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CHAPTER I 

INTRODUCTION 

General 

Interest in the transport and fate of contaminants in a 

terrestrial subsurface environment is based on the concern 

for the protection and remediation of both ground and 

surface water resources and to predict the time of arrival 

and concentration of contaminants at a receptor such as a 

monitoring well, a water supply well, or a surface water 

body. To attain this goal, the processes involved in the 

transport and transformation of contaminants in both porous 

and fractured media, and under either saturated or unsatu­

rated conditions must be understood. 

A "Tracer" is distinguishable matter or energy in 

ground water that provides information on the hydraulic and 

transport capabilities of the ground water system. A tracer 

can be entirely natural, such as heat carried by hot spring 

water; accidentally introduced, such as fuel oil from a 

ruptured storage tank ; or intentionally introduced, such as 

dyes placed in water flowing within a system. 

When the study comes to the point of simulating the 

effect of natural phenomena, modelling is engaged. Models 

are simplified representations of an existing physical 
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system. Any ground water investigation that involves more 

than simply collecting and tabulating data involves modelli­

ng. 

A model can be a qualitative description of how a 

process operates in a system, or it can be a mathematical 

representation of the physical system. This work demonstr­

ates the combined use of a ground water tracer test and 

ground water numerical model to characterize solute transp­

ort of agricultural chemicals in the saturated zones of an 

Alluvial Aquifer. 

Objectives 

The general objective of this study is to under­

stand the movement of chemicals in the saturated zone at the 

Perkins site. The study will help to better understand the 

difference in velocity between chemicals versus time and 

distance using pumping test results and to predict the rate 

of movement in the saturated zone using chemicals. 

The specific objectives of this study include: 

1) Conduct an additional tracer test at the Perkins site; 

2) Compare between velocities of Nitrate, Bromide, Chlo­

ride, and Potassium in the saturated zones for the newly 

conducted tracer test and an old tracer test conducted in 

1989; and 

3) Calibrate and verify these data in the saturated zone 

using the MOC Model developed by Konikow and Bredehoft 

(1978). 



Location 

The site chosen for this study is the Oklahoma State 

University Agronomy Research Station at Perkins, Oklahoma. 

The site is located 9 miles south of Stillwater, near the 

intersection of State Highways 177 and 33 (Figure 1). 

3 
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klahoma City 

OSU AGRONOMY RESEARCH STATI 

Figure 1. Site Location 



Methodology 

The methods utilized to accomplish the objectives 

set in this study were conducted in three phases: 

5 

Phase I: Collecting old tracer test data and calcu­

lating approximate velocity ( time of travel) for different 

chemicals. 

Phase II: Conducting a new tracer test. 

Phase III: Applying the MOC, NRC Model to the new 

and old data and comparing them for different runs to deter­

mine ground-water flow and transport characteristics. 



CHAPTER II 

LITERATURE REVIEW 

Groundwater Tracer Overview 

In hydrogeology, " TRACER" is a distinguishable matter 

or energy in ground water that can be used to characterize 

the ground-water system. Stanley et al (1985) described a 

tracer test as " A matter or energy carried by ground water 

which gives information concerning the direction and veloc­

ity of the water and potential contaminants which might be 

transported by water, and if enough information is collect­

ed, a tracer test can also help in the determination of 

hydraulic conductivity (K), porosity (9), dispersivity and a 

chemical distribution coefficient". 

The first reported ground-water tracing experiment was 

almost 2000 years ago when Philip the Tetrarch of Trachin­

otis threw chaff into a crater lake and reported that chaff 

appeared down gradient in one of the springs at the head 

water of the Jordan River. 

Dyes and salts have been used in Europe since 1869 to 

find the hydraulic connection in karst areas (Kass, 1964). 

Among the first dye experiments was an effort made to estab­

lish the water origin of typhoid fever in France in 1882. 

The fluoroscope was invented in France in 1901 by M. Trillat 
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and perfected by M. Marbautin. This instrument greatly 

increased the precision of fluorescence dye measurements. 

At the same time, Theim used sodium chloride CNaCl) to 

determine the flow velocity of water (Slichter, 1902). 

Slichter modified Theim's method by obtaining a continuous 

recording of electrical conductivity in the field. He also 

used ammonium chloride to determine the time of travel and 

direction of flow in the first field tracer test in porous 

media. In the 1950's, radioactive tracers were developed 

(Fox, 1952). In the last two decades, tracer tests have 

been improved to be more sensitive by using fluorinated 

organic acids, such as fluorescence as well as holocarbons 

and rhodamine WT. 

Uses of Tracer Test 

7 

The variety of tracer tests is almost infinite, consid­

ering the numerous combinations of tracer types, local 

hydrologic conditions, injection method, sampling method, 

and geologic setting CEPA, 1991). The tracer test is mainly 

used to measure one or more hydrogeologic parameter of an 

aquifer or, to identify the source, velocity and direction 

of flow of a contaminant. The ground-water tracers can be 

broadly classified as natural tracers or injected tracers. 

Donald, Jeffery and Bradford (1978) studied the use of 

tracers to confirm ground-water flow in Lake George, New 

York. In their study, they used rhodamine WT and tritium to 

determine the direction and velocity of flow of the second-



ary treated effluent from the Lake George village sewage 

treatment plant. They concluded that both tracers were 

satisfactory and useful in determining the velocity of flow 

in the sand in both the vertical and horizontal directions. 

They observed that the velocity of horizontal flow in the 

saturated aquifer was greater than the vertical flow in the 

unsaturated sand. They also observed that the rhodamine WT 

has two advantages: it can be detected visually and it has 

no potential radioactive hazards. Rhodamine B is not suit­

able as a tracer of ground water due to its high sorption 

losses. The velocity observed from this tracer study indi­

cates a more rapid flow in the saturated zone than in the 

unsaturated zone. 
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Another application of the tracer test was applied by 

Mark, Ralph and Blakley (1991), for ground-water remediation 

design. The study explored the role of short-term tracer and 

other field technology for quantification of aquifer hydrau­

lic conductivity distribution. Various techniques involving 

multi-level testing and tracer tests involving the monitor­

ing of solute transport were used. 

Hydrogeologic Considerations 

The first step in determining the physical feasibility 

of a tracer test is to collect as much hydrologic informa­

tion as possible about the field area. Several major fac­

tors that must be considered in selecting a tracer are 

lithology, flow regime, direction of flow and travel time. 



9 

Fine grained materials such as clay have higher sorp­

tion capacity than coarse grained materials; this must be 

considered when evaluating the potential mobility of a 

tracer. Whether flow is predominantly through porous media, 

solution features or fractures will influence the selection 

of a tracer. For studying tracers using two or more wells, 

the general direction of ground water must be known. 

The equation used to determine the travel time can be ap­

plied based on a number of hydrologic principles such as 

Darcy's Law which states that: For a simple flow system, the 

volume of water flowing per unit of time , Q, through a 

cross sectional area, A, is directly proportional to the 

hydraulic gradient, AH/~L. and the hydraulic conductivity K, 

Q = KA 6 HI AL ( 1 ) 

Also, the general direction of ground-water movement 

should be known, and it is generally perpendicular to the 

lines of equal ground potential levels as defined by water 

levels in wells penetrating the water-bearing zone of inter­

est. 

Another equation that can be considered for tracer 

movement states that: 

Q = V A (2) 

where Q is the volume of water flowing per unit time, A 

is the cross sectional area, V is the average velocity of 

the ground water, and can be replaced by the term L/ T 

Q = AL/AT A (3) 
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where ~T is the time taken by the average water parti-

cles to move through a distance~ L. 

The travel time can be calculated from equations (1) 

and (2) 

2. 
T = ne (A L) /K ~ H (4) 

This time is the time required for the water and/or 

tracer to move from one point to another. 

Tracer Characteristics 

In order to choose the most suitable substance to 

conduct a tracer test, a number of physical, chemical and 

biological characteristics must be considered such as detec-

tability, mobility, and toxicity. 

Injected tracers should have no or very low natural 

background levels. The degree of dilution is a function of 

the type of injection, distance, dispersion, porosity and 

hydraulic conductivity. Too much dilution may result in 

failure to observe the tracer when it reaches a sampling 

point, because concentration will be below the detection 

point (EPA, 1991). Conservative tracers used to measure 

aquifer parameters such as flow direction and velocity 

should be stable (not subject to transformation), soluble in 

water, of similar density and viscosity and not subject to 

adsorption or precipitation (EPA, 1991). Non-toxic tracers 

should be used; If the tracer is toxic at certain concentra-

tion, maximum permissible levels as determined by the feder-

al, state or county agencies must be considered in relation 
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to expected dilution and proximity to drinking-water sources 

(EPA, 1991). 

Types of Tracers 

Considering the full range of organic ground-water 

contaminants, hundreds and possibly thousands of substances 

have been used as tracers in ground-water (EPA, 1991). The 

most often used tracers can be grouped into two categories, 

ions and dyes. 

Inorganic ionic compounds such as common salts have 

been used extensively as ground water tracers. This catego­

ry undergoes ionization in water, resulting in separation 

into charged species possessing a positive charge (cations), 

or a negative charge (anions)( Davis et al, 1985). Ionic 

tracers have also been used as tools to determine flow 

path, residence time and to measure aquifer properties. 

Slichter (1902~1905), used ionic tracers to study ground 

water in the United States. The advantage of simple ionic 

tracers is that they do not decompose and therefore are not 

lost from the system. 

Various applications of ionic tracers have been 

studied and published. Murray et al. (1981), used lithium 

bromide (LiBr) in carbonate terrain to establish the hydra­

ulic connection between a landfill and a freshwater spring. 

Tennyson and Settergren (1980) used bromide (Br-) to evalu­

ate the pathways and transit time of recharge through soil 

at a proposed sewage-effluent irrigation site. Mather and 
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others (1969), used sodium chloride (NaCl) to investigate 

the influence of mining subsidence on the pattern of ground 

water flow. Also chloride (Cl-) and calcium (Ca+) were used 

by Grisak and Pickens (1980a) to study solute transport 

mechanisms in fractured media. Potassium CK+) was used by 

Ellis (1980) to determine the migration and the extent of 

dilution by receiving water located beside a waste-disposal 

site. 

