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PREFACE 

A connectionist expert system is an expert system whose 

knowledge base is generated from training examples using an 

artificial neural network learning technique. Gallant [13] 

developed a model for a connectionist expert system in which 

a variable is represented by a node and accepts two values, 

true or false. This study adopts two approaches to help 

manage uncertainty in Gallant's model. The first approach 

is called the random cell method while the second one is the 

stairstep method. 
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CHAPTER I 

INTRODUCTION 

Connectionist Expert Systems 

Artificial Neural Network 

Artificial neural networks are inspired by the way in 

which biological beings process information. A neuron is 

the lowest basic element of a mammalian brain. Actually, a 

neuron consists of three elements (Figure 1), which 

are: 

* Cell body, 

* Dendrites, and 

* Axon. 

A dendrite is the connection which transmits input 

signals, or impulses, from the axons of other neurons to the 

cell body of the neuron from which the dendrite originates. 

Signal transmission takes place through a synapse 

(Figure 1). Unlike electrical circuits, there is no 

physical or electrical connection at the synapse. Instead, 

there is a narrow gap called a synaptic cleft which 

separates a dendrite from an axon. The end bulbs of an axon 

release specialized chemicals, known as neurotransmitters 

1 
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Figure 1. Simplified Drawing of a Neuron 
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which are produced by a neuron. These neurotransmitters are 

passed through a synaptic cleft to a dendrite, which 

transmits an electrochemical current to the cell body of 

another neuron. 

Currents from all dendrites attached to a cell body are 

summed and averaged in the cell body. If the average 

over a short time interval is sufficiently large, the cell 

"fires" producing a pulse that passes down its axon to 

succeeding neurons. A neuron's capability to trigger, or 

activate, another neuron connected to it increases with the 

rate of those electrochemical impulses. 

The origin of the artificial neural network goes 

back to McCuloch and Pitts [26] who developed a mathematical 

model to simulate a neuron. In an artificial neural 
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network, numerical weights among neurons are altered to 

simulate the changing of electrochemical responses in 

natural neurons. The artificial neural paradigm is 

sometimes called connectionism since it models solutions to 

problems by training simulated neurons in a highly connected 

network. 

A connectionist model is specified by the following 

features: 

* Network topology. 

* Node characteristics. 

* Training or learning rules. 

The network topology describes the ~elationship among 

the network nodes and how they are organized. In some 

connectionist models a subset, or layer, of nodes is called 

the input layer, in which the node inputs are set 

externally. Another subset of nodes is called the output 

layer. Its outputs are used as the output of the network. 

A third kind of subset is called the intermediate, or 

hidden, nodes. These are necessary in many types of 

network computing furctions known as nonseparable functions. 
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Figure 2. Artificial Neural Network 

4 

Connectionist models can be classified according to the 

direction of computation as follows: 

1- FEEDFORWARD network, in which there are nO directed 

cycles (i.e. the results of output or intermediate layers 

do not feed back to previous layers). 

2- FEEDBACK network, in which there are directed cycles. 

Node characteristics determine the way in which a node 

computes its activation, which is the output value computed 

by the following equation: 

activation= f((~ Wi *Xi) -e), fori 1 to N, 
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Figure 3. Activation Calculation 

where Wi is a weight assigned to arc i, 

X 
N-1 
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N 

x· l through xn 

represent the activation levels of all nodes that feed 
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impulses into the current DOde, and e is the threshold value 

for the current node. The threshold value is considered as 

a minimum limit that the sum ~ wi * xi must exceed in order 

to fire the cell. The activation function is usually 

nonlinear as it is shown in Figure 4. 
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Figure 4. Nonlinearity Functions 
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Cell inputs and activations could be discrete, taking 

values in {0,1} or {-1,0,1}, or may be continuous, assuming 

values in the interval [0,1]. This model of a neuron, which 

is shown in Figure 3, is also known as a perceptron [24]. 

Perceptron attracted a great deal of attention especially 

after Rosenblatt [31] developed an algorithm to train it; 

this will be discussed in the next chapter. 

In some connectionist models, nodes are visited in a 

fixed order, where activation is computed before 

visiting subsequent nodes. In other models, all nodes 

compute their activations simultaneously; while still other 

models pick a random node and compute its activation before 

computing the output of another randomly chosen node. 

A neural network is taught to produce desired 
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outputs, or at least consistent ones, when a set of inputs 

are applied to the network. Learning is accomplished by 

sequentially applying input vectors to the network and 

adjusting the weights of arcs according to the 

obtained output. During training, the network weights 

gradually converge to values such that each input vector 

produces its desired output. Learning techniques are 

classified as follows: 

A. Interaction with the environment. 

1- supervised learning. 

2- Unsupervised learning. 

B. Network changes. 

1- Weight-change only. 

2- Topology-c~ange only. 

3- Weight and topology-change. 

Interaction with the Environment. In supervised 

learning, the desired outputs of the input data are known in 

advance. This type of learning adjusts the arcs' weights so 

that the resulting output is similar to the desired one. On 

the other hand, in unsupervised learning only the input data 

are known, and the learning algorithm classifies a set_of 

input vectors into disjoint clusters in a way that elements 

in one cluster are similar to each other. 

Topological Changes. Learning in which weights change 

is biologically plausible. Topology-change learning is a 

fairly recent technique, in which recruitment of uncommitted 
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nodes (i.e. adding new nodes to a network during the 

learning procedure) is taking place. Topology-change 

learning can be combined with weight-change as it has been 

used in back-propagation learning [23] for the allocation of 

new hidden nodes. 

Most known neural networks can be classified 

according to their input type, binary or continuous, or 

their training method, supervised or unsupervised, as shown 

in figure 5. 

NEURAL NETWORK CLASSIFICATIONS 

BINARY INPUT CONTINUOUS-"'LUED INPUT 

~ 
SUPERVISED UNSUPERVISED 

~I 
~ 

SUPERVISED 

~ 
UNSUPERVISED 

HOPFIELD HAMMING ADAPTIVE PERCEPTRON MULTI-LAYER KOHONEN 

NET NET RESONANCE 

THEORY 

PERCEPTRON SELF-ORGANIZING 
FEATURE MAPS 

Figure 5. Neural Network Classifications 

Learning can be classified as easy, in which the 

training examples specify the output of the intermediate 

cells, or it can be hard, in which the learning algorithm 

must find appropriate values for the intermediate cells. 
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Expert Systems 

Expert systems is a branch of AI that makes extensive 

use of specialized knowledge to solve problems at, near, or 

above the level of human expertise in some restricted 

problem domain. An ideal expert system includes the 

following features: 

* Extensive specific knowledge from the domain of interest. 

* Support for heuristic analysis. 

* Application of search techniques. 

* Capacity to infer new knowledge from existing knowledge. 

* Ability to explain reasoning. 

An expert system structure includes the following 

components: 

* User interface, in which the user supplies facts and 

necessary information to the system and receives the 

required advice. 

* Explanation facility, which is responsible for explaining 

the different decisions taken by the system. 

* Knowledge update facility, which updates the knowledge 

base according to new facts or rules supplied by the user 

during the interface stage. 

* Knowledge base, which contains the knowledge of the expert 

system domain represented in a specific structure that 

depends on the design provided by the knowledge engineer. 

Knowledge representation schemes in conventional expert 

systems vary from formal schemes such as formal logic 



to non-formal schemes such as frames, scripts, semantic 

networks, or production systems. 

* Inference engine, which is a driver program used by the 

system to infer conclusions from knowledge in the 

knowledge base. 

10 

Expert system Advantages. Expert systems have several 

advantages; some of them are: 

* Making rare expertise widely available to many people. 

* Reducing the cost of human experts by replacing them with 

expert systems, which presumably have the capability of 

mimicking their performance. 

* Introducing intelligent tutoring, which could be 

considered as a good way of distributing the expertise 

among novices with the help of explanation facility. 

* Combining the expertise of several experts in one expert 

system. 

Connectionist Expert Systems 

A connectionist expert system is an expert system whose 

knowledge base is generated from training examples using an 

artificial neural network learning technique. Gallant 

[13] introduces a model of a connectionist expert system in 

which control information within the knowledge base is 

represented by a matrix of integers. The general 

structure of the model is a network model similar to the 

network used in the PROSPECTOR program [13]. The nodes of 
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the network are variables, and each of them may assume one 

of three values: 

1 ---> true 

-1 ---> false 

0 ---> unknown 

Variables are grouped into 3 classes: 

* Goal variables. 

* Intermediate variables. 

* Terminal variables. 

Goal variables are the variables for which the network 

is designed to induce their values, such as treatments 

required for a certain disease. Intermediate variables, 

such as diseases, are the variables whose values are induced 

from the terminal variables, such as symptoms, and are used 

to induce goal variable values. Terminal nodes are set 

externally by the user either' as initial input or as a 

response to questions from the system. The function of the 

expert system is to find out the activations, or the values, 

of goal variables given activations of terminal variables. 

Generation of the network requires specifying the 

following information: 

* The name of each node corresponding to a variable of 

interest. 

* A question for each input variable, to elicit its value 

from the user. 

* Dependency information about the variables in the system. 

This dependency information helps in the training 
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operation because it discards irrelevant variables from 

the training list for a node being trained. 

* Sets of training examples for intermediate and output 

nodes. Each training example contains activation values 

for variables on which an output node depends along with 

the desired activation value for that output. The weights 

that are obtained after the training procedure will be 

arranged in the learning matrix, as it will be explained 

shortly. 

Gallant specifies in his model that the variables in 

the system have hierarchical ordering (i.e. variables are 

indexed from 0, for terminal variables and the index is 

increased for intermediate and external output variables) . 

Any variable will have a higher index than the indexes of 

the variables on which it depends. Also, he assumes that 

the network has no directed cycles. 

A linear discriminant is used in Gallant's model to 

classify an intermediate or an output variable in the 

network. Each intermediate or output node in the network 

has nodes connected to it via arcs, which have their own 

weights set by the training algorithm. A linear 

discriminant is computed as follows: 

D = ~ Wi Vi, 

where Wi and Vi are the weight and the activation value for 

arc i and node i respectively. The activation for a node, 

V, will be: 

1 if D > 0. 



-1 id D <= 0. 

Gallant defines the Learning Matrix, L, for a 

given set of variables and dependencies as a matrix of 

integers which has one row for each non-terminal variable 

and one column for each variable. Each row of L contains 

the weights of the arcs directed into the non-terminal 

variable corresponding to that row. Thus, the knowledge 

base for that system will consist of the network, weights, 

and questions for variables. 

13 

Inference in a connectionist expert system is performed 

by the MAtrix Controlled Inference Engine, MACIE, which 

operates as follows: 

1 Initially obtain values for some variables from the user. 

2 Forward chain: make inference about non-terminal 

variables and compute likelihoods, which will be defined 

later. 

3 If some goal variables are true, all goal variables are 

known to be false, or no more useful information is 

available, stop. 

4 Pick an unknown goal variable, such as G, with the highest 

likelihood. 

5 Backward chain: find a useful unknown terminal variable 

for determining G and obtain its value (by asking the 

user) . 

6 Goto 2. 

In forward chaining, inference for a variable Vi on 

partial information, which happens when not all the values 
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of its dependent variables are known, could be done in the 

case that the activations of these unknown variables do not 

influence the sign of the discriminant calculation. So, if 

D is the current value for the discriminant calculation and 

U is the maximum effect of unknown variables, then 

n 
D L: Lij Vj 

j=O 

u L: ILijl 
(j : VJ unknown) 

and if D > U, then we can conclude that 

1 if D > 0 
Vi = 

-1 if D <= 0. 

