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CHAPTER I 

INTRODUCTION 

1.1 Development of this Research 

Th1s research ~as undertaken to Investigate the feasi-
-

bil1ty of us1ng a mixed attached f1lm aerated expanded bed 

reactor system (MAFAEB system) to conduct b1olog1cal n1tr1-

f1cat1on and den1tr1f1cat1on through a coupled reaction 

sequence via a shortened path~ay, NH4+-N -> N02 -N -> N~. 

B1olog1cal n1trif1cat1on and den1tr1f1cat1on are ~ell 

established treatment processes used to eliminate the 

nitrogenous oxygen demand and the ammon1a toxicity 1n both 

munlcipal and 1ndustr1al ~astewaters and to prevent 

eutrophication of receiv1ng ~ater bodies such as lakes and 

other slo~-flow ~ater courses. Conventionally, nitri-

ficat1on and denitrification are performed separately in 

different biotreatment processes. The reason for th1s is 

that nitr1f1cat1on occurs under aerobic cond1tions while 

denitrification requires anoxic conditions. 

In conventional nitr1ficat1on and denitrification for 

highly nitrogenous ~astewater treatment processes, the 

pathway of n1trogen removal can be s1rnply represented by: 

If a shortcut, or shortened pathway, represented by: 
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NH ....... -N --> NO.:;;:--N --> NO.:a. -- N.:;;: 

could be achieved, the advantages would at least include 

reduct1on of DO and alkalin1ty demand dur1ng n1tr1f1cat1on, 

reduct1on of COD demand dur1ng den1trif1cation, and lower 

biomass yield. Many efforts have been made on th1s top1c. 

However, unt1l recently, few studies appear to have been 

undertaken to successfully prove the hypothesis and develop 

a process configurat1on that could achieve the shortcut. 

The n1trifiers 1n wastewater treatment processes are 

generally autbtrophs while the denitriflers are both auto

trophs and heterotrophs. In n1tr1fication processes, the 

autotrophic nitrifiers use CO.:;;: as carbon source and use 

NH4~--N as electron donor. Nltrosomonas consumes 3.22mg o~ 

for each mg of NH ....... -N ox1d1zed to N02--N, and 1.11 mg of OL 

is required for each mg of No~--N ox1d1zed to No3--N by 

N1trobacter accord1ng to sto1ch1ometric relat1onsh1ps 

presented by Grady et al. (1980). These bacter1a also 

consume a large amount of alkal1n1ty [Hco~-J dur1ng the 

ox1daf:1on. 

2 

In den1tr1f1cat1on processes, the heterotroph1c 

den1tr1f1ers use organ1c matter as carbon sources, and use 

nitrate as the electron acceptor, while the autotroph1c 

den1trlfiers use sodium thiosulfate as electron donor. They 

convert Noo--N to No~--N first, and N02--N to N~ last. 

Heterotrophic denitrif1cation produces a certain amount of 

alkalin1ty during reduction of No3--N and/or N02--N, which 

normally is wasted in the treatment process effluent. 



If nitrif1cation and denitrlfication can be coupled to 

such an extent that the only task for nitrifiers is to 

oxidize NH4•-N to Noz--N and for denitr1f1ers to reduce 

No~--N to N~, a large amount of alkalinity and 02 will be 

saved from n1trification and less organic substrate will be 

requ1red by denitr1f1cat1on. Also some alkalinity can be 

supplied by heterotrophic denitrification for the nitrifl

catlon process. Moreover, if two groups of organisms can 

play the1r roles in a single reactor, a great saving can be 

expected due to s1mpl1f1ed process design. 

3 

Attached f1lm b1olog1cal systems have been successfully 

used for b1olog1cal n1tr1f1cat1on and den1tr1f1cat1on on 

different scales. The aerobic expanded bed (AEB) 1s also a 

prom1sing process for hlgh-strength industrial wastes, w1th 

advantages such as small treatment volume and high effl

ciency (Jewell, 1981). Therefore, AEB was chosen for use in 

this research. If layered biofilms of denitrifiers and 

n1tr1f1ers can be developed on the med1a surface to sat1sfy 

their different requirements, then the shortened pathway may 

be ach1eved. 

1.2 Object1ves of this Research 

1. Develop m1xed attached f1lms 1nclud1ng autotroph1c 

nitrif1ers and both autotrophic and heterotrophic deni

trifiers; 

2. Determ1ne the difference 1n substrate demands w1th 

either nitrite or nitrate as denitrification electron 
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acceptor by mixed attached films; 

3. Determine nitr1ficat1on behavior of the MAFAEB system; 

4. Determine denitrification behavior of the MAFAEB system; 

5. Determ1ne coupling reaction rates in response to varying 

loading rates, electron donors, and aeration rates and the 

llm1tations of MAFAEB treatment efficiency. 



CHAPTER II 

LITERATURE REVIEW 

2.1 scope of Review 

Th1s research focuses on coupl1ng n1tr1f1cat1on and 
-

den1tr1ficat1on through a shortened pathway, pr1mar1ly 1n a 

s1ngle HAFAEB reactor under low d1ssolved oxygen (DO) 

aerob1c cond1tions. Although nitrificat1on and den1tr1-

fication in general are well-studied, information on 

coupl1ng reactions through a shortened pathway 1s lim1ted. 

Thus, this l1terature survey emphas1zes the need to explain 

the m1cro-b1olog1cal cond1t1ons of nitr1f1ers and denitr1-

f1ers, the sto1chiometr1c relat1onsh1ps, the effects which 

interfere w1th nitr1ficat1on and den1trif1cat1on, and the 

possib1l1ty of coupl1ng n1tr1ficat1on and den1tr1f1cat1on 

through the shortened pathway. 

2.2 Microbiology of Nitrification 

and Denitrification 

Nitrificat1on 1s the conversion of ammonia n1trogen 

NH4+-N to nitrate nitrogen No3--N. It may be performed by 

either heterotrophic or autotroph1c bacteria. The maJor 

nitrifying bacteria are Nitrosomonas and Nitrobacter. They 

are autotrophic organisms. Nitrosomonas oxidizes NH4+-N to 
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nitrite, N02--N, and N1trobacter oxidizes n1trite to 

nitrate. The energy released in these reactions is used by 

the nitr1fy1ng organ1sms 1n synthes1zing the1r organ1c 

requirements from inorganic carbon sources such as carbon 

dioxide, bicarbonate and carbonate. (Barnes, et al, 1983). 

The above reactions can be written as follows (EPA, 1975; 

Pa1nter, 1970}: 

NH4+ + 1.5 02 -> 2 H+ + H~o + N02- + (58-84 Kcal) (1) 

No~- + 0.5 o~ -> Noa- + (~5.4-20.9 Kcal} (2) 

The biochem1stry of ammon1a ox1dation is rather more 

6 

complex than 1ndicated by the above equations, 1nvolving the 

format1on of hydroxylamine and other unstable intermed1ates 

wh1ch have yet to be determined (Painter, 1970; Sharma, et 

al. 1977). 

Both Nitrosomonas and Nltrobacter are obl1gate aerobes 

for growth on their respective forms of substrate n1trogen. 

Absence of oxygen for long periods, however, is not lethal 

(Pa1nter, 1970), and 1n the absence of substrate the rate of 

decline 1n respirat1on rate 1s cons1derably slower under 

anaerob1c than under aerob1c cond1t1ons. In the absence of 

oxygen, Nltrobacter 1s able to reduce n1trate to nitr1te 1n 

a reaction which is the reverse of Equation 2 (Sharma et al. 

1977). 

In addition to the autotrophic n1tr1fiers, many hetero

trophic organisms are able to produce oxidized nitrogen 

forms from ammon1a. The importance of heterotroph1c n1tri

ficat1on is still a matter of debate(Geraats et al., 1990). 
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The specific nitrifying activity of the heterotrophs is sald 

to be 10~ - 104 times lower than that of the autotrophs, and 

therefore heterotrophic nitrification is often considered to 

be of minor ecological significance. However, th1s activity 

was measured by the accumulation of nitrite or nitrate. 

Since many heterotrophic n1tr1f1ers are able to den1tr1£y 

aerobically as well as anaerobically, ammonia is directly 

converted to nitrogen gas and nitrite or nitrate will not 

accumulate. When making mass balances for continuous cul-
-

tures, 1t was found that the n1tr1fication activ1ty (in 

terms of ammon1a ox1d1zed) of the n1tr1f1er/aerob1c 

denitrifier, Thiosphaera pantqtropha, is only 10-10~ t1mes 

lower than the autotrophs(Geraats et al., 1990). It seems 

likely that, as other bacteria of this physiological type 

are studied, 1t will be found that most n1trif1cat1on rates 

have been underestimated because of the simultaneous nitrite 

reduct1on. Thus, in view of the fact that heterotrophs 

generally outnumber autotrophs in the bacteria commun1ties 

found in most wastewater treatment systems, heterotrophic 

n1tr1fy1ng organ1sms might well be of greater s1gn1f1cance 

than prev1ously thought (Geraats, et al.,1990). 

Denitrification is the reduction of nitrate as it 

serves as the term1nal hydrogen acceptor for m1crobial 

respiration in the absence of molecular oxygen. The 

bacter1a responsible for denitrlfication are facultat1ve and 

ut1l1ze the same bas1c b1ochem1cal pathway during both 

aerobic and anaerobic respiration(Grady et al., 1980). 



Den1trification can be accomplished by a large number of 

bacteria commonly found 1n wastewater treatment systems, 

including Achromobacter, Aerobacter, Alcaligenes, Bacillus, 

Flavobacter1um, M1crococcus, Proteus, Pseudomonas and 

Thiosphaera pantotropha. 
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Under aerob1c cond1t1ons organic and other materials 

are oxid1zed and oxygen acts as the effect1ve electron 

acceptor. However, under conditions where the concentration 

of DO 1s low or zero, an alternat1ve electron acceptor 1s 

needed. Inorganic anions like nitrate, phosphate, sulphate 

and even carbon dioxide can act as the electron acceptor. 

The proport1on of any m1crobial species present 1n a 

m1xed culture w1ll depend upon the relative abundance of 

appropriate electron donor material, the relat1ve abundance 

of appropr1ate electron acceptor and the energy to be ga1ned 

by using a part1cular electron acceptor (Barnes et al., 

1983}. Under aerob1c cond1t1ons, oxygen is the favored 

electron acceptor and aerobic ox1dation will predom1nate. 

The next most favored react1on uses n1trate, and th1s 1s 

cons1derably more advantageous than other anaerob1c path

ways. Under cond1t1ons of low DO concentrat1on, b1ological 

denitrif1cat1on can be expected to occur. 

