
ENHANCEMENTS TO KAPPA, AN OBJECT = = :;:: .:; .. :::: =~
ORIENTED EXPERT SYSTEM SHELL

By

ROHINTON NOSHIR ;tiiSTRY

Bachelor of Science

Osmania University

Hyderabad, India

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 1992

ENHANCEMENTS TO KAPPA, AN OBJECT

ORIENTED EXPERT SYSTEM SHELL

Thesis Approved:

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Blayne E. Mayfield for his

encouragement and advice in successfully completing this thesis. Special thanks go to

Dr. Charles M. Bacon who helped and encouraged me with his valuable suggestions,

advice and support. Many thanks also go to Dr. John P. Chandler for serving on my

graduate committee and his sincere advice throughout my graduate program.

My parents, Noshir and Rashna Mistry, encouraged and supported me all the way,

helping me to keep the end goal constantly in sight. My special thanks go to my parents,

family and friends in their love and encouragement which helped me achieve my goal.

111

TABLE OF CONTENTS

Chapter Page

I. IN"TRODUCTION . 1

II. OVERVIEW . 3

Object Oriented Concepts . 3
Object Oriented Concepts in KAPPA 6

Expert Systems . 7
From the Old to the New . 8
Characteristics of an Expert System 10
Knowledge Representation . 11
The Inference Engine . 12
The User Interface 13
KAPPA as an Expert System Shell 14

Windows .. 15
Windows and KAPPA . 18

III. TOOLS USED FOR ENHANCEMENTS TO KAPPA 21

The Tools ... 21
The Method .. 24

IV. THE ENHANCEMENTS TO KAPPA 27

Existing String and File Functions 27
The New Functionality 28

Salient Features of Some String Functions 30
Salient Features of Some File Functions 31
Salient Features of Other Miscellaneous Functions 33
Other Miscellaneous Enhancements to KAPPA 34

V. COMPARISON AND ANALYSIS OF ENHANCEMENTS IN KAPPA .. 36

Comparison of Old and New Features 36
Consequences of the New Functionality 41

IV

Chapter Page

Comparison and Analysis of User Defined Functions
With and Without the New Functionality 42
Working with Old KAL Functions 42
Calling External Executable Files 48
Interfacing with C into KAPPA 51

Comparison with Newer Versions of KAPPA 52
String Functions 52
File Functions 54
Other Enhancements 55

VI. SUMMARY AND CONCLUSIONS 56

BIBLIOGRAPHY ~ 60

APPENDIXES ... 63

APPENDIX A- THE KAPPA.C PROGRAM FOR INITIATING
KAPPA AND REGISTERING FUNCTIONS 64

APPENDIX B -ALPHABETICAL REFERENCE FOR ALL
ENHANCED FUNCTIONS 68

v

LIST OF FIGURES

Figure Page

1. Class-Instance Hierarchy ... 4

2. A Basic Expert System : 10

3. The KAPPA Opening Screen 19

4. A Sample KAPPA Session Layout Screen 19

5. Mak:efile for Compiling and Linking 24

6. Example Data Files .. 43

7. Reading Examplel.TXT .. 44

8. Reading Example2.TXT .. 45

9. Comparison of Code Sizes ... 47

10. Comparison of Execution Times 48

11. C and KAL Functions to Convert a String to Uppercase 50

vi

CHAPTER I

INTRODUCTION

KAPPA is an object oriented expert system shell or tool, developed by

IntelliCorp Inc. [1]. It provides a powerful environment for creating, developing and

delivering applications and knowledge-based expert systems. It is PC-based, works

under Microsoft Windows [4] and takes advantage of various features provided in the

Windows environment. The specific version of KAPPA used in this thesis is KAPPA

1.1X, and any reference to KAPPA will indicate this version unless specified otherwise.

The language used in KAPPA is KAL, the KAPPA Application Language, which

consists of many different functions to perform a wide variety of knowledge, string, file,

list and user interface manipulations. One of the weaker areas in KAPPA is its lack of

good string and text file handling functions. Though able to access and manipulate a

wide variety of knowledge bases such as database and spreadsheet files, it has limited

abilities in handling knowledge bases existing in the ASCII text format. It also has

limited ability to manipulate these text strings, once they are read into KAPPA.

This thesis deals with new functionality added to KAPPA in the areas of string

and text file handling to further enhance its capabilities. The functionality is added using

the C interface provided by KAPPA. The enhanced functions are written in C and

Windows, and are then linked with KAPPA libraries provided, to form a new executable

1

file. Further, a thorough analysis is performed on these enhancements to show the

effectiveness, uses and advantages after the implementation.

Principles of object oriented programming, expert systems, Windows and

KAPPA are explained in Chapter ll. The enhancements are described in detail in

Chapter IV and the appendices, while the tools and methods used, are described in

Chapter III. Chapter V describes different aspects of the comparison and analysis

performed on the enhanced functions to show their usefulness.

This thesis shows the weaknesses of KAPPA before the enhancements were

made, in terms of string and file handling, and the overall effectiveness of the new

functions added to it. It shows how, where and when to apply these new functions and

the advantages and disadvantages of adding these functions.

Some sample application functions are taken from an expert system project for

configuring industrial filtration systems and are analyzed to show the differences in

incorporating the new functions and writing "workarounds". The "workarounds" are

functions written by means other than incorporating the enhanced functions directly.

This may entail lengthier code in KAL or writing and calling functions defined in other

languages. The "workarounds" therefore take considerably more development effort in

terms of ease, size, time and effectiveness. These disadvantages are discussed in

ChapterV.

Chapter VI contains a summary and offers conclusions. It discusses other

weaknesses of KAPPA and areas where further enhancements can be made.

2

CHAPTER IT

OVERVIEW

Object Oriented Concepts

The concepts of object oriented programming were first introduced in Simula, a

goal-based simulation language wherein the fundamental ideas of objects, classes and

messages were used [18, 19, 20]. Smalltalk soon followed, building upon the concept of

an object class [18, 21, 22, 23].

An object oriented program is a collection of encapsulated data structures called

objects. An object contains two basic types of information; one describing the object and

another specifying what it can do [1, 18]. Instead of manipulating or viewing the

contents of an object directly, messages giving instructions, are sent to objects and the

object can select a method by which to react to the message. With such encapsulation,

possibilities of multiple object instantiation, behavioral sharing through inheritance and

structuring of resources in applications can be done, as will be shown.

Objects are generally declared as classes and instances. A class is a much more

general classification than an instance. A class represents a collection of items which

have certain properties in common. This class may be further divided into sub-classes

which come under their parents in a broad category, but have unique properties of their

own which differentiate them from other siblings of the same parent class. At the lowest

3

4

level are the instances of the classes or sub-classes. These are like individual examples

of their parent classes. Taking as an example courses offered within the Graduate

College as a class, we may specify sub-classes such as Engineering, Arts&Sciences and

Business. These may be further subdivided into Civil, Mechanical and Electrical

Engineering sub-classes; Math, Physics and Chemistry Science classes; and Finance,

Marketing and Accounting Business classes. Individual examples or instances of these

sub-classes could be the different courses offered such as EE 5010, EE 5050 and EE

5290. These relationships are illustrated in Figure 1.

Graduate College

I I
Engineering Arts&Sciences Business

cJn McchLcal Eljcal Jath PhyLs Chemistry I J A 1. Finance Mar etmg ccountmg

EE5010 EE5050 EE5290

------CLASS

INSTANCE

Figure 1. Class-Instance Hierarchy

s

The classes and instances thus form an hierarchical tree structure or Directed

Acyclic Graph (DAG). The classes and instances can store all the information related to

them within its structure. Information and properties stored in classes higher up in the

hierarchy is also inherited by their sub-classes and instances. Thus if the Graduate

College in the above example contains Masters students, all students here for a particular

course will be Masters students. Similarly, if Engineering students get MS degrees, all

the individual students graduating with Engineering courses will get MS degrees.

All communication between objects is done by some form of message passing.

When an object receives a certain message, it can decide whether action has to be taken

or not, and what action to take if any. This supports data abstraction, where the object

uses its own methods to modify itself and the message sender makes no assumptions

about the internal representations of these objects. This concept is different from the

classical concept where the programs and data were always stored separately with the

programs acting upon the data [18]. Objects consist of both data and programs (called

methods), stored together in an encapsulated form.

The encapsulation of data and methods offer many advantages [31]. Complex

relationships between data elements which are difficult to capture in the abstract, can

often be more accurately modelled by the structure of objects and messages that

determine how the objects interact with one another. Interdependence among objects is

strictly limited by the messages that are sent and received. A change within one object

will not affect the behavior of another object, thus the maintenance of an object system

will not be nearly as tiresome as it can be with larger systems that are not object oriented.

Larger systems can thus be built using interrelated but independent objects.

6

Object oriented programming has lately become very popular in different areas of

computer science including expert systems, artificial intelligence, graphics, systems

programming and databases. The above described concepts have been used to write

expert system shells and databases as they provide a more realistic representation of

related code and data being together. KAPPA is a good example of an expert system

shell which provides the user with object oriented tools in addition to traditional rule

based reasoning, to build applications.

Object Oriented Concepts in KAPPA

' In KAPPA, classes and instances are defmed and linked together in a hierarchy to

represent the relations between the objects. A graphical representation of the hierarchy is

displayed by the object browser. The graphical representation, much like the one

displayed in Figure 1, is displayed by the browser with solid lines denoting classes, while

dashed lines denote instances. The user interface is designed so that a pointing device

such as a mouse can be used to click on any class or instance name and modify, create or

delete that object.

Slots can be defined within classes or instances and can contain properties or

information related to that particular object. Slots are variables defined inside objects

and, in addition to defining them explicitly, they can also inherit values of similar slots

higher up in the object hierarchy. Slots represent the lowest level where specific

information relating to the broader classes or instances is stored. Numbers, text, boolean

or other object values can be stored within slots. They can be set to contain either a

single value or multiple values (lists). Certain slot options such as the maximum and

minimum values for numeric slots and the allowable values in a slot can also be set. To

monitor the slots when their values change, different methods can be defined to be

activated before, after or when needed.

7

Each action that an object can carry out is represented by a method [1, 17]. These

define the behavior of the objects and slots within objects. Methods determine when and

how the values in these slots change with the method of activation specified by sending a

message. When an object receives a certain message that corresponds to one of its

methods, the method is activated. Many objects can have the same method, thus

responding to the same message. Methods can also be inherited, the same as slots.

By defining classes, instances, slots and methods as shown above, the traditional

rule based reasoning can be augmented, as this produces a more intuitive representation

and enhances speed and modularity in a knowledge base of relatively independent

modules.

Expert Systems

Expert system shells are development platforms used to build expert systems.

The shells provide an easier, generally menu driven environment for creating expert

systems. Expert system programs have certain distinguishing features and are used

mainly for knowledge manipulation. Thus expert systems are sometimes also called

knowledge systems. They are mainly to use and manipulate large amounts of data and

expertise stored within them.

An expert system tries to emulate an expert in the use of his knowledge. The

knowledge required by a human expert in a given field is stored as the knowledge base

within the expert system. The rules governing the way the human expert manipulates

this knowledge to give him the required results, is emulated in the expert system by

traditional rule based reasoning or, in object oriented systems, by using methods which

are applied to the various objects.

8

Alan Turing [27] is credited as the first to see clearly the possibilities of thinking

machines, as early as 1950. John McCarthy and Marvin Minsky [27], in a conference at

Dartmouth in 1956, first coined the term "artificial intelligence". DENDRAL, in 1968, is

one of the first successful expert systems [27]. It uses three steps to identify the structure

of a parent compound from an input formula, mass spectrometer and magnetic resonance

data. It is a landmark program, as it was the first time someone sat down with a human

expert to determine the heuristics, as well as the constraints involved in solving a

complex problem. Some of the other expert systems designed in the 70's were

PROSPECTOR, MYCIN and XCON (also known as R1) [24]. Other popular expert

systems were INTERNIST, CADUCEUS, HEARSAY, and PUFF [30]. Some of the

popular applications of expert systems are in areas including medicine, chemistry,

geography, natural language processing, psychology, space, finance, communications,

planning, estimating costs, problem solving, training, inventory control, customer

support, evaluation, diagnosis and military systems [29, 30].

Block structured languages like Pascal are procedural and have few mechanisms

to describe a closed world of facts, hence list processing languages such as LISP and

logic processing languages such as PROLOG were preferred as expert system writing

9

tools [27]. LISP computers were difficult to integrate with conventional systems and

lacked file security, hence a tendency towards C based systems then took place [32]. As

the programming skills required and the time spent in writing expert systems is

considerable when using these languages, the expert system shells available are now

being sought as expert system writing tools. These shells provide a wide range of

features including an inference engine to manage the rules and deduce the program flow,

hence requiring much less time and effort spent in building expert systems. Recently,

such shells have become available for use on micro computers. These include

Expert-Ease, EXSYS, LevelS, Personal Consultant, NEXPERT, PEx, KEE, ExperTax,

EXSEL, 1st Class Fusion, Guru, LevelS, VP-Expert and KAPPA [26, 32, 33].

The expert system shells or tools can be divided into five general categories, each

using a distinct method of reasoning [26, 36]: induction, simple rule-based, structured

rule-based, object oriented hybrid and logical tools. The induction tools learn from a

large number of examples from which rules are automatically formed. They are friendly

but weak and inflexible. Simple rule-based tools use simple if-then rules to represent

knowledge. The structured rule-based tools, on the other hand, can be arranged into

hierarchies and one set of rules can inherit information acquired when other sets of rules

are examined. The object oriented hybrid tools use object oriented techniques in addition

to rules. Lastly, logical tools use hom clauses and resolution strategies derived from

Predicate Calculus. They are powerful when dealing with very complex problems that

lend themselves to rigorous logical analysis.