Various organic dyes have been used for surface water 

and ground-water tracing since the 1800's. Dyes are rela­

tively inexpensive, simple to use and effective. The exten­

sive use of fluorescent dyes for water tracing began around 

1960 (Davis et al. 1985). 

Fluorescent dyes are preferable to nonfluoroscent 

varieties in ground-water tracer studies because they are 

easier to detect (EPA, 1991). Dale (1906) was the first to 

recommend the use of dyes in ground-water study in the 

United States by reporting the results of fluorescein et al 

dyes used in France in 1882. In 1927 Stiles and others 

conducted early experiments using fluorescein to demonstrate 

the pollution of wells in a sandy aquifer. Meinzer descr­

ibed in 1932 the use of fluorescein as a ground-water tra­

cer. 

Generally, dyes travel slower than water due to adsorp­

tion, and they are not as conservative as radioactive tra­

cers or some of the ionic tracers. Adsorption can occur on 



13 

organic matter, clay, sandstone, limestone, plants and even 

glass sample bottles (EPA, 1991). 

Fluorescein, also is known as uranin; sodium fluoresce­

in, is one of the most widely used green dyes. Feuerstein 

and Selleck (1963) recommend that fluorescein be restricted 

to short-term studies of only high quality water. Blue 

Fluorescein dyes are optical brighteners and have been used 

increasingly in the past decade. Water that has been con­

taminated by domestic waste entering septic-tank soil-ab­

sorption fields can be used as a natural tracer if it con­

tains a detectable amounts of the brighteners (EPA, 1991). 

The use of optical brighteners was first described by Glover 

in 1972 as a tracer in Karst environments. 

Tracer Tests in Porous Media 

Tracer tests in porous media are used primarily to 

characterize aquifer parameters such as regional velocity 

(Leap, 1985), and hydraulic conductivity distributions (Malz 

et al. 1988). 

Ground Water Modelling Overview 

In 1984, the American Society for Testing and Materials 

CASTM) defined models as " An assembly of concepts in the 

form of mathematical equations that portrays understanding 

of a natural phenomenon". Also, the ASTM has defined com­

puter code as " The assembly of numerical techniques, book­

keeping, and control languages that represent the models 

from acceptance of input data and instruction to delivery of 
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output", (EPA, 1991). 

Ground-water modelling has become a successful tool 

that can help analyze many ground-water problems. Models 

are useful and simplified representations of real-world 

processes for reconnaissance studies preceding field inves­

tigation and for predictive studies to estimate future field 

behavior. Their creation and use requires many judgements 

based on observation of specific natural processes (Keely, 

1989b). In addition, models are useful for studying various 

types of flow behavior by examining hypothetical aquifer 

problems (James and Charles, 1980). 

Types of Models 

Ground-water models can be classified in many different 

ways including Analytical and Numerical models and Finite 

Elements and Finite Difference. 

Analytical and Numerical Models. A model's governing 

equation can be solved either analytically (physically) or 

numerically. Analytical models use exact close form solut­

ion of the appropriate differential equation. The solution 

is continuous in space and time, and it is used to study 

contaminant flow through aquifer materials to obtain infor­

mation on contaminant movement (Keely, 1989b). Analytical 

models provide exact solutions, but employ simplified as­

sumptions in order to produce tractable solutions. 

In contrast, numerical models apply approximate solu­

tions for the same equation. (James, and Charles, 1980). 
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This type of models relies on quantification of relation­

ships between specific parameters and variables to simulate 

the effects of natural processes. (Weaver and others, 1989). 

Numerical models are much less burdened by assumptions, and, 

therefore are inherently capable of addressing more compli­

cated problems, but they require more data and the solutions 

are approximate. A fundamental requirement of the numerical 

approach is the construction of a grid system which represe­

nts the aquifer being tested. This grid of interconnected 

nodes, at which process input parameters must be specified, 

forms the basis for a matrix of equations to be solved. 

The grid is influenced by the choice of numerical solution 

techniques. 

Finite Elements and Finite Differences. The finite­

element method approximates the solution of partial dif­

ferential equations by using finite-difference equivalent, 

whereas the finite-difference method approximates differen­

tial equations by using an integral approach. In general, 

finite-difference methods are best suited for relatively 

simple hydrologic settings; finite-element methods are used 

where hydrogeology is complex (EPA, 1991). 

Hydrogeological Model Parameters 

The hydrogeological parameters that can be simulated 

can be divided to two major groups: flow parameters and 

solute-transport parameters. 
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Ground Water Flow Parameters. 

Types of Aquifers. Confined aquifers of uniform thick­

ness are easier to simulate because the transmissivity 

remains constant. The thickness of unconfined aquifers 

varies with the fluctuations of the water tables. Variable­

thickness confined aquifers are complicated to model because 

the velocity will change with the change of the aquifer 

thickness. 

Matrix Characteristics. Flow in porous media is much 

easier to model than in rocks with fractures or solution 

porosity. 

Homogeneity and Isotropy. Homogeneous and isotropic 

aquifers are easier to model because their properties do not 

change in any direction. Most aquifers show variations in 

all directions and so they require three-dimensional repres­

entations. 

Phases. Flow of ground water and contaminated ground 

water in which the dissolved constituents create a plume 

with properties not unlike unpolluted aquifer is easier to 

simulate. 

Numbers of Aquifers. A single aquifer is much easier to 

simulate than multiple aquifers. 

Flow Conditions. Steady state flow, where the magnitude 

and direction of flow velocity are constant with time at any 

point, is easier to model than transient flow. 
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Contaminant Transport Parameters 

Types of Sources. In modelling, the source can be 

represented as point, line, area or volume. A point source 

can represent an injection well or a pipe outflow. If a 

contaminant is leaching from the bottom of a trench, it will 

be represented as a line. An area source enters the ground 

water through a horizontal or vertical plane. 

Type of Source release. Release of an instantaneous 

pulse or slug of contaminant is much easier to simulate. 

Dispersions: Accurate contaminant modelling requires incor­

poration of transport by dispersion. 

Adsorption. It is much easier to simulate adsorption 

with partition coefficients. 

Degradation. Simulation of degradation is easier when 

using first-order degradation coefficient. The second-order 

degradation, which results from variation in parameters, is 

more difficult to simulate. 

Density and Viscosity Effects. Simulation must include 

density and viscosity effects in order to obtain a good 

representation of the problem. 

Modelling Applications. James and Charles (1980), 

suggest that a successful model application requires a 

combination of experience with hydrologic principals, numer­

ical methods, the aquifer to be modelled, and model use. 

Pinder and Bredehoft (1968) presented a study on the 

use of a ground-water flow model to analyze an aquifer 



system composed of glaciofluvial deposits. The study in­

cludes a history match with limited data and a prediction 

using a finite-difference model. The same problem was 

simulated later in 1972 by Pinder and Frind using a Galer­

kin, finite-element model. 
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This study proved that because of the boundary condi­

tion suggested from the pumping-test data, the analytical 

technique was not adequate. Therefore, the authors decided 

to use a numerical model and performed necessary develop­

mental work such as analyzing pumping-test data to provide 

estimation of the transmissivity and storage coefficient. 

It was found that the final transmissivity value was close 

to the value calculated using Jacob's method. 

More results were provided by Pinder and Frind (1972) 

mentioning that: 

a. "The analysis of the aquifer indicate that a care­

fully designed model using deformed elements may provide the 

same accuracy as a finite difference model that use many 

more nodes ", 

b. "The theoretical development of the Galerkin method 

of approximation is possibly more abstract than the finite­

difference method." 

c. "Experience has shown that errors in the input of 

nodal location in the Galerkin model can lead to problems 

that are difficult to detect. This problem does not arise 

in the finite-difference model because the entire grid is 
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specified by the spacing between rows and columns." 

d. "In the final analysis the primary advantage of the 

Galerkin approach to digital modeling of aquifer systems is 

its flexibility in application." 

In 1977 Konikow presented a good example of a solute­

transport model applied to a chemical pollution problem at 

the Rocky Mountain Arsenal, Colorado. The study couples a 

finite-difference solution to the ground-water flow equation 

with the Method-Of-Characteristics (MOC) solution to the 

solute-transport equation. The problem began in 1943; when 

liquid waste by-products from the manufacturing of chemicals 

for warfare and pesticides were disposed of in unlined 

ponds. This disposal continued from 1943 to 1956. The 

waste contained chloride concentrations of several thousands 

of mg/L. In 1943, several crops were damaged due to ir­

rigation with the contaminated ground water. The purpose of 

this study was to demonstrate the application of a numerical 

solute transport model. The model uses a finite-difference 

grid of blocks of 1000 ft (305 m) on a side. The grid is 25 

columns by 38 rows and comprise of 950 nodes, due to boun­

daries conditions, only 516 nodes were actually used. 

According to Konikow: "Analysis of the simulated results 

indicates that the geologic framework of the area markedly 

restricted the transport and dispersion of dissolved chemi­

cals in the alluvium. Dilution, from irrigation recharge 

and seepage from unlined canals, was an important factor in 
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reducing the level of chloride concentrations downgradient 

from the arsenal. Similarly, recharge of uncontaminated 

water from the unlined ponds since 1956 has helped to dilute 

and flush the contaminated ground water " 

This example shows the additional complexity typical 

of solute-transport problems. Konikow concluded that the 

stringent data requirement for applying the solute-transport 

model pointed out deficiencies in data existing at the start 

of the investigation. The conclusion and predictions based 

on model results, though quantitatively nonunique, provided 

a great deal of qualitative insight into reclamation alter­

natives. The relative merits of the various proposed reme­

dial measures would have been extremely difficult to assess 

without the use of the model. 

In 1992, Warner, Abdel-Rahman and Tamayo published a 

paper concerning the same problem of the Rocky Mountain 

Arsenal using numerical and geostatistical analysis. In 

their study, a finite-element model was used (CSU/GWFLOW), 

where a very detailed mesh was used for the model grid which 

consists of 13,156 nodes and 25,524 elements. Because of 

the complexities of the hydrological conditions of the 

arsenal, this system has proven to be very difficult to 

manage. In this regard a slurry wall was built by the U.S. 