Likelihood estimation is used to compare any two 

unknown variables to determine which one has more likelihood 

to eventually be deduced to be true or false. This 

comparison is useful when there are more unknown variables 

that have one bottom-up pass in the network. To compute the 

likelihood Ai for a variable Vi: 

v· 1 if v· 1 is known, 

A· 1 = 0 if V· 1 is unknown terminal variable, 

n n 
L: L·. Aj I L: I L·. I otherwise. 
j=O 

1] 
j=O 

1] 

In backward chaining, the system backtracks to find the 

values of unknown variables. Those variables are needed to 

compute the activation of output variables, whose current 

known dependent variables are not enough to do so. one of 

the heuristics to choose an input cell is: 
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1- Select the unknown output variable Ui such that !Ail is 

maximum. 

2- In pursuing node ui, find the unknown cell Uj with the 

greatest absolute influence on ui: 

·max I Li, j-l Uj unknown 

In this model an explanation facility is available to 

explain actions of the system in "if .. then" format although 

input variables don't exist in that format. 

Objective of the Study 

The connectionist expert system, introduced by Gallant, 

has a major drawback because it deals with two-valued logic, 

true or false. Thus, the purpose of this study is to 

introduce uncertainty management into the connectionist 

expert system. To accomplish this goal, two approaches will 

be implemented and their performance will be compared. 

The first approach is to replace a node for each variable by 

several nodes to describe a certain state for that variable. 

Each variable state could represent a fuzzy term such as 

high, low, or medium. This fuzzy representation is suitable 

in domains where reasoning is performed on ill-defined 

boundary predicates such as in medical diagnosis. As 

another option, each variable state could specify a number 

to represent a certainty factor or the probability of that 

variable occurring. Each variable state ranges from 1 

to 6, where a value of 1 will be represented as 

1 0 0 0 0 0 while a value of 6 is represented as 
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1 1 1 1 1 1. Each training example describes the state of 

each input and the state of the correct output. 

Usually training these types of inputs and outputs 

involves several difficult boolean functions that cannot be 

solved by a single perceptron, especially in the case of 

inconsistent training examples or even contradictory 

ones. To overcome this problem, the concept of random cells 

is adopted in the training algorithm. Gallant [15] proposed 

random cells as a modification to the random functions 

introduced by Rosenblatt [32] to enhance the learning 

capability of the perceptron. 

In the approach, in this thesis, it is possible to 

combine several concepts of uncertainty interpretations in 

the system. For example, if we have a variable in the 

system for which our concern is the probability of its 

existence, then we may represent a probability number·as the 

state of that variable. On the other hand, if we are 

concerned about the fuzziness of another variable, then the 

state will represent a fuzzy term. All these 

representations may be done in a single system to make it 

consistent with Chandrasekaran's [8] principle that 

"resolution of uncertainty should be left to the human 

who is an expert in that domain.'' Also, he mentioned that 

"humans do not use a single method for resolving 

uncertainties of various types and a search for normative 

uncertainty calculi is pointless." 

The second approach is implementing the back-
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propagation algorithm with the following modification. Each 

node in the network has its own internal structure as 

shown in Figure 6. The purpose of that structure is to 

obtain an output in the form of a uniform stairstep 

function. Each step in the output function represents 

a fuzzy term, such as low or high. The weights of arcs in 

the internal structure are developed independently of 

training examples so that the output function will take the 

form of a stairstep as it is shown in Figure 6. 

DUTIIlUT 

. 
UJIIUT 

aTAIII .TE~ 'UNCTION 

NODES IN THE NETWORK INTERNAL STRUCTURE OF A NODE 

Figure 6. Stairstep Function approach 

The simple output function in the back-propagation algorithm 

is replaced by a function in terms of the weights and 

biases of the internal structure of a node. As a result, 
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the delta value, which is used to adjust weights in the 

backward pass, is adjusted by the derivative of the modified 

output function. 

A simulation of the connectionist expert system was 

developed to study the performance of each method and 

establish a comparison between them. 



CHAPTER II 

LITERATURE REVIEW 

Uncertainty in Expert Systems 

and Neural Networks Training Process 

Uncertainty in Expert System 

Uncertainty in expert systems has the following sources 

[ 9] : 

* Information can be unreliable, which usually happens due 

to ill-defined domain concepts or inaccurate data. 

* Descriptive languages lack precision, which comes from 

expressing knowledge in natural language terms which have 

ill-defined boundaries. 

* Inferences are sometimes drawn with incomplete 

information, so the system must accept unknown variables 

and perform approximate matching upon them. 

* Experts sometimes disagree. In this case the expert 

system must attempt to resolve this conflict to obtain 

consistent decisions even when experts are contradicted. 

Representation of Uncertain Information 

Numerous paradigms have been used to represent 

uncertain information in expert systems; some of them are 

19 
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quantitative, such as subjective probability theory, 

Dempster-Shafer theory, possibility theory, and certainty 

factors, and some are qualitative methods, such as Cohen's 

theory of endorsements. 

Subjective Probability Theory 

Pascal and Fermat [28] defined an event's probability 

as the proportion of cases in which the given event occurs. 

This view of probability is known as classical, or 

objective, probability. Actually the interpretation of 

probability has been extended to include two other classes, 

which are [9]: 

* Personalistic or Subjective probability which represents 

the degree of belief or confidence of an individual in a 

particular proposition's truth. The term Bayesian is 

often used as a synonym for subjective probability. 

* Logical probability which measures the extent to which a 

set of propositions, isolated from human opinion or 

logical necessity, confirm the truth of another. 

In most expert systems the subjective probability is 

preferred, due to the difficulty of implementing the 

objective probability that requires a large number of 

observations for events which may not be available in the 

real world. 

The main advantage of the Bayesian approach is its 

having a strong mathematical background, unlike other 

methods, such as certainty factors or possibility theory 
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(which will be discussed later) . Hence, Bayes' method gives 

accurate results, given that accurate input values to the 

system are available. 

However, Bayesian approach has several drawbacks such 

as: 

* It needs a huge number of probabilities that must be known 

to make the knowledge base applicable. 

* It does not deal with unknowns. However, Cheeseman 

(6] argues that specifying two numbers, probability, 

and its standard deviation, solves the problem. Ignorance 

can be represented by a probability number along with a 

large standard deviation, while certain events will have 

a small standard deviation. 

* Zadeh (42] claims that probability theory cannot pass 

the following tests, given that the predicates are fuzzy, 

while fuzzy logic does: 

1- It must provide a system for representing the meaning 

of various types of propositions related to uncertain 

events and uncertain dependencies. 

2- It must provide a system for inferring from a 

knowledge representation mentioned above. 

* The assumption of conditional independence among pieces of 

evidence for the given hypothesis is not always true in 

real problems. 

From the above discussion, it appears that the 

subjective probability approach is best suited for 

applications in which prior and conditional probabilities 



are obtainable and when the assumption of conditional 

independence is true. 

Dempster-Shafer Theory 

22 

Dempster-Shafer Theory, DST, was developed by Arthur 

Dempster [12] and extended by Glen Shafer [33]. The 

motivation for this theory is to handle the deficiencies in 

the probability theory such as: 

* The representation of ignorance. 

* The idea that the subjective beliefs assigned to an 

event and its negation must sum to one. 

In this theory, Dempster handled uncertainty by a range 

of probabilities rather than a single probability number. 

Dempster stated "in many situations, evidence that only 

partially favors a hypothesis should not be constructed as 

also partially supporting its negation." 

Dempster theory succeeds in expressing ignorance 

explicitly. Probability theory expresses ignorance in two 

hypothesis, A and B, by assigning equal probability for both 

of them; i.e., p(A) = p(B) = .5, while m(A) = m(B) = .5 in 

Dempster theory means that the belief in A and B is the 

same. In other words, if all the focal elements, which are 

the subsets of the frame of discernment, are singletons, 

then no ignorance regarding their occurrence exists, and if 

there is a focal element which has more than one element, 

then some ignorance exists. 
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Weaknesses of DST. 1- One of the major disadvantages 

of DST is its implementation complexity because nearly all 

the functions require exhaustively enumerating all possible 

subsets of FD, Frame of Discernment. 

2- In the case where there are two expert sources, for 

example, one for whom the FD is {a, b, c, d} and other 

whose FD is {b, c, d}, then evidence combination will be 

impossible [2]. 

3- The assumption of the independence of evidence. When 

this is not the case, the result may be biased. 

4- The assumption that the elements of FD are mutually 

exclusive is not always true as in the problem of 

multiple diseases in medical diagnosis. To overcome this 

problem, FD must be redefined to include all possible 

subsets of all the diseases. The redefinition of FD 

carries a problem of exponential growth of the 

computation, so if we have 100 diseases, then FD = 2100. 

5- DST lacks an effective decision making procedure to draw 

inferences from belief functions. Shafer and Logan have 

developed an algorithm which computes degree of belief 

for more hypotheses and implements Dempster's combination 

rule for hierarchical evidence. Until now no consensus 

existed on a formal scheme to be adopted in the belief 

propagation mechanism. 

6- Zadeh [43] pointed out that the method of normalization 

ignores the belief that the object being considered does 

not exist. 
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Bayesian Belief Network 

Judea Pearl [29] has developed the Bayesian Belief 

Network, which is based on subjective probability theory, to 

show that the Bayesian approach is capable of providing 

results in a tree structured hierarchy of hypotheses. 

A belief network is a network that consists of nodes 

and links. Each node represents a probabilistic variable. 

Each link between two nodes represents a relationship 

between them. The relationship is identified with a matrix 

that contains conditional probabilities. A knowledge 

engineer has to assign a relevant domain variable to each 

node in the net and determine the causal relationships among 

the nodes. 

Pearl's updating scheme [28] added more flexibility 

for backward and forward inference in the network. The weak 

point in the Bayesian network is the assumption of 

conditional independence among variables, which cannot be 

generalized to real world problems. Also, the requirement 

of supplying the prior probabilities for the top nodes in 

the network may restrict the use of that network to the 

applications where obtaining these probabilities is 

possible. 

Certainty Factor 

When Shortliffe [35] started developing his expert 

system MYCIN, he felt that the uncertainty management in 



that system cannot be handled appropriately by the 

probability approach due to the following reasons: 

* In medical problems, collecting good data to express 

prior probability and conditional probability is not 
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an easy task and in many cases not all data is available. 

* Probability is weak in representing medical knowledge 

and heuristics, which are required to solve a 

given problem. 

* The probability approach does not offer a good 

explanation. Shortliffe derived his method from Carnap's 

theory of confirmation[4]. The certainty factor is 

defined as: 

CF (H,E) = MB (H,E) - MD (H,E) I 

where 

CF denotes hypothesis belief given observed evidence. 

MB measures the degrees to which belief in hypothesis H 

would be increased if E were observed. 

MD measures the degree to which the disbelief in H would 

be increased by observing the same evidence E. 

The Use of the Certainty Factor. The main purpose of 

the certainty factor is to [22]: 

1- Guide the program in its reasoning. 

2- Cause the current goal to be deemed unpromising and 

pruned from the search space if its CF falls in the 

range [+0.2,-0.2]. 

3- Rank hypotheses after all the evidences have been 
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considered. 

