
AN OBJECI'-ORIENTED PROTOTYPING ENVIRONMENT -
FOR ARCIDTE~S AND OPERATING SYSTEMS

t f ~ '

BY

KHALED M. JIASSAN

Bachelor of Civil.Engineering

Cairo University

Cairo, Egypt

1986

Submitted to the Faculty of the
Graduate q>llege of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of .

MAS1ER OF SCIENCE-.
December, 1992

Oft/ahoma State Univ. libralf

AN OBJECT-ORIENTED PROTOTYPING ENVIRONMENT

FOR ARCHITECTURES AND OPERATING SYSTEMS

Thesis Approved: "

. M. s-~a-~ lz_{-)1.

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Mansur H. Samadzadeh for his

advisement, guidance, dedication, encolira.gement, and instruction throughout my thesis

research work. Without his support, motivation, and patience it would have been difficult

to complete this work as it is now.

My sincere thanks to Drs. G. E. Hedrick and B. E. Mayfield for serving on my

graduate committee. Their suggestions and support were very helpful throughout the

study.

I would like to extend my deepest appreciation to Mr. Ik-Jeong Jhun for his help

and advice that helped me improve this work. I also wish to thank my family for their

support in completing my graduate studies.

iii

TABLE OF CONTENTS

Chapter Page

" '

I. IN'mODUCfiON ,. ~ .. ·'.1

" II. OBJECT-ORIENTED PROGRAMMING 4

2.1 Inheriting· Instance Variables Safely . 5
2.2 Multiple Inheritance • .6
2.3 Separation of Interface and Implementation 7

2.3.1 Separate Class and Implementation Modules 7
2.3.2 Extension of C++ 8

2.4 Classes Versus Prototypes ·•.......•....... ' .• 10
2.5 Other Concepts .12

ill. PARALLEL PROGRAMMING• 13

3.1 Multiprocessors . 13
3.1.1 Classification : . 14
3.1.2 Properties . 15

3.2 Partitioning and Scheduling . ·. 15
3.3 Writing Concurrent Progx:ams . • . . 16
3.4 Concurrent Programming on Personal Computers 17
3.5 Parallelism in Object-Oriented Programming Languages • 18

IV. IMPLEMENTATION ISSUES •............................•...... 21

4.1 Main Elements of the Package • 21
4.2 Parallel Processing in the Package . 22
4.3 Relations among Classes•...... 24
4.4 Communication among Objects · ~ ..•.......•..••...... 26
4.5 Interface. • • • . . • • ~ 27
4. 6 Help Option. . • • ~ • . • • 29
4. 7 Stochastic Processes and Queueing•... 29
4.8 Object-Oriented Approach • • . • . • • • . 30

V. EVALUATION .. 32

iv

Chapter Page

S .l Using th.e Package . •32
5.2 I...essons I...eamed. • 33

VI. SUMMARY AND FUTURE WORK 35

6.1 Summary 35
6.2 Future Work • • .36

REF'EREN CES . 38

APPENDICES • • . 41

APPENDIX A- Glossary and Trademark Information•........ 42

APPENDIX B -Main Element of the Package 44
' '

APPENDIX C - Program Listing•.................... 46

APPENDIX D- Ran~m Number Generator Class Code Listing •......... 106

APPENDIX E - User Manual 109

APPENDIX F -Pro~r Manual ..•••••••••••.•••••••••••••••• 114

v

LIST OF FIGURES

Figure Page

1. Example of separate interface and implementation modules.8

2. Example of separate interface and implementation classes9

3. Asynchronous passing and synchronous execution 19

4. Asynchronous passing and asynchronous execution. 19

5. Synchronous passing and asynchronous execution 20

6. Example of component declarations . 22

7. Two separate systems load and execute their jobs in parallel 23

8. Load jobs in sequence using one loader, and execute two of them in parallel
with the third .24

9. Relations among classes . 25

10. Communication among classes 27

11. The debugger interface -................................. 28

12. A queueing model of the dynamics of the current implementation of the
package ... 29

vi

CHAPTER I

INTRODUCTION

The dramatic increase in the speed of computers in performing a typical

instruction -from one tenth of a second to nanoseconds - has come. about mainly as a

result of the progress in electronic logic technology. During the last few years, it appears

that it is progressively more difficult to increase the speed of computers only by

upgrading the switchfug 'logic technology, hence there is a need to have parallel

processing as a way to have faster computers. In other words, we can say that MIMD

multiprocessors - multiple instruction-stream.s and multiple data-streams - are going to be

the computers of the future.

This relatively new technique of programming - concurrent programming -

introduces new kinds of correctness and performance problems that do not occur in

sequential programming for programmers. Mutual exclusion, deadlock, and starvation are

examples of correctness difficulties. The main issue in performance is the dramatic

difference in execution of a given partitioned program on different multiprocessors. In

addition to these problems there are many details in the creation of tasks, mutual

exclusion, and waiting for events, that the programmer needs to be aware of [Sarkar89].

Decomposition into tasks is a COJ:!liilOn approach utilized to organize programs that

have a number of independent "parts" (i.e., units that can be executed at the same time).

Such programs can be implemented as a set of tasks to make their implementation more

1

2

efficient. Each program may need to spawn other subtasks, thus making the program's_

set of tasks change dynamically. The encapsulated declaration of tasks keeps many

details inside their implementations, so that a programmer can concentrate on the

implementation of one task or the communication among tasks.

Object -oriented programming, because of its support of sharing interfaces, sharing

code, and reusable software, seems to be a promising solution to the increase in software

complexity especially the increase in the complexity of operating systems [Russo91a],

[Russo91b], [Cahill91], [Shapiro91]. Different methods of implementation for

object-oriented operating systems are discussed by Finlayson [Finlayson91].

Object-oriented operating systems are an attempt to address the problem of

operating system complexity and provide support for distributed systems. There is a need

for an object -oriented package or prototyping system to help prototype these new

operating systems.

In this thesis a package of classes was created to give the user the ability to

prototype various operating system models. In each prototyped operating system, jobs

written in hexadecimal code can be handled and the instructions constituting each job can

execute. In this first version of the package, the input jobs are in hexadecimal to avoid

the added burden of implementing a compiler for a specific language and tie the package

to this language. The package gives its user the ability to create complicated models

which have more than one memory, loader, and/or cpu (as mentioned in section 4, in this
I

thesis, cpu denotes class cpu and CPU denotes the simulation of the central processing

unit of the architecture being modeled). The system also provides a debugging option to

give the package user the ability to follow the execution of jobs, instruction by

3

instruction, through four windows in the default debugger. One window contains the user

options, the second the register values, the third the instruction decoding information, and

the fourth general information about a job such as its id, the memory allocated to it, and

the CPU executing it

Chapter II of this thesis gives a ~ef discussion about the object-oriented

programming concepts. Chapter m briefly discusses' parallel programming and parallelism

in object-oriented languages. The implementation of the package is discussed in detail

in Chapter N. Evaluation of the package is included in Chapter V. Chapter VI contains

the summary and some possible areas of future work.

CHAPTER IT

OBJECf -ORIENTED PROGRAMMING

Object-oriented programming is derived from Simula 67 [Kirkerud89] and is based

on the concept of an "object" [Nygaard86]. Object-oriented programming is a technique

that facilitates code reuse. Encapsulation, data abstraction, and inheritance are examples

of its important features, which are defmed below.

Classes of objects and operations on objects are the main components of

object-oriented languages. Operations, when invoked, operate on multiple type of objects,

and classes may share components by inheritance.

The designer of an object-oriented package defines classes and declares objects

as instances of those classes. Each object has its own state consisting of instance

variables and methods implemen~ in the object's class. A class (a child or a descendant

class) can inherit the defmition of other classes (a parent or an ancestor class). The object

client of the package does not need to understand anything about the implementation of

the package classes. The object client just uses objects operations. Changes in the

implementation of the package classes, which support the old external interface, do not

affect the object client code.

In object-oriented languages, data abstraction is implemented by the encapsulation

technique. This means that the code of the object client of a class depends only on the

4

5

class interface. Hence, the implementation of a class' methods can change without

affecting the object client code, while the new implementation supports the old interface.

Inheritance helps form new classes from the existing classes. A new class ~an

inherit methods, functions in other classes, by reusing parts of the implementations of

these exis~g classes. The external in~J!~ f~ inh~ritance_ clie~~ ~_general is less

restrictive than the external interface for object clients, this is a potential weak point in
::-;;;7--- Ce:··- ~~-- , __

class encapsulation [Snyder86].

2.1 Inheriting Instance Variables Safely

If the code in an inheriting class can access the instance variables of one of its
I

ancestors, then the designer of that ancestor class will not be able tQ rename or remove . ..-- -~ .,-~ . .- - - ~

those instance variables without aff~ti!!g tfte _inheritance client code- or descendant

. classes. By using the same technique ~ the one used in objects interfaces, this problem

can be solved. In other words, the descendant classes need to use certain operations tb

access the instance variables of their ancestor classes instead of their direct use of these
I'~ i 1

vru:iables [Snyder86].

Using the self invocation (e.g., the "this" invocation in C++) is not agequate to call
, ~ .. ~~·~<• ~--~~a.~¥,~

an operation from a parent class. Object-oriented languages need to suppot! a new

