures 1 and 2, which show the execution of five

consecutive instructions on a pipelined machine and on a non-pipelined machine,

respectively. The pipelined architecture executes five instructions in nine cycles, while the

non-pipelined architecture executes only two instructions in ten cycles.

2

A typical pipelined computer executes instructions in a sequential manner so that the

address of the next instruction to be executed is obtained by incrementing the current

program counter by the size of the current instruction. Thus each instruction does not have

to explicitly specify the address of the next instruction to be executed. However, a branch

instruction alters the sequential flow of instructions and explicitly specifies the address of

the next instruction to be executed. A branch instruction may be a conditional branch or an

unconditional branch. In case of an unconditional branch, the sequential flow of

instructions is always altered and the processor has to fetch and execute the instructions

from an explicitly specified target address.

In case of a conditional branch, the processor has to decide whether the branch will

be taken or not. This decision is typically based on the results of a 'COMPARE' or 'TEST'

operation and usually takes more than one cycle. So either the pipeline stalls until the

condition is resolved, or it makes a prediction as to whether the branch will be taken or not

and executes the appropriate instruction stream. If the prediction is incorrect, then the

pipeline has to be flushed, the results of the incorrect prediction have to be purged, and a

new instruction has to be fetched from the correct path. Thus branch instructions disrupt

the sequential flow of instructions through the pipeline, leading to a significant delay in the

execution of the programs in the pipelined computer.

ELINE .4l PIP
STA GES

OPWR

EXE

OPRD

ID

IF

ELINE .4~ PIP
s TAGES

OPWR

EXE

OPRD

ID

IF

3

I1 u 13 14 15

11 u 13 14 15

11 u 13 14 15

11 u 13 14 15

11 u 13 14 15
1 2 3 4 5 6 7 8 9 10

CYCLES

Figure 1. Space - Time Diagram for a Pipelined Machine

11 u

11 u

11 u

11 u

11 u
.... ...

1 2 3 4 5 6 7 8 9 10
CYCLES

Figure 2. Space -Time Diagram for a Non- Pipelined Machine

4

This thesis presents the design of a special purpose twin register file intended to

reduce the effects of conditional branches. When a computer has two processors connected

to the twin register file, two possible instruction streams of a conditional branch can be

processed simultaneously. When the condition is resolved, the results of the incorrect path

are simply discarded. Some architectural aspects resembling this approach are incorporated

in the ffiM 3033 [12] and in the Pipeline Pushdown Computer proposed by Stone [13].

The twin register file consists of two register files, each of which can be

independently accessed by two processors. When the two processors start executing two

instruction streams of a conditional branch, their register files need to have the same copy

of data to ensure that both processors use the same data. Hence, each register file has the

capability of being copied into the other one. In other words, each register file can create a

shadow of its contents in the other register file. This special purpose twin register file was

designed using the layout tools Magic and Lager. The design of the register file was

parameterized, and a 32-word-by-16-bit twin register file was laid out and verified by

SPICE and IRSIM simulations.

The contents of this thesis are presented in six chapters. Chapter II describes the

effects of conditional branches on a pipelined computer, analyzes the branch cost in terms

of time, and discusses the major schemes for reducing the branch penalties, such as branch

prediction, branch target buffer, delayed branching and forward semantic. The final section

of Chapter II presents the advantages of bypassing conditional branches. Chapter ill

describes the novel twin processor architecture, discusses the handling of conditional

branches by the twin processor, and derives the branch cost for the twin processor

machine. Chapter IV describes the design of the special purpose twin register file which is

used in the twin processor machine to process two paths of a conditional branch. The twin

register file consists of two independent three-port register files, each of which has the

capability of being copied into the other. Chapter V presents the simulation results of the

twin register file. The functionality of a 32-word-by-16-bit twin register file is verified by

simulating it on IRSIM. The read, write and transfer latencies are determined by SPICE

simulation of a single memory cell with the capacitances of a 32-word-by-16-bit register

file placed on the critical control and data lines of the memory cell.

5

CHAPTER II

CONDniTONALBRANCHES

Studies have indicated that branch instructions represent around 15 to 30% of the total

nwnber of instructions executed in a typical computer [5]. Branches alter the sequential

flow of instructions, resulting in discontinuities in program execution. These

discontinuities cause the machine to waste an average of 35% of the total execution time

[3]. The discontinuities also complicate the design of instruction fetch units [15]. Even in

superscalar processors the performance is limited due to branches, not due to hardware

constraints [14]. In this chapter, the effects of conditional branches are discussed and the

branch cost is analyzed. We study some conventional schemes which have been used for

alleviating the detrimental effects of conditional branches, and discuss the technique of

bypassing the conditional branches through simultaneous execution of two instruction

streams following a conditional branch.

Branch Penalty

To analyze the effects of branch instructions on the performance of a pipelined

processor, consider a hypothetical machine with the pipeline shown in Figure 3.

Instructions are fetched by the instruction fetch unit (IF) and decoded in the decode unit

(ID). Once the data dependencies have been resolved, operands are read from the registers

(OP RD) and the instructions are forwarded to the execution unit for execution (EXE).

Upon completion of the execution, the results are written back to the registers (OP WR).

6

INSTRUCTION !--~INSTRUCTION
FETCH DECODE

OPERAND
READ

EXECUTE

Figure 3. Typical Processor Pipeline

OPERAND
WRITE

In this hypothetical machine, each conditional branch instruction specifies three

7

parameters: operands to be compared, branch condition, and branch destination. The result

of the comparison, which is known at the end of the execution cycle, determines the path of

subsequent execution. This differs from the scheme employed in some RISC machines,

where the conditional branch instruction is split in two parts: a compare instruction and a

jump instruction. The compare instruction sets the condition codes, and the branch

instruction execution is based on these condition codes. In the hypothetical machine, we

combine the compare and jump operations of a conditional branch instruction because this

results in reduced hardware and software complexity [10]. Also, such a scheme simplifies

the analysis for branch penalty.

The machine is assumed to have a very large branch target buffer so that the

instructions from the branch target are available at the decode time of the branch instruction.

The branch target buffer also provides the address of the target instruction. The machine is

also assumed to have large data and instruction caches, so that for all practical purposes the

memory access time goes to zero and a new instruction can be issued every cycle.

Figure 4 shows a segment of program code to be executed in the pipeline.

Instructions k, k+ 1, and k+2 execute sequentially. Instruction k+2 is a branch instruction

that can either jump to instruction m or fall through to instruction k+3. Figure 5 shows the

flow of these instructions through the pipeline. Instruction k enters the pipeline during

cycle 1. The processor produces no results for the first four cycles. This unproductive time

8

is called the start-up latency. The first instruction completes at the end of cycle 5, and then

one instruction is expected to complete every cycle in the pipeline. As seen in Figure 5,

instructions k and k+ 1 complete during cycle 5 and cycle 6, respectively. The branch

instruction k+2 enters the pipeline during cycle 3 and is decoded in cycle 4. Once the

conditional branch instruction is detected, the processor stalls until the condition is

resolved. This stalling introduces three bubbles in the pipeline. Instruction k+ 3, which was

fetched during cycle 4, has to be flushed from the pipeline. During cycle 6, the branch

instruction k+2 enters the execution unit and the branch condition is resolved at the end of

this cycle. Hence, the processor fetches the target instruction m in cycle 7. This instruction

is completed during cycle 11. No instructions, therefore, are completed during cycles 8

through 10. These wasted cycles constitute the branch penalty.

k

k+1

k+2 (Branch tom)

k+3

m

m+1

Figure 4. Example of a Code Segment

9

CYCLE PIPELINE SEGMENT

IF ID OPRD EXE OPWR

1 k

2 k+1 k

3 k+2(branch) k+1 k

4 k+3 k+2 k+1 k

5 c:::> c::::> k+2 k+1 k

6 c::::> c::::> c:::> k+2 k+1

7 m c:::> c:::> ~ k+2

8 m+1 m c:::> c:::> c:::>
9 m+1 m c:::> c:::>

1 0 m+1 m ~
1 1 m+1 m

12 m+1

Figure 5. Instruction Flow in a Pipeline

The penalty will be greater in machines which have longer pipelines, such as

machines having floating point units. In these machines, the execution stage will take more

than one cycle, depending on the number of pipeline stages in the floating point unit. Due

to the longer execution latency, the resolution of the condition will be delayed and the

pipeline will have to stall for a greater number of cycles. Thus the effect of conditional

branches becomes more severe as the length of the pipeline increases.

Branch Cost

The branch penalty described in the previous section affects the performance of the

hypothetical processor. In this research, we used a simple model similar to the one

considered by Lilja [3], in order to analyze the effects of branches. In the model we

considered the following key parameters:

pb = probability that a particular instruction is a branch

s = number of stages in the pipeline

b = branch penalty in number of cycles wasted

Tave = average number of cycles between the completion of two

successive instructions.

10

The branch penalty b, which is the number of cycles the processor has to stall when a

branch is encountered, depends on the number of stages in the pipeline. Typically, b = s-2.

H there are no branches in an instruction stream, one instruction is issued every cycle

and the time between the completion of two successive instructions is one cycle. But when

a branch instruction is encountered, the pipeline has to stall for b cycles and so the time

between the completion of two instructions is 1 +b. Hence, the average time between

completion of two instructions is

Tave = (1- Pb)*(1) + Pb*(1 +b)

= 1 + b*Pb. (2.1)

The above equation shows that the maximum performance occurs when the branch penalty

is zero, which results in one instruction being completed every cycle. Let Fb be defmed as

the average number of instructions completed every cycle. Then

1
Fb=­

Tave

1 1

1 = -:----::--=--

1 + bPb.
(2.2)

A previous study has shown that Pb ranges from 0.1 to 0.3 [3]. If we consider a five-stage

pipeline having a branch penalty b of three cycles and Pb = 0.3, then T ave= 1.9 and Fb =

0.53. On the other hand, if the pipeline had nine stages with a branch penalty of seven

cycles, then Tave = 3.1 and Fb = 0.32.

Conventional Branch Schemes

The above analysis presents a worst case scenario where the pipeline is stalled as

soon as the branch is decoded. In most machines, the branch penalties can be significantly

reduced by employing some architectural schemes for reducing the penalties. Some of the

most widely used schemes are discussed in this section.

Branch Prediction

Branch Prediction is one of the common approaches used to reduce the penalties

caused due to conditional branches [8, 9]. Through use of prediction techniques, the

probable execution path of a branch is determined before the condition is resolved, and the

instructions are executed in a conditional mode. In this mode of execution, all the results

produced in the pipeline are marked tentative. If the prediction is correct, there are no

penalties involved. On the other hand, if the prediction is incorrect, then a repair

mechanism is required in order to undo all the effects on the registers and main memory

caused by the instructions executed from the incorrectly predicted path [17]. Once the

processor restores all the tentative changes, it can continue fetching and issuing instructions

along the correct branch path. The restoration process requires maintaining backups for the

registers, which increases the hardware complexity.

There are two types of prediction schemes: static prediction and dynamic prediction.

In case of static prediction, the processor makes a presumptive decision as to whether a

1 2

branch is likely to be taken or not, based on some static information. One of the simplest

forms of static prediction is to predict that all branches are always taken (predict-branch­

taken) or never taken (predict-branch-not-taken) [3]. An example of predict-branch-not­

taken is a computer which continues fetching the instructions sequentially even after the

branch is detected. Studies have indicated that more than 50% of the time branches are

taken. Hence, if the cost of prefetching a sequential instruction is the same as that of

fetching an instruction from the branch target, then always prefetching from a branch target

address should give better performance. If the branch is not taken, then the instructions

fetched from the target have to be flushed [5]. Processors suffer an extra penalty in

flushing instructions from the pipeline. Studies by McFarling and Hennessy have indicated

that predict-branch-taken is slightly slower than predict-branch-not-taken and is also more

complex to implement [5].

Another form of static prediction is based on the opcode of the branch instruction [3].

fu this case the opcode is used to predict the branch direction. The hardware assumes that

some branches will be taken for certain branch opcodes. For example, consider a DO

LOOP which has a conditional branch instruction at end of the loop. Since there is high

probability of the branch being taken, the conditional branch is encoded so as to indicate to

hardware that branch is always taken. This mechanism has resulted in a prediction accuracy

of greater than 75% [3].

A more complicated form of static branch prediction involves the use of a single static

branch prediction bit, which was used in the AT&T CRISP microprocessor [12]. If the bit

is set, then the hardware prefetches the branch target instruction; otherwise, it prefetches

the next sequential instruction. The compiler determines the setting of the bit depending on

the use of the branch. Ditzer and McLellan [12] have reported accuracies of 74 to 94%

using this scheme.

In dynamic prediction technique, the processor uses history information about branch

instructions that have been executed in order to predict the outcome of the branch [3]. Such

13

an idea requires that the processor be able to monitor the execution behavior of a program.

A mechanism called the branch history table is used for this pu:rpose. The branch history

table stores information about previously executed branches so that fairly accurate

predictions regarding the branch outcomes can be made. The branch history table is usually

a cache memory and can be accessed associatively. The branch history table is updated each

time the execution of a branch is completed. The hardware cost of this mechanism will be

influenced by the nwnber of entries in the history table, the number of history bits

maintained, and the set associativity of the table.

Another simple implementation of dynamic prediction technique uses a single history

bit for prediction. This bit indicates whether a branch is to be taken or not. Such a history

table is much smaller and does not provide the branch address. It is assumed that the

branch address is available at instruction decode time. Lee and Smith [8] found that such a

scheme yields an accuracy ranging from 80 to 96%.

Branch Target Buffer

In a typical pipe lined processor, instructions are prefetched in a sequential order and

are stored in an instruction buffer. When a branch occurs, the target instruction is typically

not present in the instruction buffer. In order to reduce the time required to fetch the target

instruction, a special cache memory called the branch target buffer (BTB) has been used

[8]. Each entry in the BTB consists of the address of a branch instruction that has already

been executed and the target instruction to which it branched. The BTB may also store the

next few instructions after the branch target instruction.

When the pipeline decodes a branch instruction, it associatively searches the BTB for

the address of that instruction. If it is in the BTB, the target instruction is supplied directly

from the BTB to the pipeline and prefetching begins from the new path. If the instruction is

not in the BTB, the pipeline is stalled while it fetches the new instruction stream to the

instruction buffer. The processor then selects an entry in the BTB for replacement and

14

stores the new target instruction in the BTB. But it is to be noted that it takes a fairly large

buffer to obtain a good hit rate [5]. Using a two-way, set-associative BTB with 16 entries

and least-recently-used replacement policy, Lee and Smith found a hit rate of 27% [8]. A

BTB with 256 entries resulted in a hit rate of72%.

Delayed Branches

Another way of optimizing conditional branches is delayed branching, which has

been effectively used in Reduced fustruction Set Computers [10]. fu delayed branching,

one or more instructions following the branch are always executed, regardless of whether

the branch is taken or not [3,11]. The success of delayed branching depends on the ability

of the compiler to schedule useful instructions in the slots following the branch [5]. The

number of slots to be filled--the branch delay--depends on the number of stages in the

pipeline.

