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APPROXIMATIONS TO THE ELECTRIC MICROCFIELD DISTRIBUTION

FUNCTION IN IONIZED GASES
INTRODUCTION

The behavior of ionized gases can best be predicted if the
microfield within the plasma is known. For instance, the Stark theory of
line broadening by the microfield permits concentration determinations,
and the evaluation of transport coefficients of viscosity and electrical
conductivity is completed through knowledge of the scattering micro-

potential and its g}radiem:‘l’2

An examinaticn of current statistical
theories reveals two defects which will admit the modification presented
in this paper.

Consider a volume V occupied by an assembly of N electrical
systems, e.g., ions, in thermal equilibrium. At an arbitrary point O with-

in V let us ask for both the instantaneous magnitude of the electrical
field E;, and its time variant fluctuatien. If we temporarily ignore the
thermal moticn of the ensemble members, a given configuration of the swarm
of electrical perturbers produces a definite microfield at 0. However,

a greater number of configurations may be compatible with this microfield

for one wvalue of E@ than for another. In the absence of a configuration

1S, Chandrasekhar, Astrophys. J., 97, 255 (1943).

2L, Spitzer and R. Harm, Phys. Rev., 89, 977 (1953).
1
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specification one can calculate only a distribution of E; at 0. If each

member is permitted its thermal activity one now calculates the variation
of EQ in time due to the random motions of the perturbers. Probability
after-effects encountered in such calculations were first studied by
Smoluchowski1 and have more recently been investigated by Chandrasekhar
and von Neumann.?2 Over long time intervals ome expects no correlation

of microfield values at O, since the stationary distribution, computed by
assumming immobility, represents the time average of EO. But if one is
interested in observations at O over small time intervals an analysis of
the time variation of source configurations is indicated. We examine only
the time averaged microfield, and let W(Es)dﬁg represent the probability
that the electric field at a point O possesses a value E such that for its
components X, Y and 2

1. Xg - 1/2 dXy < X = X, + 1/2 dXg, etc.

Alternatively we shall express this and similar inequalities by saying

E lies in the interval dE; about Es. The following outline of the most
successful method for evaluation of W(Eb) is due té Holtsmark.3

in 1919, prompted by the then recent experiments of Fuchtbauer

and Hoffmann4

on the shift and splitting of spectral lines, Holtsmark
calculated the probability distribution of the strength of the field pro-

duced by a static random distribution of either ioms, dipoles or

IM. Smoluchowski, Wien. Ber. 124, 339 (1915).
23, Chandrasekhar and J. von Néumann, Astrophys. J, 97, 1 (1943).
3. Holtsmark, Ann. Physik 58, 577 (1919).

4e, Fuchtbéuer and U, W. Hoffmann, Ann. Physik 43, 96 (1914).
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quadrupoles. We are interested only in ions and will omit a review

of dipole and quadrupole interactions. Holtsmark's model consisted of
an assembly of N identical non-interacting "ions'" of valence 23, electronic
charge ¢ , in position ?j; each contributing to the microfield at O a

vectorial component

E: = -/r3) T:
2. Ej = (ezj/Ty) 1y 3
the total field fluctuating subject to the condition of constant mean
density n, equal to N/V. The total field at 0 is given by

— N, o
3. E = ZEJ(rJ)‘
3

Since the particles were assumed non-interacting, he wrote for the pro-
bability that ;5 lay in the interval d?} about ?j
4, dj(Xj,yj,Zj)dxjdyjdzj = dj(rj)drj = drj/Va

His analytic formulation of the problom was to sum
5 Wy (B ) dF 1/v"f T &
* N*~o’ "o 3N J 3 3

over a range of integration including only those volume elements compat-
ible with the condition that E lay in the interval dfo about i‘.'o. ‘To
facilitate numerical calculation and graphical representation, Holtsmark
put

6. B, - BB - 2.61a*?%p

and expressed the distribution of the sbsolute value of the microfield
in terms of P as

7. W(Eo)dEq = W(P)dp .

His result is given in Figure 1. From it he computed the intensity of
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5
spectral lines of hydrogen as a function of radiation frequency.

The experimental confirmation of Holtsmark's theory of line
broadening has not been satisfactory. Many investigatorslv2’3 have
compared theoretical profiles with those obtained in a variety of
experiments and found substantial disagreement; while experiments at the
University of Oklahoma??77® have led to a further discrepancy. Both the
theory of Holtsmark and the Hall’ effect were utilized to measure ion
concentration in shock induced plasmas as a function of distance along
the shock tube axis. Calculations based on the Hall effect indicated
a monotonic decrease of concentration with shsck progress, while cal-
culations employing the theory of Holtsmark indicate the existence of
a concentration maximum in the neighborhood of the axis center.

Recent modifications of the theory of line broadening have
centered about the time dependence of the microfield. Intensity vari-

ations are considered the consequence of velocity or collision broaden-

1. H. Aller, Astrophy. J., 96, 321 (1942).
24. Griem, 2. Physik., 137, 280 (1954).
3E. B. Turner and L. Doherty, Astron. J., 60, 158 (1955).

4R. G. Fowler, W. R. Atkinson and L. W. Marks, Phys, Rev., 87,
966 (1952).

5W. R. Atkinson, "Half Intensity Breadths of the Balmer Lines
in Pulsed Gas Dischargea" (unpublished M, S. thesis, University of
Oklaghoma, 1950).

6s. E. Clotfelter, "Experimental Studies of Transport Phencmena
in Highly Ionized Gases™ (unpublished Ph. D. diasertation, University of
Okleghoma, 1953).

7E, H. Hall, Am. Jour. of Math., 2, 287 (1875),
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ing by electrons, and quantum theoretical calculations are employed io

determine transition probabilities.1v2-3’4 As none of these rheories
have been decisive, and the latest, most successful investigatians
depends for its development upon the stationary microfield distributionm,
it is8 desirable to seek a corrective modification of Holtsmark's theory.
Our starting point is the observation that a single kind of non-
interacting moncpele as a field source constitutes a physically unreal-
istic assumption. Any ionized gas must consist of at least two species
of interacting monopoles, and the consequence of this fact fer the micre-

field distribution will be developed in this thesis,

1y, H. Van Vleck and V. F. Weisskopf, Rev. Mod. Phys., 17, 227
(1945).

24. K. Krogdehl, Astrophys. J., 110, 355 (1945).
3B. Kivel, S. Bloom, and H. Margenau, Phys. Rev., 98, 495 (1935).

4a, c. Kolb, ASTIA Document No. ADi15040, University of Michigan,
Eng. Res. Inst. (1957).