invocation for parent classes such as a super invocation, or use the name of the parent
~~~-,:.~-~"""~,_--~, i 

class in front of the operation name [Snyder86] . ...._____ __ » 

Some object-oriented languages tie subtyping with inheritance. In such cases, if 
' 

the designer changes the inheritance of a class from one p~nt to another, the object 

client code will be illegal if it uses the subtyping relation between the existing classes; -



6 

although the class still has the same external interface. Subtyping may need to be 

separated frog;Unheritance and depend only on the class behavior [Snyder86]. 

2.2 Multiple Inheritance , 

Multiple inheritance means that a class may have more than one parent 

Compilers of object-oriented languages have different strategies to handle multiple 

inheritance [Snyder86]. Three strategies, namely graph-oriented, linear-oriented, and tree­

oriented inheritance, are briefly d~scribed below. 

The inheritance graph is modeled' directly in the graph-oriented strategy. A 

problem arises when a class inherits operations with the same name from more than one 

parent One solution of this name resolution problem is to redefine the operation in the 

descendant class. By doing so, the parent operation can be invoked unambiguously in this 

new definition. Another technique for name resolution is choosing the operation of the 

first parent that has been implemented. However, this technique seems rather arbitrary. 

A third technique is to make any conflict ,an error, except if it is for the same inherited 

operation. However, this method puts inheritance in the external interface of the class. 

Thus, the object client code will be illegal, as a result of the name conflict between two 

different methods, if the class under consideration reinherits from another ancestor class 

which has an operation with the same name. 

The linear-oriented strategy flattens the inheritance graph to a linear chain. One 

of its drawbacks is that one of the parents of a class will be its immediate parent in the 

linear order and conflicting operations among the parents of the class will be selected 

from this immediate parent without any good choice between this parent and others 



7 

except the text order, also the difficulty of communication between a class and its "real" 

parent(s), because another parent may be between the class and its "real" parent(s). 

In the tree-oriented inheritance strategy, the conflict between different parents is 

always an error. Each parent in multiple inheritance has a set of its instance variables for 

each inheritance path. 

2.3 Separation of Interface and Implementation 

There are a number of representations for separating the interface from the 

implementation in different object-oriented languages. Each representation is built based 

on a different set of rules. Two representations are discussed in the following subsections. 

2.3.1 Separate Oass and Implementation Modules 

In this representation, subtyping is defmed in the "class" module, where the 

supertype is a parameter of the class (see Figure 1). For example, the interface of class 

"A" is inherited in class "B" without its implementation. 

Operations are inherited virtually, so they use dynamic binding to find the object 

type to be executed on at run time, while the implementation can be inherited in the 

implementation module by the "use" clause or reimplemented in the implementation 

module [Ancona91]. For example, in class B, operation D reimplemented, while 

operation C inherits its implementation from class A. It is clear that multiple inheritance 

can be implemented by selecting operations from different parents. 



class A; 
procedure C( ... ); 
function D( ... ): ... ; 
end A. 
class B(A); 
procedure E( ... ); 

end B. 
module B; of B use C; 
procedure E( ... ); 
begin 

end E; 
function D( ... ): ... ; 
begin 

endD; 
end B. 

Figure 1. Example of Separate interface and implementation modules 

2.3.2 Extension of C++ 

8 

By adding new keywords such as "interface", "implement", and "reuse", by using 

virtual base classes, virtual functions, and multiple inheritance features, and by 

implementing a C++ preprocessor to convert the new C++ code to a standard C++ code, 

the ne~ C++ extension supports classes with separate interface and implementation 

[Marttn91]. This strategy gives a program the capability of executing in distributed 

systems by having one global interface and multiple local implementations on each node. 

In the example in Figure 2 (similar to an example in [Martin91]), the interface 

' 
Stop_place inherits both PeopleWait and Port interfaces and adds its needed methods. 



9 

The class Queue_people uses the People Wait interface and has the implementation of its 

methods. The class Bus_stop uses the Stop_place interface, inherits the needed 

implementation from the class Queue_People, and adds the implementation for the rest 

of its methods. 

interface PeopleWait { 
put(person *); 
person *get(); 
int size(); 

}; 
interface Port { 

city *distance(); 
time *time_needed(); 

}; 
interface Stop_place : PeopleWait, Port { , 

boolean covered(); 
}; 

class Queue_people implements PeopleWait { 
person *head, *tail; 

public: Queue_people() { head=tail=NULL; } 
put(person *p ); 
person *get(); 
int size(); 

}; 

class Bus_stop implements Stop_place reuses 
public:Queue_people { boolean cover; 

public: Bus_stop(boolean cv) { cover=cv; } 
city *distance(); 
time *time_needed(); 
boolean covered() { return cover; } 

}; 

Figure 2. Example of separate interface and implementation classes 



10 

It is easy to have different implementations for the Stop_place interface at the 

same time. This technique needs some of the extensions provided by "C++" such as its 

support of the inheritance of pure virtual functions [Martin91]. 

All these methods add to the cost overhead in terms of storage, compiling time, 

and execution time. More work is needed to devise languages that support, in their 

design philosophy, the separation of interface (subtyping) and implementation 

(inheritance). 

2.4 Classes Versus Prototypes 

As a result of the class representation problems of object-oriented languages, 

researchers have tried to find new object-oriented representations. There is a belief that 

prototype-based languages will be free of many class-based languages' problems 

[Borning86]. 

In the class-based languages, because of the objects' message protocol, there must 

be at least one class created for any object. The language will be more complicated if 

classes themselves are objects. In this case, classes need to be instances of metaclasses 

to understand initialization messages. On the other hand, object clients have to move to 

the abstract (class) level to create new classes whenever they need to design a new object. 

In the prototype-based languages, a new object is a modified copy of a prototype. 

Each object has its state and behavior and can change both of them. The state of an 

object is a set of named fields. Its behavior has two components, a method dictionary 

and a protocol. An object contains a protocol for message description, a protocol for 

message arguments, and a protocol for the messages' returned results. 



11 

In prototype-based languages, there is a separate inheritance method for each part 

of the object. The inheritance client can inherit object field names, behaviors, or 

protocols separately. This means that we have separate subtyping (protocol reuse) and 

inheritance (implementation reuse). 

When using the prototype technique, it does not mean that there are no classes in 

the prototype-based languages at all. Objects, which have the same field names, methods 

dictionary, and protocols, may be put together in one class. Similarly, instead of having 

multiple methods in a dictionary, they may be divided into subclasses and superclasses. 

Prototype-based and class-based languages can be compared in terms of their 

advantages and disadvantages. The prototype-based technique is simpler than the 

class-based technique because in the prototype-based techniques the prototypes can be 

considered objects and hence there are no classes or metaclasses. Each object is created 

with its initial values and may have its unique behavior. This technique also gives the 

ability to separate the interface and the implementation. 

On the other hand, prototypes may not be reasonable for some types such as 

integers, stacks, or queues. Prototype-based languages have their own problems, for 

example, a programmer may modify a prototype intentionally, as an object, which will 

affect all objects created from that prototype. Copying an object just to change a few 

values in it may not be efficient in some cases. Generally, it is easy to avoid these 

drawbacks by imposing some protection on the prototype messages and having more 

efficient ways of copying objects [Borning86]. 



12 

2.5 Other Concepts 

Encapsulation, inheritance, and separation of interface and implementation are 

some of the important aspects of object-oriented design. The object-oriented design of 

a software package must incorporate other principles such as exception handling, type 

parameterization, and reflection. These concepts are at the center of the design of most 

object-oriented software libraries that have been implemented so far [Gorlen87] and 

[Booch90]. 



CHAPTER ill 

PARALLEL PROGRAMMING 

There are many sequential languages (e.g., C, FOR~, and Pascal) that have 

been upgraded to have parallelism, but few new basically parallel languages (e.g., Ada) 

have been defmed. The use of upgraded languages can lead to highly obscure and 

unportable code. That is part of the reason why there are not many parallel programs 

running on the available multiprocessor computers [Sarkar89]. 

Programmers are being pushed towards parallel programming to exploit the 

proliferating hardware (i.e., the multiprocessors) to perform peripheral processing on slow 

networks and devices such as disks, terminals, and printers, and to capitalize on the users' 

ability to do more than one thing at the same time [Birre1189]. 

3.1 Multiprocessors 

Multiprocessors are general-purpose, asynchronous parallel machines with multiple 

instruction-streams and multiple data-streams. Multiprocessors can be classified into two 

main classes, tightly-coupled and loosely-coupled [Sarkar89] as described in the following 

sections. 

13 



14 

3.1.1 Classification 

Tightly-coupled and loosely-coupled multiprocessors are briefly discussed in this 

subsection. In tightly-coupled multiprocessors, processors communicate through a shared 

memory (e.g., in Alliant FX8, BBN Butterfly, Denelcor HEP, ELXSI 6400, Encore 

Multimax, ffiM RP3, and Sequent Balance); There are different types of tightly-coupled 

multiprocessor structures including the following. 

1- Shared bus: The bus connects the processing elements to a global shared memory. The 

local memory is used as a private cache. 

2- Shared multiple buses: Multiple buses support more processors than a single bus, but 

the complexity of the system increases. 

3- Hierarchical clusters: The multiprocessor structure is interconnected with an 

inter-cluster bus. 

4- Interconnection network: It avoids bus problems. It connects a number of processing 

elements to a number of shared memory modules. Because it is expensive to build a 

network for a large number of processors, a multistage network is built from smaller 

networks. 

In loosely-coupled multiprocessors, processors communicate by exchanging 

messages (e.g., in Caltech Cosmic Cube, Intel iPSC, NCUBE-10, and workstation-based 

distributed systems). There are different types of loosely-coupled multiprocessor 

structures including the following. 



15 

1- LANs: A local area network can work as a loosely-coupled multiprocessor because it 

has a bus to handle inter-processor messages. 

2- Distributed systems: These systems generally have the same bus structure as LANs and 

can work for programs with large granularity. 

3.1.2 Properties 

There are tradeoffs between the size of program execution granularity and 

multiprocessor scalability. A multiprocessor can support more programs efficiently, if it 

has small granularity (the minimum program granularity value below which performance 

degrades significantly). On the other hand, a parallel program in general can be executed 

more efficiently on a larger number of processors, if it has larger granularity. An increase 

in scalability in general can come at the cost of larger granularity [Sarkar89]. 

3.2 Partitioning and Scheduling 

Partitioning is the process of dividing a program into sequential units called tasks. 

Partitioning is an important issue because of its effect on parallel program execution 

granularity. On the other hand, scheduling (assigning the tasks of the partitioned program 

to processors) is important in attaining a good utilization of the processors. There are in 

general three ways of automatic partitioning and scheduling [Sarkar89] as briefly 

discussed below. 

Although the run-time partitioning and scheduling strategy adds extra overhead 

during program execution, it gives better partitioning and scheduling because of the 



16 

available run-time information which leads to simpler partitioning and scheduling 

algorithms. 

Compile-time partitioning and run-time scheduling is the strategy commonly used. 

The programmer explicitly partitions the program into tasks, while the scheduling of tasks 

on processors is done at run time. 

The compile-time partitioning and scheduling strategy may lead to inefficient 

scheduling because of the possible errors in the estimation of task execution times and 

the associated overhead. 

3.3 Writing Concurrent Programs 

Writing concurrent programs can be difficult compared with writing sequential 

programs, but if the programmer works carefully with a specific technique, (s)he can 

avoid common errors. Birrell [Birrell89] discussed many of these difficulties and 

developed programming writing strategy using threads. 

It is important to have a library of functions as part of the run-time support of the 

operating system to support the programmer. UNIX has its standard library of 

heavyweight processes. Each process has its own resources of time (execution and 

linking time), space (virtual store), and external environment (access to disks and flies). 

These types of heavyweight processes have a high overhead. For example, in BSD 

UNIX, because processes can share environments but not space, creating new processes 

means initializing them with their parents, state. In UNIX System V, although processes 

may share space, each process has its mapping table and registers. Switching between 

these processes is a high-overhead operation. This heavyweight processes' overhead has 



17 

motivated researchers to present lightweight tasks (Gautron in C++ [Gautron91] and 

Finkel [Finkel87]). 

Lightweight prQCesses are resident in a specific address space. Different from 

heavyweight processes, lightweight processes are much faster, because they do not create 

new mapping tables during their calls nor need s~ial instructions during switching 

among them. 

3.4 Concurrent Programming on Personal· Computers 

Systems progt;ammers were among the 'first gt;oup of people to take up concurrent 

progt;amming. More recently, programmers in other fields such as database systems and 

expert systems have become interested in using concurrent progt;amming. As a result of 

this proliferation, the need to have concurrent progt;amming on personal computers has 

increased also. ENSEMBLE [Santo91] is an example of a concurrent programming 

library on personal computers. 

ENSEMBLE is a system library , written in Turbo Pascal for concurrent 

progt;amming on personal computers. The implementation of ENSEMBLE allows a user 
. ' 

to create two important abstractions for an application, coroutines and tasks. In this 

system, a user can create coroutines dynamically. The coroutine mechanism is supported 

by an "Inte;rrupt Handling" procedures to terminate one coroutine, transfer control to 

another one, and later return to the interrupted coroutine. 

As for tasks, a user can create them dynamically and control context switches. 

Tasks may have one of the four states: Sleeping, Ready, Running, or Terminated. The 



18 

task mechanism is supported by a scheduler and queue management routine. 

Implementations for "Semaphores" and "Monitors" are also presented under this system. 

3.5 Parallelism in Object-oriented Programming Languages 

Parallelism in object-oriented environments is a relatively new research area. The 

idea is to create objects that have parallel execution and communication capabilities. Two 

kinds of communication are introduced: synchronous and asynchronous. The ability to 

have many activities within an object, is also introduced in parallel object-oriented 

environment [Corradi90]. 

There are two kinds of objects in such environment: active and passive. Passive 

objects are analogues to objects in other object-oriented languages. Active objects have 

an active role in synchronous and asynchronous communication. Active objects are 

similar to actors in the Actor paradigm [Agha86]. There are two subtypes of these active 

objects, inter-objects that execute in parallel and communicate during their execution, and 

intra-objects that can execute tasks inside themselves concurrently. Intra-objects are 

presented in the active object language PO (Parallel Objects) [Corradi87]. 

The interesting issue in these objects is the ability to inherit this kind of behavior 

from other classes. Communication between objects can be divided into three classes 

depending on the nature of passing and execution [K.oivisto91]. 

In asynchronous passing and synchronous execution, the relation between the 

client and server objects continues from the request to the reply (see Figure 3). This case 

is similar to operation calls in passive objects. 



19 

In asynchronous passing and asynchronous execution, the client object does not 

wait for the reply (see Figure 4). This scheme is used when no reply_ is needed from the 

call. A client object can send many requests to different servers just to activate them. 

Each server object has a queue of requests that may be served FIFO. 

-Client Server 
I * 
I request * 
o-------->* reception 

waiting * 
x acceptance­
! 
1 operation execution 

reply I 
o<--------x end 
I * 
I * 
I * 
I * 

Figure 3. Asynchronous passing and synchronous execution 

Client Server 
I * 
I request * 
o--------->* reception 
I * 
I. * 
I x,acceptance 
I I 
I I operation execution 
I I 
I x end 
I * 
I * 
I * 
I * 

Figure 4. Asynchronous passing and asynchronous execution 



20 

Client Server 
I * 
I request* 

intermediate M o--------->* reception 
entity I * 

I * 
I x acceptance 
I I 
I I operation execution 
I reply I 
1<---------x end 

use of I * 
reply by M o * 

I * 
I * 

Figure 5. Synchronous passing and asynchronous execution 

In synchronous passing and asynchronous execution, the client object does not 

wait for the reply (see Figure 5), although the result may be needed in the future. So 

there is an intermediate entity that receives the answer while the client object can get the 

reply whenever it is needed. The client object can check to see whether the entity has 

the answer or not before suspending itself and waiting for the answer. The intermediate 

entity can be presented as a separate object or as an internal variable in the client object. 



CHAPTERN 

IMPLEMENTATION ISSUES 

The main focus of this thesis is the implementation of a package, or a prototyping 

system, to simulate architectures and operating systems [Hassan92]. The package, which 

is written in C++, attempts to give its user the flexibility to,create a model of the machine 

needed. The package implementation gives the user enough flexibility to prototype 

conventional, parallel, and object-oriented systems. The package uses the object-oriented "' 

approach to contain classes as basic encapsulated components, which the package user can 

use to build (i.e., simulate) a system. These classes include: hex_digit, byte, word, 

registers, storage, memory, disk, page_table, memory_table, loader, instructions, cpu, and 

clock. 

4.1 Main Elements of the Package 

Besides the default sizes of all elements, an object client can declare his/her 

system's elements with needed sizes. For example, the object client may have a 2 or 4-

byte "word", declare a memory with different sizes of words and different page sizes, 

overload the system instruction set to have a new instruction set for his/her CPU 

(henceforth, as a notational convention, we will use cpu for "the class cpu" and CPU for 

"the object cpu" in the object client prototype), or even create a new debugger with 

21 



22 

different windows from the default ones, or overload the class window to have new 

features. 

4.2 Parallel Processing in the Package 

Creating loader, memory, and/or CPU is done independently. In other words, 

different memories, loaders, and/or CPU's can be created each with its unique features 

(see Figure 6). These instantiations can communicate easily in a parallel processing 

environment. For example, a loader can load jobs into a memory while one (or more) 

CPU executes other jobs in the same memory at the same time, also probably in other 

memories at the same time. 

loader 11 ,12,13; 
//declare three loaders 

memory m1(128,5),m2,m3; 

ins_set instl; 
ins_set2 inst2; 

//declare three memories 

//declare two instruction sets 
cpu c 1 (&ins 1 ),c2( &ins2),c3( &ins2); 

//declare three cpu's 

Figure 6. Examples of component declarations 

In Figures 7 and 8, a parallel processing case is simulated to show how easy it is 

to use this package to model a multi-processor system. After declaring a system's 

components of (loaders, memories, and CPU's), it is straightforward to have different 

processes each use its own loader as well as its own memory and CPU. 



23 

Furthermore, in a more complicated system we may have a shared memory in 

which more than one loader can load new jobs at the same time, and more than one CPU 

may execute different ready jobs from this memory. To guarantee the integrity of the 

memory contents and to guard against the race condition and the readers/writers problem, 

the contents of memory must be protected. There are two ways that this protection can 

be enforced. The addition of a semaphore (one for all of the memory _table) in the class 

memory _table to protect its elements from being accessed by other CPU's and loaders, 

or the addition of a semaphore to class mem_element so that no more than one CPU or 

loader can access the mem_element at the same time, but more than one mem_element 

object can be accessed at the same time. 

loader 11 ,12; 
//declare two loaders 

memory ml,m2; 
//declare two memories 

ins_set instl; 
I /declare an instruction set 

cpu cl(&insl),c2(&insl); 

int i=fork(); 
if (i=O) { 

//declare two CPU's 

ll.load(jobs l,ml); 
//load jobs in memory ml 

cl.runjob_from(ml); 
//execute jobs from memory ml 

} 
else { 12.1oad(jobs2,m2); 

//load jobs in m~mory m2 
c2.runjob_from(m2); 

//execute jobs from memory m2 
} 

Figure 7. Two separate systems load and execute their jobs in parallel 



loader 11; 
I /declare a loader 

memory m1(128,5),m2,m3; 

ins_set instl; 
ins_set2 inst2; 

//declare three memories 

//declare two instruction sets 
cpu cl(&insl),c2(&ins2),c3(&ins2); 

//declare three CPU's 
ll.loadGobsl,ml); 
ll.loadGobs2,m2); 
ll.loadGobs3,m3); 

//load jobs in memories ml, m2, and m3 
int i=fork(); 

if (i=O) { 
c l.run_job_from(ml ); 

//execute jobs from memory ml 
c2.run_job_from(m2); 

//execute jobs from memory m2 
} 

else c3.run_job_from(m3); 
//execute jobs from memory m3 

Figure 8. Load jobs in sequence using one loader, and execute two of 
them in parallel with the third 

4.3 Relations among Classel/ 

24 

Different relations among the package's classes are represented using 

object-oriented programming features such as the following. 

1- We have single inheritance in this package or prototyping system (the "is a" relation). 

Examples include the classes byte, pt_element, and pcb_element from the class ve.ct, the 
\ 

class register from the cl~s word, and the class memory. from the class storage. 



25 

2- We also have multiple inheritance of the class mem_element from both classes 

pcb_element and page_table. 

3- There is another relation among classes besides inheritance (see Figure 9), some 

objects have object instance variables from other classes (tbe ''has a" relation). \ 

memory 

memory_tabJe 

8888 .. 8 
atorage 

[!1[!J[!1[!1 .. [!1 
BBB~-~ 
: . : . . . . . . . 

[!1[!1[!1[!1.[!1 

. memory (a 8torage object 
hu a memory_table ob 

' memory-table (a vactor of 
mem..element ob,lecta) --···-t) 

atorage (a vector of warda) ,.__. 
word 

[!) [!) 1!:1 [!) .. [!) 

mern..alemant 

pcb_element 

1111111111111 -1•1 

mem..elament (a pcb_elamant object 
and • page_tabJe object) 

pob_element (a vector of Jntegera) 
O::JntegerJ 

paga_teble (a vactor of 
pLelement ob)ecta) 
(piE: pLelement) 

pt_elemant pLelement (a vector of Jntegera) 
word (a vector of bvtea ) 1•1111111•111- Iii O::lntqer) 

Figure 9. Relations among classes 

For example, an object of the class storage has an array of word objects, an object 

of the class mem_element has a pcb_element object and the pag~_table object has an 

array of pt_element objects. This case is more complicated in the memory object which 

has a memory _table object, array of mem_element objects, and its body is an array of 

word objects. 



v 
26 

4.4 Communication among Objects 

The processing of each prototype system using the package is based on the 

communication among its objects as outlined below (see Figure 10). 

1- The class loader and its interaction with the class memory and instances of the class 

memory: 

-A loader object interacts with a memory object by calling loader.loadGobs_fue,memory). 
~~~ .... ~~-........ ...-......,. .... -

- The load() function communicates with the memory element, i.e., memory _table, by

using memory.put(vect) to write the new job information into a memory_table element,

i.e., pcb_element.

- The load() function also uses the write() function to communicate with the memory

body to write a new word into the memory location by using the overloading operator

= in the class word.

2- The CPU communicates with the memory to find a ready job from the memory _table

and calls its inst_set object to execute the ready job's instructions one by one from the

memory body.

3- The inst_set communicates with the CPU's registers and the memory body during each

instruction's execution.

4- The Debugger communicates with the ins_set to receive its needed information about

the current instruction to be displayed to the user of the package.

27

pcb_element.,____, 1 • page_table

memory_!able_element

1 memory_table

1
body +--+ memory

loader ---.J~ '---- CPU

1,.. _____ J_set
debugger

Figure 10. Communication among classes.

4.5 Interface

A default debugger was implemented to serve as an interface to the prototype

system. The inheritance client can design his/her own debugger as needed.

The default debugger (see Figure 11) has four windows: REGISTER window,

which displays the current register values, INST. INFO. window which explains the

current instruction, JOB INFO. window which contains general information about the job,

and Options window which contains user options.

Since the class debugger uses the class my_ window, the inheritance client simply

can overload it to add more features or create his/her new customized debugger by using

the class my_ window.

JOB INFO. INST. INFO.

JOB ID: INST.:
MEM. ID: Indirect:
CPU ID: Index reg.:

Arith. reg.:
INST.#:

Mem. loc.:
JOB CLK: Mem. cont.:
CPU CLK:

{main options or print options menu}

>>

Figure 11. The debugger interface

28

REGISTERS

1
2
3
4

The class my_window is easy to use because of the following reasons: Its

constructor has the number of its variables, it has set() method to set the location of each

variable, and to update a variable, it just needs to call the update() method with the

variable number and its new value.

By using parallel processing functions we can run both parts of the package in

parallel. While the debugger is displaying for the user a job's execution steps, the main

program can execute another job and prepare its execution information in a special file

for the debugger.

29

4.6 Help Option

Since this program constitutes a package, it should have some documentation as

a help option. A user can use the help option to choose the class that (s)he needs to

know about and the package will display a window containing information about the class

and its methods. In the current implementation, ·help is a separate program as an

application of using the class my_window from the package's classes.

Arrival

4. 7 Stochastic Processes and Queueing

CPU Service Device Service Departure

Lecend:
Bl: job entr,y queue
R2: I/0 aenice (aponential)
Dl: reacl7 queue (determ.lD1stic)
D2: blocked queue (FCFS)

' Figure 12. A queueing model of the dynamics of the current implementation of the
package ~·-.~.

--"""

30

It is important for operating system designers to effectively analyze how a system

manages its resources. Therefore, users of the package need to be able to monitor and

evaluate the performance of the systems they simulate to tune and streamline how the

system uses its resources.

In order to make the simulation package more realistic, a pseudo-random-number

generator class has been included [Jhun92]. The code for this class is listed in Appendix

D. This class has "inter-arrival times" and "service times" methods ..

Figure 12 shows a queueing model of the package. In this figure, queue Rl is used

to hold the incoming jobs. The arrival times of the jobs is generated with the help of

exponentially distributed inter-arrival times using the pseudo-random-number generator

object The distribution of the I/0 service times is exponential. The detenninistic queue

D 1, is the queue for ready jobs. Various scheduling mechanisms can be used on the Dl

queue. The deterministic queues labeled D2 in Figure 12, are the 1/0 servers queues that

use a FIFO scheduling mechanism.

4.8 Object-Oriented Approach

Object-oriented programs usually concentrate only on the inheritance relation

among classes. However, it is clear from this package that using objects elements in a

class maximizes some of the object-oriented programming advantages such as

encapsulation.

This relation is not less important than inheritance. This idea is useful in

conventional languages, using structures inside structures, but it is more important in

object-oriented languages because of the natures of objects themselves. It is realistic to

31

built new objects from different simpler objects with different behaviors. The unique

behavior of each new object will be partially based on the result of its components'

behaviors.

During the implementation of classes an attempt was made to:

- have as much overloading for the classes' constructors as we can to have more

flexibility to meet the user needs;

- have as much overloading for the operators as we can to simplify the use of classes;

- avoid using friend classes as much as we can because it affects the encapsulation of the

classes; and

- have as few arguments as possible in the methods to give the programmer more freedom

to change his/her class implementations without affecting the application code.

CHAPTER V

EVALUATION

The package has been used in class project of the graduate level operating system

course in the Computer Science Department in Oklahoma State University during Spring

Semester 1992.

5.1 Using the Package

About 35 students in the class used the package for the course project which

consisted of three phases. The goal of the first phase was to give students a chance to

become familiar with the package and its use as a new way to simulate (i.e., to write

simulation programs). The first phase consisted of simulating a simple machine with a

simple operating system to execute one assembly job.

The second phase of the course project consisted of simulating a uniprocessor

multiprogrammed machine with input B:lld output spooling disks to execute a batch file

of about 50 jobs. The goal in this phase was to fmd which configuration (i.e., memory

size, spooling disk size, quantum size, compaction interval, etc.) of the machine/operating

system will give the best system utilization (i.e., cpu, memory, and spooling disk

utilization, among other things). There were a total of over 1000 configurations to be

compared. The third phase of the course project consisted of comparing uniprocessor and

dual processor machine simulations using stochastic arrival patterns and service queues.