Disadvantages of CF. * Adams [1] argues that the CF 

approach is deficient in ranking hypotheses properly as he 

explained in the following example: 

Suppose we have two hypotheses dl and d2 and evidence 

e which confirms the two hypotheses, and assume that 

p(d1) = .8 

p(d2) = .2 

p(d1 

p(d2 

e) = .9 

e) • 8 

then MB(d1) = 

MB(d2) = 

0.9 - 0.8 
-------------- = .5 

0.2 

0.8 - 0.2 
-------------- = 0.75 

0.8 

So CF(d1,e) < CF(d2,e) which contradicts 

p(d1 I e)> p(d2 I e). 

* Horvitz and Hecherman [21] have criticized the use of 

certainty factors as a measure of change in belief, given 

the fact that CFs were elicited from experts as a degree 

of absolute belief. As a consequence, the evidence 

combination function employed by the CF approach, which 

treats CFs as belief updates, results in values that are 

inconsistent with Bayes' theorem. 

* the major criticism for CF is that it is an ad-hoc 

approach even though it has some basis in probability and 

confirmation theories. The success of MYCIN, which adopts 



the CF approach, cannot generalize to success of CFs in 

other fields of expert systems because MYCIN has short 

inference chains and simple hypotheses. 

Possibility Theory 
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As mentioned above, Lotfi Zadeh [42] criticized the 

probability approach because it is based on two-valued 

logic, true or false, which is not the case in most real­

world applications. An expert system knowledge base has a 

great deal of human knowledge which, in most cases, has 

imprecise and qualitative information. Quite often experts 

express their knowledge in ill-defined boundary expressions 

such as low, high, or very likely. So, Zadeh [38] developed 

his possibility theory to handle the problem of fuzziness. 

Possibility theory is considered an extension to the fuzzy 

set approach, also developed by Zadeh [39]. 

Fuzzy Set Theory. In fuzzy set theory, an object may 

belong to several fuzzy sets with different degree of 

memberships. Membership is a real number associated with 

each element in the set and it ranges from 0 to 1. An 

object with membership of 1 means that the object belongs 

completely to the set while membership of 0 indicates that 

the object absolutely does not belong to the set. It is 

possible that an object has a degree of membership between 1 

and 0 to indicate partial belonging. Thus, the difference 

between a fuzzy set and a crisp set, in which a member from 
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the universe of discourse either belongs to the set or not, 

is the range of possible values of membership, because in 

crisp sets it is 1 or 0 only. As an illustration for the 

concept of a fuzzy set, we consider the following example 

[ 9] : 

Let U be the set of integers, U = {1,2,3, ... }. 

Let A be a fuzzy set of small numbers. 

Then a subjective characterization of A could be: 

u 1 

1.0 

2 

1.0 

3 

0.8 

4 

0.6 

5 

0.4 

6 

0.2 

For a given frame of discernment, the possibility 

distribution has a qualitative difference from the 

probability distribution as shown in the following example 

[ 38]. 

If there is a statement 'Hans ate X eggs for breakfast' 

where X is taking values in {1,2,3,4, .. }, the possibility 

distribution expresses the degree of ease with which Hans 

can eat u eggs while the probability distribution 

expresses the probability of Hans eating u eggs. So the 

two distribution may look like as follows: 

u 1 2 3 4 5 6 7 8 

Poss(u) 1 1 1 1 .8 • 6 • 4 • 2 

P(u) . 1 . 8 . 1 0 0 0 0 0 

The main advantage of applying the possibility 

distribution concept in expert systems is its ability to 

represent linguistic variables together with quantifiers 



and representing compound propositions by applying the 

following rules: 
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Modifier Rules. These rules define the impact of using 

modifiers, such as VERY, MORE OR LESS, and NOT, on the 

possibility distribution of a linguistic variable. Zadeh 

suggested squaring for VERY, square root for MORE OR LESS, 

and subtracting for NOT. However, more analysis could be 

done to determine appropriate functions for these modifiers 

in the case where Zadeh's suggested functions are not 

consistent. 

Composition Rules. Composition rules are used in the 

case of compounding two or more propositions. The most 

commonly used composition modes are logical AND, logical OR, 

and logical IMPLICATION. 

Truth Qualification Rules. These rules are analogous 

to the modifier rules in the sense that they define the 

possibility distribution of a fuzzy term quantified by a 

modifier. The modifier in this case is a truth modifier 

such as very true, more or less true, or quite true. A 

proposition "It is t that X is A", where t is the truth 

quantifier of the proposition, can be expressed as 'X is A 

is t ---> Dx = A+' 

and mA+(u) = mt(mA(u)) 

Inference in Possibility Theory. Inference in crisp, 

first order, logic is usually performed by applying the 



30 

modus ponens rule, which states that if hypotheses 'A ---> 

B' and A are true, then B is true. Modus ponens is 

generalized from this definition [37] to be applicable in 

fuzzy logic. Generalized modus ponens differs from the 

original version of modus ponens in two aspects which are: 

1- Matching is not required to be exact. 

2- Predicates are not required to be exact. 

Weaknesses of Possibility Theory. The main strength of 

adopting possibility theory in expert systems is its power 

in representing the fuzziness inherent in real world 

problems. However, this approach received a great deal of 

criticism, especially from Bayesian approach advocates. 

Cheeseman [7] states that fuzzy logic fails as a general 

calculus of uncertainty because of the composition rules and 

he gives the following example: 

poss(A and B) = min(poss(A),poss(B)] 

is true only when A and B have mutual dependence, 

i.e., A---> B orB---> A. It is certainly not true 

in general. He [7] states that the claim of fuzzy logic 

advocates that vagueness is something different from 

uncertainty is not true. He argues that vagueness is 

uncertainty about intended meaning and can be represented by 

a probability distribution over possible meanings. He 

mentions several examples in his paper to support his idea. 

Also, in [6] Cheeseman states that the use of second order 

probability is considered an acceptable approach in solving 
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special problems for which fuzzy logic advocates claim that 

the fuzzy numbers approach is the most appropriate. 

on the other hand, Masaharu Mizumoto, Satoru Fukami, 

and Kokichi Tanaka [25] mention in their paper that the 

proposed methods by L.A. Zadeh and E.H. Mamdani for fuzzy 

reasoning don't always fit our intuition. In this paper, 

the authors state that the reason for this drawback comes 

from the way in which Zadeh and Mamdani defined a fuzzy 

relation between an antecedent and a conclusion of a rule. 

Zadeh's definition of that relation is: 

R = (A X B) u (A' X V) I 

or R = (A' X V) 0 (U X B), 

where A, A', B, and B' are fuzzy sets in the universes 

of discourse U, U, V, and V respectively. Mamdani defined R 

as follows: 

R = A X B. 

The authors [25] give some examples of Zadeh and Mamdani's 

methods which do not give correct results. In the following 

examples, a conclusion is drawn from the following rule and 

fact: 

If X is A then Y is B. 

X is A. 

Relation Antecedent 

1 X is A 

2 X is very 

3 X is very 

4 X is more 

A 

A 

or 

Conclusion 

y is B 

y is very B 

y is B 

less A y is more or less B 



5 

6 

7 

X is not A 

X is not A 

Y is not B 

Y is unknown 

Y is not B 

X is not A 
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The authors prove that Zadeh's methods do not 

satisfy the relations except relation 5, and Mamdani's 

method does not satisfy the relations except relations 1 

and 3. 

Training Algorithms for Neural Networks 

Perceptron Convergence Procedure 

F. Rosenblatt [30] introduces a single layer 

perceptron learning algorithm which can accept continuous or 

binary input. This network model had an initial success 

in simple pattern recognition problems. A single node in 

the network computes a weighted sum of the input elements, 

subtracts a threshold (8), and passes the result through a 

hard limit function, (Figure 4, p. 6), to output nodes. 

Rosenblatt develops an algorithm to train such networks in 

which weights of the connections and thresholds are 

initialized to small random values. A new input is applied 

to the network and the output is computed using a hard limit 

function; then it will be compared with the desired output. 

If there is some difference between the actual output and 

the desired one, connections weights will be adjusted, as 

explained in more detail in the next chapter. Later, 

Minsky and Papert [27] prove that the elementary perceptron 
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model has a limitation in being unable to represent some 

boolean functions such as EXCLUSIVE-OR. Also, they find 

that such type of training only works well with a separable 

training set; i.e., one for which hyperspace partitioning 

surface is linear. 

Back-Propagation 

The back-propagation algorithm [33] is a 

generalization of the Least Mean Square, LMS, algorithm. It 

uses a gradient search technique to minimize a cost function 

equal to the mean square difference between the desired and 

obtained output. Training in back-propagation is performed 

in two modes as follows: 

* Forward Pass, in which the activation for each node is 

computed through a function in the summation of input 

values multiplied by weights of arcs. The function which 

is usually used in back-propagation is the sigmoid 

function, as shown in Figure 4, p.6. The output of a 

node will be the input for another node in a subsequent 

layer in the network. These series of computations are 

performed until getting the output of the output layer. 

* Backward Pass, in which the difference between the 

desired output and the actual output for output node j is 

computed and multiplied by the derivative of the 

nonlinear sigmoid function to obtain 6 value, the amount 

of change in the output from time t to time t+l. 

If node j is an output node, then 



6j = Ta(l- Ta)(Td- Ta), 

where Ta is the actual output of node j, Td is the 

desired output of node j, and Ta(l - Ta) is the 

derivative of the sigmoid function which is 

Ta = 1 1 (1 + e-x), 

where X is the net value of the summation mentioned 

above. If node j is a hidden layer node, then 

6j = Ta(1 - Ta) ~ ok Wjk' 
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where k ranges over all nodes in the layer above node j, 

and Wjk is the weight of the arc which connects j to a 

node in layer k. Thus, the change of weight which is 

required to minimize the error will be calculated as 

follows: 

Wij(n+1) = Wij(n) + ~ 6j Ti +a (Wij(n) - Wij(n- 1)) 1 

where: 

Wij(n+l) is the weight at time n+1 from neuron 

i in the hidden layer to neuron j in the output layer. 

Wij(n) is the weight at time n. 

~ is the learning rate whose value affects the speed of 

training. ~ must neither be too small nor too large. If 

it is too small, it slows convergence. If it is too 

large, the weight changes will overshoot the current 

solutions and convergence will not occur. 

a is the momentum factor which is used to improve the 

training time. a is multiplied by the amount of the 

previous weight change. Using the previous change is a 

way of remembering the behavior of the adjusting 
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procedure over time. The effect of choosing the values 

of ~ and a will be discussed shortly. 

Ti is the output of neuron i. 

The network which uses this kind of learning has one or 

more intermediate, or hidden, layers to compute functions 

that cannot be computed properly with only two layers. The 

input could be continuous or binary. The desired output of 

all nodes is typically low , 0 < low< 0.1, unless the node 

corresponds to the class the current input is from, in which 

it will be high, 0.9 < high < 1.0. Weights in the network 

are set initially to small random numbers and training cases 

are applied to the network in consecutive iterations. In 

each iteration, weights are adjusted by a value proportioned 

to the difference between the desired output and actual 

output until the cost function is minimized to an 

acceptable value such as 0.1 or .05. 

The number of hidden nodes determines the complexity of 

the partitioning surface of the hyperspace, which 

encompasses all the points in the training examples. 

Determining the number of nodes in a hidden layer must 

be done after studying the training examples well because if 

the underlying mapping is linear, the number of nodes must 

be small and vice versa; if the underlying mapping is highly 

nonlinear, the number must be increased. 