For example, suppose an instruction i is a conditional branch to instruction j. A

processor with branch delay of b will execute the instructions in the sequence i, i+ 1, ... ,

i+b. If the branch is not taken, then instruction i+b is followed by i+b+ 1, and the

instructions executed are i, i+ 1, ... , i+b, i+b+ 1, On the other hand, if the branch is

taken, then instruction i+b is followed by instructionj. The instructions executed are i, i+1,

... , i+b, j, Thus b instructions after the branch (i+1 through i+b) are always executed,

regardless of whether a branch is taken or not.

Typically, the branch delay in Berkeley RISC processors consists of only one cycle,

and therefore the compiler is required to insert only one instruction following the branch.

However, the effectiveness of delayed branching is reduced in machines with long

pipelines, because the ability of the compiler to schedule useful instructions in the delay

slots is limited.

The performance of delayed branching depends on several factors, such as

architecture, implementation, compiler, and the application program. According to DeRosa

15

and Levy [11], delayed branching results in a 7 to 9% perlonnance improvement compared

to non-delayed branching. If the compiler is unable to fill the delay slots with useful

instructions, then some instructions which do not perlonn any useful operation (NO-OP

instructions) have to be inserted following the conditional branch instruction. Processor

time and memory bandwidth are wasted in fetching and executing these NO-OP

instructions.

Forward Semantic

This is a software approach for reducing the cost of branches, in which an

optimizing, compiler is used to predict the direction of all branches in a program [9]. The

program is run once or several times for a representative input suit. Then the program is

recompiled and the representative input suit is used to predict the branches. This prediction

is stored in the opcode as a single bit indicator. When an instruction is determined to be a

branch at the decode time, this bit is examined by the hardware. Depending on the value of

the bit, the instruction fetch unit fetches the next sequential instruction or it fetches the

target instruction. This scheme has lower branch cost compared to other hardware

prediction schemes, but the compilation time is significantly increased.

Bypassing Conditional Branches

One way of avoiding the pipeline stall is to fetch both the instruction streams

following a conditional branch, and start executing them simultaneously. Once the

condition is resolved, the results of the incorrect path are discarded. This technique is called

branch bypassing [3].

Riseman and Foster considered a hypothetical machine to study the effects of

bypassing conditional branches [4]. The machine has an infinite number of registers and an

unlimited memory so that the memory access time can be assumed to be zero. The machine

has an unlimited instruction cache so that decode and dispatch times of instructions can be

16

ignored. In order to allow a large number of instructions to be executed in parallel, the

machine is assumed to have an unlimited number of functional units. Furthermore,

conditional branch instructions do not impede the flow of the program in this machine

because the path to be taken from the branch point is assumed to be known beforehand;

thus, the conditional branches are assumed to be bypassed. Under these conditions the

programs run at a speed limited only by the execution times of the various instructions and

any inherent sequential dependencies between them. Riseman and Foster found that such

an ideal machine is able to execute programs 51 times faster than a typical conventional

machine considered for their research [4].

Riseman and Foster then considered the same infmite machine with no conditional

jumps bypassed. If the processor encounters a conditional branch, it has to stall until the

condition is resolved. In that case they found an average speedup of only 1. 72 times that of

a conventional machine. This result again stresses the importance of handling conditional

branches in pipelined machines. Riseman and Foster also considered the case when only

one conditional branch is bypassed on the ideal machine. When a conditional branch is

encountered, the machine executes both the paths of the branch until the condition is

resolved. But if the machine encounters another branch before the previous branch is

resolved, then the machine has to stall. Under these circumstances, they found an average

speedup of 2.72 times that of a conventional machine. They also found that the relative

speedup increases as a function of -.[J where j is the number of jumps bypassed. Thus the

bypassing of a single conditional branch also results in a significant advantage.

In another study, Stone suggested a pipeline pushdown stack computer, in which

multiple instruction streams are processed when a conditional branch occurs [13]. A salient

feature of this machine is that the register references in the instruction stream are not

explicit. An 'idle register queue' maintains the list of unassigned registers. A translator uses

this list to perform the task of register allocation at run time. When a conditional branch is

encountered, a second translator is brought into operation and both the translators proceed

17

concurrently along the two paths of the conditional branch. Dynamic allocation of registers

ensures that two paths use a separate set of registers. Thus, by pursuing both the streams

of a conditional branch until the correct stream is identified, the delays normally associated

with a conditional branch are reduced. In another example, the ffiM 3033 does prefetching

and decoding of the two possible instruction paths of a conditional branch, but no

execution beyond the conditional jump [12].

CHAPTERID

TWIN PROCESSOR ARCIDTECTURE

This chapter presents the novel processor with a twin register flle. The twin processor

is used to bypass conditional branches, and we analyze the twin processor in terms of

branch penalties involved.

Twin Processor Machine

The twin processor machine processes two instruction streams following a

conditional branch. The simultaneous processing of two instruction streams is achieved by

operating two identical processors in parallel. This is similar to the scheme proposed by

Stone's pipeline push-down stack computer [13]. The two processors fetch and execute

two instruction streams following a conditional branch, and, once the condition is resolved,

the machine discards the results of the incorrect path. The processor which was executing

the correct path continues executing the next sequential instruction.

The twin processor system consists of two identical processing units which share a

connnon main storage but have two independent connected register files as shown in

Figure 6. The machine employs a register-register architecture so that all sources and

destinations of arithmetic/logic instructions are registers. The two register flles are identical

and each of them has two read ports and one write port to support execution of one

instruction every clock cycle. When the two processors start executing two paths of a

conditional branch, their local memories need to be identical. If this is not true, then the two

processors will use different data, leading to incorrect results. Therefore, the contents of

one register file should be copied into the other register file before the two processors start

18

19

executing two paths of a conditional branch. The copying of data from one file to another

should be accomplished as quickly as possible, because the processing will be stalled until

the two register files are identical. This requires a special pwpose register file which is

called the twin register file.

PROCESSOR
A

n

-

LOCAL
STORAGE

REGISTER A

MAIN
STORAGE

- .. - -

--

LOCAL
STORAGE

REGISTERB

,.

PROCESSOR
B

n

Figure 6. System Configuration of a Twin Processor Machine

20

The advantage of the twin processor machine is that it eliminates the need to predict

the path following the conditional branch. In a machine which employs branch prediction,

if an incorrect prediction occurs, then the results of the incorrect path have to be flushed.

The instruction prefetch buffer also has to be flushed, and it has to be loaded with the

instruction from the correct path. We can avoid these penalties in the twin processor

machine because one of the processors is always executing the correct instruction stream.

The disadvantage of the twin processor machine is the extra hardware involved. The

execution of multiple instruction streams requires two processors and two register files.

Also, the two register files need to have the capability of being copied into each other. This

requirement complicates the design of the register file. But it is to be noted that even in

single processor machines which employ branch prediction techniques, some mechanism is

required to maintain a backup of the local variables before the processor starts executing

instructions along the predicted path.

Branch Handling

In the twin processor machine, when no branch is being processed, only one of the

processors is active while the other is idle. The active processor executes instructions

sequentially. As soon as the branch instruction is decoded, the idle processor starts fetching

and executing the instructions from the branch target without waiting for the branch to be

resolved. But before the idle processor starts executing the instructions, it is necessary that

the local memories (register files) of both the processors be identical. If this is not the case,

then both the processors will end up using different values for the same operands.

Once both the register files are identical, the processor which was initially active

continues execution along the sequential path, while the other processor executes the

instructions from the target address. The target instruction is fetched from the branch target

buffer. For simplicity in the analysis, it is assumed that the machine has a very large branch

target buffer so that the target instruction is always available at the decode time of the

21

branch instruction. Once the condition is resolved, the processor which was executing the

incorrect path becomes idle, while the other processor continues executing sequential

instructions.

Let us consider the execution of the same program segment which was shown in

Figure 4 . Figure 7 shows the instruction flow in the pipeline. Initially the instruction

stream is being executed in pipeline A, and k+2 is the conditional branch instruction. As

soon as k+2 is decoded, pipeline B starts executing the instructions from the branch

address (instruction m). Now two pipelines are processing the two instruction streams, and

this situation continues until the condition is resolved.

Instruction k+ 2 is executed in cycle 6 and the result of the condition is available at the

end of cycle 6. So from cycle 8, only the pipeline which was executing the correct path will

be operational, while the pipeline which was executing the incorrect instructions is made

inactive. The results of the incorrect instructions are discarded. Thus, there are no penalties

involved in processing the incorrect path since the two possible paths are processed

simultaneously.

22

CYCLE
PIPELINE SEGMENT A

IF ID OPRD EXE OPWR
1 k

2 k+1 k

3 k+2 k+1 k

4 k+3 k+2 k+1 k

5 k+4 k+3 k+2 k+1 k

6 k+5 k+4 k+3 k+2 k+1

7 k+6 k+5 k+4 k+3 k+2

8 k+6 k+5 k+4 k+3

9 k+6 k+5 k+4

10 k+6 k+5

1 1 k+6

12

CYCLE
PIPELINE SEGMENT B

IF ID OPRD EXE OPWR
1

2

3

4

5 m

6 m+1 m

7 m+2 m+1 m

8 m+2 m+1 m

9 m+2 m+1 m

1 0 m+2 m+1

1 1 m+2

1 2

Figure 7. Instruction Flow in a Twin Processor Machine

Effect of Branches

In the twin processor machine, both paths of a conditional branch are executed by

two identical processors until the branch is resolved. If any of the processors encounters

another conditional branch before the previous conditional branch is resolved, then that

23

processor has to stall. If the probability of an instruction being a branch is high, then the

frequent stalling can cause a significant penalty in the twin processor architecture. This

degrading effect can be reduced by using an optimizing compiler. The compiler schedules

instructions so that two successive conditional branch instructions are separated by a

number of cycles greater than that required for branch resolution. This separation will

ensure that the previous conditional branch is always resolved when the next conditional

branch is encountered.

If the optimizing compiler ensures that once a conditional branch occurs, no other

conditional branch is encountered until the first one is resolved, then we need only one

cycle to execute a conditional branch instruction. This is due to the fact that the processor

does not have to stall until the condition is resolved. We also need one cycle to execute any

other instruction (which is not a conditional branch). Hence the average number of cycles

between completion of two instructions is given by:

Tave = (1- Pi)*(l) + Pi*(1)

=1.

Thus T ave = 1.0 and Fb = 1.0, and they do not depend on the number of stages in the

pipeline. Comparing these results with those ,obtained for a single processor pipeline, we

see a significant improvement in performance. In case of a five-stage pipeline, the twin

processor architecture has an improvement of 0
1.5°2 = 1.92, and in case of a nine-stage

pipeline it has an improvement of 0 ~3 ~2 = 3.11 times over a single processor pipeline.

24

These results have been obtained by assuming an optimizing compiler. But as the number

of stages in the pipeline increases, the scheduling task of the compiler may become more

and more difficult.

Now let us consider the worst case, in which the probability of an instruction i being

a branch is statistically independent and there is no optimizing compiler. If instruction i is a

branch, then the processor starts executing the two instruction streams. If instruction i+ 1 is

also a branch, then the processor has to stall for b-1 cycles until the first branch is resolved.

If instruction i+ 1 is not a branch, but instruction i+2 is, then the processor has to stall the

instruction i+2 for b-2 cycles. The number of stalling cycles is reduced because when

instruction i+2 is decoded, the instruction i is one step closer to being resolved. When

instruction i+s-3 is decoded, the instruction i is already resolved and hence i+s-3 will not

be stalled. Therefore, the average time between the completion of two successive

instructions is given by:

Tave = (1- Pi)*(1) + Pi[Pi+1 *(1+b -1) + (1- Pi+0*[Pi+2*0+b-2)

+ (1- Pi+2)*[Pi+3*(1+b-3)

•

+ (1 - Pi+(s-4))*[Pi+(s-3)*(1 +b-(s-3))

+ (1- Pi+(s-3))*(1)]]]].

For a five stage pipeline, this reduces to:

Tave = (1 - Pi)*(l) + Pi[Pi+1 *(3)

+ (1- Pi+1)*£Pi+2*(2) + (1- Pi+2)*(1)]].

(3.1)

(3.2)

If we assume that Pi = Pi+ 1 = 0.3, then for a five-stage pipeline we have T ave =
1.243 and Fb = 0.80, an improvement of 1.53 over the single processor pipeline. fu case

of a nine-stage pipeline, we have Tave = 2.18 and Fb = 0.46, an improvement of 1.42 over

the single processor pipeline. These results are based on the assumption that the probability

25

of instruction i+ 1 being a branch is the same as that of i being a branch. But actually the

instructions are not statistically independent, and once a branch instruction is encountered,

the probability of the very next instruction being a branch is much less. If we assume that

the probability of instruction i+ 1 being a branch is zero (given that instruction i is a

branch), then for a five-stage pipeline we have Tave = 1.09 and Fb = 0.92 (an

improvement of 1.76). For a nine-stage pipeline we have T ave= 1.92 and Fb = 0.52 (an

improvement of 1.62). Thus it is seen that the twin processor machine results in a

significant improvement in performance by processing both the instruction streams

following a conditional branch.

CHAPTER IV

DESIGN OF TWIN A REGISTER FILE

This chapter presents the design of a CMOS twin register file which can be used for

reducing the effects of conditional branches. A parameterized twin register ftle was

designed using layout tools Magic and Lager. This chapter describes the design of the basic

leafcells and the overall architecture of the register file.

Three-Port Memory Cell

In order to meet the goal of executing one instruction every clock cycle, the basic

operations which need to be performed during each cycle of a typical processor include:

reading two operands from the register file, performing an arithmetic or logic operation,

and writing the result back into the register file. So the register file has to support two read

operations and one write operation in every cycle, and hence a three-port register file is

required in most processors.

Several design choices are available for three-port memory cells. In the RISC I "Gold

Chip", a true three-port register file was used with dedicated bitlines for two read ports and

one write port [19]. This design resulted in a memory cell with three bitlines. On the other

hand, a shared bitline organization uses the same bitlines for reading and writing. There are

only two bitlines in each cell, both of which are used for reading the two operands and for

writing the result. Such an approach was used in the RISC II, resulting in a significant

reduction in the size of the cell. This design also ensured an increase in the speed of the cell

because of the reduced loading on wordlines and bitlines. A shared bitline register file cell

reads two operands during one phase of the clock and writes one result into the register file

26

27

during the other phase. Since it supports three operations in one cycle, such a register file is

called 'pseudo three-port register file'.

A basic six-transistor static memory cell for the pseudo three-port CMOS register file

is shown in Figure 8. This cell consists of two cross-coupled inverters forming the storage

flip flop, and two NMOS pass gates (Ml and M2) as the access transistors for the bitlines.

~-

... -- -
p-- r-c

___, Ml M2 r---
h Nl ~-

N2

WORD A WORDB
1---

......___

-

BITLINE BITLINE
A , B

Figure 8. Pseudo Three-Port RAM

28

The two inverters drive each other, and the circuit can be set either to a state where

node Nl is high and N2 is low, or to a state where Nl is low and N2 is high. In either

case the condition is stable and the cell will not change its state unless it is forced to do so

by some external means. The write operation on the cell is accomplished by applying datum

and its complement on nodes Nl and N2 through the pass gates. Since the two inverters

are driving each other, a state change at any one of the nodes is going to force a change at

the other node.

