
~.§l MEMORY SYSTEM: ADDRESS

SELECTION APPROACH

By

GANG HWA LEE
If

Bachelor of Science

Seoul National University

Seoul, Korea

1981

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1992

.; ,. ' ,•

Oklahoma State Univ. library

WSI MEMORY SYSTEM: ADDRESS-

SELECTION APPROACH

Thesis Approved:

Dean of the Graduate College

11

ACKNOWLEDGEMENTS

I wish to give my sincere appreciation to Dr. Jong J. Lee for his continuous

advice and guidance as a thesis adviser throughout my graduate program. Also

many thanks go to Dr. Richard L. Cummins and Dr. Louis G. Johnson for advising

me as committee members. Without their help, this study would not have been

completed well.

I give my sincere love to my wife, MyoungJin, for her continuous encourage

ment and support. I also give my love to our most precious son, HanJae, for his

endurance during my studies.

Great appreciation should go to our parents for their continuous support and

never-ending love. Many thanks also go to our beloved brother and sister and

nephews.

lll

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Objective . 2

II. WSI MEMORY SYSTEM 4

WSI Problems 4
Yield Problem 4
Power-dissipation 5
Worn-out Failure 5

WSI Memory Configura,tion 6
Path-growth Method 6
Address-selection Method 8

III. WSI MEMORY ORGANIZATION. 12

Virtual Memory System 12
WSI Memory System Analysis 14

Line Delay 14
WSI Memory Model . 17
Interleaved Memory Structure 19

IV. WSI MEMORY DESIGN . 24

Module Design 24
Module Size Decision 24
Address Identification Method 24
Timing Diagram of WSI Memory 28
Refresh Hand-shaking 28

Wafer Design 33
Wafer I/0 Selector 33
Design Factors 33
Bus Redundancy 35

IV

Chapter

Controller Design
Address generator
Controller Buffer
Address Translation Mapping
Multi-wafer Configuration

V. SIMPLE WSI DESIGN.

Central Refresh Control

VI. CONCLUSIONS.

REFERENCES

APPENDIXES .

APPENDIX A - THE EFFECT OF PAGE SIZE UPON
AVERAGE ACCESS TIME

APPENDIX B- THE BANDWIDTH AS A FUNCTION OF

Page

37
37
37
39
39

42

42

46

47

50

. .. 51

NUMBER OF BANKS 54

v

LIST OF FIGURES

Figure Page

1. The Path-growth Method 7

2. An Example of a Critically Passed Path . 9

3. The Address-selection Method . 10

4. Logical to Physical Address Translation . 13

5. RC Model and 3 Driving Methods of Interconnection Line . 15

6. WSI Memory Model and Worst-case Time Delay . 18

7. The Bandwidth according to the l, m changes 21

8. A Possible Way for WSI Memory Interleaving 23

9. An Address Identification and the Data Sequence 26

10. The Use of a 2-bit Control Tag. 27

11. The Timing Diagram of an Address Identification WSI 29

12. The Hand-shaking of a WSI Memory . 30

13. The Block Diagram of the WSI Memory Module 32

14. Two structures of the WSI 1/0 Selector . 34

15. The Bus Control Module and the Block Diagram. 36

16. A two-point Redundant Bus . 38

17. The Block Diagram of the WSI Controller. 40

18. A Multi-wafer Configuration of the WSI Memory. 41

Vl

Figure

19. A Control Logic including the Refresh Tag

20. A Schematic Diagram of a R/W /Refresh Address Mapping

21. The Effect of Page Size upon Mean Access Time

22. The State-graph of (a,d)=(2,4)

Vll

Page

44

45

53

56

CHAPTER I

INTRODUCTION

A hierarchical memory system usually consists of a cache memory in a central

processing unit, a main memory and magnetic hard-disk memories. Usually, the

data transfer between main and hard-disk memory is based on the block transfer

like paged and/or segmented memory system. Wafer-Scale Integrated (WSI)

semiconductor memories can be used as high-capacity memory devices between

the main and the hard-disk memories. Because WSI memories are semiconductor

devices, they can be a few hundred times faster than hard-disk memories. So if

we use WSI memories in a hierarchical memory system, the overall memory access

time can be greatly reduced.

A WSI system has many advantages over the conventional Printed Circuit

Board (PCB) approach; a WSI system is more reliable, less expensive and faster

because of the implementation of the whole system in a wafer [1]-[2]. However,

a WSI system has a yield problem because the integration of a whole system in

a wafer has higher probability of containing faulty modules. Therefore in a WSI

system, we need some techniques, which are called the WSI configuration methods,

to select good modules and link them together.

As examples of the WSI configuration method, "fault-tolerant" approaches

have been introduced by Manning [3] and Aubusson and Catt [4]. Both methods

use some kind of intelligent mechanisms to select the next neighboring good modules

when the chain of good modules is growing. But those methods may have problems

to reconfigure the chain when the chain is broken and to grow multiple chains in

1

2

one WSI wafer.

On the other hand, Chesley [5] suggested the so-called "addressable non

redundant approach," which uses an address translation table to use only the

good modules in a WSI memory. This method requires a pre-sorting test of

faulty modules but has less problems in reconfiguration and multi-bank selection if

contents of the address translation table are altered accordingly. So, in this thesis,

based upon Chesley's suggestions, an actual WSI memory will be designed.

Objective

The objective of this thesis is to design a WSI memory system. If we use

existing memory configuration techniques to design a WSI memory system, we

may have several problems. There are too many chip-select lines, address and

data lines, uneven delays to access the memory modules at different positions, and

bus-failure problems. To reduce the number of chip-select lines, a novel address

selection technique named address identification method is introduced. In address

identification method, each memory module can be accessed randomly but every

word within each memory module can be accessed sequentially with the assumption

that WSI memory is used in the paged memory system. To reduce the number of

address and data lines, multiplexed address and data lines are used. To cope with

the refresh request and the different time delays to access memory modules, self

refresh techniques [6]-[8] and asynchronous techniques [9]-[12] are used. To cope

with bus failure problems, a bus-replacememnt mechanism is suggested.

Chapter II describes the WSI problems and the WSI memory configuration

methods. Chapter III describes some topics on the memory system organization. To

analyze the WSI memory organization, the effects of the page size in virtual memory

systems and interleaved memory structures are analyzed. Also, the speed of WSI

memory system is studied with a delay line model and WSI memory organization

3

problems are illustrated. Chapter IV consists of the WSI memory module design,

the wafer design, and the wafer controller design. The module design contains

the address identification method, the data and control sequence, and the refresh

handling problems. The wafer design deals with an 1/0 bank multiplexer and a bus

repair mechanism. Finally, controller functions are described. Chapter V suggests

a rather simple WSI module design when we adopt a central refresh control.

CHAPTER II

WSI MEMORY SYSTEM

WSI Problems

Yield Problem

When we use sliced semiconductor chips to design a certain system, we need

the pad-layout of each chip to connect the input and output terminals of the internal

circuit of the chip to the lead frame of the package. A WSI system, which does not

have any sliced chips on a wafer, can eliminate all the pad-layouts of all modules

(which are chips if sliced) except the pad-layout of the input and output terminals

of a WSI wafer. In a WSI wafer, there are always flawed modules due to a variety of

defects and we can not remove those faulty modules from a wafer. The difficulties

of a WSI implementation arise from the existence of those defects. Even worse,

those defects are unpredictable and are randomly dispersed throughout the entire

wafer. So, a WSI wafer can never be free of some defects [13].