The biological reaction to reduce nitrate ions to 

n1trite ions and subsequently to nitrogen requires that a 

suitable electron donor is available. When the electron 

donor is methanol, the reactions can be represented by the 

following equat1ons: 
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NOs- + 1/3 CHsOH -->No~- + 1/3 C02 + 2/3 H20 (3) 

No~- + 1/2 CH~OH - ->N2 + 1/2 CO- + 1/2 HzO +OH-. (4) 

When the electron donor 1s th1osulfate, the react1ons can be 

represented by the follow1ng equat1ons: 

No3- + 1/4 Szo~z- + 1/2 HCOo- --> No~- + 1/2 804~-

+ 112 co~ + 1/4 H20 (5) 

NOz- + 3/8 S.;;:,Os·;;;,-- + 1/4 H+ --> 1/2 N2 + 3/4 80"'" 2 

+ 1/8 H~o. (6) 

Many organ1c chem1cals other than methanol, for example 

acet1c ac1d, c1tr1c ac1d and acetone, can be used as 

electron donors for den1tr1f1cat1on. Methane (Rhee et al., 

1978) and sulphur (Batchelor et al., 1978) also have been 

suggested, 

The ev1dence for aerob1c denitrif1cation was obta1ned 

from a number of 1ndependent exper1ments (Robertson et al., 

1984). The max1mum spec1f1c growth rate of T. pantotropha 

was higher (0.34 h- 1 ) 1n the presence of both oxygen ( > 80% 

air saturat1on ) and n1trate than 1n s1m1lar cultures not 

suppl1ed w1th n1trate ( 0.27 h- 1 ) 1nd1cat1ng that the rate 

of electron transport to oxygen was l1m1t1ng. Th1s was 

conf1rmed by oxygen uptake exper1ments wh1ch showed that 

although the rate of resp1rat1on on acetate was not affected 

by n1trate, the total oxygen uptake was reduced 1n its 

presence. The or1ginal oxygen uptake could be restored by 

the add1t1on of den1tr1f1cat1on 1nh1b1tors. 
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2.3 Sto1chiornetr1c Relationships 

On the assumpt1on that the gross compos1t1on of Nltros

omonas and N1trobacter can be represented as c~H?N02, the 

sto1chiometry of cell growth of nitrifiers has been repre

sented as (EPA, 1975): 

15 C02 + 13 NH4+ -> 10 No~- + 3 CsH?No~ (Nltrosomonas) 

+ 23 H+ + 4 H~O {7) 

5 C02 + NH"""~ + 10 No~-+ 2 H20 -> 10 No~-

+ CsH7NO~ (Nitrobacter) + H•. (8) 

Although carbon dlOXide 1s represented as the 1norganic 

carbon source, lt exists in aqueous systems in equilibrium 

With other spec1es accord1ng to the equations: 

co~+ H~O <====> H2C03 <====> H+ + HCo3·. ( 9 ) 

Hydrogen 1ons produced 1n Equat1ons 1, 7 and 8 react w1th 

bicarbonate according to Equation 9 which may therefore be 

incorporated into these three equations to give: 

NH"""+ + 1. 5 0~· + 2 HCO~~- · > No~-· + 2 H::o..C0-,1 + H~O 

+ (58-84 Kcal) (10) 

13 NH"""• + 23 HC03---~ 8 H~co~ + 10 N07 

+ 3 c~H7N02+19H~O 

NH4~ + 10 No~-+ 4 a~co~ + aco3- -> 10 No~

+ 3 H20 + CsH?N02. 

(11) 

{ 12) 

Since the energy produced in Equation 10 is used in the cell 

synthes1s reaction, assuming a Nitrosomonas cell y1eld of 

0.15 gVSS/g NH"""~-N {EPA, 1975), Equation 10 and 11 can be 

comb1ned to g1ve: 
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55 NH4++ 76 o.+ 109 Hco~- -> C5H?No~ (N1trosomonas) 

+ 54 No~- + 57 H2o + 104 H~co~. (13) 

Similarly, Equations 2 and 12 can be combined, assume in a 

Nitrobacter cell yield of 0.02 g VSS/gNo.--N oxidized, to 

give: 

400 N02- + NH4+ + 4 H2C03 + HC03- + 195 02 

--> CsH?NO. (Nftrobacter) + 3 H.o + 400 No~-. (14) 

The overall reaction for nitrifler synthesis and oxidation 

obtained by combining Equation 13 and 14 is then: 

NH4++ 1.83 02+ 1.98 HCo3- --> 0.021 CsH?N02 

( 15) ~ 

Equation 15 reveals the very low cell yield per unit of 

ammonium nitrogen oxidized, the significant requirement for 

oxygen in nitrification, approximately 4.2 g oxygen for each 

g NH4+-N removed, and the requirement for alkalinity to 

buffer the system against hydrogen ions produced during 

ni~rification, amounting to approximately 7 g alkalinity for 

ea~h g NH4+-N oxidized. 

The stoichiometric equation of heterotrophic denitrifi

cation was presented by MaCarty et al. (1969): 

No3- + 1.08 CH30H + H• = 0.065 CsH?NO~ + 0.47 N2 

+0.76 co~ + 2.44 H20 (16) 

The stoichiometr1c equation of autotrophic denitrifica

tion using thiosulfate as electron donor was calculated by 

Ross (1989): 

No~- + 0.79 s2o3- + 0.21 Hco3- + 0.2 H20 

= 0.05 CsH?N02 + 0.47 Na + 1.56 so4· + 0.28 H+ (17) 
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Comparison of the stoichiometry of heterotrophic and 

autotrophic denitrification reveals that, whereas the heter

otrophs are net alkalinity producers, autotrophic denitrifi

ers consume alkalinity (are net producers of acidity) in 

much the same way as nitrifying bacteria (Clarkson et al., 

1990). 

2.4 Factors Affecting Nitrification 

and Den1trification 

2.4.1 Effects of Temperature 

The saturation constants for both Nitrosomonas and 

Nitrobacter, with respect to both inorganic nitrogen and DO, 

have been found to 1ncrease with 1ncreas1ng temperature 

(Painter, 1970). For Nitrosomonas, reported values of KM 

for ammon1a nitrogen range from 0.54 - 1 mg/L at 2o•c, 3.5 

mg/L at 25•c and to 10 mg/L at Jo•c (Pa1nter, 1970). 

The temperature dependence of denitrification is simi

lar to related biological processes. The reaction occurs 

between o•c and so•c w1th optlmum reactLon rates at 35-5o•c. 

The reactLon rate increases by a'factor of 1.5-2.0 I 1o•c 

between 5•c and 15°C (EPA, 1975). 

2.4.2 Effects of other Substrate 

some studies indicate that high concentration of NH~+-N 

up to 1000 mg/L may not inhibit Nitrosomonas. Even at a 

concentration of 8000 mg/L, some oxidation can still proceed 

at a much reduced rate (Sharma et al., 1977; Anthonisen et 



al., 1976). However, for Nitrobacter in pure culture, 

concentrations of 8 - 16 mg/L of NH4+-N reportedly 

increased the lag period, but only slightly decreased the 

growth rate (Sharma et al., 1977). 

13 

Nitrite is reported 1n one case to have an 1nhibit1ng 

effect on nitrification in a laboratory-scale activated 

sludge plant at a concentration as low as 10 mg/L (Tomlinson 

et al., 1966). In batch and pure culture studies with 

Nitrosomonas, however, although toxic effects were exhibited 

in the lag phase at 500 mg/L No~--N, the organisms were not 

susceptible in the logarithmic growth phase (Sharma et al., 

1977). At 1400 mg/L No~--N about 40% 1nhib1tion has been 

reported while at 2500 mg/L inhibition varied from 50\ to 

complete. For Nitrobacter, 40% inhibition was reported at 

1400 mg/L N02--N (Boon et al., 1976). The effect increased 

with increasing concentration. 

Inhibition of n1tr1fication by free ammonia and free 

nitrous acid has been described by Anthon1sen et al. (1976). 

Inhibition of Nitrosomonas by free ammonia is likely in the 

range 10 - 150 mg/L. Inhibition of Nitrobacter is likely at 

the much lower concentrations of 0.1 - 1.0 mg/L, lead1ng to 

the possibility that in wastes containing high concen

trations of NH4+/NH~ inhibition of Nitrobacter may lead to 

the accumulation of n1tr1te. 

2.4.3 Effects oi Other Substances 

Nitrification is subject to inhibition by a wide 
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variety of organic and inorganic chemicals, Nitrosomonas 

generally being more susceptible than Nitrobacter. Among 

the factors wh1ch have been found to affect the degree of 

inhibition by any given inhibitor are (Sharma et al., 1977): 

(a) the presence of microorganisms other than the nitri

fiers; 

(b) the concentration of the inhibitor; 

(c) the concentrat1on of the nitr1fiers. 

Inhibitors may act either by interfering with the 

general metabolism of the cell or by disrupt1ng the primary 

oxidation react1ons. Although many organic compounds are 

inhlbitory to n1trif1ers, espec1ally Nitrosomonas, it now 

seems to be accepted that organic matter in general is not 

directly inh1b1tory to nitrif1cat1on (Painter, 1970). 

Compounds such as glucose, glycerol and acetate were not 

found to be toxic to Nitrosomonas although peptone at 

concentrations of 1 and 10 mg/L reduced growth rate by 25% 

and 60%, respectively(Palnter, 1970). 

2.4.4 Effects of Dissolved Oxygen 

Dissolved oxygen has been cons1dered to be an absolute 

requirement for growth of both Nitrosomonas and Nitrobacter. 

There is evidence that for pure cultures of both Nitrosomo

nas and Nitrobacter the cr1t1cal DO concentrat1on below 

which nitrif1cation does not occur is 0.2 mg/L (Schoberl et 

al., 1964). DO concentrations higher than 1-2 mg/L are 

enough to keep the nitrification a zero-order reaction with 
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respect to nitrogen (Schoberl et al., 1964; Knowles et al., 

1965), therefore 2 mg/L of DO has been widely suggested as a 

minimum for nitrification (EPA, 1975). Some observations 

show that higher DO concentrations of 3-4 mg/L can signifi

cantly enhance nitrification efficiency (Benefield et al., 

1980), but relatively little further improvement can be 

achieved at 5-6 mg/L of DO (Bliss et al., 1981). 

For denitrification, generally, strict anoxic condi

tions and the presence of nitrogen oxides in the medium are 

required for synthesis of denitrifying enzymes. However, if 

the amount of nitrate far exceeds the oxygen concentration, 

anaerobic respiration may become significant (Payne, 1981). 

Strand et al. (1985) found that if organ1c matter and 

microbial biomass are present in sufficient excess, the 

No3--N loss rate in microbial films exposed to aerobic med1a 

can be as high as those observed in anoxic cultures. The 

bulk fluid dissolved oxygen concentration (0.1-14 mg/L} had 

a negligible effect on the microbial film's consumption rate 

of oxidized nitrogen. The reason for this is that dissolved 

oxygen does not fully penetrate microbial films with 

population densities greater than 0.5x10~ cells em-~ (Strand 

et al, 1985). 

2.5 Aerob1c Expanded Bed 

Aerobic expanded bed (AEB) reactors are submerged 

biofilm units using small b1omass support particles with 

continuous recycle. The small particles provide a high 
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surface area to volume ratio in the reactor. After applying 
I 

AEB to nitrification treatment of semiconductor wastewater, 

Collins et al. (1991) concluded that the AEB reactor, 

despite its physical limitations, has potential as a pre

treatment process to provide highly efficient nitrification 

of sem1conductor wastes. Biological fluidlzed-bed reactors 

have been used successfully for BOD and nitrogen removal in 

many plants (Jeris et al., 1977). AEB 1s similar to a 

flu1d1zed-bed reactor. The principal dlfference between AEB 

and fluidized-bed is the bed expansion rate. Strictly 

speaking, the AEB reactor should not have a bed expansion 

rate higher than 20% (Jewell, 1981). In the research by 

Collins et al. (1991) and Zeng (1992), bed expansion rates 

higher than 60% were used, which are actually intermediate 

between expanded and flu1d1zed bed operation. 

2.6 Coupling Nitrification 

and Denitrification 

2.6.1 Dlfferent Approaches 

Many industr1es such as fertillzers, sem1conductor, 

meat and milk processing and munitions production generate 

waste streams that conta1n high concentrations of nitro-

genous compounds. Nitrification and denitrification of such 

effluents should both be employed to remove soluble nitrogen 

for preventing eutroph1cation of receiving water bodies. 

Conventionally, nitrification and denitrification are 

performed separately in d1fferent biotreatment processes. 



17 

some efforts have been made on coupling nitrification 

and denitrification. Timberlake et al. (1988) developed a 

biofilm reactor, termed the permeable-support biofilm, in 

which oxygen was supplied to the interior of the biofilm 

through a permeable membrane. The reactor was tested on 

filtered sewage supplemented with nutrient broth. The bulk 

solution was anoxic and the interior of the biofilm was 

supplied with pure oxygen. All tests were performed on a 

non-steady state biofilm with a depth of 1 mm. Mass 

balances on total organic carbon, ammonia, organic nitrogen 

and nitrate showed that combined heterotroph1c oxidation of 

organic matter, n1trificat1on and den1trificat1on occurred 

simultaneously within the biofilm. 