32

33

5.2 Lessons Learned

During the use of the package in the graduate-level operating system course, three

types of problems were encountered. The first type of problems was due to the fact that

students were generally not familiar with this type of programming, which involved using

the ready-made elements of a package, in their C code. Familiarity with C++ was not a

prerequisite for the course. 34 out of 35 students used C as their language of simulation.

One student used C++. Because of hiding the implementation details of the package, the

clean design of the interface, and the capability of C++ for incorporating routines written

in other languages, knowledge of C++ did not appear to be a significant advantage. By

separating the package elements' interface and implementation, and providing small

examples in the package's documentation and project specific~tion, most of the students

in the class were able to use the package elements and their different methods relatively

easily.

The second type of problems was rooted in the students' belief that errors and

bugs in their simulations were a result of bugs in the package code itself, which they

could not access. This is a common type of problem that routinely occurs when dealing

with a new and essentially untested software package. In fact, the number of real bugs

found during the semester was unexpectedly low (as few as three bugs). So students

gradually were convinced that the package code was robust enough to be trusted, specially

when they found out that other students had not had similar problems in their simulation

programs.

The third type of problems encountered was because of the platform used for the

implementation of the package and for the course project. The package had been tested

34

under UL TRIX on a VAX 8350; but during the course, the students used the package

under a derivation of UNIX V (DYNIX/ptx) on a Sequent S81 with twenty four 80386-

20MHz processors. The number of different configurations of the simulated machines that

each student had to execute for the performance study part of the second phase of the

course project was more than 1000. As a result of the execution of the 35 students'

simulation programs basically at the same time as foreground jobs, there was a high rate

of swapping between the main memory and the hard disks of the platform machine. This

situation caused a serious degradation of the platform machine's performance for all users

including interactive users. During the same semester, the platform machine was being

used for several other programming courses as well. Altheugh this problem was partially

solved by limiting the number of configurations each student could execute

simultaneously, the problem still persisted at a reduced level of intensity. It should be

added that other than the memory problems, the platform machine performed very well.

It seems that more memory on the platform machine (Sequent S81) will enable it to

match the high processing power of its 24 processors.

CHAPTER VI

SUMMARY AND FUTURE WORK

The package was tested under ULTRlX on a VAX 8350 and under a derivation

of UNIX V (DYNIX/ptx) on a Sequent S81 with twenty four 80386-20MHz processors.

With minor changes, it can be (and in fact it has been) used under DOS on a personal

computer.

6.1 Summary

Because of the popularity of the object-oriented design and programming,

object-oriented operating systems are becoming increasingly more important. They tackle

the problem of operating system complexity. This thesis has addressed the need for an

object-oriented package (a prototyping system) to help simulate existing systems, and to

prototype conventional as well as innovative architectures and operating systems.

Implementing a simulation package generally means that the designer of the

package may have to implement a large number of features which may n~t be used in any

one simulation. So, for a single simulation application, it may be faster to implement the

application using a conventional language than by implementing and then using any

simulation package. However, if there are a large number of simulation applications, then

an object-oriented package, similar to the one described in this thesis, should prove more

economic in terms of the time and programming effort involved.

35

36

A software package consisting of a collection of classes was created to give the

user the ability to prototype various operating system/architecture models. The package

is designed to give its user the ability to create complicated models (perhaps consisting

more than one memory, loader, and/or cpu). A debugging option is included in the

package to give its user the ability to trace, through different windows, jobs' execution.

Parallel processing is introduced in the package implementation by executing some

of the main components such as the debugger and the help option in parallel with the

main simulation. In its current implementation, the package can simulate multiprocessors

systems without inter-process communication between the processors.

The static relation between package classes in the inheritance hierarchy is

discussed in addition to the communication among package objects during a simulation

execution. Since the prototyping system, i.e., the package, has been implemented as a

collection of classes utilizing the object-oriented paradigm, a typical simulation

application's code typically consists of only a few lines, as our initial testing with the

class projects in a graduate-level operating system class suggests.

6.2 Future Work

The package is currently being used to compare different architectural approaches

such as RISC, CISC, and microprogramming. The object-oriented nature of the package

with its inherent support for (multiple) inheritance, the potential for reuse, and its ability

to model different approaches to parallelism provides the possibility of extending the

range of the systems to be simulated to multiprocessors, parallel processors, and even

distributed systems.

37

Different Sequential and parallel systems with no inter-process communication

have been successfully simulated using the package. The default debugger has proven to

be flexible enough to be used to debug the package itself, and to give the users of the

package better understanding of their jobs' execution.

Many features can be added to the package. Synchronization among the

simulations' components is one of the important features that can be added to the

package. Other types of memory management involving virtual memory and cache

memory also need to be added to the package classes. The current implementation of the

schedular is shared between the memory and the cpu classes in the package. Introducing

a separate schedular class will improve the encapsulation of the scheduling functions.

Adding a natural language interface to the package will be a great help for

nonprogrammers to be able to use the package. Adding the ability to control the level of

details of the simulation can give the user the chance to avoid unneeded overhead in the

simulation. Adding different types of debuggers can help meet the different needs of

package users for different types of environments that need to be simulated. Adding a

database system will give the package the ability to convert the data in its proflle files of

the simulation elements to a useful and easy-to-understand piece of information which can

help the user perform the required analysis.

Another direction is to use new C++ features such as exception handling, or new

object-oriented features such as reflection in the package. Also, the package can benefit

from a task library, which is available on the Sequent S81 (the C++ task library), to

arrange for parallel simulation of multiprocessor architectures.

REFERENCES

[Agha86]
G. Agha,ACI'ORS: A Model of Concurrent Computation in Distributed Systems, The MIT
Press, Cambridge, MA, 1986.

[Ancona91]
M. Ancona, "Inheritance and Subtyping", Proceedings of the 1991 Symposium on Applied
Computing (SAC 91), IEEE Computer Society Press (V. Kumar and E. A. Unger, Eds),
Kansas City, MO, pp. 382-388, April 1991. - .

[Birre1189]
A. P. Birrell, "An Introduction to Programming with Threads", Technical Report, Digital
Systems Research Center, Palo Alto, California; 1989.

[Borning86]
A. H. Borning, "Classes versus Prototypes in Object-Oriented Languages", Proceedings
of the Fall Joint Computer Conference, Dallas, Texas, pp. 36-40, November 1986.

[Booch90] .
G. Booch and M. Vilot, "The Design of the C++ Booch Components", Proceedings of
the Object-Oriented Programming Systems, Languages, and Applications Conference
(OOPSIA90!ECOOP), Ottawa, Canada, pp. 1-11, October 1990.

[Cahill91]
V. Cahill and A. Kramer, "OISIN: Operating System Support for Objects in a Distributed
Environment", IEEE Computer Society Technical Committee on Operating Systems and
Application Environments, vol. 5, no. 1, pp. 4-8, Spring 1991.

[Corradi87]
A. Corradi and L. Leonardi, . "An Environment Based on Parallel Objects: PO",
Proceeding of the IEEE Phoenix Conference on Computers and Communications,
Scottsdate, Arizona, February 1987.

[Corradi90]
A. Corradi and L. Leonardi, "Parallelism in Object-Oriented Programming Languages",
Proceedings of the 1990 International Conference on Computer Languages, New Orleans,
LA, pp. 71-80, March 1990.

38

39

[Finkel87]
R. A. Finkel, "Lightweight Tasks under UNIX", Technical Report Number 103-87,
University of Kentucky, Lexington, KY, 1987.

[Finlayson91]
R. S. Finlayson, "Object-Oriented Operating Systems", IEEE Computer Society Technical
Committee on Operating Systems and Application Environments, vol. 5, no. 1, pp. 17-21,
Spring 1991.

[Gautron91]
P. Gautron, "Porting and Extending the C++ Task System with the Support of

Lightweight Processes", Proceedings of the USFNIX C++ Conference, Washington, DC,
pp. 137-146, April 1991. ,

[Gorlen87]
K. Gorlen, "An Object-Oriented aa8s Library for C++", Proceeding of the C++

Workshop, USENIX Association, Santa Fe, NM, November 1987.

[Hassan92]
K. M. Hassan and M. H. Samadzadeh, "An 'Object-Oriented Environment for

Simulation and Evaluation of Architectures", Proceedings of the IEEE 25th Annual
Simulation Symposium in Conjunction with The 1992 SCS Simulation Multiconference,
Orlando, FL, pp. 91-97, April 1992.

[Jhun92]
I. Jhun, K. M. Hassan, and M. H. Samadzadeh, "Simulation of a Computing

Environment Using Stochastic Processes and the Object Oriented Technology",
Proceedings of the 23rd Annual l'ittsburgh Conference on Modeling and Simulation,
Pittsburgh, PA, April 1992. ,

[Kirkerud89]
B. Kirkerud, Object-Oriented, Programming with Simula, Addison-Wesley

Publishing Company, Inc., Wokingham, England,1989.

[Koivisto91]
I. Koivisto and J. Maika, "OTSO- An Object-Oriented Approach to Distributed

Computation", Proceedings of the USENIX C++ Conference, Washington, DC, pp.
163-178, April 1991.

[Martin91]
B. Martin, "The Separation of Interface and Implementation in C++", Proceedings

of the USENIX C++ Conference, Washington, DC, pp. 51-63, April 1991.

40

[Nygaard86]
K. Nygaard, "Basic Concepts in Object Oriented Programming", ACM SIGPLAN

Notices, vol. 21, no. 10, pp. 128-135, October 1986.

[Ralston83]
A. Ralston and D. Reilly, Jr., Encyclopedia of Computer Science and Engineering,

Second Edtion, Van Nostrand Reinhold Publishing Company, Inc., NewYork, NY, 1983.

[Russo91a]
V. F. Russo, "Object-Oriented Operating System Design", IEEE Computer Society

Technical Committee on Operating Systems and Applicatit?n Environments, vol. 5, no. 1,
pp. 34-38, Spring 1991.

[Russo91b]
V. F. Russo, "Process Scheduling and Synchronization in the Renaissance

Object-Oriented Multiprocessor Operating System, Proceedings of the Second USENIX
Symposium on Distributed and Multiprocessor Systems (SEDMS II), Atlanta, GA, pp.
117-132, March 1991.

[Santo91]
M. D. Santo and W. Russo, "The ENSEMBLE System: Concurrent Programming

on a Personal Computer", ACM SIGPLAN Notices, vol. 26, no. 2, pp. 99-108, February
1991.

[Sarkar89]
V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors,

The MIT Press, Cambridge, MA, 1989.

[Shapiro91]
M. Shapiro, "Object-Support Operating Systems", IEEE Computer Society

Technical Committee on Operating Systems and Application Environments, vol. 5, no. 1,
pp. 39-42, Spring 1991.

[Snyder86]
A. Snyder, "Encapsulation and fu.heritance in Object-Oriented Programming
~~ r.::-"""'~'·"-·'"'"''=..,.-'""'''__,>'<.. ""'~,--,M<mf~TT-~

Languages", Pf~1J.8-~,.f!tthe Object-Oriented Programming Systems, Languages, and
Applications Conference (OOPSLA86), Portland, OR, September 1986.

y ' '

/ ~ t / \

\ ~,. f _·,·:,. ;: ,., •J'

'--r,.. .. _

APPENDICES

41

APPENDIX A

GLOSSARY

Asynchronous Parallel Machine: A computer for simultaneous processing of two or
more portions of the same program on two or more processing units [Ralston83].

Coroutines: A mechanism provided in ENSEMBLE [Santo91] which is basically the
same as Modula-2 coroutines.

Designer: The designer of an object-oriented System.

Generai-Purpos~ ~chine: A term used to characterize the capabilities of a computer
to be used for a wide variety of tasks [Ralston83].

Granularity: The average size of a sequential computation unit in a program without
inter-processor synchronization or communication.

Heavyweight Process: A process that has its own resources of time (execution and
linking time), space (virtual store), and external environment (access to disks and files).

Inheritance Client: A user of the Pru;kage that inherits new classes from the package
classes.

Lightweight Process: A process that does not create new mapping tables during its calls
nor needs special instructions during, switChing to another process.

Object Client: A user of the package that instantiates objects from the package classes.

Prototype-Based Languages: Languages where the only way to make a new object is
to make a complete copy of an existing object, copying both state and behavior
[Borning86].

\
Scalability: The ability of a multiprocessor to have a linear increase in speed with an
increase in the number of processors under the assumption that the program has sufficient
parallelism and a large enough granularity.

Subtyping: The rules by which objects of one type (class) are determined to be
acceptable in contexts expecting another type [Snyder86].

42

Tasks: Lightweight processes that share address spaces [Finkel87].

Thread: A single sequential flow of control.

Trademark Information

DYNIX/ptx is a registered trademark of Sequent Computer System, Inc.

Sequent is a trademark of Sequent Computer System, Inc.

UNIX is a registered trademark of AT&T

iPSC and Hypercube are trademarkes of Intel Corporation

VAX is a registered trademark of Digital Equipment Corporation

43

APPENDIXB

N.UUNELEMENTSOFTHEPACKAGE

Some examples of the basic classes in the package and some of their important

operations are included in this appendix.

1- The class vect is a vector of integers. This class is the parent class for some other

classes in the package such as pcb_element and pt_element. Important operations: vect(),

vect(int), vect(int* ,int), and print().

2- The class hex_digit is a vector of four bytes. This class is used as the lowest-level

class in the package systems' implementation. Important operations: hex_ digit(),

hex_digit(int), hex_digit(char), and print().

3- The class byte is a vector of 8 bits. Important operations: byte(), assign(hex_digit,

hex_digit), and print().

4- The class word is a vector of bytes (the exact number of bytes depends on the system

being simulated). Important operations: word(), print(), and operator =(word).

5- The class storage is a vector of words. This class is the parent class of class memory

and can be used as the parent class of class disk in the package. Important operations:

storage(), storage(int), write(int,word), free(), and release(int).

6- The class pcb_element is a subclass of the class vect. Some of its new operations in

addition to the operations of the class vect are: id(), length(), and m_id().

44

45

7- The class pt_element is a subclass of the class yect Some of its new operations in

addition to the class vect operations are: valid(), reference(), and modifredQ.

8- The class memory_table is a vector of mem_element objects. Important operations:

memory_table(), memory_table(int), operator[](int), print(), put(&vector), and get(int).

9-The class memory is a special kind of storage with its own functions and its

memory _table object. It:pportant operation: memory(), memory(int,int), put(vect), get(int),

and dump().

10- The class inst_set contains a set of assembly instructions that the system can execute.

Important operation: decode(word) and execute(word).

11- The class cpu executes each job's instructions using an object of class inst_set whose

type is specified in its constructor. Important operations: cpu(&int_set) and

run_job_from(memory).

12- The class loader is a processing class to handle the loading of jobs in memory.

Important operations: loadGobs_flle,memory).

APPENDIX C

PROGRAM LISTING

/**/
The package attempts to give its'user the flexibility to

create a model of the machine (s) he needs. The package
implementation gives the user enough flexibility to prototype
conventional, parallel, and object-oriented systems. The
package uses the object-oriented approach to contain classes
as basic encapsulated components, which the package user can
use to build his/her system. These classes include: hex
digit, byte, word, registers, storage, memory, disk~
page table, memory table, loader, instructions, cpu, and
clock. -

In the following program listing, each class
documentation consists of: a class header documentation,
listing of the class.h file, and listing of the class.c file.

The class header documentation includes: the class name,
the class variables, and the listing of the class operations.
The class.h file contains the declaration of the class
variables and operations. The class.c file contains the
implementation of the class operations.
/***/

/**/

CLASS: s clock

int time;
int old;

Operations:

1- constructor s clock()
2- constructor s clock(int)
3- void tick ()
4- int t_time ()

5- int now()

6- void set ()
7- void set(int)

46

the clock value
the clock value at
last t time call

initialize to 0
initialize to a value
increment by 1
store the time and
return it
return the time without
storing it
reinitialize to 0
reinitialize to a value

8- int past ()

9- void print()
10- void print(FILE*)

return the time at last
t time() call
print the time to stdio
print the time to a file

47

I** I

#ifndef CLOCK
#define CLOCK

class s clock {
int time;
int old;

public:
s clock();
s-clock(int);
void tick();
int t time () ;
int now();
void set();
void set(int);
int past();
void print();
void print(FILE*);

} ;
#endif

I** I

#include <stream.h>
#include "clock.h"

s_clock::s_clock() { time=O;old=O; }
//initialize clock to 0

s_clock::s_clock(int i) {time= i; old=O; }
//initialize clock to value i

void s_clock::tick() {time++; }
//increment the clock by 1 clock
//cycle

int s clock::t time() { old= time; return(time); }
- - //return the current clock

//and store it in old
int s clock::now() '{ returri(time); }

- , //return the current clock
void s_clock::set() {time= 0; old=O; }

' //reinitialize clock to 0
void s_clock::set(int i) {time= i; qld=O; }

//reset clock value to i
int s_clock::past() { return(time-old); }

//return the time past from last
//call tot time operation call

inline voids clock::print() { cout <<time; }
- //print clock value to stdout

48

inline voids clock::print(FILE* f) {fprintf(f,"%d",time); }
- //print the current clock value to

/Ia file

/**/

/**/

CLASS: vect

int* p;
int size;

Operations:

1- constructor vect()

2- constructor vect(int)

3- constructor vect(int*,int)

4- int ub ()

5- operator [] (int)

6- operator = (vect)
7- void print()

8- -vect ()

pointer to array of integers
the size ,of the vector

create int vector with
size 16
create int vector with
si~e
create int vector from
array
give 1:he upper limit of
the vector (its size)
return an element from
vector
assign two vectors
print the vector to the
stdout
the class destructor

any

an

the

I** I

#ifndef VECTOR
#define VECTOR

class vect {
int* p;
int size;

public:

};

vect ();
vect(int);
int ub ();
int& operator [] (int-);
void operator =(vect&)';
void print();
-vect();

#endif

/**/

#include <stream.h>

#include <stdlib.h>
#include "vect.h"

vect::vect() { size=16; p=new int[size];
//create integer array of size 16

for (int i=O; i<16; i++) p[i]=O;
//initialize vector
//elements to 0

}

vect::vect(int sz)
{
if (sz<=O) { //if size is illegal

vector size " << sz << "\n"; cerr << "illegal
exit(-1);
}

size=sz; //size of vector= sz
p=new int[size];
for (int i=O; i<sz; i++) p[i]=O;