The cost of packaging by a WSI approach is about a half of that by a PCB

approach [1]. But if each WSI wafer does not have enough numbers of good modules,

we need to use more WSI wafers for the required total capacity of WSI systems.

To keep the cost of WSI systems lower than that of PCB systems, the method to

improve a WSI yield should be considered first.

To maintain an acceptable yield of a WSI wafer, we can use redundancies for

some functional units. But a redundant unit may be faulty also. Preparing triple

redundancies can overcome the redundancy-failure problems somewhat, but too

4

5

many redundant units reduce the available wafer area for actual functional units.

In a WSI memory system, because all the modules have identical structures, the

yield improvement of a WSI memory is accomplished by selecting as many good

modules as possible from a WSI wafer.

Power-dissipation

The disadvantage of a WSI system, and in some cases the most troublesome

problem, is the power-dissipation problem. Although each module dissipates

relatively little power, an entire wafer may dissipate enormous power. For instance,

100 8080A microprocessors integrated in NMOS technology could dissipate about

lOOW at a 1-megahertz clock rate [14]. That amount of power-dissipation needs a

special package to remove the heat produced, and such packages with the cooling

system are very expensive. Also, large power-dissipation causes physical stresses to

a WSI wafer. Hence, the method to reduce power-dissipation should be considered

either in semiconductor device physics or circuit technology.

Worn-out Failure

Any two WSI wafers can never be same because all the defects are located at

different places with different amounts. So, in some applications, it is very difficult

to extract proper failure distributions of entire wafers when WSI wafers are mass

produced. Also, in a WSI wafer, we can hardly screen out modules which will fail

soon because each module will not be sliced. As a result, a WSI wafer has a higher

failure rate than sliced chips. From this point of view, when we have a worn-out

failure (which means a failure during the operation after some time has passed), we

need to reconfigure a WSI wafer to use it again.

6

WSI Memory Configuration

In a memory system, all the modules are identical. Only the external control

circuitry is added to those identical modules; therefore in a WSI memory, it is a

great advantage that the existence of some faulty modules will not cause a complete

WSI failure, but only reduce the capacity of integration. Suppose that, in a 20-

Mbyte WSI memory, 8 Mbytes of memory modules are faulty, then the remaining

12 Mbytes of memory in a wafer can be used. A CMOS DRAM is the best memory

structure to achieve high integration density and low power-dissipation. Therefore,

we choose the CMOS DRAM module as the basic building block of a WSI memory.

A recent WSI approach by Anamartic Ltd. holds about 200 1-Mbit DRAMs

in a 6-in wafer [14]. A "Wafer Stack" (so-named by Anarmatic) has a maximum

of 200 - J.lS access time. That is 200 times faster than conventional hard-disk

memories. Wafer Stack uses a spiral array method and two wafers can form as

much as 40 Mbytes.

Path-growth Method

Typical WSI configuration methods are represented by Manning [3]'s Cellular

array method (see Figure 1a) and Aubusson [4]'s Spiral array method (see Figure

1 b). These methods aim at the fault-tolerance in configuring large-scale systems

without a pre-sorting test. The path is automatically grown by intelligently choosing

the next neighboring good modules. In this thesis, those methods will be called the

"path-growth" method. Figure 1 shows the way that the path-growth method

achieves a long serial chain.

But the path-growth method has difficulty in reconfiguration when worn-out

failures occur and lacks the flexibility to get multiple path-growing. Even though

the path-growth method tests every module and reconfigure the wafer whenever

7

(a) Cellular Array (b) Spiral Array

Figure 1. The Path-growth Method

8

system is turned on, there may not exist an alternative reconfigurable path. As

an example, in Figure 2, let us assume that a WSI memory has a critically-passed

long serial path. In other words, a path grows through one critical position which is

surrounded by faulty blocks of upper and lower positions or left and right positions.

In case that critically-passed position turns out to be a worn-out failure after a

moderately short time (probability of mortality is high in the early stage), the

entire array path can be broken at that point. This reduces the reconfiguration

flexibility greatly and there may not be any alternative chain at all.

Address-selection Method

In addition to the path-growth method, Chesley [5] suggested the so-called

"Addressable non-redundant approach." This method suggests using the well

known virtual memory concept [15]-[17]. So, instead of excluding bad modules in the

path-growth method, the bad modules are not accessed by prohibiting the address

from being broadcast to those faulty modules. In this thesis, Chesley's method

will be called the "address-selection" method. Figure 3 shows the addressable non

redundant approach. Even though the address-selection method needs a pre-sorting

test of the faulty modules, this approach will be used in this thesis because it has

better reconfiguration ability. Virtual fault-tolerance is achieved by using a WSI

memory with the virtual memory concept because we can use every good module

in spite of the existence of bad modules.

A WSI memory system can be used as a main or a secondary memory in a

memory hierarchy. But in our approach, a WSI memory system is assumed to be

used as an intermediate memory in front of hard disk memories. A combination of

the address translation table and the wafer (memory) controller fools a processor

as if the processor accesses continuous addresses.

In summary, the address-selection method will be used m this thesis. In

.. -

/
CRITICAL

PATH

~~:~oo
I I

~D
I I
I I

I' I I
I I

~!~! ~ ______ I

~
~

Figure 2. An Example of a Critically
Passed Path

9

VA

PAGE
TABLE

PA

VM
CPU

MAIN MEMORY

BUS

I
I
I
I

Figure 3. The Address-selection Method

10

11

the next chapter, we will discuss the memory and the WSI memory organization

problems to find the necessary structures for the WSI memory design.

CHAPTER III

WSI MEMORY ORGANIZATION

In this chapter, a virtual memory system is studied first, and then a typical

WSI memory system is analyzed by the time-delay and the memory access time.

Virtual Memory System

The virtual memory concept [15]-[17] is widely used in computer systems.

The importance of this approach is that a logical address space is translated to a

physical address space by the address translation table in a hierarchical memory

organization. In address translation, the Address Translation Table (ATT) contains

the necessary mappings. Figure 4 shows the concept of this arrangement. The ATT

holds the page map tables and segment map tables. The segment selector indicates

the position of the segment descriptor in segment tables. The segment descriptor

contains the base segment address of segment frames. The page descriptor contains

the actual page frame base address.

The translation is performed as follows:

(1) The virtual address is searched for in the cache. If the address in the

cache matches, the corresponding physical address in the cache is used.

(2) If the virtual address misses the cache, but the page or segment is in the

primary memory, then the physical address is transferred by the translation tables.

(3) If the virtual address misses the primary memory, then the page associated

with the physical address should be transferred from the memory in the next

hierarchy. In this case, the translation table must also be altered accordingly.

12

SEGMENT TABLE
ORIGIN REGISTER VIRTUAL ADDRESS

ADDRESS OF
SEGMENT PAGE DISPLACE-SEGMENT
NUMBER NUMBER MENT TABLE s p d

jb \.. ~

+ ~
CACHE

SEGMENT MAP --b TABLE PAGE MAP --.. -- I p *
r-

TABLE s p -I

--I --I S - -I I
I I

I p --_. __
1 s * -1-- I - _t __ I P * b + s

s * + p

~~ I~ 1r
FRAME NUMBER DISPLACEMENT

p * d
-~---~--

Figure 4. Logical to Physical Address Translation

I

~
~

14

In the paged and segmented virtual memory system, the memory access time

depends upon the page size (see Appendix A for the result). When we arrange the

page size small, the mean access time of the sequential page search is also reduced

[18], which means that a small page size is preferable. But when considering the

page fault ratio (miss ratio), a small page size may give a high fault ratio [17], [19].

