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CHAPTER I 

INTRODUCTION 

A hierarchical memory system usually consists of a cache memory in a central 

processing unit, a main memory and magnetic hard-disk memories. Usually, the 

data transfer between main and hard-disk memory is based on the block transfer 

like paged and/or segmented memory system. Wafer-Scale Integrated (WSI) 

semiconductor memories can be used as high-capacity memory devices between 

the main and the hard-disk memories. Because WSI memories are semiconductor 

devices, they can be a few hundred times faster than hard-disk memories. So if 

we use WSI memories in a hierarchical memory system, the overall memory access 

time can be greatly reduced. 

A WSI system has many advantages over the conventional Printed Circuit 

Board (PCB) approach; a WSI system is more reliable, less expensive and faster 

because of the implementation of the whole system in a wafer [1]-[2]. However, 

a WSI system has a yield problem because the integration of a whole system in 

a wafer has higher probability of containing faulty modules. Therefore in a WSI 

system, we need some techniques, which are called the WSI configuration methods, 

to select good modules and link them together. 

As examples of the WSI configuration method, "fault-tolerant" approaches 

have been introduced by Manning [3] and Aubusson and Catt [4]. Both methods 

use some kind of intelligent mechanisms to select the next neighboring good modules 

when the chain of good modules is growing. But those methods may have problems 

to reconfigure the chain when the chain is broken and to grow multiple chains in 
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one WSI wafer. 

On the other hand, Chesley [5] suggested the so-called "addressable non

redundant approach," which uses an address translation table to use only the 

good modules in a WSI memory. This method requires a pre-sorting test of 

faulty modules but has less problems in reconfiguration and multi-bank selection if 

contents of the address translation table are altered accordingly. So, in this thesis, 

based upon Chesley's suggestions, an actual WSI memory will be designed. 

Objective 

The objective of this thesis is to design a WSI memory system. If we use 

existing memory configuration techniques to design a WSI memory system, we 

may have several problems. There are too many chip-select lines, address and 

data lines, uneven delays to access the memory modules at different positions, and 

bus-failure problems. To reduce the number of chip-select lines, a novel address

selection technique named address identification method is introduced. In address 

identification method, each memory module can be accessed randomly but every 

word within each memory module can be accessed sequentially with the assumption 

that WSI memory is used in the paged memory system. To reduce the number of 

address and data lines, multiplexed address and data lines are used. To cope with 

the refresh request and the different time delays to access memory modules, self

refresh techniques [6]-[8] and asynchronous techniques [9]-[12] are used. To cope 

with bus failure problems, a bus-replacememnt mechanism is suggested. 

Chapter II describes the WSI problems and the WSI memory configuration 

methods. Chapter III describes some topics on the memory system organization. To 

analyze the WSI memory organization, the effects of the page size in virtual memory 

systems and interleaved memory structures are analyzed. Also, the speed of WSI 

memory system is studied with a delay line model and WSI memory organization 
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problems are illustrated. Chapter IV consists of the WSI memory module design, 

the wafer design, and the wafer controller design. The module design contains 

the address identification method, the data and control sequence, and the refresh 

handling problems. The wafer design deals with an 1/0 bank multiplexer and a bus 

repair mechanism. Finally, controller functions are described. Chapter V suggests 

a rather simple WSI module design when we adopt a central refresh control. 



CHAPTER II 

WSI MEMORY SYSTEM 

WSI Problems 

Yield Problem 

When we use sliced semiconductor chips to design a certain system, we need 

the pad-layout of each chip to connect the input and output terminals of the internal 

circuit of the chip to the lead frame of the package. A WSI system, which does not 

have any sliced chips on a wafer, can eliminate all the pad-layouts of all modules 

(which are chips if sliced) except the pad-layout of the input and output terminals 

of a WSI wafer. In a WSI wafer, there are always flawed modules due to a variety of 

defects and we can not remove those faulty modules from a wafer. The difficulties 

of a WSI implementation arise from the existence of those defects. Even worse, 

those defects are unpredictable and are randomly dispersed throughout the entire 

wafer. So, a WSI wafer can never be free of some defects [13]. 

The cost of packaging by a WSI approach is about a half of that by a PCB 

approach [1]. But if each WSI wafer does not have enough numbers of good modules, 

we need to use more WSI wafers for the required total capacity of WSI systems. 

To keep the cost of WSI systems lower than that of PCB systems, the method to 

improve a WSI yield should be considered first. 

To maintain an acceptable yield of a WSI wafer, we can use redundancies for 

some functional units. But a redundant unit may be faulty also. Preparing triple 

redundancies can overcome the redundancy-failure problems somewhat, but too 

4 
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many redundant units reduce the available wafer area for actual functional units. 

In a WSI memory system, because all the modules have identical structures, the 

yield improvement of a WSI memory is accomplished by selecting as many good 

modules as possible from a WSI wafer. 