//initialize vector elements to 0
}

inline int vect::ub() { return(size-1); }
//return the maximum number of
//elements that can be in
//the vector

int& vect::operator [](inti)
{

}

if < i < 0 I I i >ub 0 > {
cerr << "illegal
exit(-1);
}

return(p[i]);

//check for the boundary
vector index: " << i << "\n";

void vect: :print()
{
for (int i=O; i<size; i++) cout << p[i] << " ";
}

void vect::operator =(vect& v)
{

int s = (size < v.size) ? size v.size;
//check if new vector has a
//smaller s'ize

if (v.size!=size) cerr << "copy different size
vectors\n";

}

for (int i=O; i<s; i++) p[i] = v.p[i];
//copy elements of the
//new vector in this
//vector elements

49

50

vect : : -vect () { delete (p) ; }

/**/

CLASS: hex_digit

char s; the hex_digit value
static int lb, int ub, char base[16]

Operations:

1- constructor hex digit()
2- constructor hex digit(char)

3- constructor hex_digit(int)
4- char chr ()

5- vect& bin()

6- operator = (hex digit)
7- operator = (char)
8- operator = (int)
9- void print ()

10- void print(FILE*)

initialize to '0'
initialize to a
character
initialize to an integer
return the value as
character
return the v~lue in the
binary' format
assign from hex digit
assign from character
assign from integer
print to stdout
print to a file

/*********************************~********~***************/

#ifndef HIX
#define HIX
#include "vect.h"

class hex digit {
static char base[17];
char s;
int int val;
int lb,-ub;
vect cnv;

public:
hex digit();
hex-digit(char);
hex-digit(int);
char chr();
int int h ();
void operator= (hex digit&);
void operator=(char>T
void operator= (int);
void print.() ;
vpid print(FILE* f);
vect& bin();

} ;
#endif

I** I

CLASS: byte

hex_digit hl,h2;

int intp(int,int,int,int)
Operations:
1- constructor byte()
2- int int_u ()

3- int int_l ()

byte contents in two
hex_digits

create a byte (8 bits)
return integer value of 4
upper bits
return integer value of 4
lower bit;s

51

4- int int_b () return integer value of the
byte

5- int m_ipt_u ()

6- int m_int_l ()

7- void assign(hex d,hex d)
8- void operator =(byte)-
9- void operator =(char*)

10- void print ()

r~turn absolute value of
upper 4 bits
return absolute value of
lower 4 bits
assign 2 hex to a byte
assign to a byte
assign to string
print to stdout

/**/

#ifndef BYTE
#define BYTE

class byte {
int intp(hex digit& h, int f=O);
hex digit hl-;h2;
static char ss[3];

public:
byte();
void operator =(byte&) ; .
void operator =(char*);
char* str();
int int u ();
int int-1();
int m int b () ;
int int b();
int m int u () ;
int m-int -1 ();
void assign(hex_digit&, hex_digit&);

} ;
#endif

I** I

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "vect.h"
#include "hex.h"

#include "byte.h"

byte::byte() { hl='O';h2='0'; } //initialize the byte to
//"00"

52

void byte::operator =(byte& b) { hl=b.hl; h2=b.h2; }
//assign the contents of byte b
//(two hex digits) to the
//contents-of this byte

void byte:~operator =(char* b) {
int len=O;
if(strlentb) != 2)

e],se

{
cerr << "length
exit(-1);
}

{

!= 2";

hl=b[O]; h2=b[l];

}
}

//assign two characters to the
//contents of this byte

int byte: : int u () {
int val=hl.int_h();

if (val< 8) return(val);
else return(val- 16);

}

//if the value in the upper 4 bits
//is negative,return its complement

int byte::int 1() {
int val=h2.int_h();

if (val< 8) return(val);
else return(val- 16);

}

//if the value in the lower 4
//bits is negative,return its
//complement

int byte::m int b() {
- int val2 = hl.int_h();

int vall= h2.int h();
return(vall+val2*l6);
}

int byte::int b() {
-int val2 = hl.int h();
int vall= h2.int h();

53

if (val2 >= 8) {
//if the value in the upper 4 bits
//is negative,return its complement
val2=15-val2;
val1=16-vall;
return(-(vall+val2*16));
}

else return(vall+val2*16);
}

int byte: :m_int_u() { return(hl·.int h()); }
int byte::rn_int_l() { retur~(h2.int h()); }
void byte::assign(hex digit& xl, hex digit& x2)

- { hl=xl; h2=x2; }
char* byte:: str n { ss [0] =hl. chr ();

//convert the byte coptents to string
ss[l]=h2.chr(); ·ss[2]='.\0'; .return(ss); }

I***********************************~********************** I

CLASS: word

byte* wrd;
int size;

Operations:

1- constructor word()
2- void get s(char*)
3- int int_w ()

4- byte operator[] (int)

5- int operator + (word)
6- void operator = (word)
7- void operator = (int)

8- void print()
9- void print(FILE*)

array of bytes
number of bytes in the
word

create a word (4 bytes)
convert the word to string
return the integer value of
the word
return a byte from the
word
add two words
assign two words
assign integer value to a
word
print to stdout
print to a file

I** I

fifndef WORD
#define WORD
#include "vect.h"
#include "hex.h"
#include "byte.h"

class word {
byte *wrd;
int size;

public:
word();

byte& operator[] (int);
void print();
void print(FILE*);
void prints(FILE*);
void get s(char*);
int int w ();
int operator +(word&);
int operator *(word&);
int operator -(word&);
int operator /(word&);
void operator =(word&);
int operator =(char*);
void operator =(int);
-word();

} ;
#endif

54

I** I

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "vect.h"
#include "hex.h"
#include "byte.h"
#include "word.h"

word::word() { size=4; wrd=new byte[4]; }
//create a 4 byte word

byte& word: :operator [] (int i) { return (wrd [i]) ; }
//return a byte

int word::operator +(word& w) {
return((*this) .int w()+w.int w()); }

- //add the contents of two words
int word::operator *(word& w) {
return((*this) .int w()*w.int w()); }

- //multiply the contents of two
//words

int word::operator -(word& w) {
return((*this) .int w()-w.int w()); }

- //subtract the contents of two
//words

int word::operator /(word& w) {
return((*this) .int w()/w.int w()); }

- //divide the contents of two
//words

void word::operator =(word& w) {
//assign two words by assigning
//their bytes

for (int i=O; i<4; i++)
(*this) [i] = w.wrd[i]; }

55

void word::operator =(int vlu) {
int i=O,val=O;
hex digit temp[2];
if (vlu < 0)

//if the "vlu" is negative take the
//complement

val = 2147483647 + vlu +1;
else val = vlu;
for (int j=O; j <4; j++)

{ //assign the "vlu" to the 4 bytes
for (i=O; i<2;' i++)

{' .
temp[i] = val % 16;
val ~ val /16;
}

(*this) [j] .assign(temp[1] ,temp[O]);
}

if (vlu < 0) {

}

//if "vlu" was negative let sign
//bit = 1
temp[1]=temp[1].int h()+8;
(*this) [3] .assign(temp[1] ,temp[O]);
}

word::-word() { if (wrd!=NULL) delete []wrd; }
void word::get_s(char *s)
{

}

II convert integers to hex_digits

hex digit hlO(wrd[O].m int 1());
hex-digit huO(wrd[O] .m-int-u());
hex-digit hl1(wrd[1] .m-int-1());
hex-digit hu1(wrd[1] .m-int-u());
hex-digit hl2(wrd[2] .m-int-1());
hex-digit hu2(wrd[2].m-int-u());
hex-digit hl3(wrd[3] .m-int-1());
hex digit hu3(wrd[3].m int u());

II convert hex_digits to characters

s[7] = hlO.chr();
s[6] = huO.chr();
s[5] = hll.chr();
s[4] = hu1.chr();
s[3] = hl2.chr();
s[2] = hu2.chr();
s[1] = hl3.chr();
s[O] = hu3.chr();
s[S]= '\0';

int word::operator =(char* s)
{

int len=O,i;
char tm[3];

if(strlen(s) ~= 8)
{

else

cerr << "length of a word not equal to 8";
exit(O);
return(O);
}

{
for(i=O; i<8; i+=2)

56

{ //assign the string "s" characters
//to the word 4 bytes

}

tm[O] = s[i];
tm[l] = s[i+l];
tm[2] = '\0';
(*this) [3- (i/2)] = tm;
}

return(!);
}

void word::print() {
char ss[10];
II convert to string to print
strcpy(ss,wrd[3] .str());
strcat (ss, wrd [2] . str ());
strcat (ss, wrd [1] . str ());
strcat (ss, wrd [0] . str ());
strcat(ss," ");
printf("%s\n",ss);
}

void word::prints(FILE* f) {
char ss[lO];
II convert to string to print
strcpy(ss,wrd[3] .str());
strcat(ss,wrd[2] .str());
strcat (ss,wrd[l] .str ());
strcat(ss,wrd[O] .str());
fprintf(f,"%s",ss);
}

void word::print(FILE* f) {
char ss[lO];
II convert to string to print
strcpy(ss,wrd[3].str());
strcat(ss,wrd[2] .str());
strcat(ss,wrd[l] .str());
strcat(ss,wrd[O] .str());
strcat(ss," ");
fprintf(f,"%s",ss);

}

int word::int w() {
- int valO=(*this) [0] .mint b();

int val1=(*this) [1] .m-int-b();
int val2=(*this) [2] .m-int-b();
int val3=(*this) [3] .mint b();

if (val3 >= 8) {

57

//if the signbit = 1 take the
//complement, to find the negative value
val0=256-val'0;
val1=255-val1;
val2=255-val2;
val3=255-val3;

return(-(val0+val1*256+val2*65536+val3*16777216));
}

else
return(val0+val1*256+val2*65536+val3*16777216);

}

I** I

CLASS: s_register

Operations:

1- constructor s_register()

2- word get ()

3- void put(word)

create a word with the
default size (4 byte)
return the contents of the
register
put a,word in the register

/**********************************~***********************/

#ifndef REGISTER
#define REGISTER

class s register
public:-

public word {

s register();
word& get();
void put(word&);

} ;
#endif

I** I

#include <stream.h>
#include <stdlib.h>

#include <string.h>
#include "vect.h"
#include "hex.h"
#include "byte.h"
#include "word.h"
#include "register.h"

s register::s register() :word() {}
inline word& s register::get() { return(*this); }
void s_register::put(word& w) { this->operator=(w); }

58

/*********~*********************~**************************/

CLASS: pcb_ele~ent

s_register *rg; ar~ay of process registers

Operations:

1-
2-
3-
4-

constructor
int& id ()
int& loc ()
int& start()

pcb element() .create int vector size 16
- return job id

5- int&
6- int&
7- int&

8- int&

9- void

length_w()
trace()
state()

pc ()

operator=(vect&)

return job location in memory
return first instruction in
the job
return job length in words
return job trace flag
return job state - ready,
blocked, etc
return job's recent
instruction
assign a job information
vector

I** I

#ifndef TABLES
#define TABLES

class pcb element : public vect {
s register *rg;'

public!
pcb element();
int& id();
int& loc();
int& start();
int& length w () ;
int& trace();
int& pc ();
int& state();
int& 1 id ();
int& m-id();
int& c -id ();
int& pg_sz ();

} ;

int& rd nxt ();
int& bl nxt () ;
int& ea ();
s register** reg();
void operator=(vect&);
-pcb_element();

59

/**/

CLASS: pt_element

Operations:

1- constructor pt element()
2- int& valid() -
3- int& resident()
4- int& modified()
5- int& reference()
6- int& address()

create int vector of size 5
return page valid or not
return page is resident or not
return page is modified or not
return is referenced or not
return real address of page

/**/

class pt element : public vect {
public: -

} ;

pt element();
int& valid();
int& resident();
int& modefied () ;
int& referance();
int& frame();
-pt_element();

/**/

CLASS: page_table

pt element *tbl;
int size;

Operations:

array of pt elements
size of the-array

1- constructor page_table() create an array of 16
pt_elements

2- constructor page_table(int) create an array of
pt elements

3- pt_element& operator[] (int} return a pcb_element

I** I

class page table {
pt_element* tble;

protected:
int size;

public:

} ;

page table();
page-table(int);
pt element& operator[] (int);
-page_table ();

60

/**/

CLASS: mem'table elem

Operations:

1- constructor mem table_elem()

2- void operator=(vect)

create pcb element and
page table-
assign job information to
the pcb....:element

/***~****************/

class mem table elem : public pcb_elem,public page_table {
public:

} ;

mem table elem();
mem-table-elem(int);
void operator=.(vect&);
pt element& pt(int);
-mem_table_elem();

I** I

CLASS: memory_table

mem table elem* table;
int size;

Operations:

1- constructor mem_table()

2- constructor mem_table(int)

array of mem table elm
size of the array -

create mem table
array of 16 mem table elem
create mem table -

3-
4-
5-

array of mem table elem
pcb element& operator[] (int)return pcb element-contents
void print() print all pcb's contents
int put(vect) add a job information in

6- pcb_element& get(int)
the pcb element
get jobTs pcb element

information-

/**/

class mem table {
mem table elem* table;
int-size;

public:
mem table();
mem -table (int);
mem-table elem& operator[] (int);
void print();
int put(vect&);
pcb element& get(int);
void freet(int);
int pcb(int);
-mem_table();

} ;
#endif

61

/**/

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "vect.h"
#include "hex.h"
#include "byte.h"
#include "word.h"
#include "register.h"
#include "tables.h"

pcb element::pcb element() : vect(16) {rg=new
s_register[16];}-

//following operations return and/or assign elements of the
//pcb_element vector

int& pcb element::id() { return((*this) [0]); }
int& pcb-element::loc() {return((*this)[l]);}
int& pcb-element::start() {return((*this) [2]);}
int& pcb-element: :length w () { return ((*this) [3]) ; }
int& pcb-element::trace() { return((*this) [4]); }
int& pcb-element::pc() {return((*this)[6]); }
int& pcb element::state() (return((*this)[7]),; }
int& pcb element::l id() { return((*this) [8]); }
int& pcb-element::m-id() { return((*this) [9]); }
int& pcb~element::c-id() {return((*this) [10]); }
int& pcb-element: :pg sz () { return ((*this) [11]) ; }
int& pcb-element::rd-nxt() {return((*this) [12]); }
int& pcb-element::bl-nxt() { return((*this) [13]); }
int& pcb-element::ea() {return((,*this) [14]); }
s register** pcb element::reg() { return(&rg); }
void pcb element7:operator=(vect& v) { vect:: operator=(v);
} -
pcb_element::-pcb_element() {delete [16]rg; }

62

/**/

pt_element::pt_element() : vect(S) {}

//following operations return and/or assign elements of the
//pt_element vector

int& pt element::valid() { return((*this) [0]); }
int& pt-element::resident() {return((*this) [1]); }
int& pt-element::modefied() { return((*this) [2]); }
int& pt-element::referance() {return((*this) [3]); }
int& pt-element::frame() {return((*this) [4]); }
pt_element::-pt_element() { vect::-vect(); }

/**/

page table::page table() {size= 64; tble =new
pt element[size]; }
page table::page table(int i) {size= i; tble =new
pt element[size]; }
pt-element& page table::operator[J (inti) { return(tble[i]
) ;-} -
page_table::-page_table() {delete [size]tble; }

I** I
mem table elem::mem table elem() : pcb element(),
page table() {} - - -
mem table elem::mem table elem(int i) : pcb_element(),
pt table (i) {} - -
void mem table elem::operator=(vect& v) { pcb_element::
operator;;-(v); T
pt element& mem table elem::pt(int i) { return(page_table::
operator [1 (i)); -} -
mem table elem::-mem table elem()
{pcb_element::-pcb_element();}

I** I

memory table::memory table() { size =64; table= new
mem table elem[size]; }
memory table::memory table(int i) { size=i; table= new
mem table elem[size]; }
mem-table-elem& memory table::operator[] (inti) {
return(table[i]); -

//return the memory table element of the job
}

void memory table::print() {for (int i=O; i<size; i++)
table[i] .print(); }
int memory table::put(vect& j) {

- int i=O;
while (table[i] .id() != 0 && i < size) i++;
if (i == size) { cerr << "no space\n";

return(-!);

pcb_element&

}
table[i] = j;
return(i); //return the location of the

//mem table elem of the new job
}

memory table::get(int id) {
int i=O;
while (table[i] .id() != id && i < size
i++;
if (i == size)

{

63

cerr << "\njob " << id << " not here\n";
exit(-1);
}

return(table[i]);

}

//return the mem table elem of the job
//with id="id"

void memory table::freet(int id) {
int i=O;
while (table[i] .id() != id && i <size i++;
table [i] . id () =0;

}

//release the mem table elem by
//assign its job id = 0-

int memory table::pcb(int id) {
- int i=O;

while (table[i] .id() != id && i <size
i++;
if (i == size)

{
cerr << "\njob " << id << " not here\n";
exit(-1);
}

return(i);

}

//return the location of the pcb
//of the job with id="id"

memory_table::-memory_table() {delete [size]table; } ,

/**/

CLASS: storage

word* mem;
int fragm;
int size;

Operations:

array of words
free words in the memory
memory size

1- constructor storage()

2- constructor storage(int)

3- void write(int 1 word)
4- void write(word,word)
5- int free ()
6- void release(int)

7- word operator[]
8- word operator[]

(int)
(word)

create an array[256] of
words
create an array[int] of
words
put a word into a location
put a word into an address
return memory fragmentation
release location from the
memory
return location contents
return address contents

64

I** I

#ifndef STORAGE
#define STORAGE

class storage {
word *mem;

protected:
int fragm;
int size;

public:
storage();
storage(int);
word& operator []
word& operator []
void write(int 1

void write(word&
int free();

(int) ;
(word&);

word& const);
const 1 word& const);

void release(int);
-storage();

} ;
#endif

/**/

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "vect.h"
#include "hex.h"
#include "byte.h"
#include "byte.h"
#include "word.h"
#include "storage.h"

storage::storage() { size= 256; fragm = size;mem=new
word[size];} //create a storage with size 256 words
storage::storage(int n) {

if (n>2048) {cerr << "memory size max=2
M\n";exit(O);}

size= n; fragm = size;mem= new word[size];}

//create a storage not larger than 4
//Mbyte

word& storage: :operator[] (int i) { return(mem[i]); }
//return contents of storage location

