## A REGIONAL MODEL OF A HIGH PLAINS

AQUIFER, NORTH-CENTRAL MEXICO

By

JACK E. GAZIN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1984

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 1992

A REGIONAL MODEL OF A HIGH PLAINS

| AQUIFER, | NORTH-CENTRAL | MEXICO |
|----------|---------------|--------|
|----------|---------------|--------|

Thesis Approved:

Thesis Adviser Cary 7- Stewart <u>Shomar C. Collin</u> Dean of the Graduate College

#### ACKNOWLEDGEMENTS

I would like to express gratitude to my major advisor, Dr. Wayne Pettyjohn, for allowing me to pursue my education in geology and hydrogeology in particular. It is my sincere hope that throughout my professional career I will be able to exhibit and practice his knowledge, patience, and common sense.

I am thankful to Dr. Gary Stewart for setting me on the path toward the understanding of logic and for the need of academic maturity, honesty, and integrity. His lessons will always be remembered. The ability to create order of chaos is important, indeed.

I am also thankful to Dr. Authur Hounslow for his patience in teaching me organic and environmental geochemistry. His humor was mostly appreciated.

Additional thanks go to Kelly Goff, School of Geology, for his advice on modeling as well as programming.

Finally, I would like to give special thanks to my mother and father. Their support has never wavered.

iii

# TABLE OF CONTENTS

| Chapte | er Pa                                  | ıge |
|--------|----------------------------------------|-----|
| I.     |                                        | 1   |
|        | General Overview                       | 1   |
|        | Statement of the Problem               | 4   |
|        | Purpose                                | 6   |
|        | Objectives                             | 6   |
|        | Methods of Investigation               | 6   |
|        | Previous Investigations                | 7   |
|        | Acknowledgements                       | 9   |
| II.    | REGIONAL GEOGRAPHY AND GEOLOGY         | 10  |
|        | Geography                              | 10  |
|        | Surface Waters                         | 10  |
|        | Climate.                               | 12  |
|        | Regional Geology                       | 17  |
|        | Surficial Depositional Units.          | 18  |
| ¢      | Subsurface Geology                     | 18  |
| III.   | HYDROGEOLOGY AND WATER QUALITY         | 32  |
|        | Hydrogeology                           | 32  |
|        | Estimating Hydraulic Conductivity .    | 32  |
|        | Water Quality                          | 37  |
|        | Water Standards for Public Consumption |     |
|        | and Agriculture                        | 39  |
|        | Distribution and Concentration of      |     |
|        | Groundwater Constituents               | 41  |
|        | Arsenic                                | 43  |
|        | Chloride and Sulfate                   | 46  |
|        | Electrical Conductivity, Dis-          | 40  |
|        | solved Solids, and Hardness .          | 46  |
|        | Hardness                               | 53  |
| IV.    | MODEL DEVELOPMENT                      | 57  |
|        | PLASM                                  | 58  |
|        | Calibration of PLASM                   | 60  |
|        | Model Inputs                           | 60  |
|        | Calibration Methods                    | 61  |

Chapter

1 3

e

| Pa | ae |
|----|----|
|    | _  |

|                                         | Mo    | del P: | rojec  | ctio  | ns  | •   | •   | •   | •    | •     | •    | •  | • | • | 66          |
|-----------------------------------------|-------|--------|--------|-------|-----|-----|-----|-----|------|-------|------|----|---|---|-------------|
|                                         |       | Na     | tura]  | l Re  | cha | rge |     | •   | •    | •     | •    | •  | • | • | 67          |
|                                         |       | Ef     | fects  | s of  | Ar  | tif | ici | al  | Rec  | chai  | ge   | •  | • | • | 76          |
|                                         | Su    | mmary  | of N   | lode  | 1 P | roj | ect | ior | າຣ   | •     | •    | •  | • | • | 78          |
|                                         |       | Ca     | libra  | atio  | n B | udq | et  | Pro | ojec | ctic  | ons  | •  | • | • | 78          |
|                                         |       | In     | creas  | sed   | Pum | pag | e P | rof | ject | ior   | ns   | •  | • | • | 83          |
| s 1                                     |       | Ar     | tific  | cial  | Re  | cha | rqe | Pi  | oie  | ecti  | Lons | 5. | • | • | 83          |
|                                         |       |        | ,      |       | ,   |     | 2   |     | 2    |       |      |    |   |   |             |
| V. SUN                                  | MMARY | AND    | CONCI  | LUSI  | ONS |     | •   | •   | •    | •     | •    | •  | • | • | 85          |
|                                         | r     | ŧ      |        |       |     |     |     |     | ,    |       |      |    |   |   |             |
|                                         | Su    | mmarv  |        | •     |     | •   | •   | •   | •    | •     | •    | •  | • | • | 85          |
|                                         | Co    | nclus  | ions   | •     |     | •   | •   | •   | •    |       | •    | •  |   |   | 87          |
|                                         |       |        |        |       | •   | -   |     |     | ,    |       |      |    |   |   |             |
| SELECTED                                | REFE  | RENCE  | s.     |       |     |     |     |     |      | •     |      |    |   | • | 89          |
|                                         |       |        |        | •     | •   | •   | •   | •   | •    | •     | •    | •  | • | • |             |
| APPENDIX                                | Α -   | REGTO  | NAT. V | ATE   | RA  | NAL | YSE | s   |      |       |      |    |   |   | 92          |
|                                         |       |        |        |       |     |     | 101 |     | •    |       | •    | •  | • | • | 22          |
| APPENDIX                                | в –   | WELLS  | T.OC   | דידמי | ONS | Δ   | ND  | нуг | TARC | 1T.TC | -    |    |   |   |             |
| MI I DIOLA                              | D     |        | CHARI  | ACTE  | RTS | ΥTC | S   |     |      |       |      |    | - | _ | 108         |
|                                         |       |        |        |       |     |     | 5   | •   | •    | •     | •    | •  | • | • | <b>T</b> 00 |
| APPENDTY                                | с –   | CALTR  | RATTO  | ON P  | ARA | мет | ERS | F   | DR I | εάτο  | SM   |    |   |   | 112         |
| 111 I III I I I I I I I I I I I I I I I | -     |        |        |       |     |     |     |     |      |       | _    | -  | - | - |             |

. v

## LIST OF TABLES

| Table |                                                             | Page |
|-------|-------------------------------------------------------------|------|
| I.    | Generalized Stratigraphic Section of<br>Geologic Formations | 19   |
| II.   | Values of Hydraulic Conductivity for Various<br>Sediments   | 33   |
| III.  | Drinking Water Standards                                    | 40   |
| IV.   | Recommended Limits for Agricultural Use                     | 42   |

# LIST OF FIGURES

| Figu | re                                     |     |   |   | Pa | age |
|------|----------------------------------------|-----|---|---|----|-----|
| 1.   | General Location of Study Area         | •   | • | • | •  | 2   |
| 2.   | Detailed Location of Study Area        | •   | • | • | •  | 3   |
| 3.   | Geography of Study Area                | •   | • | • | •  | 11  |
| 4.   | Mean Annual Precipitation for Torreon  | •   | • | • | •  | 13  |
| 5.   | Mean Monthly Precipitation for Torreon | •   | • | • | •  | 14  |
| 6.   | Regional Mean Annual Precipitation .   | •   | • | • | •  | 15  |
| 7.   | Regional Mean Monthly Precipitation .  | •   | • | • | •  | 16  |
| 8.   | Geologic Cross-Section                 | •   | • | • | •  | 21  |
| 9.   | Subsurface Clay Distribution           | •   | • | • | •  | 23  |
| 10.  | Subsurface Silt Distribution           | •   | • | • | •  | 24  |
| 11.  | Subsurface Sand Distribution           | •   | • | • | •  | 25  |
| 12.  | Subsurface Gravel Distribution         | •   | • | • | •  | 26  |
| 13.  | Subsurface Conglomerate Distribution.  | •   | • | • | •  | 27  |
| 14.  | Location of Data Points                | •   | • | • | •  | 29  |
| 15.  | Idealized Geologic Cross-section of Ba | sin | • | • | •  | 30  |
| 16.  | Hydraulic Conductivity                 | •   | • | • | •  | 35  |
| 17.  | Isotransmissivity                      | •   | • | • | •  | 36  |
| 18.  | Composite Porous Media                 | • • | • | • | •  | 38  |
| 19.  | Variation of Minimum Arsenic           | •   | • | • | •  | 44  |
| 20.  | Variation of Maximum Arsenic           | •   | • | • | •  | 45  |
| 21.  | Chloride Distribution                  | •   | • | • | •  | 47  |

| Figu | re                                                       |            |   | Page |
|------|----------------------------------------------------------|------------|---|------|
| 22.  | Sulfate Distribution                                     | •          | • | 48   |
| 23.  | Variation of Minimum Electrical Conductivity             | •          | • | 49   |
| 24.  | Variation of Maximum Electrical Conductivity             | •          | • | 50   |
| 25.  | Variation of Minimum Total Dissolved Solids              | •          | • | 51   |
| 26.  | Variation of Maximum Total Dissolved Solids              | •          | • | 52   |
| 27.  | Variation of Minimum Hardness                            | •          | • | 54   |
| 28.  | Variation of Maximum Hardness                            | •          | • | 55   |
| 29.  | Location of PLASM Nodes                                  | •          | • | 62   |
| 30.  | Change in Water Levels, 1977 - 1980                      | •          | • | 63   |
| 31.  | Depth to Water Table, 1980                               | •          | • | 64   |
| 32.  | Interpolated Depth to Water Table, 1977                  | •          | • | 65   |
| 33.  | Projected Water Levels, 1985                             | •          | • | 68   |
| 34.  | Projected Water Levels, 1990                             | •          | • | 69   |
| 35.  | Projected Water Levels, 1995                             | •          | • | 70   |
| 36.  | Projected Water Levels, 2000                             | •          | • | 71   |
| 37.  | Projected Water Levels with Increased<br>Pumpage, 1985   | •          | • | 72   |
| 38.  | Projected Water Levels with Increased<br>Pumpage, 1990   | •          | • | 73   |
| 39.  | Projected Water Levels with Increased<br>Pumpage, 1995   | . <b>•</b> | • | 74   |
| 40.  | Projected Water Levels with Increased<br>Pumpage, 2000   | •          | • | 75   |
| 41.  | Location of Recharge Nodes                               | •          | • | 77   |
| 42.  | Projected Water Levels with Artificial<br>Recharge, 1985 | •          | • | 79   |
| 43.  | Projected Water Levels with Artificial                   |            |   | 80   |

| Figur | re                                                       |   |   |   | Pa | ıge |
|-------|----------------------------------------------------------|---|---|---|----|-----|
| 44.   | Projected Water Levels with Artificial<br>Recharge, 1995 | • | • | • |    | 81  |
| 45.   | Projected Water Levels with Artificial<br>Recharge, 2000 | • | • | • |    | 82  |

•

.

#### CHAPTER I

#### INTRODUCTION

#### General Overview

The Laguna (Desierto) de Mayran, also known as the Lagunera, is a structural basin situated in the states of Coahuila and Durango in the north-central high plains (Altiplano) of Mexico between 25 and 26 degrees north latitude and 101 to 104 degrees west longitude (Fig. 1). The study area (Fig. 2), a subset of the Parras Basin, lies in the western third of that region. The area is characterized by few high-density population centers, including Gomez Palacio, Lerdo, Matamoros, Tlahualilo de Zaragoza, and Torreon. Elsewhere the population is dispersed throughout a number of small farms, villages, towns, or "ejidos", which is a form of agricultural cooperative community (Cole, 1970).

Lagunera, which is located in Irrigation District Number 17 (Yates, 1981), is extensively irrigated by both ground water and surface water. In the subsurface the basin can be envisioned as a bathtub that, for all practical purposes, forms an isolated system. Ground water is derived from wells that range from about 250 to 1200 feet (80 to 400 meters) in depth. The water levels in





SOURCE: Jones, 1938, Geol. Soc. Am. Bull., v.49, p. 72

Figure 2. Detailed Location of Study Area

ω

these wells in the irrigated regions lie from 300 to 400 feet (90 to 120 meters) below land surface. Pumping greatly exceeds ground-water recharge and, as a result, water levels have been declining 3 to 10 feet (1 to 3 meters) per year since at least 1977.

Surface water used for irrigation is obtained from the Nazas and Aguanaval rivers, both of which enter the basin from the southwest. The Rio Aquanaval exits to the east, while the Rio Nazas, now largely controlled, formerly flowed out into the basin to a playa lake. Rio Nazas is controlled upstream by the Francisco Zarco dam, which is located about 60 kilometers southwest of Torreon. This river is the primary source of irrigation water for the approximately 222,390 acre (90,000 hectare) watershed (Secretaria de Recursos Hidraulicos, 1976).

Extensive irrigation in this area has made it possible to grow such crops as alfalfa, cotton, oilseeds, and wheat. These crops, which normally require much more water than otherwise could be obtained in a desert region, could not be raised were it not for the vast irrigation network instituted by the Mexican government.

#### Statement of the Problem

The study area receives an average of only 12.6 inches (32 centimeters) of precipitation per year (S.A.R.H, 1984). Only an exceedingly small fraction of the precipitation reaches the water table, which, in places, is deeper than

300 feet (90 meters) below land surface.

Although an extensive network of irrigation canals crosses the nearly flat lake plain in the vicinity of Torreon, the interconnected canals are lined with concrete to prevent leakage. Therefore, during the irrigation season the water-filled canals cannot be considered as a source of ground-water recharge to the underlying aquifer (Pettyjohn, 1987). The longevity of the ground-water system is placed further in jeopardy by the illegal, uncontrolled drilling of private water wells, which are used for both irrigation and domestic needs.

In addition to the ever-increasing exploitation of ground water for irrigation, population centers are also increasing at an exceedingly rapid pace, both in size and water demand. In fact, some well fields have been pumped so extensively that subsidence of the ground in the immediate vicinity of a few sites is evident (Pettyjohn, 1986).

Aggravating the current water crisis in the Lagunera region is the problem of ground-water quality. Chemical analyses of well water samples obtained in the vicinity of Tlahualilo indicate unacceptable levels of dissolved solids and naturally occurring arsenic (S.A.R.H., 1980). Throughout much of the Lagunera region the concentration of arsenic is of such a magnitude that the water cannot be used for any purpose, and the construction of wells in these areas is prohibited.

#### Purpose

The purpose of this study is to define, as accurately as the data allow, the present and near-future ground-water availability in the Lagunera region, and in so doing to predict to some degree the future of the regional water balance with respect to increasing stresses brought about by factors unique to the region. Factors affecting the Lagunera include: (1) minimal ground water recharge by infiltration from surface sources, (2) an arid climate, (3) lack of accurate data defining the rate of water-level decline, well discharge rates, and recharge to subsurface waters, and (4) a deterioration in water quality as a result of excess pumpage, which has increased concentrations of arsenic and dissolved solids.

## Objectives

The objectives of this investigation include the formulation of (1) as complete a characterization of the distribution of intrabasinal lithologies as data allow, (2) the hydrologic nature of the basin fill, (3) a determination of regional recharge and discharge, and (4) computer simulations to predict future water-level trends and movement of the arsenic front.

#### Methods of Investigation

This investigation is based on data provided by the S.A.R.H., Lagunera Region, Mexico. Data include incomplete

chemical analyses of waters derived from domestic and irrigation wells, driller's logs, and a water-level map. In some instances driller's logs were supplemented by electric logs.

Driller's logs made possible an evaluation of both the subsurface geologic and hydrogeologic nature of the basin. Using these data, maps were constructed of the basin geometry, lithologies, and aquifer characteristics. These data also permitted the construction of geologic crosssections which served as aids in determining basin geometry.

Chemical data were used to map the distribution and magnitude of important chemical ground-water constituents. Water analyses for the study area and the region are in Appendix A.

Computer simulations of the aquifer were conducted using the Prickett Lonnquist Aquifer Simulation Model (PLASM) developed by T.A. Prickett and C.G. Lonnquist (1971). The model was calibrated using 1977 and 1980 water levels as known endpoints of a three-year continuum. Following calibration of the model, simulations of future water-level behavior were conducted using hypothetical water budgets.

## Previous Investigations

The earliest investigations of the Parras Basin were conducted by Hill (1891, 1893, 1923) during the course of his study of the Cretaceous of Texas and northern Mexico. Bose (1906, 1913) studied the Permian stratigraphy of the region and published a general stratigraphic section of the Permian strata west of the Noria de Malascachas. Further research was conducted by Kellum, Imlay, and Kane (1936) as part of their research of the Coahuila Peninsula. During the course of their field work they established the general stratigraphy and structure of the Sierra de Tlahualilo range. It was during this investigation that Imlay first assigned the term "Difunta" to the Permian strata previously described by Bose.

Correlation of the upper member of the Lower Cretaceous Aurora Limestone, which is found in the Ojo de Agua area of the Sierra de Tlahuila range, with that of the Washita Group of Texas was based on biostratigraphic work by King (1944). Additional study of the Difunta Group of the Parras Basin was carried out by Murray and others (1962).

Hydrogeologic investigations of the basin have been made by the S.A.R.H., Office of the Secretary of the Laguna Region, the Department of Statistics and Economic Studies (a branch of the General Department of Irrigation Districts), and the Department for Investigation, Development, and Agricultural Health of the Laguna Region (S.A.R.H., 1980). Estimates of the rate of ground-water withdrawal during the agricultural seasons 1977-78 and 1978-79 vary substantially among these agencies.

Estimates of withdrawals during this period range from 12,345 to 43,573 million cubic feet (350 to 1,234 million cubic meters) with the upper range given by the S.A.R.H. considered to be the most accurate. This same study also states that recharge represents only 25 percent of the pumped water. The remaining 75 percent is thought to come from aquifer storage.

#### CHAPTER II

#### REGIONAL GEOGRAPHY AND GEOLOGY

Geography

#### Surface Waters

The Parras drainage basin is supplied by two water courses, the Nazas and Aguanaval rivers. These rivers enter the basin at its southwestern border, flow northeast to the east-west basinal axis and then take an easterly path down-gradient (Fig. 3). Specifically, the Rio Nazas enters the Parras Basin near the city of Lerdo, flows northeastward through Gomez Palacio and Torreon, which lie to the west of the Sierra de San Lorenzo mountains, and continues to the municipality of Sacramento. Upon reaching Sacramento, the Rio Nazas assumes an easterly course, which leads to the north of the San Lorenzo mountains and finally to the Laguna (desierto) de Mayran, a dry lake bed. Owing to control structures, only during unusual periods of extremely heavy rain does the Rio Nazas contain water below the main control structure at Gomez Palacio.

The Rio Aguanaval enters the Parras Basin south of Lerdo, near the city of Nazareno, and then flows northeastward between the cities of Matamoros and Gileta before



# Figure 3. Geography of Study Area

.

turning east. It then meanders some 25 miles (40 kilometers) before entering the Laguna de Viesca. Laguna de Viesca is separated from the northern Laguna de Mayran by the Sierra de la Pena mountains.

The northerly sloping topography upon which both rivers flow before turning east has a gradient of approximately 5.7 feet per mile (1.1 meters per kilometer), or a slope of 0.1 percent. The streams flow eastward on a gradient of 2.1 feet per mile (0.4 meters per kilometer), or a slope of 0.04 percent.

#### <u>Climate</u>

The climate in the study area is arid to semi-arid. Rainfall data recorded in Torreon over a 43-year period ending in December, 1983, indicate a mean annual precipitation of 8.7 inches per year (221 millimeters per year). These data are depicted graphically in Figure 4.

Approximately 83 percent of the annual precipitation occurs between May and October. Figure 5 illustrates the depths of mean monthly precipitation for the Torreon area for the same 43-year period. Additional data from nine other regional stations aid in delineating mean annual and mean monthly precipitation trends (Figs. 6 and 7). On a regional basis major precipitation events occur during the same time frame as in Torreon, while differing only in magnitude.

The mean annual temperature for Torreon for the period





Figure 4. Mean Annual Precipitation for Torreon





.

Figure 5. Mean Monthly Precipitation for Torreon





Figure 6. Regional Mean Annual Precipitation





Figure 7. Regional Mean Monthly Precipitation

1982-83 has been reported as 71.4 degrees F (21.9 degrees C) with a minimum of 57.1 degrees F (13.95 degrees C) and a maximum of 86 degrees F (30 degrees C). Prevailing winds are reported to be northeasterly at five miles per hour (1.8 meters per second) (Instituto Nacional de Estadistica Geografia e Informatica, 1985).

#### Regional Geology

The Parras Basin is surrounded by mountains that are composed of limestones and clastics ranging from Tithonian (Jurassic) to Cenomanian (Late Cretaceous). Resembling islands, isolated mountains of Cretaceous limestones and clastics rise from the valley floor north (Sierra de San Lorenzo) and east (Sierra de la Pena) of Matamoros.

The relief of the mountains surrounding the study area averages approximately 1900 feet (600 meters) above the valley floor. The Cretaceous limestones and clastics generally do not extend more than 640 feet (200 meters) above the valley floor.

Lower Tertiary intrusives, consisting of granite and granodiorite, are exposed near the village of Dinamite, which lies on the northeast flank of the Sierra de Mapimi mountains. These mountains are approximately 17 miles (27 kilometers) northwest of Torreon and Gomez Palacio. Middle Tertiary volcanics (rhyolite, andesite, basalt flows, and tuffs) form small, isolated mountains that rise from the valley floor in the northern half of the study area. Most are located approximately equidistant north, east, and west of the city of Tlahualilo. The stratigraphic section containing these units is summarized in Table I.

#### Surficial Depositional Units

The margin of the Parras Basin is composed of a series of Quaternary alluvial fans at the mountain-plain interface. Basinward the fans grade into alluvium. The alluvial fans that are exposed serve both as conduits and areas of ground-water recharge and feed water to the basin fill.

The grain size of the sediments and the distribution of the alluvium can be attributed for the most part to the Nazas and Aguanaval rivers and, to a lesser degree, ephemeral streams. Lacustrine deposits also are present, indicating that at one time the Parras Basin was a relatively large lake. The Laguna de Mayran and Laguna de Viesca are vestiges of this earlier (Pleistocene) large body of water. This implies that the water table was at ground surface when the lake began receding. This being the case, it must be emphasized that this subsurface reservoir can be considered, for all practical purposes, a non-renewable resource.

