
~ OBJECT-ORIENTED LANGUAGE FOR THE

REPORT SPECIFICATION INTERFACE

TO A CASE REPOSITORY

By

MANOHAR S. V. RAO
l'l

Bachelor of Engineering

University of Mysore

Mysore, India

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1992

'
~1LJ~}~.~

AN OBJECT-ORIENTED LANGUAGE FOR THE

REPORT SPECIFICATION INTERFACE

TO A CASE REPOSITORY

Thesis Approved:

Thesis Adviser

C.

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I am very grateful to Dr. Miller for all the help he

has given me in the successful completion of this work. His

suggestions for the improvement of this document have made

it what it is today. Also, I am very thankful to Dr.

Mayfield and Dr. Hedrick for being extremely obliging and

helpful and for having put up with my innumerable phone

calls in spite of their busy schedules.

A special note of thanks is needed for my collegue at

LBMS, Leila Freijy, without whose help, my navigation

through the rough waters of word processing would have been

a disaster. Similarly, I should thank Gopal Kulkarni and

Sridhar Chandrashekar for letting me draw on their

experience in defending theses. Also, I have to thank LBMS

for allowing me to do this project. In particular, my

gratitude is due Yuzo Yamamoto for his technical as well as

philosophical guidance.

lll

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

Object-oriented Programming 1
The CASE Repository 2
General Statement of the Problem 3
Objective and Scope of the Study 4

II. CONCEPTS .. 6

Object-oriented Design and Programming 6
The CASE Repository 7

The OPRR system 8

III. THE LANGUAGE SPECIFICATION 12

Program Structure 12
System Messages 12
User-defined Messages 13

Classes 13
Declaration 13
Instantiation and Use 14

Variables 14
Instance Variables 15
Temporary Variables 15
Global Variables , 15

Repository Access 16
Obj ect s 16
Relationships 16
Properties 17

Software specifications for RSI2 17

lV

Chapter Page

IV. THE DESIGN .. 18

The RSI2 Processor 18
The Compiler 19

The Lexical Analyzer 2 0
The Parser 21
The Code Generator 23

The RSI2 Run-time Environment 24
The Instruction Set 25
The Run-time Support 27
The Interpreter 2 8
The Repository Access 28

V. THE IMPLEMENTATION 3 2

The Compiler 32
The System Class 33
The Component Classes 34
The Accessory Classes 37

The Run-time Environment 39
The System Class 40
The Component Classes 41
The Accessory Classes 45

VI. COMPARISON WITH RSil 46

VII. CONCLUSION AND SUGGESTIONS FOR FUTURE WORK 48

Conclusions 48
Future Work 48

BIBLIOGRAPHY ... 51

APPENDICES ... 53

APPENDIX A- RSI2 LANGUAGE GRAMMAR 54

APPENDIX B'- THE PARSE TREE NODE STRUCTURE 60

APPENDIX C- USER'S MANUAL 64

APPENDIX D- LIST OF ACRONYMS USED 79

v

LIST OF FIGURES

Figure Page

1. Overview of the RSI2 Processor 18

2. Overview of the RSI2 Compiler 19

3. Input/Output for the RSI2 Parser 22

4. Input/Output for the RSI2 Code Generator 24

5. Run-time environment of RSI2 25

6. Class Structure for.the RSI2 Compiler 32

7. Class Structure for the RSI2 Run-time Environment 40

8. Notation for ~n RSii parse tree node 61

9. A simple RSI2 statement 61

1 0 . The IF s tat em en t . 6 2

11. The CLASS Statement 62

12. The WHILE Statement 63

13. A Message Block 63

Vl

CHAPTER I

INTRODUCTION

Object-oriented Programming

Object-oriented programming involves the use of data

abstraction. The approach is data-driven, in the sense that

the whole process starts with the classification of the data

ln question into classes (of objects). This classification

is based as much on what the objects do as on what they are.

The definition of each object consists of both the data

elements and the messages that the user of the object can

use to access the object. This approach gives us a

flexibility not found in traditional programming, because it

provides us the desirable qualities of encapsulation,

reusability and inheritance. Also, since every function is

evaluated on the basis of the object it is referring to, we

also obtain the useful quality of polymorphism. This lifts

the restriction, usually placed on conventional language

users, of having to have unlque procedure names. Also, much

of the built-in functionality of object-oriented languages

is user-configurable.

1

2

The CASE Repository

CASE - Computer-Aided Software Engineering - is a

combination of software tools and structured software

development methodologies [McClure 1989]. A CASE repository

is the representation, in data, of all facts about the

system under development. This representation is in a form

which is independent of its mode of entry or subsequent

analysis and reporting. The repository is designed to be

accessible to more than one user.

The repository used in this project is based on the

Object, Property, Role, Relationship (OPRR) meta model. A

meta model is the "database schema" for a CASE repository.

It describes the structure and meaning of information that

can be stored 1n the repository and shared among CASE tools

[Welke 1989] .

This 1s an object-oriented database system, with the

notion of classes and instances implemented in it. The meta

model (known as the meta database) is the class definition

for the repository. It contains information about the types

of objects that will be used in the system based on this

model. Inheritance and other interactions between object

types are modeled by relationships between objects in the

model. An instance database will always comply with the

specified meta model and contains instances of the types of

objects and relationships specified. No dynamic changes to

the meta model are allowed in this system.

General Statement of the Problem

3

Given that the OPRR repository is the central place

where all the information related to the CASE system

resides, the next logical requirement would be some

mechanism of database access and report facility. This

report facility should be flexible enough to provide the

user of the CASE system with easy ways of generating any

kind of report that she/he desires, and should be capable of

providing the user with different ways of looking at her/his

data. Thus, the reporting system should allow the user to

define and examine different combinations of the complex

relationships existing in the database.

Since the repository itself is object-oriented, the

reporting facility should be object-oriented so as to

provide the user the conveniences of reusability and

inheritance. This means that the user should not only be

able to define complex combinations, but should be able to

reuse them, and to build upon them, to obtain even more

detailed combinations, whenever necessary. Since the

reporting facility is object-oriented, it makes it easier to

define combinations of data.

4

Thus, there is the need for an object-oriented

reporting language, closely connected to the OPRR

repository, which provides the user of the repository with

constructs to access the repository, generate reports of any

kind desired and of any combination of data desired, and to

print out these reports in the format desired.

Objective and Scope of the Study

This study is part of the project that has been started

at Learmonth and Burchett Management Systems Incorporated,

Houston, Texas (LBMS). The aim of this project is to

fulfill the reporting needs of LBMS' database management

system Information Manager.

The objective of this study is to design and implement

an object-oriented language, RSI2 (Report Specification

Interface 2), which gives the user the ability to access and

generate reports of the data residing in an OPRR repository.

Though most of the constructs in this language will be

implemented to suit the OPRR repository, the objective is to

implement a language which has the object-oriented qualities

of reusability, encapsulation, and inheritance, in such a

way that this language itself can be reused in a context

other than the OPRR repository without doing a total

redesign.

Using this language, the user will be able to define

classes consisting of data structures in the repository, or

classes that help format the reports that are generated.

The user will be able to reuse these classes, or to extend

them into new inherited classes, which can provide a new

view of the repository.

5

CHAPTER II

CONCEPTS

Object-oriented Design and Programming

Object-oriented design is the method which leads to

software architectures based on a heirarchy of objects.