"i"
word& storage::operator[] (word& w) { inti= w.int w();
return(mem[i]); } //return contents of storage location

//"w"

65

void storage::write(int loc, word& const w) { mem[loc] = w;
fragm--_; } I I load a word in storage location "loc"

void storage::write(word& const loc, word& const w) { int
i=loc.int w(); mem[i] = w; fragm--; }

- //load a word in storage location "loc"
int storage: :free() { return (fragm).; }

//return external fragmentation
storage::-storage() {delete [size]mem; }
void storage::release(int loc) {word init·w; mem[loc] =
init w; fragm++;} //release word in location "loc" in the

- //storage

/*****************~**/

CLASS: memory

memory_table* table

Operation-s:

1- constructor memory() create a memory with
size 256 of 16 pages

2- constructor memory(int s,int p) create a memory with
size s of p pages

3- int put(vect) put job's information in
the pcb element

4- pcb_element get(int) return job's information
from the pcb element

5- pcb_element ready_job() return first-ready job's
information

6- void dump() dump memory contents to
stdout

7- void block(int,int ,s register*)blocking a job
8- void freem(int) - release job space in the

memory
9- word& fetch(s_job* job) find a ready job to be

executed
10- int put_page(char(*) [9],int ,int ,int)

load a job page into the
memory

11- int put_page(word* ,int ,int ,int)
load a job page into te
memory

12- int pg_size() return memory page size

66

13- -memory() memory destructor

I** I

#ifndef MEMORY
#define MEMORY
#include "word.h"
#include "register.h"
#include "tables.h"
#include "storage.h"
#include "job.h"

class frames { public:int jjob; int next fr; };
//local class

class memory:public storage {
static int m id;
s job *jobs;-
frames *m frame;
memory table *table;
int frst fr,lst fr;
int page-size,jbs no;
int my id; -
int frj,lrj,fbj,lbj;

public:
memory();
memory(int);
memory(int ,int);
int id ();
int put (vect) ;
pcb element& get(int);
int -pcb (int) ;
word& operator() (int ,int);
void dump (FILE*) ; ,
void block(int ,int ,s register*);
s job* ready job(int ,int ,int =5);
void freem(int); ,
word& fetch(s job* job);
int put_page(char(*) [9],int ,int ,int);
int put_page(word* ,int ,int ,int);
int pg size();
-memory();

} ;
#endif

/**/

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "clock.h"
#include "vect.h"
#include "hex.h"

#include "byte.h"
#include "word.h"
#include "register.h"
#include "memory.h"

memory: :memory() :storage (256). {
frj=lrj=fbj=lbj=-1;

67

//initialize ready and blocked queues to
//be empty

table = new memory table;
my id = ++m id; -
jobs= news job[16];

//a table of information
//for current jobs in the
//memory

m frame= new frames[16];
//a table of free frames in the
//memory

page size=16;//the default page size is 16 words
jbs no=16;
for-(int i=O;i<15;i++) {

//initialize the free frames table
m frame[i] .jjob=O;
m-frame[i] .next fr=i+1;
}- -

m frame[i-1] .next fr=-1;
frst fr=O; -
1st fr=15;
} -

memory::memory(int i) :storage(i) {
frj=lrj=fbj=lbj=-1;

//initialize ready and blocked queues to
//be empty.

table = new memory table;
my id = ++m id; -
jobs= news job[16];

//a table of information for current
//jobs in the memory.

m frame= new frames[16];
- //a table of free frames in the memory

for (int j=O;j<15;j++) {
//initialize the free frames table

m frame[j] .jjob=O;
m-frame[j] .next fr=j+1;
}- -

m frame[j-1] .next fr=-1;
page size=i/16; -
jbs no=16;
frst fr=O;
1st fr=15;
} -

memory::memory(int i,int jb) :storage(i) {
frj=lrj=fbj=lbj=-1;

68

//initialize ready and blocked queues to
//be empty.

table= new memory table(jb);
my id = ++m id; -
jobs= news job[jb];

/Ia table of information for current
//jobs in the memory.

m frame= new frames[jb];
- /Ia table of free frames in the memory

for (int j=O;j<jb;j++f {
//initialize the free frames table

m frame[j] .jjob=O;
m-frame[j] .next fr=j+1;
}- -

m_frame[j-1] ~next_fr=-1;
if (i%jb!=O) {

//check if the given memory size and
//number of pages give correct page size
//for all pages
cerr << "memory declaration error\n";
exit(O);
}

page size=i/jb;
jbs no=jb;
frst fr=O;
1st fr=jb-1;
} -

inline int memory::id() { return(my_id); }

int memory::put(vect v) {
int jid=v[O];
v[9] = my id;
v[11] = page size;
v[12] = -1; -
v[13] = -1;
int job_pg1=v[3];

//read page size from the vector
int rest1=v[3]%page size;
if (rest1>0) job_pgl++; .

//calculate number of pages needed for
//the job

if job_pg1>(fragm/page_size))
//return -1 if no space available
//in the memory to load the job

return(-1);
int pcb no=table->put(v);

- //load the job information in a free
//mem table elem in the memory table and
//return the pcb location -

if (pcb_no==-1)

//return -1 if no free frames in
//memory

return(-1);

jobs [pcb no] .live ((*table) [pcb no]);
jobs[pcb-no] .state()=1; -

-//make job state ready
job_pg=job_pg1;
for (i=O;i<job_pg;i++) {

//initialize job pages to be valid,
//resident, not modified, and not
//referenced in its pcb

((*table) [pcb no] .pt(i)) .valid()=1;
((*table) [pcb-no] . pt (i)) . resident () =1;
((*table) [pcb-no] .pt(i)) .modefied()=O;
((*table) [pcb-no] .pt(i)) .referance()=O;
((*table) [pcb-no] .pt (i)) .frame() =frst fr;
m frame[frst fr] .jjob=jid; -
if (frst fr~=-1)

{table->freet(jid);return(-1);}
frst fr=m frame[frst fr] ~next fr;
} - - - -

for (int i=job_pg;i<64;i++)
//initialize the rest of pages to be
//invalid for this job

(((*table) [pcb_no]) .pt (i)) .valid()=O;

if (frj==-1) frj=lrj=pcb no;

69

//put the job pcb in the head of the
//ready queue if it is the first arrival
//job

else { //put the job at the end of the ready
I /queue.

jobs[lrj] .rd nxt()=pcb no;
jobs[pcb no]~rd nxt()==1;
lrj=pcb no; -
} -

return(pcb no);
} -

void memory::freem(int id) {
int pcb no=table->pcb(id);
table->freet(id); //release .mem table elem and

//pcb. element for the-terminated job
//with id = "id"

int job_pg=(*table) [pcb_no] .length_w();
//calculate number of pages this job

I /used ·
int rest=(*table) [pcb no] .length w()%page size;
if (rest>O) job pg++;- - -
int i=O; -
for (i=O;i<job_pg;i++) {

}
}

70

//release page frames of the terminated
//job from the memory

if (frst fr==-1) {
-//put the free frame at the top of the

//free frames queue if it is no other
//free frames in the memory.

frst fr= ((*table) [pcb no] .pt(i)) .frame();
m frame[frst fr] .next fr=-1;
}- - -

else { //put the free frame at the end of the
//free frames queue

int tmpt=frst fr;
frst fr=((*table) [pcb no] .pt(i)) .frame();
m frame[frst fr] .next-fr=tmpt;
}- - -

fragm+=page size;
//return released words to the available
//space in the memory

inline pcb element& memory::get(int id)
- //return the pcb of the job with id="id"

{ return(table->get(id)); }
inline int memory::pcb(int id) {return(table->pcb(id)); }

word& memory::operator() (int jid,int adr) {

}

//return a word from the memory with a
//logical address="adr"

return((*this) [(jobs[pcb(jid)] .vrt(adr))]);

void memory::dump(FILE* out) {
//print memory contents to a file

int j=O;
for (int i=O; i<size; i+=8)

}

{
fprintf(out,"%2.4x",i);
for (j =0; j<B; j++)

. {

fprintf(out," ");
(*this) [i+j] .print (out);
} '

fprintf(out,"\n");
}

void memory::block(int jid,int EA,s register* R) {
int j_pcb=pcb(jid);-

I /store blocked job id ·
jobs[j_pcb] .ea()=EA;

//store the effective address of the
//blocked job

s_job*

(*(jobs[j_pcb] .reg()))=R;
//store blocked job registers update
//blocked queue

if (fbj == -1) fbj=lbj=j_pcb;
//put blocked job pcb in the blocked
//queue

else{
jobs[lbj].bl_nxt()=j_pcb;
jobs[j_pcb] .bl_nxt()=-1;
lbj=j_pcb;
} '

}

memory::ready job(int
int fr; ·
int br=-1;
int fbr=-1;
int tmr,tm;
if (frj==-1

cid, int' cpu elk, int sd) {
//first ready job
//blocked job
//first blocked job

&& fbj==-1·) .

71

//if both ready and
//blocked queue are empty
//return -1

return (NULL) ;
else if (frj == -1 J {//if no ready jobs in

the ready queue
tmr=fbj; // pick first blocked job
tm=jobs[fbj] .j clk()-cpu elk;
fr=fbj; - -
while (tmr!=-1) { //update blocked queue

if (jobs[tmr] .j clk()-cpu clk<tm){
tm=jobs[tmr] .j clk()-cpu elk;
fr=tmr; - -
fbr=br;
br=tmr;
tmr=jobs[tmr] .bl nxt();
} -

else
{br=tmr;tmr=jobs[tmr] .bl_nxt();}

' }
if (fr==fbj) fbj=jobs[fr] .bl nxt();
else if (fr==lbj){ //if this-is the last job

lbj=fbr;

else

jobs[lbj] .bl nxt()=-1;
} '- '

jobs[fbr] .bl nxt()=jobs[fr] .bl nxt();
jobs[fr].act(cid); //reactivate the job
jobs[fr].bl nxt()=-1;
jobs[fr] .c id() = cid;
jobs[fr],.t-time(); //set job clock
return(&jobs[fr]);
}

72

else { //check if the ready queue if
//it has jobs to be executed

tmr=frj;
tm=jobs[frj].length();
fr=frj;
if (sd==S) fr=frj;

//if scheduling is FIFO pick
//first ready job in the ready
//queue

else if(sd==7) {
//if scheduling is longest job
//first search to find the
I /longest 'job in the ready
//queue

while (tmr!=-1) {
if (jobs[tmr] .length()>tm) {

tm=jobs[tmr] .length();
fr=tmr;
fbr=br;
br=tmr;
tmr=jobs[tmr] .rd nxt();
} -

else
{br=tmr;tmr=jobs[tmr] .rd_nxt();}

}
if (fr==frj)

frj=jobs[fr] .rd nxt();
else if (fr==lrj){ -

else

lrj=fbr;

//if this job is the last job
//in the ready queue make it
//empty

jobs[lrj] .rd nxt()=-1;
} -

jobs[fbr] .rd nxt()=jobs[fr] .rd nxt();
} - -

else if (sd==6) {
//if scheduling is shortest
//job first search to find the
//longest job in the ready
//queue

while (tmr! =-1)' {
if (jobs[tmr] .length()<tm){

tm=jobs[tmr] .length();
fr=tmr;
fbr=br;
br=tmr;
tmr=jobs[tmr] .rd nxt();
} -

else
{br=tmr;tmr=jobs[tmr] .rd_nxt();}

}

73

if (fr==frj) frj=jobs[fr] .rd nxt();
else if (fr==lrj){ -

//if the job is the last job in the
//queue make it empty

lrj=fbr;
jobs[lrj] .rd nxt()=-1;
} -

else jobs[fbr] .rd nxt()=jobs[fr] .rd nxt();
} - -

}

jobs[fr] .act(cid);//reactivate the job
if (sd==S) frj=jobs[frj] .rd nxt();
jobs[fr].rd nxt()=-1; -
jobs[fr] .t time();
return (&j.obs [fr]);
} ~

word& memory::fetch(s job* job) {
int pc = job->pcv();

//find the logical address of the
//next insttuct~on to be executed

if (job->trace() == 1)
(*this) [pc] .print(job->dbgf());

return ((*this) [pc]) ;
}

int memory::put_page(word* w,int pcb,int pg,int j)
{
((*table) [pcb] .pt(pg)) .resident()=1;

//set the frame as used by the
//loaded job

int strt addr=((*table) [pcb] .pt(pg)) .frame()*page size;
-for (int i=O;i<page_size;i++) { -

//load page word by word
(*this) [strt addr+i]=w[i];
} -

fragm-=page size;· //take page from memory
return(1);- ·
}

int memory::put_page(char w[] [9],int pcb,int pg,int j)
{
((*table) [pcb J • pt (pg)) . resident () =1;

//set frame as used by the
//loaded job

int strt addr=((*table) [pcb] .pt(pg)) .frame()*page size;
- for (int i=O;i<page size;i++) -

//load the page word by word into
//the memory frame

if (strlen(w[i])==8)
(*this) [strt addr+i]=w[i];

else break; -
fragm-=page size; //decrement the free space in

- //the memory by the used page size

return(1);
}

int memory::pg_size() { return(page size);}
//return memory page size

memory::-memory(){ //memory destructor
delete table;
delete [jbs no]jobs;
delete [jbs-no]m frame;
} - -

74

I** I

CLASS: loader

Operations:

1- int load(FILE* f, memory m)

Try to read one job from "FILE f" to "memory m" by
reading a job header into a free pcb_element and the job
body into the memory.

if succeed, return 1
if find error, return 2
if eof, return -1

I** I

#ifndef LOADER
#define LOADER
#define LOADED 1
#define MEMFULL -1
#define RDERR -2

#include "vect.h"
#include "clock.h"
#include "hex.h"
#include "byte.h"
#include "word.h"
#include "register.h"
#include "tables.h"
#include "storage.h"
#include "job.h"
#include "memory.h"

class loader {
static int l_id;
int my id;

public: -

} ;

int load(FILE* ,memory&);
int id ();

//loader id

75

#endif

I** I

#include <stream.h>
#include <string.h>
#include <stdlib.h>
#include "loader.h"
#define LOADED 1
#define MEMFULL -1
#define RDERR -2

int loader::id() {return(my id);}
int loader::load(FILE* f,memory& m)
{

char line[99] [81],r word[99] [9];

char buff [9 9] [9] ;
int loc,flag=1;
vect v;
my_id = ++l_id;

-//read job instructions as arrays
//of strings

if (fgets(line[0],80,f) !=NULL)
//read job instructions

{
sscanf(line[O],"%x%x%x%x%x%x",&v[O],&v[1],&v[2],&v[3],&v[4],
&v[S]);

v[6) = v[2];
v[7] = v[S];
v [8] = id ();
loc = v[l];
int pcb=m.put(v); //put,job data in a pcb
int pz=m.pg size();
int no of cards= (v[3]/4)+ ((v[3]%4)>0);

//calculate number of cards
//in the job

int no_of_pages = (v[3)/pz)+ ((v[3]%pz)>O);
//calculate number of pages
//needed by the job

int j=O;
for (int i=O; i< no of cards; i++)

{

-//read job cards from the input
//files

fgets(line[i],80,f);
sscanf(line[i],"%8s%8s%8s%8s\n",

r word[O+j],r word[l+j],r word[2+j],r word[3+j]);
- - j+=4; -//four words on a card

}
for (i=O; i< no_of_pages; i++)

//load pages in memory

{
for (j=O; j <pz; j++)

//load a page
if (strlen(r word[i*pz+j])==8) {

strcpy(buff[j],r word[i*pz+j]);
strcpy(r word[i*pz+j]," ");
} -

else break;
if((flag=m.put_page(buff,pcb,i,v[0]))==-1)

//if no space available in
//memory return fail

76

return(flag);
for (int k=O;k<pz;k++) strcpy(buff[k],"00000000");
}

}

}
else flag=-2;
return(flag);

I** I

CLASS: cpu

s_clock c, s_register* reg, ins_set *s

Operations:
1- constructor cpu (ins_set)
2- int run job from(memory m)
- find a ready-job from the memory PCB
- prepare files for the job - debug, state, trace, and
output files -
- set the cpu clock
- start the job execution by read its instructions from
memory
- call the ins set element to decode the instruction
- calculate the needed memory address for execution
- call the ins set to execute the instruction
- increment its clock (quantum is 50 clock cycle)
- if the job trace flag is on send trace information to the
trace file
- Cilt the end change the job state to "Halt" in the

pcb element
- send appropriate information to its state file
- return NOTDONE if job is blocked (because of
read/quantum) and still running
- return NOMORE if no more ready jobs in memory

/**/

#ifndef CPU
#define CPU

#include "clock.h"

#include "vect.h"
#include "hex.h"
#include "byte.h"
#include "word.h"
#include "register.h"
#include "memory.h"
#include "ins set.h"
#include "ins-setl.h"

#define NOTDONE 4
#define NOMORE -1
#define RUNTERR 2
#define DONE 3
#define RR 5
#define SF 6
#define LF 7

class cpu {
static int c id;
s clock elk;
s-register* reg;
ins set *s;
FILE* trace;
int my id,trflag;
int rn-;trm;

int SGdlr;
public:

//executed job status

//scheduler mode

//system clock
//CPU registers
//CPU instructions
//CPU profile file

/lid of running and
//terminated jobs

//scheduler mode

cpu(ins set& ,int qn=SO,int = S,int =0);
-cpu();-
int id ();
int running();
int terminated();
irit m clock();
int run_job_from(memory&);

} ;
#endif

77

/**/

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "cpu.h"

extern void itoa(int,char*);
cpu::cpu(ins set& i,int qn,int

if-(sd<SI lsd>7) {
cerr << "Out of
exit(O);
}

scdlr=sd;
my_id = ++c_id;

sd, int trfl) {
//check scheduler

schedulers range\n";

clk.set(23); //set clock value> 1st job
//arrival time

reg= new s_register[16]; //CPU registers
s = &i;
s->set qntm(qn);
trflag=trfl;
char trcfile[lO];
strcpy(trcfile,"CPU TR ");
char tt[lO]; - -
itoa(my id,tt);
strcat(trcfile,tt);
if (trflag!=O) {

trace=fopen(trcfile,"w");