Therefore, the optimal decision should be made with a compromise of the page size.

This topic can be another important research area.

WSI Memory System Analysis

As signal lines run across a part of an entire wafer, a propagation delay

becomes an important factor. Especially in a long interconnection line and with

a small feature size, the interconnection resistance and capacitance may not be

electrically negligible.

As an example, a 4cm Al line which is 1p,m wide and 0.3p,m thick and with

0.5p,m thick insulator over the substrate produces 40000 resistance and 8.09pF

capacitance, so the RC delays are as much as 32nsec [20]. This example shows that

in WSI applications, the line delay can be far longer than the gate delay and be a

considerable portion of the memory cycle.

A long interconnection line can be represented by several RC sections as shown

in Figure 5(a).

The response at node Vk is given by [21]

dVk Cdt = (Ik-1 -Ik)

(Vk-1- Vk)
R

(3.1)

(a) Distributed RC Model (b) Using Single
Driver

15

V out

(c) Using Minimum size repeaters

(d) Using Cascaded Drivers

V out

~....--a

c~;:[IcL
-=- -

Figure 5. RC Model and 3 Driving Methods of
Interconnection Line

16

When k becomes very large, Equation (3.1) becomes a differential equation:

dV d2 V
rc dt = dx2 '

(3.2)

where x = distane from input, r = resistance per unit length and c = capacitance

per unit length.

The propagation time t 1 over wire of length l is

(3.3)

where K is a constant [21], [22]. Equation (3.3) shows the dependence of t 1 upon

the term [2.

Alternatively, when we assume that the driver has the on-resistance of Rt.r,

the interconnection resistance of Rint, the distributed capacitance of Cint and the

load of CL, as shown in Figure 5(b). Then the delay time is well approximated by

[20]

(3.4)

If we assume Rt.r << Rint' Equation (3.4) is in agreement with Equation (3.3)

because both Rint and Cint increases linearly with the length.

When we use appropriate repeaters in the interconnection line as shown in

Figure 5(c), the propagation delay is given by [20]

R- t c. t
T = k(2.3Ro + ~n)(~n +Co), (3.5)

where k is the number repeaters used and R0 and C0 is the output resistance and

input capacitance of the inverter. With optimal k,

(3.6)

If Ro Cint > > Rint Co, the delay is simplified to

(3.7)

17

Equation (3. 7) shows the linear dependence of the delay upon the line length because

cint is proportional to l.

When we use cascaded drivers as shown in Figure 5(d), the delay is given by

[20]

(3.8)

If Rint is small and Cint R 0 is dominant, Equation (3.8) shows the logarithmic

dependence of the delay upon line length l.

WSI Memory Model

The delay problem discussed in the previous subsection tells us that a long

bus has a longer delay than a short bus. Moreover, the bus and power-line failure

problems are also significant in a long bus structure.

In modeling a WSI memory system, the major difference between a conven-

tional memory system and a WSI memory system is the existence of the faulty

modules in a WSI wafer. For example, the modeling of a WSI memory is based on

the following assumptions:

(1} Each memory cycle is composed of an Address Cycle (AC) and a Data

Cycle (DC).

(2} Interconnection line has appropriate repeaters and the time delay (r) to

access memory module is assumed linearly dependent on the module position.

(3) The process time of the controller and the delay time of driver and

repeaters are ignored.

(4) A WSI memory has M memory banks and each memory bank has N

modules and each module hasp words. Also, there may be several faulty modules

assumed to be present in each bank.

According to the assumptions, Figure 6(a) illustrates the model of the WSI

CONTROLLER

CONTROLLER

2 1 M1

22 M2

23 M3

•••

2N H I MN

(a) WSI Memory Model (b) Worst-case Time Delay

Figure 6. WSI Memory Model and Worst-case Time Delay

......
00

19

memory. In that drawing, WSI memory has several banks and each bank has the

same number of memory modules. The box with 'X' mark indicates the faulty

module.

Figure 6(b) shows an example that certain WSI memory has the worst-case

delays. In that structure, M=3, N=8 and module yield equals 50%. Then the

average delay to access memory module in one bank, td = (5+6+7+8)r/4 = 6.5r.

But in a WSI memory, it is hard to predict the total delay because every WSI

memory will have random faulty modules. So we need some techniques to overcome

unpredictable time delays. In the next chapter, an asynchronous module accessing

method will be used.

From the result of the discussions about line delay, it is very desirable that a

WSI wafer has a multi-bank structure rather than single long-bank structure. This

implies that we have made a right choice by selecting the address-selection method

instead of the path-growth method because the former can easily get a multi-bank

structure.

Interleaved Memory Structure

To speed up the effective memory access, the interleaved memory structure

is used [17]. This structure increases the total memory bandwidth by interleaving

several memory modules which are accessed successively.

Previous works show that, in an interleaved memory system, the effective

bandwidth (BW) depends on the average number of concurrently active modules

[23], [24]. They use simplified analytic models to show that the BW is proportional

to the number of interleaved memory modules. In a multi-processor computer

system, the system performance also depends on the number of the inter leaved

memory modules even though some effects of memory conflict are included [25],

[26]. But those models neglect any line-delays to simplify the analysis. Also it

20

is assumed that a memory system is synchronized and every interleaved memory

module is independent. But in a WSI memory, those assumptions are far from a

reality due to the existence of faulty modules. The analytic model of an interleaved

WSI memory is hard to set up because the WSI wafer has random faulty modules.

But if we neglect the existence of the faulty modules in the wafer, the modeling

of a WSI memory is exactly same as that which is presented by F. Briggs and E.

Davidson [26].

When a memory system is interleaved in M ways and each memory bank has

N modules, this organization will be expressed as an (M,N) memory organization.

The system performance is characterized by the memory bandwidth.

We assume that each memory cycle is composed of an Address Cycle (AC)

and a Data Cycle (DC). Also, each memory bank is independent and there is no

distinction between the read and write cycle. According to the result (see Appendix

B) [26], the memory bandwidth with (AC,DC) = (a, d) = (2, 4) and (M,N) = (l, m)

IS

(lm) 2

BW = l X p A (2' 4) = (l) 2 l 2 l ' m + m +2m-m+l
(3.9)

which shows that BW is higher when the number of memory banks, l, becomes

large. Figure 7 shows that BW is also increasing according to the number of bank

l, even though the total number of modules, lm, is fixed in a WSI memory.

There are two methods of memory interleaving [27]. The high-order inter

leaving has better module efficiency, but a sequential accumulation of the delays

discourages the use of the high-order interleaving. On the other hand, the low-order

interleaving accesses memory faster in a parallel or pipelined processor system than

the high-order interleaving. Moreover, in configuring the multi-wafer system, the

low-order interleaving is encouraging because it does not have a delay accumulation.

In a WSI memory, the module efficiency is determined by the bank which has

.c -1J
:=
1J
c:
ns
m

1.0

. I x PA(2,4)

0.0
~---r--------~-------+----

l•4,m..;.1 00 1-B,m-50 1-16,m=25

o bandwidth

Figure 7. The Bandwidth according to the l,m changes

~

22

the least number of good modules. Figure 8 shows one possible way of WSI memory

interleaving.