S1bid.



CHAPTER I

APPLICATIONS OF THE DEBYE-HUCKEL THEORY TO

THE ELECTRIC MICROFIELD

1. Preliminary Remarks

If a Coulomb law of force is associated with each interacting
particle it is difficult to determine for N values of J, the probabil-
ity distribution that all N particles simultanecusly lie in their
respective neighborhoods d?} about ?}. However, this calculiation may be
avolded by making use of principles first introduced by Debye.l One may
choose a particular particle of an assembly and compute the mean potential,
V(r), in the atmosphere surrounding it. This potential is contributed by
the select particle at the center and the charge cloud formed by the re-
maining members (see Section 2), while its gradient is regarded as the
field associated with the central particle. The probability demrsity for
this configuration then may be shown to be the volume reciprocal, 1/V.
2

We review here the treatment of Debye which has been verified by Fowler,

and Kramers> using strict statistical mechanics.

lp, pebye and E. Huckel, Phys. Z., 24, (1923).
2R, H, Fowler, Proc. Camb. Phil. Soc., 22, 861 (1925).

34, A. Kramers, Proc., Amsterdam, 30, 145 (1927),
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2. The lonic Atmosphere and Associated Potential gg a Point Charge

Let & spherical plasma volume V contain s species of monopole;

taking the valence, total number and average particle density of the ith
species as 2;, N; and ny respectively. Then if N denotes the total

number of particles corresponding to an average particle density n,

S S
12,1 n=NV = 3 N/V = > ny .
i=1 izl

The valence z; may be positive or negative; the dielectric constant of
the plasma is taken as unity; while € represents the value of electronic
charge (i.e., 4.8 x 10-10 ¢ ,5,u.). Focusing our attention upon a point
O at fixed distance r from a particular ion, we require the mean potential
VY(r) at this point.

According to Boltzmann's theorem, in a small element of volume
dV surrounding O, the number of the ith jonic species is given by
12,2 n; exp(-ez;V/kT) dv.
Assuming isotrcpy of the plasma and neglecting boundary effects, a radial

charge density function,)“(r), about the central monopole is then describ-

ed by
s
12.3 M(T) = €Y zinjexp (-eziW/KT) ;
i=l
where
S
12.4 EZ njzi; = 0 .
i=i

of course,}4(r) represents the local time average charge density about the
central ion. This is usually referred to as the Debye charge cloud.

Since the probability for approach of particles of opposite sign is great-
er than for those of like sign, the temporal mean over near neighborhoods

of a given point charge should yield a net negative density for positive
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charge centers and positive density for negative centers,

The solution for YW (r) is effected through Poisson's equation
for W(r) ;

S
12.5 ' Va\]’ = 4TTM= 4TTE z njzy exp (-ézyVy /KT).
i=t

*In order to put equation (12.5) in more tractable form the exponentials’

may be expanded; retaining terms omly to first order one obtains
2

12.6 va\p = K ¥,

where

2

S
12,7 K= U /RT) Y nz? .

izl
The most general spherically symmetrical solution to (12.6) is
12.8 w(r) = (A/r) exp (-kr) + (B/r) exp {kr),
and since wy(r) must vanish for infinite values of r, B must vanish.

With a jth species as charge center, the condition that

12.9 Lim Vi(r) = zje/r

-0
implies that A is equal to zj€ .

From these results the following set of equations may be collected for

future reference:

12.10 M) = (KPezy/ame) exp (-kr) ,

12;11 V= "kq—\}& = (ezj/r) - (ezj/r)[ 1—exp(-itr)] = (Ezj/r)exp(-Kr),

12.12 E(r) = V@) = €z;/7°)(1 +Er) exp (k0T ,
$

12.13 ¥ - (4meR/KD) Znizf .
i=1

Thus, the neighborhood of & givzn poirt charge is exposed to the field

of two sources: the field of the central charge and an additiomal field
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being contributed by the remaining charges which generally opposes the

field of the center. The net effect is equivalent to a potential with
cut-off, the range being determined by Debye's shielding constant K
(see equation 12,11 and 12,13), Numerical values of K for a variety of

temperatures and densities are given in Tabtle 1.

TABIE 1

THE DEBYE SHIELDING CONSTANT K r*

n Ko K ' KT KT
(ioms/cc) T 24,000 T 12,000 T 6,000 T 2,000
1013 4.30 10  6.10 10% 8.60 10% 1.49 10°
1016 1.36 10°  1.93 10° 2,72 103 4,71 107
1017 4.30 10°  6.10 10° 8.60 10° 1.49 108
1018 1.36 109  1.93 108 2.7z 108 4.71 108
1019 4.30 10°  6.10 10° 8.60 10° 1.49 107
1020 1.36 107  1.93 107 2.72. 107 4.71 107

* K denctes the values of K in reciprocal centimeters at
the indicated temperature T degrees Kelvinj; and at particle con-
centration n.
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3. The Charge Cloud and the Probability Demsity of an Ion
in Its Role as Cloud Center

The charge cloud is, of course, a statistical concept and re-
presents an average over those configurations of the point charges which
have practically the same internal energy and give similar contributions

to the microfield EB. Each charge 1s the center of its own companion

cloud formed by all the remaining charges, and is a member of all remain-

ing clouds as well. In a plasma having, by def-nitiungl macroacapic

dimensions

Ly 2 1/c , (1 =1,2,3)
the form and energy of a cloud may be assumed to be independent of the
position of its center.

Thus if one studies a point charge in its rcle as a cloud
center, the probability for finding it in a volume element dr centered at
T is proportional to dr and is independent of the location ¥ of the
volume element. Futhermore, it does not depend upon the configuration
of the other charges which will always form a cloud compatible with
equations (12.10) and (12.11). Contrariwise, if one interprets the same
point charge as a member of a cloud about some other center, the probabil-
ity depends upon the sign of the charge and its distance from the center.
Hence, if O}(rj) denotes the normalized probability demsity that the jtR
charge is located within a vqlume element d?ﬁ about ¥j and is regarded as
the center of a charge cloud, then it has a constant value C and one may

write formally

1I. Langmuir, Phys. Rev,, 33, 954 (1929).
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13.1 [dj(rj)drj = {Cdrj = CV =1 H
\4 14

so that

13.2 Ti(r;y) = 1/v

For emphasis, we repeat that in ilts role as charge center with
the corresponding probability density (13.2), one must asscciate with the
electric center a microfield comtribution given by (12.12). The consid-
erations are important when applying Holtsmark®s method to a system of
interacting particles for which the method is not applicable without
modification.