Army to cut-off the migration pathway. The system involves 

arrays of pumping wells and recharge wells. The model was 

used to calibrate the effectiveness and efficiency of the 



system. The model has proven to be very effective. It 

allows better calibration for the system and it increases 

the model's capability for representing different system 

configurations to achieve desired conditions, such as rev­

erse gradient along the system. 
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Another application of ground water modeling involves a 

study where a two-well tracer test in a relatively porous 

media was used. The results of the tracer test were used to 

determine field dispersivity values for a solute transport 

study. The conclusions of this study includes: 

a. For a given well spacing and head differential in 

the wells, the duration of the test will be related inverse­

ly to the hydraulic conductivity and directly to the porosi­

ty. 

b. Based on the range of the hydrologic data, a single 

injection test may require from less than one month to more 

than one year to obtain sufficient information about the 

system. 

c. If the hydraulic conductivity of the aquifer is 

low, a small well spacing is required in order to conduct 

the test in a reasonable amount of time. 

d. The time required to reach a quasi-steady flow be­

tween wells will be short in comparison to the duration of 

the test. 

e. Tests can be designed for a moderate injection rate 

of less than 1500 m3/day. 
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Karplus (1976) suggested the evolution of modelling in 

any discipline follows a general pattern. He represented 

the evolution of modeling in a graph (Figure 2) which shows· 

the predictive validity of modeling as a function of time. 

The curve has two break points A and B, in between which the 

most rapid improvement in model validity occurs. Most 

ground-water modelling lies somewhere between A and B. 

Ground-water-flow modeling is located near B, whereas sol­

ute-transport modeling lags behind closer to point A. 
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CHAPTER III 

HYDROGEOLOGY OF THE ALLUVIUM 

Physiography 

The study area lies in a transitional zone between the 

Central Redbed Plain and the Northern Limestone Cuesta 

Plains (Curtis and Ham, 1957). Most of the surrounding 

countryside has been used for farming and cattle ranching. 

The area also lies in the Cimarron River drainage basin of 

the Arkansas River; the river is 1~ miles south of the site 

and flows towards the southeast. The mean temperature of 

the area is 5~ F(28° C) and the average annual rainfall is 

approximately 35 inches (87 em) (Shelton, Ross, Garden and 

Frank, 1985). 

Soils 

The area is covered by soil on terrace deposits which 

are cultivated, flat, and not subject to rapid erosion. Two 

predominant soils in the area are Teller and Konawa soils. 

Teller soils are deep, well drained, moderately perme­

able and gently sloping. The surface layer is reddish brown 

loam; the subsoil consists of reddish brown loam, yellowish 

red clay loam and red fine sandy loam (Henley et al. 1987). 

Konawa soil, occurs on ridgetops and side slopes; it is a 

deep soil, very gently sloping and well drained. The sur-

24 
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face layer consists of brown and reddish brown, fine, sandy 

loam. The subsoil consists of red sandy clay loam and red 

fine sandy loam (Henley et al. 1987). 

Geology 

The study area is penetrated by several wells ranging 

in depth from 21 to 58 ft. Figure 3 shows the locations of 

these wells. Data obtained from drilling was used to de­

scribe the subsurface as follows. 

Bedrock Geology 

The subsurface geology of the area is dominated by 

interbedded sandstones, siltstones and shales belonging to 

the Wellington Formation of Permian age, the lowest unit of 

the Cimarron Series. The Wellington Formation consists of 

lenticular sandstones, shales and thin carbonate beds (Shel­

ton, 1985). The upper few feet of the bedrock are penetr­

ated by the drilling. The cores obtained show red-brown to 

gray shale and orange-brown fine grained sandstones with 

interbedded limestone. The bedrock has been warped by Post­

Permian epeirogenic activities. (Bingham, 1975). 

Quaternary System 

The surface geology of the area is dominated by alluvi­

al terrace deposits formed by the Cimarron River which act 

as the principal aquifer in the area. The deposits are 

referred to as the Perkin's Terrace Aquifer. This aquifer 

is characterized by unconsolidated terrace deposits of the 

Quaternary age and consisting of fine to medium grained sand 
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with some thin layers of silt and clay. These terrace 

deposits are underlain by Permian beds consisting of red 

shale and sandstone (Blair, 1975). These alluvial sedimen­

ts, are mappable units in the flood plain and terraces of 

the Cimarron River and along major creeks (Figure 4). 

Cores from drilling show fine grained red, orange and 

tan silty sand layers separated by yellow, tan and gray 

silty clay lenses. Two stratigraphic cross sections, Fig­

ures 5 and 6 were plotted using the sample-cutting data and 

gamma ray data (Dwidevi, 1989). A general increase in grain 

size from fine at the top of the section to coarse at the 

bottom of the section is observed, which indicates a fluvial 

sedimentation cycle. 

Hydrogeological Characteristics 

The wells drilled in the area provide water for rural 

homes and for municipal use in small communities. The area 

most favorable for ground-water development lies along the 

flood plain and terrace deposits of the Cimarron River 

(Bingham, 1980). 

The saturated thickness of the Perkins terrace deposits 

ranges from 25 to 48 ft (7-15 m). The well yield is about 

20 to 60 gpm (106- 318m3/day); a well yield of 

100 gpm ( 530m3/day) is obtained where wells penetrate the 

gravel lenses at the base of the aquifer. The total annual 

precipitation is 32 inches (81.3 em) (Shelton, 1985). 

Clustered and single monitoring wells were installed at 
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the site by the ARS and are shown in Figure 3. Water-level 

fluctuation is created by variations in precipitation, 

evapotranspiration and by intermittent pumping of water from 

nearby wells (Bingham, 1980). Ground-water-level measure­

ments and samples were obtained from the monitoring wells 

during the period between January 1986 and June 1992. A 

detailed hydrologic study is performed and included in a 

Chapter IV. 



Geophysical Study 

CHAPTER IV 

METHOD OF APPROACH 

Site Investigation 

The site was characterized based on data from the 

drilled wells as well as borehols and surface geophysical 

investigations. A surface geophysical study was performed 

in the area using the D.C. Resistivity Method. This method 

aided in the construction of the bedrock map shown in Figure 

7. The potentiometric surface map is also constructed and 

shown in Figure 8. The saturated thickness range between 10 

ft to 48 ft. 

Analysis of Aquifer Testing 

An important goal in any hydrogeological investigation 

is the analysis of pumping test data to determine Hydraulic 

Conductivity (K), Transmissivity (T) and Storativity (S) 

within the tested area. Several pumping tests were con­

ducted at the site; data was analyzed using the Theis and 

Cooper-Jacob Methods, Table I includes a summary of results 

obtained from the pumping test in wells 14(E0), E1, E2 and 

E3. Figures 9, 10, 11 and 12 represents the pumping test 

plots for different wells for data collected in 1989. 

The calculated Hydraulic Conductivity range from 250 
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gpd/ft to 650 gpd/f~ (10,1875 m/d to 28,525 m/d). The 

average value for Transmissivity obtained by Cooper-Jacob 

Method ranges for 20,000 gpd/ft to 25,000 gpd/ft (248 m2Jd 

to 310m2/d). Table I represents a summary of aquifer 

coefficients obtained from earlier data. These data will be 

used to identify a lower and upper limits of hydraulic 

conductivity, ie. 250 gpd/fY and 650 gpd/f~ . These values 

will be used to compute anticipated velocities of tracers 

used in tracer test study. This study is described in 

detail in Chapter V (Data Analysis). 
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Figure 7. Bedrock elevation map (1992). 
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TABLE I 

SUMMARY OF AQUIFER COEFFICIENTS 

WELL# MW14(Eo) MW15 E1 E2 E3 

Distance 12.85 7.65 20.4 39.5 80.6 

(in feet 

from MW18) 

Cooper-Jacob 

T (gpd/ft) 17296 13360 16062 16615 23748 

s 0.018 0.11 0.007 0.019 0.002 

K (gpd/ft2) 432 334 401 415 593 

Theis 

T (gpd/ft) N/A 1900 8175 21705 29545 

s N/A 0.03 0.06 0.006 N/A 

K (gpd/ft2) N/A 272 204 542 738 

Jacob Straight 

line Method 

T (gpd/ft) 24137 N/A 20114 19200 25000 

s .46 N/A 0.031 0.003 0.3348 

K (gpd/ft2) 575 N/A 479 457 595 

------------------------------------------------------------
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Tracer Test 

The main intent of this section is primarily to charac­

terize the movement of chemicals in ground water and to 

obtain aquifer parameters such as travel time of different 

chemicals and change of initial concentration versus time 

and distance. The results of this test will be used to 

verify the hydraulic conductivity obtained from pumping 

test, and finally to calibrate field data and model predic­

tion results. 

Site and Wells Used in Tracer Test 

The site selected to conduct the Tracer test is located 

near Perkins at the OSU Agronomy Research Station . Two 

four-inch-diameter wells, MW 14 and MW 18, and three two­

inch-diameter wells, MW 15, MW 16 (shallow 21 ft) and MW 17 

(deep 35ft), were installed at the Perkins site and were 

used for the tracer purpose (Figure 13). Figure 14 is a 

cross-section of ground-water monitoring wells used in 

aquifer tracer test. 

Monitoring Well 18 was used as a discharge well, pum­

ping at a rate of 30 gpm. Monitoring Well 14 was the injec­

tion well. 

Monitoring Wells 15, 16 and 17 were used for sampling 

purposes. 

A stratigraphic cross section for tracer-test wells is 

shown in Figure 15; all wells were logged using gamma-ray 

log geophysical method. Analysis of the stratigraphic 
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cross-section indicates near-homogeneity of the aquifer; all 

the identified lithologic units in the subsurface were 

traceable from one well to another CDwidevi, 1989). 

The distances between wells and the source are listed 

in table II. 
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Figure 13. Location of Wells Used in Tracer Test. 
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WELL# 

14 

15 

16 

17 

18 

TABLE II 

DISTANCES BETWEEN OBSERVATION WELLS 
AND THE SOURCE 

Distance From SourceCFT) 

SOURCE 

4.25 

9.2 

8.9 

12.85 

Tracer Selection and Type of Injection 

As pointed out in chapter II, several considerations 
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were taken in account in order to select the substances for 

the test. The following is a brief description of substan-

ces used which are chloride, bromide, nitrate, potassium and 

fluorescein. 