The bitlines A and B access the internal nodes Nl and N2 of the memory cell through

NMOS pass transistors. Since the NMOS pass gates are not good at passing high, it is

difficult to write "1" at the nodes. This problem is solved by designing the inverters with

very strong pull-down NMOS transistors and weak pull-up PMOS transistors. The strong

pull-down transistor makes it easier to change the outputs of the inverters from "1" to "0"

The read operation is performed with single-ended sensing in which the bitlines

access the storage node (Nl or N2) through a single NMOS transistor (Ml or M2).

Though this single-ended sensing scheme is slower than the one which utilizes differential

sensing, it is preferred because of the simplicity of the approach and the resulting

compactness of the cell. A differential sensing scheme would require twice as many bitlines

and an extra pair of transistors per bit [19]. Since the NMOS pass gate is not good at

passing high, the bitlines are dynamically precharged high before reading, ensuring that "1"

stored at the nodes is read correctly. If the bitline is connected to a node which has "0" on

it, the cell discharges the precharged bitline during the read operation. On the other hand, if

"1" is being read, the bitline remains precharged high. The speed of the read operation

depends on how fast the cell can discharge the 'precharged' bitline. Since the inverters have

strong pull-down NMOS transistors, the cell is able to discharge the bitlines at a high

speed.

Twin Register File

This section describes the architecture of the twin register file and the design of its

basic blocks. Before going into the organization of the register file, we will discuss the

clocking scheme used for the twin register file.

System Timing

29

The register file needs to perform three operations every clock cycle: precharging·of

bitlines, read operation, and write operation. None of these operations can overlap because

each of them requires an exclusive control of the bitlines. For these basic operations, a

three-phase clock similar to the one used in the RISC I could be used. But a three-phase

clock is asymmetric and difficult to generate. A four-phase clock similar to the one used in

the RISC II is used in the twin register file because it is easy to generate and it also results

in a simplified decoder circuit [24].

In the RISC microprocessors, the ALU operations have longer latencies than those of

the register f:tle operations. Hence, the ALU unit requires a clock which is slower than the

one used in the register file. Therefore, a clocking scheme which has two fast phases and

two slow phases would be more efficient. The RISC II uses a four-phase clock system

having two slow phases, Phil and Phi3 of 80ns each, and two fast phases, Phi2 and Phi4

of 60ns each [24]. A clock with phases of shorter duration can also help in fme tuning the

timing of various operations [24].

In the twin register file, a symmetric clock with two fast phases (Plf and P2t) and

two slow phases (Pls and P2s) is used. The two slow phases of the clock are used

throughout the system as the system clock. The two fast phases, along with the two slow

phases, provide the four-phase clocking for the register file. As seen in Figure 9, such a

scheme precisely defmes the time intervals for the register file operations.

Pls I ! ! I ~

--··.I:: L P2s

-,- ' ' '~ I I
I I I

----11 I I i i I I i i i I Plf

P2f ; 1 :_j--~--u_usl ~---~

•BITLINE
PRECHARGE
•READ ADDRESS
DECODING
•TRANSFER

•READ
•DECODER 0/P
PRECHARGE

•LATCH WRITE
ADDRESS

•BITUNE
PRECHARGE

•WRITE ADDRESS
DECODING

Figure 9. System Timing

•WRITE
•DECODER 0/P
PRECHARGE

•LATCH READ
ADDRESS

w
0

3 1

The overlapped period of Pls and Plf, which is henceforth referred to as Pls•Plf, is

the precharge period of the bitlines. Next, the read operation takes place during Pls•P2f,

and the read data becomes valid on the bitlines before the end of this period. For simplicity,

the bitlines are also precharged during P2s•Plf (though not necessary). P2s•P2f is the

period during which the data is written into the register f:tle cell.

In the twin register file, a precharged NOR decoder is used to decode the addresses

because of its simplicity, regularity, and speed. Such a decoder requires that its outputs be

precharged before the addresses are decoded. One way of doing this is to overlap the

precharge of the decoder outputs and the precharge of bitlines during P lf, and then decode

the address during the read/write period (P2f). This implies that three events occur in the

same phase P2f: decoding of the address, charging of the wordlines, and the read or write

operation on the selected word. In order to accomplish these three events in a single phase

(P2f), we need a slower clock. This will reduce the speed of the register file.

In order to increase the speed of the twin register me, the decoding of the address is

not done during the read/write phase (P2f). Instead, decoding is done during Plf, and the

decoder outputs are precharged during the previous P2f. In order to prevent this precharge

from appearing on the wordlines during the read/write period, a pipeline stage was added

between the decoder outputs and the wordline drivers. The pipeline stage, which consists

of a latch, isolates the decoder outputs and the wordline drivers. When the read or write

phase begins, the address is already decoded and the drivers just need to charge up the

wordlines. Such a scheme requires that the addresses for read or write operations be

latched into the register file prior to the end of decoder output precharge (P2f). As shown in

Figure 9, decoder outputs are precharged and addresses are latched during Pls•P2f and

P2s•P2f. The addresses are decoded during Pls•Plf and P2s•Plf, and the read/write

operation takes place during the next Pls•P2f and P2s•P2f.

The twin register file has the capability of transferring data from one file to another.

In order to avoid any penalties in terms of time, the period of data transfer is overlapped

32

with the precharge period of the bitlines before the read operation (Pls•Plf).

Organization

The basic architecture of the twin register file is shown in Figure 10. The twin

register file has two three-port register files (file A and file B) which are laid out in an

interleaved manner. Since each of the two files has the capability of being copied into the

other one, the corresponding memory cells of the two files are placed next to each other

along with the cell interconnections. This cell-to-cell connection between two files ensures

data transfer from one file to another without having complicated routing.

The twin register file consists of five basic blocks: an array of memory cells,

read/write circuits, address line drivers, address decoders, and control circuits. There are

four address buses to provide the addresses for the two ports of each register file. There are

two input buses (in A and in B) and four output buses (out Al, out A2, out Bl, and out

B2) forming one input and two output ports for each of the two register files. There are two

transfer lines, TA2B and TB2A, which control the data transfer between register file A and

register file B. A control line 'regdis' is provided in order to disable the register file. When

this signal is activated, no read/write operations can be performed on the register file. The

four clock phases and their complements provide the clocking to synchronize all the events

in the register file.

Two groups of read/write circuits provide two output ports and one input port for

each of the two register files. There are two groups of address line decoders and drivers for

the two ports of each register file. One of the groups provides the wordlines for port 1 of

file A and file B, while the other group provides the wordlines for port 2 of register file A

and register file B. These groups also provide the two data transfer lines to the memory

cell.

Address
BusBl

Clock ,,
Lin~....----~---...,

.....

Control

... ...
Address Decoders and
Drivers for Port 1 of
Registers A and B

Address
BusAl

33

-,r Clock
_ .-----~---...,J.ines

.... ---~

Control

__ ...,...... 1---........ ...~------~ ... ~----
... L.----..---' 1.-----...------' L.----r---' T ' A f')D regdis J-U.D

outBl -
in B..,

.....

outB2 -
regdis .---.....a.--...,

Control

..... ...

Wordlines and
Transfer lines

v

]
.......

Array of Twin Register File
Core Cells

.0
~

Wordlines and
Transfer lines

Address Decoders and
Drivers for Port 2 of
Registers A and B

....

outAl

......_inA
....

outA2

.---...__ _ _,TB2A
......

Control

--~.... 1---........ ...-------~ ... ----... L--~---'_ ___________ _,~ L.---T __ _,

Clock .4 ~ ~ ~ Clock
Lines Address Address Lines

Bus B2 BusA2

Figure 10. Twin Register File Architecture

34

The control sections provide the buffered address lines and their complements to the

decoders. They also provide the buffered clock signals and transfer signals to the wordline

drivers and read/write circuits. The control unit needs to ensure that the delay introduced on

each clock line is equal in order to minimize the problem of clock skew.

Cell Placement. The memory cells in a typical register file are placed in a two­

dimensional array of rows and columns, with the number of columns equal to the number

of words. The address decoder selects one column, and a read/write operation can take

place on all the storage cells in the selected column. The number of memory cells connected

to each bitline equals the number of words. As the number of words increases, bitline

capacitance increases because of the increased length of the bitlines (rows). Also, the drain

capacitance on each bitline is increased by the additional memory cells connected to the

bitlines, which results in a considerable speed penalty. If the number of words in a register

file are much more than the number of bits in each word, the two dimensional array of cells

(having number of words equal to number of columns) may result in a long and skinny

layout.

The twin register file takes care of the above problems by arranging the cells in such a

way that the number of columns is half the number of words. In this arrangement of cells,

each column contains two consecutive words and the least significant address bit, addrO,

determines which of the words from the selected column is connected to the read/write

circuit. Such an arrangement of cells results in a reduced number of columns and shorter

bitlines (rows). The number of memory cells connected to each bitline is also reduced to

half, decreasing the bitline capacitance.

Another advantage of multiplexing the words is that it reduces the size of the decoder

required. For a register file of 128 words, the column decoder decodes the six most

significant address bits--addr1, addr2, ... , addr6--to select one column, and uses addrO to

select a particular word from the column. Thus, for a 128-word register file, a 6-to-64line

35

decoder is required instead of a 7 -to-128 line decoder.

It should be noted that the cell placement used in the twin register ftle increases the

number of rows, thereby increasing the wordline length. Each wordline now selects two

words, so the gate capacitance on each wordline is doubled. The delay resulting from the

increased wordline capacitance is reduced by using more powerful wordline drivers.

The placement of the basic cells of the twin register ftle is shown in Figure 11. In the

twin register ftle, the storage cells for register ftles A and B are placed side by side in an

interleaved manner. A basic memory cell has two storage cells: one cell for ftle A and the

other for file B. The bitlines from cell A are taken out on one side, while those from cell B

are taken out on the other side. Four memory cells form the structure 4cells. Each 4cells

consists of two rows and two columns of storage cells. The decoders for each port of

register A and register B are interleaved. Decoder 1 decodes the addresses for port 1 of flles

A andB, while Decoder 2 decodes the addresses forport 2 offtles A and B. The cell drvl

consists of drivers for port 1 of register A and register B, while drv2 consists of drivers for

port 2 of register A and register B. As seen in Figure 10, the address lines for port 1 of

register ftles A and B are placed at the top while those for port 2 are at the bottom. These

address lines are decoded by Decoder 1 and Decoder 2, and are driven by drv 1 and drv2.

The array of cells dst2a and dst2b form the read/write circuits for each bit of ftle A

and flle B, respectively. Each of the cells dst2a and dst2b is multiplexed between two rows

of memory cells, and the least significant address bit selects one of the two rows and places

its data on the I/0 lines of the read/write circuit. The number of read/write cells equals the

number of bits in each word.

36

Decoder 1

Control Control
Bl Al

d!vl d!vl d!vl d!vl d!vl d!vl d!vl drvl

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

dst2b 4cells 4cells 4cells 4cells 4cells 4cells 4cells 4cells dst2a

d!v2 chv2 chv2 chv2 chv2 d!v2 chv2 drv2

Control Control

B2 A2

Decoder2

Figure 11. Cell Placement in a 32-Word-by-16-Bit Twin Register File

37

Twin Memozy Cell

The twin processor machine requires two register files (A and B) which can be

independently accessed by the two processors. Each register file must be capable of being

copied into the other one. In order to achieve this function, two corresponding memory

cells of files A and B are placed side by side along with the circuit for transferring data

from one cell to another.The basic twin memory cell, shown in Figure 12, consists of two

pseudo three-port static RAM cells. This memory cell is capable of executing the "read",

"write" and "transfer" operations. The layout of the twin memory cell is shown in Figure

13. The cell consists of two CMOS static memory cells formed by two pairs of inverters.

The cross-coupled inverters, which form the flip-flop for storing data, have a strong

NMOS pull-down transistor and a weak PMOS pull-up transistor. The switching point of

these inverters is set at about 1.4V. The inverters I1 and12 form storage cell A, while I3

and 14 form storage cell B. Ml and M2 are NMOS access transistors which connect cell A

to its bitlines (BITLINE A and BITLINE A-), while M3 and M4 connect cell B to its

bitlines (BITLINE B AND BITLINE B-). WORD AI and WORD A2 are the two

wordlines for cell A, while WORD Bland WORD B2 are the two wordlines for cell B. M5

and M7 are NMOS transistors which provide the direct connection between the two cells

for data transfer. M8 and M6 are feedback transistors which open the back-to-back

connection of the two inverters of a storage cell during data transfer.

During normal operation of the twin register file, the NMOS transistors M8 and M6

are closed, and nodes SA_BAR and SB _BAR drive I2_IN and I3 _IN through these

transistors. Due to the threshold voltage of NMOS pass transistors (V tnpass)• the nodes

12_IN and I3_IN can be charged only up to Vdd-Ytnpass· This may result in the weak

PMOS pull-up transistor of the inverters 12 and I3 being slightly ON when high is stored at

nodes SA_BAR and SB_BAR. Hence, high stored at SA_BAR and SB_BAR causes

continuous current flow through I2 and 13, increasing the power consumption. This

38

consumption can be avoided by using CMOS transmission gates in place of NMOS pass

gates M6 and M8.

During the transfer of data from cell A to cell B, the NMOS transistor M5 is turned on

and M6 is turned off. High at SA_BAR charges I3_IN to Vdd-Vtnpass through M5. This

voltage has to turn on the NMOS pull-down transistor of I3 and set node SB to low. Since

I3_IN does not reach up to V dd, the noise margin is reduced. Again, CMOS transmission

gates in the place of NMOS pass gates M5 and M7 can resolve this problem.

BITLINEB

BITLINEA-

WORD
Bl

W~RD-1 M2 TA2B ~T
_L

SA_BAR 13_IN SB

M5

CELLA M8 ~2A- TA2B-1 CELLB

M7

SA I2_IN SB_BAR

r I
~WORD Ml 1B2A M4 B2

WORD
AI BITLINEA

BITLINEB-

Figure 12. Twin Memory Cell

39

Figure 13. Layout of a Twin Memory Cell

40

Transfer Operation. fu the twin register file, high on TA2B enables data transfer from

cell A to cell B, while high on TB2A enables data transfer from cell B to cell A. Consider

the transfer of data from cell A to cell Bin Figure 12. fuitially, TA2B is not activated, and

so transistors M5 and M7 are open while M6 and M8 are closed. During the transfer

operation, the data at I3_IN is to be overwritten by the data at SA_BAR. But the cross­

coupled inverters which form the storage cell B resist any attempts made at changing the

state of B_IN.

fu order to facilitate the transfer of data, node I3 _IN is isolated from the output of

inverter 14 during the transfer operation. This is achieved by activating TA2B, which turns

on M5 and turns off the feedback transistor M6. The feedback transistor opens the closed

loop formed by the cross-coupled inverters, making the transfer easy. The resulting

equivalent circuit is shown in Figure 14. Since the node I3_IN is isolated from the output

of 14, the node SA_BAR can easily overwrite the data stored at 13_IN. Such a scheme of

data transfer was suggested in the 32-Bit CPU designed by Beyers, et al. [21].