Power-dissipation 

The disadvantage of a WSI system, and in some cases the most troublesome 

problem, is the power-dissipation problem. Although each module dissipates 

relatively little power, an entire wafer may dissipate enormous power. For instance, 

100 8080A microprocessors integrated in NMOS technology could dissipate about 

lOOW at a 1-megahertz clock rate [14]. That amount of power-dissipation needs a 

special package to remove the heat produced, and such packages with the cooling 

system are very expensive. Also, large power-dissipation causes physical stresses to 

a WSI wafer. Hence, the method to reduce power-dissipation should be considered 

either in semiconductor device physics or circuit technology. 

Worn-out Failure 

Any two WSI wafers can never be same because all the defects are located at 

different places with different amounts. So, in some applications, it is very difficult 

to extract proper failure distributions of entire wafers when WSI wafers are mass

produced. Also, in a WSI wafer, we can hardly screen out modules which will fail 

soon because each module will not be sliced. As a result, a WSI wafer has a higher 

failure rate than sliced chips. From this point of view, when we have a worn-out 

failure (which means a failure during the operation after some time has passed), we 

need to reconfigure a WSI wafer to use it again. 
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WSI Memory Configuration 

In a memory system, all the modules are identical. Only the external control 

circuitry is added to those identical modules; therefore in a WSI memory, it is a 

great advantage that the existence of some faulty modules will not cause a complete 

WSI failure, but only reduce the capacity of integration. Suppose that, in a 20-

Mbyte WSI memory, 8 Mbytes of memory modules are faulty, then the remaining 

12 Mbytes of memory in a wafer can be used. A CMOS DRAM is the best memory 

structure to achieve high integration density and low power-dissipation. Therefore, 

we choose the CMOS DRAM module as the basic building block of a WSI memory. 

A recent WSI approach by Anamartic Ltd. holds about 200 1-Mbit DRAMs 

in a 6-in wafer [14]. A "Wafer Stack" (so-named by Anarmatic) has a maximum 

of 200 - J.lS access time. That is 200 times faster than conventional hard-disk 

memories. Wafer Stack uses a spiral array method and two wafers can form as 

much as 40 Mbytes. 

Path-growth Method 

Typical WSI configuration methods are represented by Manning [3]'s Cellular 

array method (see Figure 1a) and Aubusson [4]'s Spiral array method (see Figure 

1 b). These methods aim at the fault-tolerance in configuring large-scale systems 

without a pre-sorting test. The path is automatically grown by intelligently choosing 

the next neighboring good modules. In this thesis, those methods will be called the 

"path-growth" method. Figure 1 shows the way that the path-growth method 

achieves a long serial chain. 

But the path-growth method has difficulty in reconfiguration when worn-out 

failures occur and lacks the flexibility to get multiple path-growing. Even though 

the path-growth method tests every module and reconfigure the wafer whenever 
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(a) Cellular Array (b) Spiral Array 

Figure 1. The Path-growth Method 
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system is turned on, there may not exist an alternative reconfigurable path. As 

an example, in Figure 2, let us assume that a WSI memory has a critically-passed 

long serial path. In other words, a path grows through one critical position which is 

surrounded by faulty blocks of upper and lower positions or left and right positions. 

In case that critically-passed position turns out to be a worn-out failure after a 

moderately short time (probability of mortality is high in the early stage), the 

entire array path can be broken at that point. This reduces the reconfiguration 

flexibility greatly and there may not be any alternative chain at all. 

Address-selection Method 

In addition to the path-growth method, Chesley [5] suggested the so-called 

"Addressable non-redundant approach." This method suggests using the well

known virtual memory concept [15]-[17]. So, instead of excluding bad modules in the 

path-growth method, the bad modules are not accessed by prohibiting the address 

from being broadcast to those faulty modules. In this thesis, Chesley's method 

will be called the "address-selection" method. Figure 3 shows the addressable non

redundant approach. Even though the address-selection method needs a pre-sorting 

test of the faulty modules, this approach will be used in this thesis because it has 

better reconfiguration ability. Virtual fault-tolerance is achieved by using a WSI 

memory with the virtual memory concept because we can use every good module 

in spite of the existence of bad modules. 

A WSI memory system can be used as a main or a secondary memory in a 

memory hierarchy. But in our approach, a WSI memory system is assumed to be 

used as an intermediate memory in front of hard disk memories. A combination of 

the address translation table and the wafer (memory) controller fools a processor 

as if the processor accesses continuous addresses. 

In summary, the address-selection method will be used m this thesis. In 
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the next chapter, we will discuss the memory and the WSI memory organization 

problems to find the necessary structures for the WSI memory design. 



CHAPTER III 

WSI MEMORY ORGANIZATION 

In this chapter, a virtual memory system is studied first, and then a typical 

WSI memory system is analyzed by the time-delay and the memory access time. 

Virtual Memory System 

The virtual memory concept [15]-[17] is widely used in computer systems. 