The background levels of chloride (Cl) in ground water 

is moderate to high; the Chloride front proceeds at a high 

velocity, exihibits little distortion and is considered as a 

fairly conservative tracer, which indicates that it is 

weakly adsorbed by soil. A compound of Potassium Chloride 

was chosen for the test. Low background levels of bromide 

(Br) occurs in ground water. It is the most commonly used 

ionic tracer, biologically stable, and appears not to be 

lost by precipitation, absorption or adsorption and does not 

require high injected concentration. A compound of Potas-
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sium Bromide (KBr) was chosen for the test. Low background 

values of Nitrate (N03) occurs in potable groundwater, not 

absorbed by soil. A compound of Potassium Nitrate was 

chosen for the test. 

It is important to note that Potassium was chosen in 

all compounds due to its low cost, its being rapid and easy 

to analyze, and its low background value in potable water. 

A fluorescent Dye was also used in the test; it is consider­

ed as the ideal dye tracer. The advantage of using the 

fluorescent dye is due to the very high detectability, low 

cost and low toxicity. 

In January 22, 1992 a combination of 5.5 lb (2.5 Kg) of 

Potassium Chloride (KCl), 2.2 lb (1 Kg) of Potassium Nitrate 

(KN03), 2.2 lb (1 Kg) of Potassium Bromide (KBr) and 4.4 lb 

(2 Kg) of fluorescent dye tablets (Fl) was diluted in 57 

gallon (216 litres) of water was injected in Well 14 at a 

rate of 1gpm (5.3 m3/d). 

Sampling Method 

The tracer test lasted for two weeks, divided in two 

different scenarios, each one lasting a week, the first 

scenario consisting of one week in which two sets of two 

samples were collected every 12 hours; each well was sampled 

in two different bottles, one dark in order to prevent sun 

degradation of fluorescein, and one clear sample for correc­

ting N03-N, Cl, Brand K samples. The second scenario 

consisted of one week, only one set of two samples was 
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collected every 24 hours. A total of 180 samples was col­

lected during the two-week tracer test. These samples were 

collected by bailing samples from each well; well MW 18 was 

sampled at the outflow tube of the pump, and a special bai­

ler was used to sample MW 14 (Source). 

The samples were analyzed at the United States Depart­

ment of Agriculture, NAWQL, Durant, Oklahoma. 

Tracer Modelling Using Konikow Model 

(MOC-NRC) 

A modified two-dimenSional Numerical Model CMOC, NRC) 

was originally developed and documented by Konikow and 

Bredehoeft (1978) and modified by Kent et al (1985). This 

model was used to calibrate and simulate the solute movement 

in the Perkins Aquifer. 

The model was used from the cross-sectional prospec­

tive; data, boundary conditions and initial conditions are 

specified for each node on a two-dimensional matrix shown in 

Figure 16. The input data was prepared through a prepro­

cessor developed by Kent et al (1985). This numerical model 

uses a finite-difference scheme to solve both head and 

solute transport equations. 

The model was run using two different simulation proce­

dure of inputing the data in order to obtain the best resu­

lts when calibrated with the observed data obtained from the 

field. 



First Simulated Procedure 

Include only one pumping period for 14 days; the in­

jected materials correspond to the first concentration 

obtained from the field after 8 hours. 

Second Simulated Procedure 

49 

Includes four pumping period organized as follow: 

-First Pumping Period: Four time step for one day each; 

includes inflow boundary as an injection well with no 

concentration. 

-Second Pumping Period: Four time step for one day 

each; pumping wells were added. 

-Third Pumping Period: One time step for one day, 

concentration was added as initial concentration added in 

the field at a rate of 1 gpm. 

-Fourth Pumping Period: 14 time step for one day each, 

no concentration was add but pumping was maintained at 

a rate of 30 gpm. 

It should be noted that in all three simulated proce­

dures, the system was set such that a constant head of 900 

ft was used at the south part of the area in order to main­

tain the steady-state flow conditions. 

Many assumptions were considered in order to use the 

Konikow model in the given unconfined aquifer. These as­

sumptions are listed below. 

- The aquifer is assumed to be homogeneous and there­

fore isotropic, which reduces the problem to one of 



steady state solute transport. 

- Storage coefficient: 0.4 

- Effective porosity: 0.2 

- Aquifer density 2 g/cm3 

- Grid used 20 column * 20 row . 

- Characteristic length: 75.0 feet 

- Aquifer thickness : 42 feet 

-Hydraulic conductivity : 450 gpd/ft2, which is the 

mean arithmetic value obtained from pumping-test data 

and which conform with the peak obtained from tracer 

test. 

-Sorption 1 (No Sorption). 

- Decay : 0 
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It is important to note that these assumptions were 

considered in the two simulated procedures discussed above. 
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CHAPTER V 

DATA ANALYSIS 

TRACER AND PUMPING TEST 

The Tracer test conducted at the Perkins aquifer was 

intended mainly to characterize solute movement in the satu­

rated zone. The analysis of samples was conducted at the 

National Agriculture U.S.Department of Agriculture,Agricult­

ural Research Service Water Quality Laboratory, Durant Okla­

homa. The result are presented in Tables III, IV, V, VI and 

VII for wells 14, 15, 16, 17 and 18 respectively. The data 

were plotted in Figures 17, 18, 19, 20 and 21 as group plot 

for each well as a function of time; also the water table 

elevation is included in the same plot. In addition, a 

composite hydrograph of all wells are represented in Figure 

22. 

It appears from all plots that the concentration 

conforms with the water table elevation and is directly af­

fected by it. This phenomenon appears very clear in some 

plots included in Appendix A where data are plotted and 

smoothed using different degrees of polynomials in order to 

obtain the best fitting curve for the points. 

For more details and comparison between some constitu­

ents, Fluorescein (Fl) and Nitrate (N03) were plotted for 

well 14 and shown in Figure 23, and show the peak at about 

100 hours. 
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Nitrate CN03) and Bromide (Br) were plotted for well 16, 17 

and 18 and are shown in Figures 24, 25 and 26 respectively. 
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TABLE III 

CHEMICAL CONCENTRATION FOR WELL 14 
(INJECTION WELL) 

--------------------------------------------------------
SAMPLE TIME FL CL K N03 BR DTW 

HOURS Mg/L PPM PPM PPM PPM FTCMSL) 
--------------------------------------------------------

1 0 9686 5262 2.73 1674 902.85 
2 13 420 8448 5092 3.97 1687 902.60 
3 24 440 8842 4796 3.95 1648 
4 38 410 7039 4281 6.50 1629 902.70 
5 46 370 6139 4021 6.07 1578 
6 62 280 5866 3553 5.71 1398 902.47 
7 71 190 5355 2823 7.88 1234 
8 86 245 5116 2489 8. 19 1137 902.46 
9 95 152 4263 2433 7.45 1076 

10 109 208 4670 2112 6.94 995 902.56 
1 1 119 115 3394 1565 6.07 728 
12 133 120 3552 1533 5.49 734 902. 15 
13 158 107 3243 1375 4.92 652 902.23 
14 181 92 2357 1187 4.48 576 901 . 85 
15 205 68 2252 1070 3.98 518 902.32 
16 229 85 2055 1026 3.76 492 902.33 
17 253 60 1713 925 3.38 450 902.45 
18 278 58 1964 922 3.34 413 902.45 
19 300 66 1713 882 3. 18 389 902.39 

--------------------------------------------------------
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TABLE IV 

CHEMICAL CONCENTRATION FOR WELL 15 

-------------------------------------------------------------
SAMPLE TIME FL CL K N03 BR COND PH WTE 

HOURS Mg/L PPM PPM PPM PPM umhos/cm FTCMSL) 
-------------------------------------------------------------

1 0 6. 10 3.00 0.06 0.70 903. 19 
2 13 4.50 7.30 2.70 0.07 0.51 871 7.05 903.07 
3 24 3.50 7.00 2.50 0.06 0.45 
4 38 2.70 7.00 2.30 0.07 0.42 800 6.83 902.99 
5 46 4.30 6.40 2.40 0.06 0.40 
6 62 2.80 6.40 2.30 0.07 0.38 850 902.91 
7 71 3.00 6.40 2.20 0.06 0.38 
8 86 3.20 6. 10 2.20 0.09 0.36 880 6.50 902.95 
9 95 3.50 6. 10 2.20 0.07 0.38 
10 109 3.00 5.60 2.20 0.06 0.36 902.85 
1 1 119 2.80 5.30 2. 10 0.07 0.51 
12 133 3. 10 4.80 1. 70 0.06 0.35 900 6. 18 902.86 
13 158 4.60 2.20 0.06 0.37 870 6.29 902.80 
14 181 2.40 5.30 2.40 0.07 0.43 900 6.03 902.84 
15 205 2.60 5. 10 2.20 0.06 0.39 915 5.98 902.78 
16 229 2.60 5.30 2.30 0.06 0.48 850 6.25 902.83 
17 253 2.40 4.80 2.00 0.07 0.37 878 902.81 
18 278 2.30 4.60 1. 90 0.06 0.32 950 6.36 902.83 
19 300 2.40 4.20 1. 90 0.08 0.30 985 6.53 902.77 

--------------------------------------------------------------
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TAB~E v 

CHEMICAL CONCENTRATION FOR WELL 16 
(SHALLOW WELL) 

-------------------------------------------------------------
SAMPLE TIME FL CL K N03 BR COND PH WTE 

HOURS Mg/1 PPM PPM PPM PPM uhmos/cm FTCMSL) 
-------------------------------------------------------------

1 0 2.9 5.4 0.08 2.61 903.65 
2 13 13.2 3.5 5. 1 0.08 1. 77 411 6.21 903.42 
3 24 11.8 2.7 4.4 0. 1 1. 45 
4 38 13.7 2.3 4.4 0.06 1. 01 435 5.93 903.39 
5 46 13.7 1.9 4.0 0.08 0.83 
6 62 10.7 2. 1 4.0 0.06 0.89 385 903.32 
7 71 14.2 2.0 4.0 0.06 0.84 
8 86 11.0 1.9 3.9 0.07 0.85 426 5.5 903.36 
9 95 6.9 1.9 4.0 0.06 0.78 
10 109 14.8 1.8 4.0 0.06 0.81 903.25 
1 1 119 9.8 2. 1 3.9 0.06 0.81 
12 133 5.0 2.0 3.9 0.05 0.87 420 5.44 903.26 
13 158 12.9 2.7 4.6 0.07 1. 16 445 5.4 903.22 
14 181 15. 1 2.0 3.9 0.06 0.79 570 5.2 903.90 
15 205 3.4 1.8 4.2 0.07 0.8 500 5.2 903.20 
16 229 4.7 1.8 3.5 0.06 0.7 530 903.24 
17 253 12.6 1.9 4.5 0.06 0.88 437 903.24 
18 278 5.0 2.3 4.3 0.07 0.84 480 903.23 
19 300 12.9 2.3 4.3 0.07 0.98 480 4.9 903.22 