Each system or subsystem is an object in itself, in turn

made of objects. Some of the characteristics of object

oriented systems are:

They are modularized on the basis of their data

structures. This means that each data structure (called an

object), has a behavior associated with it.

Object classes are similar to abstract data types. An

abstract data type consists of data with a set of procedures

(often called methods) to manipulate them, and the behavior

of this data type is limited to the functionality of these

methods.

The memory used by deleted objects is reclaimed by the

language system, without the programmer having to do

anything about it.
6

7

Individual objects are grouped into classes. The class

definition acts as a factory to produce these object

instances. Each instance of a given class differs only in

the value of its data, while the behavior remains the same.

New classes of objects can be built by extensions of

existing class definitions through the process of

inheritance. The subclass (the inheriting class) can reuse

all the data and methods of the superclass.

An operation or method is applicable to more than one

class of objects through the principle of polymorphism.

Thus, we can have more than one message with the same name;

the system decides which object the message is referring to

at run-time.

The CASE Repository

A repository contains all relevant information about

how information systems are constructed and function, be

they in planning, under development, or in operation. The

reposit1ory holds it in a consistent, complete form,

independent of the mode of entry, modification, or

subsequent use [Welke, 1989]. This information is generally

called specifications. The advantages of having a single,

consistent source of system specification information are

integrity and ease of use.

8

The OPRR repository is object-oriented in nature. As

mentioned before, there is a meta model or schema which

describes the data structure. This would correspond to the

classes that we use in an object-oriented language. In

addition, there is the instance database, which stores the

actual information, conforming to the structure laid down in

the meta model or meta database. This instance database

corresponds to the instances of the classes in the object

oriented language.

The OPRR system

The repository used here is based on the Objects,

Properties, Roles, Relationships model. This model requires

a "meta schema" translation and/or programming procedures to

represent and manage these schemata. In this model, a

target database consists of instances of objects,

properties, relationships, and roles. The advantage of the

OPRR model is that it allows for many-to-many multipart

relationships between objects. The relationships can have

properties. Problems associated with the type of data in a

relationship, and the direction of flow, are solved in the

9

OPRR model by having roles in the relationship. The objects

participate in a relationship in different roles.

The OPRR sy~tem has an application programming

interface, which provides a mechanism for an application

program to manipulate the "target" database containing

instances of objects, relationships, roles and properties

whose definition is stored in the "meta" database. This

interface is built using object-oriented concepts. Thus,

instead of using pointers, data structures, codes, database

keys, and other identifying mechanisms, the uniform concept

of "object" is used to represent real-life entities. The

advantage of this approach is that it isolates the

application program from the internal data structure of the

system. Each object is identified by a tag called an IDO.

Most of the interface functions receive and return IDOs.

In terms of object-oriented programming, there are four

different classes of objects that OPRR manipulates: value

class, database class, meta class, and list class.

"Definition" objects are used to define OPRR item types

and values the application program wants to create or

retrieve.

"Database" objects represent instances of objects,

properties, relationships, and roles that exist in the

target database. These objects are sometimes called

"instances", because they refer to instances of OPRR

entities that actually exist in the target database.

Specific database objects are referred to as database

objects, relationship database objects, role database

objects, and property database objects.

10

"Meta" objects represent object, property,

relationship, and role types whose description is stored in

the meta database. Meta objects are created using the meta

database access functions. Specific meta objects are

referred to as object meta objects, property meta objects,

relationship meta objects, and role meta objects.

Sometimes, meta objects are called OPRR types, or simply

types, because they refer to the types of entities that the

target database stores.

"List" objects are collections of objects. Any type of

OOP objects including list objects may be a member of a

list.

"Placeholder" objects are a general enumeration

mechanism for a collection. The placeholder object is used

to visit each member of a collection.

11

User-defined objects are objects that are defined by

the user. The user of the programming interface, may create

new types of objects, and use them in any way desired.

CHAPTER III

THE LANGUAGE SPECIFICATION

Program Structure

An RSI2 program is a sequential set of messages. The

message is the only method of execution in RSI2. A message

is sent either to the system object - the RSI2 system - or

to an instance of a user-defined class. In the first case,

the message is a reserved message provided by the RSI2

system, whereas in the second case, the message should be a

predefined method of the class in question.

System Messages

These are built-in messages sent to the system object.

The RSI2 system object is the global entity that is

responsible for executing the system messages, which are

predefined and finite in number. The system object is

instantiated upon startup of the program, exists as long as

there are messages to be executed in the program, and is

destroyed only when the program terminates. RSI2 system

messages range from control messages like if and while, to
12

13

class declaration messages. Appendix C lists all the system

messages that are built into RSI2.

User-defined Messages

These are messages recognized by instances of user

defined classes. These messages can only be executed if

they have been defined in the class declaration. A typical

RSI2 program will be a mixture of system and user-defined

messages.

Classes

The most important feature of RSI2 is the ability to

define classes, which encapsulate data and the behavior

allowed of them.

Declaration

The declaration of a user-defined class in RSI2

consists of three parts:

1. The superclass from which the new class inherits

methods and data. This section is optional.

2. The instance variables of the class. This is the

data part of the class, and is optional. These

variables are only accessible to the methods defined

for the class, and are totally hidden from any other

class.

14

3. The methods for the class. These define the

behavior of the class, and are the only way the

external world can interact with the object of this

class. The methods of a class have full access to the

data of the class.

Instantiation and Use

For any class to be used, it has to be instantiated. A

specific message to the system object will do this.

Instances of a class are kept in variables. Use of these

instances is only by way of the public messages defined for

the class.

Variables

Variables in RSI2 are typeless. A variable can be used

to represent an instance of any available class. There are

three kinds of variables in RSI2:

15

Instance Variables

These constitute the data part of a class. They are

instances of any available class, and their lifetime is the

lifetime of the instance of the class that they are part of.

They can be accessed only by the methods of the class they

are instance variables of. The instance variables are

stored in the object memory.

Temporary Variables

These are variables declared in the methods of a class.

They exist only within the scope of the execution of the

method and are destroyed when the method returns to its

caller. The temporary variables are maintained on the stack

which is used by the method that is being executed by the

interpreter.

Global Variables

All variables that are neither instance nor temporary

variables are global variables. Their lifetime is the

lifetime of the program using them, and their scope is the

whole program itself. Unlike the previous two kinds of

variables, they need not be explicitly declared. When the

16

interpreter encounters an identifier, it will consider it a

global variable if it is neither in the list of temporary

variables, nor in the list of instance variables for the

class whose method is being executed. This will then become

an element in the list of global variables maintained by

RSI2 for the program.

Repository Access

The most important aspect of RSI2 1s the access to the

repository on which the reports are to be produced using the

language. The repository has three kinds of entities:

Objects

Objects in the repository can be accessed based on a

query. The query is based on an identifying property of the

object, or on a relationship that it is involved in, or on a

role that it is involved in, in a relationship.

Relationships

Relationships connect objects in the repository.

Access to relationships in the database through RSI2 is

17

again based on a query. The query is based on a property of

the relationship, or on one or more objects involved in the

relationship.

Properties

Properties in the repository are attributes of either

objects or relationships. Again, the query-based access of

the property is by object or relationship.

Software specifications for RSI2

Following are the specifications for RSI2:

1. Language of implementation: C++

2. Hardware: PC (80x86 based)

3. Operating Systems: OS/2

CHAPTER IV

THE DESIGN

The RSI2 Processor

The RSI2 processor software can be divided into two

parts: the compiler and the run-time environment. The RSI2

compiler reads the RSI2 source statements and generates

binary interpretive code. The RSI2 run-time environment

includes the RSI2 interpreter.