One study conducted by Turk et al. (1986) 1nvest1gated 

the feasibility of removing nitrogen from highly nitrogenous 

wastes by the shortened pathway. The study employed bench

scale, activated sludge cells. Free ammon1a, controlled by 

manipulating pH, was used as inhibitor of nitrite oxidation. 

A multi-cell reactor system was operated in series to appro

ximate a plug flow conflguration. N1trite build-up was 

achieved by 1ntermittent contact with a higher than 5 mg/1 

free ammonia level at the front end of the system, which was 

maintained anoxic to create a high free ammonia environment. 

Intermediary den1tr1f1cation at the po1nt where the n1trite 

level was highest was used to sustain n1trite build-up 

level. The process configuration would normally produce an 

effluent devoid of nitrite, due to its oxidation to nitrate 



in the remaining aerobic cells. The feasibility of 

initiating nitrite build-up in an activated sludge nitrogen 

removal system via the shortened pathway, wh1le producing a 

fully nitrified effluent devoid of nitrite was confirmed 

(Turk et al., 1987). A 40 \reduction of COD during 

denitrification was also claimed (Turk et al., 1989). 

However, nitrite build-up could not be sustained 

1ndef1n1tely due to acclimation of the n1tr1te ox1d1zers to 

free ammonia. Numerous measures have also been taken (Turk 

et al., 1989) to prevent the eventual decline of nitrite 

build-up. Unfortunately, nitrite oxidizers appeared capable 

of tolerat1ng ever-increasing levels of free ammonia, thus 

causing an 1rreversible decline in n1trite accumulat1on for 

most operat1onal systems tested. They suggest if a way can 

be found to permanently overcome the apparent acclimation of 

the nitrite oxidizers to free ammonia, a cost-effective 

technology based on nitr1te production and reduction may 

evolve for the removal of nitrogen from highly nitrogenous 

wastewaters. 

One poss1ble way to solve the problem involves hetero

trophic nitrification and aerobic denitrification. It has 

commonly been accepted that denitrificatlon requires com

pletely anoxic cond1tions because some well-studied bacteria 

completely shut down their denitrify1ng capacity upon 

exposure to oxygen (Robertson et al., 1984a). However, 

there have been periodic reports of aerobic denitrification 

(Marshall et al., 1953; Mescher et al., 1963; Krul, 1976; 
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Robertson et al., 1964a; Simpkin et al., 1988; Hanak! et 

al~, 1990). The results of these experiments clearly 

1ndicate that in a number of denitrifying bacteria, aerobic 

denitrification does indeed occur. However, the denitri

flers convert No3--N at highest rates under anaerobic condi

tions (Robertson et al., 1984b). Many other heterotrophic 

nltrifiers were also found able to denitrify aerobically as 

well as anaerobically (Robertson et al., 1989). For waste

water treatment, this means that when nitrification is not 

subject to inhibit1on by either organ1c matter or any other 

inh1b1tors, s1multaneous aerob1c organic degradation, nltri

flcation and den1trification can occur with1n a single 

aerat1on basin. 

There is another possibility for coupling n1trification 

and denitrification, which involves aerobic nitrification 

and den1trification combined w1th methanotrophic and methyl

atrophic mixed cultures. Since ammonia can be oxidized by 

obligate methanotrophic bacteria, in any unprotected process 

where bacterial growth on methane occurs, the mixed culture 

w1ll comprise not only obligate methane-utillzing bacteria, 

but also methylotrophlc bacteria, spec1f1cally Hyphomlcrob

lUm, and a range of heterotrophic bacteria (Hamer et al., 

1989). In such m1xed cultures, the role of the Hyphomicro

bium is to scavenge methanol produced from methane by the 

methane-ut1l1z1ng species. When th1s same Hyphom1crob1um 

was grown in pure culture at 32°C in the presence of 

nitrate, denitrification became evident. Although a high 
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level of methane inhibits ammonia oxidation, at low levels, 

it will stimulate nitrite formation (O'Neill et al., 1977). 

If methane is used as carbon source for the nitrification, 

methanol will be the product when ammonia is converted to 

n1trite. If the dissolved oxygen concentrat1on in the 

solution is kept low, then denitrification may occur 

simultaneously. 

2.6.2 MAFAEB Development 

To achieve the shortened pathway, the ma1n problem 

comes from the fact that one of the reactions is favored 

aerobically while another 1s favored under anoxic con-

d1t1ons. The other problems include: 1. avoiding inh1b1t1on 

of autotroph1c nitrifiers by organic matter used by some 

den1trifiers; 2. stopp1ng n1tr1f1cation at the N02--N stage 

with efficient N02--N ut1l1zation by denitr1fiers. 

Hanakl et al. (1990) conducted a lab-scale n1trif1-

cat1on study 1n a mixed flow reactor with DO control at 2s•c 

using substrate contain1ng 80 mg/L of NH4~-N. At 0.5 mg/L 

DO, ammonia oxidation was not affected. However, N02--N 

oxidation was strongly inhibited by 0.5 mg/L of DO, and 60 

mg/L of No~--N accumulated. The maximum specific growth 

rate ~m for NH4+-N oxidation was not sign1f1cantly changed 

by low DO because of elevated growth yield. When Jones et 
I 

al. (1990) were 1nvestigating a process incorporating 

sequencing batch reactors for organic removal and denitri-

fication and a fixed-film device for nitrification, they 
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found a small amount of No~--N ln the denltrlflcatlon feed 

stream had resulted in a robust population of organisms 

capable of reducing N02--N faster than No3--N, result1ng 1n 

a 30% increase in the denitrification rate over systems fed 

only No3--N as an electron acceptor. 

Consequently, if a proper condition can be created, the 

symbiosis of two groups of organisms is possible. Since 

both organisms share the same pH range, the goal ought to be 

possible. 

Colllns et al. (1991) and Zeng {1992) successfully 

conducted nitrification of high strength 1ndustry wastewater 

with AEB, and Clarkson et al. (1990) successfully conducted 

denitrification of high strength industry wastewater with 

attached f1lm expanded bed (AFEB). They used d1atomaceous 

earth as inert support to attach microorgan1sms. These 

reactor configurat1ons can be combined to meet the require-

ments for the coupled nitrification and den1trification. 

To take advantage of the1r d1fferences in growth 

requirements, nitrifiers and denitrifiers should be 

accl1mated separately prior to seed1ng the coupled b1of1lm 

reactor. This may be done by feeding the nitrifiers with 

NH4~-N under low DO to acclimate mainly Nitrosomonas and 

feeding both No~--N and NO~ -N as electron acceptors for 

denitrifiers. 

Inert support media should be supplied for both groups 

of organisms separately to develop attached biofilms or be 

supplied to denitrifiers to develop the first layer of 
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combined biofilm. Then, nitrifiers should be attached to 

develop double films with the nitrifiers exposed to liquid 

phase DO. In this way, two groups of organisms could be put 

in a single reactor and fed with an influent containing 

NH4+-N with low organic electron donor (only sufficient for 

those heterotrophic denitrifiers to convert N02--N to N2) 

under low DO conditions. 

The key problems are understanding how to supply 02 for 

nitrifiers and how the system works. The reactor should be 

a combination of AFEB, AEB and fluidized-bed reactors. 

Influent enters the reactor from the bottom. Compressed air 

should be introduced into the reactor from the aeration 

bottle through recycle tublng connected to the bottom of the 

reactor. The amount of air should be controlled to maintain 

a low DO in the reactor and offer a mild mixing. Since at 

low DO conditions oxygen supply may become critical, a large 

recycle may be necessary, especially for h1gh strength 

influents. The recycle rate can be altered accord1ng to the 

organic and NH4+-N concentration of the original influent 

and allowable loading of the system. 

To summarize, accl1mat1ng nitrify1ng and denitrify1ng 

organisms separately may induce their b1odegradation 

spec1fic1ty to particular substrates; attach1ng the two 

groups of organisms together may develop aerobic and 

anaerob1c zones within the biof!lms, which may keep 

n1tr1f1ers and denitrifiers always act1ve in their favorable 

local environment; mild mixing may improve diffusion between 
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liquid phase and solid phase; alkalinity produced by 

heterotrophic denitrifiers may be utilized by autotrophic 

denitrifiers and nitrifiers; large recycle rate may supply 

sufficient oxygen to the reactor and maintain a lower inlet 

NH4+-N and organic concentration; low DO (about 0.5-2.0 

mg/L) may not only avoid unnecessary oxidation from N02--N 

to No~--N but also avoid the suppression of denitrification. 



CHAPTER III 

MATERIALS AND METHODS 

3.1 Experimental Apparatus 

The mixed attached films aerobic expanded bed (MAFAEB) 

system is shown in Figure 1. The MAFAEB reactors consisted 

of an Imhoff cone, which was 1 L in volume. The effluent 

from the top of the expanded bed reactor was introduced to a 

500-mL aeration bottle in which the effluent was aerated by 

compressed air. Effluent recycl1ng was carr1ed out to 

increase dissolved oxygen and expand the bed in the reactor. 

A positive displacement pump (7553-50, Cole-Parmer) was used 

to recycle the aerated effluent to the bottom of the 

reactors. The pump was fitted with two model 7015-20 pump 

heads (Cole-Parmer Instrument co.). Treated water left the 

system through an overflow opening located at the upper part 

of the aeration bottle. The feeding solution from 25-L or 

4-L containers was pumped to the bottom of the reactor by a 

Cole-Parmer model 7553-50 pump fitted w1th positive dis

placement pump head (model 7016-13). The feed and the 

recycled effluent Joined together in a plastic tub1ng 

lead1ng to the bottom of the reactor. The b1ofilm support 

media in the reactor consisted of diatomaceous earth parti

cles (diameter 1-3 mm), which provide a high surface area to 
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Figure 1. Schematic Diagram of MAFAEB System 



volume ratio and have a bulk density of 0.40 g/cm3 • The 

support media bed was expanded by the mixture of the feed 

and the recycled effluent, and the expansion rate was 

adjusted through changing the recycle rate. The bed was 

expanded over a range of approx1mately 20-100 percent at 

various times during the study by the recycle flow. The 

experiment was carr1ed out at room temperature. 

3.2 Feed Solution 
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synthetic substrate was used in this research to 

simulate industrial or municipal wastewater. The com

position of the feed solution for nitrification tests was 

determined mainly based on the stoichiometric equations 

described 1n Chapter II with respect to the biomass growth 

requ1rements for trace nutrients. The composition of 250 mg 

NH4+-N/L feed solut1on for example, is g1ven in Table I. 

All chemicals were dissolved separately in tap water and 

then mixed well in 25-L or 4-L containers; pH ranged from 

7.7-8.0 1n all the feed solutions, except denitrification 

influent, used in th1s experiment. 

Methanol or sodium acetate were added as energy sources 

for heterotrophic denitrlfiers. Sodium thiosulfate was 

added as energy source for autotrophic denltrifiers. Some 

ferrous sulfate was also added as trace nutr1ent. A typ1cal 

composit1on of 500 mg No~--N/L feed solut1on 1s given 1n 

Table II and a typ1cal compos1t1on of 500 mg (No3--N + 

No~--N)/L feed solution in Table III. 