In WSI memory interleaving, we define the following:

The module yield is defined as

total number of good modules

total number of modules

The module efficiency is defined as

total number of used good modules
rJ=

total number of good modules

As a result, the system yield is

Ys = TJYM
total number of used good modules

total number of modules

In Figure 8, YM = !~ = 0. 70, rJ = ~~ = 0. 71 and Y8 = 0. 50. In configuring

a multi-wafer system, the memory bank which has excessively many faulty modules

close to the WSI controller or which has exceptionally few working modules may

be discarded in order to get a high module efficiency.

Controller This Side

~ r 0-----0----0---- D
I

~ /,-0\ ~ ,-0-\ ~
r I \ I \

~ /;' ~ZJ _o/ ~ZJ '--o
I I

o:/ ,- 0-----o----o----o
I I

oJ /,-o'- ~ ,-o----o
I I ' I

ol/ ~ _o/ o o
I

I

0, D D D ~

~ D D ~ D
Figure 8. A Possible Way for WSI Memory

Interleaving

23

CHAPTER IV

WSI MEMORY DESIGN

Module Design

Module Size Decision

If we increase the size of a memory module, the area of bus and control

circuitry in a wafer can be reduced. However, each module failure means greater

loss in the total memory capacity of a wafer. On the other hand, a small module

size gives quite an opposite result.

The decision of a module size is dependent upon the organization of the

system. If we use a paged memory system, it will be convenient that the address

size of each module is equal to the page size. A typical page size is between 256 and

2048 bytes, while segments can be 64 Kbytes or more [16]. In our WSI memory,

the module size can be decided as 32 Kbytes if we use an 8-bit address bus when

a 4-bank WSI wafer is used for the capacity of 20 Mbytes. But if we use a 16-bit

address bus, there are no restrictions on choosing the module size because we can

select one out of 216 modules in each bank.

Address Identification Method

A new WSI addressing method, in this thesis, is called the address identifica

tion method. To access the designated memory module, each memory module has

an address IDentification (ID) comparator, an ADDR/DATA MUX (Selector) and

24

25

an address counter, as in Figure 9.

Each memory module has its own address ID tag which is pre-programmed

permanently in the address ID comparator. When an incoming address from the

WSI controller through the ADDR/DATA bus matches the address in the address

ID comparator, the address counter of the matched module will be reset and ready

to proceed.

The distinction between address and data sent from the controller is performed

by checking the control tag (bits) of the incoming data. Figure 10 shows the usage

of a control tag. If the control high bit is '1', then the ADDR/DATA selector is

switched to the address ID comparator and this stage is called the address sequence.

If the control high bit is '0', the data bus is connected to the data buffer of the

memory module and this is called the data sequence. After the address sequence,

successive data are transferred via the ADDR/DATA bus with the control high bit

'0'.

In addition to the control high bit, the control low bit is used. To provide the

necessary clock for the address counter, the control low bit has the alternating values

of '0'-+'1'-+'0'-+ · · ·. As a result, this control bit acts like a locally-synchronized

clock. Then the address counter incremented for a sequential word access of each

page-sized module.

When we use a two-bit control tag, the control low bit can also be used as a

READ/WRITE tag during the address sequence. The '1' value can be a write tag

and '0' value can be a read tag.

CTRL
HIGH

~-------------------

CONTROUER

CTRL

LOW ----------------~ I
I -----------------. .,.. __ _

ADDR r-:-11
SEQUENCE L2.._j

DATA

SEQUENCE

0

0

• • •
0

CTRL
HIGH

•••

ADDRESS

COUNTER

data

data

• • •
data

DATA
BITS

MEMORY
MODULE

•••

Figure 9. An Address Identification and the Data
~equence

26

CTRL CTRL ADDR/DATA
HIGH lDN BUS

ADDR/

DATA
MUX

... -------- ---·
I I

CONTROL LOOIC

>-..-!ADDRESS

OOUNTER

WAKE-UP

STANDBY

WRITE

LATCH

READ

LATCH

MEMORY
MODULE

Figure 10. The Use of a Two-bit Control Tag

27

28

Timing Diagram of WSI Memory

The timing diagram of the address identification WSI memory is shown in

Figure 11.

In the address sequence, the controller sends the address ID tag with control

high bit '1'. The transition of the control high bit lets the ADDR/DATA Selector

switched to the address counter. According to the address ID tag, the ADDR/DATA

Selector lets the address ID comparator have a '1' value if the address is identified.

Then the address counter is reset until the address sequence terminates.

Meanwhile, the control low bit designates the following data sequence as a

memory read or write cycle. After some predefined time interval, tv!, the controller

sends the actual data to the memory module. Then the data sequence will start

immediately.

In the data sequence, the control low bit now provides the clock of the address

counter. With this clock, the address counter generates a sequence of addresses to

access a page in the module. Each memory cycle repeats with the internal timing

control until all the page cycles are terminated. In a module READ cycle, the

internal control tag generator sets and resets the control bits alternatively in the

same manner as the controller did in a module WRITE cycle.

Refresh Hand-shaking

Each memory module has an automatic self-refresh ability, but the contention

between refresh and memory access is often a problem. A refresh cycle usually has

a higher priority. So, there should be a method to solve this contention problem.

One common way is to use a hand-shaking method. There are two cases in which

we need the hand-shaking between the WSI controller and the memory module as

in Figure 12.

CTRLLOW

CTRLHIGH

ADDR/DATA
SELECTOR

MATCHED
ADDRESSID

COMPARATOR

ADDRESS
COUNTER

ADDRESS
SEQUENCE I

DATA SEQUENCE

~ ~:~--------------------------------------~
I ____ I

_ _.I~..._ R/W ' I CLK ' ~~
I
I

.-----1

I ADDR 1 ADDR 2 ADDR 3 ADDR p

REsEr m x"'"x""'x x'l"'"'!x"""x x.,.. .I i+ -)6.4.1\

Figure 11. The Timing Diagram of an Address Identification WSI
~
c.o

CONTROLLER

MBUSY
-

.. -
CBUSY

MBUSY ..
.. -

CBUSY

• • •
!I ~---A_u_r~~RE_F_R_Es_H __ ~I
: • BUSY
I ~----~------~
I

MEMORY

MODULE
I

~~---~-~-~-----~-~-~-~-~-~-~-~-~--

: I BUSY
~~-----'~------~ I

MEMORY
MODULE

~-.... ----------------------------------.... __ I

• • •
Figure 12. The Hand-shaking of a WSI Memory

30

31

The first case is the busy acknowledgement from the memory module to the

controller. This signal is necessary when a module needs refreshing in a module

WRITE cycle. This signal will hereafter be called the Module BUSY (MBUSY)

signal. When a module enters into a self-refresh mode, the refresh controller sends

a BUSY signal to the hand-shaking controller in the memory module. If a module

is accessed by the ID tag at this moment, the hand-shaking controller sends an

MBUSY signal to the controller. Once the MBUSY signal is activated from a

certain bank, the controller stops sending data through that bank. Then an actual

refresh cycle should be started after detecting no changes in the incoming data

to allow for the bus delay. This arrangement prevents the loss of data during

an MBUSY acknowledgement. If an MBUSY signal is inactivated after a module

refresh, the controller sends the interrupted data to the module again. If a module

is not accessed during self-refresh, the module does not send an MBUSY signal to

the controller and refresh is done internally by read-precharge-write steps. This

refresh is called the hidden module refresh.