-------------------------------------------------------------
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TABLE VI 

CHEMICAL CONCENTRATION FOR WELL 17 
(DEEP WELL) 

-------------------------------------------------------------
SAMPLE TIME FL CL K N03 BR COND PH WTE 

Hours mg/1 PPM PPM PPM PPM uhmos/cm FT 
-------------------------------------------------------------

1 0 4.6 2. 1 0.07 0.47 903.25 
2 13 3.60 6. 10 3.50 0.07 0.47 923 7.32 903. 16 
3 24 3.60 6.40 2.30 0.07 0.38 
4 38 3.20 6.40 2.30 0.06 0.34 817 7.00 903. 12 
5 46 3.50 6. 10 2. 10 0.06 0.33 
6 62 3.30 6. 10 1. 80 0.06 0.33 860 903. 10 
7 71 3.40 6.40 2. 10 0.07 0.33 
8 86 3.20 6. 10 2.00 0.06 0.33 873 6.64 903. 15 
9 95 3.40 5.60 2.00 0.07 0.31 
10 109 3.00 5. 10 1. 90 0.06 0.31 870 6.35 903.05 
1 1 119 3.20 5.10 1.90 0.06 0.31 
12 133 3.20 5.60 2. 10 0.10 0.33 930 6.62 902.98 
13 158 2.40 5.30 2.00 0.06 0.32 885 6.30 903.01 
14 181 2.50 3.90 2.00 0.07 0.32 870 6.00 903.01 
15 205 2.60 4.60 2.00 0.08 0.29 910 6.08 902.96 
16 229 2.80 4.40 1. 90 0.07 0.29 865 903.01 
17 253 2.50 4.60 2.00 0.09 0.28 940 903.01 
18 278 2.50 4.40 2.00 0.08 0.30 840 903.00 
19 300 2.50 4.40 2.40 0.07 0.28 945 6.30 902.95 

-------------------------------------------------------------
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TABLE VII 

CHEMICAL CONCENTRATION FOR WELL 18 
(PUMPING WELL) 

-------------------------------------------------------------
SAMPLE· TIME FL CL K N03 BR COND PH WTE 

HOURS Mg/L PPM PPM PPM PPM umhos/cm FTCMSL) 
-------------------------------------------------------------

1 0 7.0 1.7 0. 1 0.58 895.60 
2 13 9.2 2.7 0.08 0.56 377 6.62 895.65 
3 24 2.3 9.2 1.4 0.07 0.56 
4 38 1.7 9.2 1.9 0.06 0.58 357 5.93 895.03 
5 46 1.8 8.8 1.9 0.06 0.56 
6 62 1.9 9.6 1.9 0.06 0.58 361 895.96 
7 71 1.8 9.6 2.0 0.07 0.61 
8 86 1.8 10.0 2.3 0.07 0.61 367 5.41 894.6 
9 95 1.6 9.6 2.0 0.07 0.59 
10 109 1.8 9.6 2.0 0.07 0.58 375 5.64 894.89 
1 1 119 1.7 7.3 1.7 0.07 0.54 
12 133 1. 8 9.6 2.0 0.07 0.59 400 5.43 894.91 
13 158 1.7 10.0 2. 1 0.07 0.61 420 5.36 894.11 
14 181 1.6 10.0 2.0 0.09 0.6 400 5.2 894. 14 
15 205 1.7 9.6 2. 1 0.07 0.41 420 5.43 894.09 
16 229 9.6 1.8 0.07 0.42 460 894.11 
17 253 1.6 9.6 1.9 0.07 0.47 450 894.01 
18 278 1.8 10.0 3.0 0.09 0.47 894.07 
19 300 1. 8 9.6 2.0 0. 1 0.48 454 6.45 893.90 

-------------------------------------------------------------
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A complete set of plots for each well is included in 

Appendix A. Polynomials of different degree were used to 

best fit the data points. 
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Figures 27, 28 and 29 represent comparisons between 

1989 data and 1992 data for Nitrate, Potassium and Bromide 

for well 18. 

Hydraulic Conductivity calculated from aquifer testing 

was discussed earlier ranges from 250 to 650 gpd/ft2. I n 

order to represent this range of hydraulic conductivity in 

all plots, it was necessary to perform a series of calculat­

ions, which help to convert the hydraulic conductivity 

obtained to time representing a peak for each constituents 

for each well; the calculations were based on the following 

assumptions: 

* Range of K = 250 to 650 gpd/ft2. 

* Darcian Velocity V = K * dh/dl ( 1 ) 

K = V * dl/dh 

where 

dl/dh is the gradient which was calculated 0.1 

* Time of arrival of any constituents V = dl/t (2) 

where 

dl is the distance from source well 

t is the time of arrival which is our goal. 

An example of calculations for well 16 as follows: 

A- For K = 250 gpd/ft2. at well 16 

K = (250 gpd/ft2 * 1 ft3)/7.48 
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where 

= 33.42 ft/day 

from equation (1), we have: 

V = K * dh/dl 

by substitution we obtain: 

V = 33.42 ft/day * 0.1 = 3.3 ft/day 

V = (3.3 ft/day)/ 24 = 0.13 ft/hr 

from equation (2), we have: 

v = dl/t 

dl for well 16 = 9.2 ft 

where 

V = 0.13 ft/hr. 

by substitution we obtain: 

t = 9.2 ft I 0.13 ft/hr = 70.76 hr 

B-For K = 650 gpd/ft2. at well 16 

K = (650 gpd/ft2 * 1 ft3)/7.48 

= 86.9 ft/day 

from equation (1), we have: 

V = K * dh/dl 

by substitution we get: 

V = 86.9 ft/day * 0.1 = 8.69 ft/day 

V = (8.69 ft/day)/ 24 = 0.36 ft/hr 

from equation (2), we have: 

v = dl/t 

dl for well 16 = 9.2 ft 

V = 0.36 ft/hr. 

7!j 
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by substitution we obtain: 

t = 9.2 ft I 0.36 ft/hr = 25.5 hr 

This calculations show that the range of K value ob­

tained from the aquifer testing (250 to 650 gpd/ft2), can be 

represented in a time scale for well 16 ranging from 70.76 

hr to 25.5 hr, respectively. This range of time was labe­

lled on the plotted data of the tracer test. It is observed 

that this range agree with the second peak of the observed 

data for Fl and Cl. 

Similar calculations were done for all wells; Table 

VIII represent the range of time calculated for each well. 

WELL # 

15 

16 

17 

18 

TABLE VIII 

RANGE OF TIME 

RANGE Chr) 

35.4 to 11.8 

76.6 to 25.5 

74.16 to 24.7 

107 to 35.7 

This range of time was labelled on all observed tracer­

test plots. Table IX, represents the matching peaks for all 

wells and all constituents. 



Fl 

WELL # 

15 1st 

16 ~ 

17 2nd 

18 2nd 

TABLE IX 

MATCHING PEAKS 

Cl Br 

1st N/M 

2nd N/M 

1st 2nd 

2nd 

2nd 2nd 

N03 K 

1st N/M 

N/M N/M 

N/M N/M 

N/M 2nd 

-------------------------------------------------------
NOTES: 

- 1st = Matching with First Peak. 

- 2nd = Matching with Second peak. 

- N/M = No Matching. 

MODELLING 
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A selective printout of the model is included in Appen-

dix B. It should be noted that both Simulated Procedures 

discussed earlier have the same output format except for the 

data obtained. A selective plot for each simulated proced-

ure is also included in Appendix B. 

Results obtained from the Second Simulated Procedure, 

do not conform with the observed data as shown in Figures 61 

and 62 in Appendix B; however when applying the First Simul-
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ated Procedure it was observed that fluorescein, Bromide and 

Chloride (Figure 68 through 73 included in Appendix B), show 

the calibrations of observed data and simulated data for 

wells 15, 16, 17 and 18. Simulated data for Potassium and 

Nitrate do not show any conformity with the observed data. 

It was observed also the variations of concentration 

with distance is very meaningful, and correspond to the 

variations in the observed data. 

GRAPHING AND STATISTICAL ANALYSIS 

A graph is a pictorial presentation of the relationship 

between variables (Spiegel, 1991). Many type of graphs are 

employed in statistics, depending on the nature of data and 

the purpose for which the graph is intended. 

For the tracer-test purpose the main intent is to know 

the relationship between concentration versus time, for this 

reason, the way to graph the obtained data was the Line 

Graph which is simply the X-Y plot. This graphs showed 

large variations, and it was necessary to draw a best fit­

ting curve which will show the overall variation of the con­

centration versus time. 

Several ways of best fitting were applied, among them 

Logarithmic, Polynomial, Linear, Exponential and Cubic 

Spline. The Polynomial Best-fit type, has proved to be the 

best way to fit large quantities of data. Polynomials can 

be represented by different degrees or grades, depending on 

the number of data points desired to plot. An example of 
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the equations for polynomials is presented below. 

Y = aO + a1X (1) 

Y = aO + a1X + a2X2 (2) 

Y = aO + a1X + a2X2 + .•• + anXn (3) 

All letters other than X and Y represent constants. 

Equation (1) is a polynomial of first degree, the second 

equation is a polynomial of the second degree, and the third 

equation is a polynomial of (nth) degree (Spiegel, 1991). 

All data were plotted using polynomials of high degree 

according to the number of data points analyzed. 

Figures 30 through 36, represent selective observed 

data plots with different grades of polynomials. The range 

of the K value is labelled according to Table IX, and shown 

as a horizontal straight line, the vertical dashed line 

represent the average K value (450 gpd/ft2), which match 

with different peaks. 