TABLE I 

COMPOSITION OF 250 mg NH~·-N/L FEED SOLUTION 

Ingredients 

Ammonium Sulfate 
Ammonium Chloride 
Sodium Bicarbonate 
Potassium Dihydrogen Phosphate 
Magnesium Sulfate 

TABLE II 

Concentration, g/L 

1.2 
1.0 
6.0 
0.2 
0.2 

COMPOSITION OF 500 mg No3--N/L FEED SOLUTION 

Ingredients 

Potassium Nitrate 
Methanol 
Potassium D1hydrogen Phosphate 
Magnesium Sulfate 
Ferrous Sulfate 

--------------

TABLE III 

Concentration 

3.6 g/L 
1.9 ml/L 
0.1 g/L 
0.01 g/L 
0.002 g/L 

COMPOSITION OF 500 mg No~--N + N02--N/L FEED SOLUTION 

---------------- ·-------
Ingredients 

Potassium Nitrate 
Sod1um N1trite , 
Methanol 
Potass1um Dihydrogen 
Magnes1um Sulfate 
Ferrous Sulfate 

Phosphate 

Concentrat1on 

1.8 
1.2 
1.9 
0.1 
0.01 
0.002 

g/L 
g/L 

ml/L 
g/L 
g/L 
g/L 

-------··--
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The feed solutions for coupling reactions consist of 

combined nitrification and denitrification feedstock 

ingredients with ammonium in place of nitrate or nitrite. 

Typical feed solutions are listed in Tables IV, V and VI. 

TABLE IV 

COMPOSITION OF COUPLING REACTION FEED SOLUTION (1) 

Ingredients Concentration ____ , ____ _ 
Ammonium Chloride 
Methanol 
Sodium Thiosulfate 
Sodium Bicarbonate 
Potassium D1hydrogen 
Magnesium Sulfate 
Ferrous Sulfate 

Phosphate 

0.50 
0.25 
1.00 
2.00 
0.05 
0.05 
0.002 

g/L 
mL/L 
g/L 
g/L 
g/1 
g/L 
g/L 

---· ---------- -------· 

TABLE V 

COMPOSITION OF COUPLING REACTION FEED SOLUTION (2) 

Ingredients 

Ammonium Sulphate 
Ammonium Chlor1de 
Sod1um Acetate 
Sodium Thiosulfate 
Sodium Bicarbonate 
Potassium D1hydrogen Phosphate 
Magnesium Sulfate 
Ferrous Sulfate 

Concentration, g/L 

0.53 
0.44 
0.25 
1.13 
1.50 
0.05 
0.05 
0.002 
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TABLE VI 

COMPOSITION OF COUPLING REACTION FEED SOLUTION(3) 

Ing~edients 

Ammonium Sulphate 
Ammonium Chlo~ide 
Sodium Acetate 
Sodium Bica~bonate 
Potassium Dihyd~ogen Phosphate 
Magnesium Sulfate 
Fe~rous sulfate 

Concent~ation, g/L 

0.53 
0.44 
0.75 
1.50 
0.05 
0.05 
0.002 

3.3 Start-up P~ocedure 

The same seed, which was collected from an activated 
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sludge aeration tank of the sewage t~eatment plant of Ponca 

City, Oklahoma, was used for acclimation of all the o~ga-

nisms used in this expe~iment. The seed for autot~ophic 

nitr1fication was acclimated in a 25-L plastic bottle. The 

bottle was ae~ated by a cyllndric a1~ distributo~ with 

compressed air. The supernatant was drained every day and 

replenished with 10 L feed solution containing 250 mg 

NH4+-NJL. The seed for both autotrophic and heterotrophic 

denitrification was acclimated in a 25-L plastic barrel. 

The content 1n the barrel was mixed with a magnetic stirrer. 

The barrel was kept covered to exclude oxygen. The super-

natant was also drained every day and replen1shed with 10 L 

feed solution containing 125 mg Noa--N/L and 125 mg 

N02--N/L. 

Prior to placing support medium into the reactor, the 

inert particles were washed well to eliminate very fine 
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particles. The reactor was then filled with 150 mL of these 

particles and expanded to about 20\ above its static volume 

by recycling the supernatant through the bottom of the 

reactor. 

The acclimated denitrifiers were introduced first in 

the MAFAEB reactor, and (No3--N + N02--N) feed solution was 

fed continuously with a hydraulic retention time (HRT) of 

about 6 hours to begin establishing the b1ofilm. As washout 

of biomass occurre'd during the initial start-up period, 

small amounts of fresh 1noculum from the seed bottle were 

added to replace the loss. Both autotrophic and hetero

trophic den1trifiers were successfully attached on the dia

tomaceous earth particles. The static bed volume grew from 

150 mL to 300 mL in 11 weeks. 

Then, the aeration bottle was connected into the system 

and was aerated with compressed air. (No3--N + N02--N) feed 

solution was replaced with NH4+-N feed solution and 

acclimated nitrifiers were inoculated in the same way as 

denitrifiers. The HAFAEB showed steady nitrification 

ability within about three weeks. When the coupl1ng 

reaction feed solution was fed, it was evident that 

nitrification and den1trlfication occurred simultaneously. 

3.4 Analytical Techniques 

3.4.1 Ammonia Nitrogen 

Concentration of ammonia nitrogen was measured accord

ing to the methods described in standard Methods (APHA et 



al., 1985), Section 417 c. The distillation method was 

used, and its validity was checked by distillation with 

known concentrations of pure reagent. 

3.4.2 Nitrite and Nitrate 
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The techniques used for determination of concentrations 

of nitrite and nitrate were given in Standard Methods (APHA 

et al., 1985) Section 429. A Dionex ion chromatograph, 

series 2000i/sp, was used for the measurements. standard 

solutions were prepared for each analysis. 

3.4.3 Chemical Oxygen oemand 

Chemical oxygen demand (COD) was measured with Reactor 

Digestion Method descr1bed in HACH WATER ANALYSIS HANDBOOK 

(HACH Company, 1992). 

3.4.4 Total Suspended Solids 

Total suspended solids were measured according to the 

methods described in standard Methods (APHA et al., 1985), 

Section 209 c. Filtered solids were dried at 103-105°C. 

3.4.5 Volatile Suspended Solids 

The procedures descrioed in standard Methods (APHA et 

al., 1985), Sectfon 209 D, were followed for determination 

of volatile suspended sol1ds. The residue from total sus

pended solids determination was used for the determination 

of volatile suspended solids. 
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3.4.6 Attached_Bloma~ 

The procedures described by Clarkson (1986) were 

followed to determine the attached biomass. Samples were 

taken from the center of the expanded bed reactor using a 

wide mouth pipet and transferred to 10 mL wide bore 

graduated cyl1nders. The cylinders were then tapped and 

spun several times to consolidate the samples. During this 

process of consolidation, particles were added or removed 

and the tamping procedure followed until each sample 

contained exactly 5.0 mL of packed particles. supernatant 

was decanted and the sample was transferred to an ashed, 

preweighed porcelain drying dish by sluicing it out with a 

stream of distilled water from a wash bottle. The jet of 

water from the wash bottle was used to agitate the particles 

vigorously. The supernatant containing loose solids was 

transferred to other drying dishes. Care was taken not to 

remove support particles from their original dish. This 

process was repeated until further washing produced no 

further loose b1omass. 

The dishes containing these samples were subJected to 

the total suspended solids procedure described in Section 

3.4.3. Blanks consisted of biomass-free diatomaceous earth 

particles prepared along with those used for the expanded 

bed but stored in a buffer solution at room temperature. 

Blank samples we~e necessary to correct for hygroscopically 

bound water in the diatomaceous earth in perform1ng the 

sol1ds calculations. After the samples were ashed finally, 



the particles were rehydrated with distilled water, trans

ferred to the graduated cylinders, and the final volume of 

sample was taken. The samples were tamped well before the 

final volume of the rehydrated sample was recorded. 

3.4.7 pH' 

pH values of samples were measured with a model 900 

Accumet pH meter (Fisher Scientific Co.). This meter was 

calibrated with standard solution each time when used on 

every set of samples. 

3.4.8 Alkalinity 
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Alkalinity was measured according to the procedures 

descr1bed in standard Methods (APHA et al., 1985), Section 

403. Sulfuric acid of 0.02N was used for titration. The 

end point of pH 4.3 of t1tration was determ1ned with a model 

900 Accumet pH meter (Flsher Scientific Co.). 

3.4.9 Dissolved Oxygen 

Dissolved Oxygen (DO) was measured with a model 97-08-

00 02 electrode (Orion Research Co.). Procedures described 

in Standard Methods (APHA et al., 1985), Section 421 c, were 

followed to check the results measured with the 02 electrode 

once a week. The difference between the results from these 

two methods was always smaller than 0.2 mg/L of DO. 
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3.5 Sampling and Implementation Timeline 

Zeng (1992) found that nitrification in AEB reactor 

with HRT at about 0.75 h could reach a new steady state well 

within two days after operational conditions had been 

changed, which was ident1cal w1th what happened in most of 

the reaction conditions in this study. For this reason, 

most experimental conditions were maintained for at least 

two to three days in this experiment. 

Influent samples were taken when it was freshly made 

while effluent samples were taken from the top of the 

reactor or from the aerat1on bottle. The pH and DO were 

measured by 1nserting probes into the top layer of liqu1d 

phase in the reactor. The readings were taken after 

stirring the liquid phase with the probes until a steady 

reading was reached. The analyses for the influent and 

effluent were conducted daily. Usually, the last day's 

results were reported. 

Since there was some instability of the pump feeding 

rate, the flow rate of influent was measured daily by 

measuring the influent consumed within 24 hours. The 

recycle rate was measured weekly by measuring the recycle 

flow from the reactor to ~eratiori bottle, then subtract1ng 

the influent flow. 

All analyses were conducted immediately after sampling. 

No sample storage was involved. Since th1s experiment 1s 

only a feas1bility study, the water loss by evaporation and 

splash were overlooked in this experiment. 



The experiment lasted for approximately eight months. 

The sequence of operations is shown in the implementation 

timeline (Figure 2). 
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Mar '92 Apr 

MA.FAEB Coupling Reaction, long term 

MA.FAEB Coupling Reaction, acetate D 
MAFAEB Coupling Reaction, acetate & thiosulfate D 
M.AFAEB Nitrification Recovery D 
M.AFAEB DenitrifiCatiOn c=J 

MAFAEB Coupling Reaction, thiosulfate c=J 

MA.FAEB Nitrification, constant HRT 

MA.FAEB Nitrification, constant loading 

D MAFAEB Coupling Reaction, methanol &. thiosulfate 

0 MAFAEB AlternatiVe Aerat1on 

Nltrlflers Attachment D 
D Energy Sources Tests 

~...-_______ =:1 Denltrrfiers Attachment 

Batch Feed 1 Acclimation 

May June Juty Aug Sep Oct Nov. Dec. Jan '93 

Figure 2. Implementation Timeline for the Sequence of Operations w 
en 



CHAPTER IV 

EXPERIMENTAL APPROACHES AND RESULTS 

4.1 Development of Autotrophlc and 

Heterotrophic Denitrifiers in 

Mixed Attached Films 

S1nce both methanol and thiosulfate inhibit nitrifi-

cation (Beccari, 1980; Hooper et al., 1973), no accessory 

energy sources (electron donors) more than that required by 

denitrifiers during the coupling reaction should be added. 

Unit nitrate or nitrite conversion rates with methanol and 

sod1um thiosulfate as energy sources were tested under 

electron-donor-limitation in the presence of excess electron 

acceptors (nitrate or n1trite). Methanol and sodium 

th1osulfate were added in vary1ng amounts to account for any 

possible interference between autotrophic and heterotrophic 

denitrification activities. The test conditions and results 

are listed 1n Table VII. 

According to the data in Table VII, the unit energy 

source convers1on rates may be obtained by solving the 

following equation groups: 

Nitrate as electron donor: 

{
3.0 Crh~o 1 

1.5 CTh~o 1 
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1 = 8 X 86, 

1 = 8 X 152; 



and n1trite as electron donor: 

{3.0 CTh.t.o .2 + 1.5 cM ... 'bh..,.MC>l 2 = 8 )( 152, 

1.5 CTh.t.o 2 + 3.0 CM..,th .... nol .2 = 8 X 213; 

where, 

CThio: Conversion rate of No~- vs. thiosulfate; 

CM&th4nol: Conversion rate of No.- vs. methanol. 