The second BUSY acknowledgement is from the controller to the memory

module. This signal is necessary when the controller is busy doing another job

during a module READ cycle. This is called the Controller BUSY (CBUSY) signal.

In this module READ cycle, a memory module sends data to the memory controller.

Therefore, if there is a refresh request or the CBUSY signal from the controller, the

module simply interrupts the data transfer and accomplishes refresh if needed. If

we assume that the controller is never interrupted in a module READ cycle, the

CBUSY signal will not be necessary.

To culminate the discussions to this point, a block diagram of a WSI memory

module is presented in Figure 13.

MBUSY CBUSY

t ~ REFRESH
IN~ REFRESH REQUEST __

SEQUEI\JCER
TIMER .

AND HAND-SHAKE BUSY
ARBITER AND -- REFRESI-FOJVER ~

ACCESS
• COMMA~ r- IDI COMMAND y

-I¢= REFRESH ;> - RESET ADDRESS ADDRESS COMPA- ..
OOUNTER

... OOUNTER RATOR 1-

r CL; COLUMN FON START

CLOCK

""7"7 ,. GENERATOR R/W ,~ CONTFUL ~ CLK _. LOGIC I-- ,_- CYCLE - MEMORY and -~ -- ..
TIMING CTRL ARRAY , ,~

CTRL ~ TAG J 2

GENERATOR
1 ___

~J
~

_}.

v2 (ADDRI DAT~ ADDR/
~ ·~ • BUS DATA

-') CYQE ' ,
MUX - DATA K"'- R/W

TERMINATION K) BUFFER DATA CTRL f+
and PRECHARGE-,.

Figure 13. The Block Diagram of the WSI Memory Module

D

(;..~:)

t-.:1

33

Wafer Design

Wafer design includes the layout of modules, bus lines, power lines, and input

and output peripheral circuitry. Besides, in a multi-bank WSI, key issues are the

bus I/ 0 multiplexing method and bus failure protection.

Wafer I/ 0 Selector

To see the effects of the number of I/ 0 bus selectors on the memory perfor

mance, let us compare two structures of a 4-bank WSI memory example in Figure

14. In those structures, the bus multiplexer input is the decoded page address from

the controller to each bank.

The first structure, in Figure 14 (a), is the 1-I/0 and 4-bank system. This

structure reduces the number of input and output pads, but one multiplexer may

be a bottleneck in the system performance, and a wafer can only be a single access

memory system.

The next and more preferable structure, in Figure 14 (b), uses double 1-I/0

and 2-bank structure. Each I/0 has its own multiplexer and each multiplexer drives

two memory banks.

Design Factors

The first factor to be considered is the bus failure problem. In a WSI wafer,

bus lines run through entire memory modules, so any one bus failure causes critical

results. To prevent this result, a redundant bus will be used.

The second problem is the signal delay. In a WSI system, many signal lines are

expected to connect the modules placed widely apart. So, an equi-distance layout

of signal lines from input pad to functional blocks is preferred.

The next problem is power-line failure. Once entire power lines are tied to

CONTROLLER

BANK1
BANK2 BANK3

(a) 1-1/0 4-Bank
Structure

CONTROLLER

BANK1
BANK2

(b) Double 1-1/0 2-Bank
Structure

Figure 14. Two Structures of the WSI 1/0 Selector

34

35

every module permanently, a local spot power failure can make the entire wafer

useless. Unfortunately, preparing a fusable link [2] for a power line is not easy

because it will produce significant voltage drops. A possible solution is to provide

seperate power blocks for each of the memory banks.

Bus Redundancy

Because WSI bus lines are very critical, we need redundant buses. The

problem is how to provide a bus switching scheme for bus redundancies. Redundant

bus lines can be connected to every bus line via switching elements. If some bus

lines turn out to be failures, switching elements interchange the failed bus line with

one of the redundant bus lines.

The implementation of switching elements needs some underlying technology:

one method is using a fusible link technology [2]. But this method requires the

repairs on the surface of the wafer, which may cause other defects during the repairs.

Other method is to use a programmable logic (like PROM) to select redundant

buses; this method, however, needs additional control function and program to

change the logic of bus replacements.

Figure 15 illustrates a novel method of selecting the redundant bus lines. In

this method, we use the bus control module which has its own address tag like

other memory modules and has switching elements for bus replacements. The bus

control module consists of the address ID comparator, the bus controller and the

bus switching elements. The WSI controller accesses the bus control module during

the bus selection procedure in a test program. During that procedure, the wafer

controller first sends the address tag of the bus control module. If the bus control

module is matched by that address tag, then the WSI controller reads preset '1'

data from the bus presetter. If all the received data are '1', then all the bus lines

work correctly. If some of the data are '0', those bus lines should be replaced.

BUS

BUS PRESElTER

ALL
' 1'

ADDR/

DATA

MUX

CTRL i
LOGIC

• • •
MEMORY

MODULE

BUS CONTROL

MODULE

MEMORY
MODULE

• • •
CONFIRM

i - 1

i+1

REDUNDANT MAIN

BUS BUS

SWITCH • • •

Figure 15. The Bus Control Module and the Block Diagram

36

37

According to the received data, the controller decides which bus lines need to be

replaced. Then the controller sends an encoded number which indicates faulty bus

lines via live bus lines. Finally, the bus controller decodes those numbers and selects

switching elements accordingly.

A two-point bus redundancy, as shown in Figure 16, can cover any bus open

or short without causing any bus loop. Multiple bus failures can also be repaired

by providing more redundancies.

Controller Design

Address Generator

The WSI memory controller should supply the necessary signals to memory

modules. The lower bits of the WSI physical address is generated by the address

counter in the memory module. For example, if a module size is 32 Kbytes, the

address counter represents the lower 15 bits of the WSI physical address. The

higher portion of the address corresponds to the page address of each module, so

the controller needs the address generator for these page addresses. An external

processor or an address generator in the WSI controller can generate these page

addresses. Also, the controller should send an address of the memory module with

the control tags. The controller has the same address counter as that of the memory

module to receive data in a module READ cycle.

Controller Buffer

Due to the signal delay, we used an asynchronous data transfer in our WSI

memory. So, we need to provide a buffer to the controller which is the same size as

the memory module. The use of the controller buffer in a WSI memory increases

the access time of the memory cycle somewhat. But an adequate timing control,

I

I

CONTROLLER

•••

,

sw
:ELEMENT

I ~T---~~~------_.~~--~~~--------~·

,
I

'

'

•••

' ,
" ' " ,, ,,

I '
I ' I I I

\ I \ I

" ' ,
'

" ' , ' ,

•••

MAIN BUS

' I l
I I
\ I

, '
' ,

-_I

OAJSE
®LINK

X OPEN

I \

I ~
\ I

I
I sw
:ELEMENT

REDUNDANT
BUS

Figure 16. A Two-point Redundant Bus

38

39

which is similar to that of the pipe lined structure [17], will reduce the access time.

When we use a 2-I/0 wafer, the WSI memory controller also needs two buffers.