10

Characteristics of an Expert System

An expert system has three functional components [28]. It contains a knowledge

base which stores the information, an inference engine that reasons with this information,

and an interface that makes the software understandable to the user. The expert system

can be considered an artificial intelligence system as it reasons with the stored

information, can explain this reasoning to the user and can handle uncertain data and

conditions. It can be visualized as in Figure 2.

Inference Engine Knowledge Base
User Interface K 7

v
(Reasoner) " (Objects, Rules)

~ " ~ "
' v

End User Knowledge acquisition

Figure 2. A Basic Expert System

Some characteristics of an expert system, acc.ording to Paul Siegel, are as follows

[28]. It is subtle, as it can make the user learn and use it effortlessly. It is flexible in

terms of the information stored on disks, which can be easily modified and can

accommodate changes in technology and business organization. It is efficient and

11

effective, as once built, many people may use it effectively without formal training. It is

empowering, as workers do not feel like trainees, and when anything goes wrong, they

can fix the problem themselves by using the expert system. Lastly, it is compatible with

the training professional, as the person, called a knowledge engineer, who develops the

expert system, can use expert system shells to build and test expert systems so that the

final system gives valid advice.

In general, the characteristics of an expert system [26, 37] are its ability to solve

difficult problems as well as or better than humans, reason heuristically using the rules of

thumb (ie. knowledge drawn from experience), interact with humans in appropriate ways

including the use of natural language, manipulate and reason about symbolic
~

descriptions, function with erroneous data and uncertain judgmental rules, contemplate

multiple competing hypotheses simultaneously, explain why certain questions are asked

and justify their conclusions.

Knowled~e Representation

There exist a number of techniques for representing knowledge in expert systems

[26, 35]. Production rules are two-part, if-then rules whose antecedent represents some

pattern to be matched and a consequent that specifies an action to be taken when data

matches the pattern. Semantic networks represent abstract relations among objects and

may be represented graphically by a network of nodes and links where the nodes

represent the objects and links represent their relations. Frames, which are similar to

semantic networks, represent objects by containing relations to other objects which can

also be inherited, unlike nodes. First-order logic (FOL) is a formal way of representing

12

logical propositions and relations between propositions where rules of logic can be easily

applied to these representations to derive facts that follow from these propositions.

Recent expert systems use a combination of these and other knowledge representations.

The Inference En~ine

An inference engine is a sub-routine or function that can deduce and infer new

facts from those already existing. Rules or heuristics enable the derivation of new facts

based on what is already known. Two reasoning mechanisms are commonly used in

inference engines, alone or in combination. They are forward chaining and backward

chaining.

The forward chaining or data-driven inference attempts to reason forward from

the facts to a solution. Forward chaining occurs when a premise is stated and a

conclusion has to be obtained from it.

In backward chaining or goal seeking, the goal or conclusion has to be

established, and the system works backward from a hypothetical solution to find

evidence supporting the solution by formulating and testing intermediate hypotheses.

Taking an if-then rule, the forward chaining looks for conditions matching the

if-part (antecedent) of the rule and applying the then-part (consequent) of the rule,

whereas the backward chaining matches the goal with the then-part of the rule and gains

its evidence from the if-part. Partial or uncertain premises can be incorporated by

including certainty factors (CF) which state the reliability of its conclusions.

Once a system becomes large, more than one rule can "trigger" (ie. become ready

to fire) at the same time [27]. To overcome this sort of difficulty and enforce

consistency, the inference engine manages the rules according to conflict resolution

strategies. An agenda of the potential actions awaiting execution is maintained and a

scheduler controls and decides what to do next. The scheduler has to search for and

apply the required rule.

13

A heuristic search uses different methods to narrow down the search space by

intelligent pruning. Directing the search flow efficiently is a primary function of the

inference engine. A number of search strategies exist including depth-first, breadth-first

and hill-climbing. Of these, the first two are not heuristic. The depth-first search

exhaustively searches all possible rules related to the rule condition items it last comes

across, before moving on to other rules, whereas a breadth-first search exhaustively

searches all possible rules related to the first item before searching other rules related to

the other rule condition items. The hill-climbing strategy, on the other hand uses local

information to decide which is the best path, which may vary from application to

application.

The User Interface

The user interface varies a lot from system to system, depending a lot on the

developing tools used. Ultimately, the systems developed have to be used by an end user

[27]. Thus, it is critical that the user interface be well designed and as natural as possible

to an inexperienced user, as well as an advanced user. Features like on-line help should

be available and easily accessible.

A good interface should be able to prompt the user well, and accept answers in

different ways. A user may select one, none or more than one item and may use the

keyboard or a pointing device such as a mouse to enter his or her input.

14

If multiple answers are found and presented, some explanation of the rankings

and probability factors, showing the probability or certainty of an event occurring, should

also be provided. If graphs or charts can produce better effects, the system should have

the ability to produce and use these.

The system should, at the very least, be menu driven and provide flexible screen

management facilities. The user should also be able to query the system easily to find

out why certain questions were asked and what reasoning process was used.

The system interface, which may function in a library environment would also

require hooks to existing databases and other languages. If the expert system itself could

be compiled into an executable, it would run faster and could be reproduced and ported

to other machines, without the need of the shell or compiler being ported with it.

The interface provided for developing the expert system itself should be as

flexible as possible. Full screen creation and editing facilities would be convenient to

modify the knowledge base, rules, methods and functions. Good debugging and tracing

facilities and a cross-referencing facility to find affected objects would also be useful.

KAPPA as. an Expert System Shell

KAPPA is an object oriented hybrid expert system shell which runs under the

Windows environment. Knowledge representation in KAPPA is in the form of classes,

instances and slots, as already discussed. In addition, rules can also be used to represent

15

knowledge. The rules can be used in forward or backward chaining. A goal must be

specified if chaining backward, but there is no need to specify goals when chaining

forward. When the goal condition is satisfied, or when all related rules have been fired,

the chaining process stops. Rules can also be categorized in KAPPA and different sets of

rules can be used separately, increasing the modularity [1].

Depth-first, breadth-first, selective and best-first precedence and recency order of

rules are all possible [1]. A priority can also be attached to each rule, which is then used

for conflict resolution.
)

Independent functions can also be written in other languages and called from

KAPPA. Functions are available to access knowledge bases in ASCII, dBase or Lotus

123 formats. The application development language provided is KAL [1, 2], the KAPPA

Application Language, which is similar in many ways to the C programming language.

KAPPA has a very good and powerful graphical user interface, making use of the

various features of Windows, including buttons, bitmaps, dialog boxes, sliders, meters

and drawing tools to plot graphs [1, 2]. This interface uses both the keyboard and the

mouse, making it easy for a novice or other inexperienced user to learn, adapt and use

this environment. However, it has very little on-line help, no hypertext ability and

applications developed on it cannot be made into stand-alone executables.

Windows

The Microsoft Windows environment, version 3.0 [4] provides the user with

many features. It is essentially a multi-programming environment for the single user. It

provides the user with a graphical user interface (GUI), in which multiple programs can

16

be displayed within windows and provides a more intuitive and efficient environment to

work with.

Windows can be called up and run in three modes: 386 enhanced, standard and

real. The 386 enhanced mode runs on a computer with the Intel 80386 or higher

processor with 640 kilobytes of conventional memory and 1024 kilobytes or more of

extended memory. Running in this mode provides increased control over non-Windows

applications and provides the user with many advanced features. The standard mode can

be used on a personal computer with the Intel 80286 or higher processor and 640

kilobytes of conventional memory plus 256 kilobytes or more of extended memory. In

the real mode, it does not use extended or expanded memoery and can run on a personal

computer with an Intel 8086 or higher processor with 640 kilobytes of conventional

memory.

The primary advantage of Windows is its ability to run more than one application

at a time. Each Windows application (and non-Windows application in the 386 mode)

can be run in a separate window by itself. A window is a rectangular portion of the

screen dedicated to each different application. These windows can be sized, moved,

iconified or maximized for effect.

Windows uses a non-preemptive, processor sharing mechanism where each

application is given equal opportunity to run. Windows does not preempt an application

to give another application a turn at running; each application itself hands over control to

Windows when waiting for input or at regular intervals. Windows handles all functions

by message passing.

17

The graphical environment is event-driven. When an event such as a mouse click

occurs or a key is depressed, the GUI traps the event and sends a message to the

appropriate window. The application then handles the message as required and hands

back control to Windows. Priorities for applications running in the foreground (current)

and those in the background are different and can be set.

The graphical user interface is not only much easier to use, [34] but also provides

the programmer with a rich application programming interface (API) and device

independence. Different graphics drivers such as CGA, EGA, VGA and Hercules are

already built into Windows, thus giving an application developer device independent

functions to work with, without the worry of different types of displays, communication

software or printers. Thus, a general type of application can be written which will work

with different displays and use any type of printer supported by Windows.

Windows also provides the ability to cut and paste data between different

programs and applications. This provides an easy way of transferring information

between different applications. It can also create "hot links" (sharing of data between

two Windows applications by message passing, while the applications are running) with

the Windows• Dynamic Data Exchange (DDE) protocol which makes it easy to integrate

your application with other Windows programs.

Windows provides a vast number of functions of its own to create window based

user applications. Menus, dialog boxes and different graphical images are easy to create.

Dialog boxes allow the end user to select items displayed in a list like form with buttons

to select, or display a variety of buttons for the user to choose from. Dialog boxes can

contain buttons, list boxes, edit boxes, text boxes, combo boxes, scroll bars and other

18

graphics which can be used to input and display data [8, 12]. The Software Development

Kit (SDK) provides many libraries, functions and utilities to build and debug Windows

applications. Other software, such as Borland C++ [9, 10, 11, 12], can also be used to

write and debug Windows applications.

All these features make Windows an ideal environment to work in, and

applications designed to work in it can take advantage of these features to give the end

user a more intuitive and efficient work environment.

Windows and KAPPA

KAPPA makes use of all the above Windows features to provide the user with an

easy-to-use graphical user interface to work with. The KAPPA opening screen contains

three open windows by default. The main window contains icons for the seven principle

windows available in KAPPA [1]. Of these, the first two are already open, the Object

Browser and the Knowledge Tools. Figure 3 shows the opening screen in KAPPA.

The Object Browser shows a graphical representation of the classes and instances

hierarchy present in the application. The solid lines show classes while the dashed lines

indicate instances. The Root, which is the basic class, always exists and so does the

Image class, which contains various graphical images and their settings. A Global

instance also exists at start-up. The image can be scaled or printed. The display of

sub-classes or instances can be suppressed, in which case, the parent class is shown

within a box. The mouse can be used to click on any class or instance and modify, delete

or add to it.

0

SlotView~ 0 0
0

' '

~
' Transcript
' Root 0

........... ..age Button
Bilaap

~ Drawing
Telll • LinePiot

Figure 3. The KAPPA Opening Screen

5.06-r--------------,
4.0
3.0
2.0
1.0
0.011-+--..-----r---.....----r-----i

0.00 2.00 -4.00 6.00 8.00 1 0.00
X-Axls

-- Une1 - - Llne2

7.00
Meter

F=========~[]F===~a
7.00 10 J
aD
(Amber)
(Green)

Signal

Figure 4. A Sample KAPPA Session Layout Screen

19

Class (15)

Instance [1)

Flmdion (0)

Rule [0)

Goal [0)

20

The Knowledge Tools provide editors for creating, modifying or deleting classes,

instances, functions, rules and goals. The KAL interpreter can be used to type in

commands that are executed immediately. It can be used to display and edit slot values,

assert items into an agenda for chaining, or directly run functions. Everything that can

be done using menus, editors and the mouse can be done in the KAL window.

The Session window contains the end user interface where the developed

applications run. The graphical user interface can be used to advantage here to display

buttons, meters, sliders, transcripts, graphs, bitmaps and various menus for the user to

work with. A sample KAPPA Session Window screen in the layout mode, where the

different images can be created and positioned, is displayed in Figure 4.

The Ru1e Relations window shows the if and then dependencies of any rule

specified. The user can click on the rules displayed and edit or show the dependencies

for any of the rules. A Ru1e Trace window traces the progress of each rule and the values

contained in slots within them while the chaining process takes place. Break points can

also be set to stop the chaining process. Finally the Inference Browser graphically

displays the chaining relations among rules. It can show the object: slot pair that initiated

the inference and the subsequent chaining process that took place.

CHAPTER III

TOOLS USED FOR ENHANCEMENTS TO KAPPA

The Tools

The KAPPA C interface [3] is required to make any changes to the KAPPA

executable file. Essentially, the new routines are written inC, compiled, and linked with

KAPPA C functions provided to produce one KAPPA executable file.

Although the KAL functionality of KAPPA can be extended from within by

defining new user-defined functions, using registered C functions which are explained

later in the chapter, by interfacing them has the advantage of speed and memory

enhancements. The KAL functions are interpreted while registered C functions are

binary as they are incorporated into the KAPPA executable file and thus are processed

faster. The registered C functions also make better use of memory than KAL

user-defined functions in KAPPA.

To interface the C code into KAPPA, the Microsoft Windows Software

Development Kit (SDK) [5, 6, 7, 8] and a C compiler such as Microsoft C

(recommended by KAPPA) or Borland C++, which has the ability to compile Windows

executable files, must be available.

The Borland C++ compiler [9, 10, 11, 12] was used here as it provided many

Windows capabilities with an easy to use editor, compiler and debugger. Using Borland

21

C++, the SDK was not necessary except for two library files required --libw.lib and

mlibcew .lib -- to make it compatible to the KAPPA libraries provided.