The results are: 

nitrate as electron acceptor, 

nitrite as electron acceptor, 

TABLE VII 

TEST CONDITIONS AND RESULTS OF ENERGY 

SOURCES FOR MIXED DENITRIFICATION 

Electron Acceptor 

Electron Donor 
Loading Rate 

NO:z.1--N, mg/L 
N0.2--N, mg/L 
N-Removed, mg/L 

Nitrite 

Na2S20o: 3.0 g/8 L 
7.68 g/L-D* 

Influent Effluent 

1.3 0 
229 77.9 

152 

Nitrate 

Methanol: 1.5 mL/8 L 
8.93 g/L-D* 

Influent 

268 
0 

Effluent 

86 

1.82 
0 

Electron Donor Na.o.:S.:..O::a: 1. 5 g/8 L Methanol: 3. 0 mL/8 L 

N0::.1--N, mg/L 
NO.:a--N, mg/L 
N-Removed, mg/L 

Influent Effluent 

1.3 0 
229 17.4 

213 

Influent 

268 
0 

Effluent 

152 

116 
0 

----------·-------·--·-- -----------------------
* g/L-D: g/per liter stat1c volume per day. 
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It was also found that part of the alkallnity produced 
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by heterotrophic denitrlfication was consumed in the auto-

trophic denitriflcation. Total alkalinity produced from the 

simultaneous growth was much less than when only hetero-

trophic denitrifiers were grown. 

4.2 Nitrification with MAFAEB System 

After attached biofilms had shown steady state nitrifi-

cation ability, nitrification was carried out in two MAFAEB 

reactors. The nitrification ability of the mixed attached 

films was tested first under a constant loading rate over a 

range of d1fferent hydraulic retention times (HRT) then 

under constant HRT with d1fferent loading rate conditions. 

The results are presented in Tables VIII and IX, and Figures 

3 and 4. All the nitrogen forms in the figures have been 

converted to nitrogen bases. 

TABLE VIII 

NITRIFICATION WITH MAFAEB SYSTEM - CONSTANT LOADING RATE 

---· -----
HRT, Hours 

Items 0.25 0.38 0.50 0.75 1.50 3.0 

Influent Ammonium, mg/L 42 63.9 85.2 128 251 500 
Effluent Ammonium, mg/L 7.3 10.8 10.2 14.8 21.2 29.7 
Effluent Nitrate, mg/L 17.6 11.7 22.2 25.0 46.2 112 
Effluent Nitrite, mg/L 14.5 31.7 44.5 74.0 157 287 

Influent DO, mg/L 5.9 6.2 5.8 5.7 5.7 5.5 
Effluent DO, mg/L 3.2 3.2 3.2 2.8 2.6 2.2 

influent pH 7.8 7.8 7.8 7.85 7.85 7.85 
Effluent pH 7.4 7.5 7.4 7.4 7.5 7.5 

Loading Rate, g/L-D* 4.12 4.17 4.09 4.1 4.27 4.00 
N1trification, % 82.6 83.1 88.0 88.4 91.6 94.1 
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TABLE IX 

NITRIFICATION WITH MAFAEB SYSTEM - CONSTANT HRT 

Loading Rate, g/L-D 
Items 2.29 3.44 4. 59 5.73 6.88 9.17 

Influent Ammonium, mg/L 100 150 200 250 300 400 
Effluent Ammonium, mg/L 2.8 4.4 6.5 21.3 45.8 102 
Effluent N1trate, mg/L 4.9 5.1 5.3 12.4 5.3 5.0 
Effluent Nitrite, mg/L 87.0 133 178 203 229 253 

Influent DO, mg/L 7.7 7.5 6.7 6.4 6.0 5.4 
Effluent DO, mg/L 4.6 3.2 2.7 1.7 1.4 0.7 

influent pH 7.85 7.85 7.85 7.85 7.95 7.95 
Effluent pH 7.5 7.5 7.4 7.5 7.8 7.85 

Nitrification, % 97.2 97.0 96.8 91.5 84.7 74.5 

4.3 Denitrification with 

Mixed Attached Films 

After more than one month of nitriflcation tests, one 

of the MAFAEB reactors was turned to anoxic cond1tions. 

W1th1n hours, denitrificat1on activity was noted in the 

MAFAEB w1thout aeration. Denitrification was tested at 

constant HRT with different loading rates when steady state 

had been reached in the MAFAEB reactor. No obvious 

decreases in denitrification efficiency occurred at loadings 

up to about 14 g/L-D. 

Sodium acetate was used as electron donor 1n this test. 

It was found that no adaptat1on time was needed for sod1um 

acetate to replace methanol and/or sod1um thiosulfate as 

electron donor, and the system showed tremendous potential 
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for denitrification. 

The results of denitrification in the MAFAEB system are 

shown in Table X and F1gure 5. 

TABLE X 

DENITRIFICATION WITH MAFAEB SYSTEM - CONSTANT HRT 

Loading Rate, g/L-D 
Items 2.87 42.8 5.65 6.89 8.93 14.1 

Influent Nitrate, mg/L 101 157 215 262 346 544 
Effluent Nitrate, mg/L 0 0.4 0.8 0.9 0.6 2.2 
Effluent Nitrite, mg/L 0 0 0 0 0 0 

HRT, Hours 0.85 0.88 0.91 0.91 0.93 0.93 
Effluent pH 7.85 7.8 7.6 7.6 7.6 7.6 
Denitriflcation, \ 100 99.8 99.6 99.6 99.8 99.6 

4.4 Coupling Reaction with MAFAEB System 

4.4.1 Coupling Reaction with Methanol ang 

Sod1um Thiosulfate as Electron Donors 

After an attached b1of1lm had been well establ1shed 1n 

the MAFAEB reactor, coupling reaction feed solution {1) was 

fed. The aeration rate was controlled that the DO in the 

reactor was close to 2 mg/L s1nce it was m~ch more diff1c~lt 

to control the DO to below 2 mg/L. The recycle ratio was 

set at 200 - 400% to supply obl1gatory oxygen for the nitri-

ficat1on. Some a1r bubbles were also introduced into the 

reactor d1rectly through the recycling tubing to supply 

additional oxygen and mild ag1tation. 

During the first two days, loading rate was kept at 
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lower than 1 g/L-D. Loading rate was increased to 1.84 g/L-D 

on the third day. on the fourth day, the nitrogen removal 

rate reached 74.4%, and no nitrite or nitrate accumulated 

in the effluent, which means the nitrogen removal rate was 

equal to the nitrification rate. On the fifth day, nitrogen 

removal rate was sustained at 74.0%, however, there were 

21.2 mg/L No~--N and 1.0 mg/L No~--N remaining in the 

effluent. The nitrification rate was as high as 91.2%. The 

possibility of coupling nitrification and denitrification in 

a single reactor was clearly proved. 

However, between the fifth and eighth days, the 

nitrogen removal rate dropped to 42.6% and the nitrification 

rate dropped to 69.2%. Tremendous floes formed in the MAFAEB 

system. Both nitrification and denitr1ficat1on were 

inhibited at the same time. Since all the electron donors 

added for denitrification were consumed while a significant 

amount of nitrite and nitrate remained in the solution, this 

may suggest that part of the energy sources added must have 

been biodegraded through another pathway. The first eight 

days results of this experiment are presented in Table XI. 

4.4.2 Alternative Aerobic and 

Anaerobic coupling Reaction 

S1nce n1tr1flcat1on and denitriflcation requ1re totally 

different conditions, alternating aerobic and anaerobic 

reactor operation was conducted to test the influence on the 

coupling reaction. Considering that there will be a certain 



amount of oxygen to be consumed after aeration is stopped, 

the non-aeration time should be longer than the aeration 

time. At first, aeration time was set for 5 min and non-

aeration for 15 min. The nitrification rate was 71.7% and 

the nitrogen removal rate was 46.8% over a period of 8 

hours. The denitrification rate lagged behind the nitri-

fication rate. In the second test, aeration time was set 
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for 20 min and non-aeration time for 40 min. The comparison 

between the alternating aeration (sampling immediately after 

stopping alternating test) and low DO aeration pattern 

(sampling under steady state condition just before alterna

ting aeration test) is shown in Table XII and Figure 6. 

TABLE XI 

COUPLING REACTION WITH METHANOL AND 

THIOSULPATE AS ELECTRON DONORS 

--------- ------·-- _____ .. __ ... _ 
Day Influent Effluent N1tri- Nitrogen 

Ammonium Ammonium Nitrate Nitrite fication Removal 
mg/L mg/L mg/L mg/L % \ 

1 56.0 
2 66.6 
3* 127.5 10 0 2.4 92.2 90.3 
4 129 33 0 0 74.4 74.4 
5 129 11.3 21.2 1.0 91.2 74.0 
6 123 9.3 25.7 13.6 92.4 60.5 
7* 240 105 19.3 1.6 56.3 47.5 
8* 129 39.7 6.3 28.1 69.2 42.6 

------- ---- _,. ______ - ...... _____ - ____ ., _______ --------
* Unbalanced results because of altering influent concentration. 
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TABLE XII 

COMPARISON OF ALTERNATING AERATION WITH 

LOW DO COUPLING REACTION PATTERN 

Items Alternative Aeration Low DO 

Influent Ammonium, mg/L 129 129 
Effluent Ammonium, mg/L 66.2 58.7 
Effluent Nitrate, mg/L 0.4 0.6 
Effluent Nitrite, mg/L 18.2 17.8 

Nitrification, % 48.7 54.5 
Nitrogen Removal, \ 34.3 42.3 

4.4.3 coupling Reaction with Acetate 

and Th1osulfate as Electron Donors 

After conducting the coupling reaction descr1bed above, 

the floc problem was so serious that it was necessary to 

remove flocculant biomass before undertaking any more tests. 

The system was fed with dilute NH4•-N feed solution at very 

low HRT to wash out the floes and resume biofilm nitrifl-

cation abil1ty. 

It was apparent that the floes formed in the MAFAEB 

system have the ability to oxidize methanol and thiosulfate 

in low DO conditions. According to Kohno (1988), a 

filamentous organ1sm known to cause sewage sludge bulk1ng 

utilized thiosulfate as an energy source but failed to 

oxid1ze the compound when acet1c ac1d was available. So a 

small amount of acetate wa3 added along with thiosulfate 



1 

1 

_J ....... 
1 0) 

E 
r::: 
0 

tti 
"-

oj.-1 

c. 
(1;1 
c:;J 
c:: 
Cl 
(.) 

Low D 0. Alternating Aeration 
Reaction Patern 

~ Influent Ammonium §§§ Effluent Ammonium B Effluent Nitrate 

D Effluent Nitrite ~ N itrificarton ~ Nitrogen Removal 

Figure 6. COMPARISON OF REACTION PATIERNS 

{low D 0 and alternating aeration) 

100 

90 

80 

70 '#. 
tl) 

60 td 
0: 

50 c:::: 
.o 

40 e! 
g: 

30 c::: 
0 

(.) 

20 

10 

0 



49 

(Table VI) and used as electron donors in the next series of 

coupling reaction experiments. The results are listed in 

Table XIII, and Figures 7 and 8. 