#### Subsurface Geology

Of the 104 driller's logs examined, only 27 can, with some degree of confidence, be said to represent wells whose whose total depth extend to basement rock, that is,

## TABLE II

## GENERALIZED STRATIGRAPHIC SECTION OF GEOLOGIC FORMATIONS

| SYSTEM                                | SERIES                   | STRATIGRAPHIC UNIT                                                                                                                                           |
|---------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quaternary                            | · · ·                    | Alluvium, caliche,<br>and evaporites                                                                                                                         |
|                                       | Upper Tertiary           |                                                                                                                                                              |
| Tertiary                              | Middle Tertiary          | Volcanics                                                                                                                                                    |
| -                                     | Lower Tertiary           | Intrusives<br>Sta. Ines formation<br>Anuichila formation                                                                                                     |
| , , , , , , , , , , , , , , , , , , , | Upper Cretaceous         | Difunta formation<br>Parras shale<br>Caracol formation<br>Indidura formation                                                                                 |
| Cretaceous                            | Lower Cretaceous         | Cuesta del Cura<br>Aurora limestone<br>La Pena formation<br>Parritas formation<br>Cupido limestone<br>Las Vigas<br>Taraises formation<br>Carbonera formation |
| Jurassic                              | Upper Jurassic           | La Casita formation<br>La Gloria formation                                                                                                                   |
| SOURCE: Adapte                        | d from R.W. Imlay, 1937, | Lower Neocomian                                                                                                                                              |

SOURCE: Adapted from R.W. Imlay, 1937, Lower Neocomian fossils from the Miquihuana region, Mexico: Jour. Paleontology, v. 11, pp. 552 - 574. material other than alluvium. These wells penetrated limestone, basalt, rhyolite, and volcanic tuffs. Known depths of basement rock range from 266 to 998 feet (81 to 305 meters) below ground surface. The deepest well not penetrating basement rock, located near Matamoros, is deeper than 1400 feet (427 meters). A geologic cross-section (Fig. 8) constructed along a line between Gomez Palacio and the western edge of the Sierra de Lorenzo range shows that basement rocks are block-faulted and that the Rio Nazas is fault-controlled.

Subsurface mapping of the deposits within the basin is important for several reasons. To understand the subsurface structural features of the basin it is necessary to establish the absence or presence of faulting by determining the depth to basement strata throughout the region. The history of the Nazas and Aguanaval rivers can be traced by mapping the distribution of silt and sand units. The evolution of the basin perimeter can be deduced by constructing maps of the distribution of gravel and conglomerate, for these are associated with the high energy environments associated with alluvial fans at the mountainvalley floor interface. The geometry of these deposits is used to delineate fluvial from alluvial environments. Additionally, correlation of strata throughout the basin can be used to determine whether the various lithologic units are discrete aquifers or whether there is actual communication among aquifers as a result of faulting or facies

٩,



SOURCE: S.A.R.H., 1980, Nota Informativa: 8 p.

Figure 8. Geologic Cross-Section

changes. The manner in which the lithologic units interact under the stress of pumping has a direct bearing on the manner in which a ground-water model is implemented.

Whole interval isolith maps of clay (Fig. 9), silt (Fig. 10), sand (Fig. 11), gravel (Fig. 12), and conglomerate (Fig. 13) were constructed in order to determine the subsurface distribution of the various lithologic types. As illustrated by figures 9 and 10, clay and silt deposits generally tend to be thickest along the axis of the basin and flank the trends of the Nazas and Aguanaval rivers. The areas of maximum thickness of clay and silt appear to correspond to areas of major faulting where in most places the presence of basement rock can not be determined from driller's logs. Clay thicknesses range from 0 to 1,095 feet and are located throughout the study area; maximum thicknesses occur in the eastern one half. Silt thicknesses range from 0 to 700 feet with maximum thicknesses located in the southern one half of the region. Generally, areas of maximum clay thickness do not correspond exactly with those of silt, due of course to the different regimes associated with each grain size. Depending on location, as many as 18 clay and 17 silt units contributed to their respective total thickness.

Sand units are sheet-like deposits along the western and northern margins of the study area and thicken axially (Fig. 11). The sheet geometry probably can be attributed to deposition by coalescent ephemeral streams that were



# Figure 9. Subsurface Clay Distribution



Figure 10. Subsurface Silt Distribution



Figure 11. Subsurface Sand Distribution



Figure 12. Subsurface Gravel Distribution


Figure 13. Subsurface Conglomerate Distribution

active during seasonal runoff events. Axial thickening of sand units in the vicinity of Rio Nazas could indicate a stacked paleochannel sequence that formed as the result of a fault-controlled, aggradational fluvial environment. Total sand thickness ranges from 0 to 615 feet. Some wells penetrated as many as 18 individual sand bodies.

The gravel and conglomerate maps (Figs. 12 and 13) show the presence and extent of buried alluvial fans along the mountain-plain interface. Considerable thicknesses of conglomerate also occur distally along the trend of the Rio Nazas and to a lesser extent, Aguanaval rivers. These depositional patterns, along with that of sand, indicate that the Rio Nazas at one time may have flowed farther to the northeast than it does presently and, due to additional faulting of basement rock, was forced to take a more easterly path. Strata form interfingering packets horizontally that thicken toward the basinal axis. Gravel thicknesses range from 0 to 584 feet with as many as 12 contributing layers. Maximum gravel concentrations occur near Gomez-Palacio and Torreon. Conglomerate thicknesses range from 0 to 410 feet with the maximum located near Franciso I. Madero. As many as eight conglomerate units are penetrated by some wells. Locations of data points are shown in Figure 14 and an idealized model of these processes is depicted in Figure 15.

As previously mentioned, the Laguna region had been a large lake in the Pleistocene. Ground water is thought to



Figure 14. Location of Data Points



SOURCE: Freeze and Cherry, 1979, Groundwater: Prentice-Hall Inc., 604 p.



have had the same chemical nature as the lake water and the inorganic constituents found today have probably always been there. The lake was eventually transformed into a playa because of changes in climate, but the ground water was probably relatively unchanged. Before extensive withdrawals, harmful constituents such as arsenic had been dilute enough so as to not pose any danger.

#### CHAPTER III

### HYDROGEOLOGY AND WATER QUALITY

## Hydrogeology

Evaluation and characterization of subsurface hydraulic properties were based on driller's logs and electric logs supplied by the S.A.R.H. In cases where both driller's logs and electric logs were available for a given well, an attempt was made to calibrate the written description (driller's log) with the visual (electric log). In this manner a more accurate depiction of subsurface strata and more indirect inferences related to hydraulic characteristics could be obtained than would be possible from driller's logs alone.

## Estimating Hydraulic Conductivity

Given the lack of aquifer-test data, the lithology described for each well in the study area was used to estimate hydraulic parameters. To each grain-size interval encountered in any particular well, an estimate of homogeneity was made and a hydraulic conductivity (K) value assigned. The hydraulic conductivity of an aquifer is a measure of its ability to transmit water. With the exception of gravel, values used for each stratum present

were adapted from a compendium of hydraulic conductivity ranges (Freeze and Cherry, 1979). Based on field observations, Pettyjohn (1988) suggested a K value of 10,000 gpd/ft<sup>2</sup> (gallons/day/foot<sup>2</sup>) for gravels. Table II contains a summary of the ranges of estimated values.

#### TABLE II

## VALUES OF HYDRAULIC CONDUCTIVITY FOR VARIOUS SEDIMENTS

|          | Hydraulic Conductivity (gpd/ft. <sup>2</sup> ) |                   |
|----------|------------------------------------------------|-------------------|
| Sediment | Lower Range                                    | Upper_Range       |
| Clay     | 10 <sup>-6</sup>                               | 10 <sup>-2</sup>  |
| Silt     | 10 <sup>-2</sup>                               | 10 <sup>2</sup>   |
| Sand     | 10.0                                           | 500.0             |
| Gravel   | 10 <sup>3</sup>                                | > 10 <sup>5</sup> |
|          |                                                |                   |

Because a hydrologic unit may be composed of more than one saturated lithology, a means of estimating the hydraulic conductivity of an entire interval for each well was derived. From a statistical view, this constitutes the weighting of hydraulic conductivity across a spectrum of values resulting in a whole interval value (K), such that a representative value of hydraulic conductivity for a given well exists. For the sake of brevity, this derived value will be referred to as the Thickness-Weighted Mean Hydraulic Conductivity (TWMHC). Mathematically, this relationship may be written as:

 $TWMHC = (K_i * C_i + K_j * C_j + \dots + K_n * C_n)/m$ (1) where  $K_{i,j,n}$  are the K values for each lithology encountered,  $C_{i,j,k}$  are constants equal to the saturated thickness of each respective unit, and m reflects the total saturated thickness of the aquifer. A summary of wells, coordinates, and corresponding hydraulic conductivities is presented in Appendix B.

Regional trends of aquifer properties may be evaluated with the aid of a hydraulic-conductivity map. The hydraulic-conductivity map (Fig. 16) is based on calculated TWMHC values that, when used in conjunction with known saturated thicknesses, may be utilized to calculate the transmissivity (T), in units of gallons/day/foot of each saturated section, using the following relationship:

$$T = TWMHC*b$$
(2)

where b is the saturated thickness of the aquifer. Subsequent values of transmissivity were then used to construct an isotransmissivity map (Fig. 17). In the case of this study, the aquifer has been depleted to such an extent that it may be treated as an unconfined aquifer. The hydraulic-conductivity map can be used in conjunction with maps of the more permeable strata, that is, sand, gravel,



Figure 16. Hydraulic Conductivity



Figure 17. Isotransmissivity

and conglomerate (Figs. 11 - 13) and a composite map of all these strata (Fig. 18) to determine the subsurface extent of the hydraulic properties of the aquifers.

Values of hydraulic conductivity range from less than 500 to as much as 10,000 gpd/ft.<sup>2</sup>. Values of K greater than 500 qpd/ft.<sup>2</sup> are found in all but the northeast quarter of the study area. The highest values are located in the Gomez Palacio - Torreon area. If all wells had the same saturated thickness, fluctuations in transmissivity would mirror the fluctuations in hydraulic conductivity. Since saturated thickness varies from well to well there is not a direct correlation between the two. However, highest values of transmissivity do coincide with those of hydraulic conductivity. Values of transmissivity range from 3,548 to 8,166,690 gpd/ft. Mapping the distribution of hydraulic conductivity is important in that it outlines those areas which contain sediment capable of transmitting a practical amount of water. Transmissivity trends can be used to map the availability of water on a per foot basis in the saturated portion of each well.

## Water Quality

Data used for mapping the areal distribution and concentration of important ground water constituents were extracted from 217 chemical analyses representing 50 wells. The analyses were conducted during the years 1977, and 1981 to 1983. Frequency of analysis for the wells tested during



Figure 18. Composite Porous Media

this time frame range from as few as one per year for several wells to as many as 10 per year for others. Properties and constituents most commonly analyzed were pH, electrical conductivity, alkalinity, hardness, sulfate, chloride, and arsenic.

## Water Standards for Public Consumption and Agriculture

Two categories of upper limits, based on direct and indirect health hazards, have been placed on organic and inorganic constituents in ground water by the U.S. Environmental Protection Agency (EPA, 1975). Components posing a direct threat to human health have been assigned maximum permissible concentrations and are deemed hazardous for for human consumption when exceeded. Arsenic is in this category. Recommended concentration limits are placed on those constituents that tend to detract from the taste of the water, result in staining, or lead to the formation of scale. Dissolved solids, sulfate, and chloride are placed in this category. A more complete listing concerning drinking water standards is presented in Table III.

Because the Lagunera is an extensively irrigated region with an agriculture-based economy, not only is it necessary to monitor ground-water quality in terms of public consumption, but in terms of crops and livestock as well. Recommended limits of selected constituents generally are less rigid with respect to agricultural use. Of primary importance for irrigation and crops is the

# TABLE III

## DRINKING WATER STANDARDS

| Constituent                              | Recommended<br>Concentration Limit<br>(mg/l) |
|------------------------------------------|----------------------------------------------|
| Total Dissolved Solids                   | 500                                          |
| Chloride (Cl)                            | 250                                          |
| Sulfate (SO <sub>4</sub> <sup>2-</sup> ) | 250                                          |
| Nitrate (NO <sub>3</sub> -)              | 45                                           |
| Iron (Fe)                                | 0.3                                          |
| Manganese (Mn)                           | 0.05                                         |
| Copper (Cu)                              | 1.0                                          |
| Zinc (Zn)                                | 5.0                                          |
| Boron (B)                                | 1.0                                          |
| Hydrogen Sulfide (H <sub>2</sub> S)      | 0.05                                         |
|                                          | Maximum Permissible<br>Concentration         |
| Arsenic (As)                             | 0.05                                         |
| Barium (Ba)                              | 1.0                                          |
| Cadmium (Cd)                             | 0.01                                         |
| Chromium (Cr <sup>VI</sup> )             | 0.05                                         |
| Lead (Pb)                                | 0.05                                         |
| Mercury (Hg)                             | 0.002                                        |
| Silver (Ag)                              | 0.05                                         |

¢

prolonged use of waters high in dissolved solids. Sprinkler irrigation components could become less efficient with time because of a buildup of carbonate-induced scale, and soil pH imbalances would require corrective actions in order to maintain crop productivity. Crops also could be subject to increased stress if the osmotic potential of the root systems were to be disrupted by applications of irrigation waters rich in salts. Of primary concern to livestock and small animals is the presence of arsenic, as well as other heavy metals, such as cadmium, selenium, lead, and mercury. Recommended limits for agricultural use are presented in Table IV.

## Distribution and Concentration of Ground-Water Constituents

Because of the apparent sporadic collection of data, both in terms of time and space, few complete chemical analyses are available for any given well. The concentration of chemical constituents in ground water were mapped on the basis of rank and are independent of time. Consequently, with the exception of chloride and sulfate, the maps generated reflect composite minimum and maximum values for the years 1977 and 1981 through 1983. This method serves to delineate the minimum and maximum areal bounds of concentrations of all species for which analyses are available. With respect to composite minimum and maximum chloride and sulfate maps, the differences between the two for each case were sufficiently small so that the composite

# TABLE IV

## RECOMMENDED LIMITS FOR AGRICULTURAL USE

|               | Livestock:<br>Recommended<br>Limits (mg/l) | Irrigation Crops:<br>Recommended<br>Limits (mg/l) |
|---------------|--------------------------------------------|---------------------------------------------------|
| TDS           |                                            |                                                   |
| Small Animals | 3000                                       | 700                                               |
| Poultry       | 5000                                       | -                                                 |
| Other Animals | 7000                                       | -                                                 |
| Nitrate       | 45                                         | , <del>-</del>                                    |
| Arsenic       | 0.2                                        | 0.1                                               |
| Boron         | 5                                          | 0.75                                              |
| Cadmium       | 0.05                                       | 0.01                                              |
| Chromium      | 1                                          | 0.1                                               |
| Lead          | 0.1                                        | 5                                                 |
| Mercury       | 0.01                                       | -                                                 |
|               |                                            |                                                   |

.

maximum distribution maps for each were sufficient i.e., there were minor changes in concentration for this period.

Arsenic. The composite minimum arsenic distribution map (Fig. 19) shows a northwest-southeast trending arsenic front, the leading edge of which is northeast of the Rio Nazas. The concentration gradient implies that the source is northeast of the study area. At all points located behind the 0.05 mg/l contour, water is unfit for human consumption. Close by the 0.05 mg/l contour are the 0.10 and 0.20 mg/l contours, which indicate the upper bounds for which the water is unfit for livestock and crops, respectively.

The composite maximum arsenic distribution map (Fig. 20) indicates that the 0.05 mg/l leading edge has crossed natural ground water divides (the Nazas and Aguanaval Rivers) that seem to have been converted into regional sinks, due to the withdrawal of water by well fields. When compared with the composite minimum arsenic map, the area bounded by the 0.05 mg/l contour has been reduced by about 75 percent and that of the 0.10 and 0.20 mg/l contours by approximately 10 percent each.

The source of arsenic in the ground water is thought to originate in the various regional volcanic and igneous bodies found in both surface and subsurface environments (S.A.R.H, 1980).



# Figure 19. Variation of Minimum Arsenic



Figure 20. Variation of Maximum Arsenic

<u>Chloride and Sulfate.</u> Unlike arsenic, the distribution of chloride in excess of 250 mg/l occurs only in two relatively small areas (Fig. 21). One area is located between Matamoros and Torreon and another to the northwest of Gomez Palacio and Torreon. The latter forms a much steeper concentration gradient than the former although both are of approximately the same areal extent.

The map showing the maximum sulfate concentration (Fig. 22) indicates that sulfate equals or exceeds the recommended limit of 250 mg/l in all but approximately 15 percent of the study area. The area bounded by the 250 mg/l contour generally follows the trend of the Rio Nazas. The absence of high sulfate and chloride levels near Torreon and Gomez Palacio, despite the extremely high pumping rates, are attributed to dilution by recharge from the Nazas and Aquanaval rivers.

<u>Electrical Conductivity, Dissolved Solids, and</u> <u>Hardness.</u> As discussed earlier, the concentration of dissolved solids can be approximated if the electrical conductivity (EC) is known by means of the expression:

$$DS = EC * 0.67$$
 (3)

Figures 23 through 26 represent the minimum and maximum electrical conductivity maps and corresponding dissolved solids maps. Centers of highest concentration correlate rather well with those of the chloride distribution map. As with the sulfate map, the areas of lowest concentration lie in an area through which the Nazas





# Figure 21. Chloride Distribution



Figure 22. Sulfate Distribution



Figure 23. Variation of Minimum Electrical Conductivity



Figure 24. Variation of Maximum Electrical Conductivity



Figure 25. Variation of Minimum Total Dissolved Solids

•



 Figure 26. Variation of Maximum Total Dissolved Solids

River flows. These lower bounds are defined by the 1000 mg/l and 1000 umho contours of the dissolved solids and electrical conductivity maps, respectively. Increasing values in dissolved solids indicate an increase in salinity and increasing values in electrical conductivity reflect an increase in degree of mineralization of the water.

<u>Hardness.</u> The principal cause of hardness is calcium and magnesium dissolved in water (EPA, 1985). The U.S. Geological Survey has classified hardness, in terms of mg/l of CaCO3 as soft (0 - 60); moderately hard (61 - 120); hard (121 - 180); and very hard (greater than 180).

Composite minimum and maximum concentration maps of hardness show that the areas of highest hardness correspond to high sulfate, dissolved solids, and electrical conductivity centers (Figs. 27 and 28). Using the upper limit defining the transition from hard to very hard water (180 mg/l), it can be seen that the majority of the basin can be classified as having very hard water.

Lining of the Nazas and Aguanaval rivers has probably been the most detrimental factor concerning regional ground-water quality. On the one hand more water has been made available for irrigation, but this has been at the expense of the diluting effect of ground-water recharge. With too little recharge the inorganic ground-water constituents have been increasing in concentration; resulting in high-gradient fronts that are quickly degrading the quality of the remainder of the aquifer. There is not



Figure 27. Variation of Minimum Hardness



Figure 28. Variation of Maximum Hardness

enough leakage from the rivers and canals to prevent this from occurring.

The maps show that areas of poorest ground-water quality are areas which are located some distance from the Nazas and Aguanaval rivers. Recharge from precipitation in the surrounding mountains is not of quantity sufficient to make its way into the aquifer and dilute the system. It will be shown that this same recharge is also not of sufficient quantity to serve as a rejuvenating factor for the aquifer as a whole or in part. Before extensive agriculture with its demanding irrigation schedule was initiated, ground-water quality was certain to have been better, because there would have been a much lower discharge-torecharge ratio.

#### CHAPTER IV

### MODEL DEVELOPMENT

As an aid in evaluating the regional impact of widespread pumping throughout the Lagunera, it is necessary to develop a computer-implemented mathematical model that, with the proper site-dependent aquifer input parameters, can be used to study cause-and-effect relationships between pumpage and aquifer response. Critical to obtaining a realistic solution by means of computer modeling is the careful selection of input parameters that best describe the physical system representing the aquifer. Following calibration of the model to the field situation, it is possible to predict future trends in aquifer response to continued pumping.

Site selection is generally based on known problem areas, the end result often being the modeling of a highly localized subset of a hydrologic system. In the case of the Lagunera, however, the problem area encompasses the entire basin. For this reason, it is obligatory to take a regional approach in simulating the physical system.

Where the feasibility of artificial recharge is concerned, computer modeling provides an inexpensive and relatively quick solution to studying the effects that

artificial recharge might have on the aquifer, as well as the implied economic impact.

Simulations of the Lagunera region began with the calibration of the model between two known end points. This process served to approximate the regional recharge and discharge (pumping) rates, as well as the establishment of any subregional variability in hydraulic conductivity one of the prevailing factors in modeling a water table aquifer. This calibration run spanned a time frame of three years, representing conditions that were assumed to be static. That is, there was no change in the water budget for the calibration run.

Four subsequent simulations, each five years in duration, were performed under the same conditions. Eight additional simulations were devised utilizing: a) increases of pumpage of 2.5 percent initiated in 1980 and incremented there after every five years, and b) increases in recharge due to two artificial recharge nodes near the Gomez Palacio - Torreon area. Water-level maps generated by these models are based, of course, on the premise that the original calibration parameters indeed simulate the actual aquifer conditions.

### PLASM

It is possible to evaluate ground-water flow through the use of the partial differential forms of equations that form the basis of fluid mechanics. These are the continu-

uity and energy equations which are based on the conservation of mass and the conservation of energy. These equations in two and three dimensions have general solutions; however, approximate solutions can be obtained through various analytical approaches. One such method is the finite-difference approach, which is based on the discretization and subsequent simultaneous solution of the system. Using this approach, the aquifer is subdivided into discrete nodes of given length and width. To each node is assigned the charactistics that best describe the properties of the aquifer at that location. These properties, upon substitution into the partial differential equations, then become the controlling factors governing the flow of ground water through each respective node. The simultaneous solution of these equations yields a map of head values that relate to a particular time step. Due to the complex nature of this approach, it has proven beneficial to implement this model by computer.

PLASM (Prickett-Lonnquist Aquifer Simulation Model) was originally developed by T.A. Prickett and C.G. Lonnquist for the Illinois State Water Survey (Prickett and Lonnquist, 1971). This model was chosen because (1) it has been widely used and documented, (2) it has been translated into BASIC at Oklahoma State University for microcomputer implementation, and (3) PLASM is extremely versatile.

#### Calibration of PLASM

### Model Inputs

In order to have a means of assigning site-specific characteristics to an aquifer, one must devise a gridding system to superpose over the study area. This grid is composed of cells, which may be either square or rectangular; the size is a function of grid density and scale. The common point of any four cells is referred to as a node and it is to this location that aquifer characteristics are assigned. The perimeter of the grid can be subdivided into groups of nodes such that the boundary conditions of the aquifer, if applicable, are defined. Should the perimeter of the grid not coincide with natural boundaries, such as streams, ground water divides, or confining strata, one may expand the grid such that nodes along the perimeter do not affect those nodes internal to the system being modeled.

The grid constructed for the Lagunera represents a total area of 42.5 X 57.7 miles (68.4 X 92.8 km), which is divided into 924 nodes measuring 1.3 X 2.1 miles (2.1 X 3.4 km). The node size may appear large but, based on the regional scale of the study area and density of data points, is justifiable. Each node was assigned values of hydraulic conductivity, specific yield, head, depth to bottom of the aquifer, and recharge or discharge if applicable. Recharge nodes are generally located along the

north, south, and west margins of the grid while discharge nodes reflect well fields. Surface features have been given no flow boundaries while the eastern margin is where underflow exits the region to the east. Interpolated values were used in regions of low well density. The grid is shown in Figure 29.