The importance of this approach is that a logical address space is translated to a 

physical address space by the address translation table in a hierarchical memory 

organization. In address translation, the Address Translation Table (ATT) contains 

the necessary mappings. Figure 4 shows the concept of this arrangement. The ATT 

holds the page map tables and segment map tables. The segment selector indicates 

the position of the segment descriptor in segment tables. The segment descriptor 

contains the base segment address of segment frames. The page descriptor contains 

the actual page frame base address. 

The translation is performed as follows: 

(1) The virtual address is searched for in the cache. If the address in the 

cache matches, the corresponding physical address in the cache is used. 

(2) If the virtual address misses the cache, but the page or segment is in the 

primary memory, then the physical address is transferred by the translation tables. 

(3) If the virtual address misses the primary memory, then the page associated 

with the physical address should be transferred from the memory in the next 

hierarchy. In this case, the translation table must also be altered accordingly. 

12 
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In the paged and segmented virtual memory system, the memory access time 

depends upon the page size (see Appendix A for the result). When we arrange the 

page size small, the mean access time of the sequential page search is also reduced 

[18], which means that a small page size is preferable. But when considering the 

page fault ratio (miss ratio), a small page size may give a high fault ratio [17], [19]. 

Therefore, the optimal decision should be made with a compromise of the page size. 

This topic can be another important research area. 

WSI Memory System Analysis 

As signal lines run across a part of an entire wafer, a propagation delay 

becomes an important factor. Especially in a long interconnection line and with 

a small feature size, the interconnection resistance and capacitance may not be 

electrically negligible. 

As an example, a 4cm Al line which is 1p,m wide and 0.3p,m thick and with 

0.5p,m thick insulator over the substrate produces 40000 resistance and 8.09pF 

capacitance, so the RC delays are as much as 32nsec [20]. This example shows that 

in WSI applications, the line delay can be far longer than the gate delay and be a 

considerable portion of the memory cycle. 

A long interconnection line can be represented by several RC sections as shown 

in Figure 5(a). 

The response at node Vk is given by [21] 

dVk Cdt = (Ik-1 -Ik) 

(Vk-1- Vk) 
R 

(3.1) 
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When k becomes very large, Equation (3.1) becomes a differential equation: 

dV d2 V 
rc dt = dx2 ' 

(3.2) 

where x = distane from input, r = resistance per unit length and c = capacitance 

per unit length. 

The propagation time t 1 over wire of length l is 

(3.3) 

where K is a constant [21], [22]. Equation (3.3) shows the dependence of t 1 upon 

the term [2. 

Alternatively, when we assume that the driver has the on-resistance of Rt.r, 

the interconnection resistance of Rint, the distributed capacitance of Cint and the 

load of CL, as shown in Figure 5(b). Then the delay time is well approximated by 

[20] 

(3.4) 

If we assume Rt.r << Rint' Equation (3.4) is in agreement with Equation (3.3) 

because both Rint and Cint increases linearly with the length. 

When we use appropriate repeaters in the interconnection line as shown in 

Figure 5(c), the propagation delay is given by [20] 

R- t c. t 
T = k(2.3Ro + ~n )( ~n +Co), (3.5) 

where k is the number repeaters used and R0 and C0 is the output resistance and 

input capacitance of the inverter. With optimal k, 

(3.6) 

If Ro Cint > > Rint Co, the delay is simplified to 

(3.7) 
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Equation (3. 7) shows the linear dependence of the delay upon the line length because 

cint is proportional to l. 

When we use cascaded drivers as shown in Figure 5( d), the delay is given by 

[20] 

(3.8) 

If Rint is small and Cint R 0 is dominant, Equation (3.8) shows the logarithmic 

dependence of the delay upon line length l. 

WSI Memory Model 

The delay problem discussed in the previous subsection tells us that a long 

bus has a longer delay than a short bus. Moreover, the bus and power-line failure 

problems are also significant in a long bus structure. 

In modeling a WSI memory system, the major difference between a conven-

tional memory system and a WSI memory system is the existence of the faulty 

modules in a WSI wafer. For example, the modeling of a WSI memory is based on 

the following assumptions: 

(1} Each memory cycle is composed of an Address Cycle (AC) and a Data 

Cycle (DC). 

(2} Interconnection line has appropriate repeaters and the time delay (r) to 

access memory module is assumed linearly dependent on the module position. 

( 3) The process time of the controller and the delay time of driver and 

repeaters are ignored. 

( 4) A WSI memory has M memory banks and each memory bank has N 

modules and each module hasp words. Also, there may be several faulty modules 

assumed to be present in each bank. 

According to the assumptions, Figure 6(a) illustrates the model of the WSI 
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memory. In that drawing, WSI memory has several banks and each bank has the 

same number of memory modules. The box with 'X' mark indicates the faulty 

module. 

Figure 6(b) shows an example that certain WSI memory has the worst-case 

delays. In that structure, M=3, N=8 and module yield equals 50%. Then the 

average delay to access memory module in one bank, td = (5+6+7+8)r/4 = 6.5r. 

But in a WSI memory, it is hard to predict the total delay because every WSI 

memory will have random faulty modules. So we need some techniques to overcome 

unpredictable time delays. In the next chapter, an asynchronous module accessing 

method will be used. 