The parameters in the back-propagation algorithm, 

learning rate ~ and momentum a, affect the performance of 

the training procedure. Gradient descent algorithms like 



36 

back-propagation must respond to the hills and valleys of 

the objective function. Thus, with a high learning rate a 

valley or a minimum direction may be skipped; a high 

momentum may lead the training procedure into a local 

minimum if it skips a small hill which may lead to the 

global minimum. 

Deficiencies of Back-Propagation. The back-propagation 

algorithm has proved to be effective in problems with small 

sizes. However, the algorithm has a major deficiency which 

is its slow rate of learning. Empirically, the learning 

time on a serial machine is very approximately O(N3 ) [20], 

where N is the number of weights in the network. The time 

for one forward and one backward pass is O(N). The number 

of training examples is typically O(N). The number of times 

the weights must be updated is approximately O(N). A second 

deficiency of back-propagation is its being biologically 

implausiblebecause there is no evidence that a synapse can 

be used in the reverse direction. Also, it is possible that 

the algorithm may stick in a local minimum instead of a 

global minimum as a result of a bad choice of the learning 

parameters as mentioned above. 

Generalization 

The main purpose of training an artificial neural 

network is to produce a network which generalizes correctly 

to new cases after training on an adequate number of typical 
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cases. Unfortunately, in much of the current research there 

is no formal method to conceptualize the meaning of 

generalization. Valiant [36] has introduced an approach 

to distinguish classes of boolean functions which can be 

induced from examples in polynomial time from classes that 

require exponential time. Valiant assumes that a 

hypothesis space is known in advance, and he allows the 

training cases to be selected according to any stationary 

distribution which must be used to generate the test cases. 

The induced function is considered good enough if it 

differs from the true one on less than a small fraction, 

1/h, of the test cases. A class of boolean functions is 

considered to be learnable in polynomial time if, for any 

choice of h, there is a probability of at least (1 - 1/h) 

that the induced function is good enough after a polynomial 

number of training examples. 

Maureen Caudill [5] mentions that the size of the 

middle layer in multi-layer models affects the 

performance of the network. If the size is too large, then 

the network tends to memorize the input patterns rather than 

generalize the input into features. On the other hand, if 

the size is small, it will increase the number of iterations 

required to train the network and will likely reduce the 

accuracy of recall. 



CHAPTER III 

APPROACHES TO HANDLE UNCERTAINTY 

IN CONNECTIONIST EXPERT SYSTEM 

As mentioned in chapter 1, this study implemented two 

approaches to manage uncertainty in connectionist expert 

systems. These approaches are: 

1- The random cell approach. 

2- The stairstep approach. 

The Random Cell Approach 

In this approach, a variable will be represented 

by several nodes to express the uncertainty of that 

variable. The uncertainty could be the variable's degree of 

fuzziness or its probability of existence. Analysis of 

variables represented by 6 nodes was performed in this 

study. The maximum value that a variable can have occurs 

when all the nodes have true values, or 1. On the other 

hand, a minimum value is present when the first node is set 

to one and the rest of the nodes are set to false, or zero. 

Rosenblatt [30] introduces the perceptron training algorithm 

to train linear discriminants. This algorithm produces a 

weight vector L as follows: 

1- Set L to the o vector. 

2- Let L be the current weights. Randomly pick a training 
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example Ei, with corresponding classification Ci· 

3a- If L correctly classifies Ei, do nothing. I.e., if 

L Ei > 0 and Ci = +1 } or 

L Ei < 0 and Ci = -1 }, then do nothing. 

3b- Otherwise, form a new set of weights L' as follows: 

L' = L + CiEi 

4- Go to 2. 
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The perceptron learning algorithm has a limitation in 

dealing with non-separable training examples in which there 

is no set of weights that correctly classifies every 

example. To overcome this problem, Gallant (15] modifies 

the perceptron learning algorithm so that an optimal set of 

weights can be obtained in the case of nonseparable training 

examples. Gallant calls that algorithm the pocket 

algorithm, which refers to the process of saving the vector 

of weights with the longest consecutive run of correct 

classification trials in the perceptron learning algorithm. 

The pocket algorithm has the following steps: 

1 - Set L to the 0 vector. 

2 - Let L be the current weights. Randomly pick a training 

example Ei with corresponding classification Ci. 

3a- If L correctly classifies Ei then: 

3aa- If the current run of correct classifications with 

L is longer than the run of correct 

classifications for the weight vector in your 

pocket: 

3aaa- Put L in your pocket and remember the length 



of its correct run. 

3b- Otherwise, form a new set of weights L' as follows: 

L' = L + Ci Ei 

4- Go to 2. 
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Gallant [15] shows that with an increase in the number 

of iterations, the probability that the pocket weights are 

optimal approaches 1. As expected, the main drawback for 

this algorithm is that there is no known limit to the number 

of iterations required to obtain the optimal set of weights. 

On the other hand, the pocket algorithm is suitable for 

noisy and redundant inputs, making it an ideal choice for 

training examples in connectionist expert systems. 

Actually, a single linear discriminant is not able to 

compute all boolean functions of its input. However, adding 

an intermediate layer helps in computing such functions. 

For that reason, Rosenblatt [31] introduces the idea of 

using a layer of random functions prior to a single 

trainable cell as shown in Figure 7. 



Random boolean 
Functions 

Output node 

f Output 

. Input 
Nodes 

tt llttttttlttttt 
Figure 7. Rosenblatt's Idea (Random Functions) 
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Each random function has relatively few inputs and some 

of these functions will represent, by trial and error, 

features of interest. In the meantime, the perceptron 

learning algorithm will produce coefficients for the 

trainable cell; i.e., coefficients for the arcs which 

connect the intermediate layer to the output node. Minsky 

and Papert [27] show that some functions could never be 

recognized by. a network if the random cells were limited as 

to which inputs each cell could see. To overcome this 

problem, Gallant [16] introduces random cells which have the 

following features: 

1- Each cell in the random layer sees all inputs rather than 

a small subset. 

2- A distributed representation of all crucial features in 

the activation patterns of all the random cells is 

desired rather than seeking individual cells that 
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recognize particular patterns. 

3- Each cell in the random layer is a linear discriminant 

with fixed _random coefficients rather than randomly 

selected boolean functions. 

4- The learning algorithm is the pocket algorithm. 

Gallant describes this modification as a distributed 

method in the sense that it has a sufficiently rich 

distributed random representation in the activations of the 

random discriminants, as represented in Figure 8, 

rather than having individual random cells compute 

individual features. 

lntermedlat. 
La~r of 
Random 
Celie 

Input 
Node& D D D 

Cell with coetflolent being modified by Poclwt Algorithm 

Cell with fixed, randomly generated coeffieienta 

Figure 8. Distributed Method 

Thus, in the first approach the input variables, each 

of which is represented by 6 nodes, will be connected to 

an intermediate layer of random cells by arcs that have 

randomly generated weights. In the meantime, the 
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intermediate layer is connected to the output layer by arcs 

with their weights obtained by applying the pocket weight 

learning procedure as it is shown in Figure 9. 

OUTPUT NODE 1 OUTPUT NODE 2 OUTPUT NODE a OUTPUT NODE 4 

RANDOM 
CELLS 

llllllllllllllllll llllllllllllllllll 111111111111 111111 llllllllllllllllll 

V1 INPUT 'IIIIRIABLE 1 

V 2 INPUT 'IIIIRIABLE 2 

V3 INPUT VARIABLE 3 

THERE ARE 8 OUTPUT NODES 

Figure 9. Random cells approach 

The Stairstep Approach 

In this approach, a modification to the back-

prorogation algorithm has been implemented. As 

mentioned in chapter 2, the output of a sigmoid function, 

1 
f (x) = 

ranges from o to 1 (not including the end points), in which 

an output value close to one is considered to be true while 

an output near to zero is regarded as false. A node has its 

internal structure as shown in Figure 10. 
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X Output 
Input 

Figure 10. Internal structure of a node 

The purpose of this representation is to obtain the 

output of any node in the network in the form of a uniform 

stairstep function. Each step in that output will represent 

a fuzzy value for the variable or its degree of severity. 

The weights and biases for this internal structure will be 

chosen without training [18] so that the stairstep function 

is as uniform as possible. 
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Stalrstep function 
Output 

1 

0.9 

0.8 

0.7 Step 

0.8 
4 

0.6 
Step 

3 

0.4 Step 
2 

0.3 

0.2 

0.1 Input 

00 0.5 1.5 2 2.5 3 3.6 4 4.5 5 5.5 

Figure 11. Output of stalrstep function 

As it is shown in Figure 11, the number of steps is 

equal to the number of internal nodes. As a consequence, we 

can increase or decrease the number of these internal nodes 

to accommodate the different kinds of problems in the real 

world. For the purpose of this study, 6 internal nodes are 

used, where step one represents a false result and steps 2 

to 6 represent different truth values for a variable. As a 

result of adopting this representation, the output function 

will be modified to become: 

1 
f(x) = ------------------------------------------------ . (1) 

1 + e-<-----~1 ------- + ------~: _______ + ... -8) 
1 + e-10x + 81 1 + e-lOx + 82 

Where: 
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x is the input value for that structure of nodes. 

Wi 1s the weight of the arc which connects intermediate node 

i to the output node of the structure as it is shown in 

Figure 3.1. 

8i is the bias of intermediate node i. 

e is the bias of the output node. 

To obtain the uniform stairstep function, which is 

represented in Figure 10, the following values are assigned 

to the above parameters: 

40, and e 1. 5. 

w1 = w2 = w3 = w4 = w5 = w6 = .6. 

The modification of the output function of a node 

requires the derivative function, which is used in applying 

the delta rule as it is mentioned in chapter 2, to be 

modified to handle this sort of internal structure of a 

node. 

To simplify the relation for this derivative let 

w1 w2 
(--------------- + ----------------- + - e) 
1 + e-10x + 81 1 + e-lOx + 82 

Z - e 

Thus: 

d 

dx 

d 
div 

dx 

Wi 
(---------------~) = 

1 + e-10X + 81 

z 
f (x) 

( 1 + Z) 2 

10 * w· * e-lOx + 8i 1 

( 2) 

A node with the internal structure that is shown in 
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Figure 10 will receive an input value from other nodes 

connected to it in case it is an intermediate or an output 

node. If the node is an input node, then it is set 

externally. A network node will produce an output which 

will be a one-digit value ranging from 1 to 6. This 

value will express the degree of fuzziness of that variable 

or the probability of its existence, depending on the 

interpretation of each step value in the output function. 

To simplify the training process for that type of 

neural network, each step will have a corresponding 

network. In other words, step number n will have a network 

that classifies its inputs into n or n+1. The training 

examples for each net will be chosen as a subset of 

the total number of examples so that the training examples 

for net number n will be all the training examples that have 

desired outputs equal or greater than n. The output of any 

example in the mentioned subset that has desired output 

greater than n will be viewed as n+1. 

In order to use these trained nets, an input will be 

presented to the network of step one and if the output is 2, 

the input will be presented to the network of step 2, and 

promotion to upper step nets will be continued as long as 

the output of each step's net is greater than the step 

number. This process will end if the output is equal to the 

step number or if we reach to the highest step, which equals 

six in the model. 



Training Algorithm of the Second Approach 

The algorithm for training the different nets in a 

connectionist expert system is as follows: 

1- Set step = 1. 