78

fprintf(trace,"CPU CLK\tJOB ID\tJOB CLK\n");
} - - -

}
int cpu::m clock() //return system clock value

{ return(clk.now()); }
cpu::-cpu() { //cpu destructor

if (trflag!=O) {fclose(trace);
delete(trace); }

}
int cpu::id() { return(my id); }
int cpu:: running () .{ return (rn); } I /return current running
job id
int cpu::terminated() { return(trm); }

//return last terminated job
//id

int cpu::run job from(memory& m) {
- int A,B~ind,p,EA=O,flag=l;

s job* job;
word DADDR,inst,w;

job= m.ready job(my id,clk.now(),scdlr);
//receive a ready job
//from the memory to be
//executed

if (job==NULL) { //if no more jobs in the
//memory, stop

cerr << "no more jobs\n";
return(-1);
}

rn=job->id(); //store running job id
if (trflag!=O) {

while (job->j elk() >elk. now()) {
elk. tick () ;

fprintf(trace,"%d\t \t \n",clk.now());}
if (clk.now() !=Of{ --

//fir~t job context
//switching=2 clock cycles

elk. tick() ;
elk. tick () ;
}

79

fprintf(trace 1 "%d\t%d\t%d\n"lclk.now() 1 job->id() 1 job->j_clk(
)) ;

}
EA = job->ea(); //read the first instruction

//effective address
reg= (*(job->reg()));

//load job registers from
//the pcb to the CPU registers

while (flag == 1) {
//if the job status is running
//execute next instruction
//fetch next instruction

inst=m.fetch(job);
//decode the instruction

s->decode(inst 1 ind1 p 1 A1 B1 DADDR);
//caltulate the e~fective

//address
if (ind == 0)

else

//not indirect addressing mode
EA=DADDR.int_w();

EA=m(job->id() 1 DADDR.int w()) .int w();
if (B ! = 0) - -

//if it is indexing addressing
//mode
EA += reg[B] .int w();

if (EA>job->length())-{
cerr<<"page fault core dump\n";

m.dump(job->outf());
//dump memory contents to
//the output file
exit(O);
}

s->execute(EA1 m1 reg[A] 1 A1 job);
//instruction execution

. elk. tick () ;
ins set::mstr clk.tick();
if (job->state () ==1)

//if job status still running
//continue executing next
//instruction

continue;
if (trflag!=O)

fprintf(trace 1 "%d\t%d\t%d\n" 1 clk.now() 1 job->id() 1 job->j elk(
)) ; -

if (job->state() >1 &&
job->state() < 4) {
//if job status is halt
//terminate the job and
//release its memory

job->term ();
trm=job->id () ;

}

m.freem(trm);
rn=O;
return(job->state());
}

if (job->state()==4) {
//if job status is

}

//blocked for I/0, block the
//job
m.block(job->id(),EA,reg);
return(job->state());
}

80

I** I

CLASS: ins set

Operations:
1- constructor ins set()
2- decode(word&,int&,int&,int&,int&,word&)
Translate the instruction to indirection, operation, index
Reg.,
arithmetic Reg., and memory address.

3- execute(int&, memory&,word&,FILE*,FILE*)
Execute the instruction between the memory and the cpu
registers
send output to the output FILE and debugging information to
the debug FILE.
Return 0 for HALT or 2 for wrong instruction, else return
-1.

/**/

CLASS: ins set instructions·

0 HALT
1 LOAD in reg.
2 STORE from reg.
3 Add mem. to reg.
4 Sub mem. from reg.
5 Mult. mem and reg.
6 Div. mem by reg.
7 Shift reg. left by mem.
8 Shift reg. right by mem.

9 branch < 0.

A branch> 0.
B branch= 0.

C branch and link.
D Binary And.
E Binary Or.
F Read from memory.

10 Write to memory.
11 Memory dump.
12
13
user can add new
instructions
by overloading the
ins set class

/**/

#ifndef INS SET
#define INS SET

class ins set {
byte-rgs;
friend class cpu;

protected:
byte op;

81

s_register old[16]; //keep the status of old
//registers value to be used in the
//file

int QN;
static s clock mstr_clk;

public:
ins set();
void set qntm(int);
void decode(word&,int& -,int& ,int& ,int& ,word&);
virtual void execute(int&, memory& ,word& ,int& ,s job*);
}; -
#endif

I** I

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "hex.h"
#include "byte.h"
#include "word.h"
#include "register.h"
#include "memory.h"
#include "job.h"
#include "ins set.h"
s clock ins set::mstr_clk;

ins set : :ins set () { }
void ins set7:set qntm(int i) { QN=i; } //set quantum value
void ins-set::decode(word& d",int& indirect,int& p,int&
REG A,int& REG B,word& DADDR) {

- -hex digit xl,x2;
if (d[3].m_int_b() >= 128) {

//if instruction
//addressing mode is
//indirect

indirect=!;
xl=d[3] .str(),[O];
x2=d [3] . str () [1] ;
xl=xl . int h () -8;
d[3] .assign(xl,x2);
}

else indirect ~0;
op=d[3]; //read the operator
p = op.m_int_b();

rgs = d[2];
REG A= rgs.int u(); //the arithmetic

//register
REG B = rgs.int 1(); //the index register
DADDR[O] = d[O]; //the memory address
DADDR[1] = d[1];
}

void ins set::execute(int& EA, memory& m, word& REG,int&
A,s job*-job)
{ -
int flag = 1;
int jid=job->id();
if (job->trace()==1) old[A].put(REG);
char tmp[81];
char tmp1[9];
char tmp2[9);
char tmp3[9];
char tmp4[9];
switch (op.m int b()) //execute the instruction operator { - - .

case 0: flag = 3; break; //halt instruction
case 1: REG = m(jid,EA); //load operator

break;
case 2: m(jid,EA) = REG; //store operator

break;
case 3: REG = REG + m (jid, EA);

//addition operator
break;

case 4:
REG= REG- m(jid,EA); //subtraction

//operator
break;

82

case 5: REG= REG* m(jid,EA); //multiply operator
break;

case 6: REG= REG I m(jid,EA); //division operator
break;

case 7: REG=REG.int_w()<<EA; //shift to left
break;

case 8: REG=REG.int w()>>EA; //shift to right
break; -

case 9: if (REG.int w() < 0 {

break;

//branch if
//arithmetic register
//is negative

job->pc () = EA;
flag=-1;
}

case 10: if (REG.int w() > 0) {
//branch if
//arithmetic register
//is positive

break;

job->pc () = EA;
flag = -1;
}

case 11: if (REG.int_w() == 0) {

83

//branch if
//arithmetic register
//is zero

job->pc () ,= EA;
flag = -1;
}

break;
case 12: REG~ m[job->pcv()]; //branch and link

j ob->pc () = EA;
flag = -1;
break;

case 13: REG= REG.int_w() & m(jid,EA) .int w();
//bitwice and

break;
case 14: .REG = REG.int_w()

break;
case 15:

m(jid,EA) .int w();
//bitwice or

gets(tmp); //read operator
sscanf (tmp, ~· %8s%8s%8s~8s\n", tmp1, tmp2, tmp3, tmp4);
if (strlen(tmp1)<8)

{cerr<<"Error:In input card\n";exit(O);}
if (strlen(tmp2)<8)

{cerr<<"Error:In input card\n";exit(O);}
if (strlen(tmp3)<8)

{cerr<<"Error:In input card\n";exit(O);}
if (strlen(tmp4)<8)

{cerr~<"Error:In input card\n";exit(O);}
m(jid,EA)=tmp1; //read four words in the

, //memory from the input
//card

m(jid,EA+1)=tmp2;
m(jid,EA+2)=tmp3;
m(jid,EA+3)=tmp4;
job->j tick(10);
flag=4T
break;

case 16:

//input delay time

for (int i=O; i< 4; i++) //write four words
//to the output file

{
m (jid, EA+i) .print (job->outf ());
} ' ' '

fprintf(job->outf(),"\n");
job->j tick(lO); //output delay time
flag=4T
break;

case 17: m.dump(job->outf()); break;
default: flag = 2;

cerr<<"Error:Unexpected command\n";
}
if (flag == 1 I I flag == 4)

//increment job process counter if job succeed to execute
//the instruction

job->pc()=job->pc()+1;
else if (flag == -1) flag = 1;

job->j_tick();

84

if (flag != 4 && job->trace() == 1 && job->j_clk()
>= 900) {
//detect infinite loop if the execution time of the job is
//more than 900 clock cycles

flag=2;job->t time();
cerr<<"Error:Suspected infinite loop job

time>900cc\n";
cerr<<"Turn trace flag off and try again\n";
}

if (flag != 4
{flag=4;job->t_time();}

&& job->j_past() >= QN)
//if the quantum is passed,
//suspend the job

}

job->state() = flag;

if (job->trace() == 1) {
m(jid,EA) .print(job->dbgf());
REG.print(job->dbgf());
old[A] .print(job->dbgf());
fprintf (job->dbgf () , "\n") ;
}

I** I

CLASS: my_window

WINDOW* w,int no_var,int *mx,int *my.

Operations:

1- constructor my window(int,int,int,int,int)
create window with width, length, location, and no
variables.
2- void add_box(char,char)

3- void add(int,int,char)

4- void add rf (..)
5- void add-B (..)
6- void del(int,int)
7- void set _ var (int *, int *)

'add box and refresh the
window

& (int,int,char*)
add char or string to the

window
add and refresh the window
add and highlight
delete line
set variable locations

85

8- void update(int,char*) update the variable

I** I

#include <stream.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>
#include <curses.h>
#include "my_util.h"

class my window {
WINDOW *w;
WINDOW *sw;
int no_var;

int *my;

//the curses library window
//subwindow
//number of variables in the

//window

int *mx;
friend class debug_ window;

public:
my window() {
my-window(int

- {

}
yl,int xl,int y,int x,int n)

w = newwin(yl,xl,y,x);
no var = n;
}

WINDOW *winwin() { return(w); }
void add box(char v,char h) //add a frame to the window

- { box(w,v,h); wrefresh(w); }
void my_clear() //erase window contents

{ wera~e(w); wrefresh(w); }
void my move(int y, int x) //move curser in the window

- { wmove(w,y,x); wrefresh(w);}
void del ln(int y, int x) //delete a line

- { wmove(w,y,x); wdeleteln(w); }
void del ln rf(int y, int x)

- -{ wmove(w,y,x); wdeleteln(w); wrefresh(w);}
void my delwin() { delwin(w); }
void add(int y, int x, char c) {

//add character in location (x,y) in the window
//wmove(w,y,x); ·

waddch(w,c);
}

void read(char& c) { scanf("%c",~c); } //read a char
//from the window

void read(char* c) { scanf("%s",c); } //read string
//from the window

void add rf(int y, int x, char c) {
- //add char to the window and update it

wmove(w,y,x);
waddch(w,c);
wrefresh (w) ;

} ;

}
void add(int y, int x, char *s) {

//add string to the window
wmove(w,y,x);
waddstr(w,s);

}
void add_B(int y, int x, char *s) {

}

//add string to the window
wmove(w,y,x);
wstandout (w) ;
waddstr tw, s);
wstandend (w) ;

void add_rf(int y, int x, char *s) {

86

//add string to the window and update
//it

wmove(w,y,x);
waddstr(w,s);
wrefresh(w);

}
void add rf_B(int y, in~ x, char *s) {

}

//add string to the window and update
//it

wmove(w,y,x);
wstandout (w) ;
waddstr(w,s);
wrefresh (w) ;
wstandend (w) ;

void set var(int *y,int *x) {
- //set the x,y location of the window

//variables
my= new int[no var];
for(int i=O;i<no var;i++)
my[i]=y[i]; -

mx =new int[no var];
for(i=O;i<no var;i++) mx[i]=x[i];

} -
void update(int i, char *s) {

//move courser and update the window
wmove(w,my[i],mx[i]);
waddstr(w,s);
wrefresh(w);
}

void my refresh() { wrefresh(w); }
void touch() { touchwin(w); } //update the window
int my read(char*);
int my-read(char&);
int my-read(int&); //overloading to read string,

- //char,and int
-my_window() { delete(my); delete(mx); }

87

int my window::my read(char* i) {
- - //read string from the window

char temp[99];
wgetstr (w, temp);
strcpy (i, temp) ;
return(l);

}
int my window::my read(char& i) {

- - //read a char from the window
char temp[99];
wgetstr(w,temp);
i=temp[O];
return(l);

}
int my window::my read(int& i) {//overloading to read

- - //string, char, and int
char temp[99];
wgetstr(w,temp);
i=atoi (temp);
return(l);

}

I** I

This program working as an interface to call the debugger
and help subprograms

/**/

#include <stream.h>
#include <stdlib.h>
#include <string.h>
#include "wind2.h"

#define W TRUE 1

main()
{

initscr ();
my window w(10,24,14,2S,O);
w. add box (,-I ' , '-') ;
w.add(4,5," WELCOME ");
w.add rf(6,5," IN THE Semulation Prototype ");
char a;
noecho();
w.my read(a);
echo();

while(W TRUE) {
w .my clear();
w. add box (' I ' , '-') ;
w.add B(l,l,"

//display the user options menu
PRESS ");

w.add(2,1,"----------------------");
w.add B(4,2,"[D]");
w.add(4,5," for the Debugger");
w.add B(5,2,"[H]");
w.add(S,S," for the Help ");
w.add B(6,2,"[Q]");
w.add(6,5," to Quit ");
w.add_rf(7,2,">> ");

88

if (w.my read(a) && !isalpha(a) && a!='h' && a!='d' &&
a!=' q') { -

}

continue;
}

if (a == 'h')
{
system("/y/hassan/os2/os2help");

else

continue;
}

//call the help subprogram "help"

if (a == 'q') {
w .my del win();
break;
}

else {
system("/y/hassan/os2/debugger");

continue;
}

}
endwin();
exit(O);

//call the subprogram "debugger"

/**/

#include "wind2.h"
#include <pwd.h>
#define MY TRUE 1
ldefine MAXJOB 999
#define MAXRUN 50

class debug window
{ -

my window *wl,*w2,*w3,*w4; //the four windows of
- //the debugger

FILE* dbg,*dbg2;
char dbga[MAXJOB] [82]; //debugger displayed

//variables
char cpu[4],memr[5],jclk[S],cclk[7];
char reg val[lO];
char temp_val[lO];

int no_of_ins,chinst,jck,cck;
int no_ins;
int reg_no;
int chg;
char job no[S];
static char base[17];

public:
debug window() {
reg no=O;
chg=l;
jck=cck=O;
strcpy(job no,"0000");
strcpy(base,"0123456789ABCDEF");

//instruction number
//register number

//job id
//hex_digit values

my window ww1(22,15,2,64,16); //display job,
- //instruction, registers,and

//menu windows
my window ww2(15,35,2,28,7);
my window ww4(15,25,2,2;6);
my window ww3(7,61,17,2,0);
wl-= &wwl;w2 = &ww2;w3 = &ww3;w4 = &ww4;

89

no of ins=O;
this->act(); //put variables in all

//windows
this->refresh_all();
this->work();

' //update all windows
//start the debugger

}

void actl(); //activate job window
void act2(); //activate instruction window
void act3(); //activate registers window
void act4(); //activate options window
void act_prnt(); //activate print window
void act() //activate all windows

{ act4(); act2(); aGtl(); act3(); }
void work(); //eX:ecute windows to display data

void update(char* s,char* mem,char* regs,int cp,int ck,int
jk, int flag) ; I /update all windows
void q_update(char* s,char* regs,int cp,int ck,int jk,int
flag); //quick update for all windows

void print reg(int s, int flag);
int main ask(); //read user choice from menu options
int prnt-ask(); //read user choice from print menu
int get job(int); //read job id to debug it
void refresh reg() { wl->my refresh(); }

- //update registers window
void refresh ins() { w2->my refresh(); }

, - //update instructions window
void refresh usr() { w4->my refresh(); }

- //update options window
void refresh all() { wl->my refresh();

w2->my refresh();-w4->my refresh(); }
- //update all windows

90

void clear all() { w1->my clear(); w2->my clear();
w4->my clear();-w3->my clear();} -

- -//erase information from all windows

} ;

void my del all() { w1->my delwin();
- - w2->my delwin();

w4->my-delwin();
w3->my_delwin(); } //delete all windows

void debug_window::print_reg(int s,int flag=O)
{

char temp[11],val[11];
char reg T[3];
char sys-reg[16] [10];
FILE *prn;

prn = fopen(11 ose__prn 11 , 11 W11);

if (flag== 0) fprintf(prn, 11 INST# REG
%2d\n\n 11 ,s);

else {
fprintf(prn, 11 INST# REG
fprintf (prn, 11 REG 4
fprintf (prn, 11 REG
fprintf(prn, 11 REG 12

//print title of trace file
0 REG 1 REG 2 REG 3 11);

REG 5 REG 6 REG 7\n 11);

8 REG 9 REG 10 REG 11 11);

REG 13 REG 14 REG
15\n\n11);

}

for (int j=O;j < 16; j++)
strcpy(sys_reg[j], 11 00000000 11);

}
for (int i=1;i <= no ins; i++) {

sscanf(dbga[i],"%10s %10s %10s 11 ,val,temp,temp);
temp[8]=' ';temp[9]='\0';
reg T[O]=val[2]; reg T[1]='\0';
if (flag == 0) { -

if (s == atoi(reg T))
fprintf(prn, 11 %3d\t%9s\n 11 ,i,temp);

}
else { //print registers contents

strcpy(sys reg[atoi(reg T)],temp);
fprintf(prn, 11 %3d %9s 11 ,i,sys reg[O]);
for (int j=1;j < 8; j++) -

fprintf(prn,~%9s 11 ,sys reg[j]);
fprintf(prn, 11 \n 11); -

for (j=8;j < 16; j++)
fprintf(prn, 11 %9s 11 ,sys arithmetic[j]);

fprintf(prn, 11 \n\n 11 f; -
}

}
fclose(prn);

void debug window::act1() {
w1->add box(' 1','-'); //draw the window frame
w1->add B(1,1, 11 REGISTERS 11);

91

char s1[10];
for (int i=O; i < 10; i++) //display registers numbers

{
char tt[5];
strcpy(s1," ");
itoa(i,tt);
strcat (s1, tt);
strcat(sl,":");

w1->add B(4+i,2,s1);
} -

for (i=10; i < 16; i++)
{
char tt[5];
itoa(i,tt);
strcpy(s1,tt);
strcat(s1,":");
w1->add B(4+i,2,s1);
} -

wl->add rf(2,1,"-------------");
int regy [16] ,regx [16];