From the result of the discussions about line delay, it is very desirable that a 

WSI wafer has a multi-bank structure rather than single long-bank structure. This 

implies that we have made a right choice by selecting the address-selection method 

instead of the path-growth method because the former can easily get a multi-bank 

structure. 

Interleaved Memory Structure 

To speed up the effective memory access, the interleaved memory structure 

is used [17]. This structure increases the total memory bandwidth by interleaving 

several memory modules which are accessed successively. 

Previous works show that, in an interleaved memory system, the effective 

bandwidth (BW) depends on the average number of concurrently active modules 

[23], [24]. They use simplified analytic models to show that the BW is proportional 

to the number of interleaved memory modules. In a multi-processor computer 

system, the system performance also depends on the number of the inter leaved 

memory modules even though some effects of memory conflict are included [25], 

[26]. But those models neglect any line-delays to simplify the analysis. Also it 
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is assumed that a memory system is synchronized and every interleaved memory 

module is independent. But in a WSI memory, those assumptions are far from a 

reality due to the existence of faulty modules. The analytic model of an interleaved 

WSI memory is hard to set up because the WSI wafer has random faulty modules. 

But if we neglect the existence of the faulty modules in the wafer, the modeling 

of a WSI memory is exactly same as that which is presented by F. Briggs and E. 

Davidson [26]. 

When a memory system is interleaved in M ways and each memory bank has 

N modules, this organization will be expressed as an (M,N) memory organization. 

The system performance is characterized by the memory bandwidth. 

We assume that each memory cycle is composed of an Address Cycle (AC) 

and a Data Cycle (DC). Also, each memory bank is independent and there is no 

distinction between the read and write cycle. According to the result (see Appendix 

B) [26], the memory bandwidth with (AC,DC) = (a, d) = (2, 4) and (M,N) = (l, m) 

IS 

(lm) 2 

BW = l X p A ( 2' 4) = (l ) 2 l 2 l ' m + m +2m-m+l 
(3.9) 

which shows that BW is higher when the number of memory banks, l, becomes 

large. Figure 7 shows that BW is also increasing according to the number of bank 

l, even though the total number of modules, lm, is fixed in a WSI memory. 

There are two methods of memory interleaving [27]. The high-order inter

leaving has better module efficiency, but a sequential accumulation of the delays 

discourages the use of the high-order interleaving. On the other hand, the low-order 

interleaving accesses memory faster in a parallel or pipelined processor system than 

the high-order interleaving. Moreover, in configuring the multi-wafer system, the 

low-order interleaving is encouraging because it does not have a delay accumulation. 

In a WSI memory, the module efficiency is determined by the bank which has 
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the least number of good modules. Figure 8 shows one possible way of WSI memory 

interleaving. 

In WSI memory interleaving, we define the following: 

The module yield is defined as 

total number of good modules 

total number of modules 

The module efficiency is defined as 

total number of used good modules 
rJ= 

total number of good modules 

As a result, the system yield is 

Ys = TJYM 
total number of used good modules 

total number of modules 

In Figure 8, YM = !~ = 0. 70, rJ = ~~ = 0. 71 and Y8 = 0. 50. In configuring 

a multi-wafer system, the memory bank which has excessively many faulty modules 

close to the WSI controller or which has exceptionally few working modules may 

be discarded in order to get a high module efficiency. 
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CHAPTER IV 

WSI MEMORY DESIGN 

Module Design 

Module Size Decision 

If we increase the size of a memory module, the area of bus and control 

circuitry in a wafer can be reduced. However, each module failure means greater 

loss in the total memory capacity of a wafer. On the other hand, a small module 

size gives quite an opposite result. 

The decision of a module size is dependent upon the organization of the 

system. If we use a paged memory system, it will be convenient that the address 

size of each module is equal to the page size. A typical page size is between 256 and 

2048 bytes, while segments can be 64 Kbytes or more [16]. In our WSI memory, 

the module size can be decided as 32 Kbytes if we use an 8-bit address bus when 

a 4-bank WSI wafer is used for the capacity of 20 Mbytes. But if we use a 16-bit 

address bus, there are no restrictions on choosing the module size because we can 

select one out of 216 modules in each bank. 

Address Identification Method 

A new WSI addressing method, in this thesis, is called the address identifica

tion method. To access the designated memory module, each memory module has 

an address IDentification (ID) comparator, an ADDR/DATA MUX (Selector) and 

24 



25 

an address counter, as in Figure 9. 

Each memory module has its own address ID tag which is pre-programmed 

permanently in the address ID comparator. When an incoming address from the 

WSI controller through the ADDR/DATA bus matches the address in the address 

ID comparator, the address counter of the matched module will be reset and ready 

to proceed. 

The distinction between address and data sent from the controller is performed 

by checking the control tag (bits) of the incoming data. Figure 10 shows the usage 

of a control tag. If the control high bit is '1', then the ADDR/DATA selector is 

switched to the address ID comparator and this stage is called the address sequence. 