2- for(i=O;i<number_of_examples;++i) 

if(desired_output[i] < step) 

discard that example from the training set. 

2- set number_of_curr_examples = number_of_examples with 

desired output >= step. 

3- for(i=O;i<number_of_curr_examples;++i) 

if(desired_ouput[i] > step + 1) 

desired output[i] = step + 1; 

4- Forward Pass. Choose randomly one example and compute 

its actual output, Ta, by applying (1). 
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5- Backward Pass. If the actual output of the chosen 

example is not within the range of the boundaries of its 

desired step, then compute the error difference which 

equals Td - Ta, where Td is the desired output that 

equals the average value for the boundaries of the 

desired step. A recursive algorithm will be followed to 

adapt the weights of the network starting from the output 

node and working back to the first hidden layer. Adjust 

the weights by 

Wij(t+1) = Wij(t) + ~ Oj Ti +a (Wij(t) - Wij(t-1)), 

where: 

is the weight from node i to node j at 



time t 

Wij (t+l) is the weight at time t+l. 

p is the learning rate, see chapter 2. 

a is the difference between the desired output 

T· ~ 

and the actual one multiplied by a derivative 

calculated in equation (2). 

if node is an output node, then 

otherwise, 

a = divj * ~ ak Wjk, where k ranges over all 

nodes in the layer k which is above node j. 

is the momentum factor, which is described in 

chapter 2. 

is the output of node i 

6- Repeat by going to step 4 until obtaining the set of 

weights that correctly classifies fuost training 

examples for that step. 

7- Set step = step + 1 

8- If step <= 5, then go to 2, else stop. 
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CHAPTER IV 

SIMULATION AND RESULTS 

A simulation for the connectionist expert system has 

been developed to study the performance of the two 

approaches. The performance was measured in terms of 

the capability of the two approaches in learning input 

training examples and their robustness in predicting output 

results upon input data that have some difference from the 

trained ones. The model used in this study contains one 

input layer, which contains nodes that receive the input 

data of the system, two intermediate layers, and one output 

layer. As described in chapter 1, there is a hierarchical 

order of indexes of the nodes such that a node will have an 

index higher than the indexes of the nodes on which it 

depends as shown in Figure 12. 
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Indexes 

Output Nodes 

Input Nodes 

Figure 12. Connectionist model 

This model could be regarded as a diagnostic expert system 

as follows. 

1- The input layer receives the defects observed. 

2- Each node in the first intermediate layer expresses the 

cause of defects. 

3- A node in the third layer expresses the required 

treatment for the nodes connected to it from the 

previous layers. 

4- The output layer describes extra treatments, which 

depend on the desired treatment in the third layer and, 

in some situations, on additional information about the 

kinds of defects or causes of these defects. 
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As mentioned in chapter 1, the training used in this 

kind of connectionism is easy learning, in which each 

intermediate or output node is trained separately. As it is 

shown in Figure 12, the number of input arcs for any output 

or intermediate node varies from 2 to 4 to judge the 

performance under different conditions of topologies. 

A hypothetical space describing a hypothetical problem 

domain was constructed for every node in the network so 

that the training examples as well as the test data 

have the same source of judgement. To create this 

hypothetical space, a set of rules was used to compute 

the outputs of a node according to the values of inputs. 

These sets of rules were chosen so that underlying 

relationships among the input variables are nonlinear or 

nonuniform to simulate the situations in the real world 

where the data or point of views may come from several 

sources that may result in contradictions. A sample of 

these rules is as follows: 

if(1 < x < 3) and (4 < y < 6) and (1 < z < 4)) 

then output(u) = round((x * .2) + (y * .1) + (z * .5)) 

where 

x, y, and z are the output of nodes x, y, and z 

respectively, which are connected to node u. 

Appendix A has a complete set of rules used to develop 

the hypothetical spaces for all the nodes in the network. 

Analysis of the performance is as follows: 

1- Each intermediate or output node is trained 
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separately. 

2- There are five training sets for each node. These sets 

are 10%, 20%, 30%, 40%, and 50% of the total 

hypothetical space. This means that if a node has 4 inputs, 

then the total hypothetical space is 1296 cases and the 

training sets are 130, 259, 390, 518, and 648 examples 

respectively. 

3- For each training set, the number of cases that are 

correctly classified after the training is calculated 

to indicate the relationship between the increasing number 

of learning examples and the capability of the network in 

-predicting unseen cases. Also, a comparison between the 

two approaches was performed to find out which one has a 

better generalization property in terms of the number of 

correctly classified cases and the standard deviations of 

these classifications. 

4- The performance of the overall network was studied 

by applying several inputs to the input layer and performing 

the same sort of analysis as in step 3 on the nodes in the 

output layer. This arialysis was carried on five times 

for each approach so that the first time has all the nodes 

trained on 10% of their hypothetical space and the second 

one has 20% and so on until 50%. 

In the random cells approach, a limit of 1000 

iterations was implemented to obtain the optimal set of 

weights. This 1000 iterations were repeated 100 times 

with different initial random weights in each time. On the 
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other hand, 10000 iterations were used in the stairstep 

approach. The learning rate for the stairstep approach is 

chosen to be 0.5 while the momentum factor is taken as 0.1. 

The following tables represent the results obtained for 

training the 19 nodes. The nodes have indexes starting with 

22 to 40, as it is shown in Figure 12. The first five 

tables have the results of training each node separately. 

Tables number 6 to 10 represent the performance of the 

outp~t nodes, which have indexes from 36 to 40, upon 

presenting 10000 unique test cases to the network. A 

complete set of charts that represent the results in the 

tables is provided in Appendix B. 



Node Stairstep 

# of 
correctly 
classified 
cases 

--
22 144 

23 145 

--
24 157 

--
25 1100 

--
26 149 

--
27 905 

--
28 151 

--
29 130 

301 136 

--
31 169 

--
32 23 

--
33 22 

--
34 141 

--35 151 

--
36 173 

--
37 140 

--
38 136 

--
39 142 

--
40 898 

--

TABLE 1. 

RESULTS WITH TRAINING 10% OF THE 
HYPOTHETICAL SPACE OF EACH NODE 
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Approach Random Cell Approach 

% st.d # of # of ~ 
0 st.d # of 

nodes correctly nodes 
in mid classified in mid 
layer cases layer 

-- -- -- --
66 .600 6 112 52 1.0 12 

-- -- -- --67 .597 6 104 48 .976 12 

-- -- -- --
72 .697 6 124 57 .857 12 

-- -- -- --
85 .388 17 957 74 1. 26 65 

-- -- -- --69 .616 6 112 52 1.0 12 

-- -- -- --
70 .601 17 774 60 1. 62 65 

-- -- -- --
70 .649 6 88 41 1. 31 12 

-- -- -- --
60 .713 6 111 51 .799 12 

-- -- -- --
63 1. 25 6 128 59 .969 12 

-- -- -- --78 .466 6 124 57 .757 12 

-- -- -- --
64 1. 04 2 17 47 .360 2 

-- -- -- --
61 .799 2 18 50 .616 2 

-- -- -- --
65 .716 6 104 48 .986 12 

-- -- -- --
70 .656 6 124 57 .745 12 

-- -- -- --
80 .461 6 124 57 .833 12 

-- -- -- --
65 .940 6 110 51 1.13 12 

-- -- -- --
63 .631 6 99 46 .962 12 

-- -- -- --
65 .683 6 104 48 .972 12 

-- -- -- --
69 0 758 17 759 59 2.03 12 

-- -- -- --



Node 

--22 

--
23 

--
24 

--
25 

--
26 

--
27 

--
28 

--
29 

--
30 

--
31 

--32 

--33 

--34 

--35 

--36 

--
37 

--
38 

--
39 

--
40 

--

TABLE 2. 

RESULTS WITH TRAINING 20% OF THE 
HYPOTHETICAL SPACE OF EACH NODE 
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Stairstep Approach Random Cell Approach 

# of ~ 
0 st.d # of # of % st.d # of 

correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --
151 70 .63 6 123 57 .940 22 

-- -- -- --165 76 .486 6 124 57 .868 22 

-- -- -- --170 79 .565 6 140 65 .822 22 

-- -- -- --
1146 88 .340 22 1026 79 1.12 22 

-- -- -- --
173 80 .446 6 129 60 1. 02 22 

-- -- -- --
939 72 .542 22 919 70 1. 43 100 

-- -- -- --
153 71 .690 6 117 54 .874 22 

-- -- -- --
163 75 .495 6 135 63 .656 100 

-- -- -- --167 77 1.12 6 147 68 .716 22 

-- -- -- --
171 79 .400 6 144 67 .634 22 

-- -- -- --
29 81 .726 4 26 72 .471 3 

-- -- -- --
22 61 .799 2 17 47 .589 3 

-- -- -- --
163 75 .495 6 135 63 .751 22 

-- -- -- --
157 73 .535 6 131 61 .760 22 

-- -- -- --
179 83 .430 6 134 62 .739 22 

-- -- -- --
168 78 .561 6 133 62 .964 22 

-- -- -- --139 64 .641 6 149 69 .656 22 

-- -- -- --
153 71 .573 6 132 61 .742 22 

-- -- -- --
937 72 .665 22 820 63 1. 90 100 

-- -- -- --



Node 

--
22 

--
23 

--
24 

--
25 

--26 

--
27 

--
28 

--
29 

--
30 

--31 

--32 

--
33 

--
34 

--
35 

--
36 

--
37 

--
38 

--
39 

--
40 

--

TABLE 3. 

RESULTS WITH TRAINING 30% OF THE 
HYPOTHETICAL SPACE OF EACH NODE 
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Stair step Approach Random Cell Approach 
• 

# of ~ 0 st.d # of # of ~ 
0 st.d # of 

correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --176 81 .461 6 144 67 .713 32 

-- -- -- --169 78 .466 10 127 59 .853 32 

-- -- -- --
180 83 .408 12 156 72 .745 32 

-- -- -- --
1157 89 .327 22 1114 86 1.19 150 

-- -- -- --
175 81 .481 6 137 63 .822 32 

-- -- -- --
989 76 .500 22 1016 78 1. 21 150 

-- -- -- --
162 75 .627 10 131 61 1. 04 32 

-- -- -- --
175 81 .451 10 148 69 .642 32 

-- -- -- --
175 81 .638 10 165 76 .656 32 

-- -- -- --
187 87 .385 10 163 75 .548 32 

-- -- -- --
31 86 .471 4 28 78 .304 5 

-- -- -- --24 67 .649 2 16 44 .533 6 

-- -- -- --
184 85 .353 12 140 65 .739 32 

-- -- -- --
170 79 .476 12 150 70 .723 32 

-- -- -- --
182 84 .513 12 160 74 .604 32 

-- -- -- --
177 82 .556 12 145 76 .855 32 

-- -- -- --
166 77 .495 14 153 71 .585 32 

-- -- -- --
169 78 .419 12 167 77 .49 32 

-- -- -- --
977 75 .693 22 988 76 1. 41 150 

-- -- -- --



Node 

--
22 

--23 

--
24 

--25 

--
26 

--
27 

--
28 

--
29 

--
30 

--
31 

--
32 

--
33 

--
34 

--
35 

--36 

--
37 

--
38 

--
39 

--
40 

--

TABLE 4. 