TABLE XIII 

COUPLING REACTION WITH THIOSULFATE 

AND ACETATE AS ELECTRON DONORS 

----- ...... ____ 
Day 

Item 1 2 3 4 5 6 7 
----- -----

Influent Ammonium, mg/L 212 212 219 219 219 234 234 
Effluent Ammonium, mg/L 14.4 22.2 31.5 57.3 63.8 70.5 80.8 
Effluent Nitrate, mg/L 0 0.6 0.9 1.2 1.7 1.4 1.5 
Effluent Nitrite, mg/L 82.8 80.9 83.7 63.8 72.0 66.8 65.2 

Nitrification, % 93.2 89.5 85.1 73.8 70.9 69.9 65.5 
Nitrogen Removal, % 54.2 51.1 45.2 44.2 37.2 40.7 37.0 
Denitr. of Available 

N02--N & No3--N, % 58.1 57.1 53.1 59.8 52.5 58.3 56.5 

Loading Rate, g/L-D 3.08 3.08 2.97 3.75 3.56 3.44 3.44 
N-Removal Rate, g/L-D 1.67 1.57 1.32 1.67 1.33 1.40 1.27 

When thiosulfate was removed from the feed solution 

after the above test, nitrification efficiency recovered, 

and nitrogen removal rate dropped. After reaching a new 
' 

steady state level, a comparison between coupling reactions 

with or without- adding thiosulfate can be seen, as shown in 

Figure 9. Figure 9 shows that nitrification efficiency was 

somewhat greater in the absence of thiosulfate. At the same 

time, thiosulfate also was util1zed as electron donor in the 

denitrification process of the coupling reaction. 
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4.4.4 Coupling aeaction with ThlosulfatLe 

as Electron Donor 

Subsequent experiments were performed using only sodium 

thiosulfate as electron donor for the coupling reaction. 

The thiosulfate addition was from 273 - 1275 mg/L. The 

results are shown in Table XIV, and Figures 10 and 11. 

TABLE XIV 

COUPLING REACTION WITH SODIUM THIOSULFATE 

AS ELECTRON DONOR 

Thiosulfate, mg/L 273 563 850 1275 

Influent Ammonium, mg/L 50 100 150 151 
Effluent Ammonium, mg/L 9.5 39.4 48.3 72.5 
Effluent Nitrate, mg/L 10.9 15.6 23.2 14.8 
Effluent Nitrite, mg/L 17.7 22.6 48.4 31.7 

Nitrification, % 81.0 60.6 67.8 51.7 
Nitrogen Removal, % 23.8 22.4 20.1 20.7 
Denitr. of Available 

NO::z--N & NOo--N, % 29.4 37.0 29.6 40.0 
Loading Rate, g/L-D 2.02 2.84 4.23 4.23 
N-Removal Rate, g/L-D 0.48 0.64 0.85 0.87 

------------------------------

4.4.5 Coupling React1on with Acetate 

as Electron Donor 

In the next experimental series, the effect of using 

only sodium acetate as electron donor for the coupl1ng 

reaction was tested. The acetate addition was from 375 mg/L 
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to 1875 mg/L. The results are found in Table XV, and 

Figures 12 and 13. 

TABLE XV 

COUPLING REACTION WITH'SODIUM ACETATE 

AS ELECTRON DONOR 

Acetate, mg/L 375 750 1125 1500 

Influent Ammonium, mg/L 221 226 222 222 
Effluent Ammonium, mg/L 27.1 36.6 59.2 117 
Effluent Nitrate, mg/L 4.3 2.1 2.8 0.7 
Effluent Nltrite, mg/L 139 93.2 91.4 47.9 

Nitrification, % 87.7 83.8 73.3 47.3 
Nitrogen Removal, % 22.9 41.6 30.9 25.4 
Denitr. of Available 

N02--N & NO::;,--N, % 26.1 49.7 42.1 53.7 
Loading Rate, g/L-D 3.16 3.23 3.18 3.18 
N-Removal Rate, g/L-D 0.73 1.35 0.98 0.81 

--------· 

Comparing Tables XIV and XV, acetate is a more 

efficient electron donor for the denitrification in the 

56 

1875 

222 
136 
0.3 

12.3 

38.7 
33.1 

85.3 
3.18 
1.05 

coupling reaction. Figure 13 and Table XV show that there 

is a maximum nitrogen removal at sodium acetate con-

centration of 750 mg/L without seriously decreasing the 

nitrification rate, so this condition was selected to run a 

long term test, which lasted for 40 days. The results of 

this 40-day MAFAEB trial are given in Table XVI, and 

F1gures 14 and 15. 



20 
.....J -... 
0) 

E 
c 15 
0 .td 
I-
-+-' c 10 (]) 
0 
!:: 
0 u 

5 

375 750 11 25 1 500 1875 

NaAc Concentration, mg/L 

~ Influent: Ammonium ~ Effluent Ammonium B Effluent Nitrate 

Figure 12 COUPLING REACTION WITH MAFAEB 

(sodium acetate as electron donor. [1 ]) 



1 

375 

~ N~rification 

fm Loading Rate 

750 11 25 1 500 1875 
NaAc Concentration~ mg/L 

~ Ntrogen Removal ~~~~~ Denitr of NO ~ 

~ Removal Rate 

Figure 13. COUPLING REACTION WITH MAFAEB 

(sodium acetate as electron donor [2]) 

4.5 
0 

4 _J ..._ 
0) 

35 !9 ro 
3 a: 

25 ~ 
0 
E 

2 Q) 
cc 

1.5 
"0 
c 
ttl 

1 0) 
c ·-"0 

0.6 ['fj 

.9 
0 



TABLE XVI 

MAFAEB COUPLING REACTION GENERAL CONDITIONS AND RESULTS 

(VALUES CALCULATED FROM FOURTH DAY 

THROUGH THE END OF THE TEST) 

Item 

Static Bed Volume, 
Bed Expansion Rate, 
Recycle Rate, 
Substrate Flow Rate, 
HRT, 

Influent NH4+-N, 
Effluent NH4+-N, 
Influent No::a--N, 
Effluent NO::a--N, 
Influent N0.2--N, 
Effluent N0.2--N, 

mL 
\ 
L/D 
L/D 
Hrs 

mg/L 
mg/L 
mg/L 
mg/L 
mg/L 
mg/L 

Nitrification Efficiency, % 
Nitrogen Removal Efficiency, \ 
Denitrification Efficiency 

of Available N02--N & No::a--N, % 

Loading Rate, 
Removal Rate, 

Influent pH, 
Effluent pH, 

Influent DO, 
Effluent DO, 

Influent COD, 
Effluent COD, 

g NH""'+-N/L-D 
g NH...,+-N/L-D 

mg/L 
mg/L 

mg/L 
mg/L 

Influent Alkalinity, mg as CaCO::a/L 
Effluent Alkalin1ty, mg as caco~/L 

Effluent TSS, 
Effluent vss, 

Attached VS, 
Entrapped VS, 

mg/L 
mg/L 

g VS/L static bed 
g VS/L stat1c bed 

t Five days accumulated sample. 
tt Include M1tr1te COD 89.7 mg/L. 

Data 

250-255 
100 
1350 
3.43 ± 0.05 
1.77 ± 0.03 

222.0 ± 0.8 
61.5 ± 6.5 
undetectable 
6.9 ± 1.3 
undetectable 
83.3 ± 6.4 

72.3 ± 3.0 
31.7 ± 1.8 

44.2 ± 2.7 

3.00 ± 0.04 
0.95 ± 0.06 

7.75 
7.3 

no control 
2.06 ± 0.19 

390 
155 * ** 
1164 
252 * 

61 * 
51 * 
27.8 
4.21 

59 
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The flow rate, hydraulic retention time, concentrations 

of all the nitrogen forms, conversion ratios, loading and 

removing rates and effluent DO were calculated at 95\ of 

confidence intervals. Effluent COD, alkalinity, total 

suspended solids and volatile suspended solids were measured 

from a 5-day accumulated sample. Influent concentrations 

were measured with sam~les freshly made. 

During the long term test, the pH of the influent and 

effluent was very steady. DO was controlled by adjusting 

the aeration rate to the aeration bottle and adjusting the 

air bubbles introduced into the reactor. 

The alkalinity consumption of coupling reaction and 

nitrification were measured and listed in Table XVII. The 

COD consumptions of coupling reaction with sodium acetate as 

electron donor and denitr1f1cation with methanol as electron 

donor were also measured, and the results listed in Table 

XVIII. 

TABLE XVII 

ALKALINITY CONSUMPTION FOR COUPLING 

REACTION AND NITRIFICATION 

________ , ______ -----------·----------
Nitrification Coupl1ng 

Reaction 
-------------------- - ----·- -··---·-- -···----
Alkalinity 

mg as CaCO::'I/L 
NH ..... --N 

mg/L 

mg HCO::-)-
/mg NH4+-N 
··------

Influent 
Effluent 
Influent 
Effluent 

3780 
407 
542 

48.5 

6.83 

1164 
252 
220 
51.5 

5.40 
-----------------------------------------



TABLE XVIII 

COD CONSUMPTION FOR DENITRIFICATION 

AND COUPLING REACTION 

Denitri-
fication 

COD Influent 5300 
mg/L - Effluent 285 

No!3--N and/or Influent 1509 
No.:.:--N mg/L Effluent 0 

mg COD/mg No4--N 
or NO::a--N 3.32 

*After correction for each mg of N02--N consuming 1.1 mg COD. 
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------
Coupling 
Reaction 

390 
155 

168.3 
90.8 

4.19* 
-----

DO had a very subtle influence on the coupling 

reactions. Since DO could not be strictly controlled during 

this experiment, the DO values used for analysis are only 

rough estimations from several readings taken during a day. 

The results shown in Table XIX were calculated at 95% 

confidence interval. The whole DO range in the last 36 days 

of the long term test was divided to three categories (high: 

2.8- 2.2, middle: 2.1- 1.8 and low: 1.7- 1.4 mg/L). Two 

population T-test and F test were used to test if there were 

significant differences of the means of the nitrificat1on 

efficiency and the nitrogen removal rate between high DO and 

middle DO, and between middle DO and low DO (Appendix). 

' These results should be 1nterpreted as an indication of 

react1on behav1or only. More str1ct DO control means snould 

be adopted in further studies of this factor. 
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4.5 Nitrification Recovery in MAFAEB System 

After conducting coupling reaction or denitrification 

experiments, the system was purged of excess floes as 

described prev1ously. During the recovery process, the 

nitrification rate was tested. Table XX and Figure 16 show 

that full nitr1fication ability was closely approached 

within 5 days. 

TABLE XIX 

COMPARISON OF INFLUENCES BY DIFFERENT DO 

----
DO, mg/L 

Item 2.59±0.20 1.94 ±0.06 1.57±0.09 

Influent Ammonium, mg/L 222.9±1.4 221.9±2.0 221.1±0.8 
Effluent Ammonium, mg/L 52.5±10.6 59.1±5.4 73.6±12.4 
Effluent N1trate, mg/L 8.9±2.2 7.1±2.1 4.3±1.4 
Effluent Nitrite, mg/L 96.1±11.7 81.5±4.2 70.7±7.3 

Nitrification, % 76.4±4.7 73.4±2.5 66.7±5.7 
Nitrogen Removal, % 129.3±2.3 33.4±1.6 32.8±4.5 
Loading Rate, g/L-D 2.97±0.06 2.98±0.07 3.06±0.09 
N-Removing Rate, g/L-D 0.87±0.07 1.00±0.06 1.00±0.14 

--·------

TABLE XX 

NITRIFICATION RECOVERY IN MAFAEB SYSTEM 

____ .. __ 
Time, day 

Item 1 2 3 4 5 
---- .. _ .. , .. ---- ----.. --.. 
Influent Ammon1um, mg/L 151 146 146 146 151 
Effluent Ammonium, mg/L 73.5 46.5 28.4 24.3 18.4 
Effluent Nitrate, mg/L 6.3 8.1 8.8 7.1 10.7 
Effluent Nitr1te, mg/L 60.9 75.8 94.9 98.8 110.1 

Loading Rate, g/L-D 4.34 4.34 4.34 4.34 4.34 
Nitrification, % 51.3 68.2 80.6 83.4 87.8 
---
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CHAPTER V 

DISCUSSION AND CONCLUSIONS 

5.1 Simultaneous Growth of Autotrophic 

and Heterotrophic Denitrifiers 

Both autotrophic and heterotrophic denitrifiers 

developed active b1ofilm populations when they were accli

mated together in this research. However, in the presence 

of different electron acceptors, their contributions to the 

denitrification were different. Table VII shows that when 

nitrite was used as electron acceptor, both thiosulfate and 

methanol were utilized more effectively than when nitrate 

was used as electron acceptor. With nitrate, the contri

bution of thiosulfate to den1trificat1on was very lim1ted, 

and the reaction consumed more electron donors with n1trate 

as electron acceptor than with nitrite. This may support 

the suggestion that the shortened pathway of nitrite 

reduction will save energy sources. 