Since the mass of the point charge does not appear in formula
(12,13), this formula should be valid for both ions and electrons. It is,
however, possible that, in a higher approximation, K is smaller for
electrons than for ions, as the polarization of the plasma may n»t com-
pletely follow the fast movements of the electroms. The following argu-
ment indicates that this relaxation effect is actually not very seriocus.
The polarization of the plasma is accomplished by displacements (frocm
random motion) of ions and electrons as well. The latter will respond
even to rapid fluctuations of the microfield, the former will not. How-
ever, the ions force the electrons to move in bent orbitals, thus produc-
ing a correlation between the motion of the electrons and their comparion
clouds,

4, Two Approximations to the Microfield Employing
Debye's Theory of the Polarized Plasma

With the help of Debye's charge cloud, the microfield in a
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plasma may be treated by two approximations. In the first of these, the

electrical potential WY(r) and its corresponding gradient B(r) is given by
equations (12.11), and (12.12) respectively. Furthermore, the probability
that a site O is exposed to the field'f(r) is considered equal to the
probability that O is at a distance r from the nearest charge. This is
the nearest neighbor approximation and it will be fully discussed in the
next chapter. Since equation (12.12) is statistical in character, taking
into account the average effect of many interacting systems, and since a
shielded force has much shorter range than the ordinary Coulomb force,
the nearest neighbor approximation is much more appropriate when working
with the former force than would be the cese for the latter.

The nearest neighbor theory fails when r is large; i.e., when
the point O is nearly equidistant from several field producing charges.
In this case one has to acknowledge the dual role of a point charge in a
plasma, according to which each point charge is not only a member of a
shielding cloud, but is alsoc a central source of shielded force. Hence,
the microfield may be taken as the vector sum of the shielded fields pro-

duced by each and every point charge:

N N ‘

14.1 E = -_>: ?«. (r:) = € E M exp(-Kr )?. -
el e rs3 3773
3= =l )

For binary monovalent systems (the only case considered in the following
work) 2N* is equal to N, and
zy = + 1 vhenever 1< 32N,

14.2
zy = - 1 whenever Nt< £ N .

Equation (14.1) is the basis for what will be termed the shield-

ed force approximation to the microfield. Here, as in Holtsmark's theory,
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the only variables are the §§. But one has to realize that the special

form of the shielded force (12.12) and the magnitude of the shielding
constant (12.13) represent only an average behavior of the plasma.
Consistent with the program discussed in the introduction, f£luctuations
of the analytical form of the shielded force, in particular of &k , are

neglected in all of our considerations.




CHAPTER II

Thi NEAREST NEIGHBOR APPROXIMATION AND THE MARKOFF

METHOD OF SUMMATION

1. The Derivation 2£ the Nearest Neighbor Distribution w(x)

The law of distribution of the nearest neighbor in a random

1

distribution of systems was first considered by Hertz® and subsequently

was presented in the following form by Chandrasekhar.z Let w(xr)dr denote
the probability that the nearest neighbor to a point O lies in a spherical
shell of thickness dr at radial distance r from O. This probability must
be equal to the probability that all particles are exterior to the sphere
of radius r, times the probability that at least one particle is contain-

ed in the spherical shell. Hence w(r) must satisfy the equation

r
21,1 w(r) = [}-‘fﬁ(r)dr] 4vr2 n,
)

where n denotes the constant average number of particles per unit volume.

From equation (21.1) we derive

d W) 2 T wir)
g — - n
21.2 i e ] 4T [47—“ E

The solution to (21.2) is given by

IP, Hertz, Math, Arn., 67, 387 (1909).

25, Chandrasekhar, Rev. Mod. Phys., 15, 87 (1943).
15 '
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21.3 w(r) = 41r2n exp (—- ﬁ_’%:f_l') ) s

since according to (21.1),

21.4 w(r) — 4rr n as r — O,

For a large number of particles N> 1, using the distribution (21.3),

an exact formula for the average distance, {r)» , between particles may be

derived.

By definition

[ r exp(._"'"'sr ") dr,

0

0

21.5 {r)= ‘{ rw(r)dr = 4yn
(0}

and with suitable substitutions equation {(21.,5) reduces to

% /3
21.6 <1y B(T-‘lafn' )|/3jx1/3 exp(-x)dx  =[(4/3) '\/4—?m—) = 0.554n" Y3 |
o

This value may be contrasted to that defined in the literature1 by the

relation

21.7 swer$a/a - 1

so that

21.8 {r) = (3/4rm)1/3= 0.621" /3 .

However, to facilitate comparisons, we shall use definition (21.7) in
subsequent work., According to the discussion of Chapter 1, Section (3),
the preceding results apply to interacting charged systems if we modify
the interpretation of w(r) as the probability that the system is the near-

est neighbor to © and is the center of a Debye charge cloud as well.

2. é Functional Definition and Some Notational Conventions

1. G. Breene, Jr., Rev, Mod. Phys., 29, 94 (1957).
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In order to obtain results which may readily: be compared with

. those of Holt_smark, we shall throughout the remainder of our work measure
the field 3 as the multiple of an n-dependent normal field -E.n, where
22,1 E=FEnl .

En is defined by equation (21.8) and the relation

22.2 E, = €/ <2 = 2.61n2/3 |

We shall refer only to a monovalent-monovalent plasma, although in the
general derivations use will not always be made of this fact. It will
then follow that the total ion concentration is given by

22.3 n=2n* ,

where n* represents the total density of positive ions used by Holtsmark.
The probability, W(Eg)dEy, for finding a field of magnitude Eg5 at the
point O will hereaftér be related to the normalized distribution function
H{®) b& the equation

22.4 ~ WN(Eo)dEg = HN(RIAR = EnWN(EQ)dD .

Thus Hy( P ) represents Wy(E,) measured in units of the normal field
strength E,.

3. The Determination of W(Eg) by the Nearest
Neighbor Approximation

In the approximation,
consistent with the discussion of Chapter 1, Section’4, w(r) is given by

the relation (21.3). The transcendental nature of expression (12,12},

€2;(1+Kkr)
re

prevents the transition from the probability density, w(r), to H(() via

23,2 E(x) = exp(-kr) ,
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W(Ep) If H(® ) is required as an explicit function of ® . Consequently,

® and H(® ) are obtained as parametric functions of r, using a scale
factor which relates differential increments of ® to those of r. Thus
with the substitution of equation (22.1) into equation (23.2), there is

deduced the expression

Enrdexp (-xr) 4
€23 (k2r2 +2RP +2) .