22

In addition to a C compiler and the SDK libraries, the KAPPA C library package

is also required. The package consists of kappa.c, kappa.def, kappa.h, kappa.mak,

kappa.res, kappac l.lib and kappac2.lib.

The kappacl.lib and kappac2.lib files contain all the necessary KAPPA object

files necessary to make KAPPA. It contains all the routines, functions and capabilities of

KAPPA.

The kappa.c file, when made into an object file, is used to initialize and register

all the functions and routines of the C interface. The kappa.c file has to be modified to

register all added C functions to be used with KAL. The kappa.h file is included in this

file to use the Register_Function to register the C functions. The enhanced C functions

file can also be included in this file.

Kappa.h is the KAPPA include file containing all the macros and declarations for

knowledge manipulation. It contains all the in-built KAPPA functions available in KAL

which can be made use of when interfacing C functions. It also contains special

functions to change variables to and from C or KAPPA types. Names of menus, dialog

boxes and other Window handles and object IDs required when manipulating KAPPA

windows are also present in this file.

The kappa.res file is the resources file containing all the Window resources used

by KAPPA, such as menus, dialog boxes, accelerator keys, bitmaps, icons, cursors and

strings used in them. It is possible to use a resource editor such as the SDK tools [8] or

Borland's Whitewater Resource Toolkit [12] to change these menus, dialog boxes or

other resources. These editors are menu driven, making it easy to modify or add

resources to Window files.

23

The kappa.def file contains all the Microsoft Windows specific definitions

required to make a Windows executable file. This module definition file [6] defines the

application's contents and system requirements for the Windows linking program. It

contains one or more of the code and data segment attributes, a one-line description of

the module, the type of header, imported and exported functions, heap-size, stack-size,

module name, additional code segments and an old-style executable stub file-name.

Some modifications must be made to the kappa.def file if procedures that are

called by Windows are declared. The new procedure names have to be appended to this

file and a corresponding ordinal number be defined. The code and data attributes can be

set to preload. If the automatic data segment comprising of the heap size, stack size and

the static code exceeds the 64K limit, the heap size or stack size has to be lowered

correspondingly.

Lastly, the kappa.mak file is a make-file to combine, compile and link the various

modules necessary in making the KAPPA executable file. The make-file is geared

towards compiling and linking with Microsoft C, and would require changes to make it

use the Borland compiler and linker instead, as shown in Figure 5.

This file can be renamed as makefile. which is the name of the default make-file

for Borland's C++. A make command given directly at the DOS prompt would be

sufficient to run it. The auto dependency check ensures that the compilation takes place

when any included files are updated, such as the enhanced.c file which is included within

kappa. c.

Makefile.

To do an automatic dependency check on all included files
.auto depend

To obtain maximum memory to work with; makefile. will be swapped from memory
.swap

Macro defining the default settings for compilation to an .obj file
cp=bcc -c -mm -W -0

#The goal
all: kappa.exe

Compile kappa.c to obtain kappa.obj if required
kappa.obj: kappa.c

$(cp) -zC_RES kappa.c

Link and compue resources to obtain kappa.exe, if requrred
kappa.exe: kappa.obj

tlink {fw /n /x I A=l6 kappa,,kappacl kappac2 libw mhbcew ,kappa.def
rc -t kappa.res

Figure 5. Mak:efile for Compiling and Linking

24

As KAPPA uses the Medium size memory model, the object code created has to

follow the same memory size conventions, specially when making calls to the standard C

library memory allocation routines.

The Method

KAPPA has the ability to access external C functions [3] from its built in KAL

language by linking these C functions to the KAL function library. The C functions are

written using the provided function library for knowledge management so that the

functions already available in KAL can be made use of.

25

To accomplish a uniform handling of data, KAPPA uses the concept of atoms.

An atom ID is a handle or reference to a location in memory where the actual data

resides. The actual data can be in the form of int, char, long, or other C types. Functions

such as KappaGetlnt and KappaMakelnt are available to convert from the KAPPA atom

types to the C types or vise-versa. All knowledge items including classes, instances,

rules, goals and functions can also be referenced using atom IDs. Lists in KAPPA are

represented much the same as atoms but have a unique list ID.

Each function defined in C is registered in the kappa.c using Register_Function.

This function takes four arguments. The first argument is the name of the function which

would be used in KAL, the second argument is the name of the equivalent C function

which can be the same or different from the first argument. The third argument specifies

whether arguments passed to the C function from the KAL function are evaluated before

passing, and the last argument specifies the help category under which the new KAL

function would fmally be listed.

The registering of functions can be done in three different parts of the kappa.c

file. If the statement is included in the WinMainO function, before the last return

statement, the function is registered after KAPPA has first been loaded. To register the

same function, whenever a new application is started by selecting 'New' from the 'File'

menu, the statement has to be repeated in the InitNewApplication() function. Ifthe

function also has to be called when an application is opened using 'Open' from the 'File'

menu, it has to be repeated in the lnitOpenApplication() function. Thus, for most

functions, the registering process has to be done thrice, once in each function. The

modified kappa.c file for string and file enhancements can be seen in APPENDIX A.

All C functions are passed only one argument by KAL. This argument is a

pointer to a data structure, called argument list, that contains the actual arguments.

Functions are available to give the count of arguments in this list and to extract them

from the list.

26

The return value of a C function has to be either an atom or a list ID. Functions

exist to convert strings, integers and other C values into atom or list IDs. Values of true,

false or error messages can also be returned to the calling KAL function.

Functions for knowledge handling, drawing, updating, printing images,

customizing sessions, system calls and providing a rudimentary Dynamic Data Exchange

(DDE) interface are also available. Once the functions are written and registered, the

make file can be run to create the new enhanced KAPPA executable file.

CHAPTER IV

THE ENHANCEMENTS TO KAPPA

Existing String and File Functions

The functions in KAPPA can broadly be divided into eight categories. The

knowledge functions manipulate classes, instances, slots, methods, rules, goals and user

functions. The other functions are for handling logic, math, lists, strings, files, windows

and for miscellaneous controls.

The string and file functions pertaining to text files are rather limited in KAPPA.

The only string functions present in KAPPA l.lX [2] are '#' for the concatenation of two

strings, '#=' for checking the equality of two strings and Format Value for formatting any

string according to existing C conventions such as ,used in the C printf statement. There

exist no string functions to parse strings, change their case, find their length or any other

manipulations.

The file manipulation functions are mainly of two types, those manipulating text

files and others which provide hooks into dBase and Lotus 1-2-3 for the manipulation of

'.dbf, '. wks' or '. wkl' data files.

Text file functions exist to open files for reading and writing and to close them.

The only function available to read the files is ReadWord, which can be used to read one

word at a time. Each word is delimited by a space, tab or return character. Special

27

28

characters are read as stand-alone words. Quoted strings are read as a single word. If an

optional length is added, the given length of characters is read in as one word. There is

no easy way of reading one line at a time, unless each line is of fixed length. It is also

not possible to directly read in fields delimited by a given delimiter.

Functions that perform write operations to text files include WriteLine to write

any given line, WriteQuoted to write the line with quotation marks around it so that

fields with embedded spaces may be read back as one word and other write functions to

write knowledge base functions. The write function is easier to use, as it can be used

along with the FormatV alue function to write any type of formatted text.

Thus, for a knowledge base that exists as a normal ASCII text file, the functions

required to manipulate and use this knowledge are limited. To enhance these limited

functions, several other general purpose string and file functions written in C, using

Windows functions in some cases, are interfaced with KAPPA to provide it added

functionality in these areas.

The New Functionality

In view of the disadvantages of limited string and file functions, several new

functions have been implemented, described in detail in APPENDIX B.

The string functions have been enhanced by adding fourteen general purpose

object handling functions for handling the strings contained in slots of instances and

classes. In most cases, these functions also manipulate and obtain information on classes

and instances too. The functions added include ObjectBreak and ObjectSegment to parse

strings. ObjectLength is used to find the length of any string or the number of instances

29

I

in a class. ObjectPosition gives the position of a sub-string within a larger string or

position of an instance defined within a class. ObjectToUpper, ObjectToLower and

ObjectToProper give KAPPA the ability to change the case of any string, class or

instance. ObjectToAnsi can give the Windows ANSI equivalent number of the first

character in the string while ObjectToChar gives the equivalent character for an ANSI

value. The Windows ANSI set differs from the DOS ASCII set for the extended codes.

ObjectToRadix can convert a number in a given base to any other base between 2 and 36.

To sort lists of objects, the ObjectSort function can be used and the lists can also be

indexed and searched using the Objectlndex and ObjectbSearch functions. These index

and binary search functions can be used with a primary and secondary key. Lastly,

Objectlnterpret evaluates and returns the value of any valid KAL expression passed to it.

The file functions relating to text files have also been enhanced by adding eleven

more functions. The file functions include FileOpen and FileClose to open a maximum

of 20 different text files. Further, the ability to open a file such that the original read and

write functions can also be used is also present. Files can also be opened to append and

modify them. The FilePosition function can return the current position of the flle pointer

denoting the number of bytes already read, while FileGoto can set this pointer to a new

value. The FileDir command can display or create a list of files for the user to choose

from. Files can be deleted using FileDelete or renamed using FileRename. The FileExec

function can be used to execute any DOS or Windows executable file with different

windowing options for Windows executable flles. Finally, FilePrint can be used to print

any output file created. The printing ability gives KAPPA the ability to print to any

printer selected under Windows, with a variety of features.

30

In most functions, the object:slot pair can also be written as 'object, slot'. A point

to remember is that object: slot pairs are evaluated by KAL before being handed over to

the C functions. Thus, the value in the object: slot pair is passed to the function, rather

than the name of the object and slot, whereas no evaluation is done when they are

separated by a comma. If an object: slot name is going to obtain a value from the

function, it can be embedded in quotes as ' "object: slot" ' or passed separately as 'object,

slot'. Further, object:slots evaluating to lists cannot be passed to C functions but can be

passed separately by delimiting with a comma. In many cases, for string functions, if the

string specified is an object such as a class, it is handled differently, giving the function a

dual purpose.

Salient Features of Some Strin~ Functions

The ObjectSort function uses the heap-sort algorithm [14, 15]. This method of

sorting was preferred over alternate forms of sorting as it gives the best overall run time.

This sorting technique has an average and worst time order of complexity of n log(n)

giving KAPPA the ability to sort lists quickly and efficiently, as list handling is slower

than object handling in KAPPA.

If physical sorting is not necessary, the list can also be indexed. Indexing a list

creates another list containing the positions of the original list, placed in a sorted order.

This sorting of the key positions is done using a type of insertion sort [13, 15]. The new

list is of numbers, making it easier and faster to use, especially when many lists need to

be sorted on a single primary-key list. It also has the ability to sort the key positions

using a secondary-key list.

31

A binary search algorithm [14] has also been implemented, in the ObjectbSearch

function. It can do the binary search on a sorted list or the original list combined with

the indexed list. This provides a fast search technique for lists in KAPPA, which was not

possible before. Using a secondary key with a second list is also made possible when

using indexed lists for a binary search.

Salient Features of Some File Functions

The FileOpen function can open up to twenty different files. This number has

been chosen arbitrarily and can be changed to open more or less files by changing the

MaxFiles value, defined in the enhanced C file. The function uses Windows capability to

detect that a file to be opened in the read mode exists or not and if it does not exist,

prompts the user to place the disk in drive A and continue or cancel, using a Windows

dialog box. The function also has the ability to display a standard file selection dialog

box, if the file specified contains wild-card characters. This has been incorporated by

calling a Windows function written in C and exporting it in the kappa.def file. By

declaring two external pointer variables called infile and outfile, used by KAPPA, the

function links these file pointers to a file opened with numbers 0 or 1, so that the original

read and write functions of KAPPA can be used.

The FileRead function reads a buffer-full of characters at a time to make it faster

than reading them character by character. The buffer is then checked for fields and

records, which are returned. A string matching function was chosen rather than character

matching so that record and field delimiters need not be limited to a single character.

Before the function exits, it sets the pointer back to the actual number of bytes read from

32

the buffer. If both, the record delimiter and the field delimiter, are NULL, this function

reads a string of 200 characters at a time. The buffer limit was chosen to be 200 as this is

the limit of any string in KAPPA. To read an entire list into KAPPA, as many records as

possible are read into the buffer, until the buffer contains an incomplete record, in which

case, more characters are read into the buffer and the process repeated. As most text file

knowledge bases also contain comments for the user, the function has the ability to

recognize these comment lines using the first character in a record and discarding the

entire record if found to be a comment.

Disk read and write operations take up a lot of time. Windows is a multi

programming environment, but each application has to release control to Windows so

that it may give control to other applications. KAPPA lacks this feature, making it

impossible for the user to change or run another application while KAPPA is executing,

except while waiting for user input. The new read and write functions have the

capability to yield control to Windows while reading or writing from files. This makes it

possible to run the read or write operation in the background, giving the user a chance to

work on other applications in the meantime. It also has the ability to break out of the

read or write operations, without first completing them entirely.

The FilePrint function uses a lot of the Windows functions and capabilities to

print to the default Windows printer. Like the FileOpen function, it too can take a

wild-card argument for a file name and display a dialog box from which a file can be

selected to print. A function procedure, AbortProc, used by Windows to abort print

attempts has also to be declared in kappa.def. Windows functions to send tabbed text out

and print them in various styles are used in the FilePrint function. Multi-column output

33

is also possible. This is implemented by calculating the length of the largest line in the

previous columns and starting another column only if space exists to accommodate the

largest line after leaving a right margin. If any line in the last column exceeds the largest

line calculated in the previous columns, this line may be truncated at the right margin.