If the control high bit is '0', the data bus is connected to the data buffer of the 

memory module and this is called the data sequence. After the address sequence, 

successive data are transferred via the ADDR/DATA bus with the control high bit 

'0'. 

In addition to the control high bit, the control low bit is used. To provide the 

necessary clock for the address counter, the control low bit has the alternating values 

of '0'-+'1'-+'0'-+ · · ·. As a result, this control bit acts like a locally-synchronized 

clock. Then the address counter incremented for a sequential word access of each 

page-sized module. 

When we use a two-bit control tag, the control low bit can also be used as a 

READ/WRITE tag during the address sequence. The '1' value can be a write tag 

and '0' value can be a read tag. 
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Timing Diagram of WSI Memory 

The timing diagram of the address identification WSI memory is shown in 

Figure 11. 

In the address sequence, the controller sends the address ID tag with control 

high bit '1'. The transition of the control high bit lets the ADDR/DATA Selector 

switched to the address counter. According to the address ID tag, the ADDR/DATA 

Selector lets the address ID comparator have a '1' value if the address is identified. 

Then the address counter is reset until the address sequence terminates. 

Meanwhile, the control low bit designates the following data sequence as a 

memory read or write cycle. After some predefined time interval, tv!, the controller 

sends the actual data to the memory module. Then the data sequence will start 

immediately. 

In the data sequence, the control low bit now provides the clock of the address 

counter. With this clock, the address counter generates a sequence of addresses to 

access a page in the module. Each memory cycle repeats with the internal timing 

control until all the page cycles are terminated. In a module READ cycle, the 

internal control tag generator sets and resets the control bits alternatively in the 

same manner as the controller did in a module WRITE cycle. 

Refresh Hand-shaking 

Each memory module has an automatic self-refresh ability, but the contention 

between refresh and memory access is often a problem. A refresh cycle usually has 

a higher priority. So, there should be a method to solve this contention problem. 

One common way is to use a hand-shaking method. There are two cases in which 

we need the hand-shaking between the WSI controller and the memory module as 

in Figure 12. 
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The first case is the busy acknowledgement from the memory module to the 

controller. This signal is necessary when a module needs refreshing in a module 

WRITE cycle. This signal will hereafter be called the Module BUSY (MBUSY) 

signal. When a module enters into a self-refresh mode, the refresh controller sends 

a BUSY signal to the hand-shaking controller in the memory module. If a module 

is accessed by the ID tag at this moment, the hand-shaking controller sends an 

MBUSY signal to the controller. Once the MBUSY signal is activated from a 

certain bank, the controller stops sending data through that bank. Then an actual 

refresh cycle should be started after detecting no changes in the incoming data 

to allow for the bus delay. This arrangement prevents the loss of data during 

an MBUSY acknowledgement. If an MBUSY signal is inactivated after a module 

refresh, the controller sends the interrupted data to the module again. If a module 

is not accessed during self-refresh, the module does not send an MBUSY signal to 

the controller and refresh is done internally by read-precharge-write steps. This 

refresh is called the hidden module refresh. 

The second BUSY acknowledgement is from the controller to the memory 

module. This signal is necessary when the controller is busy doing another job 

during a module READ cycle. This is called the Controller BUSY (CBUSY) signal. 

In this module READ cycle, a memory module sends data to the memory controller. 

Therefore, if there is a refresh request or the CBUSY signal from the controller, the 

module simply interrupts the data transfer and accomplishes refresh if needed. If 

we assume that the controller is never interrupted in a module READ cycle, the 

CBUSY signal will not be necessary. 

To culminate the discussions to this point, a block diagram of a WSI memory 

module is presented in Figure 13. 
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Wafer Design 

Wafer design includes the layout of modules, bus lines, power lines, and input 

and output peripheral circuitry. Besides, in a multi-bank WSI, key issues are the 

bus I/ 0 multiplexing method and bus failure protection. 

Wafer I/ 0 Selector 

To see the effects of the number of I/ 0 bus selectors on the memory perfor

mance, let us compare two structures of a 4-bank WSI memory example in Figure 

14. In those structures, the bus multiplexer input is the decoded page address from 

the controller to each bank. 

The first structure, in Figure 14 (a), is the 1-I/0 and 4-bank system. This 

structure reduces the number of input and output pads, but one multiplexer may 

be a bottleneck in the system performance, and a wafer can only be a single access 

memory system. 

The next and more preferable structure, in Figure 14 (b), uses double 1-I/0 

and 2-bank structure. Each I/0 has its own multiplexer and each multiplexer drives 

two memory banks. 

Design Factors 

The first factor to be considered is the bus failure problem. In a WSI wafer, 

bus lines run through entire memory modules, so any one bus failure causes critical 

results. To prevent this result, a redundant bus will be used. 

The second problem is the signal delay. In a WSI system, many signal lines are 

expected to connect the modules placed widely apart. So, an equi-distance layout 

of signal lines from input pad to functional blocks is preferred. 