RESULTS WITH TRAINING 40% OF THE 
HYPOTHETICAL SPACE OF EACH NODE 
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stairstep Approach Random Cell Approach 

# of % st.d # of # of 9,-
0 st.d # of 

correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --
178 82 .451 8 149 69 .656 42 

-- -- -- --177 82 .420 14 152 70 .632 42 

-- -- -- --
182 84 .390 14 164 76 .649 42 

-- -- -- --
1170 90 .312 25 1162 89 1. 65 200 

-- -- -- --182 84 .430 16 155 72 .687 42 

-- -- -- --
1001 77 .495 31 1087 84 1. 03 200 

-- -- -- --
177 82 .471 20 142 66 .868 42 

-- -- -- --182 84 .397 20 169 78 .495 42 

-- -- -- --
178 82 .54 14 164 76 .680 42 

-- -- -- --182 84 .396 12 170 79 .504 42 

-- -- -- --
33 92 .288 4 27 75 .204 6 

-- -- -- --
28 78 .471 2 20 56 .446 9 

-- -- -- --
190 88 .346 14 149 70 .742 42 

-- -- -- --
182 84 .397 16 162 75 .604 42 

-- -- -- --
186 86 .451 14 162 75 .707 42 

-- -- -- --
180 83 .544 14 148 69 .703 42 

-- -- -- --
170 78 .490 14 169 78 .504 42 

-- -- -- --
188 87 .360 14 160 74 .522 42 

-- -- -- --
1000 77 .583 37 1058 82 1. 23 200 

-- -- -- --



Node 

--
22 

--
23 

--
24 

--
25 

--
26 

--
27 

--
28 

--
29 

--
30 

--
31 

--
32 

--
33 

--34 

--
35 

--
36 

--37 

--
38 

--
39 

--40 

--

TABLE 5. 

RESULTS WITH TRAINING 50% OF THE 
HYPOTHETICAL SPACE OF EACH NODE 

stairstep Approach Random Cell 

# of ~ 
0 st.d # of # of ~ 0 

correctly nodes correctly 
classified in mid classified 
cases layer cases 

59 

Approach 

st.d # of 
nodes 
in mid 
layer 

-- -- -- --180 83 .430 10 169 78 .581 52 

-- -- -- --
182 84 .397 16 170 79 .577 52 

-- -- -- --
184 85 .369 14 173 80 .540 52 

-- -- -- --
1179 91 .380 31 1216 94 1. 77 250 

-- -- -- --188 87 .397 18 174 81 .605 52 

-- -- -- --
1018 79 .432 37 1116 86 .928 250 

-- -- -- --181 84 .451 22 163 75 .597 52 

-- -- -- --186 86 .376 22 170 79 .490 52 

-- -- -- --188 87 .360 16 176 81 .589 52 

-- -- -- --
185 86 .376 14 186 86 .372 52 

-- -- -- --
33 92 .408 4 32 89 .316 7 

-- -- -- --
30 83 .408 2 26 72 .288 9 

-- -- -- --
194 90 .321 16 172 80 .481 52 

-- -- -- --185 86 .378 16 166 77 .600 52 

-- -- -- --189 88 .432 14 179 83 .440 52 

-- -- -- --183 85 .446 14 161 75 .726 52 

-- -- -- --174 81 .467 16 182 84 .456 52 

-- -- -- --
195 90 .310 14 177 82 .546 52 

-- -- -- --
1020 79 .972 37 1123 87 1.11 250 

-- -- -- --



Node 

--36 

--
37 

--
38 

--
39 

--40 

--
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TABLE 6. 

RESULTS OF OUTPUT NODES AFTER TESTING THE NETWORK BY 
10000 TEST CASES (EVERY NODE IS TRAINED ON 10% 

OF ITS HYPOTHETICAL SPACE) 

Stairstep Approach Random Cell Approach 

# of ~ 0 st.d # of # of ~ 0 st.d # of 
correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --7608 76 .489 6 5698 57 .902 12 

-- -- -- --
7732 77 .476 6 3170 32 .879 12 

-- -- -- --7726 77 .476 6 1520 15 1. 56 12 

-- -- -- --6768 68 .569 6 6205 62 .875 12 

-- -- -- --
7620 76 .488 17 7062 71 .553 65 

-- -- -- --

TABLE 7. 

RESULTS OF OUTPUT NODES AFTER TESTING THE NETWORK BY 
10000 TEST CASES (EVERY NODE IS TRAINED ON 20% 

Node 

--
36 

--37 

--
38 

--39 

--40 

--

OF ITS HYPOTHETICAL SPACE) 

Stairstep Approach Random Cell Approach 

# of 
correctly 
classified 
cases 

8048 

8291 

8111 

8403 

7946 

st.d # of 

80 .408 

83 .413 

81 .501 

84 . 44 7 

79 . 453 

nodes 
in mid 
layer 

6 

6 

6 

6 

22 

# of 
correctly 
classified 
cases 

6234 

7431 

4387 

7282 

7562 

~ 
0 st.d # of 

nodes 
in mid 
layer 

-- --62 .759 22 

-- --74 .513 22 

-- --
44 .789 22 

-- --
73 .613 22 

-- --76 .497 100 

-- --



Node 

--
36 

--37 

--
38 

--
39 

--
40 

--

Node 

--36 

--37 

--
38 

--
39 

--
40 

--
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TABLE 8. 

RESULTS OF OUTPUT NODES AFTER TESTING THE NETWORK BY 
10000 TEST CASES (EVERY NODE IS TRAINED ON 30% 

OF ITS HYPOTHETICAL SPACE) 

Stair step Approach Random Cell Approach 

# of ;?,-
0 st.d # of # of ;?,-

0 st.d # of 
correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --8336 83 .408 12 6783 67 .788 32 

-- -- -- --
9086 91 .304 12 7538 75 .498 32 

-- -- -- --9685 97 .177 14 5153 52 .769 32 

-- -- -- --8362 84 .421 12 7411 74 .459 32 

-- -- -- --8083 81 .437 31 7931 80 .524 150 

-- -- -- --

TABLE 9. 

RESULTS OF OUTPUT NODES AFTER TESTING THE NETWORK BY 
10000 TEST CASES (EVERY NODE IS TRAINED ON 40% 

OF ITS HYPOTHETICAL SPACE) 

Stair step Approach Random Cell Approach 

# of % st.d # of # of ;?,-
0 st.d # of 

correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --8556 86 .380 14 7338 73 .701 42 

-- -- -- --9244 92 .276 14 7763 78 .523 42 

-- -- -- --9722 97 .166 14 6601 66 .745 42 

-- -- -- --8531 85 .401 14 7803 78 .432 42 

-- -- -- --
8183 82 .398 37 8262 82 .346 200 

-- -- -- --



Node 

--36 

--
37 

--
38 

--39 

--40 

--
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TABLE 10. 

RESULTS OF OUTPUT NODES AFTER TESTING THE NETWORK BY 
10000 TEST CASES (EVERY NODE IS TRAINED ON 50% 

OF ITS HYPOTHETICAL SPACE) 

stairstep Approach Random Cell Approach 

# of 9., 
0 st.d # of # of % st.d # of 

correctly nodes correctly nodes 
classified in mid classified in mid 
cases layer cases layer 

-- -- -- --
9706 97 .176 14 9600 96 .200 52 

-- -- -- --9461 95 .231 14 8921 89 .398 52 

-- -- -- --
9744 97 .154 16 9810 98 .138 52 

-- -- -- --8891 89 .321 14 8673 87 .324 52 

-- -- -- --8268 83 .416 37 8418 84 .400 250 

-- -- -- --

The experimental results give the stairstep 

approach an obvious edge over the random cell method in 

terms of generalization ability, which is the percentage of 

correctly classified test cases, and accuracy, which is 

better with smaller standard deviation. In fact, nothing 

comes without a price; the stairstep approach is .a highly 

time consuming algorithm compared with the training time 

required for the random cell approach such that a node with 

4 inputs may require 10 hours to train 648 examples while 

this time shrinks to 5 minutes in the random cell method. 

One of the interesting properties that has been found 

with these experiments is that there is a distinct 
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difference in performance between the two methods. The 

considerable difference occurs when the number of training 

examples is a small subset of the hypothetical space of 

the input cases, which may be 10% to 40% of that space, 

while the difference becomes smaller, or negligible, with 

increasing the number of training examples. The comparison 

of performance for each method is better recognized by 

listing out the advantages and disadvantages of each 

approach as it is shown in the following table 



Advantages 

Disadvantages 
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TABLE 11. 

COMPARISON BETWEEN RANDOM CELL APPROACH 
AND STAIRSTEP APPROACH 

Stairstep method 

* Has a better 
performance than the 
random cells method 
in terms of 
generalization and 
accuracy when the 
number of training 
examples is small 
, from 10% to 40% of 
hypothetical space. 

* Requires less 
storage for the sets 
of weights, which 
are obtained by 
training 

* Training process is 
very slow compared 
with random cell 
method. 

Random cell method 

* Much faster than 
stairstep approach 

* Has nearly equal or 
even higher, 
performance when 
the number of 
training examples 
increases to 50% of 
the hypothetical 
space. 

* Requires a larger 
storage than 
stairstep method as 
a result of a large 
number of random 
cells required in 
case of nonlinear 
training examples 

* Modest performance 
with small number 
of training example 
compared with the 
stairstep approach 



CHAPTER V 

SUMMARY AND CONCLUSION 

The connectionist expert system model, introduced by 

Gallant has a limitation of handling the system variables on 

the basis of true or false values. To handle this 

limitation, two approaches are proposed to permit a variable 

to have several truth values such as low, medium, or high. 

In the first approach, a variable is represented by several 

nodes instead of one node. In this study, 6 nodes represent 

any intermediate or output variable in the system where the 

lowest value that a variable can have is 1 0 0 0 0 0 and the 

highest value is 1 1 1 1 1 1. The lowest value could be 

regarded as the false value or the lowest value of the 

probability or the certainty factor of the variable. The 

training algorithm implemented for this approach is the 

pocket algorithm, which is a modification to the perceptron 

learning procedure. A middle layer of random cells, which 

is proposed by Gallant to enhance the learning capability of 

a node with nonlinear training examples, is implemented in 

this approach. 

While integer values are used to represent a variable 

in the first approach, floating point numbers are used in 

the second approach. In the second approach, a modification 
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to the back-propagation algorithm has been introduced to 

obtain a node output in the range of 1 to 6 instead of 0 to 

1. The idea ih this modification is introducing an internal 

structure to a node so that the output function will take a 

stairstep form. Each step in the output function represents 

a truth value for the variable. The number of steps is 

equal to the number of internal nodes so that we can 

increase the deg~ees of truth of a variable by increasing 

the number of these internal nodes. This modification 

requires the modification of the output function and the 

derivation calculation, which is used in applying the delta 

rule. 

A simulation for a connectionist expert system is 

developed in this study to compare the performance of the 

two proposed approaches. To compute the output of a node, 

a set of rules is arranged so that the training examples and 

the test cases have the same source of judgement to measure 

the degree of generalization and accuracy of each method. 

Each node in the system is trained using five sets 

of examples equal to 10%, 20%, 30%, 40%, and 50% 

respectively of the hypothetical space of the cases for the 

node. A comparison of the performances between the two 

proposed approaches are carried out for each node upon 

training on the five training sets mentioned above. Also, 

10000 test cases are presented to the system and the 

performances of the output nodes are compared between the 

two methods. 



The experimental results show the following 

observations: 
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1- The random cell approach is much faster in the training 

.process. 

2- The stairstep approach has a better performance when the 

number of training examples is small relative to the total 

space of hypothetical cases. 