Let us consider the transfer of "1" from cell A to cell B. fu this case node SA is

initially "1" while node SB is "0". When the transfer line T A2B is activated, the low at

SA_BAR is passed through M5 and is applied at I3_IN. This low on 13_IN will tum on the

weak PMOS pull-up transistor of inverter I3 and the output of I3 (node SB) will start

changing its state from low to high. When SB reaches a voltage of 1.4V (the switching

voltage ofl4), inverter 14 will change its state and the strong pull-down transistor will

immediately set its output (node SB _BAR) to OV. The time for transferring "1" from cell A

to cell B depends on the time required to activate the transfer lines and the time required to

switch the output of the inverter I3 from low to high. Since the inverter I3 has a weak pull­

up transistor, there is some delay involved in changing its output form "0" to "1".

SA
I2PD
24/2

IlPU
3/3

IlPD
24/2

TA2B

_L

SA_BAR 13_IN

M5
4/2

~TB2A-

SB_BAR I4PD
24/2

I3PU
3/3

I3PD
24/2

Figure 14. Equivalent Circuit During Transfer Operation

SB

Now consider the transfer of 11011 from cell A to cell B. In this case, node SA is

initially 110 11
, and node SB is 11 111

• When the transfer line is activated, the transistor M5 is

41

closed and it passes high stored at SA_BAR to node I3_IN. A NMOS pass gate is not good

at passing high because it has a threshold voltage of about 1.5 volts. Since the inverters

have been designed using strong pull-down transistors, the voltage of 3.5V applied at

I3_IN will easily switch I3 and set the node SB to a low. This low will then start changing

the state ofl4, and the output ofl4 (node SB_BAR) slowly rises to high. The time for

transferring 11011 from cell A to cell B depends on the time required to activate the transfer

lines and the time required to switch the output of inverter I3 from 11 1 11 to 11011
• Since the

inverter I3 has a strong pull-down transistor, its output rapidly changes from II 1" to "011
•

Under the worst case, the latency of transfer operation depends on the delay involved

in activating TA2B and TA2B_BAR lines, and the time involved in changing the output of

inverter I3 from 11011 to 11 111
• The delay of transfer lines depends on the RC time constant of

42

the transfer lines. Since each transfer line has to drive a number of cells equal to twice the

number of bits in a word (because of the multiplexed wordlines), the latency increases as

the number of bits increases. The latency is approximately given by:

Ttr a (Rtrd + Rtrl)*(Ctrl + 2*b*Cgm5) + (Rpu)*(Cginv)

where

Ttr

Rtrd

Rtrl

Rpu

Ctrl

Cgm5

Cginv

b

=

=

=

=

=

=

=

=

Data transfer delay

Resistance of transfer line driver

Resistance of transfer line

ON Resistance of the PMOS pull-up transistor of the inverters

Line capacitance of transfer line

Gate capacitance of the NMOS transistor M5

Gate capacitance at the input of the cross-coupled

inverters

Number of bits in a word.

(4.1)

In order to avoid any time penalties, the time for the transfer of data from one file to

another is overlapped with the precharge period of the bitlines before the read operation.

This is shown in Figure 9.

Read Qperation. During the read operation, the transfer lines are inactive and so

transistors M5 and M7 are open while M6 and M8 are closed. Two addresses are placed on

the two address buses of each register file, and two words are read out on the two output

ports of each register file. The decoder decodes the addresses and activates two wordlines

of each register file to read two words on the BITLINE and BITLINE_BAR, respectively.

If same address is placed on both the address buses of a register file, BITLINE and

BITLINE_BAR will access the same word. The equivalent circuit during read operation is

shown in Figure 15.

43

For the read operation, the bitlines are precharged high, and then during the read

phase they are selectively discharged, depending on the contents of the memory cell. If the

node to which the bitlines are connected is low, then the bitlines will be discharged;

otherwise they will remain high. Consider the case when 11111 stored in cell A is being read

out on BITLINE_BAR. When the wordline is assened, the precharged bitline

BITLINE_BAR is connected to node SA_BAR through transistor M2. The node SA_BAR

is low and the strong pull-down transistor IlPD is ON. The bitline discharge occurs

through the two NMOS transistors: access transistor M2 and pull-down transistor IlPD of

the cross-coupled inverters fonniil.g the memory cell. These two transistors will determine

the pull-down speed of the bitline. The discharge rate of the bitline will depend on the

bitline capacitance and the combined series resistance of the two transistors.

12PU
3/3

SA 12PD
24/2

IlPU
3/3 SA_BAR

IlPD
24/2

M2
8/2

~TB2A--

• Cword

WORDA2

Plf-

~

BITIJNE A_BAR

Figure 15. Equivalent Circuit During Read Operation

SENSE
AMP

44

The voltage level of the bitlines (BITLINE and BITLINE_BAR) is sensed by an

inverter. The output of this inverter is passed through another inverter to get the true level

stored at the node. This second inverter also acts as a driver. The BITUNE_BAR is

connected to a node which has the complementary data stored on it. Hence,

BITLINE_BAR is passed through an additional third inverter to get the correct output.

The discharge rate will increase as the width of the access transistor and the pull­

down transistor is increased. However, increasing the width of the access transistor will

increase the gate capacitance on the wordlines, resulting in increased wordline delay.

Another problem resulting from the increased width of the access transistor is 'Read

Disturb', which is an undesired side effect during read operation.

The 'Read Disturb' occurs when a low node is read out on a precharged bitline.

When the precharged line is connected to a node which is low (OV), it deposits some

voltage at the node. A narrow pass transistor will have a significant voltage drop across it,

and so the voltage deposited on the node will be below the switching point of the inverter;

therefore, cell state will be maintained. On the other hand, if a wide pass transistor is used,

then the voltage deposited on the inverter input may be sufficient(> 1.4V) to switch the

output of the inverter. This will result in the cell being spuriously written into during the

read operation. This undesired side effect is called 'Read Disturb'.

In order to avoid the 'Read Disturb', the ratio of the access transistor and the pull­

down transistor need to ensure that the storage node is not pulled above the switching point

of the following inverter during read operation. This 'Read Disturb' problem constrains the

size of the access transistor, limiting the speed of the bitline discharge [19]. In the twin

register file, the width of the pull-down transistor IlPD is three times that of the access

transistor M2. Therefore, a high on the bitlines (5V) deposits a voltage of about 1.25V on

the storage node which is below the switching point of the inverters (1.4V). This prevents

the precharged line from writing into the cell.

The Read delay consists of two components: wordline delay and bitline discharge

45

delay. The wordline delay is proportional to the RC constant of the wordlines, and it

increases as the number of bits in the word increases. The bitline discharge delay depends

on the combined series resistance of the access transistor M2 and the pull-down transistor,

and on the bitline capacitance. This delay increases as the number of words increases. In

general,

Trd a (Rwdr + Rwl)*(2*b*Cgm2 + Cwl)

+ (Rm2 + Rilpd + Rbt)*(~ *Cdm2 + Cbt) (4.3)

where

Trd = Read delay

Rwdr = Resistance of wordline driver

Rwl = Resistance of the wordline

Rm2 = Resistance of the access transistor M2

Rilpd = ON resistance of the pull down transistor of the inverter

Rbt = Resistance of the bitlines

Cgm2 = Gate capacitance of access transistor M2

Cwl = Line capacitance of the wordlines

Cdm2 = Drain capacitance of the access transistor M2

Cbt = Line capacitance of the bitlines

b = Number of bits in a word

n = Number of words in the register flle.

Write Operation. During the write operation, the transfer lines are inactive, so

transistors M5 and M7 are open while M6 and M8 are closed. In this mode, the twin

register file behaves as two independent three-port register files. Data is written into the

register ftles in the same way as in the pseudo three-port cell.

The write operation on cell A starts by placing the input datum and its complement on

46

BITLINE A and BITLINE A_BAR, respectively. The wordlines WORD A1 and WORD

A2 are asserted simultaneously by placing the same address on address bus A1 and address

bus A2 of the twin register file. As mentioned previously, the cross-coupled inverters

which form the storage node have their switching point set at 1.4V, making it easier to

change the output of the inverters from high to low, rather than from low to high.

Consider the case where SA is initially II 111 and we want to write 11011 on it. To achieve

this, BITLINE A_BAR is driven high and BITLINE A is driven low, and the wordlines are

activated, turning on the NMOS pass transistors. The equivalent circuit is shown in Figure

16. The high on the BITLINE A_BAR tries to drive SA_BAR high through the pass gate

M2. Initially, 11PD is ON, and so M2 and 11PD form a voltage divider. Since the

resistance ofM2 is three times that ofi1PD, a voltage of about 1.25V is applied on the

node SA_BAR. This voltage passes through M8 and is applied on node 12_IN. There is no

voltage drop across M8 because its source is connected to the gate of 12, which presents a

very high impedance. This voltage of 1.25V on 12_IN is below the switching point of 12,

and hence it does not change the state of 12. This helps in avoiding the problem of 'read

disturb' which was discussed in the previous section.

At the same time, low on the BITLINE A tries to pull node SA to low through M1. In

this case, 12PU and M1 form a voltage divider. Since the resistance ofi2PU is twelve

times that ofM1, a voltage of about 0.4V is deposited on node SA. This voltage is below

the switching point of 11, and therefore, 11 starts changing its output from 11011 to II 1 II.

Thus, low applied on one of the bitlines is primarily responsible for changing the state of

the cell. As the weak pull-up PMOS transistor ofl1 starts turning on and the pull-down

transistor (11PD) starts turning off, the resistance offered by 11PD starts increasing and the

voltage at SA_BAR starts rising. As soon as this voltage reaches 1.4V, 12 changes its state

and pulls the node SA to low. Also, the weak pull-up 11PU which has turned on tries to

pull node SA_BAR to a higher voltage. Once SA_BAR reaches 3 .5V, M2 turns off.

Eventually, the weak pull-up 11PU is fully turned on and the node SA_BAR will reach a

47

voltage of 5V. Driving the bitlines with data and its complement ensures that one of the

bitlines is always low, and it is this bitline which initiates the change of state of the memory

cell.

IlPU
3/3

SA_BAR

M2
8/2 BITLINE A_BAR

BITLINEA

WORDA2

Ml
8/2

SA
12PD
24/2

IlPD
24/2

r-TB2A-

WORDAl

Figure 16. Equivalent Circuit During Write Operation

The write operation occurs when the wordlines are asserted and the bitlines are

charged with data. The write delay depends on the time required to charge up the bitlines or

the wordlines, whichever is larger. The wordline delay is proportional to the RC constant

ofthe wordlines and it increases as the number of bits in a word increases. The bitline

delay is proportional to the RC constant of bitlines, and it increases as the number of words

increases. fu general,

Twr a MAX[{ (Rwdr + Rwl)*(2*b*Cgml + Cwl)},

{ (Rbtdr + Rbt)*(¥ *Cdml + Cbt)}] (4.2)

where

Twr =
Rwdr =
Rwl =
Rbtdr =
Rbt =
Cgml =

Cwl =
Cdml =
Cbt =

b =
n =

Addr~~ Decoder

Write delay

Resistance of wordline driver

Resistance of the wordline

Resistance of the bitline driver

Resistance of the bitlines

Gate capacitance of access transistor Ml

Line capacitance of the wordlines

Drain capacitance of the access transistor Ml

Line capacitance of the bitlines

Number of bits in a word

Number of words in the register file

48

The twin register file uses a precharged NOR address decoder for each of its four

address buses. This NOR decoder is designed with only NMOS transistors for a fast

implementation of the decoder logic. The regular arrangement of the transistors eases the

design of a parameterized decoder. A 2-to-4 line decoder is shown in Figure 17. The input

lines al and a2 are the address lines, while al- and a2- are their complements. The output

lines of the decoder WaO, Wal, W a2, and W a3 are precharged high during P2f through

PMOS transistors Ml, M2, M3 and M4. When P2f goes low, the NMOS transistors M5,

M6, M7 and MS turn on. All the decoder output lines, except one, are discharged. The

output line which remains high is detennined by the input address lines. For example,

consider the case when an address 00 is placed on the address bus. For this address, the

word line WaO should remain high while all the other wordlines need to be pulled low. The

input address places low on al and a2 while it places high on al- and a2-. As seen in the

figure, high on al- and a2- will pull the lines Wal and W a3 low through the transistors M9

and MlO. The high on a2- also pulls Wa2low through the transistor M12. Only the

selected wordline W aO remains high, which is then fed to the address line driver.

49

In the twin register file there are four decoders for the two ports of the two register

files. Since the cells for files A and B are placed next to each other, their wordlines also run

next to each other. In order to simplify the routing of the output of the decoders to the

wordlines, two decoders for the same port of the two register files are laid out in an

interleaved manner. A column of one decoder is placed next to the corresponding column

of the other decoder. The layout of such an interleaved 2-to-4 line decoder is shown in

Figure 18. It should be noted that the height of the decoder remains the same, irrespective

of the decoder size. As the decoder size increases, the width of the decoder goes on

increasing. The width of the decoder is determined by the number of columns (words) in

the register flle, and the outputs of the decoder are aligned with the inputs to the wordline

drivers. The interleaved decoder provides two word-select lines for one port of register file

A and one port of register file B, respectively. The inputs a1, a2, ... , a7 are the address

lines for port 1 of register file A, while b 1, b2, ... , b7 are the address lines for file B. Two

such interleaved decoders are used to select two ports of each register file.

50

P2f-

M7

a2

M15 M16
a2-

al

Mll
al-

P2f-

WaO Wal Wa2 Wa3

Figure 17. A 2-to-4 Line Precharged NOR Decoder

51

52

Line Drivers

The line drivers drive the wordlines and the transfer lines. Figure 19 shows the circuit

diagram of the line driver. One such driver is provided for each wordline and transfer line

connected to a column of memory cells. The output of the address decoder is input into the

wordline driver. The output of the address decoder is valid during Plf, and we need to

select the wordline during the next P2f. So, a pipeline stage is placed between the decoder

output and the wordline. The pipeline latch is composed of a transmission gate Tl and

transistors Ml, M2, and M3. The latch ensures that the wordline is pulled low all the time

except during the read/write phase (P2f). The low on the wordline turns off the access

transistors of the memory cells. This ensures that the memory cell is isolated from the

bitlines, except during the read/write period. The control signal 'regdis' is provided to

disable the register file. The wordline is pulled low if 'regdis' is high, and thus the read and

write operation of the cell is disabled. Strong inverters I2 and I3 speed up the charging of

wordlines.

The transfer line TA2B is normally low and TA2B_BAR is normally high. The

control circuit provides the transfer signal (tra2b-•Pl s) to the transfer line driver. If this line

is high, then during Plf, TA2B goes high and TA2B_BAR goes low. Thus the transfer

line is activated only during Pls•Plf, which is the precharge period before the read

operation.

Four wordline drivers (two for each register file) are provided for each word in the

twin register file. Since the wordlines for the two files run next to each other, the wordline

drivers for the two files are also placed next to each other. The layout for such a wordline

driver and transfer line driver is shown in Figure 20.

53

WAOin

regdis

l tra2b•Pls

Plf

WORDAO TA2B TA2B-

Figure 19. Wordline and Transfer Line Driver

54

Figure 20. Layout ofWordline and Transfer Line Driver

55

Read/Write Circuit

The write circuit is shown in Figure 21. The input and its complement are fed into the

bitline and bitline-, respectively. The two latches formed by transistors M5, M6, ...• M14,

ensure that the input is placed on the bitlines only during the write phase (P2s•P2t). The

transmission gates T1, T2, T3, and T4 select the bitlines on which the input data is to be

placed. The least significant address, bit aO, is used to demultiplex the input line between

two successive words. If aO is low, then the data and its complement are placed on

BITLINE AO and BITLINE AO-, respectively. If aO is high, then the input data and its

complement are placed on BITLINE A1 and BITLINE A1-, respectively.