When use is made of expression (23.3), together with a comparison of

equations (22.4) and (23.1), one obtains the following parametric equa-

tions:
, (O +xr)
33210 72r® , 4 ron
23,5 H = : kr - ___) .
(e k¥riyakr+2 ex® ( 3

H(3) is a complicated function of temperature and total ion
concentration n, which approaches the nearest neighbor approximation for
Coulomb fields when the ratio n/T and with it K tends toward zero.

Typical examples are given in Figure 2., The temperature, which in most
cases of physical interest does not vary by more than a factor of ten, is
relatively unimportant. The difference betwzen an ordinary Coulomb field
and a shielded field can be quickly estimated from'the most probable values

of ® . These values are smaller for the shielded field than for the

Holtsmark distribution by factors lying between two and ten in the
examples shown. The shape of the distribution function is distinctly

different from Holtsmark?s distribution.
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4. The Markoff Method of Summation

Markoff's1 method is an ingenious device for summing mutually

dependent probabilities whose sum has to satisfy certain auxiliary con-
ditions., It has been discussed by various authors; notably by

3

Holtsmark,2 Born,” and Chandrasekhar.* The probability distribution of

vector fields, e.g., the electric microfield in a plasma, represents a
problem of this type. It will be fully reviewed in this section.

| Dencte by
24.1 Ey = (X3,¥y,23) , (3 = 1,2,..,N0)
N vectors in a three dimensional space, where the components Xj, Yj and
Zj are functions of the cocordinates Xys ¥y and Xy of the source of Ej.
We wish to find the probability
24.2 Wy (Xos Yo sZ )X dY dZ, = Wy(Eg)dE,
that the resultant vector

- LI N

24.3 E = Jg Ej(xj,yj,zj) - Jg Ej(rj)

has componenté X, Y, and Z in the intervals
- A :
24,4 X, 1/2 dX, £ X £ X+ 1/2 dX,, etc.

Fer this purécse, we introduce

1A, A, Markoff, Wahrscheinlichkeitsrechnung, Liebman, Leipzig
u, Berlin (1912).

e !
“J. Holtsmark, Physik. Z., 75, 73 (1924).
M., Born, Optik, Springer, Berlin (1933) p. 444.

43, Chandrasrkhar, Rev. Mod. Phys., 15, 185 (1943).
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24,5 O'j(xj,yj,zj)dxjdyjdzj = GJ(FJ)di"J,
the probability that X3, ¥ and z) lie in the ranges Xj, Xy + dxj;

Y3 yy+ dyy 3 and zy, zy + dzy respectively. It is normalized such that

o

24-6 f‘j(-r.j)d;j = ] ’ (J = 1,2,-..,N)o
(4]
The distribution, WN(Eo)dfo, may be written
-3 i .ﬁ - -
24,7 WN(EO)dEO = :3;{'[j=!°t](rj)drj ’

where the integration is to be extended over those regions of the 3N
dimensional configuration space (X1, Y13 Z1seees Xjs Y3s Zj) in which the
inequalities (24.4) are satisfied,
This condition can be formally handled by introducing the factor
A (T1,T2,000,Ty) = 1 whenever X,- 1/2dXy € X € X, + 1/2dX,, etc.,
24.8 -
A (F1,T9,4:4,T) = O otherwise;

thus transforming equation (24.7) into
24.9 W (E)dE, = [ |8 (F, T 20 1 0. (Fad
. NCEGIdE, N (T1,TgseeesTy S 3(ry)dxy

where integration extends over the total accessible regicn of configur-
ation space V.

Extension of the domain of integration to all regions of con-
figuration space is accomplished by the formal introduction of the factor
A . At first sight this appears to be a heuristic formalismj; but it is
the essence of Markoff's methed .tha.. such a factor may be found,

The well known discontinuous integrals of Dirichlet Jx, d'y,
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and Jz, of which a typical representative is
400
sih (o,
24.10 d =& j ——A——"’i"—)- exp (i¥xPx)dPx »

"
have the properties

dx = 1 %, ¢ ¥y & o, etc.,
24,11
Jx = O otherwise,

By means of the substitutions

o = 1/2 dX,, and ¥y = ™ Xy = X3
24.12 ®y = 1/2 d¥5, and Yy = Wovy - Yo
o, = 1/2 dZ,, and U, = W ozy - 23

into Jx’ cfy, and Jz respectively, it is clear that the factor
24.13 A = b(x Jy Jz
satisfies the condition (24.8) and permits expamnsion of the domain of
1ntegration to include all configuration space.
The introduction of the relationships (24.10) and (24.13) into

equa%:ion (24.9) yields the equality

Cee "is”’; -
2414 Wn(fo)dgo 0 J\;’;J’[u °3(T)')JH sin(%x Px)  sin (¢yPy) sin(dzpP2) e dﬁ]drjg

R TR T TR R
where
24.15 dl‘)‘: dpx dpy 4Py,
and
24,16 ‘P.? = Py + Py¥y + P2 = lpllrlcosa.

Interchange of integration order gives

‘o -
2%.17 W N(Eo)dgo - #3 ] /[ LN f sm(;m&) sm(':;Ps) sm(":f’z) ?P‘:J:fl(qi(ﬁ)d
il i it Y z

It will be demonstrated in the succeeding development that the

o

9f.
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contribution to the integrand for absolute values of p sreater than ten

is negligible; thus justifying the approximation of sin (xp) by otpwhich

transforms equation (24.17) into

+00 -
24.18 WN(Bo) dEg = @n!% f [ / e"F'E°cN(P)dP ,
where
N
ip (L E
24.19 GN(P) = L_N,Ielp(. 3) g”:[ oj(Fj)d?j.
=|

&
The problem of finding w(E;)dE; is in this manner reduced to

the solutions of equations (24.18) and (24,19) by the method of Markcff.
No further calculation can be made until specific forms of the vector

components Xy, Yj, Zj, and probability densities, 6}(?5), are known.

However, a case of great interest arises in many physical problems when
from special symmetry properties it is known that

03(Fy)dry = O (Fy)dr
24,20 jﬂ : . - i 3
Ej(rj) = -‘*-'E(I‘J) ’
for all values j. Equation (24.19) then may be written

-

. '-Ev N
24.21 GN(P) = [ ] JP o’(i-’)d?]
v

where integration extends over the voiume V available to the sources of E.