The next problem is power-line failure. Once entire power lines are tied to 
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every module permanently, a local spot power failure can make the entire wafer 

useless. Unfortunately, preparing a fusable link [2] for a power line is not easy 

because it will produce significant voltage drops. A possible solution is to provide 

seperate power blocks for each of the memory banks. 

Bus Redundancy 

Because WSI bus lines are very critical, we need redundant buses. The 

problem is how to provide a bus switching scheme for bus redundancies. Redundant 

bus lines can be connected to every bus line via switching elements. If some bus 

lines turn out to be failures, switching elements interchange the failed bus line with 

one of the redundant bus lines. 

The implementation of switching elements needs some underlying technology: 

one method is using a fusible link technology [2]. But this method requires the 

repairs on the surface of the wafer, which may cause other defects during the repairs. 

Other method is to use a programmable logic (like PROM) to select redundant 

buses; this method, however, needs additional control function and program to 

change the logic of bus replacements. 

Figure 15 illustrates a novel method of selecting the redundant bus lines. In 

this method, we use the bus control module which has its own address tag like 

other memory modules and has switching elements for bus replacements. The bus 

control module consists of the address ID comparator, the bus controller and the 

bus switching elements. The WSI controller accesses the bus control module during 

the bus selection procedure in a test program. During that procedure, the wafer 

controller first sends the address tag of the bus control module. If the bus control 

module is matched by that address tag, then the WSI controller reads preset '1' 

data from the bus presetter. If all the received data are '1', then all the bus lines 

work correctly. If some of the data are '0', those bus lines should be replaced. 
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According to the received data, the controller decides which bus lines need to be 

replaced. Then the controller sends an encoded number which indicates faulty bus 

lines via live bus lines. Finally, the bus controller decodes those numbers and selects 

switching elements accordingly. 

A two-point bus redundancy, as shown in Figure 16, can cover any bus open 

or short without causing any bus loop. Multiple bus failures can also be repaired 

by providing more redundancies. 

Controller Design 

Address Generator 

The WSI memory controller should supply the necessary signals to memory 

modules. The lower bits of the WSI physical address is generated by the address 

counter in the memory module. For example, if a module size is 32 Kbytes, the 

address counter represents the lower 15 bits of the WSI physical address. The 

higher portion of the address corresponds to the page address of each module, so 

the controller needs the address generator for these page addresses. An external 

processor or an address generator in the WSI controller can generate these page 

addresses. Also, the controller should send an address of the memory module with 

the control tags. The controller has the same address counter as that of the memory 

module to receive data in a module READ cycle. 

Controller Buffer 

Due to the signal delay, we used an asynchronous data transfer in our WSI 

memory. So, we need to provide a buffer to the controller which is the same size as 

the memory module. The use of the controller buffer in a WSI memory increases 

the access time of the memory cycle somewhat. But an adequate timing control, 
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which is similar to that of the pipe lined structure [17], will reduce the access time. 

When we use a 2-I/0 wafer, the WSI memory controller also needs two buffers. 

Address Translation Mapping 

A WSI memory will not have continuous physical addresses due to the flawed 

modules. The controller translates the logical page address of the processor to the 

physical page address of the WSI memory module. This translation is done by the 

Address Translation Table. If a WSI memory is used already in the virtual memory 

spaces, the system Address Translation Table can include these mappings. 

The input and output signals of the WSI memory controller are similar to 

those of the conventional memory controller. There are the READ /WRITE signal, 

the system CLOCK, and the REQUEST signal from the processor. The necessary 

signals between memory modules were discussed throughout this chapter. 

Figure 17 shows the block diagram of a WSI memory controller. 

Multi-wafer Configuration 

The extension to a multi-wafer configuration is quite easy if we prepare a 

proper controller arrangement. But a multi-wafer controller should be designed 

carefully so as not to degradate system performances. Figure 18 shows the multi

wafer memory configuration. 
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CHAPTER V 

SIMPLE WSI DESIGN 

The WSI memory introduced in Chapter IV is based upon the adoption of two 

techniques: a self-refreshing of memory modules and an asynchronous data transfer 

between the memory module and the WSI memory controller. In this chapter, some 

brief suggestions about a simple WSI memory design are to be discussed. In the 

previous chapter, we discussed the mechanism of addressing and data transfer. Due 

to the asynchronous data access and the random refresh request, our WSI memory 

has a rather complex hand-shaking mechanism. So, the removal of hand-shaking 

will results in a simple WSI memory which uses the same address identification 

method as that of the WSI memory designed in the previous chapter. 

When we use the following assumptions, the design task of a WSI memory is 

quite a bit simpler: 

(1) Each memory module does not refresh by itself. 

(2) The memory refresh is done by a centralized refresh control from the WSI 

controller. 