3- The difference between the performance of the two 

approaches gets smaller with increasing the number of 

training examples. 

4- The random cell approach requires more storage due to a 

large number of random cells used in the middle layer, 

especially when the underlying relationship among input 

variables is nonlinear and the number of training 

examples is relatively large. 
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Rules for node 22. 

* if(x = 1 and y 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 4 and 1 =< z <= 3) 
output= round(.2 * y + .4 * z) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6) 
output round(.4 * y + .2 * z) 

* if(1 =< x <= 3 and y = 1 and 1 =< z <= 4) 
output= round(.2 * x + .5 * z) 

* if(3 < x <= 6 and y = 1 and 4 < z <= 6) 
output= round(.5 * x + .3 * z) 

* if(1 =< x <= 4 and 1 =< y <= 4 and z = 1) 
output= round(.3 * x + .3 * y) 

* if(4 < x <= 6 and 4 <= y < 6 and z = 1) 
output= round(.2 * x + .4 * y) 

* if(1 =< x <= 6 and 1 =< y <= 6 and 1 =< z <= 3) 
output round(.3 * x + .2 * y + .2 * z) 

* if(1 =< x <= 6 and 1 =< y <= 6 and 3 < z <= 6) 
output round(.3 * x + .5 * y + .2 * z) 

Rules for node 23. 

* if(x = 1 and y 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 4) 
output= round(.2 * y + .6 * z) 

* if(x = 1 and 3 < y <= 6 and 4 < z <= 6) 
output round(.6 * y + .1 * z) 

* if(1 =< x <= 5 and y = 1 and 1 =< z <= 4) 
output= round(.2 * x + .5 * z) 

* if(5 < x <= 6 and y = 1 and 4 < z <= 6) 
output round(.5 * x + .1 * z) 

* if(1 =< x <= 4 and 1 =< y <= 4 and z = 1) 
output= round(.4 * x + .2 * y) 

* if(4 < x <= 6 and 4 <= y < 6 and z = 1) 
output= round(.1 * x + .5 * y) 

* if(1 =< x <= 6 and 1 =< y <= 4 and 1 =< z <= 6) 
output round(.2 * x + .1 * y + .4 * z) 

* if(1 =< x <= 6 and 4 < y <= 6 and 1 =< z <= 6) 
output= round(.4 * x + .3 * y + .3 * z) 

Rules for node 24. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 4) 
output= round(.3 * y + .5 * z) 

* if(x = 1 and 3 < y <= 6 and 4 < z <= 6) 
output= round(.5 * y + .5 * z) 

* if(1 =< x <= 2 and y = 1 and 1 =< z <= 4) 
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output= round(.2 * x + .3 * z) 
* if(2 < x <= 6 and y = 1 and 4 < z <= 6) 

output= round(.1 * x + .3 * z) 
* if(1 =< x <= 3 and 1 =< y <= 5 and z = 1) 

output= round(.1 * x + .4 * y) 
* if(3 < x <= 6 and 5 <= y < 6 and z 1) 

output round(.1 * x + .3 * y) 
* if(1 =< x <= 3 and 1 =< y <= 6 and 1 =< z <= 6) 

output= round(.4 * y + .2 * z) 
* if(3 < x <= 6 and 1 =< y <= 6 and 1 =< z <= 6) 

output= round(.5 * y) 

Rules for node 25 

* if(x = 1 and y 1 and z = 1 and u = 1) 
output = 1 
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* if(x = 1 and 1 =< y <= 4 and 1 =< y <= 3 and 1 <= u <= 3) 
output= round(.1 * y + .4 * z + .2 * u) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6 and 3 < u <= 6) 
output round(.5 * z + .1 * u) 

* if(1 <= x <= 4 and y = 1 and 1 =< z <= 4 and 1 =< u <= 3) 
output= round(.! * x + .2 * z + .4 * u) 

* if(4 < x <= 6 andy= 1 and 4 =< z <= 6 and 3 < u <= 6) 
output round(.3 * z + .3 * u) 

* if(1 =< x <= 3 and 1 =< y <= 4 and z = 1 and 1 =< u <= 3) 
output= round(.1 * x + .1 * y + .3 * u) 

* if(3 < x <= 6 and 4 < y <= 6 and z = 1 and 3 < u <= 6) 
output round(.1 * x + .1 * y + .2 * u) 

* if(1 <= x <= 3 and 1 =< y <= 4 and 1 =< z <= 4 and u = 1) 
output= round(.1 * x + .1 * y + .3 * z) 

* if(3 < x <= 6 and 4 < y <= 6 and 4 < z <= 6 and u = 1) 
output= round(.1 * x + .1 * y + .2 * z) 

* if(1 =< x <= 3 and 1 =< y <= 3 and 1 =< z <= 6 and 
1 =< u <= 6) 

output round(.1 * x + .1 * y + .2 * z + .2 * u) 
* if(1 =< x <= 3 and 3 < y <= 6 and 1 =< z <= 6 and 

1 =< u <= 6) 
output= round(.1 * x+ .2 * z + .2 * u) 

* if(3 < x <= 6 and 1 =< y <= 3 and 1 =< z <= 6 and 
1 =< u <= 6) 

output= round(.1 * y +·.2 * z + .3 * u) 
* if(3 < x <= 6 and 3 < y <= 6 and 1 =< z <= 6 and 

1 =< u <= 6) 
output= round(.25 * z + .25 * u) 

Rules for node 26. 

* if(x = 1 and y 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 2 and 1 =< z <= 4) 
output= round(.2 * y + .3 * z) 



* if(x = 1 and 2 < y <= 6 and 4 < z <= 6) 
output= round(.4 * y + .3 * z) 

* if(1 < x <= 3 andy= 1 and 1 < z <= 4) 
output= round(.5 * x + .1 * z) 

* if(J < x <= 6 andy= 1 and 4 < z <= 6) 
output= round(.2 * x + .4 * z) 

* if(1 =< x <= 3 and 1 =< y <= 4 and z = 1) 
output= round(.3 * x + .3 * y) 

* if(3 < x <= 6 and 4 <= y < 6 and z = 1) 
output round(.4 * x + .1 * y) 

* if(1 =< x <= 6 and 1 =< y <= 6 and 1 =< z <= 4) 
output= round(.3 * x + .2 * y + .1 * z) 

* if(1 =< x <= 6 and 1 =< y <= 6 and 4 < z <= 6) 
output= round(.2 * x + .3 * y + .5 * z) 

Rules for node 27 

* if(x = 1 and y 1 and z = 1 and u = 1) 
output = 1 
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* if(x = 1 and 1 =< y <= 4 and 1 =< y <= 3 and 1 <= u <= 3) 
output= round(.1 * y + .4 * z + .2 * u) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6 and 3 < u <= 6) 
output round(.4 * y + .1 * z + .3 * u) 

* if(1 <= x <= 4 and y = 1 and 1 =< z <= 4 and 1 =< u <= 3) 
output= round(.1 * x + .1 * z + .4 * u) 

* if(4 < x <= 6 and y = 1 and 4 =< z <= 6 and 3 < u <= 6) 
output round(.5 * x + .2 * z + .1 * u) 

* if(1 =< x <= 3 and 1 =< y <= 4 and z = 1 and 1 =< u <= 3) 
output= round(.1 * x + .1 * y + .3 * u) 

* if(3 < x <= 6 and 4 < y <= 6 and z = 1 and 3 < u <= 6) 
output round(.2 * x + .2 * y + .25 * u) 

* if(1 <= x <= 3 and 1 =< y <= 4 and 1 =< z <= 4 and u = 1) 
output= round(.1 * x + .1 * y + .3 * z) 

* if(3 < x <= 6 and 4 < y <= 6 and 4 < z <= 6 and u = 1) 
output round(.3 * x + .1 * y + .2 * z) 

* if(1 =< x <= 3 and 1 =< y <= 3 and 1 =< z <= 6 and 
1 =< u <= 6) 

output= round(.1 * x + .1 * y + .2 * z + .3 * u) 
* if(1 =< x <= 3 and 3 < y <= 6 and 1 =< z <= 6 and 

1 =< u <= 6) 
output round(.1 * x+ .3 * z + .4 * u) 

* if(3 < x <= 6 and 1 =< y <= 3 and 1 =< z <= 6 and 
1 =< u <= 6) 

output= round(.2 * x + .1 * y + .2 * z + .3 * u) 
* if(3 < x <= 6 and 3 < y <= 6 and 1 =< z <= 6 and 

1 =< u <= 6) 
output= round(.3 * x + .25 * y + .25 * z + .2 * u) 

Rules for node 28. 

* if(x 1 and y 1 and z = 1) 



output = 1 
* if(x = 1 and 1 =< y <= 4 and 1 =< z <= 3) 

output= round(.1 * y + .6 * z) 
* if(x = 1 and 4 < y <= 6 and 3 < z <= 6) 

output= round(.4 * y + .4 * z) 
* if(1 < x <= 3 and y = 1 and 1 < z <= 2) 

output= round(.1 * x + .4 * z) 
* if(3 < x <= 6 andy= 1 and 2 < z <= 6) 

output round(.1 * x + .5 * z) 
* if(1 =< x <= 4 and 1 =< y <= 3 and z = 1) 

output= round(.2 * x + .4 * y) 
* if(4 < x <= 6 and 3 <= y < 6 and z 1) 

output= round(.1 * x + .5 * y) 
* if(1 =< x <= 6 and 1 =< y <= 6 and 1 =< z <= 6) 

output= round(.3 * x + .1 * y + .2 * z) 
* if(1 =< x <= 6 and 1 =< y <= 6 and 3 < z <= 6) 

output round(.2 * x + .3 * y + .5 * z) 

Rules for node 29. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 2) 
output= round(.4 * y + .4 * z) 

* if(x = 1 and 3 < y <= 6 and 2 < z <= 6) 
output.= round(.2 * y + .5 * z) 

* if(1 =< x <= 5 and y = 1 and 1 < z <= 5) 
output= round(.1 * x + .4 * z) 

* if(3 < x <= 6 and y = 1 and 5 < z <= 6) 
output round(.3 * z) 

* if(1 =< x <= 4 and 1 =< y <= 3 and z = 1) 
output= round(.4 * y) 

* if(4 < x <= 6 and 3 <= y < 6 and z 1) 
output round(.5 * y) 

* if(1 =< x <= 3 and 1 =< y <= 6 and 1 =< z <= 6) 
output round(.2 * y + .4 * z) 

* if(J =< x <= 6 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.4 * y + .1 * z) 

Rules for node 30. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 4 and 1 =< z <= 3) 
output= round(.1 * y + .4 * z) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6) 
output= round(.5 * y) 

* if(1 =< x <= 3 and y = 1 and 1 < z <= 3) 
output= round(.5 * x + .3 * z) 

* if(J < x <= 6 and y = 1 and 3 < z <= 6) 
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output= round(.4 * x + .6 * z) 
* if(1 =< x <= 3 and 1 =< y <= 2 and z = 1) 

output= round(.4 * x + .1 * y) 
* if(3 < x <= 6 and 2 <= y < 6 and z = 1) 

output= round(.6 * z) 
* if(1 =< x <= 6 and 1 =< y <= 3 and 1 =< z <= 6) 

output round(.2 * x + .4 * y) 
* if(1 =< x <= 6 and 3 < y <= 6 and 1 < z <= 6) 

output= round(.5 * z) 

Rules for node 31. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 4 and 1 =< z <= 3) 
output= round(.5 * y + .5 * z) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6) 
output= round(.6 * y + .3 * z) 

* if(1 =< x <= 4 and y = 1 and 1 < z <= 3) 
output= round(.6 * z) 

* if(4 < x <= 6 and y = 1 and 3 < z <= 6) 
output round(.4 * z) 

* if(1 =< x <= 3 and 1 =< y <= 2 and z = 1) 
output= round(.5 * y) 

* if(3 < x <= 6 and 2 <= y < 6 and z = 1) 
output round(.35 * y) 

* if(1 =< x <= 2 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.4 * y + .3 * z) 

* if(2 < x <= 4 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.2 * y + .3 * z) 

* if(4 < x <= 6 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.3 * y + .2 * z) 

Rules for node 32. 