~e number of multiple columns it creates depends upon the point size of characters used

and the length of the longest line in the column.

Salient Features .of .Q1l:ua: Miscellaneous Functions

Two other small Windows functions have also been implemented. The

RunModule function gives KAPPA the ability to start running a module directly, as soon

as it is opened. It first opens and displays the session window if it is not already open. It

then calls a function called Start. If this function does not exist, no other action is taken,

but if it does, the function begins executing, thus making it possible to start an operation

without manually invoking it. This works only when a file saved in the binary format is

opened. A file saved in the ASCII text form is not affected. This function is called after

registering other functions and is used only in the InitOpenApplication function of the

kappa.c file. RunModule is not registered, hence it cannot be called from within KAPPA

by the user; it is only used by the system.

The other function, RunBackground, gives KAPPA the ability to run non

user-interactive applications in the background by yielding control to Windows so that it

may run other applications. As explained before, KAPPA does not have the ability to

yield control unless waiting for user input. This function makes it possible to yield

control to Windows, so that other applications are given a chance to run. If no other

34

applications require attention, Windows yields control back to KAPPA. To use this

function, it has to be included in the main processing loop of any KAPPA application, as

this function polls for messages from other applications. Thus, it can be used with any

loops, including loops using the original read and write file functions.

Other Miscellaneous Enhancements in KAPPA

Further enhancements were made in KAPPA by using Borland's Resource Toolkit

[12] to modify directly some of KAPPA's existing resoll!ces and add some others.

A dialog box resource is added to display and select files for wild-card file

arguments in the FileOpen and FilePrint functions. This is done by adding another
'

FILE_SELECT resource to the other resources using the toolkit.

Dialog boxes for displaying PostMenu and PostMultipleSelection function

choices in KAPPA are also modified. The PostMenu function of KAPPA has two

different forms. When the number of selection items is small, the items are displayed in

a Windows menu-like form, whereas when the number of items is too large to display on

one screen, a Windows dialog box is called up to list the items. PostMultipleSelection is

a dialog box similar to the PostMenu dialog box, but it provides the capacity to select

multiple items. The width of these displays is limited, and they cannot be moved or

resized.

These dialog boxes have been made wider so that longer strings can be displayed

within them. Further, features such as sizing and moving, which were not possible

before, have also been added. By adding a caption bar, the dialog boxes can be moved to

35

other parts of the screen so that areas of information covered by the dialog boxes can be

seen by adjusting the size or moving them around.

The ability to sort the items displayed in the PostMenu dialog box has also been

added. Given a list, the PostMenu function sorts this list and then displays it. The

PostMultipleSelection dialog box now has extended keyboard and mouse capabilities

provided by Windows for multiple selection. Multiple items could not be selected by

dragging the mouse or using it with the shift and control keys.

All the above adjustments can be made easily, using Borland's Resource Toolkit,

which is menu driven. The corrections can be made to the resource file and then linked

together to form the KAPPA executable file or the changes can be made after creating

the executable file by directly modifying this executable file. Modifying the resource file

is more convenient as it is smaller, faster to modify and can be included while compiling,

whereas the executable file is much larger, taking longer to modify as it requires

modification each time the executable is changed.

CHAPTERV

COMPARISON AND ANALYSIS OF

ENHANCEMENTS IN KAPPA

Comparison of Old and New Features

The KAPPA PC string functions are very limited. They do not have the ability to

break or parse strings, change case, sort, index or do a binary search on lists. For

example, if the telephone number of a company exists in the knowledge-base, it is quite

impossible to separate the area code from the rest of the number. Sometimes, it is

necessary to obtain the initials of a person whose name is stored as a string. The new

functions ObjectLength, ObjectPosition, ObjectSegment or ObjectBreak can be used

singly or in combination with the other functions to produce the desired results.

Similarly, occasions can arise where knowledge stored with strings in all capital

letters needs to be printed in lower-case or with the first letter capitalized. The functions

ObjectToUpper, ObjectToLower or ObjectToProper can be used for this purpose.

KAPPA PC does not have the ability to sort or index an unsorted list so that it can

be printed or displayed in sorted order. The ObjectSort or Objectlndex functions can be

used for this purpose. There is also no function to do a binary search on a sorted list.

There are, however, sequential search functions such as Member? and SelectList, [2] that

search the list sequentially until the given pattern is matched. A binary search is usually

36

quicker for sorted lists. User-defined functions can be written in KAL to sort, index or

do a binary search. A disadvantage of doing so is that the time and effort is wasted in

writing similar functions whenever needed. Further, user-defmed functions are

interpreted, and hence are slower than functions encoded in the binary form. The

enhanced functions produce a higher level of abstraction for developing applications

requiring sorting.

37

Other string functions to find ANSI equivalents of characters and characters for

ANSI values are also available in the enhanced version. The ObjectToRadix function

changes the value of any given number, in any base between 2 and 36, to any other base

in the same range. These functions cannot be user-defined in KAL and are useful when

using or displaying technical data.

In enhancing the file functions, new, open, close, read and write functions have

been written to augment the ones already present. A maximum of one read file and one

write file could be opened using KAL functions OpenReadFile and OpenWriteFile [2].

It is now possible to open a maximum of 20 flies using the generalized FileOpen function

in the enhanced version. These can be opened in a combination of read, write, modify or

append modes. The flies could not be opened for modifying or appending originally. To

help modify files, the FilePosition and FileGoto functions give or change the current

position of the file pointer.

If a file is opened in the read mode with the file number 0 or in the write mode

with the file number 1, it is similar to opening the files using OpenReadFile and

OpenWriteFile respectively, except that they are opened for binary reading or writing

rather than text. In this binary mode, if the Write functions are used, the end of line is

38

written by the line feed character '\n' without the carriage return '\r', which then has to be

placed using the FormatValue function. For example,

Writeline(FormatValue("Write this line.\r\n"));

writes the line correctly.

As the original read and write KAL functions use buffers, it is not advisable to

mix these statements with the new read and write functions, though the read statements

are interchangeable if used with care. The write statements give unpredictable results,

requiring the use of the Close WriteFile function to flush the buffers.

The original ReadW ord function in KAL is capable of reading just one word at a

time. Each word is delimited by a space, tab, return or other special character. Special

characters are read as words by themselves. Lines containing words, spaces or other

special characters, enclosed within double quotes are also read as a single word. An

optional numeric value makes ReadW ord read a fixed number of characters as one word.

There is no provision to read an entire line at a time or to divide the text file into records

and fields. The new FileRead function provides these capabilities.

The new FileRead function can read and discard comment records which are

specially delimited records, placed in the text knowledge-base for readability. The

records and fields can be more than one character long. Multiple field or record

delimiters and their last characters repeated in tandem are ignored. For example if the

field delimiter is "abc", the entire field delimiter "abcabcabcccc" will be skipped before

reading the next word. Thus a field delimiter defined as three spaces will find words

separated by three or more spaces.

39

A user-defined function can be written in KAL to produce similar results. This

function has to read the whole file character by character by making each word of one

character length. Each character then has to be checked and compared with the field and

record delimiters and concatenated together if not a delimiter. If the field or record

delimiters contain more than one character, it can get very complicated to find these

delimiters without other string handling features being available. Such an analysis, done

on some types of read functions, is given later.

File functions have been added to delete, rename, obtain, execute and print file

names. For example, if more than one input file has been created and the user has to be

given a choice to read one of these files, the FileDir function can be used to display a

standard dialog box for displaying wild-card characters and after selection, the file can be

manipulated. Further, if a multiple selection is needed, all the files matching the criteria

can be placed into a list and later manipulated. This list can also be used for multiple file

deleting or renaming. User-defined functions in KAL cannot be written to emulate these

functions.

The existing Execute function has certain limitations. It can run any DOS or

Windows executable file, but when running a Windows executable file from within a

function, a user input screen that follows the Execute function call gets linked to the new

window such that the user is unable to make the new window active. To avoid this, the

user can hide and recall the session window after the Execute function is called, thus

making the session window active and linking the user input dialog box to the session.

But in such a case, the newly executed window is hidden behind the current session

40

window, and the user has to once again call it up using the AL T-TAB or similar Window

shortcut key.

The new FileExec function is written so that the new window is displayed and the

user can move to that window directly by clicking his mouse on the window. An added

facility to minimize, maximize or place the new window in the background has also been

added.

An output created in KAPPA and saved as a file is difficult to print. KAPPA has

no built in function to print a text file on a Windows defined printer. One way to print a

text file is to call the Execute function to run another executable file which then takes the

output file as an argument name and prints it out. One could also change applications

within Windows to one which can print the text file out. The only other way is to write

to a file opened with a DOS device name such as PRN, LPTl or COMl.

The FilePrint function which has been added to KAPPA gives KAPPA the ability

to print a text file to the default Windows printer. The 'Control Panel' application of

Windows can be used to define or change the Windows default printer. Optionally, the

name of a Windows printer can also be given as the last parameter. If the name contains

an'*' or'?', a list of a maximum of ten printers, defined in Windows, is displayed to

choose from. However, the selected printer has to be active. Provisions exist to change

the font size, font name and select options such as printing in bold, italic, underline, with

fixed or variable fonts, without margins, setting the right margin to a maximum of n

characters per line (counts a tab as a single character rather than eight blanks) with longer

lines wrapped to the next line, with a header displaying the name of the file and current

date, with page numbers, line numbers and with multiple columns per page. The options

are declared using a special character for each option, which can be concatenated

together to form a word, thus making the function compact.

Consequences of the New Functionality

The new functions added to KAPPA have been made as versatile as possible.

41

These functions can handle both single or multi-valued slots (lists) using the same

function name and format. The format has been made adaptable to both methods of

denoting values in slots, using 'object: slot' or 'object, slot'. In many cases, subtle

differences exist between these two formats so that while the former makes the function

return a result, the latter acts more like a procedure by storing the result back into one of

the arguments. Default values with less or no parameters are also accepted in most

functions to make them shorter and more space efficient.

Due to the addition of these functions and their various features, the overall size

of KAPPA has increased. Whereas, the original size of the KAPPA 1.1X file was about

565 K bytes, the enhanced version is 686 K bytes, a difference of 121 K bytes. This

increase has taken the limit of the KAPPA executable above that which can be loaded

into conventional memory. Thus, a minor drawback with the enhanced version, is its

inability to be loaded, if Windows is running in the real mode, as Windows does not use

memory above 640 K bytes in this mode. The enhanced version of KAPPA requires

extended memory. There is no significant increase in loading time due to this increase in

SIZe.

Comparison and Analysis of User Defined Functions With

and Without the New Functionality

42

Some of these enhanced functions provide an easier way of writing certain

applications, which are tedious but possible to do, using the old KAL functions. Other

functions would be all but impossible to write using the old KAL functions without

making external calls to other executable files. A few others would not be possible in

either case. All of them, certainly could be created using the C interface. Each of these

methods is described below with examples, and an analysis of the advantages and

disadvantages in each case is made.

Working with Old KAL Functions

User defined functions where the newer functions could be used to advantage but

are not be absolutely necessary, mainly consist of the text file handling functions. The

new open and close functions are not essential if only one read or write file is opened at

any given time, and the file is neither modified nor appended to. The new write function

provides some marginal benefits when files with fixed field and record delimiters need

writing to. The old write function, along with the FormatValue function can be just as

advantageous.

The old read function, on the other hand, is pretty weak when reading records

with fields within them, specially when the field contains spaces or special characters

within them. A function can be written to do this, but would either be extremely slow

due to a lot of extra processing, or could be made faster but not as accurate.

Two such examples of data files, taken from an expert system project for

configuring industrial filtration systems, are shown in Figure 6.