Central Refresh Control 

Originally, self-refresh concepts were developed to reduce the burden on the 

processor involved with refresh handling. The continuous time-keeping of the 

memory refreshing prohibits the processor from operating to its full capability. The 

self-refresh method can provide the elimination of time-keeping from the processor 

because the self-refresh counter in the memory module keeps its own refresh-timing. 
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If we use the self-refresh in each memory module, the memory controller 

cannot predict the exact refresh time of each memory module. Therefore, the 

refresh cycle can interrupt the memory cycle at any time. In other words, a refresh 

cycle can interrupt in the midst of a module page-sized data transfer. As a result, 

the MBUSY and the CBUSY acknowledgement are necessary. 

One way to solve this problem is by the elimination of entire acknowledge

ments due to the refresh interruption. This approach is using a central refresh 

assignment from the WSI memory controller. If the WSI memory controller dis

tributes the timing of the refresh for every module, there is no need for a BUSY 

acknowledgement. The WSI memory controller initiates a refresh cycle by sending 

the address tag and the refresh tag. When the controller assigns a refresh task to a 

certain module, that module is either in a READ or WRITE cycle, or is at rest. If 

the module is in a WRITE cycle, the WSI memory controller can skip the refresh 

assignment. If the module is in a READ cycle, the WSI memory controller should 

prohibit the READ cycle until the refresh cycle is assigned first. 

In this approach, there should be a slight modification of the control logic 

m the previous chapter, as shown in Figure 19. Because we need the refresh 

information, '00' value of the control tag can be assigned for the refresh tag. 

Consequently, the control tag logic is modified to have the exclusive-ORed control 

bits instead of the control high bit only. 

The advantage of central refresh control is that only a good module can 

be refreshed by the WSI memory controller. Figure 20 illustrates that, ac

cording to the good module address mapping, the contoller simply accomplishes 

READ /WRITE/REFRESH cycles. 
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CHAPTER VI 

CONCLUSIONS 

Although the path-growth method provides a long serial chain of good 

modules, it may have difficulties in reconfiguring the chain and in growing the 

multiple paths. On the other hand, the address-selection method gives much 

flexibility in those matters. 

The uneven path delay and the existence of flawed modules make the WSI 

memory have a multi-bank architecture. A time-delay analysis shows that a multi

bank structure is better than a one-bank structure and that an asynchronous data 

transfer is preferable. 

By using an address identification method, the conventional addressing prob

lem is solved. The Address/Data multiplexed bus reduces the total number of bus 

lines. Due to the asynchronous data transfer and the refresh requirement, the hand

shaking between the memory module and the WSI controller is necessary. A control 

tag can handle the addressing and the memory READ, WRITE cycle identification. 

The bus failure in a WSI memory may cause the entire wafer useless. A two-point 

bus selective switching scheme can repair either open or short bus failures. By in

cluding the Address Translation Table in the WSI memory controller, a multi-wafer 

configuration can be used in the virtual memory architecture. The central refresh 

control scheme can solve the asynchronous hand-shaking problem in the WSI data 

transfer and allows us to design a simple WSI memory. 

A circuit-level implementation and the actual layout issues remain for future 

studies. 
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APPENDIX A 

THE EFFECT OF PAGE SIZE UPON 

AVERAGE ACCESS TIME 

In the paged, segment virtual memory system, the addressing space is repre-

sented by a triple (S,P,W), where Sis a segment address, Pis a page address and W 

is a word address. The performance of a paged, segment memory system is related 

to the behavior of the segment program and (S,P,W) organization. 

The analytic model of software and page accessing performance is presented 

in reference [18]. Using the terminology used in that reference, suppose that each 

segment Si is subdivided into "page units," {U1 ; U2 ; • .. }i. Each page unit, Uk, is 

characterized by the number of pages it contains and the number of pages currently 

in its core. By definition, "the probability that a page referenced within Uk is 

among the last x distinct pages previously referenced by a procedure segment S0 " 

is the "Page Reference Distribution Function" Fk (x,p), where pis the total number 

of pages in Uk referenced by S0 • When we assume "Random Sequential Segment" 

[18], 

{ 
0, 

Fk (X' p) = 1 - ; ( 1 - :-) ' 

where v = word size in each page. 

if X= 0 
if X> 0, (A.l) 

In equation (A.l), the term (1- !-) means the probability that pages were 

not referenced after x pages of random search among p pages in Uk . When we 

assume a sequential word reference within a page boundary, the referencing of one 

of v words results in referencing entire pages. So, the term ; (1 - ; ) indicates that 
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some pages were not referenced after x pages of search. Hence, equation (A.1) is 

the distribution function of the referenced pages up to x pages random search with 

v words in each page. 

When we define the transition probability Ax, paging unit Uk has the status 

from the population of x pages to x + 1 pages with J.t pages at a time during unit 

time 1:1t, 

Ax = J.L{1- F(x,p)}f:1t. (A.2) 

Then, the mean time to access x pages within this paging unit is given: 

(A.3) 

According to equation (A.3), the comparison between (v=4), (v=8) and 

(v=16) word size is made when (p=4) and (p=8), respectively. Figure 21 illustrates 

the effect of page word size upon the average access time. This result shows that 

when we arrange the page size small, the mean access time of x pages is also reduced, 

which means that a small page size is preferable. 
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APPENDIX B 

THE BANDWIDTH AS A FUNCTION OF 

NUMBER OF BANKS 

When a memory system is interleaved in M ways and each memory line has 

N modules, this organization will be expressed as an (M,N) memory organization. 