The read circuit is shown in Figure 22. The bitlines are precharged during Plf

through transistors M1, M2, M3, and M4. The inverters Il, 12, 13, and 14 act as the sense

amplifiers. The output of the sense amplifiers is multiplexed through the transmission gates

T1, T2, T3, and T4. The transmission gates T1 and T2 are controlled by the least

significant address bit of port 1, while the gates T3 and T4 are controlled by the least

significant address bit of port 2. If a1_0 is low, then the data on BITLINE AO is placed on

port 1 of the register file (output a1). If a1_0 is high, then the data on BITLINE A1 is

placed on port 1 of the register file. If a2_0 is low, then the data on BITLINE AO- is placed

on port 2 of the register file (output a2). If a2_0 is high, then the data on BITLINE A1- is

placed on port 2 of the register file. Since the output a2 is reading the complementary

bitlines, an extra inverter 15 is placed in its path. The latch which is placed before the output

bus ensures that the output data changes during the read phase (P1s•P2t) and remains valid

for the entire clock cycle.

The layout for the read/write circuit is shown in Figure 23. Two such read/write

circuits (one for register file A and one for register ftle B) are required for each bit in the

word.

Plf- aO

BITLINEAl-

BITLINEAO-

BITLINEAO

aO-

Figure 21. Write Circuit

input a

I1

Vl
0\

Plf- a2_0-

BITLINEAl

T2

BITLINEAl-

BITI.JNE AO-

BITLINEAO

a2_0- a2_0-

T4

Figure 22. Read Circuit

a2_0-

output a2

Ul
-....J

58

59

Layout of Twin Register File

The layout of a 32-word-by-16-bit twin register file is shown in Figure 24. The basic

leafcells were designed using the layout tool Magic, which is an interactive editor for VLSI

layouts. These basic leafcells were then put together using Lager, which is a collection of

tools and cell libraries used to design custom CMOS digital integrated circuits. TimLager is

one of the many tools available in the Lager System. TimLager provides a library of C

functions used to write a parameterized macrocelllayout generator. We used these

functions to write a C program, which gives the tiling procedure for a parameterized twin

register me. The C program written to tile the leafcells is given in Appendix A.

The twin register me has a total of 12,158 transistors (8368 NMOS transistors and

3790 PMOS transistors) and an area of 3250x2520 J.UI12. A typical three-port register file

which uses the same size transistors for its memory cell and other associated circuits as the

twin register file has an area of 3250x1007 J.UI12. The twin register me is about 2.5 times

larger than a typical register me due to the fact that it has twice the number of memory cells,

twice the number of bitlines, two extra decoders, and an extra read/write circuitry. The twin

register file also has four extra transfer lines passing through each memory cell.

The increased width of the twin register me results in longer bitlines which results in

increased line capacitance of the bitlines. The capacitance associated with the bitlines in the

twin register file is about 450 fF, which is about 50fF more than the bitline capacitance of

an ordinary register me. According to equation 4.3, the read delay is proportional to the

bitline capacitance and to the ON resistance of the NMOS pull-down transistor of the cross­

coupled inverters. The effect of increased capacitance can be reduced by lowering the

resistance of the pull-down transistor and by designing better sense amplifiers.

60

Figure 24. Layout of a 32-Word-by-16-Bit Twin Register File

CHAPTERV

SIMULATION RESULTS

This chapter presents the results of simulations performed on the 32-word-by-16-bit

twin register file. The functionality of the design is verified by simulating it on IRSIM. The

read, write, and transfer delays of the register file are estimated by simulating the twin

register file on SPICE.

IRSIM Results

IRSIM is an event-driven logic-level simulator for MOS transistor circuits in which

each transistor is modeled as a resistor in series with a voltage controlled switch. Also, the

capacitance associated with each node is considered in IRSIM. The simulator evaluates the

voltage levels and transition times at the nodes from the resulting RC network. In our

study, we used IRSIM to verify the functionality of the circuit.

The twin register file was exhaustively tested for read, write, and transfer operations

on IRSIM. At every write cycle (P2s•P2f), an input datum is written into a selected location

of the register file. Also, at every read cycle (Pls•P2f), data stored in two locations are read

out on the two ports of each register ftle. Table I shows the data which were written into

different locations of the register file A. The addresses, which were read out on the two

ports at every read cycle, are shown in the table along with the expected data on the output

ports.

61

62

TABLE I

SIMULATION DATA FOR REGISTER FILE A

Clock Write Write Data Read Expected Read Expected
Address Address Data on Address Data on

for Port 1 Port 1 for Port 2 Port 2

1 00 55aa 00 55aa 00 55aa

2 05 8925 00 55aa 00 55aa

3 13 04be 05 8925 00 55aa

4 11 32f0 13 04be 05 8925

5 Of Ocd2 11 32f0 05 8925

6 1f 1076 Of Ocd2 13 04be

7 08 4f4c 05 8925 1f 1076

8 16 fOdb 08 4f4c 16 fOdb

9 09 9009 13 04be 00 55aa

10 1a 23fa 11 32f0 09 9009

11 01 aaaa 1a 23fa 01 aaaa

Table II shows the data which were written into different locations of register ftle B.

It also shows different locations which are read out on the two ports at every read cycle and

the expected data on each port.

63

TABLE II

SIMULATION DATA FOR REGISTER FILE B

Clock Write Write Data Read Expected Read Expected
address Address Data on Address Data on

for Port 1 Port 1 for Port 2 Port 2

1 00 acab 00 acab 00 acab

2 12 ed65 00 acab 00 acab

3 13 3c30 00 acab 12 ed65

4 01 4e29 12 ed65 13 3c30

5 1f f90e 01 4e29 13 3c30

6 09 c332 00 a cab 1f f90e

7 Oe 1afb 13 3c30 01 4e29

8 15 5435 Oe a1tb 12 ed65

9 08 9b81 15 5435 1f f90e

10 17 635d 08 9b81 Oe 1afb

11 09 fd03 13 3c30 17 635d

The results of IRSIM simulation with the data of Table I and Table IT are shown in

Figure 25. The figure shows the four access addresses (addra1, addra2, addrb1, and

addrb2) placed on the two ports of each register file at every clock cycle. It also shows the

two input data (ina and inb) placed on the input bus of the register files, and the four output

data (outa1, outa2, outb1, and outb2) read out on the two ports of the two register files. To

write data, the same address is placed on the two address buses of a register file during

P1s•P2f, and the write datum is placed on the input bus during P2s•Plf. The write

operation on the register file takes place during P2s•P2f.

Figure 25. Read/Write Operation of Twin Register File
0\
~

65

Addresses for the two output ports are placed on the address buses during P2s•P2f,

and the data appear on the output ports on Pls•P2f. As seen in the figure, we can write into

the two register files independently, and two locations in each file can be read out on the

two output ports. For example, 8925 is written into location 05 of register file A during

cycle 2, and 04be is written into location 13 of file A during cycle 3. Both of these

locations are read out on the two ports during cycle 4. As seen in Figure 25, the output data

matches the input data. Figure 25 also shows the read/write operation of file B. The

simulation demonstrates the basic functions of the twin register file: writing one word in

each register file and reading out two words from each file every clock cycle.

Figure 26 shows the transfer operation from file A to file B. File A is written with the

same data as in Table I, while file B is written with the data in Table ill. Data in file A is

copied into file B by activating the transfer signal 'ta2b' during cycle 5. The data transfer

takes place during Pls•Plf. In order to verify the transfer operation, the data written into

file A during the first five cycles are read out from file B during the subsequent cycles. In

Figure 26, 04be is written into location 13 of file A during cycle 3. On the other hand, 3c30

was written into location 13 of file B during cycle 3. During cycle 7, location 13 of file B is

read out on port 2. The output data is 04be, which was the data written into file A during

cycle 3 and transferred to file B during cycle 5. This verifies the transfer operation from file

A to file B.

66

TABLE ill

TRANSFER DATA FOR REGISTER B

Clock Write Write Data Address Expected Address Expected
addresses forport 1 Data on for port 2 Data on

Port 1 Port 2

1 00 acab 00 acab 00 acab

2 12 ed65 00 acab 00 acab

3 13 3c30 12 ed65 13 3c30

4 01 4e29 01 4e29 12 ed65

5 1f f90e 05 8925 13 04be

6 09 c332 00 55aa 05 8925

7 Oe 1atb 11 32f0 13 04be

8 15 5435 05 8925 11 32f0

Figwe 26. Transfer Operation from Register File A to Register File B 0\
-..J

68

Figure 27 shows the transfer operation from register file B to register file A. In this

case, f:t.le B is simulated with the data in Table IT, while f:t.le A is simulated with the data in

Table N. In order to transfer data from f:t.le B to f:t.le A, the transfer signal 'tb2a' is activated

during cycle 5. This simulation verifies the transfer operation from file B to file A.

TABLEN

TRANSFER DATA FOR REGISTER A

Clock Write Write Data Address Expected Address Expected
Addresses for Port 1 Data on for Port 2 Data on

Port 1 Port 2

1 00 55aa 00 55aa 00 55aa

2 05 8925 00 55aa 05 8925

3 13 04be 05 8925 00 55aa

4 11 32f0 00 55aa 13 04be

5 Of Ocd2 01 4e29 00 9cab

6 11 1076 12 ed65 01 4e29

7 10 4f4c 13 3c30 12 ed65

8 02 fOdb 00 acab 13 3c30

l . - - - - · - -· · ~·

Figure 27. Transfer Operation from Register File B to Register File A 0\
\0

70

SPICE Simulation Results

In order to get an estimate of the read, write, and transfer delays of the register file,

we simulated the register file on SPICE. A register file with a single memory cell and

associated read/write circuit, address decoders, and drivers was designed and extracted to

get the SPICE simulation file. In order to obtain accurate results, the capacitances

associated with the bitlines, wordlines, and transfer lines in a 32-word-by-16-bit register

file were determined (by extracting the entire twin register file), and these capacitances were

included in the SPICE simulation file of the test circuit. The clock signals were fed in with

realistic rise and fall times of 0.9ns, while the address signals were fed in with rise and fall

times of 1.5ns. These rise and fall times were determined by calculating the RC loading on

each of the clock lines and address lines. The SPICE file which was used in the simulation

is given in Appendix B.

Wordline Delay

The wordline delay is dependent on the RC constant of wordlines. Each wordline is

driving thirty-two access transistors in a column of memory cells. The gate capacitance of

these access transistors is the major source of capacitance in the wordlines. As the number

of bits in a word increases, the number of transistors connected to the wordline increases,

leading to an increased wordline delay. The wordline delay can be reduced to some extent

by using more powerful drivers.

Figure 28 shows the wordline delay of the twin register file. It takes around 6ns for

the word line to go high, and it takes around 3ns to pull the wordline low. Since the read or

write operation cannot be started until the wordline goes high, the wordline delay limits the

read/write time. Each read/write period (P2f) is followed by a precharge period (Plf).

During the precharge period, the wordlines should be pulled low so that the memory cell is

not spuriously written into. Therefore, the precharge period cannot begin until the wordline

7 1

is pulled low. Thus the time required to pull down the wordline determines the non-overlap

period between P2f and Plf.

5.5,---~

4.5

~ 3.5
0
~ s > 2.5

1.5-

0.5

r----..,.-------~
:
;··· \

!
i \
: i
i i

.I \
' ! ;

: i, i
! i
; i
: i
•• = ~ 1 I a
: i ! i
: i I ;
: \
E :
! '
! \. i ...,.. _____ ·· ..

-0.5 +----------...------------r----------.------------r.------------...-----------r--,---------.-----------1
4e-8 5e-8 6e-8 7e-8 8e-8

TIME

P2f

WORD LINE

Figure 28. Wordline Delay

Write Delay

Figure 29 shows the write delay in the twin register ftle. The write operation takes

place during P2f. The figure shows the wordline and the internal nodes of the memory cell.

72

High is being written on node SA, while low is being written on node SA_BAR. Since the

inverters forming the storage nodes have a strong pull-down transistor and a weak pull-up

transistor, it is easier to write low at the storage nodes. The node at which low is being

written changes its state rapidly and settles to low within 8ns. This is a stable state, and we

could terminate the write operation as soon as one of the two nodes reaches low. This node

is going to pull the other node high, thus, the write operation takes around 8ns in the twin

register file.

5.5.---~

4.5

~ 3.5
0
~
~ 2.5

1.5

0.5

1- ·-·-·-· -·-·-·-·- ••• ,.._l'llll"r~~,....-----~==----w\---. -------------' ... -------
l , ... -- \:, : i ,,'

~ (,/ \ .•. ii ,'

I ! \.:. i! :
: I I

i I 1 i

f \ ! \
f • ; \:'·,:.
:1 \f

~ :

! ~ i,,,
f j\
.f ,'~ :

I • '\.

J / \ \
-~---------·---...J.·-:.,.,' "'•·-·-·-·····-·-·-·-···-··· --·.;;a·---1

-0.5 ~------------~--------~.~--------~------------~------------~------------~--------~------------~
4e-8 5e-8

SA

SA_BAR

6e-8

TIME

Figure 29. Write Delay

7e-8 8e-8

P2f

WORD LINE

«·

73

Precharge Delay

The bitlines in the twin register file are precharged before every read/write cycle.

Figure 30 shows the bitline being precharged on Plf. The precharge delay of the bitline is

proportional to the capacitance of the bitline. This delay increases as the number of words

in the register file increases. As seen in the figure, the twin register file has a precharge

delay of 8ns. The precharge delay can be reduced to some extent by increasing the width of

the PMOS pull-up transistors connected to each bitline.

5.5~--~

4.5
,------~~--------'-\:"''''''"'"""""""""'

.·· .·· ..
/

;
!

f,l:l 3.5
:

i
;

~
~
~ 2.5-

1.5

0.5 -

l :
!

I
i :
!
!
!
:
!
j

/
-0.5~------~--------~------~--------~.--------~------~

2e-8 3e-8 4e-8

BITLINE

Plf

TIME

Figure 30. Precharge Delay

5e-8

74

Read Delay

The read delay consists of two parts: wordline delay and bitline discharge delay. The

bitline discharge delay depends on the bitline capacitance and the combined series resistance

of the access transistor and the pull-down transistor. The wordline delay was shown in

Figure 28. As soon as the wordline goes high, the selected bitline starts discharging (if it is

connected to a node which is low). If the bitline is connected to a node which is high, then

the bitline remains precharged high. The bitlines are connected to inverters which sense the

voltage level of the discharging bitlines. The bitline connected to port 2 senses

complementary data, and therefore it is passed through an extra inverter. Due to the

precharge, port 1 is initially high, while port 2 is low. If low is stored in the cell, then the

output of port 1 will go from high to low (if the cell is read out on port 1), while port 2 will

remain low (if the cell is read out on port 2). On the other hand, if high is stored at the cell,

then port 1 stays high, while port 2 goes from low to high.