RSI2

Source

RSI2
Compiler

Interpretive

Code

RSI2
Interpreter

Figure 1. Overview of the RSI2 Processor

Figure 1 shows the data flow for generation of binary

interpretive code. The RSI2 compiler generates the

interpretive code, which is read by the RSI2 interpreter and

18

19

executed. The RSI2 interpreter must be present to execute

the RSI2 program. Since the compiler and the interpreter

are separate, the binary interpretive code can be

distributed without the RSI2 source code, if desired.

The Compiler

Figure 2 shows the overall structure of the RSI2

compiler. The lexical analyzer generates tokens for the

parser. The parser consists of the interface to YACC and

the routines to build the internal representation of the

input language (the parse tree) . The code generator uses

the parse tree to generate binary interpretive code for the

source code.

Lexical Analyzer

Parser

Interpretive
Code Generator

Figure 2. Overview of the RSI2 Compiler.

20

The compiler compiles one RSI2 message at a time. The

messages are separated by the separator character, which is

used by the YACC parser and the lexical analyzer to

distinguish between messages. Thus at any time, there is

only one parse tree in existence, which is for the current

message. The working of the compiler can be depicted by the

following algorithm, written in pseudocode:

RSI2Compiler ()
{
get a message from the source file;
while (there are more messages in the source file)

{

}

parse it into tokens;
send each token to yacc;
construct a parse tree for the set of tokens;
generate binary code for this parse tree;
get next message from source file;
}

The Lexical Analyzer

The lexical analyzer is the module that deals with the

RSI2 source and generates tokens of lexical information for

the parser. In RSI2, each message makes up a logical line.

So, it is the job of the lexical analyzer to break the

source code physical lines into logical lines, and divide

them into tokens. The lexical analyzer and the parser agree

on a predefined set of types of tokens, and the principal

job of the lexical analyzer is to discern the type of each

token it generates.

21

In RSI2, as in any language, there 1s a set of reserved

words, which cannot be used by the user in any sense other

than the one in which they have been designed. Each of

these reserved words makes up a type of token. In addition

to these, there are standard types of tokens, for identifier

names, literal strings, etc. Thus the RSI2 lexical

analyzer, after removing all nontokens like semicolons,

commas, etc., provides the parser with tokens, whenever

requested.

The parser asks the lexical analyzer for one token at a

time. Thus, the lexical analyzer has also the

responsibility of remembering where in the source code the

last token was obtained. Using this information, the

lexical analyzer gets to the next token by reading in the

next section of the source code. Thus, the lexical analyzer

is responsible for all the string manipulations that need to

be done on the RSI2 source to convert it into an

intermediate form - a stream of parser-recognizable tokens -

which will be analyzed for correctness by the parser.

The Parser

The parser is also called the syntactic analyzer. This

is because the parser verifies the syntax of the source

code. Though the parser does not read the source code

22

directly, it gets one token at a time from the lexical

analyzer. The parser has prior knowledge of a set of

syntactic rules, known as the grammar of the language, which

it uses to check the syntax of the source. Figure 3 shows

the input and output of the parser.

In RSI2, the grammar is specified using YACC, which

generates a function containing the rule-checking code to be

used by the RSI2 parser. Every time the YACC function

recognlzes a rule, it calls the RSI2 parser for appropriate

action to be taken. The RSI2 parser then generates a node,

for the token completing the rule, in the parse tree

generated for the current message. The YACC grammar for

RSI2 is included in Appendix A.

Tokens from
Lextcal Analyzer YACC

Parser

Actton calls
when a rule

ts recogmzed

RSI2
Parser

Parse Tree
for each

RSI2 message

Figure 3. Input/Output for the RSI2 Parser.

In RSI2, the parser generates one parse tree for each

message. There is a set of nodes which serve as the header

of each parse tree. Accordlng to the header token, the

23

parser generates the corresponding predefined parse tree for

the message. Since this is a tree structure, there can be

nested parse trees, which gives us the ability to represent

complicated expressions, and control structures like the

while and the if statements. The predefined set of parse

tree formats is also known by the code generator, which

always starts from the header node to construct the

interpretive code for a message. The parse tree structure

for each kind of message in the source code is given in

Appendix B.

The ~ Generator

After a message is parsed, and found to be

syntactically correct, a parse tree is built for that

message. The header node for this parse tree is given as

input to the code generator. The code generator traverses

through the parse tree to generate the interpretive binary

code for all the actions taking place in the message,. The

code generator has prior knowledge of the instruction set of

the language, and its main job is to convert the parse tree

representation of the code into linear interpretive code.

Figure 4 shows the input and output flow for the code

generator.

Header node
of the

Parse Tree
for an

RSI2 message

RSI2
Code

Generator

Interpretive binary
code for the message

written to the
executable file

Figure 4. Input/Output for the RSI2 Code Generator

24

The code generator has methods to deal with any kind of

legal message that can be written in an RSI2 program. The

methods range from ones dealing with individual nodes, to

ones dealing with the message tree as a whole. As mentioned

in the previous section, there is a finite set of predefined

header node types, that both the parser and the code

generator know. Based on the type of the header node input

to the code generator, the code generator traverses the

parse tree in the appropriate manner to get the information

necessary to generate the binary code.

The RSI2 Run-time Environment

Figure 5 shows the run-time environment of RSI2. The

run-time support includes implementation of facilities such

as handling user-defined temporary variables, and the run-

time stack and also performs the role of the linker and

loader, and potentially such services as debugger, and

RSI2 Interpreter

Run-time Support

OPRR Repository
Access

Figure 5. Run-time environment of RSI2

object code librarian. It also includes the handling of

25

RSI2 built-in classes, and interfacing with the repository.

The interpreter contains the code that implements the

virtual machine.

The Instruction ~

Since RSI2 is an interpretive system, there is the need

for an intermediate "language", which the virtual machine

"executes". The word "intermediate" refers to the fact that

the code is between the very high level class description

and the low level language in which the machine is actually

operating. There are several reasons for this type of

representation. One is compactness; the internal

representation of a class description can be much smaller

than the character representation used by the creator of the

26

class. A second reason is efficiency; by translating the

class description once into an intermediate representation

and thereafter using the internal form, we avoid having to

reparse the class description each time a method is invoked.

This "language" shall be called the instruction set of the

RSI2 system, since it 1s nothing but a finite set of

instructions with different data formats, recognized by the

RSI2 interpreter.

In RSI2, all the actions that need to be performed by

the interpreter fall into the following categories:

1. Read/Write instance variables.

2. Read/Write temporary and global variables.

3. Read arguments.

4. Read literals.

5. Return expression from a method.

6. Send messages.

7. Perform a primitive operation.

Any RSI2 message (in source code form) can be

translated into a subset of this instruction set. In the

case of messages that are not built in (calls to methods of

27

user-defined classes), the instruction to send a message is

used with the appropriate method index for the class.

~ Run-time Support

The RSI2 run-time support includes the linker/loader

and the driver. It also includes managing the operation of

built-in classes.

Tbe Linker/Loader. The function of the linker in RSI2

is to link external class libraries to the current program,

which will enable us to reuse classes already compiled into

libraries. The linker mainly builds up a list of files that

are specified by the user as the class libraries, after

checking for their validity as class libraries. When the

interpreter tries to execute a message to a user-defined

class, it first searches for the instructions for that

method in the current file, and then looks for that class in

the list of files built by the linker. The loader does the

job of loading the instructions from the executable file

into memory. It also loads class libraries into memory.