Initial head conditions (water levels) for the site were obtained from a published water level map (S.A.R.H., 1980). An interpolated water level map for 1977 was derived by subtracting from the 1980 data the change in water levels that had occurred since 1977 (Figs. 30, 31, and 32). Values for specific yield and hydraulic conductivity were assumed on the basis of the subsurface distriibution of lithologies.

### Calibration Methods

The goal of calibrating a model to a specific site generally involves a trial-and-error establishment of equilibrium (steady-state) conditions. Upon reaching equilibrium, the system is stressed by changing certain input parameters, such as withdrawal and recharge. Under ideal conditions, data such as recharge, discharge, and specific yield derived from aquifer tests are available. Utilizing these data as input criteria, the model is then run for a period of time corresponding to the period required to reach calibration. If computed water levels match the actual head values within an acceptable range of



Figure 29. Location of PLASM Nodes


Figure 30. Change in Water Levels, 1977 - 1980



Figure 31. Depth to Water Table, 1980



· Figure 32. Interpolated Depth to Water Table, 1977

error the model is assumed to be calibrated.

When data are either not available or are insufficient to allow a "standard" calibration, other avenues must be explored. In the case of the Lagunera, the only known parameters in order of decreasing reliability are water levels for 1977 and 1980, lithology, and depth to the base of the aquifer. As previously mentioned, values for the the hydraulic conductivity of each lithology, with the exception of gravel, are assumed. A logical approach, therefore, entails performing a lithology-dependent calibration between two known water levels. This approach implies that if input parameters can be varied such that computed head values match observed head values, then recharge and discharge rates must necessarily fall within an order of magnitude of the actual recharge and discharge rates since they are dependent on the assumed hydraulic conductivities throughout the basin. In other words, this trial-and-error solution must be accepted as "unique" within the definition of the problem. Starting point withdrawal and recharge rates were based on data given by the various government agencies in the Lagunera District. This served to narrow the range of initial possibilities.

#### Model Projections

Water-level maps, based on the original 1977 - 1980 calibration water budget, were constructed in increments of five years through the year 2000. The evolution and modi-

fication of preexisting cones of depression, which represent major pumping centers, are shown in Figures 33 - 36. By visual inspection alone one can see that the basin is operating on a negative hydrologic budget. Figures 37 through 40 indicate that even modest increases in pumpage, amounting to only 2.5 percent implemented in segments of five years, have a discernible negative impact on water levels. Based on the calibration water budget the discharge and recharge rates were established to be approximately 20.8 billion ft.<sup>3</sup> (590 million  $m^3$ ) and 1,400 million ft.<sup>3</sup> (39 million  $m^3$ ), respectively. The modeled discharge rate is 2.1 billion ft.<sup>3</sup> (60 million  $m^3$ ) less than the 23 billion ft.<sup>3</sup> (650 million  $m^3$ ) reported by the Department for Investigation, Development and Agricultural Health for the Laguna Region and well below the 3.8 billion ft.<sup>3</sup> (1100 million  $m^3$ ) reported by the Office of the Secretary of the Laguna Region. Regional recharge appears to be only 20 per cent of the most conservative estimate by the same agency. Parameters used to calibrate PLASM for the 1977-1980 interval are found in Appendix C.

#### Natural Recharge

Typically, natural recharge to an aquifer entails a number of processes. In the plains regions, recharge can occur as infiltration into the ground and consequent percolation to the underlying aquifer. Recharge in these regions can also result from the seepage of water from



Figure 33. Projected Water Levels, 1985



Figure 34. Projected Water Levels, 1990



Figure 35. Projected Water Levels, 1995



# Figure 36. Projected Water Levels, 2000



.Figure 37. Projected Water Levels with Increased Pumpage, 1985



.Figure 38. Projected Water Levels with Increased Pumpage, 1990



Figure 39. Projected Water Levels with Increased Pumpage, 1995



Figure 40. Projected Water Levels with Increased Pumpage, 2000

streams. Both of these are only effective when the aquifer is relatively shallow. In mountainous regions aquifer recharge can occur as a result of infiltration and consequent percolation of precipitation runoff into alluvial fans located at the mountain-plain interface. Of course, recharge by ephemeral streams follow the same processes as already outlined.

#### Effects of Artificial Recharge

As a test to determine the impact of artificial recharge at a specific area, two recharge nodes were established near Gomez Palacio (Fig. 41). To illustrate the magnitude of the ground-water deficit in the basin, the following scenario was constructed. Consider an annual rainfall total of 7.9 in. (200 mm.) occurring over a total area of 11.6 mi.<sup>2</sup> (30 km.<sup>2</sup>). Of this total area, approximately half can be represented by the Sierra el Sarnoso mountains, which lie to the northwest of Gomez Palacio, and the remainder being represented by the Sierra los Noas mountains to the southeast. Assume that 100 percent (the best case scenario) of the annual precipitation can be captured at each location and introduced into the recharge nodes at the rate of approximately 294,117 ft.<sup>3</sup> (8,218  $m^3$ ) per day. This approach makes it possible to model the direct effect of artificial recharge by using two new nodes as input parameters to PLASM.

Four predictive runs were made assuming constant pump-



## Figure 41. Location of Recharge Nodes

age (static) conditions in five year increments. As can be seen in Figures 42 to 45, the contribution made by artificial recharge is indiscernible. This then suggests that artificial recharge is not the sole answer to the groundwater deficit in the study area.

Summary of Model Projections

#### Calibration Budget Projections

Two major cones of depression can be seen in the 1977 and 1980 water level maps. These depressions correspond to the Gomez Palacio - Torreon and Matamoros well fields. They are of approximately the same areal extent and gradient. Model projections for 1985 indicate that the depression near Matomoros has decreased in size to approximately one half that of 1977 and has increased in gradient. The depression near Gomez Palacio and Torreon has increased about twofold in areal extent and decreased in gradient.

In 1990 projections an additional cone of depression has developed in the north-central portion of the basin near the city of Francisco I Madero. The areal extent of the Matamoros cone of depression has increased to approximately its 1980 size but has increased in its depth to water. The Gomez Palacio - Torreon cone of depression has continued to increase in extent, as well as depth to water, and is now linked to the Matamoros cone by the 300 foot contour level.



Figure 42. Projected Water Levels with Artificial Recharge, 1985



··Figure 43. Projected Water Levels with Artificial Recharge, 1990



. Figure 44. Projected Water Levels with Artificial Recharge, 1995



•Figure 45. Projected Water Levels with Artificial Recharge, 2000

The 1995 predictions show the constant increase in both size and gradient of the cones of depression in the southern portion of the basin while that in the northcentral region has been incorporated into a large area outlined by the 300 foot contour. By the year 2000, the entire basin shows an increase in depth to water of almost 100 feet with depths exceeding 375 feet in places.

#### Increased Pumpage Projections

Projected water levels based on a modest increase in discharge rates indicate that the cone of depression appears earlier (1985 vs. 1990) in the north-central portion of the region. The Gomez Palacio - Torreon, and Matamoros depressions are more extensive and have increased in depth to water. For the year 2000, for example, the 375 foot contour near Gomez Palacio and Torreon is approximately 10 times that of the same year projection based on the calibration pumping rate. This indicates the fragile nature of the basin's water supply.

#### Artificial Recharge Projections

As previously mentioned, projections based on constant pumping with two artificial recharge nodes were modeled. The pumping rates used were those used for the increased pumpage projections. Results indicate that virtually no differences can be seen between the two sets of predicted water level maps. Not until the year 2000 can it be seen

that the areal extent of the 375 foot contour level in the Gomez Palacio - Torreon cone of depression is approximately one half that of the predictions made without artificial recharge.

#### CHAPTER V

#### SUMMARY AND CONCLUSIONS

#### Summary

The Lagunera district is in the western part of the Parras Basin in the high central plains of northern Mexico. Although the region is subject to an arid climate it is, nevertheless, extensively cultivated. This irrigated region relies primarily upon ground water and, to a lesser degree on surface water that is distributed through lined Since the volume of water removed through wells canals. exceeds the rate of natural recharge, an annual groundwater budget deficit exists. Among other things, groundwater recharge is inhibited by a low annual rainfall. Government agencies have estimated the rate of withdrawal for the agricultural seasons 1977-78 and 1978-79 at between 12,358 million to 43,573 million ft.<sup>3</sup> (350 million to 1,234 million  $m^3$ ). Calibration of PLASM places withdrawal and recharge at approximately 20,800 million and 1,371 million ft.<sup>3</sup> (590 million  $m^3$  and 39 million  $m^3$ ), respectively. Aquifer recharge is only 20 percent of the most conservative estimate made by the Office of the Secretary of the Laguna Region.

At one time, Rio Nazas served as a major source of

recharge to the basin fill as it flowed generally eastward through Torreon and then to the lowest part of the lake plain, where the water evaporated. The effect of this major water course is well represented by both the nature of the valley fill in the vicinity of its course and by the chemical quality of water in the same general area. Owing to the construction of upstream dams and irrigation canals, however, the river is now controlled to such an extent that only under the most severe weather conditions does water actually flow in its channel through or beyond Torreon. In addition, all of the irrigation canals are lined in order to prohibit leakage. Consequently, neither the river nor the canals presently serve as sources of recharge to the valley-fill deposits.

Computer simulations indicate that even with a zero population growth, the depth to water will continue to increase at the rate of approximately 10 feet (3 meters) per year. Furthermore, additional simulations of the regional ground water budget indicate that due to the small quantities of precipitation, artificial recharge would have little discernible effect on the declining water levels. With the annual increase in depth to ground water comes the complicating factor of decreased water quality on a regional basis. Water quality is being affected by excessive concentrations of several naturally occurring inorganic components. The most significant of these is arsenic, which has rendered many wells unusable even for irrigation. High concentrations of arsenic in the northern part of the study area have resulted in a ground-water source that is toxic to man, beast, and crops. The dilution of inorganic constituents via mixing from natural recharge is practically absent except in those areas flanking the Rio Nazas.

#### Conclusions

Computer modeling of the ground water and mapping of water quality led to the following conclusions:

- ground-water withdrawals within the Lagunera region exceed regional natural recharge rates by a factor of 15 to 1
- conservative increases in stress in the form of pumpage result in discernible changes in ground water levels
- 3. artificial-recharge techniques that depend on precipitation as a source would be ineffective because of the small amount of rain and degree of ground-water withdrawal
- 4. ground-water quality will continue to deteriorate with the progressive drawdown and the enlarging size of the major overlapping cones of depression
- 5. the areal extent of ground water with low mineral content will continue to decrease with time and pumpage

6. a pumpage-induced concentration gradient has enhanced the subsurface transport of arsenic into the northern portion of the basin

To summarize, the Lagunera region is operating with a negative ground-water budget which continues to worsen with time. With increasing pumpage and depth to ground water, the chemical quality of the water will suffer as well.

Due to the nature of the basin, it is not expected that the physical factors governing the supply of ground water will change. For all practical purposes the Lagunera is limited to the volume of water that is stored in the underlying basin.

#### SELECTED REFERENCES

- Cole, W.E., and Sanders, R.D., 1970, Growth and change in Mexico: University of Tennessee, Knoxville.
- DeVries, R.E., and D.C. Kent, 1973, Sensitivity of groundwater flow models to vertical variability of aquifer constants: Water Resources Bull. Vol. 9, No.5, pp.998 -1005.
- Freeze R.A, and Cherry, J.A, 1979, Groundwater: Prentice-Hall, Inc., 604 p.
- Garfias, V.R., and Chapin, T.C., 1949, Geologia de Mexico: Editorial Jus, Mexico.
- Heath, Ralph C., 1984, Basic ground-water hydrology: U.S. Geol. Survey Water-Supply Paper 2220, U.S. Govt. Printing Office, 84 p.
- Hem, John D., 1985, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 2254, U.S. Govt. Printing Office, 263 p.
- Hounslow, Arthur W., 1989, Contemporary interpretation of water quality Data: School of Geology, Oklahoma State University, 110 p.
- Imlay, R.W., 1936, Geology of the western part of the Sierra de Parras: Geological Society of America Bull., v. 47, pp. 1091-1152.
- Imlay, R.W., 1937, Geology of the middle part of the Sierra de Parras, Coahuila, Mexico: Geological Society of America Bull., v. 48, pp. 587-630.
- Imlay, R.W., 1937, Stratigraphy and paleontology of the Upper Cretaceous beds along the eastern side of the Laguna de Mayran, Coahuila: Geological Society of America Bull., v. 48, pp. 1785-1872.
- Imlay, R.W., 1937, Lower neocomian fossils from the Miquihuana region, Mexico: Journal of Paleontology, v. 11, pp. 552-574.

Imlay, R.W., 1938, Studies of the Mexican geosyncline: Geological Survey of America, v. 49, pp. 1651-1694.

- Jones, T.S., Geology of the Sierra de la Pena and paleontology of the Indidura formation: Geological Society of America Bull., v. 49, pp. 69-250.
- Kellum, L.B., Imlay, R.W., and W.C. Kane, 1936, Evolution of the Coahuila peninsula, Mexico: Geological Society of America Bulletin, pp. 969 - 1038.
- Kellum, L.B., 1936, Geology of the mountains west of the Laguna district: Geological Society of America Bull., v. 47, pp. 1039-1090.
- Kelly, W.A., 1936, Geology of the mountains bordering the valleys of Acatita and Las Delicias: Geological Society of America Bull., v. 47, pp. 1009-1038.
- King, R.E., C.O. Dunbar, P.E. Cloud, and A.K. Miller, 1944, Geology and paleontology of the permian area northwest of Las Delicias, southwestern Coahuila, Mexico: Geological Society of America Special Papers Number 52, 243 p.
- Koch, G.S., and R.F. Link, 1971, Statistical analysis of geological data: Dover Publications, Inc., v.1 and 2, 813 p.
- Krauskopf, K.B., 1979, Introduction to geochemistry: McGraw-Hill, 617 p.
- LeRoy L.W., and D.O. LeRoy, 1977, Subsurface geology: Colorado School of Mines, 941 p.
- Murray, G.E., et. al., 1962, Formational divisions of the Difunta Group, Parras basin, Coahuila and Nueva Leon, Mexico: Am. Assoc. of Petrol. Geol. Bull., v. 46, no. 3, pp.374-383.
- Pettyjohn, W.A, 1982, Los Acuiferos del Subsuelo, Una Alterniva para La Laguna: Symposium Sobre Alternativas para la Captacion y Optimizacion de Mantos Acuiferos de la Comarca Lagunera, pp. 39 - 41.
- Pettyjohn, W.A., 1982, Recharga Artificial, Una Solucion Potencial para Muchos Problemas de Agua Subterranea: Geologia y Metalurgia, Organo del Instituto de Geologia y Metalurgia de la Universidad Autonoma de San Luis Potosi, Tomo IX, no. 59, pp. 25 - 36.

Pettyjohn, W.A., 1985, Artificial ground water recharge: Mem. Ciclo International de Conf. Aprovechamiento de Aguas Subterraneas en la Agricultura, Ingenieros Agronomos del Technologico de Monterey y Consejo Nacional de Ciencia y Tecnologia, pp. 105 - 120.

Pettyjohn, W.A., 1987, Personal communication.

Pettyjohn, W.A., 1988, Personal communication.

- Prickett, T.A., and C.G. Lonnquist, 1971, Selected digital computer techniques for groundwater resource evaluation: Illinois State Water Survey Bull. 55, 62p.
- Reyna, J.G., 1956, Riqueza minera y yacimientos minerales de Mexico: Congreso Geologico Internacional XX Sesion, 497 p.
- Secretaria de Recursos Hidraulicos, Jefatura de Irrigacion y Control de Rios, 1969, Presas de Mexico: Consultivo Tecnico, 535 p.
- Subsecreteria de Infraestructura Hidraulica, 1980, Nota Informativa Acerca de la Actualizacion del Estudio Geohidrologica de la Comarca Lagunera, Coahuila y Durango, 8 p.
- U.S. Environmental Protection Agency, 1985, Protection of public water supplies from ground-water contamination: Center for Environmental Research Information, 182 p. EPA/625/4-85/016
- Wang, H.F., and M.P. Anderson, 1982, Introduction to ground water modeling: W.H. Freeman and Co., 237p.

Yates, P.L., 1981, Mexico's agricultural dilemma: University of Arizona Press, Tucson.

### APPENDIX A

REGIONAL WATER ANALYSES

dien tradie is his district naardigense waarde staar en die h

| WELL   | DATE OF  | Hq   | CONDUCT. | TEMP.    | ALKALINITY |
|--------|----------|------|----------|----------|------------|
| NUMBER | ANALYSIS | •    | (M-MHOS) | (DEG.C.) | (CaCO3)    |
|        |          |      | •        |          | (mg/l)     |
|        |          |      |          |          |            |
| 17     | 07-27-77 | 8.00 | 820      | 26       | 164        |
| 17     | 07-21-81 | 8.05 | 620      | 30       | 168        |
| 17     | 09-15-82 | 7.70 | 530      | 26       | 138        |
| 17     | 04-11-83 | 7.75 | 880      | 21       | 160        |
| 34     | 08-24-77 | 7.70 | 1600     | 29       | 148        |
| 34     | 06-08-82 | 7.87 | 1600     | 27.5     | 116        |
| 158    | 08-12-77 | 8.10 | 660      | 26       | 120        |
| 158    | 05-06-82 | 8.05 | 810      | 26       | 96         |
| 158    | 04-12-83 | 8.05 | 430      | 21       | 100        |
| 192    | 08-10-77 | 7.70 | 1250     | 27       | 148        |
| 192    | 07-21-81 | 7.95 | 640      | 30       | 152        |
| 192    | 04-11-83 | 7.95 | 1158     | 21       | 156        |
| 209    | 06-27-77 | 7.30 | 850      | 23       | 160        |
| 209    | 07-27-77 | 7.30 | 1850     | 27       | 164        |
| 209    | 08-30-77 | 8.00 | 1820     | 24       | 168        |
| 209    | 04-11-83 | 6.73 | 1740     | 21       | 162        |
| 257    | 07-29-77 | 7.50 | 1700     | 26       | 160        |
| 268    | 07-29-77 | 7.70 | 400      | 26       | 116        |
| 268    | 08-15-77 | 8.00 | 370      | 26       | 124        |
| 268    | 08-13-81 | 8.10 | 300      | 28       | 124        |
| 268    | 08-31-81 | 8.00 | 280      | 27       | 123        |
| 268    | 03-02-82 | 7.90 | 480      | 23       | 128        |
| 268    | 05-06-82 | 8.20 | 350      | 26       | 132        |
| 268    | 04-18-83 | 8.27 | 350      | 27       | 118        |
| 281    | 08-15-77 | 7.90 | 650      | 26       | 124        |
| 281    | 10-07-77 | 7.80 | 760      | 27       | 116        |
| 281    | 10-07-77 | 8.00 | 910      | 27       | 112        |
| 281    | 10-07-77 | 8.00 | 750      | 27       | 120        |
| 281    | 02-08-82 | 7.70 | 1100     | 20       | -          |
| 281    | 04-28-82 | 7.66 | 950      | 25       | 128        |
| 281    | 05-06-82 | 8.14 | 840      | 26       | 128        |
| 281    | 06-04-82 | 7.66 | 950      | 25       | 128        |
| 281    | 07-13-82 | 6.35 | 815      | 28       | 114        |
| 281    | 04-18-83 | 7.84 | 1070     | 27       | 130        |
| 350    | 08-04-77 | 8.00 | 460      | 25       | 180        |
| 350    | 09-02-77 | 8.00 | 355      | 24       | 136        |
| 350    | 05-03-83 | 8.01 | 351      | 27       | 146        |
| 431    | 09-02-77 | 8.10 | 295      | 24       | 144        |
| 431    | 05-03-83 | 8.27 | 308      | 27       | 120        |
| 442    | 05-06-82 | 7.84 | 1570     | 26       | 168        |
| 442    | 12-13-82 | 6.90 | 1600     | 28       | 166        |
| 443    | 04-21-82 | 7.95 | 370      | 25.5     | 146        |
| 598    | 06-17-77 | 7.90 | 1600     | 25       | 80         |
| 598    | 06-28-77 | 7.60 | 1620     | 27       | 68         |
| 598    | 08-01-77 | 7.40 | 1680     | 27       | 60         |
| 598    | 09-14-77 | 7.90 | 1700     | 24       | 80         |
| 598    | 04-18-83 | 8.09 | 2000     | 27       | 56         |
| 752    | 07-15-77 | 7.70 | 440      | 26       | 120        |
| 752    | 08-05-77 | 8.10 | 430      | 26       | 104        |
| 752    | 09-22-81 | 7.95 | 410      | 28       | 91         |