Figure 31 shows the read delay when low is stored in one of the cells of register file

A and high is stored in one of the cells of register f:tle B. Cell A is read out on port 1 of f:tle

A, while cell B is read out on port 2 of file B. Hence, the output of port 1 of register A is

going low, while the output of port 2 of register B is going high. The figure also shows the

bitline discharging. As seen in the figure, the bitline discharges to 0.5V in lOns and at this

time the outputs rapidly change their states. Both the outputs are stabilized in 11ns.

5.5~--~

4.5

~ 3.5
0
<
~
~ 2.5

1.5

0.5

........................ '\MI....:·.:::·.:::·.:::.:·.::·-4·-·-··--···--·-···.-···a,--....,-"""""'~----~·-·-·-·-·-·-·-·-·-·
' \ \ /

\ ~ r ••• l

\ ~ I •. :··'.! \ ~ I

\ ~ ;
\ ~ !

I i

\ ~ ! .··'/ \1 I I
I j

\ V I
: I ~ \ 1 : \ .• I

\~.J ... /
i \.
• I '•, .·'f ,' t · +--------·-•-·-·-·-·-·-•-•'• ... ___ ,::::• _...,..WIII'IAIM ,.,, _....._ __ -1

'~---------------
-0.5~----~------,,------,------,------,-----~------,------;

4e-8

Transfer Delay

5e-8

BITLINE

P2f

6e-8

TIME

Figure 31. Read Delay

7e-8

OUTPUTAl

OUTPUTB2

8e-8

The twin register file has the capability of transferring data from one register file to

another. The transfer operation takes place during the phase when the bitlines are being

precharged (Pls•Plf). The transfer delay depends on the time required to activate the

transfer lines and the time required to change one of the storage nodes from low to high.

75

Figure 32 shows the delay involved in transferring high from Register A to Register

B. The transfer line TA2B takes around 4ns to be charged up. Once the transfer line is

activated, the high stored at node SA is transferred to node SB. Since the inverters have a

weak pull-up transistor, the node SB does not change its state rapidly. As soon as the node

76

SB reaches a voltage level of around 1.4V, the inverter 14 starts changing its state. Since

the inverters have strong pull-down transistors, the node SB _BAR rapidly changes its state

to low. As seen in Figure 32, node SB settles to low within 8ns. This is a stable state and

we could turn off the transfer lines at this time because the low stored at SB _BAR is going

to pull node SB to high.

5.5~--~

. -.-.-.-.-. ,.....,._-r~.,.~. ------~-------~-0::--:"W~\~·~\,-,,- ---------- --
i ·, .,. ...

4.5 - ('! /// \,

3.5 :1 I 1,'
I l

~ I ,' ~

I './ \ I v
i ~ !
i :i i

I ! \ \.
I I : I
J : ' \ ,,.-·--....

2.5

1.5

0.5 -
..... ,' ·•·•.. .,·,.. __;:. ____ _, "'·-·-·-·-·-·-·-·-·-·-·-·---·~-...... --....:-----1

-0.5~------~~-------r---------~------~---------~---------r-.------~------~
2e-8 3e-8 4e-8

TIME

Se-8

Plf

TA2B

----··-· SB

SB_BAR

Figure 32. Transferring 'high'

6e-8

Figure 33 shows the delay involved in transferring low from register A to register B.

In this case the low stored at node SA is transferred to SB. Since the inverters have strong

77

pull-down transistors, node SB rapidly settles to low in 6ns. The low at SB starts pulling

up the node SB _BAR, and we could tum off the transfer lines at around IOns. The low at

node SB is eventually going to pull the node SB_BAR to high.

5.5~--~

---------- -r-'""'~··r····-··· : \ : . \

4.5- l
~ / ,·

..... ,.
,· ,.

.... -·-· \ \·-·-·-·-·-·-·-·~·-·-·-
~\

~ 3.5
0
<

I
I
I
I
I
I
I
I
I

!
I ,·

b I I

I
I

~ 2.5
; I

; I
I I I

\ / \
t I ~
I I i
\ ,' \

1.5

0.5 I ,' ,,) v l:. \ .. --··

i\ i .,,' +---....;..,..- ·-·-. .~· ... __ ------------------------ _____ ;.,.... _ __.. ________ -!

-0.5 -+-----.r-----r----....------,----.----w--,--....,..--~

2e-8 3e-8 4e-8

TIME

5e-8

Plf

TA2B

-------· SB

SB_BAR

Figure 33. Transferring 'low'

6e-8

CHAPTER VI

CONCLUSIONS

This thesis presents the design of a novel twin register file which can be used for

reducing the effects of conditional branches in a pipelined architecture. The twin register

file consists of two files capable of executing the 'read', 'write', and 'transfer' operation.

Each of the two register files has two read ports and one write port. We can write one word

and read two words from each file every clock cycle. Each register file has the capability of

copying all of its contents into the other register file. This transfer operation can be

accomplished in a single phase of the clock, and does not involve any extra penalties in

terms of time because it is overlapped with the precharge period of the bitlines.

A parameterized twin register ftle is designed using layout tools Magic and Lager.

The functionality of a 32-word-by-16-bit twin register ftle is verified by simulating it on

IRSIM. The delays associated with the 'read', 'write', and 'transfer' operations are

estimated by simulating the register ftle on SPICE. The speed of the register files is limited

by the delay associated with the read operation, which is about llns.

This thesis discusses the effects of conditional branches and reviews the conventional

schemes which have been used for reducing the branch penalties. The thesis proposes a

twin processor architecture which processes both paths of a conditional branch

simultaneously. The advantage of such a machine is that it does not have to stall, nor does

it have to make any predictions about the path to be taken. Hence, there is no need to flush

the results of an incorrect prediction. In the twin processor machine, the twin register ftle is

required for executing two instruction streams of a branch instruction. The contents of one

register file have to be copied into the other on detection of a conditional branch instruction.

78

79

This ensures that the two processors use the same data when they begin executing the two

instruction streams. The special purpose twin register file copies data from one flle to

another without incurring any extra penalties in terms of time.

The twin processor architecture along with the twin register file provides an

alternative to the conventional schemes employed for reducing the branch penalties. The

twin register file can also be used in other applications where a backup of the local memory

is required. Subroutine calls/returns are an example of possible applications which could

use the twin register file for a backup of local registers. Further research into the application

of twin register files is recommended.

BffiUOGRAPHY

[1] C. V. Ramamoorthy and H. F. Li, "Pipeline Architecture," Computing Surveys, Vol.9,

pp. 61-102, 1977.

[2] H. S. Stone, High Performance Computer Architectures, Addison-Wesley Publishing

Company, 1987.

[3] D. J. Lilja, "Reducing the Branch Penalty in Pipelined Processors," Computer, Vo1.21,

pt.2, pp. 47-54, July 1988.

[4] E. M. Riseman and C. C. Foster, "The Inhibition of Potential Parallelism by

Conditional Jumps," IEEE Transactions on Computers, Vo1.21, pt.2, pp. 1404-1411, Dec.

1972.

[5] S. McFarling and J. Hennessy, "Reducing the Cost of Branches," Computer

Architecture News, Vol.14, no. 2, pp. 396-403, June 1986.

[6] G. S. Tjaden and M. J. Flynn," Detection and Parallel Execution of Independent

Instructions," IEEE Transactions on Computers, Vol.19, no.10, pp. 889-895, Oct. 1970.

[7] J. K. F. Lee and A. J. Smith, "Branch Prediction Strategies and Branch Target Buffer

Design," Computer, Vo1.17, pp. 6-22, Jan. 1984.

[8] J. E. Smith, "A Study of Branch Prediction Strategies," Proc. of the 8th International

Symposium on Computer Architecture, pp. 135-148, May 1981.

[9] W. W. Hwu, T. M. Conte and P. P. Cheny, "Comparing Software and Hardware

Schemes for Reducing the Cost of Branches," Proc. of 16th Inti. Symposium on Computer

Architecture, pp. 224-231, June 1989.

[10] J. A. DeRosa and M. M. Levy, "An Evaluation of Branch Architectures," Proc. of

14th Inti. Symposium on Computer Architecture, pp. 10-16, June 1987.

80

8 1

[11] D. R. Ditzel and H. R. McLellan, "Branch Folding in CRISP Microprocessor:

Reducing Branch Delay to Zero," Proc. of 14th Inti Symposium on Computer Architecture,

pp. 2-9, June 1987.

[12] W. D. Connors, J. H. Piorkowski and S. K. Patton, "The ffiM 3033: An Inside

Look," Datamation, pp. 198-218, May 1979.

[13] H. S. Stone, "A Pipeline Pushdown-Stack Computer," Parallel Processor Systems,

Technologies and Applications, L.C.Hobbs, Ed. Washington D.C.: Spartan, pp. 235-249,

1970.

[14] M.D. Smith, M. Johnson and M.A. Horowitz," Limits on Multiple Instruction

Issue," Computer Architecture News, pp. 290-302, April1989.

[15] D. W. Anderson, F. J. Sparacio and R. M. Tomasulo, "The ffiM System/360 Model

91: Machine Philosophy and Instruction Handling," IBM Journal of Research and

Development, Vol.ll, pp. 8-24, Jan. 1967.

[16] G. S. Sohi and S. Vajapeyam, "Instruction Issue Logic For High Performance,

Interruptable Pipelined Processors," Proc. of 14th Inti Symposium on Computer

Architecture, pp. 27-34, June 1987.

[17] W. W. Hwu andY. N. Patt, "CheckPoint Repair For Out-Of-Order Execution

Machines," Proc. of 14th Inti Symposium on Computer Architecture, pp. 18-26, June

1987.

[18] R. W. Sherburne, M. G. H. Katenevis, D. A. Patterson and C. H. Sequin, "A 32-Bit

NMOS Microprocessor with a Large Register File," IEEE Journal of Solid State Ckts.,

Vol.SC-19, no. 5, pp. 682-689, October 1984.

[19] R. W. Sherburne, "Processor Design Tradeoffs In VLSI," Doctoral Dissertation,

University of California, Berkeley, 1984.

[20] R. D. Jolly, "A 9-ns, 1.4 Gigabyte/S, 17-Ported CMOS Register File," IEEE Journal

of Solid State Ckts., Vol. 26, no. 10, pp. 1407-1412, October 1991.

82

[21] J. Beyers, L. Dohse, J. Fucetola, R. Kochis, C. Lob, G. Taylor and E. Zeller, "A 32

Bit VLSI CPU Chip," IEEE Journal of Solid State Ckts., Vol. SC-16, no. 5, pp. 537-541,

October 1981.

[22] R. W. Sherburne, M.G. H. Katevenis, D. A. Patterson and C. H. Sequin, "Datapath

Design for RISC," Proceedings of the Conference on Advanced Research in VLSI,

Massachusetts Institute of Technology, pp. 53-62, January 1982.

[23] J. L. Rosenfeld and R. D. Villani, "Micromultiprocessing : An Approach to

Multiprocessing at the Level of Very Small Tasks," IEEE Transactions on Computers, Vol.

22, no. 2, pp. 149-153, Feb. 1973.

[24] M.G. H. Katevenis, "Reduced Instruction Set Computer Architectures for VLSI,"

Doctoral Dissertation, Computer Science Division, University of California, Berkeley,

1983.

[25] N. Weste and K. Eshragian, Principles of CMOS VLSI Design: A System

Perspective, Addison Wesley Publishing Company, 1985.

[26] C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley Publishing

Company, 1985.

[27] L. G. Johnson, Private Communication, Oct. 1992.

APPENDIXES

83

APPENDIX A

TIMLAGER C FILE FOR TWIN REGISTER FILE

This appendix contains the tiling procedure used for laying out the Twin Register

File. TimLager functions were used to write this tiling procedure.

/* TimLager file for scalable twin register file

Author: Manish Shah *I

#include "TimLager.h"
int width, words;
inti, j, k;

/* th_sram is the parameterized twin register file*/

th_sram()
{
width = Getparam("width");
if (width>=32) width=32;
words= Getparam("words");
if (words >=256) words=256;

/*Generate the Basic Blocks*/

th_array();
th_rwA();
th_rwB();
th_bufferA();
th_bufferB();

84

!* ensures that maximum width is 32 */

/*ensures that maximum number of
words is 256 *I

I* Tile Blocks *I

Open_newcell(Read("name"));
Addup("th_controlB2", LEFfiBOTIOM, MX, MY, END);
Addright("th_bufferB", BOTIOM, MY, END);
Addright("th_controlA2", RIGHTIBOTIOM, MY, END);
Addup("th_rwB", LEFf, MX, END);
Addright("th_array", NONE, END);
Addright("th_rwA", RIGHT, END);
Addup("th_controffi 1 ", LEFfiTOP, MX, END);
Addright("th_bufferA", TOP, END);
Addright("th_controlA1 ", RIGHTITOP, END);
Close_newcell();
}

I* th_array() generates the array of memory cells. th_ 4cells are the basic memory cells

which have four Twin Register File memory cells.* I

th_array()
{
int 1, j;
Open_newcell("th_array");
Addup("th_ 4cells", NONE, END);
for(i=1; i<wordsl4; i++)

Addright("th_ 4cells", NONE, OFFSETX, -12, END);
for(j=1; j<width; j++)

{

}

Addup("th_ 4cells", NONE, OFFSETY, -9, END);
for(i=1; i<wordsl4; i++)

Addright("th_ 4cells", NONE, OFFSETX, -12, END);

Close_newcell();
}

I* th_rw A() adds the read/write circuitsfor register file A *I

th_rwA()
{
Open_newcell("th_rw A");
Addup("th_dst2a", RIGHT, RIGHTINDEX, 0, END);
for(i=1; i<width; i++)

Addup("th_dst2a", RIGHT, RIGHTINDEX, i, OFFSETY, -9, END);
Close_newcell();
}

85

I* th_rwB() adds the read/write circuits for register file B*l

th_rwB()
{
Open_newcell("th_rwB ");
Addup("th_dst2b", RIGHT, RIGHTINDEX, 0, END);
for(i=1; i<width; i++)

Addup("th_dst2b", RIGHT, RIGHTINDEX, i, OFFSETY, -9, END);
Close_newcell();
}

86

I* th_bufferA() adds the driver cells for port 1 of register file A and register file B. It also

places the parameterized decoder for port 1 of register file A and register file Bat the top of

the drivers. *I

th_bufferA()
{
int i,j;
Open_newcell("th_bufferA");
Addup("th_drvcellA", NONE, END);
for(i=1; i<wordsl4; i++)

Addright("th_drvcellA", NONE, END);

I* the following procedure places the decoder cells *I

for(j=O; j<7; j++)
{
Addup("th_dec.O", NONE, END);
for(i=1; i<words/2; i++)

{
if(i/2*2==i)

Addright((i & (1<<j))? "th_decA.1" :"th_dec.O", NONE, END);
else

Addright((i & (1<<j))? "th_decB.1": "th_dec.O", NONE,END);
}

Addup("th_decA.1", NONE, END);
for(i=1, i<wordsl2; i++)

}

{
if(i/2*2==i)

Addright((i & (1<<j))? "th_dec.O": "th_decA.1", NONE, END);
else

Addright((i & (1<<j))? "th_dec.O": "th_decB.1 ",NONE, END);

Addup("th_dec.top", TOP, END);
for(i=1; i<wordsl4; i++)
Addright("th_dec.top", TOP, END);
Close_newcell();
}

87

I* th_bufferB() adds the driver cells for port 2 of register ftle A and register ftle B. It also

places the parameterized decoder for port 2 of register ftle A and register file Bat the top of

the drivers. *I

th_bufferB()
{
inti, j;
Open_newcell("th_bufferB ");
Addup("th_drvcellB", NONE, END);
for(i=l; i<wordsl4; i++)

Addright("th_drvcellB", NONE, END);

I* the following procedure places the decoder cells *I

for(j=O; j<7; j++)
{
Addup("th_dec.O", NONE, END);
for(i=l; i<words/2; i++)

{
if(i/2*2==i)

Addright((i & (l<<j))? "th_decA.l": "th_dec.O", NONE, END);
else

Addright((i & (l<<j))? "th_decB.l": "th_dec.O", NONE, END);
}

Addup("th_decA.l", NONE, END);
for(i=l; i<wordsl2; i++)

}

{
if(i/2*2==i)

Addright((i & (l<<j))? "th_dec.O": "th_decA.l", NONE, END);
else

Addright((i & (l<<j))? "th_dec.O": "th_decB.l ",NONE, END);

Addup("th_dec.top", TOP, END);
for(i=l; i<wordsl4; i++)
Addright("th_dec.top", TOP, END);
Close_newcell();
}

APPENDIXB

SPICE FILE

This appendix contains an example spice circuit file which is used for simulating the

transfer operation. The spice deck obtained by extracting the test circuit and the spice model

for the transistors are also included in this file.