The Driver. The RSI2 driver is the module that starts

execution of the program. This module is responsible for:

28

1. maintaining the object memory and class dictionary.

Any other module that needs to update/access the system

stack will do so using the driver.

2. creating an instance of the interpreter. This

instance of the interpreter will be responsible for

starting the actual execution of the program.

The Interpreter

The RSI2 intrepreter executes one instruction at a

time. It has at its disposal two modules: one for executing

system instructions, and one for executing user-defined

messages. It is the job of the interpreter to decide the

type of the instruction, and do the necessary groundwork,

like searching for the receiver o~ a message, before passing

control over to the appropriate module.

The Repository Access

There are four kinds of database objects that can be

retrieved from the repository. They are the objects,

properties, relationships, and roles. Thus, in the RSI2

language, there are four specific system messages for each

of the above retrievals. OPR, the repository access

subsystem, provides us with methods of retrieval of the

basic kinds of database objects. The RSI2 retrieval 1s

designed to use these public methods in varying, and

possibly complicated, combinations, so that complicated

queries can be built in the RSI2 code for their retrieval.

29

The memory for a database object in the repository is

never allocated directly. Each object maintains a counter

that indicates the number of times that particular object is

being referenced. The reference count must be incremented

when a database object 1s g1ven to an independent

programming unit, which in turn decrements the reference

count when it no longer needs the database object.

Each OPRR public method definition specifies whether an

object returned needs to be decremented by the user or not.

The terms "borrowed copy", and "own copy", are used in this

context. A borrowed copy of a database object is a copy

that is not owned by the accessor of the object. The

reference count is not incremented before the database

object is obtained. An own copy, on the other hand, is the

user's own copy of the database object. Since the reference

count of the database object has been incremented for use,

the object will not be discarded from memory. The accessor

of the database object is responsible for decrementing the

reference count of the database object.

30

Each database object of type Object and Relationship

has a permanently assigned unique identification number

(UID) . The UID is not reused again in the same database.

The actual value of the UID is assigned by OPRR and is not

under the control of the user program. The UID itself,

however, can be retrieved, or an object corresponding to a

given UID can be retrieved. Only Objects and Relationships

have unique IDs. A common set of unique IDs is used for

both Objects and Relationships.

In OPRR, an identifying property of an object need not

be unique over the whole database, but only within the meta

type of the objects that it applies to. Furthermore,

uniqueness is only needed within what is called a scoping

relationship. In a scoping relationship, two roles are

important: the scoping role and the scoped role. A database

object which is scoped cannot exist before the scoping

relationship is created. Also the scoped object exists only

within the scope of the scoping object, which means that the

scoped object is deleted when the scoping object is deleted.

This gives rise to the need for special processing within

RSI2 to keep track of the scoping heirarchy.

RSI2 supports the simultaneous use of only one meta

database although several target databases may be open at a

time. This restriction is imposed on the system by the OPRR

subsystem. Each operation relating to an object, property,

relationship or role specifies the target database the

operation applies to.

There are specific methods to access the meta schema,

and specific methods to access the target database. The

RSI2 compiler uses only the meta database access functions

to check to see that the types specified by the user exist

in the schema, whereas the run-time environment uses both

the meta database access, and target database access

methods.

31

CHAPTER V

THE IMPLEMENTATION

The Compiler

This section deals with the C++ class structure used to

implement the compiler based on the design given earlier.

Figure 6 shows the class structure of the compiler. There

are three distinct kinds of classes that are used in the

implementation:

System Class

Lexical
~ Parser Code

Analyzer Generator
Parse
Tree

YACC
Parser

r-

Stnng
Table

Figure 6. Class Structure for the RSI2 Compiler

32

33

The System Class

This is the global class whose scope is the entire

compiler itself. This can be called the Compiler. As shown

in figure 6, this class encompasses all the component and

accessory classes. It is basically the manager of the

interaction between the various classes. The following are

the functions of the Compiler class:

1. Managing the interaction between the YACC parse

function and the Lexical Analyzer object. This mainly

involves giving calls to the lexical analyzer to get

the next token whenever the YACC parse function needs

it.

2. Managing the interaction between the parser and the

code generator. This involves storing the header node

of the parse tree representing the current message

being compiled, so that the CodeGenerator object can

use that as the input for generating binary output code

for the current message.

3. Instantiating and destroying all the component

classes.

4. Maintaining all global variables.

34

5. Command line processing when the compiler is invoked

by the user.

The Component Classes

These are the main classes that are used in the

implementation and they follow the design explained in the

previous chapter:

The LexicalAnalyzer Class. This class provides the

implementation of the lexical analyzer. The instance

variables of this class serve the following purposes:

1. A handle to the input file from which the source 1s

being read.

2. The current line number 1n the input source file.

3. The current position in the current line in the

input source file.

4. Several flags to indicate whether the debug switch

1s on, the warning level, whether the source is to be

listed when compiling, etc.

35

5. Several buffers for all the string manipulation that

needs to be done.

The public methods serve the following purposes:

1. Initializing the object, which includes setting the

input file handle, and initializing all the flags.

2. Getting the next token in the input stream.

3. Handling an error returned by YACC.

The Parser Class. This class works ln conjunction with

the ParseTree class, and mainly contains actions to be

performed whenever the YACC parser indicates the completion

of a rule. The public methods serve the following purposes:

1. Initialization of the object.

2. Actions for the completion without errors of each

rule by the YACC parser.

The ParseTree Class. This class contains the

implementation of the parse tree node. It works in

conjunction with the StringTable object, since that is where

all the literal data are kept. There are two kinds of nodes

in RSI2 - the operator node and the data node. Each node,

36

irrespective of its kind, contains type information, number

of child nodes, and an index to the brother node (next

sibling) . While the operator node contains pointers to the

first and last child nodes, the data node contains an index

into the string table for string data, and actually keeps

literal integer data in the node itself. The instance

variables of this class serve the following purposes:

1. A node which is the un1on of the two kinds of nodes

explained above.

2. The header of this parse tree.

3. The next available spot in the parse tree for the

insertion of a new node.

The public methods serve the following purposes:

1. Initialization of the object, which includes

resetting the header pointer, and the next node

pointer.

2. Creation and deletion of nodes.

3. Insertion and removal of nodes.

4. Access and modification of data contained in nodes.

The CodeGenerator Class. This class also works in

conjunction with the ParseTree class, and mainly contains

methods to convert the given parse tree into interpretive

binary code. The public methods of this class serve the

following purposes:

37

1. Initialization of the object, which includes storing

the header node for the input parse tree.

2. Methods for the emission of binary instructions for

the parse tree that is provided as input to the object

The Accessory Classes

These are classes that are not RSI2 specific, but used

for various purposes. These need not necessarily be C++

classes, but could be pseudoclasses:

The StringTable Class. This class stores all the

literal strings and the identifiers in the source program.

This is used by the Parser and ParseTree classes to access

the various strings. The string table is basically an array

of characters, with an additional array providing the

mapping that is needed to separate the individual strings.

Thus the string table is a linear arrangement of strings,

with the map indicating the type of each string and its

displacement in the table. The instance variables of this

class serve the following purposes:

38

1. The mapping of the individual literals in the table,

with information about the type of literal.

2. The handle to the area in memory where the whole

string table is stored.

3. Information about the next available spot 1n the

string table.