•

- -

| WELL           | DATE OF      | pH   | CONDUCT. | TEMP.    | ALKALINITY |
|----------------|--------------|------|----------|----------|------------|
| NUMBER         | ANALYSIS     | -    | (M-MHOS) | (DEG.C.) | (CaCO3)    |
| ( <del>)</del> |              |      |          |          | (mg/l)     |
| 750            | 10 00 01     | 7 00 | 450      |          |            |
| 752            | 10-26-81     | 7.00 | 450      | 21       | 100        |
| /52            | 03-11-82     | 8.02 | 1800     | 26       | 112        |
| 752            | 04 - 21 - 82 | 8.02 | 600      | 25.5     | 100        |
| /52<br>752     | 07-19-82     | 7.86 | 445      | 25       | 104        |
| 752            | 09-17-82     | 8.05 | 543      | 26       | 108        |
| 760            | 04-20-92     | 7.70 | 2500     | 20       | 236        |
| 760            | 04-20-82     | 0.13 | 200      | 25       | 106        |
| 760            | 09-17-02     | 7 70 | 291      | 20       | 140        |
| 70Z<br>901     | 08-18-77     | 7.70 | 2200     | 27       | 110        |
| 801            | 08-05-77     | 8.30 | 1050     | 25       | 156        |
| 852            | 08-24-81     | 8.50 | 1950     | 20       | 106        |
| 852            | 08-24-81     | 8.65 | 230      | 29       | 100        |
| 852            | 10-20-81     | 7 30 | 230      | 29       | 112        |
| 852            | 11-16-81     | 8 30 | 280      | 21       | 112        |
| 852            | 03-11-92     | 8.30 | 280      | 22       | 122        |
| 852            | 04-15-82     | 8 20 | 305      | 20       | 110        |
| 852            | 09-17-82     | 8 30 | 222      | 27.5     | 110        |
| 852            | 04-20-83     | 8.30 | 252      | 20       | 116        |
| 860            | 04-20-85     | 7 30 | 200      | 27       | 164        |
| 860            | 03-31-77     | 8 45 | 310      | 20       | 104        |
| 900            | 04-20-85     | 7 10 | 3400     | 27       | 144        |
| 900            | 08-24-81     | 7.50 | 4000     | 20       | 196        |
| 900            | 08-25-81     | 7.50 | 4000     | 29       | 196        |
| 900            | 09-25-81     | 8.20 | 980      | 28       | 160        |
| 900            | 10-30-81     | 7.20 | 3800     | 24       | 228        |
| 900            | 03-11-82     | 7.60 | 3800     | 26       | 196        |
| 900            | 04-14-82     | 7.20 | 3800     | 28       | 186        |
| 900            | 06-01-82     | 7.10 | 3800     | 30       | 168        |
| 900            | 07-20-82     | 7.30 | 4000     | 25       | 182        |
| 900            | 04-20-83     | 7.48 | 3400     | 27       | 194        |
| 975            | 05-31-77     | 8.10 | 690      | 26       | 132        |
| 975            | 04-27-82     | 8.36 | 450      | 26.5     | 136        |
| 975            | 05-25-82     | 8.35 | 420      | 29       | 128        |
| 975            | 10-08-82     | 8.19 | 375.1    | 26       | 132        |
| 975            | 05-03-83     | 8.04 | 1030     | 27       | 130        |
| 1000           | 06-22-77     | 7.90 | 660      | 28       | 100        |
| 1000           | 08-19-77     | 8.45 | 650      | 27       | 156        |
| 1000           | 08-24-81     | 9.60 | 760      | 29       | 92         |
| 1000           | 08-25-81     | 9.60 | 760      | 29       | 92         |
| 1000           | 09-24-81     | 8.00 | 950      | 28       | 108        |
| 1000           | 03-11-82     |      | 740      | 27       | 121        |
| 1000           | 04-28-82     | 8.40 | 700      | 26.5     | 108        |
| 1000           | 05-25-82     | 9.12 | 670      | 29       | 102        |
| 1000           | 10-08-82     | 8.60 | 542.3    | 26       | 98         |
| 1000           | 05-03-83     | 8.31 | 560      | 27       | 110        |
| 1017           | 08-19-77     | 8.15 | 1260     | 27       | 144        |
| 1017           | 04-15-82     | 7.58 | 285      | 27.5     | 106        |
| 1017           | 05-26-82     | 8.45 | 310      | 29       | 110        |
| 1097           | 12-01-77     | 8.00 | 980      | 16       | 100        |

| WELL   | DATE OF      | Hq   | CONDUCT. | TEMP.    | ALKALINITY |
|--------|--------------|------|----------|----------|------------|
| NUMBER | ANALYSIS     | -    | (M-MHOS) | (DEG.C.) | (CaCO3)    |
|        |              |      |          | <b>、</b> | (mg/l)     |
|        |              |      |          |          |            |
| 1097   | 05-22-81     | 7.50 | 1105     | 22       | 177        |
| 1097   | 04-20-83     | 8.45 | 590      | 27       | 124        |
| 1162   | 11-23-77     | 8.10 | 2400     | -        | 180        |
| 1165   | 07-14-77     | 7.50 | 6000     | 27       | 164        |
| 1165   | 08-09-77     | 7.70 | 4750     | 25       | 148        |
| 1212   | 07-19-77     | 7.70 | 1250     | 25       | 123        |
| 1212   | 08-08-77     | 8.30 | 775      | 25       | 136        |
| 1212   | 09-10-81     | 7.55 | 1750     | 28       | 110        |
| 1212   | 09-25-81     | 7.80 | 3800     | 28       | 166        |
| 1212   | 10-23-81     | 8.10 | 980      | 21       | 100        |
| 1212   | 02-25-82     | 7.95 | 1100     | 23       | 132        |
| 1212   | 04-29-82     | 7.76 | 1240     | 26       | 132        |
| 1212   | 10-06-82     | 7.60 | 1188     | 26       | 128        |
| 1212   | 04-28-83     | 8.05 | 1180     | 29       | 128        |
| 1228   | 07-22-77     | 7.79 | 1090     | 26       | 148        |
| 1228   | 08-09-77     | 7.20 | 1010     | 25       | 132        |
| 1228   | 04-18-83     | 8.25 | 1115     | 27       | 92         |
| 1271   | 07-14-77     | 7.50 | 1100     | 27       | 160        |
| 1271   | 04-28-83     | 7.89 | 1118     | 29       | 94         |
| 1271   | 04-28-83     | 8.09 | 1065     | 29       | 94         |
| 1325   | 08-04-77     | 7.30 | 4500     | 25       | 152        |
| 1325   | 09-29-77     | 7.30 | 4490     | 24       | 160        |
| 1325   | 04-30-82     | 7.66 | 1100     | 26       | 170        |
| 1339   | 07-28-77     | 8.00 | 2800     | 26       | 180        |
| 1339   | 08-23-77     | 8,00 | 2200     | 28       | 200        |
| 1339   | 04-18-83     | 8.16 | 1640     | 27       | 172        |
| 1515   | 08-16-77     | 7.50 | 3900     | 28       | 120        |
| 1515   | 04-14-82     | 7.34 | 4300     | 28       | 128        |
| 1515   | 05-31-82     | 7.25 | 4100     | 30       | 134        |
| 1515   | 07-20-82     | 7.50 | 4300     | 25       | 134        |
| 1612   | 07-27-77     | 8.00 | 3800     | 25       | 136        |
| 1612   | 07-27-77     | 8.00 | 3800     | 20       | 136        |
| 1612   | 08 - 10 - 77 | 7.80 | 1800     | 20       | 152        |
| 1612   | 10 - 01 - 77 | 7.50 | 1790     | 20       | 212        |
| 1612   | 11-04-77     | 7 40 | 1900     | 23       | 140        |
| 1612   | 04-11-83     | 8 00 | 1770     | 23       | 126        |
| 1856   | 07-14-77     | 7 60 | 2190     | 21       | 222        |
| 1956   | 07-14-77     | 7.00 | 2100     | 27       | 232        |
| 1956   | 07-14-77     | 7.80 | 1590     | 27       | 224        |
| 1956   | 09-09-81     | 7.45 | 1500     | 20       | 224        |
| 1050   | 10-22-01     | 7.45 | 1560     | 20       | 224        |
| 1056   | 10-23-81     | 7.95 | 1000     | 21       | 182        |
| 1054   | 12-14-01     | 7.75 | 1020     | 22       | 230        |
| 1050   | 04-28-82     | 7.70 | 1020     | 22       | 230        |
| 1050   | 04-28-82     | 7.30 | 1750     | 20       | 198        |
| 1050   | 05-26-82     | 7.90 | 1040     | 29       | 212        |
| 1000   | 00-02-82     | 7.34 | 1940     | 31.5     | 234        |
| 1000   |              | 8.10 | 300      | 29       | 128        |
| 1000   | 08-19-//     | 7.20 | 1/00     | 27       | 100        |
| 1909   | 05-12-83     | 7.92 | 3000     | 27       | 68         |
| 1918   | 08-15-77     | /.90 | 800      | 26       | 112        |

| NUMBER ANALYSIS (M-HROS) (DEG.C.) (CacO3)   1919 04-12-83 8.14 620 21 112   1956 08-04-77 7.90 710 27 132   1956 08-04-77 8.40 650 25 120   1956 08-14-81 8.05 780 28 68   1956 09-22-81 7.70 900 28 99   1956 03-11-82 8.15 1190 26 100   1975 07-21-77 7.90 540 26 116   1975 07-21-77 7.20 2240 26 244   1983 06-03-82 6.92 2900 29.5 260   1983 04-28-83 8.05 1204 29 156   1983 04-28-83 8.05 1204 29 156   2049 07-18-77 8.70 270 27 124   2049 07-26-77 8.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WELL   | DATE OF      | Ha       | CONDUCT. | TEMP.    | ALKALINTTY |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------|----------|----------|----------|------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NUMBER | ANALYSIS     | <b>P</b> | (M-MHOS) | (DEG.C.) | (CaC03)    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |              |          | (,       | (/       | (mq/1)     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |              |          |          |          |            |
| 1956 $07-18-77$ 7.90710271321956 $08-04-77$ $8.40$ $650$ $25$ $120$ 1956 $09-22-81$ $7.70$ $900$ $28$ $99$ 1956 $03-11-82$ $8.15$ $1190$ $26$ $100$ 1975 $07-21-77$ $7.90$ $540$ $26$ $116$ 1975 $04-20-83$ $8.31$ $640$ $27$ $128$ 1983 $07-21-77$ $7.20$ $2240$ $26$ $244$ 1983 $08-09-77$ $7.60$ $2150$ $25$ $228$ 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $04-28-83$ $8.05$ $1204$ $29$ $156$ 1983 $11-22-83$ $7.46$ $2640$ $26$ $300$ $2049$ $07-05-77$ $8.70$ $270$ $27$ $124$ $2049$ $07-05-77$ $8.70$ $270$ $27$ $124$ $2049$ $07-08-27$ $7.60$ $750$ $26$ $108$ $2074$ $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $04-20-83$ $8.05$ $590$ $27$ $128$ $2304$ $08-04-77$ $8.30$ $9100$ $25$ $128$ $2304$ $08-09-77$ $8.30$ $1120$ $25$ $121$ $2304$ $08-09-77$ $8.30$ $1120$ $25$ $121$ $2304$ $08-09-77$ $8.30$ $1120$ $25$ $121$ $2304$ $08-09-77$ $7.56$ $413$ $27$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1919   | 04-12-83     | 8.14     | 620      | 21       | 112        |
| 1956 $08-04-77$ $8.40$ $650$ $25$ $120$ 1956 $03-14-81$ $8.05$ $780$ $28$ $68$ 1956 $03-22-81$ $7.70$ $900$ $28$ $99$ 1956 $03-21-82$ $8.15$ $1190$ $26$ $1100$ 1975 $07-21-77$ $7.90$ $540$ $26$ $116$ 1975 $04-20-83$ $8.31$ $640$ $27$ $128$ 1983 $08-09-77$ $7.60$ $2150$ $25$ $228$ 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $04-28-83$ $8.05$ $1204$ $29$ $156$ 1983 $11-22-83$ $7.46$ $2640$ $26$ $300$ $2049$ $07-18-77$ $8.70$ $270$ $27$ $116$ $2049$ $07-18-77$ $8.00$ $875$ $26$ $108$ $2074$ $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $06-21-82$ $7.35$ $750$ $30$ $120$ $2234$ $08-04-77$ $8.30$ $900$ $25$ $128$ $2304$ $07-14-77$ $8.00$ $1100$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $116$ $2314$ $07-22-82$ $7.56$ $413$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1956   | 07-18-77     | 7.90     | 710      | 27       | 132        |
| 1956 $08-14-81$ 8.0578028681956 $09-22-81$ 7.7090028991956 $03-11-82$ 8.151190261001975 $07-21-77$ 7.90540261161975 $04-20-83$ 8.31640271281983 $07-21-77$ 7.202240262441983 $08-09-77$ 7.602150252281983 $04-28-83$ 8.051204291561983 $11-22-83$ 7.462640263002049 $07-05-77$ 8.70270261082074 $04-20-83$ 8.24450271162074 $04-20-83$ 8.24450271162074 $06-01-82$ 7.35750301202234 $06-27-77$ 8.00875263362234 $04-20-83$ 8.05590271282304 $07-14-77$ 8.00140027882304 $04-28-83$ 8.00111729902314 $03-09-82$ 7.946455261202314 $04-29-82$ 8.22325261162314 $04-29-82$ 8.22325261162314 $04-29-82$ 8.011130271802504 $09-29-77$ 7.701090251242422 $07-2277$ 7.66115022<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1956   | 08-04-77     | 8.40     | 650      | 25       | 120        |
| 1956 $09-22-81$ 7.7090028991956 $03-11-82$ $8.15$ $1190$ $26$ $100$ 1975 $04-20-83$ $8.31$ $640$ $27$ $128$ 1983 $07-21-77$ $7.20$ $2240$ $26$ $244$ 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $04-28-83$ $8.05$ $1204$ $29$ $156$ 1983 $11-22-83$ $7.46$ $2640$ $26$ $300$ $2049$ $07-18-77$ $8.70$ $270$ $27$ $116$ $2074$ $04-20-83$ $8.24$ $450$ $27$ $116$ $2074$ $04-20-83$ $8.24$ $450$ $27$ $116$ $2074$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $1400$ $27$ $88$ $2304$ $07-14-77$ $8.00$ $1400$ $27$ $88$ $2304$ $04-28-83$ $8.00$ $1100$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.67$ $1050$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1956   | 08-14-81     | 8.05     | 780      | 28       | 68         |
| 1956 $03-11-82$ 8.15 $1190$ 26 $100$ 1975 $07-21-77$ 7.90540261161975 $07-21-77$ 7.202240262441983 $08-09-77$ 7.602150252261983 $06-03-82$ 6.92290029.52601983 $04-28-83$ 8.051204291561983 $01-22-83$ 7.462640263002049 $07-05-77$ 8.70270271242049 $07-08-77$ 8.70270271242049 $04-20-83$ 8.24450271162074 $06-01-82$ 7.60750261082074 $06-01-82$ 7.35750301202234 $08-27-77$ 8.0087526336234 $04-20-83$ 8.05590271282304 $07-14-77$ 8.00140027882304 $08-09-77$ 8.301120251212304 $04-28-83$ 8.00111729902314 $09-04-81$ 7.45355281122314 $04-29-82$ 8.22325261162314 $04-29-82$ 8.22325261202314 $04-29-81$ 7.761050262042422 $06-23-77$ 7.701090251242422 $06-23-77$ 7.601500 <td< td=""><td>1956</td><td>09-22-81</td><td>7.70</td><td>900</td><td>28</td><td>99</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1956   | 09-22-81     | 7.70     | 900      | 28       | 99         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1956   | 03-11-82     | 8.15     | 1190     | 26       | 100        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1975   | 07-21-77     | 7.90     | 540      | 26       | 116        |
| 1983 $07-21-77$ 7.20 $2240$ $26$ $244$ 1983 $08-09-77$ 7.60 $2150$ $25$ $228$ 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $04-28-83$ $8.05$ $1204$ $29$ $156$ 1983 $11-22-83$ $7.46$ $2640$ $26$ $300$ $2049$ $07-05-77$ $8.70$ $270$ $27$ $124$ $2049$ $04-20-83$ $8.24$ $450$ $27$ $116$ $2074$ $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $06-01-82$ $7.50$ $30$ $120$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $06-27-77$ $8.00$ $1400$ $27$ $88$ $2304$ $07-14-77$ $8.00$ $1400$ $27$ $88$ $2304$ $04-28-83$ $8.00$ $1117$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $04-29-82$ $7.56$ $413$ $27$ $116$ $2314$ $04-29-82$ $7.56$ $413$ $27$ $180$ $2504$ $12-677$ $7.67$ $1050$ $26$ <td>1975</td> <td>04-20-83</td> <td>8.31</td> <td>640</td> <td>27</td> <td>128</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1975   | 04-20-83     | 8.31     | 640      | 27       | 128        |
| 1983 $08-09-77$ 7.60 $2150$ $25$ $228$ 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $04-28-83$ $8.05$ $1204$ $29$ $156$ 1983 $11-22-83$ $7.46$ $2640$ $26$ $3000$ $2049$ $07-05-77$ $8.70$ $270$ $27$ $124$ $2049$ $07-18-77$ $7.90$ $270$ $27$ $124$ $2049$ $04-20-83$ $8.24$ $450$ $27$ $116$ $2074$ $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $06-01-82$ $7.35$ $750$ $30$ $120$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $04-20-83$ $8.05$ $590$ $27$ $128$ $2304$ $04-28-83$ $8.00$ $1100$ $29$ $90$ $2304$ $04-28-83$ $8.00$ $1100$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $07-22-77$ $7.76$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $07-22-77$ $7.67$ <td< td=""><td>1983</td><td>07-21-77</td><td>7.20</td><td>2240</td><td>26</td><td>244</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1983   | 07-21-77     | 7.20     | 2240     | 26       | 244        |
| 1983 $06-03-82$ $6.92$ $2900$ $29.5$ $260$ 1983 $04-28-83$ $8.05$ $1204$ $29$ $156$ 1983 $11-22-83$ $7.46$ $2640$ $26$ $300$ $2049$ $07-05-77$ $8.70$ $270$ $27$ $124$ $2049$ $04-20-83$ $8.24$ $450$ $27$ $116$ $2074$ $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $06-01-82$ $7.35$ $750$ $30$ $120$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $04-20-83$ $8.05$ $590$ $27$ $128$ $2304$ $04-28-83$ $8.00$ $1400$ $27$ $88$ $2304$ $04-28-83$ $8.00$ $1117$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.60$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1983   | 08-09-77     | 7.60     | 2150     | 25       | 228        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1983   | 06-03-82     | 6.92     | 2900     | 29.5     | 260        |
| 1983 $11-22-83$ 7.46264026300204907-05-778.7027027124204907-18-777.9027027124204904-20-838.2445027116207404-30-827.6075026108223406-01-827.3575030120223406-27-778.0087526336223404-20-838.0559027128230407-14-778.0014002788230404-28-838.0011002990230404-28-838.0011102990230404-28-838.0011172990231409-04-817.4535528112231403-09-827.9464526120231404-29-828.2232526116231407-22-827.5641327112236208-10-777.40660027176242207-22-777.67105026204242207-22-777.67105026204242204-18-838.01113027180250409-29-777.50300020120250409-29-777.66150026128253909-27-817.40110019190253903-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1983   | 04-28-83     | 8.05     | 1204     | 29       | 156        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1983   | 11-22-83     | 7.46     | 2640     | 26       | 300        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2049   | 07-05-77     | 8.70     | 270      | 26       | 108        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2049   | 07-18-77     | 7,90     | 270      | 27       | 124        |
| 2074 $04-30-82$ $7.60$ $750$ $26$ $108$ $2074$ $06-01-82$ $7.35$ $750$ $30$ $120$ $2234$ $06-27-77$ $8.00$ $875$ $26$ $336$ $2234$ $08-04-77$ $8.30$ $900$ $25$ $128$ $2234$ $04-20-83$ $8.05$ $590$ $27$ $128$ $2304$ $07-14-77$ $8.00$ $1400$ $27$ $88$ $2304$ $07-14-77$ $8.00$ $1400$ $27$ $88$ $2304$ $08-09-77$ $8.30$ $1120$ $25$ $121$ $2304$ $04-28-83$ $8.00$ $1117$ $29$ $90$ $2304$ $04-28-83$ $8.00$ $1117$ $29$ $90$ $2304$ $04-28-83$ $8.00$ $1117$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $04-29-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $07-22-87$ $7.67$ $1050$ $26$ $204$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $12-6-77$ $7.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2049   | 04-20-83     | 8.24     | 450      | 27       | 116        |
| 2074 $06-01-82$ 7.35750301202234 $06-27-77$ $8.00$ $875$ $26$ $336$ 2234 $08-04-77$ $8.30$ $900$ $25$ $128$ 234 $04-20-83$ $8.05$ $590$ $27$ $128$ 2304 $07-14-77$ $8.00$ $1400$ $27$ $88$ 2304 $07-14-77$ $8.00$ $1400$ $27$ $88$ 2304 $04-28-83$ $8.00$ $1100$ $29$ $90$ 2304 $04-28-83$ $8.00$ $1117$ $29$ $90$ 2314 $09-04-81$ $7.45$ $355$ $28$ $1120$ 2314 $03-09-82$ $7.94$ $645$ $26$ $120$ 2314 $04-29-82$ $8.22$ $325$ $26$ $116$ 2314 $04-29-82$ $8.22$ $325$ $26$ $116$ 2314 $04-29-82$ $8.22$ $325$ $26$ $116$ 2314 $07-22-82$ $7.78$ $350$ $30$ $116$ 2314 $07-22-82$ $7.76$ $1090$ $25$ $124$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $12-6-77$ $7.60$ $1500$ $26$ $128$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $05-22-81$ $7.66$ $1150$ $23$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2074   | 04-30-82     | 7.60     | 750      | 26       | 108        |
| 2234 $06-27-77$ 8.00875263362234 $08-04-77$ $8.30$ $900$ 251282234 $04-20-83$ $8.05$ $590$ 271282304 $07-14-77$ $8.00$ $1400$ 27882304 $08-09-77$ $8.30$ $1120$ 251212304 $04-28-83$ $8.00$ $1100$ 29902304 $04-28-83$ $8.00$ $1100$ 29902314 $09-04-81$ $7.45$ $355$ 28 $112$ 2314 $03-09-82$ $7.94$ $645$ 261202314 $04-29-82$ $8.22$ $325$ 261162314 $06-01-82$ $7.78$ $350$ 301162314 $07-22-82$ $7.56$ $413$ 271122362 $08-10-77$ $7.40$ $6600$ 27 $176$ 2422 $06-23-77$ $7.70$ $1090$ 251242422 $07-22-77$ $7.67$ $1050$ 262042422 $04-18-83$ $8.01$ $1130$ 271802504 $19-04-77$ $7.20$ $4390$ 241162504 $12-16-77$ $7.50$ $3000$ 201202504 $05-08-81$ $8.90$ $3200$ 281232504 $04-12-83$ $8.22$ $4800$ 21 $82$ 2539 $01-27-81$ $7.40$ $1100$ 191902539 $03-02-81$ $7.50$ $1105$ 22<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2074   | 06-01-82     | 7.35     | 750      | 30       | 120        |
| 2234 $08-04-77$ $8.30$ $900$ $25$ $128$ $2234$ $04-20-83$ $8.05$ $590$ $27$ $128$ $2304$ $07-14-77$ $8.00$ $1400$ $27$ $88$ $2304$ $08-09-77$ $8.30$ $1120$ $25$ $121$ $2304$ $04-28-83$ $8.00$ $11100$ $29$ $90$ $2304$ $04-28-83$ $8.00$ $1117$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $05-22-81$ $7.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2234   | 06-27-77     | 8.00     | 875      | 26       | 336        |
| 2234 $04-20-83$ $8.05$ $590$ $27$ $128$ $2304$ $07-14-77$ $8.00$ $1400$ $27$ $88$ $2304$ $08-09-77$ $8.30$ $1120$ $25$ $121$ $2304$ $04-28-83$ $8.00$ $1100$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $09-04-81$ $7.45$ $355$ $26$ $116$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $06-01-82$ $7.78$ $350$ $30$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $19-29-77$ $7.20$ $4300$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $05-22-81$ $7.06$ $1150$ $23$ $200$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $05-22-81$ $7.50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2234   | 08-04-77     | 8.30     | 900      | 25       | 128        |
| 230407-14-778.0014002788230408-09-778.30112025121230404-28-838.0011002990231409-04-817.4535528112231403-09-827.9464526120231404-29-828.2232526116231404-29-828.2232526116231404-29-827.5641327112236208-10-777.40660027176242206-23-777.70109025124242207-22-777.67105026204242204-18-838.01113027180250409-29-777.20439024116250412-16-777.50300020120250405-08-818.90320028123253906-27-777.60150026128253901-27-817.40110019190253903-02-817.06115023200253904-14-818.10119527215253905-22-817.50110522177253905-22-817.55113025178253907-24-818.00145029128253909-21-817.751200252072539 <td< td=""><td>2234</td><td>04-20-83</td><td>8.05</td><td>590</td><td>27</td><td>128</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2234   | 04-20-83     | 8.05     | 590      | 27       | 128        |
| 2304 $08-09-77$ 8.30 $1120$ 25 $121$ 2304 $04-28-83$ $8.00$ $1100$ $29$ $90$ 2314 $09-04-81$ $7.45$ $355$ $28$ $112$ 2314 $09-04-81$ $7.45$ $355$ $28$ $112$ 2314 $03-09-82$ $7.94$ $645$ $26$ $120$ 2314 $04-29-82$ $8.22$ $325$ $26$ $116$ 2314 $06-01-82$ $7.78$ $350$ $30$ $116$ 2314 $07-22-82$ $7.56$ $413$ $27$ $112$ 2362 $08-10-77$ $7.40$ $6600$ $27$ $176$ 2422 $06-23-77$ $7.70$ $1090$ $25$ $124$ 2422 $07-22-77$ $7.67$ $1050$ $26$ $204$ 2422 $04-18-83$ $8.01$ $1130$ $27$ $180$ 2504 $09-29-77$ $7.20$ $4390$ $24$ $116$ 2504 $12-16-77$ $7.50$ $3000$ $20$ $120$ 2504 $05-08-81$ $8.90$ $3200$ $28$ $123$ 2504 $04-12-83$ $8.22$ $4800$ $21$ $82$ 2539 $01-27-81$ $7.40$ $1100$ $19$ $190$ 2539 $03-02-81$ $7.06$ $1150$ $23$ $200$ 2539 $04-14-81$ $8.10$ $1195$ $27$ $215$ 2539 $05-22-81$ $7.55$ $1130$ $25$ $178$ 2539 $07-24-81$ $8.00$ $1450$ $29$ $128$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2304   | 07-14-77     | 8.00     | 1400     | 27       | 88         |
| 2304 $04-28-83$ $8.00$ $1100$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $06-01-82$ $7.78$ $350$ $30$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4000$ $23$ $116$ $2504$ $11-04-77$ $7.20$ $4000$ $23$ $116$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $05-22-81$ $7.55$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2304   | 08-09-77     | 8.30     | 1120     | 25       | 121        |
| 2304 $04-28-83$ $8.00$ $1117$ $29$ $90$ $2314$ $09-04-81$ $7.45$ $355$ $28$ $112$ $2314$ $03-09-82$ $7.94$ $645$ $26$ $120$ $2314$ $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $06-01-82$ $7.78$ $350$ $30$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4300$ $23$ $116$ $2504$ $11-04-77$ $7.20$ $4000$ $23$ $116$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $05-22-81$ $7.55$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $07-24-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2304   | 04-28-83     | 8.00     | 1100     | 29       | 90         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2304   | 04-28-83     | 8.00     | 1117     | 29       | 90         |
| 2314 $03 - 09 - 82$ $7.94$ $645$ $26$ $120$ $2314$ $04 - 29 - 82$ $8.22$ $325$ $26$ $116$ $2314$ $06 - 01 - 82$ $7.78$ $350$ $30$ $116$ $2314$ $07 - 22 - 82$ $7.56$ $413$ $27$ $112$ $2362$ $08 - 10 - 77$ $7.40$ $6600$ $27$ $176$ $2422$ $06 - 23 - 77$ $7.70$ $1090$ $25$ $124$ $2422$ $06 - 23 - 77$ $7.67$ $1050$ $26$ $204$ $2422$ $04 - 18 - 83$ $8.01$ $1130$ $27$ $180$ $2504$ $09 - 29 - 77$ $7.20$ $4390$ $24$ $116$ $2504$ $11 - 04 - 77$ $7.20$ $4000$ $23$ $116$ $2504$ $12 - 16 - 77$ $7.50$ $3000$ $20$ $120$ $2504$ $05 - 08 - 81$ $8.90$ $3200$ $28$ $123$ $2504$ $04 - 12 - 83$ $8.22$ $4800$ $21$ $82$ $2539$ $06 - 27 - 77$ $7.60$ $1500$ $26$ $128$ $2539$ $01 - 27 - 81$ $7.40$ $1100$ $19$ $190$ $2539$ $03 - 02 - 81$ $7.50$ $1105$ $22$ $177$ $2539$ $05 - 22 - 81$ $7.50$ $1105$ $22$ $177$ $2539$ $07 - 24 - 81$ $8.00$ $1450$ $29$ $128$ $2539$ $07 - 24 - 81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2314   | 09-04-81     | 7.45     | 355      | 28       | 112        |
| 2314 $04-29-82$ $8.22$ $325$ $26$ $116$ $2314$ $06-01-82$ $7.78$ $350$ $30$ $116$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $05-22-81$ $7.55$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2314   | 03-09-82     | 7.94     | 645      | 26       | 120        |
| 2314 $06-01-82$ $7.78$ $350$ $20$ $110$ $2314$ $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $11-04-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2314   | 04-29-82     | 8.22     | 325      | 26       | 116        |
| 2314 $07-22-82$ $7.56$ $413$ $27$ $112$ $2362$ $08-10-77$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $09-29-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $05-22-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2314   | 06-01-82     | 7.78     | 350      | 30       | 116        |
| 2362 $07$ $122$ $07$ $7.40$ $6600$ $27$ $176$ $2422$ $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $19-29-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2314   | 07-22-82     | 7.56     | 413      | 27       | 112        |
| 2422 $06-23-77$ $7.70$ $1090$ $25$ $124$ $2422$ $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $11-04-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2362   | 08-10-77     | 7.40     | 6600     | 27       | 176        |
| 2422 $07-22-77$ $7.67$ $1050$ $26$ $204$ $2422$ $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $11-04-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2302   | 06-23-77     | 7 70     | 1090     | 25       | 124        |
| 2422 $04-18-83$ $8.01$ $1130$ $27$ $180$ $2504$ $09-29-77$ $7.20$ $4390$ $24$ $116$ $2504$ $11-04-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2422   | 07-22-77     | 7 67     | 1050     | 25       | 204        |
| $2422$ $04^{-}10^{-}03^{-}$ $0.01^{-}1130^{-}$ $27^{-}100^{-}$ $2504$ $09-29-77$ $7.20^{-}4390^{-}$ $24^{-}116^{-}$ $2504$ $11-04-77^{-}$ $7.20^{-}4000^{-}23^{-}$ $116^{-}23^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}20^{-}23^{-}23^{-}23^{-}23^{-}23^{-}23^{-}$ | 2422   | 0/ 22 //     | 8 01     | 1130     | 20       | 180        |
| 2504 $05-25-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.20$ $4000$ $23$ $116$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2504   | 09-29-77     | 7 20     | 1300     | 27       | 116        |
| 2504 $11-04-77$ $7.20$ $4000$ $23$ $110$ $2504$ $12-16-77$ $7.50$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2504   | 11 - 04 - 77 | 7 20     | 4000     | 24       | 116        |
| 2504 $12-10-77$ $7.30$ $3000$ $20$ $120$ $2504$ $05-08-81$ $8.90$ $3200$ $28$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2504   | 12-16-77     | 7.20     | 3000     | 20       | 120        |
| 2504 $03-08-81$ $8.90$ $3200$ $20$ $123$ $2504$ $04-12-83$ $8.22$ $4800$ $21$ $82$ $2539$ $06-27-77$ $7.60$ $1500$ $26$ $128$ $2539$ $01-27-81$ $7.40$ $1100$ $19$ $190$ $2539$ $03-02-81$ $7.06$ $1150$ $23$ $200$ $2539$ $04-14-81$ $8.10$ $1195$ $27$ $215$ $2539$ $05-22-81$ $7.50$ $1105$ $22$ $177$ $2539$ $06-26-81$ $7.25$ $1130$ $25$ $178$ $2539$ $07-24-81$ $8.00$ $1450$ $29$ $128$ $2539$ $09-21-81$ $7.75$ $1200$ $25$ $207$ $2539$ $10-20-81$ $8.10$ $1280$ $26$ $200$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2504   | 12-10-77     | 8 90     | 3200     | 20       | 123        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2504   | 04-12-83     | 8 22     | 4800     | 20       | 82         |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2504   | 04-12-05     | 7 60     | 1500     | 26       | 128        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2539   | 01-27-81     | 7.00     | 1100     | 19       | 190        |
| 253903-02-017.00115025260253904-14-818.10119527215253905-22-817.50110522177253906-26-817.25113025178253907-24-818.00145029128253909-21-817.75120025207253910-20-818.10128026200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2539   | 01-27-01     | 7.40     | 1150     | 23       | 200        |
| 253905-22-817.50110522177253906-26-817.25113025178253907-24-818.00145029128253909-21-817.75120025207253910-20-818.10128026200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2539   | 04-14-81     | 8,10     | 1195     | 23       | 215        |
| 253906-26-817.25113025178253907-24-818.00145029128253909-21-817.75120025207253910-20-818.10128026200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2539   | 05-22-21     | 7 50     | 1105     | 27       | 177        |
| 253907-24-818.00145029128253909-21-817.75120025207253910-20-818.10128026200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2539   | 06-26-81     | 7.25     | 1130     | 25       | 178        |
| 253909-21-817.75120025207253910-20-818.10128026200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2535   | 07-24-91     | 8 00     | 1450     | 20       | 128        |
| 2539 10-20-81 8.10 1280 26 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2539   | 07-24-01     | 7 75     | 1200     | 25       | 207        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2535   | 10-20-21     | 8 10     | 1280     | 25       | 200        |
| 2539 10-29-81 7.30 1300 21 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2539   | 10-29-81     | 7.30     | 1300     | 21       | 210        |
| 2539 12-14-81 8.00 1400 21 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2539   | 12-14-81     | 8,00     | 1400     | 21       | 220        |