Additional plots are included in Appendix A. 
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Figure 30. Observed data for Fluorescein for 
well 16. Polynomial grade 10 for 
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Figure 32. Observed data for Chloride for 
well 17. Polynomial grade 10 
for best fit. 
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Figure 33. Observed data for Fluorescein for 
well 17. Polynomial grade 10 for 
best fit. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

This study has shown several important points regarding 

Tracer Test behavior and Model application which could be 

summarized as follows: 

1- The high concentration of injected materials on 1992 

tracer test is considered as the direct cause of observed 

differences in 1989 data and 1992 data as shown in Figures 

27, 28 and 29. 

2- Data from well 18 does not agree when comparing 1989 

and 1992, due to amount of concentration injected and rate 

of pumping, which was higher in 1989 (32 to 35 gpm). 

3- Hydraulic Conductivity calculated from pumping test 

correspond to the first peak for well 15 as shown in Figure 

37, and correspond to the second peak for Fluorescein, 

Chloride and Bromide for wells 16, 17 and 18, which 

indicates that the second peak for these wells is the real 

time of arrival for these constituents at specified points. 

Figures 30 throught 36 included in earlier chapter show this 

observations, also Firgures 38 and 39 show the same 

phenomenon. 

4- It appears that well 16 has very strong variation in 

the concentrations of constituents which is caused by the 
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Figure 37. Observed data for Chloride for 
well 15. Polynomial grade 9 for 
best fit. 
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shallow depth of this well as shown in Figure 19. 

5- It is observed that the late peak calculated for 

bromide in well 15 is the same for both data sets, also the 

late peak for Nitrate in well 17 and Late peak of Potassium 

in well 16 correspond to one another in the 1989 and 1992 

data. 

6- It is observed from the matching peak (Table IX), 

that the Fl and Cl match first in all wells. 

Fl 

WELL # 

15 1st 

16 2nd 

17 2nd 

18 Zllii 

TABLE IX 

MATCHING PEAKS 

Cl Br 

1st N/M 

2nd N/M 

1st 2nd 

2nd 

2nd 2nd 

N03 K 

1st N/M 

N/M N/M 

N/M N/M 

N/M ~ 

-------------------------------------------------------
7- The model application for the first Simulated 

Procedure has proved to be the best match for the tracer 

test observed data as shown in Figure 40. 

8- The model application for the Second Simulated 

Procedure proves that this type of scenario is not applica­

ble for tracer test where slugs are used. This is based on 
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the fact that the obtained data does not match wich the 

observed data. An example of the ploted Simulation result 

is presented in Figure 41. 

9- All constituents generally conform with the water 

table elevation fluctuation as shown in Figure 42 and 43. 

10- Conductivity is inversely proportional with water 

table elevation as shown in Figure 44 and 45. 



Figure 40. Observed data (*) and Simulated data 
(dots and dashes) for Chloride for 
well 18. Polynomial grade 10 for best 
fit. 
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Figure 41. Simulated data for Bromide for 
well 16. Polynomial grade 8 for 
best fit. 
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Figure 42. Observed data for Fluorescein and water 
table elevation (Dashed) versus time for 
well 18. Polynomial grade 9 for best fit 
for both curves. 
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Figure 46. Observed data for Fluorescein for 
well 14. Polynomial grade 8 for 
best fit. 
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Figure 47. Observed data for Chloride for 
well 14. Polynomial grade 9 for 
best fit. 
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Figure 48. Observed data for Bromide for 
well 14. Polynomial grade 7 for 
best fit. 
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Figure 49. Observed data for Potassium for 
well 14. Polynomial grade 7 for 
best fit. 
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Figure 51. Observed data for Conductivity for 
well 15. Polynomial grade 8 for 
best fit. 
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well 15. Polynomial grade 10 for 
best fit. 
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well 15. Polynomial grade 10 
for best fit. 
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Figure 54. Observed data for Nitrate for 
well 17. Polynomial grade 10 
for best fit. 
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versus time.for well 15. Poly­
nomial grade 9 for best fit for 
both curves. 
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Figure 56. Observed data for Conductivity for 
well 16. Polynomial grade 9 for best 
fit. 
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Figure 57. Observed data for Bromide for 
well 16. Ploynomial grade 10 
for best fit. 
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Figure 58. Observed data for Nitrate for 
well 16. Polynomial grade 10 
for best fit. 
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Figure 61. Observed data for Conductivity tor 
well 17. Polynomial grade 9 for 
best fit. 
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well 17. Polynomial grade lo for 
best fit. 

119 



120 

0 100 200 300 
0.50 903.3 

,...... 
::s ~ 
c. U) 

~ ::s 
'-" 0.45 ,...... 

903.2t: z '-" 0 
'"""4 z E-t < 0.40 0 
Q:: '"""4 

903.1 ~ E-c z > ~ ~ 
~ 0.35 ...:l 

~ 
0 
u 903.0::3 

~ 0.30 
!:Q 
< 

'"""4 E-c ::s 
~ 0 

~ 902.9~ 
!:Q 0.25 -< 

~ 

0 • 2 0 --f--r--.-r-T'""''--r-T"""1--r-T"""1~~'""'T""'T-r'""'T""'T-r'""'T""'T-r.,.....-y-t- 9 0 2 • 8 
0 100 200 300 

TIME IN HOURS 

Figure 64. Observed data for Bromide and Water 
table elevation (Dashed) versus time 
for well 17. Polynomial grade 10 for 
best fit for both curves. 
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Figure 65. Observed data for Conductivity for 
well 18. Polynomial grade 9 for best 
fit. 
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Figure 66. Observed data for Bromide for 
well 18. Polynomial grade 10 
for best fit. 
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Figure 67. 6bserved data for Nitrate for 
well 18. Polynomial grade 9 for 
best fit. 

123 

300 



APPENDIX B 

KONIKOW MODEL (MOC, NRC) 
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METHOD-OF-CHARACTERISTICS MODEL FOR SOLUTE 
TRANSPORT IN GROUND WATER 
BROMO, 1PP. 

NX 
NY 
XDEL 
YDEL 

I N P U T D A T A 
GRID DESCRIPTORS 

(NUMBER OF COLUMNS) = 
= (NUMBER OF ROWS) 

(X-DISTANCE IN FEET) = 
(Y-DISTANCE IN FEET) = 

TIME PARAMETERS 

20 
20 
2.0 
2.0 

NTIM (MAX. NO. OF TIME STEPS) 
NPMP (NO. OF PUMPING PERIODS) 
PINT (PUMPING PERIOD IN YEARS) 
TIMX (TIME INCREMENT MULTIPLIER) 
TINIT (INITIAL TIME STEP IN SEC.) 

HYDROLOGIC AND CHEMICAL PARAMETERS 
S (STORAGE COEFFICIENT) = 
POROS (EFFECTIVE POROSITY) 
BETA (CHARACTERISTIC LENGTH) 
DLTRAT (RATIO OF TRANSVERSE TO 

LONGITUDINAL DISPERSIVITY) 
ANFCTR (RATIO OF T-YY TO T-XX) 

***NON-DECAYING SPECIES*** 
= 

***NON-SORBING SPECIES*** 
***ADIP USED*** 
***UNCONFINED AQUIFER*** 

EXECUTION PARAMETERS 
NITP 
TOL 
ITMAX 
CELDIS 

(NO. OF ITER. PARAM - ADIP) 
(CONVERGENCE CRITERIA) 
CMAX.NO.OF ITERATIONS) 
CMAX.CELL DISTANCE PER MOVE 

OF PARTICLES- M.O.C.) 
NPMAX (MAX. NO. OF PARTICLES) 
NPTPND (NO. PARTICLES PER NODE) 

PROGRAM OPTIONS 
NPNT CTIME STEP INTERVAL FOR 

COMPLETE PRINTOUT) 
NPNTMV (MOVE INTERVAL FOR CHEM. 

= 

CONCENTRATION PRINTOUT) = 
NPNTVL (PRINT OPTION-VELOCITY 

O=NO; 1=FIRST TIME STEP; 
2=ALL TIME STEPS) = 

NPNTD (PRINT OPTION-DISP.COEF. 
O=NO; l=FIRST TIME STEP; 
2=ALL TIME STEPS) = 

NUMOBS <NO. OF OBSERVATION WELLS 

NREC 
NCODES 
NPNCHV 
NPDELC 

FOR HYDROGRAPH PRINTOUT) = 
(NO. OF PUMPING WELLS) = 
(FOR NODE !DENT.) = 
(PUNCH VELOCITIES) = 
(PRINT OPT.-CONC. CHANGE) = 

125 

= 14 
= 1 

= .038 
= 1.00 
= .86E+05 

.400000 
= .20 
= 75.0 

= .20 
1.000000 

= 4 
= .0100 
= 50 

= .200 
= 6400 
= 4 

1 

0 

0 

0 

4 
0 
1 
0 
0 



LOCATION OF OBSERVATION 
NO. X 

1 19 
2 18 
3 16 
4 15 

AREA OF ONE CELL = 
X-Y SPACING: 

2.0000 
2.0000 

WELLS 
y 

10 
10 
10 
10 

4.0000E+OO 
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OBS.WELL NO. X y 

2 18 10 

HEAD (FT) CONC. (MG/L) TIME (YEARS) 

.9000E+03 .OOOOE+OO .OOOOE+OO 

.9002E+03 .2117£+04 .2725E-02 

.9002E+03 .3771E+04 .5450£-02 

.9002E+03 .7880E+04 .8176E-02 

.9002E+03 .1680E+04 . 1090E-01 

.9002£+03 .1622E+04 .1363£-01 

.9002E+03 .7795£+05 .1635£-01 

.9002£+03 .2665£+05 .1908E-01 

.9002£+03 .3079£+04 .2180£-01 

.9002£+03 .7875£+02 .2453£-01 

.9002£+03 -.2650£+01 .2725E-01 

.9002£+03 -.3540E-01 .2998£-01 

.9002£+03 -.5194£-02 .3270£-01 

.9002£+03 -.1606£-03 .3543£-01 

.9002£+03 -.2340£-03 .3800£-01 



OBS.WELL NO. X y 128 

3 16 10 
HEAD (FT) CONC. (MG/L) TIME (YEARS) 