The public methods serve the following purposes:

1. Initialization of the class, which includes

procuring the specified amount of space for the string

table.

2. Addition to the table at the next available spot and

deletion of a string.

3. Access of strings whose ids are given.

4. Utility functions like comparing two strings in the

string table, getting the length of a string in the

string table, converting to upper case, etc.

39

The YACC parser Pseudoclass. This is actually a c

function that is generated by the YACC parser, given the

grammatical rules for the language. This function works in

conjunction with the lexical analyzer object, and in fact,

is the only user of the lexical analyzer object other than

the system class object. This function is yyparse (). It

asks for the next token in the input stream, decides whether

this is a valid token, and whether it completes any rules.

In case a rule is completed, this function calls the

corresponding public method of the parser object.

The Run-time Environment

This section deals with the C++ class structure used to

implement the run-time evironment. The class structure is

based on the design given 1n the previous chapter. Figure 7

shows the class structure of the run-time environment.

There are three distinct kinds of classes that are used in

the implementation:

40

System Class

Interpreter

Linker/
Stack Loader

Object f----+
Class System Method

Memory Dictionary Executor Executor

T

Figure 7. Class Structure for the RSI2 Run-time Environment

The System Class

This is the global class whose scope is the entire run-

time environment itself. This can be called the Driver. As

shown in figure 7, this class encompasses all the component

and accessory classes. It is basically the manager of the

interaction between the various classes. The following are

the functions of the system class:

1. Managing the interaction between the loader, the

object memory and the class dictionary.

41

2. Initiating the interpreter by filling in its memory

with the code for the main program.

3. Instantiating and destroying all the component

classes.

4. Maintaining all global variables.

5. Command line processing when the interpreter is

invoked by the user.

The Component Classes

These are the main classes that are used in the

implementation and they follow the design explained in the

previous chapter:

The Linker Class. This class provides the

implementation of the linker/loader. The instance variables

of this class serve the following purposes:

1. A handle to the input executable file from which the

code is being read.

2. The current position 1n the current line in the

input source file.

42

3. Several buffers for all the string manipulation that

needs to be done.

The public methods serve the following purposes:

1. Initializing the object, which includes setting the

input file haqdle, and initializing all the flags.

2. Getting all the classes from all the library files

specified on the command line, and adding them to the

Driver's global list of library files.

The ObjectMemory Class. This class works in

conjunction with most of the other classes. This is a

subclass of the Array class since it is just an array of

indices and strings. This class keeps all the global

variables of the RSI2 program being run. The public methods

serve the following purposes:

1. Initialization of the object.

2. Getting the value of the specified variable.

3. Updating the value of a specified variable.

The ClassDictionary Class. This class contains

information about all the classes being used in the program.

This includes the file in which the implementation of the

class resides and the inheritance structure of each class.

The instance variables of this class serve the following

purposes:

1. An array of class names.

2. An array of file handles for all the classes.

The public methods serve the following purposes:

1. Initialization of the object.

2. Insertion and removal of classes from the

dictionary.

3. Search for a given class.

43

The Interpreter Class. This class 1s the main

subsystem in the run-time environment. The Driver gives

control to this class after the initial linking and loading

are done. The instance variables of this class serve the

following purposes:

1. An array of instructions of the main program to be

executed.

2. A stack to maintain the message call structure.

The public methods of this class serve the following

purposes:

1. Initialization of the object.

2. Execution of each instruction.

44

The SystemExecuter Class. This class is the primitive

handler of RSI2. The Interpreter gives control to this

class whenever a system message is to be executed. The

public methods of this class serve the following purposes:

1. Initialization of the object.

2. Execution of each system instruction.

The MethodExecuter Class. This class is the method

handler of RSI2. The Interpreter gives control to this

class whenever a method is to be executed. The instance

variables of this class serve the following purposes:

1. An array of instructions of the method to be

executed.

2. A stack to maintain the temporary variables.

The public methods of this class serve the following

purposes:

1. Initialization of the object.

2. Execution of each instruction ln the method.

The Accessory Classes

45

These are classes that are not RSI2 specific, but used

for various purposes:

The Array Class. This class is a generic class that

includes the implementation of the array in C++. This has

been reused from available implementations.

The Stack Class. This is also a generic class that

includes the implementation of the stack in C++. This has

been reused from available implementations. This is a

subclass of the Array class.

CHAPTER VI

COMPARISON WITH RSil

The following are some of the salient differences

between RSI2 and the existing reporting language - RSil -

that has been partially fulfilling the needs of the OPRR

repository:

1. The most important difference is the support provided for

object-oriented programming in RSI2. As mentioned earlier,

the CASE repository is object-oriented in nature, and the

ability to build classes for the different objects in the

database is extremely helpful.

2. Relationships in the repository model inheritance, and

RSI2 provides for inheritance of classes, which could model

the relationships, and provide for extremely user-friendly

report specification for relationships.

3. RSil does not in any way support reusability of source

code; RSI2 g1ves the user the ability to build class

libraries, which can be used in other RSI2 programs.

46

47

4. RSil is implemented in C, whereas RSI2 is implemented in

C++, which allows for a structured design based on classes.

5. In RSil, access to the repository is list based and is

cumbersome to use. Accessing a particular relationship

requires getting a list of all relationships answering the

given query, and getting the next available relationship

until the one needed is obtained. A simple built-in message

solves this problem in RSI2.

CHAPTER VII

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

Conclusions

RSI2 is proposed to be an object-oriented language

which provides the report specification interface to an OPRR

CASE repository. Using the language, the user can develop

classes, and send messages to an instance of a class, called

an object. The object-oriented nature of the language

provides the user with the advantages of class and method

reusability, inheritance and encapsulation. Because the

language is object-oriented, new features may be added

efficiently by a class library without modifying the

language itself. In addition to creating a completely new

class library, a new class may be created as a subtype of an

existing object, inheriting all the properties and methods,

and adding and overriding selected methods.

Future Work

Future versions of RSI2 could have the following

enhancements:
48

49

1. A window based operating environment. Presently,

the only way of user interaction with the RSI2 system

is through the command line in OS/2. The system should

be made much like the SmallTalk environment, where the

user can build classes using intuitive windows, and

other graphic user interface.tools.

2. Multiple Inheritance. Presently, RSI2 allows only

single inheritance. It should allow the construction

of classes which inherit data and behavior from more

than one class.

3. Making changes to the repository. Presently, RSI2

has only read-only access to the repository. This is

sufficient since RSI2 is a reporting facility. This

restriction can be removed, and facilities provided to

modify the data in the repository.

4. Error Handling using the exception handling

mechanism of C++. The present version of C++ used in

the implementation does not have the exception handling

capability that is part of the C++ specification. This

should be used once it is available, since it makes

context-sensitive error handling in RSI2 much easier.

5. Interface to popular programming languages. RSI2

could be made to respond to function calls in popular

programming languages like C and C++. This could

extend the power of RSI2 to include the desirable

features of these languages.

50

6. C code generation. The code generator of RSI2 now

generates interpretive binary code which can only be

executed by the RSI2 interpreter. If it is made to

generate C or C++ code for a given RSI2 source file,

then they could be made into dynamic link libraries or

executables which might provide significant performance

improvements.

7. More sophisticated list processing. Currently, RSI2

can only generate homogeneous lists of instances of

user-defined classes. It could be improved to

incorporate bags, sets, and such other commonly known

collection types.

8. Optimization. RSI2, currently, does not have any

optimization done on the code at all. There is much

scope for optimization in code generation.