| WELL   | DATE OF  | pН     | CONDUCT. | TEMP.           | ALKALINITY |
|--------|----------|--------|----------|-----------------|------------|
| NUMBER | ANALYSIS |        | (M-MHOS) | (DEG.C.)        | (CaCO3)    |
|        |          |        |          | 1               | (mg/1)     |
|        |          |        |          |                 |            |
| 2539   | 01-27-82 | 7.70   | 1920     | 19              | 216        |
| 2539   | 02-15-82 | 7.60   | 1550     | 22              | 220        |
| 2539   | 03-23-82 | 7.64   | 1700     | 25              | 216        |
| 2539   | 04-28-82 | 7.30   | 1800     | 26              | 208        |
| 2539   | 05-20-82 | . 7.90 | 1680     | 29              | 196        |
| 2539   | 05-26-82 | 8.06   | 1560     | 29              | 216        |
| 2539   | 06-22-82 | 7.24   | 1500     | 27              | 218        |
| 2539   | 07-14-82 | 7.45   | 2400     | 28              | 232        |
| 2539   | 08-02-82 | 7.67   | 1400     | 27              | 214        |
| 2539   | 08-09-82 | 7.72   | 1700     | 27 <sup>°</sup> | 220        |
| 2574   | 04-28-83 | 8.14   | 2000     | 29              | 152        |
| 2643   | 06-28-77 | 7.40   | 1600     | 28              | 168        |
| 2643   | 08-19-77 | 8.20   | 1390     | 27              | 220        |
| 2812   | 06-23-77 | 7.60   | 810      | 25              | 152        |
| 2812   | 07-25-77 | 7.72   | 690      | 25              | 188        |
| 2812   | 08-22-77 | 7.95   | 750      | 29              | 172        |
| 2812   | 04-28-83 | 7.76   | 720      | 27              | 172        |

| WELL | DATE OF  | HARDNESS | SULFATE | CHLORIDE      | CALCIUM       | MAGNES.       |
|------|----------|----------|---------|---------------|---------------|---------------|
| No.  | ANALYSIS | (CaCO3)  | (SO4)   | (Cl)          | (CaO)         | (MqO)         |
| ·    |          | (mg/l)   | (mg/l)  | <u>(mg/l)</u> | <u>(mg/l)</u> | <u>(mg/l)</u> |
| 17   | 07 07 77 | 240 242  |         | 10 000        |               |               |
| 17   | 07-21-11 | 340.343  | 228.626 | 19.996        | -             | -             |
| 17   | 07-21-81 | 380.000  | 316.800 | 21.995        | 100.200       | 31.605        |
| 1/   | 09-15-82 | 1/0.000  | 34.060  | 16.000        | 58.110        | 6.070         |
| 1/   | 04-11-83 | 400.000  | 249.759 | 23.750        | 117.034       | 26.987        |
| 34   | 08-24-77 | 766.700  | 364.800 | 51.900        | -             | _             |
| 34   | 06-08-82 | 700.000  | 551.940 | 52.000        | 200.400       | 48.620        |
| 158  | 08-12-77 | 105.623  | 162.562 | 9.998         | -             | -             |
| 158  | 05-06-82 | 135.000  | 225.600 | 20.000        | 48.090        | 3.640         |
| 158  | 04-12-83 | 143.000  | 115.273 | 15.951        | 57.314        | -             |
| 192  | 08-10-77 | 864.551  | 44.742  | 51.989        | -             | -             |
| 192  | 07-21-81 | 460.000  | 364.800 | 51.896        | 124.248       | 29.174        |
| 192  | 04-11-83 | 561.000  | 355.427 | 54.945        | 221.242       | 2.188         |
| 209  | 06-27-77 | 899.760  | 633.269 | 41.991        | -             | -             |
| 209  | 07-27-77 | 931.055  | 550.689 | 53.989        | -             | -             |
| 209  | 08-30-77 | 907.500  | 473.100 | 39.900        | -             | -             |
| 209  | 04-11-83 | 981.000  | 744.476 | 53.881        | 312.625       | 48.869        |
| 257  | 07-29-77 | 841.079  | 550.689 | 71.985        | -             | -             |
| 268  | 07-29-77 | 172.127  | 51.079  | 19.996        | -             | -             |
| 268  | 08-15-77 | 109.535  | 18.047  | 15.996        | -             | -             |
| 268  | 08-13-81 | 100.000  | 28.818  | 11.697        | 40.080        | -             |
| 268  | 08-31-81 | 130.000  | 24.976  | 14.533        | 48.096        | 2.431         |
| 268  | 03-02-82 | 250.000  | 254.590 | 11.997        | 60.120        | 24.312        |
| 268  | 05-06-82 | 120.000  | 9.600   | 20.000        | 40.080        | 4.860         |
| 268  | 04-18-83 | 143.000  | 14.409  | 12.761        | 32.064        | 15.317        |
| 281  | 08-15-77 | 222.983  | 146.459 | 37.992        | -             | -             |
| 281  | 10-07-77 | 262.100  | 196.900 | 43.900        | -             | -             |
| 281  | 10-07-77 | 293.400  | 214.800 | 55.900        | -             | -             |
| 281  | 10-07-77 | 262.100  | 179.100 | 41.900        | -             | -             |
| 281  | 02-08-82 | 440.000  | 208.453 | 95.710        | 91.783        | 51.300        |
| 281  | 04-28-82 | 305.000  | 230.547 | 55.654        | 106.212       | 9.725         |
| 281  | 05-06-82 | 275.000  | 249.600 | 62.000        | 92.184        | 10.940        |
| 281  | 06-04-82 | 305.000  | 230.500 | 55.760        | 106.210       | 96.130        |
| 281  | 07-13-82 | 335.000  | 160.770 | 56.000        | 116.230       | 10.940        |
| 281  | 04-18-83 | 493.000  | 350.624 | 81.885        | 99.799        | 59.324        |
| 350  | 08-04-77 | 160.391  | 30.021  | 9.998         | -             | -             |
| 350  | 09-02-77 | 160.300  | 41.500  | 25.900        | -             | -             |
| 350  | 05-03-83 | 139.000  | .038    | 6.990         | 47.670        | 4.860         |
| 431  | 09-02-77 | 183.800  | 40.100  | 15.900        | -             | -             |
| 431  | 05-03-83 | 112.000  | .250    | 9.980         | 28.850        | 9.720         |
| 442  | 05-06-82 | 680.000  | 624.500 | 60.000        | 214.420       | 35.250        |
| 442  | 12-13-82 | 680.000  | 580.630 | 58.000        | 220.440       | 31.660        |
| 443  | 04-21-82 | 130.000  | 24.000  | 12.000        | 46.090        | 3.640         |
| 598  | 06-17-77 | 379.463  | 591.979 | 33.993        | -             | -             |
| 598  | 06-28-77 | 453.791  | 633.269 | 51.989        | -             | -             |
| 598  | 08-01-77 | 399.024  | 550.689 | 49.990        | -             | -             |
| 598  | 09-14-77 | 422.400  | 375.100 | 45.900        | -             | -             |
| 598  | 04-18-83 | 448.000  | 869.356 | 53.881        | 131.863       | 28.932        |
| 752  | 07-15-77 | 125.183  | 55.208  | 17.996        | -             | -             |
| 752  | 08-05-77 | 97.800   | 75.027  | 11.997        | -             | -             |
| 752  | 09-22-81 | 175.000  | 93.179  | 35.094        | 58.116        | -             |
| WELL | DATE OF  | HARDNESS | <b>SULFATE</b> | CHLORIDE | CALCIUM | MAGNES. |
|------|----------|----------|----------------|----------|---------|---------|
| No.  | ANALYSIS | (CaCO3)  | (SO4)          | (Cl)     | (CaO)   | (MgO)   |
|      |          | (mg/1)   | (mg/l)         | (mg/1)   | (mq/1)  | (mg/l)  |
|      |          |          |                |          |         |         |
| 752  | 10-26-81 | 190.000  | 103.540        | 13.997   | 62.124  | 7.293   |
| 752  | 03-11-82 | 350.000  | 951.090        | 24.995   | 90.180  | 13.371  |
| 752  | 04-21-82 | 165.000  | 158.400        | 18.000   | 62.120  | 2.430   |
| 752  | 07-19-82 | 200.000  | 80.310         | 17.000   | 62.124  | 2.430   |
| 752  | 09-17-82 | 170.000  | 118.180        | 18.000   | 68.130  | -       |
| 760  | 08-05-77 | 1154.040 | 591.979        | 191.962  | -       | -       |
| 760  | 04-20-82 | 70.000   | 9.600          | 22.000   | 26.052  | 1.215   |
| 760  | 09-17-82 | 80.000   | 6.920          | 12.000   | 28.050  | 2.430   |
| 762  | 08-18-77 | 344.255  | 509.399        | 67.966   | -       | -       |
| 801  | 08-08-77 | 31.295   | 30.434         | 9.998    | -       | -       |
| 836  | 08-05-77 | 293.400  | 468.109        | 69.983   | -       | -       |
| 852  | 08-24-81 | 56.000   | 59.558         | 9.925    | 22.444  | -       |
| 852  | 08-25-81 | 56.000   | 11.803         | 9.930    | 22.444  | -       |
| 852  | 10-29-81 | 140.000  | 49.545         | 9.998    | 40.080  | 9.724   |
| 852  | 11-16-81 | 110.000  | 26.206         | 9.998    | 18.036  | 12.156  |
| 852  | 03-11-82 | 190.000  | 76.800         | 11.997   | 34.068  | 7.293   |
| 852  | 04-15-82 | 65.000   | 14.400         | 10.000   | 26.052  | -       |
| 852  | 09-17-82 | 60.000   | 23.170         | 12.000   | 24.040  | -       |
| 852  | 04-20-83 | 81.000   | .480           | 13.824   | 28.857  | 2.188   |
| 860  | 05-31-77 | 1107.095 | 633.269        | 51.990   | -       | -       |
| 860  | 04-20-83 | 151.000  | 63.400         | 13.824   | 32.464  | 17.019  |
| 900  | 08-16-77 | 2229.840 | 352.496        | 97.980   | -       | -       |
| 900  | 08-24-81 | 850.000  | 1965.898       | 118.752  | 168.336 | 104.303 |
| 900  | 08-25-81 | 850.000  | 1964.697       | 118.760  | 168.336 | 104.298 |
| 900  | 09-25-81 | 420.000  | 340.538        | 58.135   | 110.220 | 34.038  |
| 900  | 10-30-81 | 1900.000 | 1822.771       | 124.975  | 541.080 | 133.716 |
| 900  | 03-11-82 | 880.000  | 1934.400       | 106.978  | 106.202 | 149.518 |
| 900  | 04-14-82 | 1215.000 | 1401.600       | 102.000  | 394.790 | 55.940  |
| 900  | 06-01-82 | 2050.000 | 1978.080       | 106.000  | 521.040 | 182.340 |
| 900  | 07-20-82 | 1850.000 | 1658.810       | 100.000  | 587.170 | 93.600  |
| 900  | 04-20-83 | 1880.000 | 1972.142       | 109.890  | 568.737 | 112.326 |
| 975  | 05-31-77 | -        | 121.272        | 11.997   | -       | -       |
| 975  | 04-27-82 | 30.000   | 52.800         | 15.000   | 10.020  | 1.210   |
| 975  | 05-25-82 | 30.000   | 50.410         | 14.000   | 12.020  | -       |
| 975  | 10-08-82 | 30.000   | 29.090         | 12.000   | 12.020  | -       |
| 975  | 05-03-83 | 179.000  | 326.400        | 23.990   | 51.700  | 12.150  |
| 1000 | 06-22-77 | -        | 151.414        | 27.994   | -       | -       |
| 1000 | 08-19-77 | 97.800   | 166.691        | 25.994   | -       | -       |
| 1000 | 08-24-81 | 60.000   | 296.829        | 52.463   | 23.647  | -       |
| 1000 | 08-25-81 | 60.000   | 593.712        | 52.140   | 47.294  | -       |
| 1000 | 09-24-81 | 100.000  | 389.529        | 51.754   | 38.076  | -       |
| 1000 | 03-11-82 | 130.000  | 182.400        | 25.994   | 14.028  | 8.509   |
| 1000 | 04-28-82 | 45.000   | 177.600        | 29.000   | 16.030  | 1.210   |
| 1000 | 05-25-82 | 25.000   | 163.380        | 32.000   | 10.020  | -       |
| 1000 | 10-08-82 | 30.000   | 114.000        | 28.000   | 12.020  | -       |
| 1000 | 05-03-83 | 67.000   | 154.560        | 25.990   | 20.840  | 3.640   |
| 1017 | 08-19-77 | 105.623  | 269.916        | 159.968  | -       | -       |
| 1017 | 04-15-82 | 25.000   | 14.400         | 12.000   | 10.020  | -       |
| 1017 | 05-26-82 | 30.000   | 19.230         | 14.000   | 12.020  | -       |
| 1097 | 12-01-77 | 234.700  | 348.400        | 45.900   | -       | -       |