Address Translation Mapping

A WSI memory will not have continuous physical addresses due to the flawed

modules. The controller translates the logical page address of the processor to the

physical page address of the WSI memory module. This translation is done by the

Address Translation Table. If a WSI memory is used already in the virtual memory

spaces, the system Address Translation Table can include these mappings.

The input and output signals of the WSI memory controller are similar to

those of the conventional memory controller. There are the READ /WRITE signal,

the system CLOCK, and the REQUEST signal from the processor. The necessary

signals between memory modules were discussed throughout this chapter.

Figure 17 shows the block diagram of a WSI memory controller.

Multi-wafer Configuration

The extension to a multi-wafer configuration is quite easy if we prepare a

proper controller arrangement. But a multi-wafer controller should be designed

carefully so as not to degradate system performances. Figure 18 shows the multi

wafer memory configuration.

ADDR

R/W

BUSY

DATA

PAGE

ADDRESS
BUFFER

DATA,
ADDRESS

CONTROL

2

TIMING
and

CONTROL

10
ADDRESS

ADDRESS
TRANSLATION

TABLE

IDTAG
GENERATOR,

1/0 CTRL

CTRL
TPG

ADDR/DAT A MBUSY CBUSY 1/0 SELECT

Figure 17. The Block Diagram of the WSI Controller

40

p M

Address
Translation

Table Secondary
~~~--------~~~~ 

CONTROUER Memory 

WSI Memory 

Figure 18. A Multi-wafer Configuration of the 
WSI Memory 

41 



CHAPTER V 

SIMPLE WSI DESIGN 

The WSI memory introduced in Chapter IV is based upon the adoption of two 

techniques: a self-refreshing of memory modules and an asynchronous data transfer 

between the memory module and the WSI memory controller. In this chapter, some 

brief suggestions about a simple WSI memory design are to be discussed. In the 

previous chapter, we discussed the mechanism of addressing and data transfer. Due 

to the asynchronous data access and the random refresh request, our WSI memory 

has a rather complex hand-shaking mechanism. So, the removal of hand-shaking 

will results in a simple WSI memory which uses the same address identification 

method as that of the WSI memory designed in the previous chapter. 

When we use the following assumptions, the design task of a WSI memory is 

quite a bit simpler: 

(1) Each memory module does not refresh by itself. 

(2) The memory refresh is done by a centralized refresh control from the WSI 

controller. 

Central Refresh Control 

Originally, self-refresh concepts were developed to reduce the burden on the 

processor involved with refresh handling. The continuous time-keeping of the 

memory refreshing prohibits the processor from operating to its full capability. The 

self-refresh method can provide the elimination of time-keeping from the processor 

because the self-refresh counter in the memory module keeps its own refresh-timing. 

42 



43 

If we use the self-refresh in each memory module, the memory controller 

cannot predict the exact refresh time of each memory module. Therefore, the 

refresh cycle can interrupt the memory cycle at any time. In other words, a refresh 

cycle can interrupt in the midst of a module page-sized data transfer. As a result, 

the MBUSY and the CBUSY acknowledgement are necessary. 

One way to solve this problem is by the elimination of entire acknowledge

ments due to the refresh interruption. This approach is using a central refresh 

assignment from the WSI memory controller. If the WSI memory controller dis

tributes the timing of the refresh for every module, there is no need for a BUSY 

acknowledgement. The WSI memory controller initiates a refresh cycle by sending 

the address tag and the refresh tag. When the controller assigns a refresh task to a 

certain module, that module is either in a READ or WRITE cycle, or is at rest. If 

the module is in a WRITE cycle, the WSI memory controller can skip the refresh 

assignment. If the module is in a READ cycle, the WSI memory controller should 

prohibit the READ cycle until the refresh cycle is assigned first. 

In this approach, there should be a slight modification of the control logic 

m the previous chapter, as shown in Figure 19. Because we need the refresh 

information, '00' value of the control tag can be assigned for the refresh tag. 

Consequently, the control tag logic is modified to have the exclusive-ORed control 

bits instead of the control high bit only. 

The advantage of central refresh control is that only a good module can 

be refreshed by the WSI memory controller. Figure 20 illustrates that, ac

cording to the good module address mapping, the contoller simply accomplishes 

READ /WRITE/REFRESH cycles. 



CTRL CTRL 
HIGH LON 

ADDR/DATA 
BUS 

ADDR/ 
DATA 
MUX 

CONTROL LOGIC 

~--.t ADDRESS 

COJNTER 

WAKE-UP 

STANDBY 

WRITE 

LATCH 

READ 

LATCH 

MEtv10RY 
MODULE 

Figure 19. A Control Logic including the 
Refresh Tag 

44 



1- - - - - - - - - - - - - - - - - - - - - - - - , 

I I 

LOGICAL I r-"' I 

I I 

ADDRESS I ARBITER I I I 

I I ... ~____. I s * 
I 

I I 

I I P * ..,I 

I -· ~ I I 

I SEGMENT 
I 

I PAGE I 

I I 

I MAP MAP I 

I I 

REFRESH I TABLE TABLE I 

COUNTER I I 

REFRESH I I -------------------------
LOGICAL ADDRESS TRANSLATION TABLE 
ADDRESS 

PHYSICAL 
X : FAULTY MODULE ,, ADDRESS 

1 X 3 4 X 6 ••• i ••• r • •• n- 1 

WSI PAGE ADDRESS WSI RIW/REFRESH 
ADDRESS 

Figure 20. A Schematic Diaaram of the R/W/Refresh 
Address Mapping 

n 

~ 
c.n 



CHAPTER VI 

CONCLUSIONS 

Although the path-growth method provides a long serial chain of good 

modules, it may have difficulties in reconfiguring the chain and in growing the 

multiple paths. On the other hand, the address-selection method gives much 

flexibility in those matters. 

The uneven path delay and the existence of flawed modules make the WSI 

memory have a multi-bank architecture. A time-delay analysis shows that a multi

bank structure is better than a one-bank structure and that an asynchronous data 

transfer is preferable. 

By using an address identification method, the conventional addressing prob

lem is solved. The Address/Data multiplexed bus reduces the total number of bus 

lines. Due to the asynchronous data transfer and the refresh requirement, the hand

shaking between the memory module and the WSI controller is necessary. A control 

tag can handle the addressing and the memory READ, WRITE cycle identification. 

The bus failure in a WSI memory may cause the entire wafer useless. A two-point 