The system performance will be analyzed by the memory bandwidth. 

We assume that each memory cycle is composed of an Address Cycle (AC) and 

a Data Cycle (DC) of (AC,DC) =(a, d). Also, each memory line is independent and 

there is no distinction between the READ and WRITE cycles. Following the concept 

and the terminology of reference [26], a discrete Markov model for a pipelined single 

processor with (M, N) memory organization is derived. 

Definition B.l: A module state p,(t) at time t is 

{ 0, if module is not busy 
p,(t) = r E {1, 2, · · ·, d- 1 }, if module is busy, 

where r indicates that the current module was accepted how many Time Units (TU) 

ago. 

Definition B.2: A line state .X(t) at timet is the unordered set of all nonzero 

module states for all modules on the line currently being tested. 

Because any two modules on the same line can not be accessed at the same 

time, any two elements in a line state should have a difference of at least a TU s. 

Definition B.3: If there exists r E .X(t) such that 0 < r < a, then .X(t) is in 

a busy line state; otherwise it is in an idle line state. 

54 
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Definition B.4: A line state is an accepted state if A(t) contains the element 

of r = 1. 

Once a module is addressed, a line state goes into an accepted state on the 

very next TU. If the line is not accepted, we call it a nonaccepted state. According 

to this notation, there can only be two state transitions: from an accepted state to 

a nonaccepted state, or vice versa. 

Result B.l: If no requests are accepted at timet by a line in state A(t), the 

next line state is 

A ( t + 1) = { x I x - 1 E A ( t) and x < d}. 

When a line is busy or when there is no request, a request can not be accepted. 

Result B.2: If a request is accepted at time t, the next line state is 

A(t + 1) = {1} U {x I x- 1 E A(t) and x < d}. 

When a line is idle or there is more than one request, a request can be accepted. 

When we use the memory organization (M,N) = (l, m) and memory cycle 

(AC,DC) = (a, d) = (2,4), the Markov state graph of a single line is derived as in 

Figure 22 [26], where node with * is an accepted line state. 

According to the state-graph of Figure 22, the state probability at timet+ l1t 

is described in terms of the state probability at time t: 

0 

[ ~:~~:~gl A2 (t + l1t) 
A3 (t + t1t) 

0 0 
1-l1t 

l1t 
cl1t cl1t A1 (t) 

0 A2 (t) 
[ 

1 - bl1t + bl1t - al1t 
al1t 

0 0 
1 - cl1t - dl1t 

dl1t 

dl1t l [Ao (t) l 
1 - cl1t- dl1t A3 (t) 

+o(l1t), (B.1) 
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where a=!._ b = l-l c = m- 1 d = lm-m+l and o(flt) denotes a quantity 
I ' I ' lm ' lm 

of order less than flt. 

When we rearrange equation (B.1), we get 

[ 
A0 (t + flt) - .\0 (t) l [ .\0 (t) l 
).1 (t + flt) - ).1 (t) - ).1 (t) 
>.2 (t + flt)- >.2 (t) -A >.2 (t) fl(t) + o(t), 
).3 (t + flt) - ).3 (t) ).3 (t) 

where 
0 
c 

-(c +d) 
d 

d ] c 
0 . 

-(c +d) 

Dividing both sides by flt and neglecting or:tt) term, we obtain 

~(t) = A>.(t), 

where A is called the generator of the Markov chain. 

Recall that 

m-1 lm- m+ 1 
c+d= + =1. 

lm lm 

Thus, 

~ ]· 
-1 

(B.2) 

(B.3) 

(B.4) 

To obtain the steady-state solution, we set the time-variation in equation (B.4) 

to zero. So A>.= 0 gives 

(B.5) 

(B.6) 

(B.7) 

(B.8) 



From equations (B.5), (B.7) and (B.8), 

Invoking .X0 + .X1 + .X2 + .X3 = 1, we get 

1 a .xl = ----
2+d+ .'!.:_ d2 +ad+ 2a · 

a 
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(B.9) 

(B .10) 

The probability of acceptance, PA (a, d), is the probability that a certain line 

is accepted by the request to that line. By substituting a = t, d = 

equation (B.10) and rearranging, we have the accepted line state .X1 

lm2 

.xl = PA (2 4) = -,---------~----
' (lm)2 + lm2 + 2lm- m + 1 · 

lm -m+l 
lm 

into 

(B .11) 

The memory bandwidth, BW, can be expressed as l times the probability of 

single line acceptance because every line is independent. 

, (lm) 2 

BW = l X PA (2, 4) = . 
(lm)2 + lm2 + 2lm- m + 1 

(B.12) 

Equation (B.12) tells that BW is encreasing with larger l. 
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