| WELL | DATE OF  | HARDNESS | SULFATE  | CHLORIDE | CALCTUM | MAGNES  |
|------|----------|----------|----------|----------|---------|---------|
| No.  | ANALYSIS | (CaCO3)  | (SO4)    | (Cl)     | (CaO)   | (MgO)   |
|      |          | (mg/1)   | (mq/1)   | (mq/l)   | (mq/l)  | (mg/l)  |
|      |          |          |          |          |         |         |
| 1097 | 05-22-81 | 620.000  | 530.597  | 90.972   | 141.549 | 61.196  |
| 1097 | 04-20-83 | 279.000  | 182.997  | 7.798    | 90.581  | 12.885  |
| 1162 | 11-23-77 | 222.900  | 286.000  | 123.900  | -       | _       |
| 1165 | 07-14-77 | 1697.808 | 839.720  | 695.862  | -       | -       |
| 1165 | 08-09-77 | 1678.248 | 633.269  | 479.905  | -       | -       |
| 1212 | 07-19-77 | 367.727  | 364.884  | 43.991   | -       | _       |
| 1212 | 08-08-77 | 352.080  | 381.400  | 41.991   | -       | -       |
| 1212 | 09-10-81 | 450.000  | 864.553  | 59.553   | 134.268 | 26.744  |
| 1212 | 09-25-81 | 1880.000 | 1880.883 | 108.117  | 589.178 | 125.212 |
| 1212 | 10-23-81 | 315.000  | 424.382  | 34.393   | 84.158  | 24.312  |
| 1212 | 02-25-82 | 401.000  | 348.250  | 33.993   | 86.973  | 44.734  |
| 1212 | 04-29-82 | 340.000  | 552.000  | 40.000   | 96.190  | 24.310  |
| 1212 | 10-06-82 | 345.000  | 361.848  | 35.000   | 96.190  | 25.520  |
| 1212 | 04-28-83 | 390.000  | 397.694  | 40.765   | 129.458 | 16.289  |
| 1228 | 07-22-77 | 352.080  | 220.368  | 99.980   | -       | -       |
| 1228 | 08-09-77 | 340.343  | 378.482  | 87.982   | -       | -       |
| 1228 | 04-18-83 | 359.000  | 249.759  | 109.890  | 88.577  | 33.552  |
| 1271 | 07-14-77 | 492.911  | 340.109  | 33.993   | -       | _       |
| 1271 | 04-28-83 | 229.000  | 438.040  | 12.761   | 80.160  | 7.050   |
| 1271 | 04-28-83 | 229.000  | 437.760  | 12.990   | 80.160  | 7.050   |
| 1325 | 08-04-77 | 1447.440 | 591.979  | 553.890  | -       | _       |
| 1325 | 09-29-77 | 1643.000 | 602.300  | 515.800  | -       | -       |
| 1325 | 04-30-82 | 190.000  | 297.600  | 67.000   | 52.100  | 14.580  |
| 1339 | 07-28-77 | 262.104  | 633.264  | 117.976  | -       | -       |
| 1339 | 08-23-77 | 207.300  | 344.200  | 77.900   | -       | -       |
| 1339 | 04-18-83 | 632.000  | 585.975  | 47.885   | 172.344 | 49.112  |
| 1515 | 08-16-77 | 250.097  | 406.174  | 89.982   | -       | -       |
| 1515 | 04-14-82 | 1570.000 | 2265.600 | 98.000   | 501.000 | 77.790  |
| 1515 | 05-31-82 | 350.000  | 2151.360 | 102.370  | 100.200 | 24.300  |
| 1515 | 07-20-82 | 1545.000 | 1808.740 | 96.000   | 523.040 | 60.780  |
| 1612 | 07-27-77 | 688.511  | 468.109  | 153.969  | _       | -       |
| 1612 | 07-27-77 | 688.511  | 468.109  | 153.969  | -       | -       |
| 1612 | 08-10-77 | 786.811  | 509.899  | 135.973  | -       | -       |
| 1612 | 10-01-77 | 629.800  | 428.600  | 147.900  | -       | -       |
| 1612 | 11-04-77 | 645.400  | 380.000  | 133.900  | -       | -       |
| 1612 | 04-11-83 | 846.000  | 557.156  | 152.782  | 266.533 | 44.006  |
| 1856 | 07-14-77 | 755.015  | 591.979  | 132.972  | -       | -       |
| 1856 | 07-14-77 | 1290.960 | 666.301  | 173.965  | -       | -       |
| 1856 | 09-07-81 | 650.000  | 610.470  | 101.737  | 154.308 | 63.214  |
| 1856 | 09-09-81 | 650.000  | 610.009  | 101.579  | 154.308 | 63.211  |
| 1856 | 10-23-81 | 600.000  | 613.502  | 101.979  | 144.288 | 58.348  |
| 1856 | 12-14-81 | 694.000  | 772.094  | 108.578  | 144.688 | 80.229  |
| 1856 | 02-15-82 | 632.000  | 623.928  | 158.168  | 160.720 | 56.160  |
| 1856 | 04-28-82 | 605.000  | 662.400  | 98.000   | 148.290 | 57.130  |
| 1856 | 05-26-82 | 560.000  | 587.896  | 97.837   | 128.256 | 58.351  |
| 1856 | 06-02-82 | 590.000  | 507.810  | 100.000  | 136.270 | 60.780  |
| 1902 | 08-24-77 | 160.300  | 389.600  | 13.900   | _       | -       |
| 1909 | 08-19-77 | 586.800  | 550.689  | 31.993   | -       | -       |
| 1909 | 05-12-83 | 1499.000 | .600     | 73.980   | 440.470 | 97.240  |
| 1919 | 08-15-77 | 309.047  | 269.916  | 31.993   | -       | -       |

į

| WELL | DATE OF  | HARDNESS | SULFATE  | CHLORIDE | CALCIUM | MAGNES. |
|------|----------|----------|----------|----------|---------|---------|
| No.  | ANALYSIS | (CaCO3)  | (SO4)    | (C1)     | (CaO)   | (MgO)   |
|      |          | (mg/1)   | (mg/1)   | (mg/1)   | (mg/l)  | (mg/l)  |
| 1010 |          |          |          |          |         |         |
| 1919 | 04-12-83 | 300.000  | 144.092  | 34.030   | 100.200 | 12.156  |
| 1956 | 07-18-77 | 113.447  | 146.045  | 11.997   | -       | -       |
| 1956 | 08-04-77 | 46.943   | 126.227  | 5.998    | -       | -       |
| 1956 | 08-14-81 | 120.000  | 355.200  | 19.996   | 40.080  | 4.862   |
| 1956 | 09-22-81 | 235.000  | 378.482  | 19.496   | 82.164  | -       |
| 1956 | 03-11-82 | 315.000  | 436.800  | 22.995   | 72.144  | 19.449  |
| 1975 | 07-21-77 | 101.711  | 96.085   | 17.996   | -       | -       |
| 1975 | 04-20-83 | 119.000  | 173.871  | 21.978   | 36.072  | 7.050   |
| 1983 | 07-21-77 | 708.071  | 633.269  | 119.976  | -       | -       |
| 1983 | 08-09-77 | 856.727  | 633.269  | 125.975  | -       | -       |
| 1983 | 06-03-82 | 815.000  | 1070.040 | 145.000  | 200.400 | 76.580  |
| 1983 | 04-28-83 | 501.000  | 343.900  | 53.881   | 155.911 | 27.230  |
| 1983 | 11-22-83 | 895.000  | 1008.630 | 148.000  | 238.470 | 72.940  |
| 2049 | 07-05-77 |          | 26.718   | 7.998    | -       | -       |
| 2049 | 07-18-77 | 70.416   | 18.047   | 5.998    | -       | -       |
| 2049 | 04-20-83 | 50.000   | .480     | 93.938   | 16.432  | 2.431   |
| 2074 | 04-30-82 | 185.000  | 168.000  | 50.000   | 64.128  | 6.008   |
| 2074 | 06-01-82 | 60.000   | 149.290  | 59.000   | 82.160  | 1.210   |
| 2234 | 06-27-77 | 375.551  | 294.690  | 25.994   | -       | -       |
| 2234 | 08-04-77 | 74.327   | 220.781  | 19.996   | -       | -       |
| 2234 | 04-20-83 | 101.000  | 150.336  | 21.978   | 28.456  | 7.293   |
| 2304 | 07-14-77 | 385.815  | 550.689  | 29.994   | -       | -       |
| 2304 | 08-09-77 | 277.751  | 406.174  | 15.996   | -       | -       |
| 2304 | 04-28-83 | 239.000  | 399.615  | 12.761   | 85.370  | 7.050   |
| 2304 | 04-28-83 | 239.000  | 399.360  | 12.970   | 84.160  | 7.050   |
| 2314 | 09-04-81 | 65.000   | 44.668   | 7.444    | 26.052  | -       |
| 2314 | 03-09-82 | 170.000  | 153.600  | 11.997   | 28.056  | 29.174  |
| 2314 | 04-29-82 | 55.000   | 19.200   | 17.000   | 18.036  | 2.430   |
| 2314 | 06-01-82 | 50.000   | 34.760   | 12.000   | 22.044  | 1.210   |
| 2314 | 07-22-82 | 60.000   | 67.250   | 10.000   | 20.040  | 2.430   |
| 2362 | 08-10-77 | 2902.792 | 591.979  | 1207.761 | -       | -       |
| 2422 | 06-23-77 | 215.160  | 262.071  | 31.993   | -       | -       |
| 2422 | 07-22-77 | 320.783  | 282.303  | 39.992   | -       | -       |
| 2422 | 04-18-83 | 461.000  | 225.744  | 70.896   | 140.280 | 26.987  |
| 2504 | 09-29-77 | 1936.400 | 597.800  | 147.900  | -       | -       |
| 2504 | 11-04-77 | 932.200  | 562.200  | 135.900  | -       | -       |
| 2504 | 12-16-77 | 2073.300 | 503.900  | 145.900  | -       | -       |
| 2504 | 05-08-81 | 1772.000 | 1690.682 | 138.603  | 128.256 | 17.019  |
| 2504 | 04-12-83 | 2290.000 | 2353.506 | 165.898  | 616.833 | 182.591 |
| 2539 | 06-27-77 | 500.735  | 393.787  | 69.986   | -       | -       |
| 2539 | 01-27-81 | 631.000  | 500.000  | 89.980   | 132.300 | 60.780  |
| 2539 | 03-02-81 | 670.000  | 495.386  | 93.981   | 152.704 | 62.238  |
| 2539 | 04-14-81 | 460.000  | 420.000  | 73.380   | 96.190  | 53.480  |
| 2539 | 05-22-81 | 620.000  | 530.547  | 90.972   | 141.549 | 61.196  |
| 2539 | 06-26-81 | 625.000  | 515.950  | 92.981   | 138.394 | 69.527  |
| 2539 | 07-24-81 | 500.000  | 432.276  | 91.811   | 116.232 | 48.626  |
| 2539 | 09-21-81 | 460.000  | 414.985  | 86.139   | 124.248 | 36.469  |
| 2539 | 10-20-81 | 460.000  | 481.185  | 76.900   | 100.200 | 46.190  |
| 2539 | 10-29-81 | 440.000  | 441.556  | 77.984   | 108.216 | 46.192  |
| 2539 | 12-14-81 | 440.000  | 505.838  | 83.983   | 88.176  | 48.624  |

| WELL | DATE OF  | HARDNESS | SULFATE | CHLORIDE | CALCIUM | MAGNES. |
|------|----------|----------|---------|----------|---------|---------|
| No.  | ANALYSIS | (CaCO3)  | (SO4)   | (Cl)     | (CaO)   | (MgO)   |
|      |          | (mg/l)   | (mg/1)  | (mg/1)   | (mg/1)  | (mg/1)  |
|      |          |          |         |          |         |         |
| 2539 | 01-27-82 | 568.000  | 549.120 | 87.982   | 171.943 | 33.793  |
| 2539 | 02-15-82 | 462.000  | 428.174 | 83.783   | 115.430 | 42.302  |
| 2539 | 03-23-82 | 380.000  | 436.800 | 88.000   | 98.190  | 32.820  |
| 2539 | 04-28-82 | 480.000  | 480.000 | 90.000   | 128.250 | 38.890  |
| 2539 | 05-20-82 | 476.000  | 447.440 | 90.980   | 118.230 | 43.760  |
| 2539 | 05-26-82 | 475.000  | 379.442 | 90.747   | 120.240 | 42.548  |
| 2539 | 06-22-82 | 1270.000 | 363.370 | 88.000   | 126.250 | 36.460  |
| 2539 | 07-14-82 | 610.000  | 701.310 | 149.000  | 158.310 | 52.270  |
| 2539 | 08-02-82 | 360.000  | 273.775 | 195.675  | 120.240 | 14.587  |
| 2539 | 08-09-82 | 465.000  | 371.540 | 90.000   | 124.240 | 37.680  |
| 2574 | 04-28-83 | 300.000  | 815.561 | 62.743   | 64.929  | 33.552  |
| 2643 | 06-28-77 | 78.240   | 468.109 | 21.995   | -       | -       |
| 2643 | 08-19-77 | 129.095  | 315.335 | 23.995   | -       | -       |
| 2812 | 06-23-77 | 136.920  | 169.581 | 29.994   | -       | -       |
| 2812 | 07-25-77 | 156.480  | 108.885 | 39.992   | -       | -       |
| 2812 | 08-22-77 | 183.863  | 133.659 | 31.993   | -       | _       |
| 2812 | 04-28-83 | 221.000  | 149.375 | 38.638   | 72.545  | 9.725   |

| WELL | DATE OF      | ARSENIC | BICARB.       | CARBONATE    | SODIUM  | POTASS. |
|------|--------------|---------|---------------|--------------|---------|---------|
| NO.  | ANALYSIS     | (As)    | (HCO3)        | (CO3)        | (Na)    | (K)     |
|      |              | (mg/l)  | (mg/l)        | (mq/1)       | (mg/l)  | (mg/l)  |
|      |              |         |               |              |         |         |
| 17   | 07-27-77     | .0260   | -             | -            | -       | -       |
| 17   | 07-21-81     | .0410   | 205.002       | -            | -       | -       |
| 17   | 09-15-82     | -       | 168.390       | -            | -       | -       |
| 17   | 04-11-83     | .0330   | 195.241       | -            | 40.459  | -       |
| 34   | 08-24-77     | .0497   | · - ·         | -            | _       | -       |
| 34   | 06-08-82     | .0250   | 141.540       | · <b>—</b>   | -       | -       |
| 158  | 08-12-77     | .1590   | -             | -            | -       | -       |
| 158  | 05-06-82     | .0170   | 100.060       | 8.4          | -       | -       |
| 158  | 04-12-83     | .0780   | 122.025       | -            | 41.839  | -       |
| 192  | 08-10-77     | .0250   | -             | · <b>–</b>   | _       | -       |
| 192  | 07-21-81     | .0170   | 185.478       | <b>—</b> `   | -       | -       |
| 192  | 04-11-83     | .0140   | 190.359       | -            | 12.873  | -       |
| 209  | 06-27-77     | .0180   | _             | -            | _       | _       |
| 209  | 07-27-77     | .0310   | · _           | -            | _       | -       |
| 209  | 08-30-77     | .0473   | -             | · <b>-</b> . | _       | -       |
| 209  | 04-11-83     | .0400   | 197.681       | _            | 5.287   | -       |
| 257  | 07-29-77     | .0030   | -             | -            | -       | -       |
| 268  | 07-29-77     | .0200   | -             | -            | _       | -       |
| 268  | 08-15-77     | .0540   |               | -            | _       | _       |
| 268  | 08-13-81     | .0230   | 151.311       | -            | 22 988  | 12 109  |
| 268  | 08-31-81     | .0250   | 150.091       | -            | 14 712  | -       |
| 268  | 03-02-82     | .0020   | 156,192       | · _          | -       | _       |
| 268  | 05-06-82     | .0350   | 151.310       | 4 8          | _       | _       |
| 268  | 04-18-83     | .0350   | 143 990       | 4.0          | 450     | _       |
| 281  | 08-15-77     | .0100   | I4J:1990<br>- | _            | -455    | _       |
| 281  | 10-07-77     | .0280   | _             | _            | _       | _       |
| 281  | 10 - 07 - 77 | 0125    | _             | -            | _       | -       |
| 281  | 10 - 07 - 77 | 05/2    | _             | -            | _       | -       |
| 281  | 02-08-82     | -       | 1 59 622      | -            | 17 021  | -       |
| 281  | 04-28-82     | 0750    | 120.022       | - 7 0        | 17.931  | -       |
| 201  | 04-20-02     | .0750   | 126 010       | 1.2          | 59.540  | -       |
| 201  | 05-00-82     | .0300   | 141 540       | 14.4         | -       | -       |
| 201  | 00-04-02     | .0750   | 141.540       | 1.2          | -       | -       |
| 201  | 07-13-02     | -       | 159.100       | -            | -       | -       |
| 201  | 04 - 10 - 03 | .00.00  | 129.033       | -            | 4/.356  | -       |
| 350  | 08-04-77     | .0050   | -             | <b>—</b> , - | -       | -       |
| 350  | 09-02-77     | .0195   | -             | -            | -       | -       |
| 350  | 05-03-83     | -       | 178.120       | -            | · –     | -       |
| 431  | 09-02-77     | .0086   | -             | -            | -       | -       |
| 431  | 05-03-83     | .0080   | 141.540       | 2.4          | -       | -       |
| 442  | 05-06-82     | .0200   | 205.000       | -            | -       | -       |
| 442  | 12-13-82     | -       | 202.560       | -            | -       | -       |
| 443  | 04-21-82     | .0380   | 165.950       | -            | -       | -       |
| 598  | 06-17-77     | .0780   | -             | -            | -       | -       |
| 598  | 06-28-77     | .0100   | -             | -            | -       | -       |
| 598  | 08-01-77     | .1460   | -             | -            | -       | -       |
| 598  | 09-14-77     | .1466   |               | -            | -       | -       |
| 598  | 04-18-83     | .0700   | 117.144       | -            | 279.080 | -       |
| /52  | 07-15-77     | .0140   | -             | -            | -       | -       |
| 752  | 08-05-77     | .0500   | -             | -            | -       | -       |
| 752  | 09-22-81     | .0200   | 111.043       | -            | 37.931  | 1.17    |

| WELL | DATE OF                       | ARSENIC | BICARB. | CARBONAT | E SODIUM | POTASS. |
|------|-------------------------------|---------|---------|----------|----------|---------|
| NO.  | ANALYSIS                      | (As)    | (HCO3)  | (CO3)    | (Na)     | (K)     |
|      |                               | (mg/l)  | (mg/1)  | (mg/l)   | (mg/1)   | (mg/1)  |
|      |                               |         |         |          |          |         |
| 752  | 10-26-81                      | .0230   | 122.025 | -        | -        | -       |
| 752  | 03-11-82                      | .1190   | 136.668 | -        | -        | -       |
| 752  | 04-21-82                      | .0300   | 102.500 | 9.6      | -        | -       |
| 752  | 07-19-82                      | -       | 126.900 | -        | -        | -       |
| 752  | 09-17-82                      | -       | 131.780 | -        | -        | -       |
| 760  | 08-05-77                      | .0010   | . –     | -        | -        | -       |
| 760  | 04-20-82                      | .0410   | 107.382 | 10.8     | -        | -       |
| 760  | 09-17-82                      | -       | 141.540 | -        | -        | -       |
| 762  | 08-18-77                      | .5250   | -       | -        | -        | -       |
| 801  | 08-08-77                      | .0390   | -       | -        | -        | -       |
| 836  | 08-05-77                      | .1850   | -       | -        | -        | -       |
| 852  | 08-24-81                      | .0630   | 130.567 | -        | 22.298   | 16.796  |
| 852  | 08-25-81                      | .0630   | 130.580 | -        | -        | -       |
| 852  | 10-29-81                      | .0350   | 136.668 | -        | -        | -       |
| 852  | 11-16-81                      | .0380   | 135.691 | -        | -        | -       |
| 852  | 03-11-82                      | .0230   | 149.358 | -        | -        | -       |
| 852  | 04-15-82                      | .0940   | 122.025 | 6.0      | -        | -       |
| 852  | 09-17-82                      | _       | 143.980 | -        | -        | -       |
| 852  | 04-20-83                      | .0340   | 141.549 | -        | 22.068   | -       |
| 860  | 05-31-77                      | .0060   |         | -        | _        | -       |
| 860  | 04-20-83                      | .0340   | 126,906 | -        | 14.252   | -       |
| 900  | 08-16-77                      | .1490   | -       | -        | -        | -       |
| 900  | 08-24-81                      | .1070   | 239,170 | -        | 697,931  | 42.578  |
| 900  | 08-25-81                      | 1070    | 239,190 | -        | -        | -       |
| 900  | 09-25-81                      | .0560   | 195.241 | -        | 72 414   | 7,812   |
| 900  | 10-30-81                      | 1070    | 278 217 | _        | -        | -       |
| 900  | 03-11-82                      | 1200    | 239 169 | _        | -        | _       |
| 900  | 0.3 11 0.2<br>0.4 - 1.4 - 8.2 | 1380    | 200 880 | 8 /      | _        | _       |
| 900  | 04-14-02                      | .1300   | 205.000 | -        | _        | _       |
| 900  | 07-20-82                      | _       | 203.002 | _        | _        | _       |
| 900  | 07-20-82                      | -       | 222.005 | _        | 220 000  | _       |
| 900  | 04-20-83                      | .0400   | 230.729 | _        | 220.000  | _       |
| 975  | 05-31-77                      | .3460   | 101 700 | 16.0     | -        | -       |
| 975  | 04-27-82                      | .4500   | 131.780 | 10.8     | -        | -       |
| 975  | 05-25-82                      | .3940   | 146.430 | 4.8      | -        | -       |
| 975  | 10-08-82                      | -       | 161.070 | -        | -        | -       |
| 975  | 05-03-83                      | -       | 158.630 | -        | -        | -       |
| 1000 | 06-22-77                      | .2410   | -       | -        | -        | -       |
| 1000 | 08-19-77                      | .3450   |         | -        | -        | -       |
| 1000 | 08-24-81                      | .2350   | 102.501 | 4.8      | 162.988  | 38.671  |
| 1000 | 08-25-81                      | .2350   | 102.510 | 9.6      | -        | -       |
| 1000 | 09-24-81                      | .2450   | 131.787 | -        | 197.471  | 37.5    |
| 1000 | 03-11-82                      | .2130   | 137.644 | 4.8      | -        | -       |
| 1000 | 04-28-82                      | .3060   | 109.820 | 10.8     | -        | -       |
| 1000 | 05-25-82                      | .2900   | 104.940 | 9.6      | -        | -       |
| 1000 | 10-08-82                      | -       | 119.580 | -        | -        | -       |
| 1000 | 05-03-83                      | -       | 134.220 | -        | -        | -       |
| 1017 | 08-19-77                      | .3020   | -       | -        | -        | -       |
| 1017 | 04-15-82                      | .4710   | 117.144 | 6.0      | -        | -       |
| 1017 | 05-26-82                      | .2460   | 119.580 | 7.2      | -        | -       |
| 1097 | 12-01-77                      | .1286   | -       | -        | -        | -       |