bus selective switching scheme can repair either open or short bus failures. By in

cluding the Address Translation Table in the WSI memory controller, a multi-wafer 

configuration can be used in the virtual memory architecture. The central refresh 

control scheme can solve the asynchronous hand-shaking problem in the WSI data 

transfer and allows us to design a simple WSI memory. 

A circuit-level implementation and the actual layout issues remain for future 

studies. 

46 



REFERENCES 

[1] C. C. Bernard, "Wafer-scale faces pessimism," Electronics Week, pp.49-53, 
Apr.1, 1985. 

[2] J. F. McDonald, et al., "The trials of wafer-scale integration," IEEE Spectrum, 
pp.32-39, Oct. 1984. 

[3] F. B. Manning, "An Approach to Highly Integrated, Computer-Maintained 
Cellular Arrays," IRE Trans. on Comput., vol.C-26, pp.536-552, June 1977. 

[4] R. C. Aubusson and I. Catt, "Wafer-Scale Integraton: A Fault-tolerant Proce
dure," IJSSC, vol.SC-13, pp.339-344, June 1978. 

[5] G. Chesley, "Addressable WSI: A Non-redundant Approach," Computer Arch. 
News, vol.15, pp.73-80, March 1987. 

[6] M. Taniguchi, et al., "Fully Boosted 64K Dynamic RAM with Automatic and 
Self-Refresh," IJSSC, vol.SC-16, pp.492-498, Oct. 1981. 

[7] E. A. Reese, et al., "A 4K x 8 Dynamic RAM with Self-Refresh," IJSSC, 
vol.SC-16, pp.479-487, Oct. i981. 

[8] R. I. Kung, et al., "An 8K x 8 Dynamic RAM with Self-Refresh," IJSSC, 
vol.SC-17, pp.863-871, Oct. 1982. 

[9] W. W. Plummer, "Asynchronous Arbiters," IEEE Trans. on Comput., vol.C-
21, pp.37-42, Jan. 1972. 

[10] R. M. Keller, "Towards a Theory of Universal Speed-Independent Modules," 
IEEE Trans. on Comput., vol.C-23, pp.21-33, Jan. 1974. 

[11] L. A. Glasser and D. W. Dobberpuhl, The Design and Analysis of VLSI 
Circuits, Chap.6, Addison-Wesley, 1985. 

[12] C. D. Marcos, "Globally asynchronous Locally synchronous systems," Ph.D. 
Dissertation, Stanford Univ., 1985. 

[13] J. C. Harden and N. R. Straden II, "Architectural Yield Optimization for WSI," 
IEEE Trans. on Comput., vol.37, pp.88-110, Jan. 1988. 

47 



48 

[14] L. Curren, "Wafer-Scale Integration Arrives In 'Disk Form'," Electronics 
Design, pp.51-54, Oct.26, 1989. 

[15] T. Kilburn, et al., "One-level Storage System," IRE Trans. on Elec. Comput., 
pp.223-235, Apr. 1962. 

[16] B. Furht and V. Milutinovic, "A Survey of Microprocessor Architectures for 
Memory Management," Computer, pp.48-67, March 1987. 

[17] J. P. Hayes, Computer Architecture and Organization, McGraw-Hill, Chap.5, 
1988. 

[18] J.E. Shemer and G. A. Shippey, "Statistical Analysis of Paged and Segmented 
Computer Systems," IEEE Trans. on Elec. Comput., vol.EC-15, pp.855-863, 
Dec. 1966. 

[19] A.V. Pohm and T. A. Smay, "Computer Memory Systems," IEEE Computer, 
pp.93-110, Oct. 1981. 

[20] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI, Addison
Wesley, Chap.5-6, 1990. 

[21] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison
Wesley, Chap.4, 1988. 

[22] C. A. Mead and L. A. Conway, Introduction to VLSI Systems, Addison-Wesley, 
Reading, 1980. 

[23] D. E. Knuth and G. S. Rao, "Activity in an Interleaved Memory," IEEE Trans. 
on Comput., vol.C-24, pp.943-944, Sept. 1975. 

[24] C. V. Ravi, "On the Bandwidth and Interference in Interleaved Memory 
Systems," IEEE Trans. on Comput., vol.C-21, pp.899-901, Aug. 1972. 

[25] K. V. Sastry and R. Y. Kain, "On the Performance of Certain Multiprocessor 
Computer Organizations," IEEE Trans. on Comput., vol.C-24, pp.1066-1073, 
Nov. 1975. 

[26] F. A. Briggs and E. S. Davidson, "Organization of Semiconductor Memories 
for Parallel-Pipelined Processors," IEEE Trans. on Comput., vol.C-26, pp.162-
169, Feb. 1977. 

[27] K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, 
McGraw-Hill, Chap.2, 1985. 



49 

[28] R. L. Petritz, "Current Status of Large Scale Integration Technology," IJSSG, 
vol.SC-2, pp.130-147, Dec. 1967. 

[29] Y. Ueoka, et al., "A Defect-tolerant design for Full-Wafer Memory LSI," IJSSG, 
vol.SC-19, pp.319-324, June 1984. 

[30] Y. Egawa, et al., "A 1-Mbit Full-Wafer Mos RAM," IJSSG, vol.SC-15, pp.677-
685, August 1980. 

[31] Y. Kitano, et al., "A 4-Mbit Full-Wafer ROM," IJSSG, vol.SC-15, pp.686-693, 
June 1984. 

[32] Technological Readout, "MEMORIES: One-Megabit EPROMs Invade Disk 
Territory," Electronics Week, pp.52-54, Apr.22, 1985. 

[33] Y. Uchida, et al., "A Low Power Resistive Load 64 Kbit CMOS RAM," IJSSG, 
vol.SC-17, pp.804-809, Oct. 1982. 

[34] K. Ochii, et al., "An Ultra Power 8K x 8-bit full CMOS RAM with a Six
Transistor Cell," IJSSG, vol.SC-17, pp.798-803, Oct. 1982. 

[35] S. T. Flannagan, et al., "Two 13-ns 64K CMOS SRAM's with Very Low Active 
Power and Improved Asynchronous Circuit Techniques," IJSSG, vol.SC-21, 
pp.692-703, Oct. 1986. 

[36] K. C. Hardee and R. Sud, "A Fault-Tolerant 30 ns/375mW 16K x 1 NMOS 
Static RAM," IJSSG, vol.SC-16, pp.435-443, Oct. 1981. 

[37] M. Yoshimoto, et al., "A Divided Word-line Structure in the Static RAM and 
Its Application to a 64K Full CMOS RAM," IJSSG, vol.SC-18, Oct. 1983. 

[38] R. Adams and G. Scavone, "Design a DRAM controller from the top down," 
EDN, pp.183-188, Apr.27, 1989. 

[39] I. T. Ho, "Analysis of Transmission Lines on Integrated-Circuit Chips," IJSSG, 
vol.SC-2, pp.201-208, Dec. 1967. 



APPENDIXES 



APPENDIX A 

THE EFFECT OF PAGE SIZE UPON 

AVERAGE ACCESS TIME 

In the paged, segment virtual memory system, the addressing space is repre-

sented by a triple (S,P,W), where Sis a segment address, Pis a page address and W 

is a word address. The performance of a paged, segment memory system is related 

to the behavior of the segment program and (S,P,W) organization. 

The analytic model of software and page accessing performance is presented 

in reference [18]. Using the terminology used in that reference, suppose that each 

segment Si is subdivided into "page units," {U1 ; U2 ; • .. }i. Each page unit, Uk, is 

characterized by the number of pages it contains and the number of pages currently 

in its core. By definition, "the probability that a page referenced within Uk is 

among the last x distinct pages previously referenced by a procedure segment S0 " 

is the "Page Reference Distribution Function" Fk (x,p), where pis the total number 

of pages in Uk referenced by S0 • When we assume "Random Sequential Segment" 

[18], 

{ 
0, 

Fk (X' p) = 1 - ; ( 1 - :-) ' 

where v = word size in each page. 

if X= 0 
if X> 0, (A.l) 

In equation (A.l), the term (1- !-) means the probability that pages were 

not referenced after x pages of random search among p pages in Uk . When we 