* if(x = 1 and y 1) 
output = 1 

* if(x = 1 and 1 <= y <= 3) 
output= .5 * y 

* if(x = 1 and 3 < y <= 6) 
output = .8 * y 

* if(1 <= x <= 6 and y = 1) 
output = 1 

* if(1 <= x <= 3 and 1 <= y <= 3) 
output= .3 * x + .2 * y 

* if(3 < x <= 6 and 1 <= y <= 3) 
output = .3 * x 

* if(1 <= x <= 3 and 3 < y <= 6) 
output = .2 * x + .4 * y 

* if(3 < x <= 6 and 3 < y <= 6) 
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output = .5 * y 

Rules for node 33. 

* if(x = 1 and y = 1) 
output = 1 

* if(x = 1 and 1 <= y <= 2) 
output = .6 * y 

* if(x = 1 and 2 < y <= 6) 
output = .4 * y 

* if(1 <= x <= 6 and y = 1) 
output = .5 * x 

* if(1 <= x <= 2 and 1 <= y <= 4) 
output .25 * x + .25 * y 

* if(2 < x <= 6 and 1 <= y <= 4) 
output = .2 * x + .4 * y 

* if(1 <= x <= 2 and 4 < y <= 6) 
output= .1 * x + .6 * y 

* if(2 < x <= 6 and 4 < y <= 6) 
output = .5 * x + .5 * y 

Rules for node 34. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 3) 
output= round(.3 * y + .3 * z) 

* if(x = 1 and 3 < y <= 6 and 3 < z <= 6) 
output round(.4 * y + .2 * z) 

* if(1 =< x <= 3 and y = 1 and 1 < z <= 3) 
output= round(.25 * x + .25 * z) 

* if(3 < x <= 6 andy = 1 and 3 < z <= 6) 
output= round(.1 * x + .5 * z) 

* if(1 =< x <= 3 and 1 =< y <= 4 and z = 1) 
output= round(.4 * x + .3 * y) 

* if(3 < x <= 6 and 4 <= y < 6 and z 1) 
output= round(.3 * x + .3 * y) 

* if(1 =< x <= 6 and 1 =< y <= 4 and 1 =< z <= 6) 
output round(.2 * x + .4 * y + .2 * z) 

* if(1 =< x <= 6 and 4 < y <= 6 and 1 =< z <= 6) 
output round(.2 * x + .4 * y + .4 * z) 

Rules for node 35. 

* if(x = 1 and y 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 4) 
output= round(.5 * z) 

* if(x = 1 and 3 < y <= 6 and 3 < z <= 6) 
output= round(.4 * y) 
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* if(1 =< x <= 3 andy = 1 and 1 < z <= 4) 
output= round(.5 * x) 

* if(3 < x <= 6 and y = 1 and 4 < z <= 6) 

output= round(.J * x) 
* if(l =< x <= 3 and 1 =< y <= 4 and z = 1) 

output= round(.4 * x + .5 * y) 
* if(3 < x <= 6 and 4 <= y < 6 and z = 1) 

output round(.3 * x + .7 * y) 
* if(l =< x <= 6 and 1 =< y <= 6 and 1 =< z <= 4) 

output round(.3 * x + .4 * y) 
* if(l =< x <= 6 and 1 =< y <= 6 and 4 < z <= 6) 

output round(.2 * x + .3 * y) 

Rules for node 36. 

* if(x = 1 and y 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 4) 
output= round(.3 * y + .3 * z) 

* if(x = 1 and 3 < y <= 6 and 4 < z <= 6) 
output= round(.l * y + .5 * z) 

* if(l < x <= 3 and y = 1 and 1 =< z <= 4) 
output= round(.5 * x + .1 * z) 

* if(3 < x <= 6 and y = 1 and 4 < z <= 
output round(.3 * x + .4 * z) 

* if(l =< x <= 3 and 1 =< y <= 4 and z 
·output= round(.3 * x + .2 * y) 

* if(3 < x <= 6 and 4 <= y < 6 and z 
output= round(.5 * x) 

* if(l =< x <= 6 and 1 =< y <= 4 and 1 
output round(.2 * x + .3 * y + .2 

* if(l =< x <= 6 and 4 =< y <= 6 and 1 
output round(.3 * x + .1 * y + .5 

Rules for n.ode 37. 

* if(x = 1 and y 1 and z = 1) 
output = 1 

6) 

= 1) 

1) 

=< z 
* z) 
=< z 

* z) 

* if(x = 1 and 1 =< y <= 3 and 1 =< z <= 3) 
output= round(.l * y + .5 * z) 

* if(x = 1 and 3 < y <= 6 and 3 < z <= 6) 
output round(.5 * y + .2 * z) 

* if(1 =< x <= 4 and y = 1 and 1 =< z <= 4) 
output= round(.2 * x + .6 * z) 

* if(4 < x <= 6 and y = 1 and 4 < z <= 6) 
output round(.5 * x + .3 * z) 

* if(l =< x <= 3 and 1 =< y <= 4 and z = 1) 
output= round(.3 * x + .3 * y) 

* if(3 < x <= 6 and 4 <= y < 6 and z = 1) 
output= round(.6 * x + .1 * y) 

<= 6) 

<= 6) 
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* if(1 =< X <= 6 and 1 =< y <= 4 and 1 
output = round (. 2 * X + .2 * y + . 2 

* if(1 =< X <= 6 and 4 =< y <= 6 and 1 
output round (. 3 * X + . 5 * y + .2 

Rules for node 38. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

=< z 
* z) 
=< z 
* z) 

* if(x = 1 and 1 =< y <= 4 and 1 =< z <= 3) 
output= round(.3 * y + .4 * z) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6) 
output round(.5 * y + .3 * z) 

* if(l =< x <= 3 and y = 1 and 1 =< z <= 4) 
output= round(.5 * z) 

* if(3 < x <= 6 andy= 1 and 4 < z <= 6) 
output round(.4 * x) 

* if(1 =< x <= 3 and 1 =< y <= 4 and z = 1) 
output= round(.6 * x) 

* if(3 < x <= 6 and 4 <= y < 6 and z 1) 
output round(.2 * x + .2 * y) 

<= 6) 

<= 6) 

* if(l =< x <= 3 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.2 * x + .5 * z) 

* if(3 < x <= 6 and 1 =< y <= 6 and 1 < z <= 6) 
output= round(.4 * x + .1 * z) 

Rules for node 39. 

* if(x = 1 and y = 1 and z = 1) 
output = 1 

* if(x = 1 and 1 =< y <= 4 and 1 =< z <= 3) 
output= round(.2 * y + .7 * z) 

* if(x = 1 and 4 < y <= 6 and 3 < z <= 6) 
output round(.8 * y + .1 * z) 

* if(1 =< x <= 3 and y = 1 and 1 =< z <= 3) 
output= round(.2 * x + .3 * z) 

* if(3 < x <= 6 andy = 1 and 3 < z <= 6) 
output= round(.1 * x + .5 * z) 

* if(l =< x <= 3 and 1 =< y <= 4 and z = 1) 
output= round(.2 * x + .4 * y) 

* if(3 < x <= 6 and 4 <= y < 6 and z = 1) 
output round(.25 * x + .25 * y) 

* if(1 =< x <= 4 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.1 * x + .3 * y + .3 * z) 

* if(4 < x <= 6 and 1 =< y <= 6 and 1 =< z <= 6) 
output= round(.1 * x + .3 * y + .1 * z) 

Rules for node 40 

* if(x = 1 and y = 1 and z = 1 and u = 1) 
output = 1 
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* if(x = 1 and 1 =< y <= 3 and 1 =< y <= 2 and 1 <= u <= 4) 
output= round(.3 * y + .1 * z + .1 * u) 

* if(x = 1 and 3 < y <= 6 and 2 < z <= 6 and 4 < u <= 6) 
output round(.2 * y + .2 * z + .3 * u) 

* if(1 <= x <= 3 and y = 1 and 1 =< z <= 2 and 1 =< u <= 5) 
output= round(.2 * x + .4 * z + .1 * u) 

* if(3 < x <= 6 and y = 1 and 2 =< z <= 6 and 5 < u <= 6) 
output= round(.2 * x + .1 * z + .6 * u) 

* if(1 =< x <= 3 and 1 =< y <= 3 and z = 1 and 1 =< u <= 3) 
output= round(.2 * x + .4 * y + .1 * u) 

* if(3 < x <= 6 and 3 < y <= 6 and z = 1 and 3 < u <= 6) 
output= round(.4 * x + .2 * y + .3 * u) 

* if(1 <= x <= 3 and 1 =< y <= 2 and 1 =< z <= 4 and u = 1) 
output= round(.2 * x + .1 * y + .3 * z) 

* if(3 < x <= 6 and 2 < y <= 6 and 4 < z <= 6 and u = 1) 
output round(.1 * x + .1 * y + .6 * z) 

* if(1 =< x <= 3 and 1 =< y <= 3 and 1 =< z <= 6 and 
1 =< u <= 6) 

output= round(.2 * x + .3 * y + .1 * z + .1 * u) 
* if(1 =< x <= 3 and 3 < y <= 6 and 1 =< z <= 6 and 

1 =< u <= 6) 
output round(.2 * x+ .7 * z + .1 * u) 

* if(3 < x <= 6 and 1 =< y <= 4 and 1 =< z <= 6 and 
1 =< u <= 6) 

output= round(.2 * x + .2 * y + .1 * z + .2 * u) 
* if(3 < x <= 6 and 4 < y <= 6 and 1 =< z <= 6 and 

1 =< u <= 6) 
output= round(.1 * x + .4 * y + .1 * z + .4 * u) 
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Figure 13. Results of Training Node 22 
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Figure 14. Results of Training Node 23 
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Figure 15. Results of Training Node 24 

Node number 25 

100%.-------------------~ 

60 

60 

40 

20 

0 

- Stalrstep method 

~ Random cells method 

mber of training examples 

Figure 16. Results of Training Node 25 
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Figure 17. Results of Training Node 26 
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Figure 19. Results of Training Node 28 
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Figure 20. Results of Training Node 29 
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Figure 21. Results of Training Node so 
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Figure 22. Results of Training Node 51 

87 



Node number 32 

Correct Caaea 

100~~------------------~ 

80 -i·················· 

80 

40 

20 

0 

- 8talratep method 

~ Random call• method 
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Figure 24. Results of Training Node 33 
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Figure 25. Results of Training Node 34 
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Figure 26. Results of Training Node 36 
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Figure 28. Results of Training Node 37 
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Figure 29. Results of Training Node 38 
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Figure 33. Results of Node 37 After Testing the Network by 10000 Cases 
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Figure 34. Results of Node 38 After Testing the Network by 10000 Cases 
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