| WELL | DATE OF      | ARSENIC | BICARB. | CARBONAT      | E SODIUM | POTASS. |
|------|--------------|---------|---------|---------------|----------|---------|
| NO.  | ANALYSIS     | (As)    | (HCO3)  | (CO3)         | (Na)     | (K)     |
| G    |              | (mg/l)  | (mg/1)  | <u>(mg/l)</u> | (mg/1)   | (mg/1)  |
|      |              |         |         |               |          |         |
| 1097 | 05-22-81     | .0250   | 215.740 | -             | -        | -       |
| 1097 | 04-20-83     | .1890   | 147.651 | 4.8           | 19.080   | -       |
| 1162 | 11-23-77     | .1678   | -       | -             | -        | -       |
| 1165 | 07-14-77     | .0310   | -       | -             | -        | -       |
| 1165 | 08-09-77     | .0460   | -       | -             | -        | -       |
| 1212 | 07-19-77     | .0370   | -       | -             | -        | -       |
| 1212 | 08-08-77     | .0840   | · —     | -             | -        | -       |
| 1212 | 09-10-81     | .0260   | 134.228 | -             | 271.724  | 28.125  |
| 1212 | 09-25-81     | .1180   | 202.562 | -             | 140.689  | 20.312  |
| 1212 | 10-23-81     | .0380   | 129.346 | -             | -        | -       |
| 1212 | 02-25-82     | .0380   | 161.073 | -             | -        | -       |
| 1212 | 04-29-82     | .0470   | 141.550 | 9.6           | -        | -       |
| 1212 | 10-06-82     | -       | 156.190 | -             | -        | -       |
| 1212 | 04-28-83     | -       | 146.430 | 4.8           | 89.885   | -       |
| 1228 | 07-22-77     | .0280   | -       | -             | -        | -       |
| 1228 | 08-09-77     | .0610   | -       | -             | -        | -       |
| 1228 | 04-18-83     | .0150   | 112.263 | -             | 62.068   | _       |
| 1271 | 07-14-77     | .0430   | -       | -             | -        | -       |
| 1271 | 04-28-83     | _       | 114.700 | -             | 149.655  | -       |
| 1271 | 04-28-83     | -       | 114.760 | -             | _        | -       |
| 1325 | 08-04-77     | .0080   | _       | -             | _        | -       |
| 1325 | 09-29-77     | .0171   | _       | -             | -        | -       |
| 1325 | 04-30-82     | .1000   | 200,120 | 3.6           | _        | _       |
| 1339 | 07-28-77     | .7270   | _       | -             | -        | -       |
| 1339 | 08-23-77     | .7850   | -       | -             | _        | -       |
| 1339 | 04-18-83     | 5540    | 209 884 | _             | 116.551  | _       |
| 1515 | 08-16-77     | .2130   | -       | -             | -        | -       |
| 1515 | 04-14-82     | 1610    | 136,660 | 9.6           | _        | _       |
| 1515 | 05-31-82     | 1510    | 163 510 | -             | _        | _       |
| 1515 | 07-20-82     | .1310   | 163 510 | _             | _        | _       |
| 1612 | 07-20-82     | 0230    | -       | _             | _        | _       |
| 1612 | 07-27-77     | .0230   | _       | _             | _        | _       |
| 1612 | 07-27-77     | .0230   | _       | _             | _        | _       |
| 1612 | 10-01-77     | .0700   | _       | _             | _        | _       |
| 1612 | 10-01-77     | .0000   | _       | _             | _        | _       |
| 1612 |              | .0853   | 152 752 | _             | 25 747   | _       |
| 1012 | 04 - 11 - 03 | .0220   | 153.752 | -             | 23.141   | _       |
| 1820 | 07-14-77     | .0250   | -       | -             | -        | -       |
| 1856 | 0/-14-//     | .0080   | -       | -             | -        |         |
| 1856 | 09-07-81     | .0240   | 2/3.33/ | -             | 138.100  | 28.906  |
| 1856 | 09-09-81     | .0240   | 273.336 | -             | -        | -       |
| 1856 | 10-23-81     | .0400   | 222.085 | -             | -        | -       |
| 1856 | 12-14-81     | .0310   | 287.979 | -             | -        | -       |
| 1856 | 02-15-82     | .0260   | 288.467 | _             | -        | -       |
| 1856 | 04-28-82     | .0300   | 217.200 | 9.6           | -        | -       |
| 1856 | 05-26-82     | .0240   | 261.134 | -             | 173.103  | 5.859   |
| 1856 | 06-02-82     | ,0440   | 285.530 | -             | -        | -       |
| 1902 | 08-24-77     | .0473   | -       | -             | -        | -       |
| 1909 | 08-19-77     | .1120   | -       | -             | -        | -       |
| 1909 | 05-12-83     | -       | 82.970  | -             | -        | -       |
| 1919 | 08-15-77     | .0630   | -       | -             | -        | -       |

.

| WELL | DATE OF  | ARSENIC | BICARB.    | CARBONAT | E SODIUM | POTASS. |
|------|----------|---------|------------|----------|----------|---------|
| NO.  | ANALYSIS | (As)    | (HCO3)     | (CO3)    | (Na)     | (K)     |
|      |          | (mg/1)  | (mg/1)     | (mg/l)   | (mg/l)   | (mq/1)  |
|      |          |         |            |          |          |         |
| 1919 | 04-12-83 | .0040   | 136.668    | -        | .229     | -       |
| 1956 | 07-18-77 | .0140   | -          | -        | -        | -       |
| 1956 | 08-04-77 | .1060   | -          | -        | -        | -       |
| 1956 | 08-14-81 | .0600   | 82.977     | -        | -        | -       |
| 1956 | 09-22-81 | .0740   | 120.805    | -        | 129.425  | 16.406  |
| 1956 | 03-11-82 | .0700   | 122.029    | -        | -        | -       |
| 1975 | 07-21-77 | .0930   | -          | -        | -        | -       |
| 1975 | 04-20-83 | .2010   | 156.192    | 1.2      | 97.931   | -       |
| 1983 | 07-21-77 | .0240   | -          | -        | -        | -       |
| 1983 | 08-09-77 | .0480   | -          | -        | -        | -       |
| 1983 | 06-03-82 | .0250   | 317.260    | -        | -        | -       |
| 1983 | 04-28-83 | -       | 178.157    | 6.0      | 34.482   | -       |
| 1983 | 11-22-83 | -       | 366.070    | -        | -        | -       |
| 2049 | 07-05-77 | .1470   | -          | -        | -        | -       |
| 2049 | 07-18-77 | .0340   | -          | -        | -        | -       |
| 2049 | 04-20-83 | -       | 141.549    | -        | 87.126   | -       |
| 2074 | 04-30-82 | .0420   | 146.430    | 14.4     | -        | -       |
| 2074 | 06-01-82 | .0140   | 146.430    | -        | -        | -       |
| 2234 | 06-27-77 | .2710   | -          | -        | -        | -       |
| 2234 | 08-04-77 | .3130   |            | -        | -        | -       |
| 2234 | 04-20-83 | .1870   | 156.192    | -        | 94.252   | -       |
| 2304 | 07-14-77 | .0360   | -          | -        | -        | -       |
| 2304 | 08-09-77 | .0720   | -          | -        | -        | -       |
| 2304 | 04-28-83 | .0320   | 104.942    | 2.4      | 123.678  | -       |
| 2304 | 04-28-83 | .0320   | 104.940    | 2.4      | -        | -       |
| 2314 | 09-04-81 | .0370   | 136.668    | -        | 44.138   | 6.25    |
| 2314 | 03-09-82 | .0380   | 136.668    | 4.8      | -        | -       |
| 2314 | 04-29-82 | .0430   | 117.140    | 12.0     | -        | -       |
| 2314 | 06-01-82 | .0620   | 141.540    | -        | -        | -       |
| 2314 | 07-22-82 | -       | 126.900    | 4.8      | -        | -       |
| 2362 | 08-10-77 | .0960   | <b>_</b> ′ | -        | -        | -       |
| 2422 | 06-23-77 | .0100   | -          | _        | -        | -       |
| 2422 | 07-22-77 | .0110   | -          | _        | -        | _       |
| 2422 | 04-18-83 | .0450   | 219.646    | _        | 18.850   | -       |
| 2504 | 09-29-77 | .5780   | -          | -        | _        | -       |
| 2504 | 11-04-77 | .5780   | -          | -        | -        | -       |
| 2504 | 12-16-77 | .0716   | -          | -        | -        | -       |
| 2504 | 05-08-81 | .4410   | 150.091    | -        | 713.103  | 39.062  |
| 2504 | 04-12-83 | .2910   | 100.061    | -        | 196.551  | -       |
| 2539 | 06-27-77 | .0180   | -          | -        | _        | -       |
| 2539 | 01-27-81 | .0310   | 219.650    | 6.0      | -        | -       |
| 2539 | 03-02-81 | .0270   | 268.455    | -        | -        | -       |
| 2539 | 04-14-81 | .0320   | 248.310    | 2.4      | -        | -       |
| 2539 | 05-22-81 | .0250   | 215.740    | -        | -        | -       |
| 2539 | 06-26-81 | .0280   | 217.205    | -        | -        | -       |
| 2539 | 07-24-81 | .0240   | 195.241    | -        | 103.448  | 6.25    |
| 2539 | 09-21-81 | .0160   | 252.593    | -        | 113.793  | 28.125  |
| 2539 | 10-20-81 | .0190   | 244.050    | _        | -        | -       |
| 2539 | 10-29-81 | .0210   | 256.252    | -        | -        | -       |
| 2539 | 12-14-81 | .0220   | 268.455    | -        | -        | -       |

| WELL | DATE OF  | ARSENIC | BICARB. | CARBONATE | SODIUM  | POTASS.    |
|------|----------|---------|---------|-----------|---------|------------|
| NO.  | ANALYSIS | (As)    | (HCO3)  | (CO3)     | (Na)    | (K)        |
|      |          | (mg/1)  | (mg/1)  | (mg/l)    | (mg/1)  | (mg/1)     |
|      |          |         |         |           |         |            |
| 2539 | 01-27-82 | .0340   | 263.574 | -         | -       | <b>–</b> ′ |
| 2539 | 02-15-82 | .0240   | 267.966 | -         | 135.172 | 8.203      |
| 2539 | 03-23-82 | .0290   | 263.600 | -         | -       | -          |
| 2539 | 04-28-82 | .0230   | 253.800 | -         | -       | -          |
| 2539 | 05-20-82 | .0250   | 214.760 | 12.0      | -       | -          |
| 2539 | 05-26-82 | .0390   | 234.289 | 14.401    | 113.839 | -          |
| 2539 | 06-22-82 | .0220   | 266.020 | -         | -       | -          |
| 2539 | 07-14-82 | .0260   | 283.090 | -         | -       | -          |
| 2539 | 08-02-82 | .0320   | 261.134 | -         | 181.609 | -          |
| 2539 | 08-09-82 | .0270   | 268.450 | -         | -       | -          |
| 2574 | 04-28-83 | -       | 175.716 | 4.8       | 305.287 | -          |
| 2643 | 06-28-77 | 1.1550  |         | -         | -       | -          |
| 2643 | 08-19-77 | .7040   | -       | -         | -       | -          |
| 2812 | 06-23-77 | .0060   | -       | -         | -       | -          |
| 2812 | 07-25-77 | .0110   | -       | -         | -       | -          |
| 2812 | 08-22-77 | -       | -       | -         | -       | -          |
| 2812 | 04-28-83 | -       | 207.443 | 1.200     | 68.965  | -          |
|      |          |         |         |           |         |            |

3 i

## APPENDIX B

# WELLS, LOCATIONS, AND HYDRAULIC CHARACTERISTICS

.

Range(X)=0.0 to 6.84 : Range(Y)=0.0 to 11.0 Origin = Bottom left corner. K = Hydraulic Conductivity T = Transmissivity

| WELL | POSI     | TION | DEPTH  | SAT.   | K         | Т        |
|------|----------|------|--------|--------|-----------|----------|
| NO.  |          |      |        | DEPTH  |           |          |
|      | <u> </u> | Y    | (FEET) | (FEET) | (GPD/FT2) | (GPD/FT) |
| 2    | 1.90     | 4.20 |        | 790.42 | 10000     | 8166690  |
| 8    | 1.66     | 4.37 | 1068   | 877.70 | 148       | 132813   |
| 10   | 1.83     | 4.44 | 720    | 526.42 | 1049      | 572866   |
| 17   | 1.68     | 4.65 | 449    | 258.70 | 2000      | 546933   |
| 34   | 1.74     | 5.05 | 532    | 338.42 | 10        | 3499     |
| 158  | 1.57     | 7.02 | 800    | 607.24 | 450       | 288023   |
| 192  | 0.71     | 5.59 | 475    | 291.26 | 4161      | 1225602  |
| 195  | 1.10     | 5.59 | 600    | 412.98 | 1155      | 484574   |
| 206  | 1.16     | 5.47 | 615    | 427.98 | 186       | 81283    |
| 217  | 1.37     | 4.77 | 532    | 343.34 | 10        | 3548     |
| 219  | 1.35     | 4.88 | 684    | 493.70 | 3487      | 1759294  |
| 229  | 2.20     | 4.80 | 800    | 586.74 | 460       | 278576   |
| 231  | 2.11     | 4.51 | 800    | 593.30 | 158       | 97370    |
| 232  | 2.22     | 4.48 | 1015   | 801.74 | 2470      | 2045118  |
| 241  | 2.34     | 4.48 | 712    | 492.17 | 2550      | 1324065  |
| 257  | 2.64     | 5.44 | 800    | 576.89 | 2000      | 1180032  |
| 280  | 2.70     | 6.19 | 752    | 525.61 | 2296      | 1229402  |
| 281  | 2.70     | 6.01 | 1000   | 775.25 | 508       | 399661   |
| 298  | 2.65     | 5.75 | 422    | 202.17 | 2530      | 544701   |
| 310  | 2.41     | 5.44 | 500    | 286.74 | 491       | 147231   |
| 339  | 2.85     | 4.48 | 500    | 237.52 | 502       | 132823   |
| 363  | 3.10     | 5.24 | 506    | 243.52 | 315       | 73608    |
| 378  | 3.01     | 4.64 | 600    | 327.68 | 2901      | 1029116  |
| 387  | 3.11     | 4.33 | 750    | 474.40 | 161       | 79547    |
| 389  | 3.20     | 4.33 | 400    | 121.12 | 1763      | 248232   |
| 414  | 3.44     | 4.57 | 600    | 311.27 | 88        | 29124    |
| 422  | 3.45     | 4.98 | 1000   | 721.12 | 115       | 85494    |
| 431  | 3.42     | 5.20 | 725    | 452.68 | 88        | 41741    |
| 443  | 3.60     | 5.78 | 806    | 568.13 | 227       | 132391   |
| 444  | 3.76     | 5.79 | 800    | 567.05 | 1212      | 704363   |
| 448  | 3.44     | 5,90 | 1058   | 811.93 | 91        | 75154    |
| 455  | 3.20     | 5.14 | 700    | 453.93 | 355       | 167550   |
| 485  | 3.07     | 6.62 | 1020   | 780.49 | 1260      | 994782   |
| 489  | 3.42     | 6.40 | 600    | 360.49 | 330       | 122209   |
| 501  | 3.95     | 7,18 | 900    | 667.05 | 311       | 211789   |
| 598  | 2.24     | 7,91 | 760    | 566.42 | 312       | 180306   |
| 693  | 3.80     | 6.68 | 723    | 496.61 | 473       | 239242   |
| 700  | 4.06     | 6,60 | 800    | 593.30 | 2016      | 1212623  |
| 760  | 3.94     | 5.21 | 800    | 544.08 | 979       | 550002   |
| 762  | 5.68     | 8.32 | 660    | 479.55 | 233       | 114333   |
| 769  | 3.80     | 4.84 | 1095   | 812.83 | 21        | 17483    |
| 801  | 3,98     | 4.21 | 800    | 488.31 | 70        | 34778    |
| 848  | 4.38     | 6.91 | 685    | 488.14 | 1396      | 695184   |
| 860  | 4.68     | 7.24 | 900    | 696.58 | 33        | 23393    |
| 879  | 4.74     | 6.19 | 670    | 538.76 | 255       | 139894   |
| 885  | 4.93     | 7.06 | 950    | 785.95 | 745       | 592377   |

| WELL | POSI   | TION     | DEPTH  | SAT.    | K         | т        |
|------|--------|----------|--------|---------|-----------|----------|
| No.  |        |          |        | DEPTH   |           |          |
|      | X      | <u>Y</u> | (FEET) | (FEET)  | (GPD/FT2) | (GPD/FT) |
| 900  | 5.39   | 6.40     | 650    | 541.73  | 1026      | 555812   |
| 975  | 4.12   | 8.23     | 1002   | 765.77  | 57        | 44771    |
| 1000 | 4.34   | 7.73     | 972    | 729.21  | 256       | 193060   |
| 1017 | 4.89   | 7.94     | 1000   | 767.05  | 22        | 17294    |
| 1025 | 4.96   | 7.37     | 877    | 680.14  | 545       | 359232   |
| 1105 | 6.00   | 7.13     | 1005   | 860.64  | 667       | 578421   |
| 1113 | 3.25   | 4.02     | 606    | 330.40  | 8         | 2725     |
| 1114 | 3.33   | 4.04     | 730    | 447.83  | 917       | 420292   |
| 1156 | 5.24   | 2.57     | 1075   | 779.71  | 953       | 739311   |
| 1162 | 5.70   | 3.13     | 1300   | 971.90  | 592       | 577696   |
| 1200 | 5.08   | 2.87     | 975    | 679.71  | 340       | 231659   |
| 1201 | 5.65   | 3.24     | 1968   | 1639.90 | 178       | 292778   |
| 1210 | 6.09   | 3.20     | 1401   | 1125.40 | 533       | 601585   |
| 1212 | 5.37   | 2.48     | 1082   | 812.96  | 10        | 8097     |
| 1228 | 3.84   | 2.82     | 740    | 477.52  | 3845      | 1807680  |
| 1291 | 4.18   | 3.90     | 1100   | 804.71  | 1323      | 1073313  |
| 1293 | 4.41   | 3.94     | 997    | 709.91  | 2212      | 1588470  |
| 1305 | 1.57   | 6.60     | 600    | 406.42  | 1297      | 544150   |
| 1320 | 6.20   | 7.29     | 610    | 465.64  | 122       | 57608    |
| 1325 | 5.21   | 3.34     | 1150   | 857.99  | 917       | 792043   |
| 1331 | 1.57   | 5.88     | 1010   | 816.42  | 12        | 9868     |
| 1339 | 3.34   | 10.17    | 591    | 459.76  | 25        | 11617    |
| 1358 | 2.47   | 5.33     | 711    | 491.17  | 94        | 47558    |
| 1366 | 3.74   | 3.28     | 850    | 557.99  | 1500      | 827144   |
| 1377 | 4.65   | 6.94     | 561    | 383.83  | 126       | 49520    |
| 1382 | 3.22   | 8.92     | 700    | 509.70  | 975       | 509755   |
| 1391 | 4.04   | 8.82     | 1000   | 794.94  | 764       | 618612   |
| 1505 | 4.22   | 2.76     | 1022   | 751.32  | 13        | 9724     |
| 1515 | 5.78   | 7.53     | 915    | 750.95  | 2106      | 1602230  |
| 1543 | 4.54   | 5.22     | 855    | 658.14  | 170       | 114115   |
| 1620 | 2.15   | 5.75     | 540    | 334.94  | 1348      | 465870   |
| 7659 | 6.10   | 7.09     | 722    | 584.20  | 290       | 171320   |
| 1678 | 2.97   | 6.71     | 370    | 130.49  | 33        | 4631     |
| 1754 | 1.59   | 8.10     | 600    | 414.62  | 880       | 374974   |
| 1788 | 1.83   | 5.30     | 417    | 220.14  | 101       | 23361    |
| 1810 | 5.18   | 2.34     | 1010   | 754.08  | 1100      | 825881   |
| 1902 | 3.12   | 7.04     | 1021   | 778.21  | 643       | 508825   |
| 1909 | 5.16   | 7.03     | 800    | 642.51  | 1000      | 650715   |
| 1943 | 3.32   | 4.83     | 1073   | 794.12  | 31        | 25360    |
| 1956 | 4.95   | 4.77     | 805    | 575.33  | 740       | 441526   |
| 1975 | 5.88   | 4.16     | 1000   | 770.33  | 383       | 302576   |
| 1983 | 4.89   | 2.34     | 1105   | 849.08  | 36        | 30449    |
| 1991 | 5.08   | 8.63     | 1000   | 795.76  | 162       | 130986   |
| 2049 | 4.44   | 4.42     | 1000   | 717.83  | 1000      | 730958   |
| 2058 | 1.67   | 4.37     | 550    | 359.70  | 2660      | 1001317  |
| 2074 | 3.66   | 3.95     | 1050   | 748.15  | 1170      | 879172   |
| 2082 | • 3.86 | 3.87     | 1000   | 688.31  | 230       | 158499   |
| 2092 | 3.67   | 7.48     | 600    | 357.21  | 280       | 106448   |
| 2098 | 2.57   | 5.57     | 268    | 49.81   | 265       | 16678    |
| 2115 | 5.32   | 3.75     | 1129   | 853.40  | 200       | 173304   |

| WELL | POSI     | POSITION |        | DEPTH SAT.<br>DEPTH |           | Т        |
|------|----------|----------|--------|---------------------|-----------|----------|
| NO.  | <u>x</u> | Y        | (FEET) | (FEET)              | (GPD/FT2) | (GPD/FT) |
| 2129 | 5.13     | 3.69     | 1313   | 1025.91             | 50        | 51870    |
| 2160 | 2.58     | 4.16     | 830    | 600.33              | 2557      | 1602160  |
| 2172 | 3.74     | 3.35     | 800    | 504.71              | 1466      | 730766   |
| 2181 | 6.25     | 3.87     | 1050   | 820.33              | 347       | 276571   |
| 2238 | 2.62     | 3.98     | 600    | 370.33              | 266       | 103962   |
| 2304 | 6.38     | 2.33     | 1000   | 803.14              | 9900      | 7886122  |
| 2362 | 0.94     | 5.86     | 600    | 409.70              | 25        | 10407    |
| 2459 | 3.38     | 9.39     | 800    | 622.83              | 60        | 38019    |
| 2643 | 4.88     | 9.65     | 1020   | 888.76              | 25        | 22473    |

## APPENDIX C

## CALIBRATION PARAMETERS FOR PLASM

\_

k(i,j) = 1: no flow boundary Initial time step=5.865338 days

· .