5.2 Nitrification with MAFAEB System 

After only 24 days of accl1mation for the n1trif1ers 

added to the denitrifying attached films, the system demon

strated steady state nitrification ability. A comparison of 

the nitrification results of this experiment with Collins 

66 
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et a1.(1991) and zeng (1992) is shown in Table XXI. The 

nitrification efficiency in this experiment was slightly 

lower than that obta1ned by Collins et al. (1991) at h1gher 

loading rates, but comparable to that of Zeng (1992). This 

nitrification capacity is significant in light of operat-

ional factors such as larger size of support media used in 

this research and lower density of n1tr1£1ers in the 

attached films. 

TABLE XXI 

COMPARISON OF NITRIFICATION RESULTS 

Item Collins Zeng This 
et al. ( 1991) (1992) Experiment 

Influent NH4 ... -N, mg/L 199 220 200 
Conversion Rate, % 98 94.0 96.8 
Loading Rate, g NH.:t ... -N/L-0 11.52 7.5 4.59 
HRT, hours 0.41 0.77 1.05 

Reactor Type AEB AEB MAFAEB 
Med1a Particle Size, mm 0.4-0.6 0.2-0.6 1-3 
Attached VS, g VS/L Bed 42.5 46.7 27.8* 
Bed expansion % 62 60 100 

---------------- --------
* Includes nitrifiers and denitriflers. 

5.3 Denitrification with MAFAEB System 

After aeration was stopped and feeding with nitrate 

resumed, the MAFAEB system restored steady state denitrifi-

cat1on in a few days. The data from Table X show that the 

den1trif1cat1on eff1ciency of th1s system was extremely 

high. 

Table XXII shows a comparison of experimental results 
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with other heterotrophic denitrification results. Since the 

main objective of this research is not to determine maximum 

denitrification rates, the results of this experiment listed 

in the table are only representative reasonable rather than 

maximum loading rates. From Table X and Figure 5 we can 

anticipate the maximum loading rate may be even higher. 

TABLE XXII 

COMPARISON OF DENITRIFICATION RESULTS 

Item 

Influent No3--N, 

Jeris 
et al. 
(1975) 

Miyaji 
et al. 
(1975) 

mg/L 21.5 900 
HRT, Hrs 0.11 3.8 
Loading Rate, 

gNo3--N/L-D* 5.42 6.5 
Removal Rate, 
gNo3--N/L-D* 5.37 6.38 

Conversion Rate, % 99.0 98.6 

Reactor Type FLUIDIZED UASB 
Media Particle Size, 

mm < 0.6 
Organ1c Substrate METHANOL WASTE 
Attached vs, 

gVS/L Bed 30-40 
Bed Expansion, % 100 
---·--·--------

Clarkson 
et al. 

(1992) 

934 
3.4 

6.54 

6.16 
94.2 

AFEB 

0.2-0.6 
METHANOL 

82 
15-20 

* g No3--N/per liter of expanded bed per day. 

This 
Experi
ment 

544 
1.86 

7.15 

6.99 
99.6 

MAFAEB 

1-3 
ACETATE 

27.8 
100 
-------

It was found that when returning the system from 

nitrification or coupling reaction to denitrification, some 

attached f1lm particles floated on the l1qu1d surface and 
{ 

tended to be washed out. Sludge particles floated due to 

entrapped gas, indicating that denitrification occurred in 

the inner layer of the particles. This phenomenon dis-
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appeared after a couple of weeks, but the previously smooth 

attached blofllm surface became spiky or fuzzy at this time. 

Although these phenomena occurred during operation as a 

denitrification reactor, it may suggest that during the 

coupling reaction, the denitrifiers not only attach and grow 

in the inner layer of the particles, but also attach with 

nitriflers on the outer layer, to form thoroughly mixed 

rather than layered attached films only. 

5.4 Alternating Aeration 

Table XII shows that alternating aeration for coupling 

reaction is not as efficient as the system operated under 

constant low DO conditions. Although much of the operating 

cycle was devoted to denitr1fication, its conversion rate 

still lagged behind that of nitrification. This may suggest 

that denitrification recovery from aerobic conditions is not 

as fast as nitrif1cat1on from anoxic condit1ons. 

5.5 Inhibition Effects 

Methanol and th1osulfate were reported to have 

inhibitory effects on nitrification (Beccari, 1980; Hooper 

et al., 1973). Throughout this experiment both nitrifi

cation and denitrification seemed to be inhibited. Acetate 

was fed to the system due to its lack of inhibition effect 

on n1trification. However, its effect on the coupled 

react1on rates was very s1milar to that of methanol and 

thiosulfate. Some other mechanisms must have been 1n action. 
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All the electron donors added to the reactor were 

favored by denitrifiers at anoxic conditions. If only 

nitrification were inhibited, when a large amount of 

electron donor was added to the coupling reaction, there 

should have been no n1trate or nitrite left in the effluent. 

However, Tables XIV and XV show that when concentrations of 

electron donors were increased, both nitrification and 

denitrification were slowed. At the same time, tremendous 

floes accumulated in the reactor and the aeration bottle. 

Considering the large recycle rate utilized, the effects of 

inhibition should not be so large. All of this suggests 

that the nitrif1cation rate was likely not affected by 

inhibitors, but by low oxygen content, which was caused by 

co-oxidation of the electron donors added for denitrifi

cation. Oxidation of those substrates competed for oxygen 

with ammonia oxidation. At the same time, the availability 

of electron donors to the denitrifiers was also depleted. 

5.6 DO Effects 

Th1s system lacked means to strictly control DO. The 

DO in this experiment was controlled by adjusting the 

aeration rate and adjusting the amount of air bubbles intro

duced into the reactor through recycle tubing. 

It was found that when DO 1n the upper end of the 

reactor was much higher than about 2.0 mg/L, nitrification 

improved, but denitr1fication was slowed, result1ng in an 

overall reduction of nitrogen removal. Conversely, when DO 



was set too low, n1tr1£1cat1on was seriously inhibited and 

the availability of oxidized nitrogen forms was limited. 

When DO was controlled around 2.0 mg/L, there was a 

compensation between nitrification and denitrificat1on 

(Table XIX). The results of statistical analyses results 

(Appendix) support the above observations. 
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After running the experiment under this condition with 

750 mg/L sodium acetate as an energy source for 40 days, the 

system outputs remained reasonably steady (Figure 14, 15 and 

Table XVI). 

5.7 Contamination effects 

The MAFAEB 1s an open system filled with mixed attached 

organisms. When the system favored aerobic heterotrophic 

conditions or sulfur-oxidizing conditions, they became 

prominent in the reactor. At the beginning stage of the 

coupling reaction experiments with newly acclimated, mixed, 

attached f1lms, the coup1~ng reaction tended to be com

pletely balanced between nitrification and denitrification 

at a low loading rate (Table XI, day 4). However, both 

nitrification and denitrification conversion rates dropped 

briskly as floes accumulated in the reactor and the aeration 

bottle. This suggests that aerob1c organisms oxid1z1ng 

methanol and th1osulfate predominated 1n the system. After 

returning to only a nitrificat1on feed solution at small 

HRT, the floes were washed out and coupl1ng reaction abil1ty 

was resumed. However, in only a few days, contaminat1on 
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again predominated. To address this situation, the 

concentration of energy sources were greatly reduced (much 

less than stoichiometric needs of denitrifiers) in the rest 

of the experiments. 

By comparing the results in Tables XIII, XIV, and XV, 

it is clear that acetate in the feed solution obstructed 

thiosulfate oxidat1on. However, when the concentration of 

thiosulfate was too high, inhibition to nitrification become 

serious. At the same time, it was found that acetate could 

be used as electron donor for denitrification in the 

coupling reaction system, and there was a maximum nitrogen 

removal rate at the acetate concentration of 750 mg/L. 

The long term coupling reaction experiment (Figure 14 

and 15) was conducted to demonstrate that the contamination 

or co-oxidation problems could be controlled in the coupling 

reaction. Although d1ff1culties existed for exactly 

controlling flow rate and DO, the pH outcomes of the system 

were extremely steady and no s1gnificant floes were 

accumulated in the reactor. This indicate that as long as 

the concentration of energy sources was kept low, a steady 

state reaction could be reached and maintained with a 

somewhat limited nitrogen removal rate. 

5.8 Alkalinity and COD Consumption 

Nitrification consumes large amounts of alkalinity, 

while heterotrophic denitrif1cation produces alkal1nity. 

Table XVII shows that alkalinity consumed per unit ammonium 
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conversion is 6.63 mg Hco~-;mg NH4+-N. Thls figure is much 

lower than the theoretical value of 8.64 (Grady et al., 

1980), because the main product of nitrification in th1s 

experiment was nitrite. During coupling reactions, the 

alkalinity consumptions were even lower; only 5.40 mg 

HCo3-/mg NH4+-N was consumed. The coupling reaction with 

sodium acetate as electron donor and with 34.4% nitrogen 

removal rate can save alkalinity by 20.9% compare with 

nitrification. 

The COD consumption for denitrification in the coupling 

reaction should be lower because one reduction step is saved 

in nitrogen removal. However, Table XVIII shows that total 

COD consumption was higher instead of lower than that of 

heterotrophic denitrificat1on. This also supports the con

clusion that part of the electron donor supply was oxidized 

through aerobic competition. 



CHAPTER VI 

CONCLUSIONS 

1. This research has shown that autotrophic and heterotro

phic denitrifiers can be attached together on support 

media, and simultaneous growth can be achieved in both 

batch acclimation and mixed attached growth. However, 

their contr1butions to denitr1fication depend on what 

kind of electron acceptor is available. When nitrite 

was used as electron acceptor, both thiosulfate and 

methanol were util1zed more effectively than with 

nitrate as electron acceptor. When nitrate was used as 

electron acceptor, the contribution from thiosulfate to 

denitrification was very limited. 

2. For denitrlfication, the electron donor requ1rement can 

be lowered with nitr1te instead of nitrate as electron 

acceptor. In the coupling reaction system, however, 

COD consumption is higher than in denitrification, 

apparently due to co-oxidat1on. 

3. Nitrifiers can be easily attached onto an existing 

attached den1tr1fying f1lm layer. The m1xed attached 

films demonstrated both nitrification and denitri

fication abilities. 
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4. The MAFAEB system can be used for either nitrification 

or denitrification purposes. The capacity for 

denitrification of the system is much higher than that 

for nitrification. At a loading rate of 4.59 g/L-D 

(static volume), the nitrification efficiency was found 

to be 96.8%, while at a denitrification efficiency of 

99.6%, the loading rate was ~ 13.98 g/L-D (static 

volume) . ' 

5. coupled nitrification and denitrification reactions can 

occur in MAFAEB system. The DO should be maintained at 

about 2 mg/L. Higher DO will sacrifice denitrification 

with improvement of nitrification but reduction of 

total nitrogen removal, while lower DO will sacrifice 

nitrif1cation without 1mproving nitrogen removal. 

6. Methanol, sodium thiosulfate, and sodium acetate can be 

used as electron donors for operation in the coupling 

reaction mode. Acetate affects thiosulfate oxidation. 