* Examplel.TXT
* SELECTION LIST FOR
*CUSTOMERS AND
* DISTRIBUTORS

*
* Address Code

CLASS CUSTSEL

ABC Company, abc st., NY A1
AXE Company, axe st., TX A2

XYZ Company, xyz st., FL X1
ZZZ Company, zzz st., AL Z1

* Example2.TXT
**** SALES ENGINEERS ****

CLASS SALES

SALES_AV
Bob Smith
Tom Little
Suzy Thomas ST

SALES_IND
Greg Ramsey GR
Bill Fairbanks BF
Roy Jones

BS
TL

RJ

****REGIONAL MANAGERS ****
CLASS REGMAN

REGMAN_SE
Joe White, Regional Manager
XYZCompany
Columbus, Ohio 45002
(513) 561-1111

Figure 6. Example Data Files

The user defined functions to read these files, using the original and enhanced

versions of the read functions are shown in Figure 7 and Figure 8. Examplel requires

43

the data to be read into a list. The unenhanced version to do this, reads and stores a fixed

number of characters into the list as the address. This method is fast, but less accurate in

that short strings have unnecessary blanks at the end of each string. The unenhanced

44

version in Example2, to read values into slots, is more accurate in reading single spaces

within strings and finding the end of each line, but this increases its size and speed.

r************************************
** Load_Examplel without Enhancements
**********************,***************I
MakeFunction(Load_Examplel, 0, {
ResetClock(); CatchError(CloseReadFileO);
CatchError(OpenReadFile(Examplel. TXT),
PostMessage("Examplel.TXT not found."));
While (Not(Null?(Global:TmpO = ReadWordO)))
{

If (Global:TmpO #= *)
Then ReadWord(65)
Else{

If (Global:TmpO #= CLASS)
Then{

Global:Tmp = ReadWord();
CatchError(MakeClass(Global:Tmp,

Customers));
ReadWord(2); };

MakeSlot(Global:Tmp:Address);
SetSlotOption(Global:Tmp:Address,

MULTIPLE);
ClearList(Global:Tmp:Address);
MakeSlot(Global:Tmp:Code);
SetSlotOption(Global:Tmp:Code,

MULTIPLE);
ClearList(Global:Tmp:Code);
Global:TmpO = ReadWord(33);
While (Not(Null?(Global:TmpO) Or

Number?(Global:TmpO # 0))) {
AppendToList(Global:Tmp:Address,

Global:TmpO);
AppendToList(Global:Tmp:Code,

ReadWordO);
ReadWord(l);
Global:TmpO = ReadWord(33); }; }; };

CloseReadFile();
PostMessage(GetClock(), " sees."); });

r************************************
** Load_Examplel with Enhancements
*************************************/
MakeFunction(Load_Examplel, [], {
ResetClock(); FileClose(O);
If(FileOpen(O,Examplel. TXT ,READ)#=F ALSE)
Then PostError("Examplel.TXT not found");
While (Not(FileRead(O, *, " ", ''\n") #= CLASS))
{};
FileRead(O, *," ", ''\n", Global, Tmp);
CatchError(MakeClass(Global:Tmp,Customers));
MakeSlot(Global:Tmp:Address);
SetSlotOption(Global:Tmp:Address,
MULTIPLE);
ClearList(Global:Tmp:Address);
MakeSlot(Global:Tmp:Code);
SetSlotOption(Global:Tmp:Code, MULTIPLE);
ClearList(Global:Tmp:Code);
While (Not(FileRead(O, *, " ", ''\n", Global:Tmp,
Address, Global:Tmp, Code)#= FALSE)) { };
FileClose(O);
PostMessage(GetClock()," sees."); });

Figure 7. Reading Examplel.TXT

!*************************************
** Load_Example2 without enhancements
*************************************!
MakeFunction(Load_Example2, D, {
ResetClock(); CatchError(CloseReadFile());
CatchError(OpenReadFile(Example2. TXn,
PostMessage("Example2.TXT not found."));
While (Not(Null?{Global:TmpO = ReadWord())))
{ If {Global:TmpO #= *)

Then ReadWord(80)
Else{ If {Global:TmpO #= CLASS)

Then { Global:Tmp = ReadWord();
CatchError(MakeClass(Global:Tmp,

Customers));
Global:TmpO = ReadWord(); };

CatchError(Makelnstance(Global:TmpO,
Global:Tmp));

MakeSlot(Global:TmpO:Name);
SetSlotOption(Global:TmpO:Name,

MULTIPLE);
ClearList{Global:TmpO:Name);
If Global:Tmp #= SALES
Then { MakeSlot{Global:TmpO:Initial);

SetSlotOption(Global:TmpO:Initial,
MULTIPLE);

ClearList(Global:TmpO:Initial); } ;
Global:Tmp2 = ReadWord();
ReadWord(l);
For y [1 Global:Tmp2] {

If Global:Tmp #= SALES
Then{ Global:Tmp4="";

While (Not((Global:Tmp3 =
ReadWord(l)) #= FormatValue(" "))) {

Global:Tmp4 = Global:Tmp4 #
Global:Tmp3;

While (Not((Global:Tmp3 =
ReadWord(l)) #= FormatValue(" ")))

Global:Tmp4 = Global:Tmp4 #
Global:Tmp3;

Global:Tmp4 = Global:Tmp4 #
Global:Tmp3; };

AppendToList(Global:TmpO:Name,
Global:Tmp4);

While ((Global:Tmp3 = ReadWord(l))
#= FormatValue(" ")) { };

AppendToList(Global:TmpO:Initial,
Global:Tmp3 # ReadWord());

ReadWord(l); }
Else{ Global:Tmp4="";

While (Not((Global:Tmp3 =
ReadWord(l)) #= FormatValue(''\n")))

Global:Tmp4 = Global:Tmp4 #
Global:Tmp3;

AppendToList{Global:TmpO:Name,
Global:Tmp4); } ; } ; } ; } ;
CloseReadFile();
PostMessage(GetClock(), " sees."); });

45

!*************************************
** Load_Example2 with enhancements
*************************************!
MakeFunction(Load_Example2, D. {
ResetClock(); FileClose(O);
If(File0pen(O,Example2.TXT ,READ)#=F ALSE)
Then PostError("Example2.TXT not found");
While (Not(FileRead(O, *, " ", ''\n", Global,
Tmpl, Global, Tmp2) #=FALSE))
{ If (Global:Tmpl #=CLASS)

Then { Global:Tmp = Global:Tmp2;
CatchError(MakeClass(Global:Tmp,

Customers)); }
Else If (ObjectBreak(Global:Tmpl, _) #=

Global:Tmp)
Then { Global:TmpO = Global:Tmpl;

CatchError(Makelnstance(Global:TmpO,
Global:Tmp));

MakeSlot(Global:TmpO:Name);
SetSlotOption(Global:TmpO:Name,

MULTIPLE);
ClearList(Global:TmpO:Name);
If (Global:Tmp #= SALES)
Then { MakeSlot(Global:TmpO:Initial);

SetSlotOption(Global:TmpO:Initial,
MULTIPLE);

ClearList(Global:TmpO:Initial); } ; }
Else{ AppendToList(Global:TmpO:Name,

Global:Tmpl);
If (Global:Tmp #=SALES)
Then AppendToList(Global:TmpO:Initial,

Global:Tmp2); }; };
FileClose(O);
PostMessage(GetClock(), " sees."); });

Figure 8. Reading Example2.TXT

46

In the above examples, the word following the identifier CLASS is the class name

which is read, created and the name saved in Global:Tmp for later use as the class name.

In Examplel, a fixed field of characters is read and appended to the multi-valued slot,

Address, declared under the class which has just been read. The code is read as a word

and appended to another list. Reading a fixed length of characters, such as for the

address, requires a fixed field length to be maintained and unnecessarily adds spaces at

the ends of shorter lines. These extra spaces also cause needless blanks to be displayed in

PostlnputForm dialog boxes, where the display of slot values is limited to the last few

characters.

The class name for the enhanced version is found by essentially reading word by

word from the file until this keyword is encountered upon which the next word read

gives the name of the class, which is again stored under Global:Tmp. The entire list

reading operation, can be performed by a single FileRead statement within a while loop,

as shown in the enhanced version. The field delimiter is considered to be two or more

spaces and the record delimiter is the return key.

In Example2, the unenhanced version tries not to read fixed length fields with

unnecessary spaces. To do this, it has to read the file one character at a time and match it

with a space. When a space is found, it then has to check if the next character is also a

space, in which case, it has found the field, otherwise, the blank has to be considered as

part of the old field. This process requires a number of 'While' loops, and slow character

by character reading of the file. It is also very difficult to find the end of a line, when

each line is of a different length. This is achieved by using the FormatV alue function to

trap the return character and check it.

The enhanced version, on the other hand, is comparatively shorter and easier to

write and uses just one FileRead function call, compared to 12 separate ReadWord

function calls in the unenhanced version. Hence, the time taken to read a flle using the

enhanced functions is far less than that without the new functions.

The system configuration used for all the above comparisons was a 33 MHz,

80386 PC with 8MB of RAM and 128 K cache, running DOS 5.0 and Microsoft

Windows 3.0. A graphical representation of the comparative sizes and speed of the

functions is given in Figure 9 and Figure 10.

45 Unenhanced

Enhanced
40

35

30

25

20

15

10

5

Size (in lines of code)

Figure 9. Comparison of Code Sizes

47

32
30
28
26
24
22
20
18
16
14
12
10 Example-1
8
6
4
2

Time (in seconds)

Figure 10. Comparison of Execution Times

Callin~ External Executable Files

Unenhanced

Enhanced

48

When there is no KAL workaround to produce similar results of functions using

the enhancements, which is the case for all the string handling functions and some special

file handling functions, an outside executable file can be called to do this. The executable

file can either be of DOS or Windows and can be called using the Execute function

present in KAL. This executable file has to be already existing software or can be created

using other language compilers or assemblers.

The main drawback of using this method is that it is slower as an external

function call has to be made. Another assembler or compiler and linker is required and

has to be available to create this executable file. Using the in-built functions can be

faster. Passing of results back to the calling program is also a major problem.

It is not easy to return the results of the calling program back to KAPPA.

49

Arguments can be specified to pass values to the executable file, and if no return values

are required, no further action need be taken. For example, to delete or rename a file

from KAPPA, the execute command could be given as:

Execute("command.com /c", del, "testl.bak"); OR

Execute("command.com/c", ren, "testl.bak", "test2.bkp");

The execute function always returns a TRUE whenever the given executable file

is found. Thus, even if there were no "* .bak" files, the function would still return TRUE.

There is no way of knowing the outcome of the command given. A command such as

the one given above takes about 0.65 sees, whereas a direct call using the enhanced

functions (FileDelete or FileRename) takes only 0.05 sees relatively, with the same

configuration of the system as stated above.

In cases where the results from the executable me are required, a ready made

executable program is not sufficient. A sp~cial function has to be written, compiled and

linked. This function has to send the output, required by KAPPA, to an intermediary text

file. This file can then be read in KAPPA, after returning from the Execute function call,

to obtain the required results. This entails a much further loss of time and effort. A

simple example of such a C me, to convert a given string to uppercase, and the KAL

function required to call it and obtain the results, are given in Figure 11. The C file has

to be compiled and linked to form an executable before it can be called in the KAL

routine.

50

!***************************************
C file to convert the first argument passed to it

into uppercase and return this value via the data
file tmp.
***************************************/
#include <stdio.h>

!***************************************

main(argc,argv)
int argc;
char **argv;
{

char st[200];
FILE*fp;

fp = fopen("tmp", "w");
if (argc <= 1)

fprintf(fp, "FALSE\n");
else

fprintf(fp, "%s\n", strupr(argv[l]));
fclose(fp);
retum(O);

KAL version to call and make use of the C
function to convert a string to uppercase.
***************************************!
MakeFunction(Test, D.
{

PostlnputForm("Enter a lowercase string",
Global:Tmp, "String:");

Execute(TEST.EXE, Global:Tmp);
PostMessage("String in lowercase is ",

Global:Tmp);
OpenReadFile(tmp);
Global:Tmp = ReadWord();
CloseReadFile();
PostMessage("String in uppercase is",

Glo~al:Tmp);
});

Figure 11. C and KAL Functions to Convert a String to Uppercase

Another major disadvantage in using the Execute function is that due to the

Windows multi-tasking nature, the statements immediately following the Execute

function are executed before the Execute function itself is completed. If a dialog box

such as a PostMessage or PostMenu is displl:lyed immediately following the Execute

function, it then gets the opportunity to reach completion.

In the above example, if the PostMessage function was not called immediately

following the Execute function, the value read from the text file would be one which

was existing prior to the Execute function or if it was the first time, the OpenReadFile

function would give a 'file not found' error. The Execute function sometimes crashes the

system after returning from the function call. The enhanced function FileExec does not

crash and a small loop of calls to the RunBackground function, immediately following

the FileExec or Execute function, can allow the external function call to be completed

before processing the output text file. Of course, the entire above example runs much

faster by just calling the enhanced function, ObjectToUpper, as:

PostMessage("The string in uppercase is ", ObjectToUpper(Global:Tmp));

mainly because the function has been incorporated right into the KAPPA

executable file, thus not requiring external calls.

51

Some enhanced functions such as the FilePrint, FileDir and FileOpen functions

make use of the Windows dialog boxes. For these functions, if an external executable

file is to be created, it requires the Software Development Kit for Microsoft Windows,

[5, 6, 7, 8] or another compiler such as Borland C++, [9, 10, 11, 12] which has the

capability of creating Window executable files. This requires extra effort on the part of

KAPPA application developer to create and use these general purpose functions.

Interfacing with C into KAPPA

The last method to make enhancements is by interfacing with C to create a

KAPPA executable file. This is the method which has been used to make all the

enhancements in this thesis, as shown in the chapters above. If a function requires direct

access to KAPPA dialog boxes, functions or other KAPPA related definitions, which are

not present in KAL, this method provides the only means of defining them in KAPPA.

By already incorporating general purpose functions such as the file and string

functions, right into the KAPPA executable file, the execution of these commonly used

52

functions becomes faster and more convenient. Once placed into the KAPPA executable

file, the functions can be used very easily, just as any other KAL function.

The main disadvantage in this method is that the C interfaced code is incorporated

into KAPPA and this increases the size of the executable. If the functions incorporated

are not general purpose or though important are used infrequently, a lot of the code just

occupies memory, to no useful purpose. This extra code may also slow down the system

a little and may take up much of the heap, stack space and resources in Windows which

could be required with larger applications. Thus the functions added to KAPPA should

be as general purpose as possible so that they can be used in many different applications.

If functions for certain rarely used functions need to be incorporated into an executable

file, it can sometimes be more convenient to have different versions of the KAPPA

executable available for the different needs.

Comparison with Newer Versions of KAPPA

String Functions

Some basic string handling features have been added to versions of KAPPA after

l.lX. The EvaluateKAL function of KAPPA 1.2 is similar to the enhanced KAPPA

l.lX Objectlnterpret function. They both evaluate any valid KAL expression to return

its result. EvaluateKAL has better syntax error messages but an expression cannot be

split into its components and given as multiple arguments, which is possible in the

Objectlnterpret function.

53

The FindSubString function, in KAPPA 1.2 or above, is similar to the

ObjectPosition function in the enhanced version of KAPPA l.lX. These functions are to

find the position of one substring within a larger string. The FindSubString requires

three arguments whereas the third argument is optional in ObjectPosition. The third

argument in the FindSubString function is the nth occurrence of the substring to search

for, whereas the third argument in the ObjectPosition function is the position in the string

from which to begin a search. One advantage of the FindSubString function is its ability

to search backwards for the nth occurrence by giving a negative number. The

ObjectPosition, on the other hand, can also handle lists to give the occurrence of an

element in a list or calculate the position of an instance within a class.