9. Provision for Class Variables. RSI2 does not have

support for class variables global to all instances of

the class.

BIBLIOGRAPHY

Actor User's Manual Vol. 1 and 2, The Whitewater Group,
1991.

Aho, A.V., Ullman, J.D., Principles of Compiler Design,
Addison Wesley, 1979.

Andersen, J., Reenskaug, T., "Operations on sets in an
OODB", OOPS MESSENGER, Vol. 2, No. 4, pp. 26-39, October
1991.

Booch, G., "Object-Oriented Development", IEEE Trans.
Software Engg., Vol. SE-12, pp. 211-221, Feb. 1986.

Budd, T., A Little Smalltalk, Addison Wesley, 1987.

Cox, B.J., Object-Oriented Programming, Addison Wesley,
1987.

Goldberg, A., Smalltalk-80 The Interactive Programming
Environment, Addison Wesley, 1984.

Goldberg, A.,Robson, D., Smalltalk-80 The Language and its
Implementation, Addison Wesley, 1985.

LBMS Information Manager User's Manual, LBMS Inc., 1991.

McClure, C., CASE in Software Automation, Prentice Hall,
1989.

McClure, C., "The CASE Experience", BYTE, pp. 235-246, April
1989.

51

Meyer, B., Object-oriented Software Construction, Prentice
Hall, 1988.

52

Norman, R.J., Nunamaker Jr., J.F., "CASE Productivity
Perceptions of Software Engineering Professionals",
Communications of the ACM, Vol. 32, No. 9, pp. 1102-1107,
Sept. 1989.

Smalltalk/V Windows Tutorial and Programming Hanctbook,
Digitalk Inc., 1991.

Specification for OPRR Application Programming Interface,
Version 2, LBMS Inc., Ann Arbor, 1991.

Welke, R.J., "Meta Systems on Meta Models", CASE Outlook,
Vol. 4, pp. 35-43, 1989.

Yamamoto, Y., Personal communications with Yuzo Yamamoto,
1991-92.

APPENDICES

53

APPENDIX A

RSI2 LANGUAGE GRAMMAR

I*
*File: rsigramm.y (RSIGRAMMar.Yacc)
* Purpose: yacc grammar for RSI Language
* History:
* 91109118 mr Created
*I

%{
#define INCLUDE_STDARG
#define INCLUDE_STRING
#define INCLUDE_CTYPE
#define INCLUDE STDIO
#include "machine.h"
#include "rsicomi.hpp"
#include "rsilex.hpp"
#include •rsiparsr.hpp"
extern RSI_Parser* RSI_pclParser;
%}

%union
{
char
short
}

stid;
n;

I* string table id *I
I* a small 1nteger *I

%token NAMETOKEN INTEGERTOKEN FLOATTOKEN STRINGTOKEN ASSIGNTOKEN
%token NUMBERTOKEN TEXTTOKEN
%token BEGINBLOCK ENDBLOCK ENDMSG
%token KWD_CLASS KWD_SUPER KWD_SELF KWD_SUPERCLASS
%token KWD_START KWD_VAR KWD_METHOD KWD_INSTANCEOF
%token_ KWD_WRITE KWD_ADD KWD_ASSIGN KWD_SUBTRACT
%token KWD_IF KWD_ELSEIF KWD_ELSE KWD_WHILE KWD_RETURN
%token KWD_LIST KWD_PARAMETER
%token KWD_OPROBJ KWD_OPRREL KWD_OPRPROP

%nonassoc GT GE LT LE 1 =1 NE
%left I I I I & I

%left 1 - 1

%left 1 + 1 ·-~
%left

%type
%type
%type
%type
%type
%type
%type

<n> messageblock message sysmessage objmessage
<n> superclassdecl classdecl instofdecl vardecl methoddecl
<n> classbody methodbody
<n> messagel1st varlist
<n> oprobjmsg oprrelmsg oprpropmsg oprquery
<n> oprob]msgbody oprrelmsgbody
<n> wr1temsg ass1gnmsg parametermsg

54

%type
%type

<n> ifmsg whilemsg returnmsg
<n> elseifblock elseifbody elseblock

%start program
%%

program

messageblock

messagelist

message

sysmessage

classdecl

classbody

;

KWD_START messageblock
{ RSI_pclParser->doProgram (); }
classdecl
{ RSI-PclParser->doClassLib (); }

BEGINBLOCK messagelist ENDBLOCK
{ ; }

/* nothing */
{ ; }
messagelist message
{ ; }

sysmessage
{ ; }
objmessage
{ ; }

vardecl
{ ; }
classdecl
{ ; }
instofdecl
{ ; }
oprobJmsg
{ ; }
oprrelmsg
{ ; }
oprpropmsg
{ ; }
writemsg
{ ; }
assignmsg
{ ; }
l.fmsg
{ ; }
whilemsg
{ ; }
parametermsg
{ ; }
returnmsg
{ ; }

KWD_CLASS NAMETOKEN ':' BEGINBLOCK classbody ENDBLOCK
{ ; }

55

superclassdecl

vardecl

varlist

methoddecl

methodbody

instofdecl

oprquery

oprobjmsg

superclassdecl vardecl methoddecl
{ ; }
vardecl methoddecl
{ ; }
methoddecl
{ ; }

KWD_SUPERCLASS I (1 NAMETOKEN 1) I ENDBLOCK
{ ; }

KWD_VAR 1 (1 varlist 1) 1 ENDMSG
{ RSI_pclParser->doVarDecl ();

NAME TOKEN
{ ; }
varlist I 1 NAMETOKEN
{ ; }

methodbody
{ ; }
methodbody methoddecl
{ i }

KWD_METHOD NAMETOKEN 1 : 1 messageblock
{ ; }

KWD_INSTANCEOF 1 (o NAMETOKEN o) o ENDMSG
{ ; }
KWD_INSTANCEOF I (I KWD_LIST 0) I ENDMSG
{ ; }

NAMETOKEN GT constvalue
{ ; }
NAMETOKEN GE constvalue
{ ; }
NAMETOKEN LT constvalue
(; }
NAMETOKEN LE constvalue
{ ; }
NAMETOKEN °= 0 constvalue
(i }
NAMETOKEN NE constvalue
{ i }

oprobjmsgbody ENDMSG
(i }

56

oprobjmsgbody

oprrelmsg

oprrelmsgbody

oprpropmsg

objmessage

writemsg

assignmsg

ifmsg

elselfblock

elselfbody

KWD_OPROBJ I (I NAMETOKEN I I oprquery I) I
I

{ i }
KWD_OPROBJ I (I NAMETOKEN I) I

{ i }

oprrelmsgbody ENDMSG
{ i }

KWD_OPRREL I (I NAMETOKEN I I oprobjmsgbody I

{ i }
KWD_OPRREL I (I NAMETOKEN I I varlist I) I

I

{ i }
KWD_OPRREL I (I NAME TOKEN I) I

{ i }

KWD_OPRPROP I (I NAME TOKEN I I oprobjmsgbody ,
{ i }
KWD_OPRPROP I (I NAMETOKEN I I oprrelmsgbody ,
{ i }
KWD_OPRPROP I (I NAMETOKEN I I NAMETOKEN I) I ,
{ i }

NAME TOKEN I (I varlist I) I ENDMSG
{ i }
NAMETOKEN I (I KWD_SELF varlist I) I ENDMSG
{ i }
NAMETOKEN I (I KWD_SUPER varlist I) I