SIMULATION OF TRANSFER TIME FOR TWIN REGISTER FILE
*
Vll 0 de 5v
V440dc0v
v24 240 de 5v
*
Vplf 29 0 pulse(O 5 25.0ns 0.9ns 0.9ns 20ns 50ns)
Vpltb 27 0 pulse(5 0 25.0ns 0.9ns 0.9ns 20ns 50ns)
Vp2f 63 0 pulse(O 5 O.Ons 0.9ns 0.9ns 20ns 50ns)
Vp2tb 5 0 pulse(5 0 O.Ons 0.9ns 0.9ns 20ns 50ns)
Vp2s 69 0 pwl(O 5 20.9ns 5v 21.8ns 0)
Vp2sb 57 0 pwl(O 0 20.9ns 0 21.8ns 5)
Vpls 39 0 pulse(O 5 25.0ns 0.9ns 0.9ns 45ns lOOns)
Vplsb 45 0 pulse(5 0 25.0ns 0.9ns 0.9ns 45ns lOOns)
*
VadalO 83 0 pwl(O 5 25ns 5v 26.5ns Ov)
Vadall 22 0 pwl(O 5 .5ns Ov 50ns Ov 51.5ns 5v)
Vadal2 20 0 de Ov
Vada13 18 0 de Ov
Vada1416 0 de Ov
Vada15 14 0 de Ov
Vadal612 0 de Ov
Vada17 9 0 de Ov
Vada20 77 0 pwl(O 5 25ns 5v 26.5ns Ov)
Vada21 131 0 pwl(O 5 1.5ns Ov 50ns Ov 51.5ns 5v)
Vada22135 0 de Ov
Vada23 137 0 de Ov
Vada24139 0 de Ov
Vada25 141 0 de Ov
Vada26143 0 de Ov
Vada27 145 0 de Ov
VadblO 108 0 pwl(O 5 25ns 5v 26.5ns Ov)
Vadbll 23 0 pwl(O 5 1.5ns Ov 50ns Ov 51.5ns 5v)
Vadb12 21 0 de Ov
Vadbl3 19 0 de Ov

88

Vadb1417 0 de Ov
Vadb1S 1S 0 de Ov
Vadb16 13 0 de Ov
Vadb17 11 0 de Ov
Vadb20 74 0 pwl(O S 2Sns Sv 26.Sns Ov)
Vadb21 133 0 pwl(O S l.Sns Ov SOns Ov 51.5ns 5v)
Vadb22 136 0 de Ov
Vadb23 138 0 de Ov
Vadb24 140 0 de Ov
Vadb2S 142 0 de Ov
Vadb26144 0 de Ov
Vadb27 146 0 de Ov
*
Vada1-0 60 0 pwl(O 0 2Sns Ov 26.Sns Sv)
Vada1-1162 0 pwl(O 0 1.Sns Sv SOns Sv S1.Sns Ov)
Vada1-2 164 0 de Sv
Vada1-3 166 0 de Sv
Vada1-4 168 0 de 5v
Vada1-S1700deSv
Vada1-6 172 0 de 5v
Vada1-7 174 0 de Sv
Vada2-0 93 0 pwl(O 0 2Sns Ov 26.Sns Sv)
Vada2-1 IS9 0 pwl(O 0 l.Sns Sv SOns Sv Sl.Sns Ov)
Vada2-2 1S7 0 de Sv
Vada2-3 1SS 0 de Sv
Vada2-4 1S3 0 de Sv
Vada2-5 1S1 0 de Sv
Vada2-6 149 0 de Sv
Vada2-7 147 0 de Sv
Vadb1-0 llS 0 pw1(0 0 2Sns Ov 26.Sns Sv)
Vadb1-1 161 0 pwl(O 0 l.Sns Sv SOns Sv Sl.Sns Ov)
Vadb1-2 163 0 de Sv
Vadb1-3 16S 0 de 5v
Vadb1-4 167 0 de Sv
Vadb1-S 169 0 de Sv
Vadb1-6 171 0 de Sv
Vadb1-7 173 0 de Sv
Vadb2-0 88 0 pwl(O 0 2Sns Ov 26.Sns Sv)
Vadb2-1160 0 pwl(O 0 1.Sns Sv SOns Sv S1.Sns Ov)
Vadb2-2 1S8 0 de Sv
Vadb2-3 1S6 0 de 5v
Vadb2-4 1S4 0 de Sv
Vadb2-S 1S2 0 de Sv
Vadb2-6 1SO 0 de Sv
Vadb2-7 148 0 de Sv
*
Vregl 3S 0 de Ov
Vta2b 48 0 pwl(O 0 2Sns 0 2S.9ns S 70ns S 70.9ns 0)
Vtb2a 118 0 de Ov
*
Vina 8S 0 pw1(0 0 2Sns Ov 2S.5ns 5v)
Vinb 79 0 pwl(O S 2Sns Sv 25.Sns Ov)

"' .ie V(61)=4.SV v(62)=0.0v v(68)=0.0 v(90)=4.5v

89

.ic v(43)=0 v(65)=0 v(45)=0 v(104)=0

.ic v(46)=5v v(92)=5v v(47)=0v v(97)=0v

.ic v(48)=0v v(118)=0v

.ic v(28)=5v v(30)=5v v(124)=5v v(125)=5v

*
***SPICE DECK created from test2.sim, tech=scmos
*
M1 6 5 0 4 CMOSN L=2.0U W=4.0U
M2 7 5 0 4 CMOSN L=2.0U W=4.0U
M3 6 9 8 4 CMOSN L=2.0U W=6.0U
M4 7 11 10 4 CMOSN L=2.0U W=6.0U
M5 6 12 8 4 CMOSN L=2.0U W=6.0U
M6 7 13 10 4 CMOSN L=2.0U W=6.0U
M7 6 14 8 4 CMOSN L=2.0U W=6.0U
M8 7 15 10 4 CMOSN L=2.0U W=6.0U
M9 6 16 8 4 CMOSN L=2.0U W=6.0U
M10 7 17 10 4 CMOSN L=2.0U W=6.0U
M11 6 18 8 4 CMOSN L=2.0U W=6.0U
M12 7 19 10 4 CMOSN L=2.0U W=6.0U
M13 6 20 8 4 CMOSN L=2.0U W=6.0U
M14 7 21 10 4 CMOSN L=2.0U W=6.0U
M15 6 22 8 4 CMOSN L=2.0U W=6.0U
M16 7 23 10 4 CMOSN L=2.0U W=6.0U
M17 1 5 8 24 CMOSP L=2.0U W=5.0U
M18 10 5 1 24 CMOSP L=2.0U W=5.0U
M19 25 8 1 24 CMOSP L=2.0U W=5.0U
M20 0 8 25 4 CMOSN L=2.0U W=5.0U
M21 26 10 0 4 CMOSN L=2.0U W=5.0U
M22 1 10 26 24 CMOSP L=2.0U W=5.0U
M23 28 27 25 24 CMOSP L=2.0U W=5.0U
M24 25 29 28 4 CMOSN L=2.0U W=5.0U
M25 30 29 26 4 CMOSN L=2.0U W=5.0U
M26 26 27 30 24 CMOSP L=2.0U W=5.0U
M27 31 5 1 24 CMOSP L=2.0U W=5.0U
M28 32 28 31 24 CMOSP L=2.0U W=5.0U
M29 0 5 32 4 CMOSN L=2.0U W=5.0U
M30 33 5 0 4 CMOSN L=2.0U W=5.0U
M31 34 30 33 24 CMOSP L=2.0U W=5.0U
M32 1 5 34 24 CMOSP L=2.0U W=5.0U
M33 0 35 32 4 CMOSN L=2.0U W=5.0U
M34 33 35 0 4 CMOSN L=2.0U W=5.0U
M35 36 32 1 24 CMOSP L=2.0U W=15.0U
M36 0 32 36 4 CMOSN L=2.0U W=10.0U
M37 37 33 0 4 CMOSN L=2.0U W=10.0U
M38 1 33 37 24 CMOSP L=2.0U W=15.0U
M39 40 39 38 4 CMOSN L=2.0U W=6.0U
M40 0 41 40 4 CMOSN L=2.0U W=7.0U
M41 1 41 42 24 CMOSP L=2.0U W=4.0U
M42 43 36 1 24 CMOSP L=2.0U W=65.0U
M43 0 36 43 4 CMOSN L=2.0U W=25.0U
M44 44 37 0 4 CMOSN L=2.0U W=25.0U
M45 42 45 38 24 CMOSP L=2.0U W=4.0U
M46 1 29 46 24 CMOSP L=2.0U W=44.0U

90

M47 47 46 1 24 CMOSP L=2.0U W=44.0U
M48 49 48 46 4 CMOSN L=2.0U W=27.0U
M49 0 29 49 4 CMOSN L=2.0U W=27.0U
M50 1 37 44 24 CMOSP L=2.0U W=65.0U
M51515004CMOSNL=2.0UW=7.0U
M52 52 39 51 4 CMOSN L=2.0U W=6.0U
M53 53 50 1 24 CMOSP L=2.0U W=4.0U
M54 52 45 53 24 CMOSP L=2.0U W=4.0U
M55 0 46 47 4 CMOSN L=2.0U W=18.0U
M56 55 54 0 4 CMOSN L=2.0U W=3l.OU
M57 58 57 56 24 CMOSP L=2.0U W=42.0U
M58 56 60 59 4 CMOSN L=2.0U W=18.0U
M59 62 61 0 4 CMOSN L=2.0U W=22.0U
M60 64 63 55 4 CMOSN L=2.0U W=3l.OU
M61 66 65 62 4 CMOSN L=2.0U W=8.0U
M62 68 67 0 4 CMOSN L=2.0U W=22.0U
M63 56 69 64 4 CMOSN L=2.0U W=3l.OU
M64 1 54 58 24 CMOSP L=2.0U W=42.0U
M65 1 71 70 24 CMOSP L=2.0U W=lO.OU
M66 72 45 71 24 CMOSP L=2.0U W=4.0U
M67 1 73 72 24 CMOSP L=2.0U W=4.0U
M68 75 74 41 24 CMOSP L=2.0U W=lO.OU
M69 1 59 75 24 CMOSP L=2.0U W=lO.OU
M70 0 71 70 4 CMOSN L=2.0U W=3.0U
M71 76 39 71 4 CMOSN L=2.0U W=6.0U
M72 0 73 76 4 CMOSN L=2.0U W=7.0U
M73 78 77 73 24 CMOSP L=2.0UW=l0.0U
M74 54 79 1 24 CMOSP L=2.0U W=12.0U
M75 1 80 78 24 CMOSP L=2.0U W=lO.OU
M76 81 79 1 24 CMOSP L=2.0U W=42.0U
M77 82 57 81 24 CMOSP L=2.0U W=42.0U
M78 56 83 59 24 CMOSP L=2.0U W=24.0U
M79 1 27 59 24 CMOSP L=2.0U W=20.0U
M80 59 44 68 4 CMOSN L=2.0U W=8.0U
M81 84 60 66 4 CMOSN L=2.0U W=l8.0U
M82 86 85 0 4 CMOSN L=2.0U W=3l.OU
M83 87 63 86 4 CMOSN L=2.0U W=3l.OU
M84 84 69 87 4 CMOSN L=2.0U W=3l.OU
M85 67 47 62 4 CMOSN L=2.0U W=4.0U
M86 1 61 62 24 CMOSP L=3.0U W=3.0U
M87 80 83 82 24 CMOSP L=2.0U W=24.0U
M88 89 88 41 4 CMOSN L=2.0U W=3.0U
M89 0 59 89 4 CMOSN L=2.0U W=3.0U
M90 90 46 67 4 CMOSN L=2.0U W=6.0U
M91 61 91 1 24 CMOSP L=3.0U W=3.0U
M92 1 67 68 24 CMOSP L=3.0U W=3.0U
M93 91 92 62 4 CMOSN L=2.0U W=6.0U
M94 80 27 1 24 CMOSP L=2.0U W=20.0U
M95 94 93 73 4 CMOSN L=2.0U W=3.0U
M96 0 80 94 4 CMOSN L=2.0U W=3.0U
M97 95 69 82 4 CMOSN L=2.0U W=3l.OU
M98 1 27 66 24 CMOSP L=2.0U W=20.0U
M99 84 83 66 24 CMOSP L=2.0U W=24.0U
MlOO 96 57 84 24 CMOSP L=2.0U W=42.0U