The StringLength function of KAPPA 1.2 is similar to the ObjectLength function

in the enhanced version. These functions return the length of any string given as an

argument. The ObjectLength function can, in addition, give the lengths of lists and the

number of instances in a class.

The SubString function of KAPPA 1.2 is similar to the enhanced ObjectSegment

function. The SubString function takes three arguments while the third argument is

optional in ObjectSegment. The third argument in SubString is the ending position of

the string to be extracted, whereas the third argument of ObjectSegment is the length of

the substring to be extracted. Further, if the third argument is omitted in ObjectSegment,

the second argument becomes the length of the substring to be extracted from the starting

position. The ObjectSegment function, unlike the SubString function, can also take lists

or classes as arguments to extract sub-lists or a sub-group of instances within a class.

54

The TextCase function of KAPPA 1.2 is similar to the combination of the

ObjectToLower and ObjectToUpper enhanced functions. The conversion to uppercase or

lowercase can be carried out by the TextCase function, by stipulating the keyword,

UPPER or LOWER. The TextCase function does not have the ability to change the case

of an entire list, nor is it able to convert the case of classes and instances, unlike the

enhanced functions.

File Functions

Some new functions have been added to the file functions relating to text files and

other external files such as database, spreadsheet files and for Dynamic Data Exchange in

KAPPA 1.2 and above. There are only two new functions that have been added for text

file handling.

The ReadLine function of KAPPA 1.2 has been added to augment the

functionality of the ReadWord function. The ReadLine function can return an entire line

or a fixed number of characters in a line. The functions still cannot read separate fields

or records delimited by other characters. A field would have to be given within double

quotes, if it contained spaces or other special characters. The enhanced FileRead

function is able to read fields and records delimited by one or more characters.

The only other file function added in KAPPA 1.2, relating to text files is the

SelectFile function, which can display a dialog box for the user to choose files from. The

complete path of the file chosen is returned by this function. The enhanced FileDir

function is similar, but does not return the entire path. However, it does set the current

path to one where the selected file exists. It is also able to return an entire list of files in

a directory and place them into a multi-valued slot, which is not possible using the

SelectFile function.

Other Enhancements

55

The KAPPA 1.2 WaitForlnput function is similar to the RunBackground

enhanced function. WaitForlnput allows the KAPPA program to yield to other

applications, to process their messages, by handing control to Windows. This allows the

other screens in KAPPA to also be updated. The enhanced RunBackground function

does the same thing.

The enhancements made in C can also be interfaced into the newer version of

KAPPA so that added functionality is given to the newer versions and they can remain

compatible with applications using the enhanced functions in KAPPA l.lX. The newer

libraries and resources need to be combined with the enhanced C functions by compiling

and linking them to form a new enhanced version of KAPPA 1.2 or higher.

CHAPTER VI

SUMMARY AND CONCLUSIONS

KAPPA provides an interactive graphical user interface which can be used to

advantage in building applications and PC-based expert systems. It is a hybrid tool

which runs under Microsoft Windows and provides the user with object oriented tools

along with traditional rule based reasoning.

The file and string handling capabilities of KAPPA l.lX were found lacking and

have been enhanced in this research. Some of the added functionality is present in the

newer versions of KAPPA but these versions still lack features such as being able to

handle lists and objects as strings or manipulating multiple files. The enhanced functions

give KAPPA a far more advanced capability when working with strings and text files.

Fourteen general purpose functions were added to manipulate character strings

present in single-valued or multi-valued slots within KAPPA objects. These include

functions such as ObjectBreak and ObjectSegment to parse strings, ObjectLength and

ObjectPosition to find lengths and positions of strings, functions to change the case of

strings, change numbers to other bases and get ASCII character codes. The ObjectSort,

Objectlndex and ObjectbSearch functions sort, index and search through multi-valued

slots, to give additional list processing capabilities.

56

57

Eleven other general purpose functions to manipulate ASCII text files used as

knowledge bases or for output purposes were also added. Functions to open, close, read

and write to multiple files were incorporated. The enhanced read and write functions

were given the capability to read and write files containing record and field delimiters.

The read function also has the capability to read and discard comment lines or records

present within text files and also yields to other Windows applications, so that the

reading process may be performed in the background. Functions were also provided for

random access to files by giving them the ability to find and set the position of the file

pointer. Other functions to delete, rename, print and run files were also incorporated.

In addition, a function was also written to be able to run KAPPA in the

background, while running other Windows applications in the foreground, by making

KAPPA yield to Windows. This function can also force an outside executable file to run

to completion, before KAPPA progresses, allowing KAPPA applications to use the new

data created by the executable.

All the enhancements were made by interfacing C with KAPPA. The enhanced

functions were made integrating C and Windows functions and then compiling and

linking them with the KAPPA libraries and resources to form a new executable. A

comparison and analysis were performed on these enhancements to show the advantages

of adding these functions to KAPPA.

KAPPA provides easy access to all its built-in functions. These functions are

provided in a file that can be included with C source code for new KAPPA functions.

This allows the use of a rich mixture of C, Windows and KAPPA functions to write

user-defined functions which can be incorporated into the KAPPA executable for ease

and speed. These user-defined functions can be registered and then called like normal

KAPPA functions from within KAPPA.

58

The addition of new functions increases the size of the KAPPA executable. The

enhanced version can thus no longer be used in Windows running in the real mode which

is limited to 640 KB RAM. The analysis, through examples and graphs, shows that some

of the enhanced functions can be written with existing KAPPA functions but would be

tedious, slow and require lengthy programming effort. Some of the other enhanced

functionality can be emulated by making external calls to outside executables from

within KAPPA with similar handicaps, while some of the functionality cannot be

achieved without following the procedures adopted in this research ..

Finally, a comparison has also been made with the newer versions of KAPPA,

which have incorporated additional functions that are similar to the enhanced functions

of KAPPA l.lX. The comparison shows that on the whole, the enhanced functions

provide added capabilities and features to those available in newer versions. Some of the

enhanced features do not have any equivalents in the newer versions. The possibility of

adding these enhanced functions to the ~ewer versions of KAPPA and increasing the

overall functionality of these newer versions, has also been discussed and shown to be

advantageous.

With all of the enhancements provided from this research, KAPPA still lacks

certain features which could be added using the approach applied in this work.

KAPPA cannot deal with uncertainty. There are no functions for fuzzy logic,

calculating confidence factors or probabilities. Some of these could be implemented

using the C interface.

59

Functions to enhance further its external interface with file handling functions for

other data base and spreadsheet files are also limited. General, basic DDE (Dynamic

Data Exchange) protocol functions are also lacking in this version of KAPPA, though

some limited functions are present in the newer version. These can be enhanced further

by making use of the C interface using Windows provided functions.

The PostlnputForm function which can display and change the values of a

maximum of ten different slots on the same screen is very useful. The windows

displaying the values in these slots are rather small and lack the capability to expand

these edit areas so that lengthy text can be displayed and modified. Further, only one

PostMenu or other type of dialog box to display lists, can be shown at one time. It is not

possible for KAPPA to show two or more independent or linked information columns at

the same time, for the user to choose from. Using the C interface and the Windows

functions, it would be possible to write input function menus based on the above, with far

more features and wider edit windows.

For a PC-based expert system shell, KAPPA delivers a lot of power. The

addition and implementation of the enhancements makes KAPPA an even stronger and

more user friendly tool to work with. Interfacing the enhanced functions with newer

versions of KAPPA can give it added functionality and keep it compatible with the older,

enhanced versions.

BIBLIOGRAPHY

1. "KAPPA User's Guide", KAPPA Version 1.0, IntelliCorp Inc., May 1990.

2. "KAPPA Reference Manual", KAPPA Version 1.0, IntelliCorp Inc., May 1990.

3. "KAPPA C Interface Manual", KAPPA Version 1.1, IntelliCorp Inc., July 1990.

4. "Microsoft Windows 3.0, Graphical Environment, User's Guide", Microsoft
Corporation, 1985-1990.

5. "Microsoft Windows Software Development Kit, Reference--Volume 1", Version
3.0, Microsoft Corporation, 1990.

6. "Microsoft Windows Software Development Kit, Reference--Volume 2", Version
3.0, Microsoft Corporation, 1990.

7. "Microsoft Windows Software Development Kit, Guide to Programming",
Version 3.0, Microsoft Corporation, 1990.

8. "Microsoft Windows Software Development Kit, Tools", Version 3.0, Microsoft
Corporation, 1990.

9. "Borland C++ Users Guide", Version 2.0, Borland International, 1991.

10. "Borland C++ Programmers Guide", Version 2.0, Borland International, 1991.

11. "Borland C++ Library Reference", Version 2.0, Borland International, 1991.

12. "Borland C++ Whitewater Resource Toolkit", Version 2.0, Borland Inti., 1991.

13. Herbert Schildt, "C The Complete Reference", Osborne McGraw-Hill Inc., 1987.

14. J.P. Tremblay, and P G. Sorenson, "An Introduction to Data Structures with
Applications", McGraw-Hill Inc., 1984.

15. D. E. Knuth, "Sorting and Searching. The Art of Computer Programming. Vol3",
Addison-Wesley Publishing Co. Inc., 1973

60

61

16. Thomas Helton, "Object-Oriented Expert-System Tool, Kappa-PC 1.1", Software
Review, AI Expert, March 1991.

17. T.J. Lydiard- University of Edinburgh, "Kappa-PC", Product Reviews,
IEEE Expert, October 1990, 71-77.

18. Won Kim and Frederick H. Lochovsky, "Object-Oriented Concepts, Databases,
and Applications", ACM Press, Addison-Wesley, September 1989.

19. 0. J. Dahl and K. Nygaard, "SIMULA- a goal-based simulation language",
Communications of the ACM, Vol9, 1966, 671-678.

20. G. Birtwistle, 0. Dahl, B. Myhrtag and K. Nygaard, "Simula Begin", Auerbach
Press, Philadelphia, 1973.

21. A. Goldberg and D. Robson, "Smalltalk-80: The Language and its
Implementation", Addison-Wesley, 1983.

22. Wilf R. LaLonde and John R. Pugh, "Inside Smalltalk", Vol I,
Prentice Hall, 1991.

23. Wilf R. LaLonde and John R. Pugh, "Inside Smalltalk", Vol II,
Prentice Hall, 1991.

24. Bruce G. Buchanan and Edward H. Shortliffe, "Rule-Based Expert Systems. The
MYCIN Experiments of the Stanford Heuristic Programming Project",
Addison-Wesley, 1984.

25. Ken Pedersen, "Expert systems programming: practical techniques for rule-based
systems", Wiley, New York, 1989.

26. Amar Gupta and Bandreddi E. Prasad (editors), "Microcomputer-Based Expert
Systems", IEEE Press, 1988.

27. Ralf Alberico and Mary Micco, "Expert Systems for Reference and Information
Retrieval", Meckler Corporation, 1990.

28. Paul Siegel, "What Expert Systems Can Do", Training & Development Journal,
Vol43, Iss 9, September 1989, 70-73

29. Thomas C. Bartee (editor), "Expert Systems and Artificial Intelligence.
Applications and Management", Howard W. Sams & Company, 1988.

30. Susan Lindsay, "Practical Applications of Expert Systems", QED Information
Sciences, Inc., 1988.

62

31. David Stamps, "Taking an Objective Look", Datamation, Vol35, Iss 10,
May 1989, 45-48.

32. David Horn, "Expert Systems Emerge from Their Shells", Mechanical
Engineering, Vol111, Iss 4, April1989, 64-67.

33. Martin Ramsey, "Gaining Proficiency in Expert Systems", Mechanical
Engineering, Vol111, Iss 4, April1989, 73-78.

34. Zack Urlocker, "Object-Oriented Programming for Windows", Byte, Vol15,
Iss 5, May 1990, 287-294.

35. Paul Kinnucan, "Computers that Think like Experts", High Techno!. Mag.,
Vol 71, January 1984, 30-42.

36. John F. Gilmore, Kirt Pulaski, and Chuck Howard, "A Comprehensive Evaluation
of Expert System Tools", Proc. Applications of Artificial Intelligence III,
SPIE Vol635, April1986, 2-16.