At high concentrat1ons, all can be oxidized by 

competing bacteria. When this occurs, nitrification 

will be l1mited by a shortage of oxygen, while denitri

fication will be limited by a shortage of electron 

donors. 

7. Compared to pure nitrification or denitrification 

operation, coupling reactions with sodium acetate as 

electron donor (34.4% nitrogen removal rate) can save 

alkal1n1ty by 20.9%. The total COD consumption per un1t 

nitrogen removal in the coupling reaction is higher 
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than that in heterotrophic denitrification due to some 

electron donors being oxidized through competing 

aerobic reactions. 

8. Contamination or co-oxidation problems are not destruc

tlve to coupling reaction. Steady state reaction can 

be maintained at low electron donor concentrations. 



CHAPTER VII 

SIGNIFICANCE OF THE STUDY 

This is the first effort of which the author is aware 

to couple nitrification and denitrification through a 

shortened pathway in a single mixed attached film aerated 

expanded bed reactor. This investigation also included 

simultaneous growth of autotrophic and heterotrophic 

denitrifiers and utilization of the MAFAEB system in either 

nitrification and denitrification mode. 

This study demonstrated that coupl1ng reactions do 

occur in a single MAFAEB reactor, and a steady state 

reaction can be reached and mainta1ned as long as the 

electron donor concentration is relatively low. 

One poss1ble appl1cation of the results from this study 

is attached film expanded bed denitrif1cation with mixed 

autotrophic and heterotrophic denitrifiers. In th1s way, 

both organic and inorganic electron donors can be util1zed. 

If controlled well, no alkalinity adjustment will be 

necessary. 

Another possible usage is to develop attached 

nitrifiers through first attaching denitrifiers on the 

support med1a, then attach1ng nitr1fiers on the denitrifying 

bacteria layer. In this way, much time and chemicals can be 
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Since this system can be used as both a nitrification 

and denitrificat1on system, it may be used as an lnter

mediate stage between nitrification and denitrification 

facilities where nitrogen must be totally removed. This 

system can be used as a buffer to compensate the capacity 

deficiency between the two facilities when waste charac

teristics or operat1ng conditions vary. 
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Where nitrification 1s mandatory while oxidized 

nitrogen forms are not strictly regulated, and also some COD 

is available in the wastewater, this system can be d1rectly 

used to perform nitrification and part1al removal of 

ox1dized nitrogen forms and COD. Thus such a process could 

have a role in industrial pretreatment (particularly for 

oxygen demand reduction). 



CHAPTER VIII 

FURTHER RESEARCH NEEDS 

8.1 coupling Reaction in a 

Strictly Controlled low DO MAFAEB System 

The Results from this experiment demonstrated that 

coupling nitrification and denitrification through a 

shortened nitrite pathway is possible. However, there was 

no means to strictly control DO throughout this research 

period so that the optimized DO conditions and maximum 

loading rate for coupling reaction could not be assessed. 

If DO could be effectively controlled at exact values around 

or lower than 2 mg/L all the time, and sufficient oxygen 

could be supplied for nitrification, the control and extent 

of the coupling reaction should be largely improved. 

8.2 Coupling Redction 

at Elevated Temperatures 

This exper1ment was carr1ed out at room temperature. 

During this per1od, the room temperature was 17 - 22°C. Due 

to the heat released by nitrif1cation and denitrificat1on, 

the temperature 1n the reactors was always 2 - 56 C h1gher 

than the room temperature. 

S1nce both nitrification and denitriflcation are 
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temperature dependent, reaction rates will be increased at 

higher temperatures. The effects of temperature on coupling 

reactions may deserve further investigation. 

8.3 The Maximum Loading Rate 

for Denitrification with MAFAEB 

without Aeration, 

When the MAFAEB was used without aeration to conduct 

denitrification in this experiment, there was little reduc

tion of denitrification efficiency when the load1ng rate 

reached 14 g No~--N/L-D stat1c volume. The attached biofilm 

particles took on an irregular surface configurat1on. The 

reasons for the extremely high denitrification capacity and 

the deformation of the b1ofilm particles deserve further 

investigations. 

8.4 Nitrification with MAFAEB System 

Diff1culties 1n develop1ng attached films for n1tr1-

fiers were encountered throughout this experiment. One 

possible solution is to attach other organisms, for example, 

heterotroph1c den1trif1ers which tend to be eas1er to attach 

on support media, before acclimating nitrifiers onto the 

same media. 

The nitrif1cat1on efficiency of the n1trif1ers 

developed 1n this experiment 1s lower than that of Coll1ns 

et al. (1991) and Zeng (1992) obtained from AEB reactors. 

However, this lower efficiency was obtained from a short 
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term acclimation and short period of experiment. Long term 

acclimation and nitrification experiment may be needed to 

verify the maximum loading rate under reasonably high nitri

fication efficiency in a mature system. 

8.5 Other Possible Usages 

of the MAFAEB Sy~tem 

Since nltrifiers are much easier to attach on the 

denitrifying blofilm layer than on the bare media surface 

itself, other organ1sms may also have this property. The 

versatility of this system will allow reactions to occur 

under aerob1c or anaerobic cond1tions at different energy 

levels by changing electron acceptors. After specialized 

acclimation, other aerobic, anaerobic, or facultat1ve 

organisms may be developed on this system. If energy and 

nutrient conditions favor biodegradation of some particular 

substances, for example, TCE, pesticides or herbicides, 

those reactions may also be conducted 1n this type of 

system. 
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EFFICIENCY AND NITROGEN REMOVAL RATE 

AT DIFFERENT DO CONCENTRATIONS 
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TITLE 'TWO POPULATION T-TEST FOR NITRIFICATION EFFICIENCY AT 
HIGH DO AND MIDDLE DO'; 
OPTIONS PS=60; 
DATA TTEST; 
INPUT POPULATION$ NITRIFICATION EFFICIENCY; 
CARDS; 
HIGH 80.00 
HIGH 78.35 
HIGH 78.57 
HIGH 68.62 
HIGH 82.50 
HIGH 83.35 
HIGH 64.84 
HIGH 78.50 
HIGH 66.82 
HIGH 82.82 
MIDDLE 77.14 
MIDDLE 74.11 
MIDDLE 74.95 
MIDDLE 76.59 
MIDDLE 74.80 
MIDDLE 70.68 
MIDDLE 70.45 
MIDDLE 68.09 
; 
PROC TTEST; 

CLASS POPULATION; 
VAR NITRIFICATION EFFICIENCY; 

RUN; 

TTEST PROCEDURE 

Variable: NITRIFICATION EFFIEIENCY 

POPULATION 

HIGH 
MIDDLE 

Variances 

N 

10 
8 

T 

Mean 

76.43700000 
73.35125000 

OF 

Std Dev 

6.98040917 
3.23614161 

Prob>ITI 

0.2361 

Std Error 

2.20739920 
1.14414884 

Unequal 
Equal 

1.2411 
1.1502 

13.3 
16.0 0.2670 --> Fail to reJect, 

no significant difference. 

For HO: Variances are equal, F' = 4.65 OF = ( 9 I 7) 

Prob>F' = 0.0550 --> Fail to reJect, no sign1ficant 

difference. 
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TITLE 'TWO POPULATION T-TEST FOR NITRIFICATION EFFICIENCY AT 
MIDDLE AND LOW DO'; 
OPTIONS PS=60; 
DATA TTEST; 
INPUT POPULATION$ NITRIFICATION EFFICIENCY; 
CARDS; 
MIDDLE 77.14 
MIDDLE 74.11 
MIDDLE 74.95 
MIDDLE 76.59 
MIDDLE 74.80 
MIDDLE 70.68 
MIDDLE 70.45 
MIDDLE 68.09 
LOW 67.84 
LOW 57.50 
LOW 56.27 
LOW 57.00 
LOW 71.45 
LOW 70.59 
LOW 70.53 
LOW 79.73 
LOW 68.74 . , 
PROC TTEST; 

CLASS POPULATION; 
VAR NITRIFICATION EFFICIENCY; 

RUN; 

TTEST PROCEDURE 

Variable: NITRIFICATION EFFICIENCY 

POPULATION N Mean Std Dev Std Error 

LOW 
MIDDLE 

9 
8 

66.62777778 
73.35125000 

8.02397622 
3.23614161 

2.67465874 
1.14414884 

Variances T DF Prob>ITI 

Unequal -2.3112 10.8 0.0417 --> Reject, 
Equal -2.2093 15.0 0.0431 s1gnificantly 

different. 

For HO: Variances are equal, F' = 6.15 DF = ( 8 I 7 ) 

Prob>F' = 0.0270 --> ReJect, sign1£1cantly d1fferent. 



TITLE 'TWO POPULATION T-TEST FOR NITROGEN REMOVAL RATE AT 
HIGH AND MIDDLE DO'; 
OPTIONS PS=60; 
DATA TTEST; 
INPUT POPULATION$ NITROGEN REMOVAL RATE; 
CARDS; 
HIGH 0.95 
HIGH 0.85 
HIGH 0.78 
HIGH 0.77 
HIGH 0.90 
HIGH 0.69 
HIGH 0.92 
HIGH 0.83 
HIGH 1.01 
HIGH 1. 03 
MIDDLE 1.13 
MIDDLE 1.01 
MIDDLE 0.89 
MIDDLE 1.00 
MIDDLE 1. 03 
MIDDLE 0.94 
MIDDLE 0.94 
MIDDLE 1. 05 . , 
PROC TTEST; 

CLASS POPULATION; 
VAR NITROGEN REMOVAL RATE; 

RUN; 

TTEST PROCEDURE 

Var1able: NITROGEN REMOVAL RATE 
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POPULATION N Mean Std Dev Std Error: 

HIGH 
MIDDLE 

Variances 

Unequal 
Equal 

10 
8 

T 

-2.8833 
-2.7649 

0.87300000 
0.99875000 

DF 

15.7 
16.0 

0.10924488 
0.07529703 

P:rob>ITI 

0.0110 

0.03454627 
0.02662152 

0.0138 --> ReJect, 
sign1f1cantly 
different. 

For HO: Va:r1ances a:re equal, F' = 2.10 OF = (9,7) 

Prob>F' = 0.3388 --> Fail to :reject, no signif1cant 

difference. 
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TITLE 'TWO POPULATION T-TEST FOR NITROGEN REMOVAL RATE AT 
MIDDLE AND LOW DO'; 
OPTIONS PS=60; 
DATA TTEST; 
INPUT POPULATION$ NITROGEN REMOVAL RATE; 
CARDS; 
MIDDLE 1.13 
MIDDLE 1. 01 
MIDDLE 0.89 
MIDDLE 1.00 
MIDDLE 1.03 
MIDDLE 0.94 
MIDDLE 0.94 
MIDDLE 1. 05 
LOW 0. 95 
LOW 0.82 
LOW 0.64 
LOW 0.99 
LOW 1.08 
LOW 1.23 
LOW 1.04 
LOW 1. 24 
LOW 1. 05 . , 
PROC TTEST; 

CLASS POPULATION; 
VAR NITROGEN REMOVAL RATE; 

RUN; 

TTEST PROCEDURE 

Variable: NITROGEN REMOVAL RATE 

POPULATION N 

LOW 
MIDDLE 

Variances 

Unequal 
Equal 

9 
8 

T 

0.0833 
0.0796 

Mean 

1.00444444 
0.99875000 

DF 

10.7 
15.0 

For HO: Variances are equal, F' 

Std Dev 

0.18888562 
0.07529703 

Prob>ITI 

0.9351 --> 
0.9376 

= 6.29 DF 

Std Error 

0.06296187 
0.02662152 

Fall to reJect, 
no significant 
difference. 

= ( 8 , 7 ) 

Prob>F' = 0.0253 --> ReJect, significantly different. 
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