5. The Markoff-Holtsmark Method for Evaluation _o_f_ the Microfield
Distribution and the Shielded Force Approximation

According to the discussion of Chapter 1, Section 4, when the
nearest neighbor approximation fails, we must consider'ﬁj, the vectorial

contribution to the microfield EO of each source system. In this case

the probability density of a given value'—E.° is proportional to the sum
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of those weighted sub-volumes of configuration space which are occupied

by the sources., Of course, these sources are subject to the auxiliary
condition that the sum of their vector contributions places E; in a range
dfb. Since this is precisely the type of problem which the Markoff method
is designed to solve, the distribution function W(Eb) may be cbtained
immediately (at ieast in principle) when the probabilify density 63(55)
and vector contribution EB’ of each source is known.

The microfield at a point of observation O in a plasma may be
rigorously represented as the vector sum of the Coulomb forces produced

by all the point charges.

N N
- — - -t - zJ' -
25.1 E § Ej E.E _r'j" l’j .
3=l 3=\

As already remarked in the introduction, Holtsmark assimed that c&(fﬁ) is
independent of'?j and the configuration of the other charges and has the
constant value 1/V. This assumption, which is valid fer non-interacting
partiéles, simplifies the calculations decisively, but it is not admiss-
ible for systems of particles with long range interactions. However, a
constant probability demsity 63(?5) with the value 1/V can be formally
used for calculating the field distribution if equation (25.1) is replaced
by equation (l4.1). This follows from the discussion of Chapter 1,
Section 4, which showed that 03(53) is, in fact, equal to the volume
recliprocal if the jth source charge is interpreted as the center of a
charge cloud; hence, as the source of a shielded Coulomb force. Thus,
Holtsmark?s original method can be used if, throughout, the Coulomb force
is replaced by the shielded force (1l4.1).

For the shielded force approximation, we may determine the dis-
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tribution, WN(fo)dEO, by employing equation (24,.18) reintroduced as

+60 o-o "
- - Eo
25.2 W (E )dE = G ( )d-. @
N\&g/Chg @m? jl[ Nt P2dp
Since the functional dependence upon the coordinates of a monovalent
source 1s identical for all sources, and the probability deﬁtsity of any

source 1s 1/V, equation (24.21) 1s applicable, It may bc written as

-

. N
ip-E
25.3 Gy(p) = [_3, /e d?] ,
v
where according to equation (12.8) for a menovalent source

25.4 E(r) =+ € (1 +pr)e *rT,

£
r3
The vectarial basis for P has as yet been left arbitrary. If

we introduce polar coordinates with polar axis along the direction of Eg,

equation (25.2) is transformed to

- a -1IPHE°|co.,6
25,5 Wn(Eo)dE, = P in® dpde dp ,
NiEg)CEqy (am/ Lf Gn(P P £in® dp p

which can be reduced to

25.6 | WN(Eo)d:E.o = Z:_;g_;é_‘) fpsin(P EO)GN(P)dP.
o

We are interested only in the absolute value of the microfield, hence in
Wy(Eg)dEg. It is derived by multiplying WN(Eo)dEO with the apprepriate

weighting factor, 4TTE§, to obtain from equatlon (25.6) the relation
2 -
25.7 WN(EQ)E, = 4nEZU(E)dE, =  2EodEo jo p sin(PE)CN(P)Ap

In accordance with the convention introduced in Section 2, let us further

express the probability demsity, Wy(Ey), in units of the normal field
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strength E,, i.e., by introducing Hy(R) defined in equation (22.4). Then

Hy(P) is written as

2 00
258 Hy(@®dB - EuN(EQ® - ZEnB de f Pain(EBPICN(PIP 5
0

or finally,
2 DO
25.9 Hy() = 2Eaf j;psm (E,Bp) Gy(P)ep ,
where
P> N
. 1P:E -

25,10 G = |1 dr 3

n(p) [v j;e ]

while ® and E, are defined by equatioms (22.1) and (22,2) respectively.
The variable of integration p is a dimensionless parameter appearing via
the Dirichlet integrals introduced in Section 4 of this chapter,

The evaluation of the integrals (25.9) and (25.10) constitute
the complete solution to the shielded force approximation, and this

problem will be wonsidered in the following chapters.




CHAPTER IIL
THE LIMIT AND INTEGRATION OF THE FUNCTION Gyn(p )

1. The General Properties of GN(LQ)

An examination of equation (25.13) shows that Gy(p ) is a

dimensionless quantity which: we shall write as

N
31.1 an(p) = [G(P)] ,
v
where
T 210 iplElcose 2
31,2 G(pP) = _3 f e r“ sinedoe dp dr .
\V4 47 RS o Yo Yo ;

The limiting form of equation (31.2) as N, V, and R tend toward infinity
has certain simple properties, independent of the nature of the force
law, which will first be described. From its definition, G(p) has the
dimension of a volume which is smaller than V because of the periodic
nature of the integrand. Furthermore, G( P) is only slightly smaller
than V when E tends rapidly toward zeroj; the integrand simultaneously
approaching unity as r approaches infinity. Introd:xcing the auxiliary
quantity V*(p) <LV, one may write

31.3 [G_@]N= -["i:‘\/*"(/‘:»)]M= [‘_yf(ﬁ)]N= [l__E_)_f_E_]N= g_S(P)

\% Moo Vv N—o N/n N N N+

where n is the total concentration of charges and is equal to twice the

27
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number of positive ions. Since the probability distribution, w(‘io), of

the microfield is independent of the volume of the plasma, the same must
be true for g(P ) which is the only parameter in the formalism which is
characteristic for the physical nature of the system. Thus g(p) is fully
determined by the force law and by the concentration, n, of point charges.
For an unshielded Coulomb force, g(p) éan be rigorously calculated with-
out using series expansions or similar approximations. A proof of this
statement is given in an appendix.

In the case of a shielded force, g(P) is a complicated function
of the shielding constant & § hence, as in Holtsmark?’s work, the integral
(31.2) can only be handled by numerical and graphical methods.