assume a sequential word reference within a page boundary, the referencing of one 

of v words results in referencing entire pages. So, the term ; (1 - ; ) indicates that 

51 



52 

some pages were not referenced after x pages of search. Hence, equation (A.1) is 

the distribution function of the referenced pages up to x pages random search with 

v words in each page. 

When we define the transition probability Ax, paging unit Uk has the status 

from the population of x pages to x + 1 pages with J.t pages at a time during unit 

time 1:1t, 

Ax = J.L{1- F(x,p)}f:1t. (A.2) 

Then, the mean time to access x pages within this paging unit is given: 

(A.3) 

According to equation (A.3), the comparison between (v=4), (v=8) and 

(v=16) word size is made when (p=4) and (p=8), respectively. Figure 21 illustrates 

the effect of page word size upon the average access time. This result shows that 

when we arrange the page size small, the mean access time of x pages is also reduced, 

which means that a small page size is preferable. 



53 

140 

0 2 3 

Pages x 

350 

I.!' 
CD 
E 
i= 
en 
en 
CD 

8 
< 
c: as 
CD 
2 

0 

0 2 3 4 5 6 7 

Pages X 

Figure 21. The Effect of Page Size to Mean Access Time 



APPENDIX B 

THE BANDWIDTH AS A FUNCTION OF 

NUMBER OF BANKS 

When a memory system is interleaved in M ways and each memory line has 

N modules, this organization will be expressed as an (M,N) memory organization. 

The system performance will be analyzed by the memory bandwidth. 

We assume that each memory cycle is composed of an Address Cycle (AC) and 

a Data Cycle (DC) of (AC,DC) =(a, d). Also, each memory line is independent and 

there is no distinction between the READ and WRITE cycles. Following the concept 

and the terminology of reference [26], a discrete Markov model for a pipelined single 

processor with (M, N) memory organization is derived. 

Definition B.l: A module state p,(t) at time t is 

{ 0, if module is not busy 
p,(t) = r E {1, 2, · · ·, d- 1 }, if module is busy, 

where r indicates that the current module was accepted how many Time Units (TU) 

ago. 

Definition B.2: A line state .X(t) at timet is the unordered set of all nonzero 

module states for all modules on the line currently being tested. 

Because any two modules on the same line can not be accessed at the same 

time, any two elements in a line state should have a difference of at least a TU s. 

Definition B.3: If there exists r E .X(t) such that 0 < r < a, then .X(t) is in 

a busy line state; otherwise it is in an idle line state. 

54 



55 

Definition B.4: A line state is an accepted state if A(t) contains the element 

of r = 1. 

Once a module is addressed, a line state goes into an accepted state on the 

very next TU. If the line is not accepted, we call it a nonaccepted state. According 

to this notation, there can only be two state transitions: from an accepted state to 

a nonaccepted state, or vice versa. 

Result B.l: If no requests are accepted at timet by a line in state A(t), the 

next line state is 

A ( t + 1) = { x I x - 1 E A ( t) and x < d}. 

When a line is busy or when there is no request, a request can not be accepted. 

Result B.2: If a request is accepted at time t, the next line state is 

A(t + 1) = {1} U {x I x- 1 E A(t) and x < d}. 

When a line is idle or there is more than one request, a request can be accepted. 

When we use the memory organization (M,N) = (l, m) and memory cycle 

(AC,DC) = (a, d) = (2,4), the Markov state graph of a single line is derived as in 

Figure 22 [26], where node with * is an accepted line state. 

According to the state-graph of Figure 22, the state probability at timet+ l1t 

is described in terms of the state probability at time t: 

0 

[ ~:~~:~gl A2 (t + l1t) 
A3 (t + t1t) 

0 0 
1-l1t 

l1t 
cl1t cl1t A1 (t) 

0 A2 (t) 
[ 

1 - bl1t + bl1t - al1t 
al1t 

0 0 
1 - cl1t - dl1t 

dl1t 

dl1t l [Ao (t) l 
1 - cl1t- dl1t A3 (t) 

+o(l1t), (B.1) 



56 

,.... 
+ 
E E 
I 

~ E 
~ -..q 

C\1 -II -"'0 ,.... 
E 

,.... 
co -E ~ 

,.... E -0 

..c 
a.. 
co 
:t.... 
0') 

I 
()) ,.... -+ co -E en 

I 
()) 

..... I~ ..c 
1-

C\1 
C\1 

()) 
:t.... 

::J 
0') 

LJ.. 



57 

where a=!._ b = l-l c = m- 1 d = lm-m+l and o(flt) denotes a quantity 
I ' I ' lm ' lm 

of order less than flt. 

When we rearrange equation (B.1), we get 

[ 
A0 (t + flt) - .\0 (t) l [ .\0 (t) l 
).1 (t + flt) - ).1 (t) - ).1 (t) 
>.2 (t + flt)- >.2 (t) -A >.2 (t) fl(t) + o(t), 
).3 (t + flt) - ).3 (t) ).3 (t) 

where 
0 
c 

-(c +d) 
d 

d ] c 
0 . 

-(c +d) 

Dividing both sides by flt and neglecting or:tt) term, we obtain 

~(t) = A>.(t), 

where A is called the generator of the Markov chain. 

Recall that 

m-1 lm- m+ 1 
c+d= + =1. 

lm lm 

Thus, 

~ ]· 
-1 

(B.2) 

(B.3) 

(B.4) 

To obtain the steady-state solution, we set the time-variation in equation (B.4) 

to zero. So A>.= 0 gives 

(B.5) 

(B.6) 

(B.7) 

(B.8) 



From equations (B.5), (B.7) and (B.8), 

Invoking .X0 + .X1 + .X2 + .X3 = 1, we get 

1 a .xl = ----
2+d+ .'!.:_ d2 +ad+ 2a · 

a 

58 

(B.9) 

(B .10) 

The probability of acceptance, PA (a, d), is the probability that a certain line 

is accepted by the request to that line. By substituting a = t, d = 

equation (B.10) and rearranging, we have the accepted line state .X1 

lm2 

.xl = PA (2 4) = -,---------~----
' (lm)2 + lm2 + 2lm- m + 1 · 

lm -m+l 
lm 

into 

(B .11) 

The memory bandwidth, BW, can be expressed as l times the probability of 

single line acceptance because every line is independent. 

, (lm) 2 

BW = l X PA (2, 4) = . 
(lm)2 + lm2 + 2lm- m + 1 

(B.12) 

Equation (B.12) tells that BW is encreasing with larger l. 



VITA'( 

Gang Hwa Lee 

Candidate for the Degree of 

Master of Science 

Thesis: WSI MEMORY SYSTEM: ADDRESS-SELECTION APPROACH 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born in Daegu, Korea, March 22, 1959, the son of KeeChoon 
and KoJi Lee; married MyoungJin Lee in 1987; HanJae, son, was born 
in 1989. 

Education: Graduated from KyoungBuk Senior High School, Daegu, Korea, 
in Febuary, 1977; received Bachelor of Science Degree in Electrical 
Engineering from Seoul National University at Seoul, Korea, in Febuary, 
1981; completed requirements for the Master of Science Degree at 
Oklahoma State University in July, 1992. 

Professional Experience: Research Engineer, GoldStar Electronics Co. Ltd., 
Jan., 1984, to May, 1988; manager of GoldStar Semiconductor Research 
Lab. at Seoul, Korea, June, 1988, to August, 1989; Research Assis
tant, Department of Electrical Engineering, Oklahoma State University, 
September, 1990, to March, 1991. 