37. Fedrick Hayes-Roth, "Knowledge-Based Expert Systems", IEEE Computer,
Vol17, No. 10, October 1984,263-273.

APPENDIXES

63

APPENDIX A

THE KAPPA.C PROGRAM FOR INITIATING KAPPA

AND REGISTERING FUNCTIONS

64

!**
** KAPPA.c
***I

I** I
I* Copyright (c) MegaKnowledge 1988 *I
I* Versionlnfo: "%w %v %f' *I
I* "RBP' 116-Mar-89,19:58:12" *I
I* *I
1**1

I* KAPP A.c - Resident startup portion of Kappa *I

!**
** First include the files with the structures and definitions,
** as well as the global variable declarations.
***I
#include "kappa.h"
#include "enhanced.c"

I* Function declarations *I

!**
** Main procedure, called by microsoft windows when
** KAPP A.EXE is activated.
***I
intFARPASCAL WinMain(hlnstance, hPrevlnstance, lpszCmdLine, cmdShow)
HANDLE hlnstance, hPrevlnstance;
LPS1R lpszCmdLine;
int cmdShow;
{

if (Kappalnit(KERNEL, hlnstance, hPrevlnstance, lpszCmdLine, cmdShow)
==FALSE)

return FALSE;
if (Kappalnit(DEVELOP, hlnstance, hPrevlnstance, lpszCmdLine, cmdShow)

==FALSE)
return FALSE;

1**1
I* FOR THE USER: *I
I* - Please insert all your initialization code after this *I
I* comment and before the 'return' statement. *I
I* - At this point, all KAPPA specific information has *I
I* already been initialized. *I
I* - Please repeat appropriate initialization code in the *I
I* 'InitNewApplication'. This routine is called upon *I
I* selection of 'New' from the File menu of KAPPA. *I
1**1
I* Begin *I

Register_Function("RunBackground", RunBackground, EV AL_ARGS, CAT_ WND);
Register_Function("ObjectBreak", ObjectBreak, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectLength", ObjectLength, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectSegment", ObjectSegment, EV AL_ARGS, CAT_S1R);

65

Register_Function("ObjectPosition". ObjectPosition, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToUpper", ObjectToUpper, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToLower", ObjectToLower, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToProper", ObjectToProper, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToAnsi", ObjectToAnsi, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToChar", ObjectToChar, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToRadix", ObjectToRadix, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectSort", ObjectSort, EV AL_ARGS, CAT_S1R);
Register_Function("Objectlndex", Objectlndex, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectbSearch", ObjectbSearch, EV AL_ARGS, CAT_S1R);
Register_Function("Objectlnterpret", Objectlnterpret, EV AL_ARGS, CAT_S1R);
Register_Function("FileOpen", FileOpen, EV AL_ARGS, CAT_FILE);
Register_Function("FileClose", FileClose, EV AL_ARGS, CAT_FILE);
Register_Function("FileRead", FileRead, EV AL_ARGS, CAT_FILE);
Register_Function("File Write", File Write, EV AL_ARGS, CAT_FILE);
Register_Function("FilePosition", FilePosition, EV AL_ARGS, CAT_FILE);
Register_Function("FileGoto", FileGoto, EV AL_ARGS, CAT_FILE);
Register_Function("FileDir", FileDir, EV AL_ARGS, CAT_FILE);
Register_Function("FileDelete", FileDelete, EV AL_ARGS, CAT_FILE);
Register_Function("FileRename", FileRename, EV AL_ARGS, CAT_FILE);
Register_Function("FileExec", FileExec, EV AL_ARGS, CAT_FILE);
Register_Function("FilePrint", FilePrint. EV AL_ARGS, CAT_FILE);

/*End*/
return KappaLoad(DEVELOP ,lpszCmdLine);

}

!**
** Initialzation procedure, called by KAPPA when the New menu item
**is selected.
***/
void InitNewApplication (void)
{

/*Begin*/

Register_Function("RunBackground", RunBackground, EV AL_ARGS, CAT_ WND);
Register_Function("ObjectBreak", ObjectBreak, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectLength", ObjectLength, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectSegment", ObjectSegment, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectPosition", ObjectPosition, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToUpper", ObjectToUpper, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToLower", ObjectToLower, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToProper", ObjectToProper, EV AL_ARGS, CAT_S1R);
Register_ Function("ObjectToAnsi", ObjectToAnsi, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToChar", ObjectToChar, EV AL_ARGS, CAT_S1R);
Register_ Function("ObjectToRadix", ObjectToRadix, EV AL_ARGS, CAT_S1R);
Register_ Function("ObjectSort", ObjectSort, EV AL_ARGS, CAT_S1R);
Register_Function("Objectlndex", Objectlndex, EV AL_ARGS, CAT_S1R);
Register_ Function("ObjectbSearch", ObjectbSearch, EV AL_ARGS, CAT_S1R);
Register_ Function("Objectlnterpret", Objectlnterpret, EV AL_ARGS, CAT_S1R);
Register_Function("FileOpen", FileOpen, EV AL_ARGS, CAT _FILE);
Register_Function("FileClose", FileClose, EV AL_ARGS, CAT_FILE);
Register_Function("FileRead", FileRead, EV AL_ARGS, CAT_FILE);
Register_Function("File Write", File Write, EV AL_ARGS, CAT_FILE);

66

Register_Function("FilePosition", FilePosition, EV AL_ARGS, CAT_FILE);
Register_Function("FileGoto", FileGoto, EV AL_ARGS, CAT_FILE);
Register_Function("FileDir", FileDir, EV AL_ARGS, CAT_FILE);
Register_Function("FileDelete", FileDelete, EV AL_ARGS, CAT_FILE);
Register_Function("FileR.ename", FileR.ename, EV AL_ARGS, CAT_FILE);
Register_Function("FileExec", FileExec, EV AL_ARGS, CAT_FILE);
Register_Function("FilePrint", FilePrint, EV AL_ARGS, CAT_FILE);

/*End*/
}

!************************************.****************************
** Initialzation procedure, called by KAPPA when the OPEN menu item
** is selected.
***/
void InitOpenApplication (void)
{

/*Begin*/

Register_Function("RunBackground", RunBackground, EV AL_ARGS, CAT_ WND);
Register_Function("ObjectBreak", ObjectBreak, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectLength", ObjectLength, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectSegment", ObjectSegment, EV AL_ARGS, CAT_S1R);
Register_Function("Objectposition", Objectposition, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToUpper", ObjectToUpper, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToLower", ObjectToLower, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToProper", ObjectToProper, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToAnsi", ObjectToAnsi, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToChar", ObjectToChar, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectToRadix", ObjectToRadix, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectSort", ObjectSort, EV AL_ARGS, CAT_S1R);
Register_Function("Objectlndex", Objectlndex, EV AL_ARGS, CAT_S1R);
Register_Function("ObjectbSearch", ObjectbSearch, EV AL_ARGS, CAT_S1R);
Register_Function("Objectlnterpret", Objectlnterpret, EV AL_ARGS, CAT_S1R);
Register_Function("FileOpen", FileOpen, EV AL_ARGS, CAT_FILE);
Register_Function("FileClose", FileClose, EV AL_ARGS, CAT_FILE);
Register_Function("FileRead", FileRead, EV AL_ARGS, CAT_FILE);
Register_Function("File Write", File Write, EV AL_ARGS, CAT_FILE);
Register_Function("FilePosition", FilePosition, EV AL_ARGS, CAT_FILE);
Register_Function("FileGoto", FileGoto, EV AL_ARGS, CAT_FILE);
Register_Function("FileDir", FileDir, EV AL_ARGS, CAT_FILE);
Register_Function("FileDelete", FileDelete, EV AL_ARGS, CAT_FILE);
Register_Function("FileRename", FileRename, EV AL_ARGS, CAT_FILE);
Register_Function("FileExec", FileExec, EV AL_ARGS, CAT_FILE);
Register_Function("FilePrint", FilePrint, EV AL_ARGS, CAT_FILE);
RunModuleO;

/*End*/
}
!**
** END OF MAIN FILE
***/

67

APPENDIXB

ALPHABETICAL REFERENCE FOR ALL ENHANCED

FUNCTIONS

68

FileClose

FileDelete

69

Format FileClose([number, ...])

Purpose The files with the given file number(s) are closed.

Arguments File numbers of open files. If no arguments are given, file 0 is closed.

Return Values A TRUE on success else a FALSE is returned. An ERROR is
returned if the number exceeds 19.

Notes Numbers can be in the range 0 to 19 inclusive. If no numbers are
specified, the number is assumed to be 0.

Example =>FileClose(O, 2, 4);
TRUE

Format FileDelete(object, slot);

Purpose The file name denoted by the 'object, slot' pair is deleted. If the slot is
multi-valued, all the files in the list are deleted.

Arguments A class (or instance) and slot name containing file name(s). One
argument evaluating to a file name can also be given.

Return Values The function returns a TRUE on successful deletion of an existing
file, else returns a FALSE.

Notes Files should not be open when deleting.

Example =>FileDelete(Myjob.c);
TRUE

FileDir

FileExec

70

Format FileDir(object, slot);

Purpose Display and select file(s) in a directory. A standard Windows dialog
box is displayed. If the slot is multi-valued, an entire selection of files
pertaining to the given wild-card characters is stored in the slot.

Arguments A class (or instance) and slot name evaluating to a file name
containing wild-card characters '*'and'?'. If the 'object, slot' pair is a
list, the first element of the. list should be the file name.

Return Values A TRUE on successfully obtaining the name(s) into 'object, slot'. The
file name selected is returned if only one argument evaluating to a file
name with wild-card characters is given. A FALSE is returned if no
files are selected.

Example =>FileDir("c:*. *");
CONFlG.SYS II If CONFlG.SYS was selected from the dialog box.

Format FileExec(command-line[, mode]);

Purpose The function executes any given command line containing a DOS or
Windows executable file, and starts it in the given mode.

Arguments DOS or Windows executable file name with parameters if any. The
mode can be NORMAL by default, to display a normal window in the
foreground, BACKGROUND to display the window in the
background, MINIMIZE to show it minimized and MAXIMIZE to
show it maximized.

Return Values A TRUE if successful, else a FALSE if unable to execute.

Notes A DOS application runs full screen in any mode.

Example =>FileExec("Notepad Myfile", MAXIMIZE);
TRUE

FileGoto

FileOpen

71

Format FileGoto(number, position);

Purpose The function places the ftle pointer, of the ftle specified with number,
at the given offset position in bytes from the beginning of the ftle.

Arguments The number signifies a file opened with that number. The position is
the file pointers offset from the beginning of the file. A + or -
following position increments or decrements the pointer position from
its current position. A $ following the position, would offset the
pointer from the end of the file.

Return Values A TRUE is returned on success, a FALSE on failure.

Notes If arguments are not specified, a default of 0 is assumed for both
arguments. This function also works with files opened with
OpenReadFile() and accessed with ReadWord().

Example =>FileGoto();
TRUE //Sets pointer to the beginning of ftle 0

Format FileOpen(number, file-name[, mode]);

Purpose Open a binary text file, for reading, writing, modifying or appending.

Arguments The number is a ftle number greater or equal to 0 which is assigned
as the file pointer. A ftle name can be given directly or an object: slot
can contain the file name. The modes can be read, write, append or
modify.

Return Values If the number has already been assigned to a ftle, the function returns
a FALSE else if successful, returns the name of the file.

Notes The mode is read by default and the number is 0, if only one argument
is specified. A file opened with the number 0 or without a number
specified, is equivalent to using the already built in OpenReadFile
function, except that it is opened in the binary, rather than text, mode.
Using number 1 is the same as the OpenWriteFile function.
Wild-card characters given in the file name, cause WINDOWS to
display a standard dialog box for selection of a ftle.

Example FileOpen(O, "c:myfile", modify);
C:MYFILE //The file-name converted to upper-case is returned.

FilePosition

FilePrint

72

Format FilePosition(number);

Purpose This function returns the current position of the file pointer, in bytes,
for a given file.

Arguments The number is a file number of an open file.

Return Values It returns the new position of the file in bytes, from the beginning of
the file. It returns an ERROR if unsuccessful.

Notes An ERROR is returned if the function is used without first opening
the relevant file. If no argument is given, the file number is taken to
be 0. It also returns the position of a file opened using
OpenReadFileO and read using ReadWordO.

Example =>FilePosition(3);
.10 II If the file pointer is at the tenth byte.

Format FilePrint(filename[, ptsize[, options[, font[, printer]]]]);

Purpose The given file is printed on the default Windows printer. An optional
last parameter can be defined to print on any printer installed under
Windows.

Arguments The filename can be any existing file. A wild-card argument displays
a Windows dialog to choose a file. The default point size for printing
is 12, but can be overridden by the second argument. The options
consist of a string of characters wherein each character sets a different
option and the characters can be arranged in any order. The different
character options available are: n- normal(default), b- bold, i- italic,
u - underline, v - variable font, s - script font, t - no top or left
margins, r[n] - set right margin to a maximum of n characters per line,
h- header(file name and current date), p- page numbers, 1-line
numbers and m - multi-column output. An optional font name such as
Courier, Helv or Symbol can be supplied as the font argument. If a
valid printer name is supplied, output is directed to that particular
printer else output is sent to the default Windows printer. A wild-card
argument displays a menu to select from a maximum of ten printers.

Return Values The function returns the name of the file being printed, if successful,
else a FALSE is returned.

Notes If no arguments are given or the DOS file 'NUL' is declared, the
number of lines in a page is returned and no other action taken.

Example =>FilePrint("c:\config.sys", 10, bhpr72v, NULL,?);
C:\CONFIG.SYS /{fhe file is printed in bold with a header, page
numbers, a maximum of 72 characters per line and the default
variable font of point size 10. The printer is selected from a menu.

FileRead

FileRename

Format FileRead(number, comment -delimiter, field-delimiter,
record-delimiter[, object, slotl, object. slot2, ...]);

73

Purpose Read an ASCII text file containing remarks, fields and records.

Arguments The number is the file number with which the file was opened. The
comment delimiter disregards any records that begin with the
comment character. The field delimiter breaks a record into fields
whenever it comes across the field string. The record delimiter
denotes the termination string for an entire record. Only the first
character is taken for the comment delimiter whereas a string can be
given for the field and record delimiters. The string can be a C format
string where a \n would indicate the new-line character. The 'object,
slot' pairs are where each field value is stored. These can denote lists.

Return Values If no slot names are given, a single record which is read, is returned.

Notes

Example

Format

Purpose

Arguments

If the slots are single-valued, one valid record is read and each field in
that record is stored in its corresponding slot. The last field or record
is returned. If the slots are multi-valued, a maximum of 100 records
are read and stored into the .corresponding lists after each record is
broken into fields. Fields or slots in excess are made NULL. The
function returns the actual number of records read. A 0 indicates that
no records were read and a FALSE indicates the end of file.