2. The Form of g(p)/V in the Shielded
Force Approximation

To facilitate the analysis of the function G(pP )/V, it is con-

venient to first integrate equation (31.2) over the angles ® and ¢ to find

R
32.1 G(p) = 3 j ra sin (Pl_ﬁl )dr .
v K
pRS ) PIEI

By making the substitutions

1/2
32.2 Nx = (€P) rEx = Rr,

-c

32.3 E = e(l + rr)e r

p2

nx

32.4 F(mx) = (1 + T]x)e. .
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and

32,5 R* = R/(ep )'/a,

one deduces that

”*
R
32.6 G(P) = _3 I x*sin [F(nx)] dx .
v RS o Flqx) X%
For ease of reference we further put
4_ .
32.7 I(r],x) = x sin [ F(nx):l s
Flnx) x2
so that equation (32,6) may be written
R¥*
32.8 G(R) = 3 I(q,x)dx .
v R*S Jo

In order to analyze the integrand I we shall first study the behavior of

F(nx) and introduce an associasted value of the variable x.

3. The Behavier of F(nx) and the Definition of x,(7n)

An excellent approximation to G(p )/V may be obtained through
determination of its upper and lower bounds. But before doing so it is
desirable to examine the behavior of F(qx) for non-negative values of

N X, and to define a useful value for x.

Consider
33.1 F(Nx) = (1 +qx)e"‘xe o ,
and
33.2 F (qx)=-qx e V4o

for non-negative values of Nx. The function possesses a maximum at the
origin and conetantly decreases with increasing 1nx, so that, for
33.3 nx > nx,

F(Ax) L F(x) .




value of "a" is specified, and consequently a nomograph may be prepared
based on the following considerations,

let the value of "a" be fixed, and write equation (33.4) as

12 -
33.8 a2 ooy = [ +nxa(7])]/ SNram/z

*

With "a" equal to unity,

| -
fe o nx(n)/2

33.9 x1(n) = [1 +qx1(‘q)]

Define Y|, by the relation

(V3]

3.10 Naxal Mg) = Mx1(y)
and substitute this expression into equation (33.8). Division of the

relation so obtained by equation (33.9) then yields the result

33.11 xg( Mg) = a"/a ,

or

30

Let us further define xo(7)) by the relation

33.4 F( !!xa) =8 >0 .

X%

Then

2 2

33,5 1/xg > F( NXa)/xg = a,

and

33.6 xg < a2 ,

while

33,7 xp < Xg$ by a .

For convenience in the subsequent calculations it is important

to have a quick method of determining xg4( q) as a function of ) when some

|

..|/;_ :

33.12 xa(na) = a x1(m) .
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If equation (33.11) is substituted into equation (33.10) then

33,13 M o= & na.

To construct the nomograph illustrated i Figure 3, one prepares a graph
of equation (33.9), and on it one also plots the linear equation (33.13)
for the desired value of "a™, Choosing the value Nas the corresponding

value of 1) is read directly. The value of x, corresponding to 1, is

then obtained by reading x;(7} ) and dividing by the square root of “a".
To include in one display a sufficient range for 1 , the illustrated

nomograph is double scaled.

4. The Geometric Character of G(P)/V
With the help of the x4 and Figure 4, the following properties
of the integrand I and G(pP )/V can be easily stated:

A) I T x? in the i’ntervaleISx(R* 3

B) 041X x2 in the interval xy; ¢ x < Xg.1 3

Xmre Rlma)re

c) ! I(rl,x)dxl JI I(w],x)dx

X(m-u)x XMR

s

hence the integral from zero to X, over the oscillating part of I is
negatives
D) Because of the properties listed under (C), there exists
an xg greater than Xy such that
| ‘ R* R*
j I(n,x)dx = [ I(n ,x)dx 3
(o] %a
E) In the interval (xa ¢ x £ xqg 1), F(qx)/xz is less than
one-tenth and greater than 7x , so that the sine of this function is less

than the function itself. Hence, there exists an x'g in the interval
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(xa< xg< xo.l) such that

R® R*
II(T],x}dx o fxzdx = ";} I:R."3 - xg]
o X9

Xg 1s a function of v) and represents this special value of the variable x
which divides the shaded area in Figure 4 into equal halves,

With the help of xg('q) one can write

3 3/2 &
34.1 G(P) = 1-x(M) = 1- 4r(eP)  xg(m) o
2 E_R*._3 3V &

Comparing equations (34.1) and (31.3) one finds that

)sla 3

34.2 g(P) = %m(ep xg(®) .

Utilizing the geometrical interpretation discussed under (E), xg(’q) and

with it g(P ) can be easily estimated by graphical methods.

5. An Expression of G(P)/V as a Sum of Integrals

Since the final integral (25.9) is rather semsitive against
errors in g(p), we shall use the more accurate method of calculating upper

and lower boinds for xg(n). With slight modification, this method is

adaptable for machine programing. We put

35.1 G(p) = A1(p) + Az(p) + A3(p)
v
where
3 e
35.2 Ap) = R‘FSLI(’] X)dx
35.3 A(p) = ;ﬁ‘s I(y ,x)dx ,

Ay
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and
R¥*
X

The boutids for xg(n) will be determined through examination of the

functions Aj, Ay and Aj.

6. Bounds for A1(pP)

Al(f)) may be expressed as an ififinite series by employing the

notation
o
= 3

36.1 AP 5 mﬂl Uy »
where

Xmw
36'2 I]'n‘l = I(r] ’x)dx .

Xim+i)r
If one writes the integrand as
36.3 I(q,x) = x% sin ( F(nx)) <2 s

x2 Fnx)

it is clear that, for small argumental values ef the sinusoidal function,

I( q,x) approaches x2; monotonically gpproaching zero with x so that

36.4 F Ut > | gl
But
X-“- 4_
36.5 U = X sin E(NXO  4x ,
Fiqx) ~ X2
Xar

36.7 T & F(nx)/x2 £ 27,
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and

36.8 -1 £ sin [F(qx)/xz] £ 0.

It therefore follows that

X 2
36.9 _Ldex(U]_(O,
2
Xamw
or
3 3
36.10 - gﬁ[xn' x2rr] < U; £ 0.