.9000E+03 .OOOOE+OO .OOOOE+OO 

.9008E+03 .2147E+04 .2725E-02 

.9008E+03 .3966£+04 .5450£-02 

.9008E+03 .7913E+03 .8176£-02 

.9008E+03 .1733E+03 .1090E-01 

.9008E+03 .3628E+02 .1363E-01 

.9008E+03 .7774E+02 .1635E-01 

.9008E+03 .1672E+02 .1908E-01 

.9008E+03 .3595£+01 .2180E-01 

.9008E+03 -.7708E+01 .2453E-01 

.9008£+03 -0 1657E-01 .2725£-01 

.9008E+03 -.3552E-01 .2998E-01 

.9008£+03 -.7627E-02 .3270E-01 

.9008E+03 -.1634E-02 .3543E-01 

.9008£+03 -.3355E-03 .3800£-01 



BROMO, lPP. 129 
TIME VERSUS HEAD AND CONCENTRATION AT SELECTED OBSERVATION 

POINTS 
PUMPING PERIOD NO. 1 
TRANSIENT SOLUTION 

OBS.WELL NO. X Y 
1 19 10 

HEAD (FT) CONC. (MG/L) TIME (YEARS) 

.9000E+03 .OOOOE+OO .OOOOE+OO 

.9002E+03 .2017E+04 .2725E-02 

.9002E+03 .3751E+04 .5450E-02 

.9002E+03 .7879E+03 .8176E-02 

.9002E+03 .1686E+03 . 1090E-01 

.9002E+03 .1612E+03 .1363E-01 

.9002E+03 .7744E+02 .1635E-01 

.9002E+03 . 1665E+02 .1908E-01 

.9002E+03 .3579E+Ol .2180E-Ol 

.9002E+03 -.7675E-01 .2453E-01 

.9002E+03 -.1650E-01 .2725E-01 

.9002E+03 -.3538E-02 .2998E-01 

.9002E+03 -.7594E-02 .3270E-01 

.9002E+03 -.1626E-03 .3543E-01 

.9002E+03 -.3341E-03 .3800E-Ol 



OBS.WELL NO. X y 
4 15 10 130 

HEAD (FT) CONC. (MG/L) TIME (YEARS) 

.9000E+03 .OOOOE+OO .OOOOE+OO 

.9013E+03 .2122E+04 .2725E-02 

.9014E+03 .3806E+04 .5450E-02 

.9014E+03 .8006E+03 .8176E-02 

.9014E+03 .1712E+03 .1090E-01 

.9014E+03 .3670E+02 .1363E-01 

.9014E+03 .7853E+02 .1635E-01 

.9014E+03 .1690E+02 .1908E-01 

.9014E+03 .3639E+01 .2180E-01 

.9014E+03 -.7793E+01 .2453E-01 

.9014E+03 -.1677E-01 .2725E-01 

.9014E+03 -.3588E-01 .2998E-01 

.9014E+03 -.7713E-02 .3270E-01 

.9014E+03 -.1651E-02 .3543E-01 

.9014E+03 -.3391E-03 .3800E-01 
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Figure 68. Observed data (*) and Simulated data 
(dots and dashed) for Chloride for well 15 
Polynomial grade 9 for best fit. 
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Figure 69. Observed data (*) and Simulated data 
(dots and dashed) ·for Fluorescein for 
well 16. Polynomial grade 10 for best fit. 
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Figure 70. Observed data (*) and Simulated data 
(dots and dashed) for Fluorescein for 
well 17. Polynomial grade 10 for best 
fit. 
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Figure 71. Observed data (*)and Simulated data 
(dots and dashed) for Chloride for 
well 17. Polynomial grade 10 for best 
fit. 
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Figure 72. Observed data (*) and Simulated data 

(dots and dashed) for Fluorescein for 
well 18. Polynomial grade 9 for best 
fit. 
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U.S.G.S. METHOD-OF-CHARACTERISTICS MODEL FOR SOLUTE TRANSRGRT 
IN GROUND WATER 
FLUOROCEIN SIMULATION, 30 GAL, 1/14/1992, INITIAL 
CONCENTRATION 

I N P U T D A T A 
GRID DESCRIPTORS 

NX 
NY 
XDEL 
YDEL 

(NUMBER OF COLUMNS) = 
= (NUMBER OF ROWS) 

(X-DISTANCE IN FEET) = 
(Y-DISTANCE IN FEET) = 

20 
20 
2.0 
2.0 

TIME PARAMETERS 
NTIM (MAX. NO. OF TIME STEPS) 
NPMP (NO. OF PUMPING PERIODS) 
PINT (PUMPING PERIOD IN YEARS) 
TIMX (TIME INCREMENT MULTIPLIER) 
TINIT (INITIAL TIME STEP IN SEC.) 

HYDROLOGIC AND CHEMICAL PARAMETERS 
S (STORAGE COEFFICIENT) 
POROS (EFFECTIVE POROSITY) 
BETA (CHARACTERISTIC LENGTH) 
DLTRAT (RATIO OF TRANSVERSE TO 

LONGITUDINAL DISPERSIVITY) 
ANFCTR (RATIO OF T-YY TO T-XX) 

***NON-DECAYING SPECIES*** 
***NON-SORBING SPECIES*** 
***ADIP USED*** 
***UNCONFINED AQUIFER*** 

EXECUTION PARAMETERS 
NITP 
TOL 
ITMAX 
CELDIS 

(NO. OF ITER. PARAM - ADIP) 
(CONVERGENCE CRITERIA) 
(MAX.NO.OF ITERATIONS) 
(MAX.CELL DISTANCE PER MOVE 

OF PARTICLES- M.O.C.) 
NPMAX (MAX. NO. OF PARTICLES) 
NPTPND (NO. PARTICLES PER NODE) 

PROGRAM OPTIONS 
NPNT (TIME STEP INTERVAL FOR 

COMPLETE PRINTOUT) 
NPNTMV (MOVE INTERVAL FOR CHEM. 

= 
CONCENTRATION PRINTOUT) = 

NPNTVL (PRINT OPTION-VELOCITY 
O=NO; !=FIRST TIME STEP; 
2=ALL TIME STEPS) 

NPNTD (PRINT OPTION-DISP.COEF. 
O=NO; !=FIRST TIME STEP; 
2=ALL TIME STEPS) 

= 

= 
NUMOBS (NO. OF OBSERVATION WELLS 

FOR HYDROGRAPH PRINTOUT) = 
NREC (NO. OF PUMPING WELLS) 

NCODES (FOR NODE !DENT.) 
NPNCHV (PUNCH VELOCITIES) 

= 

NPDELC (PRINT OPT.-CONC. CHANGE) 

= 

= 4 
= 4 

= 0.011 
= 1. 00 
= .86E+05 

= .400000 
= .20 
= 75.0 

= .20 
1.000000 

= 4 
= .0100 
= 50 

= .200 
= 3200 
= 4 

5 

0 

0 

0 

3 
18 

= 1 
= 0 
= 0 



LOCATION OF OBSERVATION WELLS 

NO. 

1 
2 
3 

X y 

2 15 
2 17 
2 18 

LOCATION OF PUMPING WELLS 

X Y RATE(IN CFS) CONC. 

19 2 -.124E-03 .00 
19 3 -.124E-03 .00 
19 4 -.124E-03 .00 
19 5 -.124E-03 .00 
19 6 -.124E-03 .00 
19 7 -.124E-03 .00 
19 8 -.124E-03 .00 
19 9 -.124E-03 .00 
19 10 -.124E-03 .00 
19 11 -.124E-03 .00 
19 12 -.124E-03 .00 
19 13 -.124E-03 .00 
19 14 -.124E-03 .00 
19 15 -.124E-03 .00 
19 16 -.124E-03 .00 
19 17 -.124E-03 .00 
19 18 -.124E-03 .00 
19 19 -.124E-03 .00 

AREA OF ONE CELL = 4.0000E+OO 
X-Y SPACING: 

2.0000 
2.0000 
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TIME VERSUS HEAD AND CONCENTRATION AT SELECTED OBSERVATION 
POINTS PUMPING PERIOD NO. 1 

TRANSIENT SOLUTION 

OBS.WELL NO. X y 

1 2 15 

N HEAD (FT) CONC. (MG/L) TIME (YEARS) 

0 .9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 .OOOOE+OO .2725E-02 

2 .9037E+03 .OOOOE+OO .5450£-02 

3 .9037E+03 .OOOOE+OO .8176E-02 

4 .9037E+03 .OOOOE+OO .1090E-01 
OBS.WELL NO. X y 

2 2 17 
N HEAD (FT) CONC. (MG/L) TIME (YEARS) 

0 .9037E+03 .OOOOE+OO ;OOOOE+OO 

1 .9037£+03 .OOOOE+OO .2725E-02 

2 .9037E+03 .OOOOE+OO .5450£-02 

3 .9037E+03 .OOOOE+OO .8176E-02 

4 .9037£+03 .OOOOE+OO .1090E-Ol 
OBS.WELL NO. X y 

3 2 18 
HEAD (FT) CONC. (MG/L) TIME (YEARS) 

0 .9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 .~- .2725E-02 

2 .9037£+03 .OOOOE+OO .5450E-02 

-3 .9037E+03 .OOOOE+OO .8176£-02 

4 .9037E+03 .OOOOE+OO . 1090E-01 
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START PUMPING PERIOD NO. 2 

THE FOLLOWING TIME STEP, PUMPAGE, AND PRINT PARAMETERS 
HAVE BEEN REDEFINED: 

NTIM = 4 
NPNT = 5 
NITP = 4 
ITMAX = 50 
NREC = 36 
NPNTMV = 0 
NPNTVL = 0 
NPNTD = 0 
NPDELC = 0 
NPNCHV = 0 

PINT = .011 
TIMX = 1.000 
TIN IT = 86000.000 

LOCATION OF PUMPING WELLS 

X y RATE(IN CFS) CONC. 