//specify register value
//location in the window

for (i =0; i <16; i++) { regy[i] = 4+i; regx[i] = 5; }
w1->set var(regy,regx);
for(i=0Ti<16;i++) //update the register window

w1->update(i,"00000000");
}

void debug window::act2() {
int regy[16],regx[16];
w2->add box(' 1','-'); //add window frame
w2->add-B(1,1," - INSTRUCTION ");
w2->add(2,1,"----------------------------------");

//add window content
w2->add B(3,3," Instruction Code :");
w2->add-B(4,3," Indirection :");
w2->add-B (5, 3," Index Register :.");
w2->arithmetic B(ARITHMETIC,3," Arithmatic Reg. :");
w2->add B (7, 3," Memory Location : ") ;
w2->add-rf B(8,3," Memory Loc. Cont.:");

- - //specify window content
//location

regy[O] = 3; regy[1] = 4;
regy[2] = 5; regy[3] = 10; regy[4] = 6;

regy[5] = 7; regy[6] = 8;
regx[O] = 23; regx[1] = 23; regx[2] = 23;

regx[3] = 4;regx[4]=23;
regx[S] = 23; regx[6] = 23;
w2->set var(regy,regx);
} -

void debug window::act4() {
int regy[16],regx[16];
w4->add box(' 1','-'); //draw window frame
w4->add-B(1,1," General Information ");
w4->add(2,1,"-----------------------");

//add window contents
w4->add B(3,3," JOB ID :");
w4->add-B(5,3," MEMORY :");
w4->add-B '(7, 3, " CPU : ") ;
w4->add-B(9,3," INST.:fl::");
w4->add-B (11, 3," JB CLK: ") ';,
w4->add-rf B(13,3,"CPU CLK:");'

- - -//add window content locations
regy[O] = 3; regx[O] = 13;
regy[1] = 5; regx[1] = 13;
regy[2] = 7; regx[2J = 13;
regy [3]' = 9 ; ·'regx [3] =· 13;
regy[4] = 11; regx[4] = 13;
regy[S] = 13; regx[5] = 13;
w4->set var(regy,regx);
} -

void debug window::act3() {
w3->add box(' 1','-'); //draw window frame
w3->add-B(1,2," nJ "); //add window contents
w3->add(1,7,"New Job-n");
w3->add B(1,21," R ");
w3->add(1,26,"Print");
w3->add_B(1,43," Q ");
w3->add(1,47,'"Quit");
w3->add B(2,2," N ");
w3->add(2,7,"Next Inst.");
w3->add B(2,21," nN ");
w3->add(2,26,"n Next In-st.");
w3->add B(3,2," P ");
w3->add(3,7,"Prev Inst.");
w3->add B(3,21," nP ");
w3->add(3,26,"n Prev Inst.");

92

w3->add(4,1,"--­
------------");

w3->add rf (5, 2, ">> '!);
} -

void debug_window::act_prnt() {
w3->my clear(); //erase main menu contents
w3->add box(' 1','-'); //redraw print window frame
w3->add-B(1,2," nR "); //add window frame
w3->add(1,6,"nReg. History");
w3->add B(1,25," RH ")';
w3->add(1,30,"Registers History");
w3->add B(2,2," Q ");
w3->add(2,6,"Quit");

93

w3->add(4,1,"--­
------------");

w3->add(5,2,">> ");
w3->my refresh();
} -

void debug window::update(char* s,char* mem,char* regs,int
cp,int ck,int jk,int flag=O)
{

cp=ck=jk=O;
char indirect[2];
int oper=O;

//indirect register

indirect[O] = s[O]; indirect[1] = '\0';
char ss[5];
for (int k=O;k<16;k++) if(s[O] == base[k])

{oper=16*k;break;}
for (k=O;k<16;k++) if(s[1] == base[k]) {oper+=k;break;}
char reg A[2];
reg_A [0]-= s [2] ; reg A [1] = ' \ 0 ' ;.

//arithmetic and
//index registers

char reg B[2];
reg B[O]-= s[3]; reg B[1] = '\0';
ss(O] = s[4]; ss[1] ~ s[5]'; ss[2] = s[6];
ss[3] = s[7];ss[4]='\0';

w2->update(O,s); //update instruction
w2->update(1,indirect);//update indirect mope
w2->update(2,reg B); //update index register
char ins[17]; -
char ins no[4];
switch (oper) { //display instruction

case 0: strcpy(ins,"Halt
case 1: strcpy(ins,"Load
case 2: strcpy(ins,"Store
case 3: strcpy(ins,"Addition
case 4: strcpy(ins,"Subtraction
case 5: strcpy(ins,"Multiplication
case 6: strcp~(ins,"Division
case 7: strcpy(ins,"Shift to left
case 8: strcpy(ins,"Shift to right
case 9: strcpy(ins,"Branch on<O
case 10:'strcpy(ins,"Branch·on>O
case 11: strcpy(ins,"Branch on=O
case 12: strcpy(ins,"Goto
case 13: strcpy(ins,"Bin AND
case 14: strcpy(ins,"Bin OR
case 15: strcpy(ins,"Read
case 16: strcpy(ins,"~rite
case 17: strcpy(ins,"Memory dump
case 129: strcpy(ins,"Load
case 130: strcpy(ins,"Store
case 131: strcpy(ins,"Addition

meaning
); break;
); break;
) ; break;
) ; break;
) ; break;
) ; break;

'); break;
");break;
");break;
");break;
·") ; break;
");break;
");break;
");break;
"); break;
"); break;
");break;
"); break;
");break;
");break;
");break;

94

case 132: strcpy(ins,"Subtraction ");break;
case 133: strcpy(ins,"Multiplication "); break;
case 134: strcpy(ins,"Division "); break;
case 135: strcpy(ins,"Shift to left ");break;
case 136: strcpy(ins,"Shift to right ");break;
case 137: strcpy(ins,"Branch on<O ");break;
case 138: strcpy(ins,"Branch on>O ");break;
case 139: strcpy(ins,"Branch on=O n) ; break;
case 140: strcpy(ins,"Goto ");break;
case 141: strcpy(ins,"Bin AND "); break;
case 142: strcpy(ins,"Bin OR "); break;
case 143: strcpy(ins,"Read "); break;
case 144: strcpy(ins,"Write ");break;
case 145: strcpy(ins,"Memory dump ");break;
}

w2->update(3,ins); //update instruction meaning
w2->update(4,reg A); //update arithmetic register
w1->update(atoi(reg A),regs); //update register window
if (flag != 0) { w1->update(reg no,reg val);

strcpy(reg val,temp val);}-
reg no= atoi(reg A); - -
w2->update(5,ss);-
w2->update(6,mem); //update memory id
w4->update(O,job no);//update job id
w4->update(1,memr); //update memory location
w4->update(2,cpu); //update cpu id
if (flag== 0) { //update instruction number

++no of ins; //and clock value
++cck; ++jck;
if (oper==15 I I oper==16) {jck+=10; }
}

else {
--no of ins;
--cck; =-jck;
}

if (no of ins<=O I I no of ins>=no ins)
- - //stop the debugger-at the end of

//the job
{endwin();exit(O);}

char tt[9];
itoa(no of ins,tt);
strcpy(ins-no,tt);
for (int j~O;j< (3-strlen(tt)); j++)

strcat(ins no," ");
w4->update(3,ins no); //update instruction value
char tc[5); -
itoa(jck,tc);
while (strlen(tc) !=4) strcat(tc," ");
w4->update(4,tc); //update cpu clock
itoa(cck,tc);
while (strlen(tc) !=4) strcat(tc," ");

}

w4->update(5,tc);
w3->add rf(5,4,"
w3->my_move(5,5);

//update job clock
n) ;

void debug_window::q_update(char* s,char* regs,int cp,int
ck,int jk,int flag=O)
{

cp=ck=jk=O;
char reg A[2];
int oper~O;
for (int k=O;k<16;k++) if(s[O] == b~se[k])

{oper=16*k;break;}
reg A [0] = s [2] ; "reg A [1] = l \ 0' ;

95

wl->update(atoi(reg A),regs); //update register window
if (flag!= 0) { wl->update(reg no,reg val);

}

else

//step back update
strcpy(reg val,temp val);
--no of ins; -
--cck; -=-jck;

if (oper==lS I I oper==16) {jck-=10; }
}

++no of ins;
++cck; ++jck;
if (oper==15 I I
}

I I step ,-foreword update

oper==16) {jck+=lO; }

if (no of ins<=O I I no of ins>=no ins)
-{endwin();exit(O);}

char tt[lO];
itoa(jck,tt);
w4->update(4,tt); //update job clock
itoa(cck,tt);

w4->update(5,tt); //update cpu clock
reg_no = atoi(reg_A);

int debug_window: :main_ask n
{

char a[4];
int ln;

") ;
while (MY TRUE){
w3->add rf(5,4,"
w3->my move(5,5);
w3->my-read(a);
ln = strlen(a);
if (ln==l)

//move the curser to the input
//location

switch (tolower(a[O])) {
case 'n': return(-2);

//step one
case 'p': return(-3);

instruction foreword

}

case 1 r 1 :

case 1 q 1 :

default
}

//step back one instruction
return(prnt ask());

//display-the pr~nt menu
return(-1);

//quit the debugger
w1->my_move(5 1 5);continue;

96

else if (ln > 1)

}

switch (tolower(a[ln-1])) {
case 1 n 1 : a[ln-1]= 1 \0 1 ;return(atoi(a));

//step execution forward
case 1 P1 :

a[ln-1]= 1 \0 1 ;return(atoi(a)+MAXJOB);
//step execution backword

case 1 j 1 : a[ln-1]= 1 \0 1 ;

//cho6se a job to debug
if (get job(atoi(a))==6) continue;
for(int i=O;i<16;i++)

w1->update(i 1 "00000000");
return (-2); '

default : w1->my move(5,5);continue;
} -

else {w1->my_move(5 1 5);continue;}

int debug_window::prnt_ask()
{

char a[4];
int ln;

act_prnt();

while (MY TRUE) {
w3->add rf(5,4,"
w3->my move(5,5);

//start the print options window

") ;

w3->read(a); //read user choice
ln = strlen(a);
if (ln==1)

switch (tolower(a[O])) {
case 1 q 1 : //quit print options menu

default
}

else if (ln > 1)

w3->my clear();
act3<>T //redisplay main menu
w1->my move(5,5);
return(O);

w1->my_move(5,5);continue;

switch (tolower(a[ln-1])) {
case 1 r': a[ln-1]='\0';

print_reg(atoi(a));

//print register history
wl->my move(S,S);continue;

97

case 'h': print reg(O,l);
-//print all registers history

wl->my move(S,S);continue;
- //move to the input location

default : wl->my move(S,S);continue;
} -

else {wl->my_move(S,S);cpntinue;}
}

}

int debug_window::get_job(int j)
{

}

char tt[S];
itoa(j,tt);
strcpy(job no,tt);
char jobfile[SO];
char job2file[50];

FILE* log;
char fullname[81],*name,fnl[50];

//open job profile files
strcpy(job2file,jobfile);
strcpy(fnl,"date >> ");
strcat(fnl,jobfile);
strcat(fnl,"/db");
system(fnl);
strcat(jobfile,"/JOB DB");
strcat(job2file,"/JOB DB2 ");
strcat(jobfile,job no); -
strcat(job2file,job no);
if ((dbg=fopen (jobfile, "r")) ==NULL) {return (0);}

//open debug information file
fgets(cpu,3,dbg);
fgets(memr,2,dbg);
fgets(memr,S,dbg);
memr[3]='\0';
no_of_ins=jck=cck=O;

int i=O;
while (!feof(dbg)

no ins=i;
fclose(dbg);
return(l);

fgets(dbga[++i],80,dbg);
//read debug file in an array

void debug_window::work()
{

char inst[lO],memory[lO];
char regs[22];
int flag=-2,jn=O,cp=O,jk=O,ck=O;

}

if ((flag=main ask()) == -1);
else { -
while (no of ins <= no ins)

//debug the job instruction by instruction
{
if flag > MAXJOB) { //quick update of debugger's

//windows if user steps more than
//one instructions backward

for
{

(int j=1; j< (flag-MAX,JOB); j++)

sscanf(dbga[no of ins-1],"%9s %9s
%9s",inst,memory-;-regs 1 temp val);

q_update(inst,regs,cp,ck,jk-;-1);
} '

%9s

flag = -3;
}

if (flag == -3) { //use ~omplete update
· //instruction

sscanf(dbga[no of ins-1],"%9s %9s %9s
%9s", inst, memory, regs,~temp val);
update(inst,memory,regs,cp-;-ck,jk,1);
}

for one

if (flag > 0) { //use quick update for more than
//one instruction forward

for (int
{

j=1; j<flag; j++)

ssca:nf(dbga[no of ins+1],"%9s
%9s",inst,memo,ry,regs);
q_update(inst,regs,cp,ck,jk);

}
flag = -2;
}

%9s

if flag== -2) { //use complete update for one
//instruction forward

sscanf(dbga[no of ins+1],"%9s %9s %9s
%9s",inst,memory-;-regs,reg val);

update (inst,memory,'regs, cp-;-ck, jk);
} .

if ((flag=main~ask()) == -1) {break;}
//stop the debugger

}
}
this->clear all();
this->my_del_all();

//erase all windows contents
//delete all debugger windows

main() {
initscr (); //initialize windows session

//execute the debuger debug window wd;
endwin();
}

//end windows session

98

I** I

99

II This hlp.c program is an application of my window class.
II It is called by the main program win.c to read the needed
II information from the "man" file about the class that the
II client needs.
I** I

#include <stream.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <curses.h>

#define TRUE 1

main()
{

initscr ();
FILE* ff;
char addrr[30]{1600];
char buffer[81];
int i=O;
char fn[81],*name,final[50];

system("pwd >> . temp"); //creat a file for statistics
- //information

ff=fopen(". temp","r");
fgets(fn,80~ff);
fclose(ff);
name=strtok(frr,"\/\n");
name=strtok(NULL,"\/\n");
strcpy(final,"date >> /x/jhun/ooos/");
strcat(final,name);
strcat(final,"/hlp");
system(final);

FILE* mn = fopen("/y/hassan/os2/man","r");
, ' I I open the manual file

while (fgets(buffer,80,mn) !=NULL)
//display help pages

{
if (buffer[O] != 'E') strcat(addrr[i],buffer);
else{
if (i!=O)

strcat(addrr[i],"\n\n<press any key to go back to the
menu> \n") ;

i++;
strcpy(addrr[i],buffer);

}
}
strcat(addrr[i],"\n\n<press any key to go back to the

menu>\n");
fclose(mn);
my_window w1(22,76,1,2,0); //draw the user interface

//windows
my_window w2(22,79,1,2,0);

while(TRUE)
{ //display the online help

//menu options
w1 . add box (' I ' , '-') ;
w1.add-B(1,31," CHOOSE FROM");

100

w1oadd(2,1,"---­
--------------------------");
wloadd(19,1,"---
------------------------~--"); .

//display options in the
//help menu

w1 0 add (3, 5, " 1- ELEM o s clock") ;
w1oadd(4,5, "2- ELEMo vect");
w1oadd(5,5, "3- ELEM. hex digit");
w1oadd(6,5, "4- ELEM. byte");
w1oadd(7,5, "5- ELEM. word");
w1.add(8,5, " 6- ELEM. s register");
wl.add(9,5, " 7- ELEM. storage");
w1.add(10,5, "8- ELEM. memory");
w1.add(11,5, " 9- ELEM. loader");
wl.add(12,5, "10- ELEMo ins set");
w1oadd(13,5, "11- ELEMo cpu">;
w1oadd(14,5, "12- ELEMo pcb element");
w1oadd(15,5, "13- ELEMo pt element");
w1.add(16,5,"14- ELEMo pt table");
w1o add (17, 5, "15- ELEM o mem table elem") ;
w1oadd(3,44, 16- ELEMo memory table");
w1.add(4,44, 17- ELEM. my window");
w1.add(5,44, 18- ELEM. debug window");
wl. add (6, 4 4, 19- OVERLOAD ins set") ;
w1.add(7,44, 20- INS SET instruction");
wl.add(8,44, 21- JOB-EXAMPLE (ASM)");
w1.add(9,44, 22- JOB DATA (ASM)");
w1.add(l0,44,"23- JOB EXAMPLE (HEX)");
w1oadd(11,44,"24- New Ins set for Phase II");
w1oadd(12,44,"25- New cpu-for Phase II");
w1oadd(13,44,"26- New loader for Phase II");
w1oadd(14,44,"27- Random numbers Generator");
w1oadd(16,44,"28- Print Help in ms222");
w1oadd(17, 44, "29- Print Help in ms214");
w1oadd(20,44,"Hit return key to quit");

int a=O,j=2;
w1.add rf(20,4,">> ");
if (wlomy read(a) < 0 I I a < 0 I I a > 29) continue;
if (a == 0) break;
if (a == 28)

{system("lp -s -dms222 /y/hassan/os2/man");continue;}
if (a == 29)

{system("lp -s -dms214 /y/hassan/os2/man");continue;}

101

w1.my_clear(); //delete options men~
w2.add rf(j,1,addrr[a]); //display menu pages for the

- //user choice

}

getchar();
w2 .my clear();
} -
w2 .my delwin () ;
w1.my-clear();
w1.my-del win();
endwiQ();

//delete menu pages

//delete the help window
//clear the frame window
//delete the frame window

I** I

#include <stream.h>'
#include <stdio.h>
#include <string.h>
#include "my util.h"
extern "C" void exit(int);
#include "memory.h"

class m data { //a class to store parsing information about
- //the job instructions

char name[50] [20];
word* val;
int line no[50];
int i; -

public:
m data() { i=O; val= new word[50]; }
-m_data () { delete (val); }

void put(char* nm,char* v,int ln)//read an instruction
{
strcpy(name[i],nm);
val[i]=v;
line_no[i]=ln;
i++;
}

word& values(char* nm) { //convert the instruction from
//string to a word

for (int j=O; j<i; j++)
if (strcmp(name[j],nm)==O') break;

return(val[j]);
}

int value(char* nm) { //return the variable address
for (int j=O; j<i; j++)

if (strcmp (name [j], nm) =='0) break;
return(val[j] .int w());
} -

int addrs (char* nm) { I /return the inst.ruction address

for (int j=O; j<i; j++)
if (strcmp(name[j] 1 nm)==O) break;

return(line no[j]);
} -

} ;

main(int argc 1 char* argv[])
{
FILE *in 1 *out;
if (argc 1= 3) exit(-1);
in= fopen(argv[1] 1 "r");
out= fopen(argv[2] 1 "w");

int i=0 1 max=O;
char prog[100] [82];