9 1

M101 90 68 1 24 CMOSP L=3.0U W=3.0U
M102 90 97 91 4 CMOSN L=2.0U W=4.0U
M103 98 63 95 4 CMOSN L=2.0U W=3l.OU
M104 0 79 54 4 CMOSN L=2.0U W=6.0U
M105 80 60 82 4 CMOSN L=2.0U W=18.0U
M106 0 79 98 4 CMOSN L=2.0U W=3l.OU
M107 61 43 99 4 CMOSN L=2.0U W=8.0U
M108 0 91 61 4 CMOSN L=2.0U W=24.0U
M109 99 83 100 24 CMOSP L=2.0U W=24.0U
M110 1 85 96 24 CMOSP L=2.0U W=42.0U
M111 101 85 1 24 CMOSP L=2.0U W=12.0U
M112 99 27 1 24 CMOSP L=2.0U W=20.0U
M113 102 101 1 24 CMOSP L=2.0U W=42.0U
M114100 57 102 24 CMOSP L=2.0UW=42.0U
M115 103 69 100 4 CMOSN L=2.0U W=3l.OU
M116 90 104 80 4 CMOSN L=2.0U W=8.0U
M117 0 68 90 4 CMOSN L=2.0U W=24.0U
M118 99 60 100 4 CMOSN L=2.0U W=18.0U
M119 105 63 103 4 CMOSN L=2.0U W=3l.OU
M120 0 85 101 4 CMOSN L=2.0U W=6.0U
M121 106 99 1 24 CMOSP L=2.0U W=10.0U
M122 50 83 106 24 CMOSP L=2.0U W=10.0U
M123 107 66 1 24 CMOSP L=2.0U W=10.0U
M124 109 108 107 24 CMOSP L=2.0U W=10.0U
M125 111 45 110 24 CMOSP L=2.0U W=4.0U
M126 110 109 1 24 CMOSP L=2.0U W=4.0U
M127 112 111 1 24 CMOSP L=2.0U W=10.0U
M128 0 101105 4 CMOSN L=2.0U W=3l.OU
M129 113 99 0 4 CMOSN L=2.0U W=3.0U
M130 50 60 113 4 CMOSN L=2.0U W=3.0U
Ml31 114 66 0 4 CMOSN L=2.0U W=3.0U
M132 109 115 114 4 CMOSN L=2.0U W=3.0U
M133 116 109 0 4 CMOSN L=2.0U W=7.0U
M134 111 39 116 4 CMOSN L=2.0U W=6.0U
M135 112 111 0 4 CMOSN L=2.0U W=3.0U
M136 65 117 124 CMOSP L=2.0UW=65.0U
M137 1 29 92 24 CMOSP L=2.0U W=44.0U
M138 97 92 1 24 CMOSP L=2.0U W=44.0U
M139 0 92 97 4 CMOSN L=2.0U W=18.0U
M140 119 118 92 4 CMOSN L=2.0U W=27.0U
M141 0 29 119 4 CMOSN L=2.0U W=27.0U
M142 0 117 65 4 CMOSN L=2.0U W=25.0U
M143 104 120 0 4 CMOSN L=2.0U W=25.0U
M144 1 120 104 24 CMOSP L=2.0U W=65.0U
M145 117 121 1 24 CMOSP L=2.0U W=15.0U
M146 0 121 117 4 CMOSN L=2.0U W=10.0U
M147 120 122 0 4 CMOSN L=2.0U W=10.0U
M148 1 122 120 24 CMOSP L=2.0U W=15.0U
M149 0 35 121 4 CMOSN L=2.0U W=5.0U
M150 122 35 0 4 CMOSN L=2.0U W=5.0U
M151 123 5 1 24 CMOSP L=2.0U W=5.0U
M152 121 124 123 24 CMOSP L=2.0U W=5.0U
M153 0 5 121 4 CMOSN L=2.0U W=5.0U
M154 122 5 0 4 CMOSN L=2.0U W=5.0U

92

M155 126 125 122 24 CMOSP L=2.0U W=5.0U
M156 1 5 126 24 CMOSP L=2.0U W=5.0U
M157 124 27 127 24 CMOSP L=2.0U W=5.0U
M158 127 29 124 4 CMOSN L=2.0U W=5.0U
M159 125 29 128 4 CMOSN L=2.0U W=5.0U
M160 128 27 125 24 CMOSP L=2.0U W=5.0U
M161 127 129 1 24 CMOSP L=2.0U W=5.0U
M162 0 129 127 4 CMOSN L=2.0U W=5.0U
M163 128 130 0 4 CMOSN L=2.0U W=5.0U
M164 1 130 128 24 CMOSP L=2.0U W=5.0U
M165 1 63 129 24 CMOSP L=2.0U W=5.0U
M166 130 63 1 24 CMOSP L=2.0U W=5.0U
M167 132 131129 4 CMOSN L=2.0U W=6.0U
M168 134 133 130 4 CMOSN L=2.0U W=6.0U
M169 132 135 129 4 CMOSN L=2.0U W=6.0U
M170 134 136 130 4 CMOSN L=2.0U W=6.0U
M171 132 137 129 4 CMOSN L=2.0U W=6.0U
M172 134 138 130 4 CMOSN L=2.0U W=6.0U
M173 132 139 129 4 CMOSN L=2.0U W=6.0U
M174 134 140 130 4 CMOSN L=2.0U W=6.0U
M175 132 141 129 4 CMOSN L=2.0U W=6.0U
M176 134 142 130 4 CMOSN L=2.0U W=6.0U
M177 132 143 129 4 CMOSN L=2.0U W=6.0U
M178 134 144 130 4 CMOSN L=2.0U W=6.0U
M179 132 145 129 4 CMOSN L=2.0U W=6.0U
M180 134 146 130 4 CMOSN L=2.0U W=6.0U
M181 132 5 0 4 CMOSN L=2.0U W=4.0U
M182 134 5 0 4 CMOSN L=2.0U W=4.0U
*
C183 57 1 4.0F
C184 44 0 2.0F
C185 99 0 5.0F
C186 65 1 2.0F
C187 45 0 4.0F
C188 57 0 4.0F
C189 65 0 2.0F
C190 1 60 3.0F
C191 1 120 2.0F
C192 25 29 2.0F
C193 60 0 4.0F
C194 127 29 2.0F
C195 1 124 2.0F
C196 8 0 2.0F
C197 30 1 2.0F
C198 122 5 3.0F
C199 82 63 2.0F
C200 37 1 3.0F
C201 26 0 6.0F
C202 128 0 6.0F
C203 43 1 2.0F
C204 1 0 3l.OF
C205 57 79 2.0F
C206 39 1 2.0F
C207 47 90 2.0F

93

C208 54 79 2.0F
C209 57 85 2.0F
C210 43 0 2.0F
C211 59 1 5.0F
C212 56 63 2.0F
C213 27 66 2.0F
C214 39 0 4.0F
C215 108 0 2.0F
C216 59 0 4.0F
C217 62 97 2.0F
C218 1117 2.0F
C219 74 0 2.0F
C220 27 80 2.0F
C221 115 0 2.0F
C222 77 0 2.0F
C223 83 60 2.0F
C224 28 1 2.0F
C225 84 63 2.0F
C226 121 5 3.0F
C227 35 0 4.0F
C228 88 0 2.0F
C229 36 1 3.0F
C230 25 0 6.0F
C231127 0 6.0F
C232 27 99 2.0F
C233 1 5 4.0F
C234 33 5 3.0F
C235 104 1 2.0F
C236 83 1 3.0F
C237 69 1 4.0F
C238 0 5 6.0F
C239 104 0 2.0F
C240 83 0 4.0F
C241 66 1 5.0F
C242 69 0 4.0F
C243 61 43 3.0F
C244 66 0 5.0F
C245 68 44 2.0F
C246 26 29 2.0F
C247 128 29 2.0F
C248 1 125 2.0F
C249 80 1 4.0F
C250 27 1 4.0F
C251 63 1 4.0F
C252 80 0 4.0F
C253 79 5 2.0F
C254 411 2.0F
C255 27 0 4.0F
C256 85 5 2.0F
C257 129 0 2.0F
C258 44 1 2.0F
C259 32 5 3.0F
C260 99 1 4.0F
C261 63 0 4.0F

94

C262 93 0 2.0F
C263 100 63 2.0F
C264 104 90 2.0F
C265 27 59 2.0F
C266 45 1 4.0F
C267 147 0 5.0F
C268 148 0 5.0F
~C269 149 0 5.0F
C270 150 0 5.0F
C271 151 0 5.0F
C272 152 0 5.0F
C273 153 0 5.0F
C274 154 0 5.0F
C275 155 0 5.0F
C276 156 0 5.0F
C277 157 0 5.0F
C278 158 0 5.0F
C279 159 0 5.0F
C280 160 0 5.0F
C281 161 0 5.0F
C282 162 0 5.0F
C283 163 0 5.0F
C284 164 0 5.0F
C285 165 0 5.0F
C286 166 0 5.0F
C287 167 0 5.0F
C288 168 0 5.0F
C289 169 0 5.0F
C290 170 0 5.0F
C291 171 0 5.0F
C292 172 0 5.0F
C293 173 0 5.0F
C294 174 0 5.0F
C295 0 0 1848.0F
C296 5 0 164.0F
C297 146 0 12.0F
C298 145 0 11.0F
C299 144 0 12.0F
C300 143 0 1l.OF
C301 142 0 12.0F
C302 141 0 1l.OF
C303 140 0 12.0F
C304 139 0 1l.OF
C305 138 0 12.0F
C306 137 0 1l.OF
C307 136 0 12.0F
C308 135 0 1l.OF
C309 134 0 129.0F
C310 132 0 129.0F
C311 133 0 12.0F
C312 131 0 1l.OF
C313 63 0 62.0F
C314 1 0 2304.0F
C315 130 0 145.0F

95

C316 129 0 145.0F
C317 128 0 6l.OF
C318 127 0 60.0F
C319 29 0 92.0F
C320 126 0 4.0F
C321 123 0 4.0F
C322 125 0 33.0F
C323 124 0 33.0F
C324 35 0 40.0F
C325 122 0 60.0F
C326 121 0 58.0F
C327 119 0 14.0F
C328 118 0 16.0F
C329 120 0 68.0F
C330 117 0 67.0F
C331 116 0 20.0F
C332 114 0 15.0F
C333 115 0 18.0F
C334 113 0 15.0F
C335 60 0 42.0F
C336 112 0 36.0F
C337 111 0 34.0F
C338 110 0 19.0F
C339 109 0 4l.OF
C340 107 0 29.0F
C341 105 0 16.0F
C342 103 0 16.0F
C343 57 0 42.0F
C344 102 0 24.0F
C345 69 0 36.0F
C346 106 0 29.0F
C347 108 0 16.0F
C348 83 0 44.0F
C349 101 0 6l.OF
C350 100 0 21l.OF
C351 104 0 178.0F
C352 99 0 154.0F
C353 98 0 16.0F
C354 95 0 16.0F
C355 96 0 24.0F
C356 97 0 130.0F
C357 94 0 15.0F
C358 92 0 163.0F
C359 91 0 35.0F
C360 90 0 118.0F
C361 93 0 18.0F
C362 89 0 15.0F
C363 82 0 210.0F
C364 87 0 16.0F
C365 86 0 16.0F
C366 85 0 46.0F
C367 84 0 210.0F
C368 81 0 24.0F
C369 79 0 42.0F

96

C370 80 0 156.0F
C371 78 0 25.0F
C372 88 0 18.0F
C373 76 0 20.0F
C374 77 0 15.0F
C375 75 0 25.0F
C376 73 0 43.0F
C377 72 0 19.0F
C378 70 0 40.0F
C379 71 0 35.0F
C380 74 0 15.0F
C381 58 0 24.0F
C382 68 0 67 .OF
C383 67 0 34.0F
C384 66 0 162.0F

- C385 64 0 16.0F
C386 62 0 114.0F
C387 61 0 69.0F
C388 65 0 177 .OF
C389 55 0 16.0F
C390 56 0 210.0F
C391 54 0 73.0F
C392 59 0 163.0F
C393 53 0 19.0F
C394 45 0 50.0F
C395 52 0 31.0F
C396 51 0 20.0F
C397 50 0 53.0F
C398 39 0 40.0F
C399 49 0 14.0F
C400 47 0 129.0F
C401 46 0 163.0F
C402 48 0 17.0F
C403 44 0 177.0F
C404 43 0 177.0F
C405 42 0 19.0F
C406 41 0 51.0F
C407 40 0 17.0F
C408 38 0 31.0F
C409 37 0 69.0F
C410 36 0 67.0F
C411 34 0 4.0F
C412 33 0 60.0F
C413 32 0 58.0F
C414 31 0 4.0F
C415 30 0 33.0F
C416 28 0 33.0F
C417 27 0 66.0F
C418 26 0 61.0F
C419 25 0 60.0F
C420 23 0 12.0F
C421 22 0 ll.OF
C422 21 0 12.0F
C423 20 0 ll.OF

97

C424 19 0 12.0F
C425 18 0 1l.OF
C426 17 0 12.0F
C427 16 0 1l.OF
C428 15 0 12.0F
C429 14 0 1l.OF
C430 13 0 12.0F
C431 12 0 1l.OF
C432 10 0 145.0F
C433 8 0 145.0F
C434 11 0 12.0F
C435 9 0 1l.OF
C436 7 0 129.0F
C437 6 0 129.0F
*
C1505 43 0 337.0F
C1506 43 0 248.0F
C1507 65 0 337.0F
C1508 65 0 248.0F
C1509 44 0 337.0F
C1510 44 0 248.0F
C1511 104 0 337.0F
C1512 104 0 248.0F
C1521 46 0 337.0F
C1522 46 0 186.0F
C1523 92 0 337.0F
C1524 92 0 186.0F
C1525 47 0 337.0F
C1526 47 0 124.0F
C1527 97 0 337.0F
C1528 97 0 124.0F
C1529 99 0 275.0F
C1530 66 0 275.0F
C1531 80 0 275.0F
C1532 59 0 275.0F

*
*M9BH SPICE LEVEL 2 PARAMETERS

*
.MODEL CMOSN NMOS LEVEL=2 LD=0.181362U TOX=402.000000E-10
+ NSUB=6.567000E+15 VT0=0.805287 KP=4.757000E-05 GAMMA=0.5435
+ PHI=0.6 U0=553.83 UEXP=0.151038 UCRIT=48309.6
+ DELTA=0.823727 VMAX=50459.8 XJ=0.250000U LAMBDA=3.437039E-02
+ NFS=4.094390E+12 NEFF=1 NSS=l.OOOOOOE+12 TPG=l.OOOOOO

98

+ RSH=19.340000 CGD0=2.336825E-10 CGS0=2.336825E-10 CGB0=7.582249E-10
+ CJ=l.011600E-04 MJ=0.633000 CJSW=5.320000E-10 MJSW=0.266000
PB=0.800000
* Weff = Wdrawn- Delta_ W
* The suggested Delta_ W is 0.40 urn

*
.MODEL CMOSP PMOS LEVEL=2 LD=0.250000U TOX=402.000000E-10
+ NSUB=6.786000E+15 VT0=-0.758994 KP=l.843000E-05 GAMMA=0.5525
+ PID=0.6 U0=214.5 UEXP=0.253978 UCRIT=40136.1

+ DELTA=0.135535 VMAX=78961.6 XJ=0.050000U LAMBDA=4.876526E-02
+ NFS=4.352678E+ll NEFF=l.OOl NSS=l.OOOOOOE+12 TPG=-1.000000

99

+ RSH=107.700000 CGD0=3.221216E-10 CGS0=3.221216E-10 CGB0=6.309201E-
10
+ CJ=2.474000E-04 MJ=0.548900 CJSW=3.155000E-10 MJSW=0.327000
PB=0.800000
* Weff = W drawn - Delta_ W
*The suggested Delta_ W is -0.12 run

*
.probe
.print tran v(29) v(46) v(47) v(68) v(90) .
. tran lns SOns
.end

VITA

Manish K. Shah

Candidate for the Degree of

Master of Science

Thesis: VLSI DESIGN OF A TWIN REGISTER FILE FOR REDUCING THE
EFFECTS OF CONDillONAL BRANCHES IN A PIPEUNED
ARCHITECTURE

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Baroda, India, February 25, 1967, the son ofKhantilal Shah
and Indumati Shah.

Education: Graduated from Rosary High School, Baroda, India, in June 1984;
received Bachelor of Engineering Degree in Electronics Engineering from
Maharaja Sayajirao University at Baroda, India in December, 1988; completed
requirements for the Master of Science degree at Oklahoma State University in
December, 1992.

Professional Experience: Teaching Assistant, Department of Electrical and Computer
Engineering, Oklahoma State University, August, 1991, to March 1992. Member
of PHI KAPPA PHI, TAU BETA PI, and IEEE.