{ i }

KWD_WRITE I (I NAMETOKEN I) I ENDMSG
{ RSI_pclParser->doWrite (); }

ENDMSG

NAMETOKEN ASSIGNTOKEN tokensegment ENDMSG
{ i }

57

I) I

I) I ENDMSG

I) I ENDMSG

ENDMSG

KWD_IF cond1tion messageblock else1fblock elseblock
(;)

/* nothing */
{ i }
elselfbody else1fblock
{ i }

KWD_ELSEIF cond1tion messageblock
{ ;)

elseblock

whilernsg

returnrnsg

pararneterrnsg

condition

logicalexpr

logical term

tokensegrnent

/* nothing */
{ i }
KWD_ELSE rnessageblock
{ i }

KWD_WHILE condition rnessageblock
{ i }

KWD_RETURN tokensegrnent ENDMSG
{ i }

KWD_PARAMETER I (I INTEGER TOKEN. I) I ENDMSG
{ i }

logicalexpr
{ i }

logical term
{ i }
logicalexpr I I 1 logicalterrn
{ i }
logicalexpr 1 &1 logicalterrn
{ i }

tokensegrnent
{ i }
1 - 1 logicalterrn
{ i }
tokensegrnent GT
{ i }
tokensegrnent GE
{ i }
tokensegrnent LT
{ i }
tokensegrnent LE
{ i }
tokensegrnent I= I

{ i }

tokensegrnent

tokensegrnent

tokensegrnent

tokensegrnent

tokensegrnent

tokensegrnent NE tokensegrnent
{ i }

obJrnessage
{ i }
expression
{ i }

58

expression

constvalue

constvalue
{ ; }
expression 1+1 expression
{ ; }
expression 1_1 expression
{ ; }
expression I* I expression
{ ; }
expression I I I expression
{ ; }

/* Constant values */
TEXTTOKEN
NAME TOKEN
STRINGTOKEN
INTEGER TOKEN
NUMBER TOKEN

59

APPENDIX B

THE PARSE TREE NODE STRUCTURE

The following figures depict the different kinds of

parse trees that are constructed by the RSI2 parser. The

following are the types allowed:

1. MESSAGE

2. IDENTIFIER

3. VALUE

The value section for the MESSAGE type node above can

have these possible values:

START, CLASS, VAR, INSTANCEOF, IF, WHILE, WRITE, RETURN,

METHOD, METHODCALL, DBOBJ, DBREL, DBPROP, DBROLE, LIST, +, -

, * , /, GT, GE, LT, LE, NE.

60

61

Node Type

Value Stored

Figure 8. Notation for an RSI2 parse tree node

Message

Assign

I \
Identifier Value

a 1

Figure 9. A simple RSI2 statement

62

Message

IF

Message Message Message

THEN ELSEIF MESSAGE
BLOCK

I I
Message Message Message Message

CONDITION MESSAGE CONDITION MESSAGE
BLOCK BLOCK BLOCK BLOCK

Figure 10. The IF statement

Message

CLASS

~ ~
Identifier Identifier Message Message

ClassName Super VAR Method
ClassName -

I I
Identifier Identifier ldenbfier Message

V1 V2 MethodNa1111 MESSAGE
BLOCK

Figure 11. The CLASS Statement

63

Message

WHILE

I \
Message Message

CONDITION MESSAGE
BLOCK BLOCK

Figure 12. The WHILE Statement

Message

MESSAGE
BLOCK

...

Message

Method
Call

Identifier Identifier Identifier

Rece1ver Parameter1 Parameter2
Name

Figure 13. A Message Block

APPENDIX C

USER'S MANUAL

Program Structure

An RSI2 program is made up of messages. The messages

are either to instances of user-defined classes, or to the

system object. An RSI2 source file can be made to be either

an executable, or a library. The compiler decides whether

the source is to result in an executable or a library, by

looking for a specific keyword in the source. This is the

"start" keyword. If this exists in the source, then the

resulting binary file will be an executable, and can be

executed by the interpreter. On the other hand, if the

start keyword does not exist, then the file is assumed to be

the source for a class library, and there should be at least

one class definition in the file for it to be a valid file.

Messages in an RSI2 source file are separated by

semicolons. Semicolons are not needed when a message

encloses a block of messages within braces, as in an IF

message. The characters /* start a comment in RSI2 that

terminates with the characters*/. Any characters can be

used within a comment.
64

65

Messages

Messages in RSI2 are similar to function calls in

conventional programming languages. The difference lies ln

the fact that the first parameter to a user-defined message

is always the receiver of the message. Also, RSI2 does not

tightly control the number of parameters that are sent to a

message. It is upto the user to be careful not to try to

use a parameter that was not actually sent to the method.

None of the system messages need a receiver, since their

identifiers are keywords, and the compiler immediately

converts them into messages to the system object. There are

two special kinds of receivers, namely self, and super.

"self" is used in a user-defined method to give a call to a

method that is part of the same class. "super" is a call to

a method that is part of the interface of the superclass

from which the present class is inheriting its methods.

Since compiling and interpreting are done separately in

RSI2, the system object exists in two forms: the compiler

system object, and the run-time system object. This

distinction is needed because, some of the built-in messages

are messages to the compiler system object, whereas the

others are to the run-time system object. The messages to

the compiler system object are static, whereas the others

are dynamic. The messages to the compiler system object are

not converted into intermediate binary code for

66

interpretation. All messages involving allocation of space

are to the compiler. The class declaration and the variable

declaration are examples of messages to the compiler system

object. Run-time messages include messages like while, and

if, which do not need permanent memory allocation.

Class Declaration

The following shows the class declaration in RSI2. The

superclass and var messages are optional. The compiler does

not check to see if the superclass exists or not. The

linker does that by searching for that class in all the

linked files. Every method definition starts with the

"method" keyword, which intimates the compiler that a method

definition is being made. The var section in each method is

optional.

class ClassName:
{
superclass(SuperClassName);
var(instance,variables);

method methodl:
{
var(temporary,variables)
I* statements */
}

method method2:
{

}

/* statements */
}

67

Built-in Classes

The following are the built-in classes which RSI2 uses

for its various operations. The system class has exactly

one instance in memory during the entire session, and the

primitive classes are the interface to the actual machine.

The System Class.

There will always be one instance of this class open

during an RSI2 sessiln. This is a virtual class, in the

sense that, there is actually no one system class 1n the C++

implementation, but a combination of several, for the

various system messages. But, to the user, this is just one

class, which acts as the receiver of all the built-in

messages provided by RSI2 to the user.

The Primitive Classes.

The primitive classes of RSI2 are integer, float,

character, and string. These are called primitive, because

RSI2 itself does not have an implementation for the various

operations that can be performed on them. These classes act

68

as the interface between the RSI2 system and the underlying

physical machine.

Constants and Variables

Constants in RSI2 are treated in the same way as in

other languages. There are three kinds of constants in

RSI2:

Number Constants: These include integer constants and

floating point constants. Integer constants are

numbers like 0, 18, 1900000, etc., whereas floating

point constants are numbers like 1.23, 1.2e10, etc.

Character Constants: A character constant is a

character enclosed in single quotes; e.g., 'a', '9'.

The backslash \ is used as an escape character, so that

special characters get representation.

String Constants: A string constant is a character

sequence enclosed in double quotes; e.g., "this is a

string". Every string constant is terminated by the

null character '\0', with the value 0. The backslash

convention for representing nongraphic characters can

also be used within a string.

69

Variables in RSI2 are basically containers of objects.