Combining the results (33.6), (36.4) and (36.10) it is concluded that the
absolute value of each term of Aj( p) is less than unity. The variation

of the sine factor in I(r) ,X) for argumental intervals of 1T implies that

36.11 Up € O whenever m is odd ,
and
36.12 U, 2 0 whenever m is even:

therefore exhibiting Ay( p) as an alternating series which meets the

usual criteria for convergence and approximation. Thus,

36.13 3U; 2 AP £ 3(up+ Uy) |,
R*S R¥3
and
] 3 3

7. Bounds for Ay(p)

For our convenience, let us divide the intexrval
Ap & X < xl
into the following eleven sub-intervals:
Xime)r/i6 € X € Xmu/is (M= 6,7y00e,15) 3

37.1
Xem/16 € X £ x|
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Within these respective intervals one has the corresponding relationships

sin [ Fepx)/x? | & sinl (melymi6 ]

i

sin (mn/16)

37.2
sin (1) £ sin | FOu)/x2 | £ sin (6W/16) ;
and
16/(me1)T £ x2/F(nx) & 16/mw .
37.3

16/m & x*/F@x) £ 1 .

One may now write

X IS5 Xmm/16 w3
7.4 .!é/xzdx Y Mszdx < B Aap)
X X

e 611/l6 mes (m+DT () 7o
and
Xy Xmw /16
37.5 ﬂ:zAch) & sin (611'/16)] x%dx . Z_ lésm[(m*l)nlle]J <2 dx :
Xew/i6 m=6 mT X(m+) /16
whence,

1S
16sm(1) [ 3_ .3 I6sin (m™/16) s _ 3
37.6 e [x, xé,,/w],-f- m§=6W [Xm'n//b X(mﬂ)n'] < Az(p),

and

37.7 AZ(P) e SIn(6Tl'/l6) [X ")‘61\’/16] + Z 16 sIn I.-(m;;):;rr/lé] [xmvr/lé X(m+|)n'/16]
mT

8. Bounds for A3( p)

For calculating the limits of A3(P), use is made of the sinus-
oidal approximation
38.1 x- «%6 £ sinol £ o-of6 -o7120 .
The left member of equation (38.1) substituted into equation (35.4) yields

the relation
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x
B[ (em®
L S
38.2 - I WL—{EL_ dx L A3(P) .
1
which may be reduced to
" 2 2 R®
- &)X -an%
I | e _ 0 Bk ¢ Ax(p).
38.3 R*3 2Wj .,‘_3.]? dx 3 z(P
X X
The substitution
38.4 Vo= 2mx
permits ore to express equation (38,3) as
_ Ry
X
38.5 - X -2k J Ve sipy bra]6 dv ¢ Agcp)d
29X,

Considering assymptotic values as R* approaches, infinity, and neglecting
infinitesimals of order greater than 1/R*3, equation (38.5) may be written

-2 X =2 N

_ { I- e ] LA
38.6 - = !_x + .'1_ + = s(p),

thus bounding A3(pP) from below.
By using the right hand member of inequality (38.1), and by per-

forming a calculation precisely as in the preceding case, there results

R*/27%)
3 -anx _-2nx 4
38.7 — e e 3 F (%) dx.,
Aslp) < W[x'+ndr— * 2% ] ¥ Zore S

1
For evaluation of the integral appearing in the right hand member of

equation (38.7), use is made of the fact that, according to the definition
of &(p),

38.8 nx = Mx; .

Then

-nY -NX . -
38.9 LN N
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throughout the range of integration, which implies

R¥/2n R¥2n RW2n .
X -MX
38,0 _3 | Flgx - _3 [ 0T 5T 0eny,,
PXT L I20R*3 x8 126R*3 | %8
i X Xy

Once more by neglecting infinitesimals of order higher than 1/R*3 and con-
sidering the limit as R approaches infinity, equation (38.10) is trans-

formed into

RV2n an x
4 g by 2 3 4
3 F'X)dx ¢ ® Iy
38.11 X < s Aoy oy ]
120R™S | T B 75 | oo * soxt " zox? zoxt 40 |,

X
Employing the definition (33.4) for x;, the form of equation (38.11) may

be changed to read

R®/2Y
33 44
38.12 3 F4(71X) dx < Xls [ 1+5h¥% + lOT]2X|2'1-)07)x|+4'qx' ]
(208" X| x¢ 2008"3 Cr+qx) ¥

A3 ( p) is now bounded from above.

9. The Bounds for xé('q ) and G(P)/V

The identification of bounds to x:;( 7]) is completed by collect-
ing results (36.14), (37.6), (37.7), (38.6), (38.7) and (38.12). Sub-

stituting them into equation (35.1), one obtains

32 N 32
39.1 1= (ep) xgum) ¢ 6P, 1- (ep) >‘:gt.("’l) )

where xz u.( M) and XZL(TE) are explained through the preceding operations.

From equations (39.1) and (34.1) it is then deduced that
3 . 3 3
39,2 ng( ) ¢ xg(ﬂv] Yy ¢ xgu( q)

and, in the limit as V and with it N approaches infinity,
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N
39.3 exp[i’%‘_’_’_ (ep)3/2 xgu('ﬂ] < l—féf’_)] ¢ exp ﬂrg_[\_ (EP)S/Zx;f_(Y])] ,
N-om

where

N
39.4 I-GLP)]
L v

N>
Thus upper and lower bounds for the limit of [G( p)/V]N have

been determined as functions of P - A graph of the functions xzu( n)

and sz(Y]) is given in Figure 5. Reasons advanceci in the next chapter

justify the omission of values for 7 greater than 10.
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CHAPTER 1V

THE ASSOCIATED MICROFIEID DISTRIBUTION H({3)

IN THE SHIELDING FORCE APPROXIMATION

l. The Method of Evaluating H(R)

For quick reference it is useful to reintroduce the equations

(25.9), (32,2), and (39.4) respectively as equations

41.1 Hy®) = 5_51:_(3 J psin(E,8p en(pddp ,
0
41.2 n= ep2,
and
N 3/2
41,3 I’:i{: GN(p) = z{_,i;a [G_\(/ﬁ)] = exp [lmn(ep) x:; .

Denoting by H(( ) the limiting value of Hy(®) as N approaches
infirity, substituting equation (41.3) into equation (41.1),; and using

the change of variable (41.2), one obtains

Z [~ -]
. 4EnB 3 3.3 B 2
bl H(E) me?r® 'foq P [4'3"1?3\') xg (P ] sin [Eén,ca M ] :
The fumction ’ |
3 3,3
41.5 | n” exp [ %E%q xg{n) ]

42
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is extremely complex, permitting only determination of upper and lower

bounds. Since even these are analytically unmanagable, the integration
of H(®) is performed graphically using the bounds of expression (41.5)
as envelopes for the sinusoidal function., Numerical work then shows that
for values of ) greater than ten (corresponding to values of p less than

10’5) the contribution to the integral by the integrand is negligible.