This function also yields to other Window applications, so that the
read operation can be earned out in the background. If the Object
Browser or the Knowledge Tools windows are open, and new classes
or instances are being created along with this function, these windows
are updated to show the current status. This can slow down the actual
read process. If speed is required, these windows should be closed. If
the record delimiter is NULL, a record of 200 characters is returned.

=>FileRead(O, *,NULL, "\n");
THE FIRST LINE NOT BEGINNING WITH AN* IS RETURNED.

FileRename(object, slotl, object, slot2);

To rename an existing file or a group of files. The file name given in
slotl is renamed to the one given in slot2. If slots are multi-valued, a
one to one correspondence is assumed between the different files.

The 'object, slots' should contain valid file names. Arguments
evaluating to 2 strings can also be given, as shown in example below.

Return Values · The name of the file in the list, where a renaming error occurred, is
returned, else a TRUE is returned on success.

Example =>FileRename(oldname.txt, Global:NewName);
TRUE

File Write

ObjectBreak

Fonnat FileWrite(number, field-delimiter, record-delimiter, object, slotl,
[object, slot2, ...]);

Purpose Write to an ASCII text file with data separated by field and record
delimiters.

Arguments The number denotes the file number under which a file has been
opened for writing. The field delimiter is added after writing each
slot value and the record delimiter is added after the last slot is
written. The slots can be single valued in which case one record is
written, or they can be multi-valued in which case the maximum
number of records written to the file, is the length of the list.

Return V aloes The record itself is returned if single, else the number of records
written is returned or in case of error, an error message is displayed

74

Notes This function has the same ability as the ReadWord function to yield
control to other Window processes. It can be used in conjunction with
the FonnatValue() function to fonnat output text.

Example =>FileWrite(O, "", ''\n", "This is a sample line.");
This is a sample line.

Fonnat ObjectBreak(objectl, slotl, pattern-string[, object2, slot2, ...]);

Purpose This function is useful in breaking a string into tokens, each separated
by any one character in the pattern string.

Arguments The source string exists in slotl. The pattern to match and then break
the source into tokens is the pattern string. Optional target 'object,
slot' pairs are where these tokens are placed after breaking them. The
target can also be declared within quotes as "object:slot" pairs. The
Pattern String itself can be given directly within quotes or in an
object: slot pair. It can also contain special characters using the
back-slash as the first character, like \n.

Return Values The function takes the value of an 'object, slot' pair in KAPPA and
returns the first sub-string or token tenninated by any of the characters
present in the pattern string. If the optional target 'object, slot' pairs
are defined, the function returns a TRUE on success.

Notes If the 'object, slot' pairs are lists, the function breaks each string in
the list, according to the pattern, into tokens and places each one into
the corresponding target list. If there are less target lists than tokens,
it ignores the rest but returns 'Less Slots', whereas if there are less
tokens, it leaves the excess slots empty.

Example =>0bjectBreak("744-1998", "-");
744

75

ObjectbSearch Fonnat ObjectbSearch(object, slotl, key[, object, slot2[, sec.key, object,
slot3]]);

Objectlndex

Purpose A binary search is perfonned, given a primary key and an optional
secondary key, on a list which has been sorted or indexed.

Arguments 'object, slotl' denote a multi-valued list which is either sorted or
indexed. The key is the primary key on which search is conducted. If
the list is indexed, another multi-valued list denoted by 'object, slot2'
and containing the original unsorted list has to be defmed. With
indexed lists, a secondary key can also be specified along with a
secondary list contained in 'object, slot3'. If two or more items with
the same primary key are found, the secondary key is matched with
items in the secondary list.

Return Values Returns the position of the key as found in the sorted or indexed list.

Notes A sort or index has to be perfonned before this search.

Example =>ObjectbSearch(Global, IndexedList, Tom, Global, OriginalList);
20 II The 20th element in the indexed list contains the position of
Tom in the original list.

Fonnat Objectlndex(object, slotl, object, slot2[, object, slot3]);

Purpose Index the values contained in a list and place their positions, in
ascending order, into another list.

Arguments 'object, slotl' is a multi-valued slot containing the original values of
strings or numbers. 'object, slot2' is the destination slot where the list
of index values is placed. An optional secondary list on which the
indexing is perfonned is defined by 'object, slot3'.

Return Values A TRUE on success else an appropriate error message is returned.

Notes The indexing provides an alternate method to sorting, specially when
the original list does not need a physical change or when more than
one, parallel lists are used.

Example =>Objectlndex(Global, AllNames, Global, IndexedNames);
TRUE

76

Objectlnterpret Format Objectlnterpret([LIST,] expr1[, expr2, ...]);

Purpose Concatenate, interpret and execute valid KAL commands given in one
or more expressions.

Arguments One or more expressions given as arguments are concatenated
together to form a KAL statement. If the KAL expression returns a
list, the key-word LIST has to be specified as the f'rrst argument.

Return Values If valid, the KAL expression is executed and its value returned, else a
FALSE is returned.

Notes expr1, expr2 ... when concatenated together should be a valid KAL
expression including the end semicolon.

Example =>For x [1 3] AppendToList(Global:Lst, Objectlnterpret(
"LengthList(Global: ", Lst#x, "); "));
LIST: 100 50 200 II Returns the length of lists Global:Listl thru Lst3

ObjectLength Format ObjectLength(object, slot);

Purpose To find the length of a string, list or class.

Arguments The 'object, slot' pair can be single-valued, containing a string or a
multi-valued list. A string or class name can also be passed as one
single argument.

Return Values It returns the length of the string specified. If the 'object, slot' pair is a
list, the length of the list is returned. A 0 is returned if the 'object,
slot' pair is empty or NULL. If a class name is passed directly, as a
single argument, the number of instances for that particular class are
returned.

Notes A class name can be passed in a slot by using object: slot which is
evaluated before it is passed.

Example ObjectLength(Root);
1 // The number of instances contained in Root.

ObjectPosition Fonnat ObjectPosition(object, slot, string-segment, start-position);

Purpose To find the overall position of a sub-string or element in another
string or list, optionally beginning from the given position.

77

Arguments The 'object, slot' can be single or multi-valued containing either the
string or the list to be searched. The string segment is a sub-string or
element in the list to search for. If the 'object, slot' is specified as a
single argument such as 'object:slot', the start position is optional.

Return V aloes The position of the sub-string in the string or the position of the
element in a list is returned. Starting from the optional start position
can make it skip sub-strings occurring before this position. A 0 is
returned if the segment is not found.

Notes The 'object. slot' can also be specified as a single value evaluating to a
string or class name. If a class is specified, and the string-segment is
an Instance name, the position pf the Instance in the Class is returned.

Example =>ObjectPosition("405-744-1998", -, 5);
8 II The position of the second hyphen in a telephone number.

ObjectSegment Fonnat ObjectSegment(object, slot, start-position, length);

Purpose Finds a segment of a specified string given the beginning position and
the length required.

Arguments The 'object, slot' can either be single or multi-valued. It can also be
specified as one single string or class name. The start-position is the
position from which the segment is extracted. It is the position of a
character in a single-valued slot or the element position in a
multi-valued list. The length is the number of characters to copy for a
single-valued slot or the number of elements for a multi-valued slot.

Return Values Returns the extracted segment if 'object, slot' is specified as a single
string. A TRUE is returned if the object and slot name are given
separately. The new value replaces the old if single-valued. If a list,
it is replaced by a sub-list starting with the first element given in the
start-position with length number of elements. If a class name is
passed directly to the function, a sub-list of the instances beginning at
the start-position and length in number is returned.

Notes The class name in a slot can be passed directly using object: slot.

Example =>ObjectSegment("(405) 744-1998", 2, 3);
405 II The area code starting at position 2 and length 3 is returned.

ObjectSort

78

Format ObjectSort(object, slot);

Purpose Sorts a multi-valued list and places the values in lexicographic order
using the Heap-Sort algorithm.

Arguments The 'object, slot' denotes any multi-valued slot can be given as an
argument to this function.

Return Values The sorted list replaces the original list. A TRUE is returned upon
completion.

Notes A single value can also be passed, in which case, this value should
evaluate to an 'object:slot' pair.

Example =>ObjectSort("Global:SortedList");
TRUE II The elements in SortedList are sorted and replaced.

ObjectToAnsi Format ObjectToAnsi(object, slot);

Purpose To obtain the Windows ANSI numeric equivalent for any character.
'

Arguments An 'object, slot' pair evaluating to a string or list. The ANSI
equivalent of the ftrst character in this string or the ftrst character of
every ~lement in the list is found.

Return Values If a single string argument is given the ANSI value is returned
directly, else a TRUE is returned after setting the slot value to the
ANSI numeric equivalent(s).

Notes The original string or list is lost when the 'object, slot' pair is passed.

Example

The Windows ANSI values differ from the DOS ASCII values for the
extended character set.

=>ObjectToAnsi(A);
65 II The ANSI equivalent of the letter A.

79

ObjectToChar Format ObjectToChar(Object, Slot);

Purpose Converts a number to its equivalent Windows ANSI character format.

Arguments An 'object, slot' pair evaluating to a number or list of numbers. The
ANSI equivalent character of these numbers is found.

Return Values If a single numeric argument is given the equivalent ANSI character is
returned directly, else a TRUE is returned after setting the slot value
to the ANSI character equivalent(s).

Notes The original number or list is lost when the 'object, slot' pair is passed.
The Windows ANSI values differ from the DOS AS CIT values for the
extended character set.

Example · =>ObjectToChar(65);
A II The ANSI character equivalent of 65.

ObjectToLower Format ObjectToLower(Object, Slot);

Purpose Converts strings, list of strings, classes or instances to lowercase.

Arguments An 'object, slot' denoting a string or a list of strings. If passed as a
single argument, it can be either a string, class or instance name.

Return Values If a single string argument is given, it is converted into lowercase
letters. If this is a class or instance name, the class or instance is
converted to lowercase. Otherwise, a TRUE is returned after
converting the slot value(s) to lowercase.

Notes The original string(s) are lost when the 'object, slot' pair is passed.
The single value can be passed in a slot by specifying it as object: slot.

Example =>ObjectToLower(LOWER);
lower II The string is converted to lowercase.

80

ObjectToProper Format ObjectToProper(Object, Slot);

Purpose Converts strings, list of strings, classes or instances to lowercase with
the first character capitalized.

Arguments An 'object, slot' denoting a string or a list of strings. If passed as a
single argument, it can be either a string, class or instance name.

Return V aloes If a single string argument is given, it is converted into the
proper-noun form with the first character capitalized and all the others
in lowercase. If this is a class or instance name, the class or instance
is also similarly converted. Otherwise, a TRUE is returned after
converting the slot value(s).

Notes The original string(s) are lost when the 'object, slot' pair is passed.
The single value can be passed in a slot by specifying it as object: slot.

Example =>ObjectToLower(PROPER);
Proper II The string is converted to the proper-noun form.

ObjectToRadix Format ObjectToRadix(original-value, original-base, new-base);

Purpose Convert a value in the given original base to its equivalent new base.

Arguments The original value is a number in the given base. The original base
contains the base of the original value in decimal format. The new
base contains the base to which the original value is to be converted
to, also in decimal format.

Return V aloes The original value after being converted to the new base is returned.
The base values can range between 2 and 36. A FALSE is reported
on failure.

Notes Lists are not supported. Return values need not be all numeric and
can contain letters from A to Z depending on the base.

Example =>ObjectToRadix(FAB, 16, 2);
111110101011 //The hex value of 4011 is converted to binary form.

ObjectToUpper Format ObjectToUpper(Object, Slot);

Purpose Converts strings, list of strings, classes or instances to uppercase.

Arguments An 'object, slot' denoting a string or a list of strings. If passed as a
single argument, it can be either a string, class or instance name.

Return Values If a single string argument is given, it is converted into uppercase
letters. If this is a class or instance name, the class or instance is
converted to uppercase. Otherwise, a TRUE is returned after
converting the slot value(s) to uppercase.

Notes The original string(s) are lost when the 'object, slot' pair is passed.

81

The single value can be passed in a slot by specifying it as object: slot.

Example =>ObjectToLower(upper);
UPPER II The string is converted to uppercase.

RunBackground Format RunBackground();

Purpose To be able to run other applications while KAPPA is processing.

Arguments None.

Return Values It always returns a TRUE.

Notes This statement should be included within the main processing loop
within which, while processing, other applications need to be run.
This function allows the current application to yield to Windows so
that other applications demanding attention from Windows can be
processed. After processing other application messages, Windows
gives back the control to this application to continue processing. The
effect is of being able to run the current process in the background.

Example RunBackground();
TRUE // Allows Windows to take over control.

Rohinton N. Mistry

Candidate for the Degree of

Master of Science

Thesis: ENHANCEMENTS TO KAPPA, AN OBJECT ORIENTED EXPERT
SYSTEM SHELL

Major Field: Computer Science

Biographical:

Personal Data: Born in Bombay, India, August 26, 1963, the son ofNoshir and
Rashna Mistry.

Education: Graduated from Hyderabad Public School, Begumpet, Hyderabad,
India, in March 1981; received Bachelor of Science Degree in Math,
Physics and Chemistry from Osmania University, Hyderabad, India,
in 1985; received Post Graduate Diploma in Software Technology
from Bureau of Data Processing Systems, Secunderabad, India, in
May 1986; completed requirements for the Master of Science degree
at Oklahoma State University in May 1992.

Professional Experience: Programming Instructor, Bureau of Data Processing
Systems, January 1987 to December 1989; Graduate Research Assistant,
Department of Electrical and Computer Engineering, Oklahoma State
University, January 1991 to May 1992.