They do not have types. Since they are containers, they can

point to any object of any class. There are three kinds of

variables in RSI2:

Instance Variables: These are the data part of an

object. Each instance of a class has a copy of these.

These instance variables are declared in the class

declaration as shown before. All instance variables

will initially be NULL objects.

Temporary Variables: These are used in methods as

temporary containers of the different objects being

processed. RSI2 destroys the space held by them, as

soon as the the execution of the method is over. Their

declaration is similar to that of the instance

variables - using the var message to the system.

Global Variables: Any variable that has not been

declared using the var message, and that is not a class

identifier, is a global variable. The difference

between a global variable and a temporary variable is

that RSI2 does not destroy the space held by global

variables; they exist throughout the scope of the

program.

Reserved Messages

The following is the set of all the built-in messages

at the disposal of the RSI2 user. Each description also

indicates whether the message is to the compiler system

object, or the run-time system object.

start

70

This keyword indicates to the compiler the starting

point of execution of the program. The start message can

occur only once in a source file and it cannot occur inside

any other message or method. An RSI2 executable can only be

produced from a source file containing the start message.

This is a message to the compiler system object.

class

This keyword does the job of notifying the compiler

that a class is being defined. The class declaration as

shown earlier follows this word. This message can occur

anywhere in the program, except inside a class declaration.

If a source file contains only class messages, then the

compiler will not produce an executable for the interpreter

to execute; it will produce a library file which can be used

71

by other executables. This is a message to the compiler

system object.

This serves to notify the compiler that the following

identifiers will serve as variables in the program, or

class. This is a message to the compiler system object.

instanceof

This notifies the compiler that a given variable is

going to be an instance of a given class. This is a message

to the run-time system object. The compiler produces

interpretive code to do this. None of the primitive classes

need instantiation using this message. The following is an

example of how this message is used:

var(a); /*declare a as a variable*/
a = instanceof(AClass); /* a is an object of AClass */

This is the control statement and is used as it is used

in any other language. This is a message to the run-time

system object. An example:

if (a ;:: 9)
{
I* messages *I
}

elseif (a GT 9)
{
I* messages *I
}

elseif (a LT 9)
{
I* messages *I
}

else
{
I* messages *I
}

while

This is similar to the IF message. The loop is

executed as long as the condition evaluates to true. This

is a message to the run-time system object, for which the

compiler produces interpretive binary code. An example:

write

while (IsChar (a))
{
I* messages *I
}

72

This message is to the run-time system object to write

the given string of bytes to the output. The compiler will

write the literal string out to the executable file, from

where the interpreter picks it up before writing it to the

output. An example:

73

write ("Hello");

return

This message is used to return a value from a method.

The returned value can be a variable, an expression, or even

a message to another object. This is a message to the run-

time system object. An example:

method GetObjectFrornDB:
{

superclass

return (dbobj (PROJECT, REPOSITORY-ID=l);
}

This message is only used within a class declaration,

and notifies the compiler of the name of the class from

which the class being declared is inheriting behavior. This

is a message to the compiler system object. The compiler

writes this name out in the executable file in the class

declaration section.

method

This message is also used only in a class declaration.

This notifies the compiler that what follows is the source

74

for a method for the class being declared. This is a

message to the compiler system object. As in the case of

the superclass message, the compiler writes out the name of

the method in the method section of the executable or

library file. The compiler also generates binary code for

the implementation of the method and places that in the same

section in the output file.

suoer

This is special keyword used only within the

implementation of the method to explicitly notify the

interpreter that the message being sent is to the

superclass.

This is similar to the super keyword. This will be

used as the receiver parameter in a message call, when the

method needs the services of another method in the same

class.

75

dbobj

This message is used to retrieve a database object from

the repository. This is a message to the run-time system

object. This message requires two parameters: one, the meta

type of the database object to be retrieved, and two, the

query for the object. If the query is NULL, then the first

available object of the type is retrieved. The following

example shows how this message can be used:

dbrel

/* retrieves the object of type PROJECT whose TITLE 1s
"Proj 1" *I
a= dbobj (PROJECT, TITLE="Proj 1");

This message is used to retrieve relationships from the

repository. Its syntax is similar to the dbobj message.

The first parameter is the metatype of the relationship

being retrieved, and the subsequent parameters are RSI2

objects representing database objects involved in this

relationship. This message is sent to the run-time system

object. The following example depicts the usage of this

message:

/* retrieves the object of type PROJECT whose TITLE is
"Proj 1" */
a= dbobj (PROJECT, TITLE="Proj 1");

76

I* now retrieves the relationship of type PROJECT-ROLES
involving a in the PROJECT role */
b = dbrel (PROJECT-ROLES, a);

The following example shows how the two statements above can

be combined into one.

I* retrieves the relationship of type PROJECT-ROLES
given the object in the PROJECT role */
b = dbrel (PROJECT-ROLES, dbobj (PROJECT,

TITLE="Proj 1"));

dbprop

This database query message retrieves a property from

the repository. The parameters, as before, are the property

meta type, and the object, relationship, or role whose

property is needed. This is also a message sent to the run-

time system object. An example:

/* retrieves the property of type START-DATE for the
relationship of type PROJECT-ROLES given the object in
the PROJECT role *I
b = dbprop (START-DATE, dbrel (PROJECT-ROLES,

operators

dbobj (PROJECT,
TITLE="Proj 1")));

The following are the operators available in RSI2.

They represent the primitive operations possible in the

language. They have the usual meaning: +, - * /, LT, LE,

GT, GE, NE, -.

77

Using RSI2 from the Command Line

RSI2 is designed to be used, at present, from the OS/2

command line. This section details the command to be typed

in to invoke RSI2.

Running ~ Compiler

The compiler is run using the rsicom command on the

command line of the OS/2 operating system:

rsicom progname metadb -o exename

progname - the name of the RSI2 source file

metadb - the meta database

-o - output to file exename

-b - number of buffers

-d - debug mode

-s - provide source listing

78

Running ~ Interpreter

The interpreter is run using the rsirun command on the

command line of the OS/2 operating system:

rsirun progname metadb instdb -o filename

progname - the name of the RSI2 executable file

metadb - the meta database

instdb - the instance database

-o - output to file filename

-b n - number of buffers

-1 - library files to be linked

APPENDIX D

LIST OF ACRONYMS USED

CASE Computer-Aided Software Engineering

DLL Dynamic Link Library

IDO Id of Database Object

LBMS Learmonth and Burchett Management Systems, Inc.

OOP Object-Oriented Programming

OPRR Objects, Properties, Roles, Relationships

RSI Report Specification Interface

UID Unique Id

YACC Yet Another Compiler Compiler

79

VITA ;:L

Manohar S.V. Rao

Candidate for the Degree of

Master of Science

Thesis: AN OBJECT-ORIENTED LANGUAGE FOR THE REPORT
SPECIFICATION INTERFACE TO A CASE REPOSITORY

Major Field: Computer Science

Biographical:

Personal Data: Born in Bangalore, India, April
24, 1967, the son of Vasudeva and Shantha
Rao.

Education: Received Bachelor of Engineering
Degree in Mechanical Engineering from the
University of Mysore, India in 1988; completed
requirements for the Master of Science degree at
Oklahoma State University in May, 1992.

Professional Experience: Graduate Assistant,
Department of Business Administration,
Oklahoma State University, March, 1990, to
October, 1990. Presently working as Software
Engineer for LBMS Inc., based in Houston,
Texas.