To determine the profile of H(® ) an explicit choice of n and
K is made. One then plots the integrand for extremal values of x:;('q)
and a suitably chosen value of ® . The area under the integrand is
determined planimetrically. Corresponding to the extreme areal values
so obtained, one finds upper and lower bounds for H(P) for the value of
f selected. A plot of the integrand of the integral (41.4) for several
values of ® is shown in Figure 6.

Points determined in the range ® greater than three are not as
reliable as those for lesser values, due to the rapid oscillation of the
integrand. An aid to the profile determination is, of course, the normal-
ity of H(P ), and was employed to estimate the behavior of the distribu-
tion wing; Futhermore, the assymptotic behavior of H((®) as (> tends to
infinity must be governed by the nearest neighbor of a test point and con-
sequently is found from calculations discussed in Chapter 2, Section 3,

Since the difference between the upper and lower limit of xZ(Y])
was smaller than the error in the graphical evaluation of H({2), it was
disregarded. The relative error in graphical integration increases with
increasing field because of the numerous oscillations of the integrand of
equation (41.4); .it.may be.as. large. as thirty percent for @ greater than

two, and as large as ten percent in the region of most probable field.
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The profiles for H(® ) given in Figure 7 were chosen because they corre-

spond to the situation frequently met in gas discharge tubes and stellar

atmospheres, 1,2,3

2, Discussion gf_ Results

The curves shown in Figure 7 demonstrate the following proper-
ties of the microfield:
*
A). The most probable field ® is much weaker than predicted

18 -3

*
by Holtsmark. For ion concentration of 10" cm ~, (> has a value 0.3,

i.e., at least five times smaller than Heltsmark's result of l.6 for .(5* .
This is true over a wide range of temperature. Even for moderate ion con-
centrationg, e.g., n appraximately 1015 cm"3, (5* is only one<half of
Holtsmark®s \;élue.

For a quantitative comparison with Holtsmark®s original results
one has te c_onsider that we characterise the plasma and define the normal
field E, by means of the total ion concentration n (equal to 2nt) of the
positive and negative charge carriers. Holtsmark, on the other hand,
considers only carriers of one sign and formally identifies n with nt* .
This difference has physical significance when the line broadening by the.
microfield is investigated, since the rapidly varying electron field and

the slowly varying icn field affect the line width in a different manner.

4. Griem, Z. Physik, 137, 280 (1954).

2Sl‘um-C‘ni Lin, E. L. Resler, and A, Kantrowitz, Jour. Applied
Physics, 26, 95 (1955).

3¢. Elstie, J. Jugaku, and L. H, Aller, Publ. of the Astron.
Soc., of the Pacific, 68, 23 (1956).




46

Hip)
Pl
/ \\
!
o r
L
|
osr | | —— HOLTSMARK
: L n=10°, T= 10000°K
08l 1 u NEAREST NEIGHBOR APPR.
ST |
! b e n=2x10¥, T=12 000* K
|
ozl ! “ ~=- n=2x10", T« 12 000°K
} " ---- n=10"® |, T §000°K

o y > 2 i Il o [
o 0.5 1.0 1.5 . 29 2.5 30 —p

FIGURE 7.--THE DISTRIBUTION FUNCTION, H(®)




47
B). The half width of the distribution H(®) is smaller than

that of the Holtsmark distribution, e.g., by a factor of three for the

18em=3 gnd temperature 6,000 degrees

case of an ion concentration 2 x 10
Kelvin. This should enhance the effect of the shift of ﬁ* on the shape
of spectral lines,

C). The wings of the distribution H{®) in regions where

is greater than unity are much lower than in the Holtsmark distributiom.

Formally this is a consequence of the normalization condition

[~}

42,1 IH(c)d(& = 1,

o

and of the fact, mentioned under (A), that the shielding effect favors
weak fields, A quantitative comparison with the Holtsmark distribution
is not very meaningful at present, because of the large error in comput-~
ation.

D). In contrast to the siﬁple behavior of the Holtsmark dis-
tribution, H{{d ) for shielded forces is a complicated function of n.
There is not only the implicit dependence via the shielding constant R,

but also an explicit correlation because of the complicated form of the

force law. Thus, systems with the samek but different n and T may differ

considerably in their microfield profile. The curves for concentrations
2.1()18<:m'3 and 1018¢m=3 in Figure 6 illustrate this statement,

E). All the results quoted above agree in a semi-quantitative
fashion with the results obtained by the nearest neighbor approximation
illustrated in Figure 2. The agreement with the latter is excellent in
the case of high ion concentrations and low temperatures., For low conw

centration, the nearest neighbor method exagger&tes the deviations from
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the Holtsmark distribution caused by the shielding effect (see Figure 6).

F). The shielding correction should modify the shape of
spectral lines as strongly as the time dependence of the microafield which
was also neglected by Heltsmark. However, the shielding effect and the
velocity correction can certainly cancel each othe: on the wings of the
spectral line. Their combined effect on the shape of spectral lines is

complicated and no attempt will be made to discuss it in this thesis.
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APPENDIX
CALCULATION OF g( P ) FOR THE UNSHIELDED COULOMB FORCE

Insert the unshielded Coulomb force

A.l E = ze/r2

into equation (31.2), and integrate over the angular dependence. This

glves .
R 2
A.2 G(p) = g_J_xf sin(zep/r")dr .
v v P
o
let
R4 2
A3 h(p) = p G =  aw fr sin(zep/r )dr ;
v Ve
then, if primes denote differentation with respect to p >
312 (R
n ze) , 2
AL h (p) = - f%__ fsin(zep/r ddr .
(o}
With the new variable
A.5 u = zep/r2

equation (A.4) transforms into

3
3/2.1/2 , 2¢P/R
A.6 h"(P) = 2w (ze) — p sinu du .
Y u3fe

We consider the asymptotic expression for h" as R approaches

infinity and find

51
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) (2nze )3/?.P 172
u Y
A.7 h (P) = ?
v

which integrates to

372 5/2
A.8 hip) = 4(2mze) P tCcp +cy o3

| TV 1 2
or using the definition (A.3) of h
A.9 G(p) - 41r(21rze)3/2 P3/2 +c1 + czp'l .
v IS5V

Since from its definition

A.10 _ LimG(p) = 1
P-»o v

it follows that

AQ 11 cl = 1 ’ c2 = 0 .
Comparison of the equations (A.9) and (31.3) gives
A.12 g(P) = 4,21 n(zep)3/2 .