19 2 -.124E-03 .00 
19 3 -.124E-03 .00 
19 4 -.124E-03 .00 
19 5 -. 124E-03 .00 
19 6 -. 124E-03 .00 
19 7 -.124E-03 .00 
19 8 -.124E-03 .00 
19 9 -.124E-03 .00 
19 10 -.124E-03 .00 
19 11 -.124E-03 .00 
19 12 -.124E-03 .00 
19 13 -.124E-03 .00 
19 14 -. 124E-03 .00 
19 15 -.124E-03 .00 
19 16 -.124E-03 .00 
19 17 -.124E-03 .00 
19 18 -.124E-03 .00 
19 19 -.124E-03 .00 

13 2 .371E-02 .00 
13 3 .371E-02 .00 
13 4 .371E-02 .00 
13 5 .371E-02 .00 
13 6 .371E-02 .00 
13 7 .371E-02 .00 
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13 8 .371E-02 .00 
13 9 .371E-02 .00 
13 10 .371E-02 .00 
13 11 .371E-02 .00 
13 12 .371E-02 .00 
13 13 .371E-02 .00 
13 14 .371E-02 .00 
13 15 .371E-02 .00 
13 16 .371E-02 .00 
13 17 .371E-02 .00 
13 18 .371E-02 .00 
13 19 .371E-02 .00 
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TIME VERSUS HEAD AND CONCENTRATION AT SELECTED OBSERVATION 

N 

1 

2 

3 

4 

N 
0 

1 

2 

3 

4 

N 

0 

1 

2 

3 

4 

POINTS PUMPING PERIOD NO. 2 

TRANSIENT SOLUTION 

OBS.WELL NO. X 

1 2 

HEAD (FT) CONC. (MG/L) 
.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 
OBS.WELL NO. X 

2 2 

HEAD (FT) CONC.(MG/L) 
.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 

.9037E+03 .OOOOE+OO 
OBS.WELL NO. X 

y 

15 

TIME(YR) 0 
.OOOOE+OO 

.1363£-01 

.1635E-01 

.1908E-01 

.2180E-01 
y 

17 

TIME (YEAR) 
.OOOOE+OO 

.1363E-01 

.1635E-01 

.1908E-01 

.2180E-01 
y 

3 2 18 
HEAD (FT) CONC. (MG/L) TIME (YEARS) 

.9037E+03 .OOOOE+OO .OOOOE+OO 

.9037E+03 .OOOOE+OO .1363E-01 

.9037E+03 .OOOOE+OO .1635£-01 

.9037E+03 .OOOOE+OO .1908E-01 

.9037E+03 .OOOOE+OO .2180E-01 



142 

START PUMPING PERIOD NO. 3 
THE FOLLOWING TIME STEP, PUMPAGE, AND PRINT PARAMETERS 

HAVE BEEN REDEFINED: 
NTIM = 1 
NPNT = 1 
NITP = 4 
ITMAX = 50 
NREC = 36 
NPNTMV = 36 
NPNTVL = 0 
NPNTD = 0 
NPDELC = 0 
NPNCHV = 0 

PINT = .003 
TIMX = 1.000 
TINIT = 86000.000 

LOCATION OF PUMPING WELLS 
X Y RATE(IN CFS) CONC. 

19 2 -.124E-03 9270.00 
19 3 -.124E-03 9270.00 
19 4 -.124E-03 9270.00 
19 5 -.124E-03 9270.00 
19 6 -.124E-03 9270.00 
19 7 -.124E-03 9270.00 
19 8 -.124E-03 9620.00 
19 9 -.124E-03 9270.00 
19 10 -.124E-03 9270.00 
19 11 -.124E-03 9270.00 
19 12 -.124E-03 9270.00 
19 13 -.124E-03 9270.00 
19 14 -.124E-03 9270.00 
19 15 -.124E-03 9270.00 
19 16 -.124E-03 9270.00 
19 17 -.124E-03 9270.00 
19 18 -.124E-03 9270.00 
19 19 -.124E-03 9270.00 
13 2 .371E-02 .00 
13 3 .371E-02 .00 
13 4 .371E-02 .00 
13 5 .371E-02 .00 
13 6 .371E-02 .00 
13 7 .371E-02 .00 
13 8 .371E-02 .00 
13 9 .371E-02 .00 
13 10 .371E-02 .00 
13 11 .371E-02 .00 
13 12 .371E-02 .00 
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13 13 .371E-02 .00 
13 14 .371E-02 .oo 
13 15 .371E-02 .00 
13 16 .371E-02 .00 
13 17 .371E-02 .00 
13 18 .371E-02 .00 
13 19 .371E-02 .00 

TIME VERSUS HEAD AND CONCENTRATION AT SELECTED OBSERVATION 
POINTS PUMPING PERIOD NO. 3 

TRANSIENT SOLUTION 

OBS.WELL NO. X y 
1 2 15 

HEAD (FT) CONC. CMG/L) TIME (YEARS) 

0 .9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 . 1288E+04 .2453E-Ol 
OBS.WELL NO. X y 

2 2 17 

HEAD CFT) CONC. CMG/L) TIME (YEARS) 

0 .9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 . 1289E+04 .2453E-01 
OBS.WELL NO. ·x y 

3 2 18 
N HEAD CFT) CONC. CMG/L) TIME CYEAR) 

.9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 .1290E+04 .2453E-01 
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. 
START PUMPING PERIOD NO. 4 

THE FOLLOWING TIME STEP, PUMPAGE, AND PRINT PARAMETERS 
HAVE BEEN REDEFINED: 

NTIM = 14 
NPNT = 1 
NITP = 4 
ITMAX = 50 
NREC = 36 
NPNTMV = 0 
NPNTVL = 0 
NPNTD = 0 
NPDELC = 0 
NPNCHV = 0 

PINT = .038 
TIMX = 1.000 
TINIT = 86000.000 

LOCATION OF PUMPING WELLS 
X Y RATE(IN CFS) CONC. 

19 2 -.124E-03 .00 
19 3 -.124E-03 .00 
19 4 -.124E-03 .00 
19 5 -.124E-03 .00 
19 6 -.124E-03 .00 
19 7 -.124E-03 .00 
19 8 -.124E-03 .00 
19 9 -.124E-03 .00 
19 10 -.124E-03 .00 
19 11 -.124E-03 .00 
19 12 -.124E-03 .00 
19 13 -.124E-03 .00 
19 14 -.124E-03 .00 
19 15 -.124E-03 .00 
19 16 -.124E-03 .00 
19 17 -.124E-03 .00 
19 18 -.124E-03 .00 
19 19 -.124E-03 .00 
13 2 .371E-02 .00 
13 3 .371E-02 .00 
13 4 .371E-02 .00 
13 5 .371E-02 .00 
13 6 .371E-02 .00 
13 7 .371E-02 .00 
13 8 .371E-02 .00 
13 9 .371E-02 .00 
13 10 .371E-02 .00 
13 11 .371E-02 .00 
13 12 .371E-02 .00 
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13 13 .371E-02 .00 
13 14 .371E-02 .00 
13 15 .371E-02 .00 
13 16 .371E-02 .00 
13 17 .371E-02 .00 
13 18 .371E-02 .00 
13 19 .371E-02 .00 
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TIME VERSUS HEAD AND CONCENTRATION AT SELECTED OBSERVATION 
POINTS PUMPING PERIOD NO. 4 

TRANSIENT SOLUTION 

OBS.WELL NO. X y 

1 2 15 

N HEAD CFT) CONC. CMG/L) TIME CYEARS) 

0 .9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 .1264E+04 .2725E-01 

2 .9037E+03 .7455E+03 .2998E-01 

3 .9037E+03 .4370E+03 .3270E-01 

4 .9037E+03 .2569E+03 .3543E-01 

5 .9037E+03 . 1506E+03 .3815E-01 

6 .9037E+03 .8833E+02 .4088E-01 

7 .9037E+03 .5185E+02 .4360E-01 

8 .9037E+03 .3043E+02 .4633E-01 

9 .9037E+03 . 1784E+02 .4905E-01 

10 .9037E+03 .1048E+02 .5178E-01 

1 1 .9037E+03 .6146E+01 .5450E-01 

12 .9037E+03 .3607E+01 .5723E-01 

13 .9037E+03 .2119E+01 .5995E-01 

14 .9037E+03 .1244E+01 .6268E-01 
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OBS.WELL NO. X y 

2 2 17 
HEAD (FT) CONC.(MG/L) TIME (YEARS) 

0 .9037E+03 .OOOOE+OO .OOOOE+OO 

1 .9037E+03 .1264E+04 .2725E-01 

2 .9037E+03 .7454E+03 .2998E-01 

3 .9037E+03 .4371E+03 .3270E-01 

4 .9037E+03 .2570E+03 .3543E-01 

5 .9037E+03 . 1506E+03 .3815E-01 

6 .9037E+03 .8835E+02 .4088E-01 

7 .9037E+03 .5186E+02 .4360E-01 

8 .9037E+03 .3043E+02 .4633E-01 

9 .9037E+03 .1784E+02 .4905E-01 

10 .9037E+03 .1048E+02 .5178E-01 

11 .9037E+03 .6147E+01 .5450E-01 

12 .9037E+03 .3608E+01 .5723E-01 

13 .9037E+03 .2119E+01 .5995E-01 

14 .9037E+03 .1244E+01 .6268E-01 



HEAD (FT) 

0 .9037E+03 

1 .9037E+03 

2 .9037E+03 

3 .9037E+03 

4 .9037E+03 

5 .9037E+03 

6 .9037E+03 

7 .9037E+03 

8 .9037E+03 

9 .9037E+03 

10 .9037E+03 

11 .9037E+03 

12 .9037E+03 

13 .9037E+03 

OBS.WELL NO. 
3 

X y 
2 18 

CONC. CMG/L) TIME (YEARS) 

.OOOOE+OO .OOOOE+OO 

.1265E+04 .2725E-01 

.7454E+03 .2998E-01 

. 437.2E+03 .3270E-01 

.2570E+03 .3543E-01 

.1506E+03 .3815E-01 

.8836E+02 .4088E-01 

.5186E+02 .4360E-01 

.3043E+02 .4633E-01 

. 1784E+02 .4905E-01 

. 1048E+02 .5178E-01 

.6147E+01 .5450E-01 

.3608E+01 .5723E-01 

.2119E+01 .5995E-01 

14 .9037E+03 .1244E+01 .6268E-01 
1FLUOROCEIN SIMULATION, 30 GAL, 1/14/1992, INITIAL 

CONCENTRATION 
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Figure 73. Simulated data for bromide for well 18. 
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