//open the assembly job file
//open the hex_digit job file

102

while(!feof(in)) { //read the program and its data in
//the array "prog"

fgets(prog[i] 1 81 1 in);
if (strlen(prog[i]) > 2 && prog[i] [0] != 1 ; 1) i++;
}

max=i-1;
char cons[10] 1 DT[5];
char val[9];

~~)

~_data(~r
1.--;
sscanf(prog[i] 1 "%s%s%8s" 1 CQns.,-D~1 val);
while (strcmp(DT 1 "DATA") == 0) { //separate

//the program
Ddata.put(cons 1 val 1 i);
sscanf(prog[--i] 1 "%s%s%8s" 1 cons 1 DT 1 val);
}

m data Pdata;
char opr[10] 1 opn[10] 1 inst[9] 1 c[5];

data line from

static char base[16] =
{ 1 01 1 1 11 1 1 2 1 1 1 31 1 1 4 1 1 1 5 1 1 1 61 1 1 7 1 1 1 81 1 1 91 1 1 A1 1 1 B1 1 1 C1 1 1 D1 1 1 E1

I I F 1 } ;

int temp1 1 temp2 1 temp3 1 temp4;
int k 1 addr 1 words=O;
i++;

for (int j=O;j<i;j++) { //read job instructions
if (prog[j] [6] != 1 1) {

sscanf(prog[j] 1 "%s" 1 cons);
Pdata.put(cons 1 "00000000" 1 j);

}

for (k=O;k<strlen(cons);k++) prog[j] [6+k]= 1 1 ;

}

for (j=O;j<=i;j++) { //read jobs data
int no of reg=O;
if (words==4) { fprintf(out 1 "\n");words=O; }

for (k=O; k<strlen(prog[j]);k++)
if (prog[j][k]==',') {

prog[j][k]=' ';
no of reg++;
} - -

int rl=O,r2=0;
strcpy(c,"OOOO");

103

if (no_of_reg==l) { //if there is no indexing
//address read the arithmetic
//register only

sscanf(prog[j],"%s%x%s",opr,&rl,opn);
if (rl>7) {

cerr << "can't use system registers 8-F at: "<< j<<"You may
have an error in your comments\n"; ·

exit(O);}
c[l]='O';
}

else if (·no_of_reg == 2) {//if the instruction
//contains the index register
//read both registers in the
//instruction

sscanf(prog[j],~%~%x%x%s",opr,&rl,&r2,opn);
if (r1>7 I I r2>7) {

cerr << "cann't use system registers 8-F at: "<< j<<"You may
have an error in your comments.\n";

exit(O);}
c[l]=base[r2%16];
}

else sscanf(prog[j],"%s%s",opr,opn);
if (opn [0] == ' (' & & opn [str len (opn) -1] -- ') ') {

for (k=O; k < strlen(opn)-2; k++)
opn[k]=opn[k+l];

opn[strlen(opn)-2]='\0';
strcpy(inst,"8");

}
else strcpy(inst,"O"); ..

if (strcmp(opr,"RD")==O) {//if the instruction is
//read instruction there is no
//index register

strcat(inst,"F00");
addr=Ddata.addrs(opn);
templ=addr%16;

//covert data address to hex_digit
temp2=addr/16;
temp3=temp2/16;
temp4=temp3/16;
c.[3] =base [templ]; ,
c[2]=base[temp2%16];
c[l]=base[temp3%16];
c[O]=base[temp4%16];
strcat(inst,c);

fprintf(out,"%s",inst);
words++;
}

104

else if (strcmp(opr,"WR")==O){//if the instruction
//is write instructionno index
//register in it
//if the instruction use indirect
//address set indirect bit to 1

if (inst[0]=='8') strcpy(inst,"9000");
else strcpy(inst,"1000");

//if direct address instruction set
I /bit to 0'

addr=Ddata.addrs(opn);
temp1=addr%16; //covert data address to

//hex_digit
temp2=addr/16;
temp3=temp2/16;
temp4=temp3/16;
c[3]=base[temp1];
c[2]=base[temp2%16];
c[1]=base[temp3%16];
c[O]=base[temp4%16];
strcat(inst,c);
fprintf(out,"%s",inst);
words++;
}

else {
addr=Ddata.addrs(opn);

//find the instruction address
//translate the instruction from

//assembly to hex digit value
if (strcmp(opr,"LD") -- 0)-strcat(inst,"1");
if (strcmp(opr,"ST") == 0) strcat(inst,"2");
if (strcmp(opr,"AD"l == 0) strcat(inst,"3");
if (strcmp(opr,"SB") == 0) strcat(inst,"4");
if (strcmp(opr,"MPY") -- 0) strcat(inst,"S");
if (strcmp(opr,"DIV") -- 0) strcat(inst,"6");
if (strcmp(opr,"SHL") == 0) strcat(inst,"7");
if (strcmp(opr,"SHR") == 0) strcat(inst,"8");
if (strcmp(opr,"BRM") == 0) {strcat(inst,"9");

addr=Pdata.addrs(opn);}
if strcmp(opr,"BRP") == 0) {strcat(inst,"A");

addr=Pdata.addrs(opn);}
if strcmp(opr,"BRZ") == 0) {strcat(inst,"B");

addr=Pdata.addrs(opn);}
if strcmp(opr,"BRL") == 0) {strcat(inst,"C");

addr=Pdata.addrs(opn);}
if (strcmp(opr,"AND") == 0) strcat(inst,"D");
if (strcmp(opr,"OR") == 0) strca_t(inst,"E");
if (strcmp(opr,"DMP") == 0) strcpy(inst,"11");
if (strcmp(opr,"HLT") == 0)

{strcpy(inst,"OOOOOOOO");
fprintf(out,"%s",inst);

}

words++;
continue;
}

c[O] = base[r1%16]; //calculate the arithmatic
//register

c[2] ='\0';
strcat(inst,c);
strcat(inst,"00");
temp1=addr%16; //calculate the memory

//address
temp2=addr/16;
c[l]=base[templ];
c[O]=base[temp2%16]; ,
strcat(inst,c);
fprint,f (out, "%s", inst);
words++;
}

for (k=i+l;k<=max;k++)//print job data
{
if (words==4) { fprintf(out,"\n");words=O; }
sscanf(prog[k],"%s",cons);
strcpy(inst,"000000");
(Ddata.values(cons)) .prints~out);

//calculate the data address and
//print it as hex_digit

words++;
}

fclose(in);
fclose(out);
}

105

APPENDIXD

RANDOM NUMBER GENERATOR CLASS LISTING

/**
In order to make the simulation package more realistic, a
pseudo-random-number generator class has been included. The
code for this class is listed in this appendix. This class
has "inter-arrival times" and "service times" methods ..
***/

#include <iostream.h>
#include <stdlib.h>
#include <sys/types.h>
#include <math.h>

const int M1 = 259200;
const int IA1 = 7141;
const int IC1 = 54773;
const float RM1 = (1.0/M1);
const int M2 = 134456;
const int IA2 = 8121;
const int IC2 = 28411;
const float RM2 = (1. 0/M2);
const int M3 = 243000;
const int IA3 = 4561;
const int IC3 = 51349;

/***
* Returns a uniform random number between 0.0 and 1.0. Set
* idum to any negative value to initialize or reinitialize
* the sequence

***/
class ran1 {

int *idum;
static long ixl,ix2,ix3;
static float r[98];
float temp;
static int iff;
int j;
void nrerror(char*);

public:
ran1 (int iff= 0);

106

107

float value (int *idum);
} ;
/***

* Returns an exponentially distributed, positive, random
*derived of unit mean, using ranl(idum) as the source of
* the uniform random number

***/
class os rand : public ranl {
public: -

} ;

float value(int*);
int generate();
int interarrival time();
int service_time();

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include "/t/opsys/phase3/arr_srv.h"

ranl::ranl(int ff) { iff= ff;}
inline float ranl::value (int *idum)

if (*idum < 0 I I iff == 0) {
I* initialize on first call */
I* even if idum is not negative. */

iff=l;
ixl=(ICl-(*idum)) % Ml;

I* seed the first routine, */
I* and use it to seed the second*/
/* and third routines.*/

ixl=(IAl*ixl+ICl) % Ml;
ix2=ixl % M2;
ixl=(IAl*ixl+ICl) ~ Ml;
ix3=ixl % M3;

for (j=l;j<=97;j++) {
I* fill the table with sequential uniform */
I* number generated by the first two */
I* routines. */

ixl=(IAl*ixl+ICl) % Ml;
ix2=(IA2*ix2+IC2) % M2;
r[j]=(ixl+ix2*RM2)*RM1;

I* Low- & high-order are combined here. */
} /* endfor */
*idum=l;

} /* endif */

ixl=(IAl*ixl+ICl) % Ml;
ix2=(IA2*ix2+IC2) % M2;

I* start. Generate the next number for each */
I* sequence.*/

ix3=(IA3*ix3+IC3) % M3;

108

j=1 + ((97*ix3)IM3);
I* use the third sequence to get an integer *I
I* between 1 and 97. *I

if (j > 97 II j < 1) nrerror ("RANl: This cannot
happen.");

}

temp=r[j];
I* Return that table entry, *I

r[j]=(ixl+ix2*RM2)*RM1;
return temp;

inline float os rand::value(int *idum) {
return -log((float) ran1::value(idum));

}
inline int os rand::generate()
{ int xidum,-

}

1* seed *I
xnums,

I* number of random numbers generated *I
k;

float templ;
int temp2;
xidum = time(NULL)%7;

temp1 = value(&xidum);
temp2 = temp1*10+15;
temp2 = temp213;

return(temp2);

int os rand::interarrival time() { return(generate()); }
int os-rand::service time() { return(generate()); }
void ranl::nrerror(error text)
char error_text[]; -
{

}

cerr <<"Numerical Recipes run-time error ... \n";
cerr << "%s\n",error te~t;
cerr << " ... now exiting to system ... \n";
exit(1);

APPENDIXE

USER MANUAL

1. Simulating an Environment

Creating objects from the loader, memory, or cpu classes is done independently.

In other words, different memories, loaders, and/or CPU's can be created each with its

unique features as depicted below. These instantiations can communicate easily in a

parallel processing environment For example, one loader can load jobs into a memory

while one CPU (or more) execute other jobs in the same memory at the same time, also

probably in other memories at the same time.

,'::_"' loader 11 ,12,13;
" . //declaration Qf three loaders

mem.ory m1(128,5),m2,m3;
', //declaration of three memories

ins_set insd;

\\ //dec;mtion ~f-an. instruction set
ins_sea insa; .

I 11ruflaration of a dif(eren
\ //instruction set ! '

cpu cl(&insl),c2(~ins2),c3(&ins2);
\ //tclaration of three cpu's

Examples of component declarations

109

110

Two parallel processing cases are simulated below to show how easy it is to use

the package to model of a multi-processor system. After declaring a system's components

Ooaders, memories, and CPU's), it is straightforward to have different processes each use

its own loader on its own memory and CPU.

loader 11 ,12;
//declaration of two loaders

memory m1,m2;
//declaration of two memories

ins_set inst1;
//declaration of an instruction set

cpu c1(&ins1),c2(&ins1);
//declaration of two cpu's

int i=fork(); -

if (i=O) {

else {

ll.load(jobs 1 ,m1);
/!load jobs from file jobs 1 into memory

cl.runjob_from(m1);

//run a ready job from memory m1 using
· //cpu1

}

12.load(jobs2,m2);
//load jobs from file jobs2 in memory m2

c2.runjob_from(ln2);

}

//run a ready job from memory m2 using
//cpu2

Two separate systems load and execute their jobs in parallel

111

Furthermore, in a more complicated system, we may have a shared memory in

which more than one loader can load new jobs at the same time, and more than one CPU

may execute different ready jobs from this memory. This case will require the addition

of a semaphore in the class memory_table to protect its elements from being accessed by

CPU's and loaders - one for all the table - or _the addition of a semaphore to class

mem_element so that no more than dne CPU or loader can access it, but more than one

memory element can be accessed at the same time.

loader 11;
, //declare a loader

memory m1(128,5),m2,m3;
//declare three memories

ins_set inst1;
//declare an instruction sets

ins_sea insa;
//declare a different instruction set

cpu c 1 (&ins 1),c2(&ins2),c3(&ins2);
//declare three cpu's

ll.lmid(jobs 1 ,ml);
· //load jobs from jobsl me into memory m1

ll.load(jobs2,m2);
//load jobs from jobs2 me into memory m2

ll.load(jobs3,m3); -
//load jobs from jobs3 me into memory m3

int i=fork();
if (i=O) (cl.run_job_from(ml);

//run a ready job from memory m2 using
//cpul ·
c2.run_job_from(m2); }
//run a ready job from memory m2 using
//cpu2
else c3.run_job_from(m3);
//run a ready job from memory m2 using
//cpu3

Load jobs in sequence using one loader and execute two of
them in parallel with the third

JOB ·INFO. INST. INFO.

JOB ID: INST.:
MEM. ID: Indirect:
CPU ID: Index reg.:

Arith. reg.:
INST.f:

Mem. loc.:
JOB CLK: Mem. cont.:
CPU CLK:

{main options or print options menu}

>>

The debugger interface

2. Interface

112

REGISTERS

1
2
3
4

A default debugger was implemented to serve as an interface to the prototype

system. A user can design his/her own debugger as needed.

1- The default Debugger has four windows:

- REGISTER window, which displays the current ,register values.

- INST. INFO. window, which explains the current instruction.

- JOB INFO~ window, which contains general infoqna,tion about the job.

- Options window, which contains user options.

113

2- Since the class debugger uses the class my_window, the user simply can, overload it

to add more features or create his/her new customized debugger by using the class

my_window.

3- The class my_ window is easy to use because:

- Its constructor has the number of its variables.

- Has setO method to set the location of each variable.

- To update a variable, it just needs to call the updateO method with the variable number

and its new value.

By using parallel processing functions we can run both parts of the package in

parallel. While the debugger is displaying a job's execution steps for the user, the main

program can execute another job and prepare its' execution information in a special file

for the debugger.

memory

memory-table

BBBB ·· B
atorage

[!J~~[!J .. [!)
[!J[!J[!j[!J .. [!) . : : . :
[!J[!j[!J[!J .. [!J

APPENDIXF

PROGRAMMER MANUAL

memory (a atorage object
:lect) ... a a.mory_tabfe ob

memory-table (a vector of
mem..~nt objecta) ----·····...,

atoraae (a vactor of warda) ,.__.
word

[!1~[!1(!1 .. ~
ward (a vector of bytea

mem..elament

pcb .. element

ll!illllllllj-111

pt..elemant

11,11111111111- Iii

Relations among classes

1. Relations among Classes

mem..element (a pob_elemant obJect
and a page .. table object)

pcb .. element (a vector or lntegera)
051ntllger)

page .. table (a wctor of
pLelement ob)ecta)
,CPIE: pLelement)

pt_element (a vector of lntegera)
051ntager)

Different relations among the package's classes (see the above depiction) are

represented using object-oriented programming features such as the following.

A- We have single inheritance in this prototype system ("is a" relation). Examples include

the classes byte, pt_element, and pcb_element from the class vect, the class register from

the class word, and the class memory from the class storage.

114

115

B- We also have multiple inheritance of the class mem_element from the classes

pcb_element and page_table.

C- There is another relation among classes besides inheritance, some objects have object

instance variables from other classes ("has a" relation). For example an object of the

class storage has an array of "word" objects, an object of the class mem_element has a

"pcb_element" object and the class page_table object has an array of "pt_element" objects.

This case is more complicated in the class memory object which has a "memory_table"

object, array of "mem_element" objects, and its body is an array of "word" objects.

2. Inherit New Classes

If the package classes do not meet the user needs, new classes can be inherited

from the package classes and the user can overload the original class' methods. In the

example below, a new instruction set class is defined which does not have the RD and

WR operations.

class my _ins_set:public ins_set {
int execute(int& EA,memory& m,word& REG,FILE* dbg, Fll..E* out)

{ int flag=O;

}

switch(op.int_bO)

}

{ case 12 :

}

I 1RD instruction
case 13 : flag = 2; break;
/IWR instruction
default : i~s_set: :execute(EA,m,REG,dbg,out);
//call the parent instruction set execute operation

Example of a new ins_set class

116

3. Communication among Objects

The processing of the prototype system is based on the communication among its

objects as outlined below.

A- The class loader and its interaction with the class memory and instances of the class

memory:

-A loader object interacts with a memory object by calling loader.loadQobs_fJle,memory).

- The load() function communicates with the memory element memory _table by using

memory.put(vect) to write the new job information into an element of its pcb_elements.

- The load() function also uses the write() function to communicate with the memory

body to write a new word into the memory location by using the overloading operator =

in the class word.

pcb_element~ 1 . paee_table

memo~_!able_element

1 memory _table

1
body --• memory

loader ---....:' l..._ __ _,. CPU

~r--------inl_set
debueger

Communication among classes.

117

B- The CPU communicates with the memory to fmd a ready job from the memory _table

and calls its inst_set object to execute the ready job's instructions one by one from the

memory body.

C- The inst_set communicates with the CPU's registers and the memory body during each

instruction's execution.

D- The Debugger communicates with the ins_set to receive its needed information about

the current instruction to be displayed to the package us~r.

Khaled M. Hassan

Candidate for the Degree of

Master of Science

Thesis: AN OBJECT-ORIENTED PROTOTYPING ENVIRONMENT FOR
ARCIDTECTURES AND OPERATING SYSTEMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Cairo, Egypt, October 18, 1964, the eldest son of Mr.
and Mrs. M. H. Soliman.

Education: Received Bachelor of Civil Engineering from Faculty of
Engineering, Cairo University, Cairo, Egypt, in June 1986;
completed requirements for the Master of Science degree at
Oklahoma State University in December 1992.

/Professional Experience: Data Analyst and System Designer in the MIS
Department in a Canadiane project with Water Research Center, an
Egyptian Research Institute, for hydraulic studies of the River Nile,
February 1989 to August 1992.