i max=33

j max=28

| i  | j | Q       | k(i)      | k(j)      | DEPTH  |
|----|---|---------|-----------|-----------|--------|
|    |   |         | (GPD/FT2) | (GPD/FT2) | (FEET) |
| 1. | 1 | -50000  | 1000      | 1000      | 0.00   |
| 2  | 1 | -50000  | 1000      | 1000      | -800   |
| 3  | 1 | -50000  | 1000      | 1000      | -800   |
| 4  | 1 | -50000  | 1000      | 1000      | -800   |
| 5  | 1 | -50000  | 1000      | 1000      | -800   |
| 6  | 1 | -50000  | 1000      | 1000      | -800   |
| 7  | 1 | 0       | 1000      | 1000      | -800   |
| 8  | 1 | 0       | • 1       | • 1       | -800   |
| 9  | 1 | · 0     | • 1       | • 1       | -800   |
| 10 | 1 | -50000  | 1000      | 1000      | -800   |
| 11 | 1 | -50000  | 1000      | 1000      | -800   |
| 12 | 1 | -50000  | 1000      | 1000      | -800   |
| 13 | 1 | 0       | 1         | 1         | -610   |
| 14 | 1 | 0<br>0  | 1         | 1         | -610   |
| 15 | 1 | Ő       | 1         | 1         | -610   |
| 16 | 1 | 0<br>0  | 1         | 1         | -610   |
| 17 | 1 | Ő       | 1         | 1         | -610   |
| 18 | 1 | 0       | 1         | 1         | -610   |
| 19 | 1 | 0       | 1         | 1         | -610   |
| 20 | 1 | Ő       | 1         | 1         | -610   |
| 21 | 1 | 0       | -         | 1         | -610   |
| 22 | 1 | Ō       | 1         | 1         | -610   |
| 23 | ī | Ō       | 1         | 1         | -610   |
| 24 | 1 | Ō       | 1         | 1         | -610   |
| 25 | 1 | 0       | 1         | 1         | -610   |
| 26 | 1 | 0       | 1         | 1         | -610   |
| 27 | 1 | 0       | 1         | 1         | -610   |
| 28 | 1 | Ο       | 1         | 1         | -610   |
| 29 | 1 | -150000 | 1000      | 1000      | -800   |
| 30 | 1 | 0       | 1200      | 1200      | -700   |
| 31 | 1 | 0       | 1200      | 1200      | -700   |
| 32 | 1 | 0       | 1200      | 1200      | -700   |
| 33 | 1 | 0       | 1200      | 1200      | -700   |
| 1  | 2 | 0       | 1200      | 1200      | -700   |
| 2  | 2 | 0       | 1200      | 1200      | -700   |
| 3  | 2 | 0       | 1200      | 1200      | -700   |
| 4  | 2 | 0       | 500       | 500       | -610   |
| 5  | 2 | 0       | 973.31    | 973.31    | -610   |
| 6  | 2 | 0       | 973.31    | 973.31    | -610   |
| 7  | 2 | -441237 | 1000      | 1000      | -610   |
| 8  | 2 | 0       | 1         | 1         | -610   |
| 9  | 2 | 0       | 1         | 1         | -610   |
| 10 | 2 | 0       | 1         | 1         | -610   |
| 11 | 2 | 0       | 1         | 1         | -610   |
| 12 | 2 | 0       | 1         | 1         | -610   |
| 13 | 2 | 0       | 1         | 1         | -610   |
| 14 | 2 | 0       | 1         | 1         | -610   |
| 15 | 2 | 0       | 1         | 1         | -610   |

| i   | j | Q       | k(i)      | k(j)      | DEPTH  |
|-----|---|---------|-----------|-----------|--------|
|     |   | (GPD)   | (GPD/FT2) | (GPD/FT2) | (FEET) |
|     |   |         |           |           |        |
| 16  | 2 | 0       | 1         | 1         | -610   |
| 17  | 2 | 0       | 1         | 1         | -610   |
| 18  | 2 | 0       | 1         | 1         | -610   |
| 19  | 2 | 0       | 1         | 1         | -610   |
| 20  | 2 | 0       | 1         | 1         | -610   |
| 21  | 2 | 0       | 1         | 1         | -610   |
| 22  | 2 | 0       | 1         | 1         | -610   |
| 23  | 2 | 0       | 1         | 1         | -610   |
| 24  | 2 | -100000 | 1000      | 1000      | -700   |
| 25  | 2 | 0       | 1200      | 1200      | -700   |
| 26  | 2 | 0       | 1200      | 1200      | -700   |
| 27  | 2 | 0       | 1200      | 1200      | -700   |
| 28  | 2 | 0       | 1200      | 1200      | -700   |
| 29  | 2 | 0       | 1200      | 1200      | -700   |
| 、30 | 2 | 0       | 1200      | 1200      | -700   |
| 31  | 2 | 0       | 1200      | 1200      | -700   |
| 32  | 2 | 3750000 | 1200      | 1200      | -800   |
| 33  | 2 | 3750000 | 1200      | 1200      | -800   |
| 1   | 3 | 0       | 973.31    | 973.31    | -610   |
| 2   | 3 | -441237 | 1000      | 1000      | -610   |
| 3   | 3 | -100000 | 2000      | 2000      | -610   |
| 4   | 3 | -100000 | 2000      | 2000      | -610   |
| 5   | 3 | -100000 | 2000      | 2000      | -610   |
| 6   | 3 | -100000 | 2000      | 2000      | -610   |
| 7   | 3 | -100000 | 2000      | 2000      | -610   |
| 8   | 3 | -100000 | 2000      | 2000      | -610   |
| 9   | 3 | 0       | 1         | 1         | -610   |
| 10  | 3 | 0       | 1         | 1         | -610   |
| 11  | 3 | 0       | 1         | 1         | -610   |
| 12  | 3 | 0       | 1         | 1         | -610   |
| 13  | 3 | 0       | 1         | 1         | -610   |
| 14  | 3 | 0       | 1         | 1         | -610   |
| 15  | 3 | 0       | 1         | 1         | -610   |
| 16  | 3 | 0       | 1         | 1         | -610   |
| 17  | 3 | 0       | 1         | 1         | -610   |
| 18  | 3 | 0       | 973.31    | 973.31    | -610   |
| 19  | 3 | -100000 | 1000      | 1000      | -700   |
| 20  | 3 | 0       | 1200      | 1200      | -700   |
| 21  | 3 | Ο,      | 1200      | 1200      | -700   |
| 22  | 3 | 0       | 1200      | 1200      | -700   |
| 23  | 3 | 0       | 1200      | 1200      | -700   |
| 24  | 3 | 0       | 1200      | 1200      | -700   |
| 25  | 3 | 0       | 1200      | 1200      | -700   |
| 26  | 3 | 0       | 1200      | 1200      | -700   |
| 27  | 3 | 3750000 | 1200      | 1200      | -800   |
| 28  | 3 | 3750000 | 1200      | 1200      | -800   |
| 29  | 3 | 0       | 973.31    | 973.31    | -610   |
| 30  | 3 | 0       | 973.31    | 973.31    | -610   |
| 31  | 3 | 0       | 973.31    | 973.31    | -610   |
| 32  | 3 | 0       | 973.31    | 973.31    | -610   |
| 33  | 3 | 0       | 973.31    | 973.31    | -610   |

| i  | j | Q       | k(i)      | k(j)      | DEPTH  |
|----|---|---------|-----------|-----------|--------|
|    |   | (GPD)   | (GPD/FT2) | (GPD/FT2) | (FEET) |
|    |   |         |           |           |        |
| 1  | 4 | 0       | 973.31    | 973.31    | -610   |
| 2  | 4 | 0       | 973.31    | 973.31    | -610   |
| 3  | 4 | -441237 | 1000      | 1000      | -610   |
| 4  | 4 | -441237 | 1000      | 1000      | -610   |
| 5  | 4 | 0       | , 1       | 1         | -610   |
| 6  | 4 | · · O   | 1         | 1         | -610   |
| 7  | 4 | 0       | 1         | 1         | -610   |
| 8  | 4 | 0       | 1         | 1         | -610   |
| 9  | 4 | 0       | 1         | 1         | -610   |
| 10 | 4 | 0       | 1         | 1         | -610   |
| 11 | 4 | 0       | 1         | 1         | -610   |
| 12 | 4 | 0       | 1         | 1         | -610   |
| 13 | 4 | 0       | 973.31    | 973.31    | -610   |
| 14 | 4 | -100000 | 1000      | 1000      | -700   |
| 15 | 4 | 0       | 1200      | 1200      | -700   |
| 16 | 4 | 0       | 1200      | 1200      | -700   |
| 17 | 4 | 0       | 1200      | 1200      | -700   |
| 18 | 4 | 0       | 1200      | 1200      | -700   |
| 19 | 4 | 0       | 1200      | 1200      | -700   |
| 20 | 4 | 0       | 1200      | 1200      | -700   |
| 21 | 4 | 0       | 1200      | 1200      | -700   |
| 22 | 4 | 3750000 | 1200      | 1200      | -800   |
| 23 | 4 | 3750000 | 1200      | 1200      | -800   |
| 24 | 4 | · O ·   | 973.31    | 973.31    | -610   |
| 25 | 4 | - 0     | 973.31    | 973.31    | -610   |
| 26 | 4 | 0       | 973.31    | 973.31    | -610   |
| 27 | 4 | 0       | 973.31    | 973.31    | -610   |
| 28 | 4 | 0       | 973.31    | 973.31    | -610   |
| 29 | 4 | 0       | 973.31    | 973.31    | -610   |
| 30 | 4 | , 0     | 973.31    | 973.31    | -610   |
| 31 | 4 | 0       | 973.31    | 973.31    | -610   |
| 32 | 4 | -441237 | 1000      | 1000      | -610   |
| 33 | 4 | -441237 | 1000      | 1000      | -610   |
| 1  | 5 | 0       | 1         | 1,        | -610   |
| 2  | 5 | 0       | 1         | 1         | -610   |
| 3  | 5 | 0       | 1         | 1         | -610   |
| 4  | 5 | 0       | 1         | 1         | -610   |
| 5  | 5 | 0       | 1         | 1         | -610   |
| 6  | 5 | 0       | 1         | 1         | -610   |
| /  | 5 | 0       |           | 1         | -610   |
| 8  | 5 | 100000  | 9/3.31    | 9/3.31    | -610   |
| 9  | 5 | -100000 | 1000      | 1000      | -700   |
| 11 | 5 | 0       | 1200      | 1200      | -700   |
| 10 | 5 | 0       | 1200      | 1200      | -700   |
| 12 | 5 | 0       | 1200      | 1200      | -700   |
| 13 | 5 | 0       | 1200      | 1200      | -700   |
| 14 | 5 | 0       | 1200      | 1200      | -700   |
| 10 | 5 | 0       | 1200      | 1200      | -700   |
| 17 | 5 | 0       | 1200      | 1200      | -/00   |
| 1/ | 5 | 3750000 | 1200      | 1200      | -800   |
| 19 | 5 | 3/50000 | 1200      | 1200      | -800   |

1 11

| 116 |
|-----|
| 116 |

| i        |     | 0       | k(i)              | <u>ل</u> ربا)     | DEDUR  |
|----------|-----|---------|-------------------|-------------------|--------|
| -        | J   | (GPD)   | ጥ(1)<br>(GPD/FT2) | へ(J)<br>(CPD/FT2) | (FFFT) |
|          |     |         |                   |                   |        |
| 19       | 5   | 0       | 973.31            | 973.31            | -610   |
| 20       | 5   | 0       | 973.31            | 973.31            | -610   |
| 21       | 5   | 0       | 973.31            | 973.31            | -610   |
| 22       | 5   | 0       | 973.31            | 973.31            | -610   |
| 23       | 5   | 0       | 973.31            | 973.31            | -610   |
| 24       | 5   | 0       | 973.31            | 973.31            | -610   |
| 25       | 5   | 0       | 973.31            | 973.31            | -610   |
| 26       | 5   | 0       | 973.31            | 973.31            | -610   |
| 27       | 5   | 0       | 973.31            | 973.31            | -610   |
| 28       | 5   | -441237 | 1000              | 1000              | -610   |
| 29       | 5   | -441237 | 1000              | 1000              | -610   |
| 30       | 5   | 0       | 1                 | 1                 | -610   |
| 31       | 5   | 0       | 1                 | 1                 | -610   |
| 32       | 5   | 0       | 1                 | 1                 | -610   |
| 33       | 5   | 0       | 1                 | 1                 | -610   |
| 1        | · 6 | 0       | 1                 | 1                 | -610   |
| 2        | 6   | 0       | 1                 | 1                 | -610   |
| 3        | 6   | 0       | 973.31            | 973.31            | -610   |
| 4        | 6   | -100000 | 1000              | 1000              | -700   |
| 5        | 6   | 0       | 1200              | 1200              | -700   |
| 6        | 6   | 0       | 1200              | 1200              | -700   |
| 7        | 6   | 0       | 1200              | 1200              | -700   |
| 8        | 6   | 0       | 1200              | 1200              | -700   |
| 9        | 6   | 0       | 1200              | 1200              | -700   |
| 10       | 6   | 0       | 1200              | 1200              | -700   |
| 11       | 6   | 0       | 1200              | 1200              | -700   |
| 12       | 6   | 0       | 973.31            | 973.31            | -610   |
| 13       | 6   | 0       | 973.31            | 973.31            | -610   |
| 14       | 6   | 0       | 973.31            | 973.31            | -610   |
| 15       | 6   | 0       | 973.31            | 973.31            | -610   |
| 16       | 6   | 0       | 973.31            | 973.31            | -610   |
| 17       | 6   | 0       | 973.31            | 973.31            | -610   |
| 18       | 6   | 0       | 973.31            | 973.31            | -610   |
| 19       | 6   | 0       | 973.31            | 973.31            | -610   |
| 20       | 6   | 0       | 973.31            | 973.31            | -610   |
| 21       | 6   | 0       | 973.31            | 973.31            | -610   |
| 22       | 6   | 0       | 973.31            | 973.31            | -610   |
| 23       | 6   | 0       | 973.31            | 973.31            | -610   |
| 24       | 6   | -441237 | 1000              | 1000              | -610   |
| 25       | 6   | 0       | 1                 | 1                 | -610   |
| 26       | 6   | 0       | 1                 | 1                 | -610   |
| 27       | 6   | 0       | 1                 | 1                 | -610   |
| 28       | 6   | 0       | 1                 | 1                 | -610   |
| 29       | 6   | 0       | 1                 | L<br>2            | -610   |
| 30       | 6   | 0       | L<br>072 21       | L<br>072 21       | -610   |
| 22<br>2T | 6   | -100000 | 1000              | 1000              | -610   |
| 22       | 6   | -T00000 | 1000              | 1200              | -700   |
| 1        | 07  | 0       | 1200              | 1200              | -700   |
| 2        | 7   | 0       | 1200              | 1200              | -700   |
| 2        | 7   | 0       | 1200              | 1200              | -700   |
|          |     | 0       | 1200              | 1200              | ,      |

\_

| i        | j      | Q       | k(i)             | k(j)             | DEPTH  |
|----------|--------|---------|------------------|------------------|--------|
|          | _      | (GPD)   | (GPD/FT2)        | <u>(GPD/FT2)</u> | (FEET) |
|          | ~      | •       | 1000             | 1000             |        |
| 4        | 7      | 0       | 1200             | 1200             | -700   |
| 5        | 7      | 0       | 1200             | 1200             | -700   |
| 0<br>7   | 7      | 0       | 1200             | 1200             | -700   |
| 0        | 7      | 0       | 973.31           | 9/3.31           | -610   |
| 0        | 7      | 6250000 | 9/3.31           | 9/3.31           | -610   |
| 10       | 7      | 6250000 | 750              | 750              | -800   |
| 11       | 7      | 6250000 | 750              | 750              | -800   |
| 12       | 7      | 0250000 | 750<br>072 21    | 150              | -800   |
| 13       | ,<br>7 | 0       | 973.31           | 973.31           | -610   |
| 14       | 7      | 0       | 973.JL<br>073 31 | 973.JL<br>072 21 | -610   |
| 15       | 7      | 0       | 973.31           | 973.31           | -610   |
| 16       | 7      | 0       | 973.31           | 973.31           | -610   |
| 17       | ,<br>7 | 0       | 973 31           | 973.31           | -010   |
| 18       | 7      | 0       | 973.31           | 973.31           | -010   |
| 19       | 7      | -441237 | 1000             | 1000             | -610   |
| 20       | 7      | -600000 | 10000            | 10000            | -700   |
| 21       | 7      | 0       | 1                | 1                | -610   |
| 22       | 7      | 0       | 1                | 1                | -610   |
| 23       | 7      | 0       | 1                | 1                | -610   |
| 24       | . 7    | 0       | · 1              | 1                | -610   |
| 25       | 7      | 0       | 1                | 1                | -610   |
| 26       | 7      | Ō       | 973.31           | 973.31           | -610   |
| 27       | 7      | -100000 | 1000             | 1000             | -700   |
| 28       | 7      | 0       | 1200             | 1200             | -700   |
| 29       | 7      | 0       | 1200             | 1200             | -700   |
| 30       | 7      | 0       | 1200             | 1200             | -700   |
| 31       | 7      | 0       | 1200             | 1200             | -700   |
| 32       | 7      | 0       | 1200             | 1200             | -700   |
| 33       | 7      | 0       | 1200             | 1200             | -700   |
| 1        | 8      | 0       | 1200             | 1200             | -700   |
| 2        | 8      | 0       | 973.31           | 973.31           | -610   |
| 3        | 8      | 0       | 973.31           | 973.31           | -610   |
| 4        | 8      | 6250000 | 750              | 750              | -800   |
| 5        | 8      | 6250000 | 750              | 750              | -800   |
| 6        | 8      | 6250000 | 750              | 750              | -800   |
| 7        | 8      | 0       | 973.31           | 973.31           | -610   |
| 8        | 8      | 0       | 973.31           | 973.31           | -610   |
| 9        | 8      | 0       | 973.31           | 973.31           | -610   |
| 10       | 8      | 0       | 973.31           | 973.31           | -610   |
| 11       | 8      | 0       | 973.31           | 973.31           | -610   |
| 12       | 8      | 0       | 973.31           | 973.31           | -610   |
| 13       | 8      | 0       | 973.31           | 973.31           | -610   |
| 14       | 8      | 0       | 973.31           | 973.31           | -610   |
| 15       | 8      | -600000 | 10000            | 10000            | -700   |
| 16       | 8      | 0       | 1                | 1                | -610   |
| 17       | 8      | 0       | 1                | 1                | -610   |
| 18       | 8      | 0       | 1                | 1                | -610   |
| TA<br>TA | 8      | 0       | 1                | 1                | -610   |
| 20       | 8      | U       |                  |                  | -010   |
| 21       | 8      | U       | 9/3.31           | 9/3.31           | -010   |

| i  |    | 0       | k(i)      | k(i)              | DEDUR  |
|----|----|---------|-----------|-------------------|--------|
| -  | J  | (GPD)   | (GPD/FT2) | ጥ(J)<br>(GPD/FT2) | (FEFT) |
|    |    |         |           |                   |        |
| 22 | 8  | -100000 | 1000      | 1000              | -700   |
| 23 | 8  | 0       | 1200      | 1200              | -700   |
| 24 | 8  | Ō       | 1200      | 1200              | -700   |
| 25 | 8  | 0       | 1200      | 1200              | -700   |
| 26 | 8  | 0       | 1200      | 1200              | -700   |
| 27 | 8  | 0       | 1200      | 1200              | -700   |
| 28 | 8  | 0       | 1200      | 1200              | -700   |
| 29 | 8  | 0       | 1200      | 1200              | -700   |
| 30 | 8  | 0       | 973.31    | 973.31            | -610   |
| 31 | 8  | 0       | 973.31    | 973.31            | -610   |
| 32 | 8  | 6250000 | 750       | 750               | -800   |
| 33 | 8  | 6250000 | 750       | 750               | -800   |
| 1  | 9  | 6250000 | 750       | 750               | -800   |
| 2  | 9  | 0       | 973.31    | 973.31            | -610   |
| 3  | 9  | Ō       | 973.31    | 973.31            | -610   |
| 4  | 9  | Ō       | 973.31    | 973.31            | -610   |
| 5  | 9  | Ő       | 973.31    | 973.31            | -610   |
| 6  | 9  | Ō       | 973.31    | 973.31            | -610   |
| 7  | 9  | Ő       | 973.31    | 973.31            | -610   |
| 8  | 9  | 6750000 | 10000     | 10000             | -610   |
| 9  | 9  | 6750000 | 10000     | 10000             | -610   |
| 10 | 9  | -600000 | 10000     | 10000             | -700   |
| 11 | 9  | 0       | 10000     | 10000             | -610   |
| 12 | 9  | Ő       | 1         | 1                 | -610   |
| 13 | 9  | õ       | 1         | 1                 | -610   |
| 14 | 9  | Ő       | 1         | 1                 | -610   |
| 15 | 9  | õ       | 1         | 1                 | -610   |
| 16 | 9  | 0       | 973.31    | 973.31            | -610   |
| 17 | 9  | -100000 | 1000      | 1000              | -700   |
| 18 | 9  | 0       | 1200      | 1200              | -700   |
| 19 | 9  | 0       | 1200      | 1200              | -700   |
| 20 | 9  | Ő       | 1200      | 1200              | -700   |
| 21 | 9  | Ő       | 1200      | 1200              | -700   |
| 22 | 9  | Ő       | 1200      | 1200              | -700   |
| 23 | 9  | Ő       | 1200      | 1200              | -700   |
| 24 | 9  | 0       | 1200      | 1200              | -700   |
| 25 | 9  | 0       | 973.31    | 973.31            | -610   |
| 26 | 9  | Ő       | 973.31    | 973.31            | -610   |
| 27 | 9  | Ő       | 973.31    | 973.31            | -610   |
| 28 | 9  | 5750000 | 750       | 750               | -800   |
| 29 | 9  | 5750000 | 750       | 750               | -800   |
| 30 | 9  | 0       | 973.31    | 973.31            | -610   |
| 31 | 9  | Ő       | 973.31    | 973.31            | -610   |
| 32 | 9  | Ő       | 973.31    | 973.31            | -610   |
| 33 | 9  | 0       | 973.31    | 973.31            | -610   |
| 1  | 10 | 0       | 973.31    | 973.31            | -610   |
| 2  | 10 | Ō       | 973.31    | 973.31            | -610   |
| 3  | 10 | 6750000 | 10000     | 10000             | -610   |
| 4  | 10 | 6750000 | 10000     | 10000             | -610   |
| 5  | 10 | -400000 | 973.31    | 973.31            | -610   |
| 6  | 10 | 0       | 1         | 1                 | -610   |

~

| i  | j  | Q       | k(i)      | k(j)      | DEPTH  |
|----|----|---------|-----------|-----------|--------|
|    |    | (GPD)   | (GPD/FT2) | (GPD/FT2) | (FEET) |
| _  |    |         | _         |           |        |
| 7  | 10 | 0       | 1         | 1         | -610   |
| 8  | 10 | 0       | 1         | 1         | -610   |
| 9  | 10 | 0       | 1         | 1         | -610   |
| 10 | 10 | 0       | 1         | 1         | -610   |
| 11 | 10 | 0       | 973.31    | 973.31    | -610   |
| 12 | 10 | -100000 | 1000      | 1000      | -700   |
| 13 | 10 | 0       | 1200      | 1200      | -700   |
| 14 | 10 | · 0     | 1200      | 1200      | -700   |
| 15 | 10 | 0       | 1200      | 1200      | -700   |
| 16 | 10 | 0       | 1200      | 1200      | -700   |
| 17 | 10 | 0       | 1200      | 1200      | -700   |
| 18 | 10 | 0       | 1200      | 1200      | -700   |
| 19 | 10 | 0       | 1200      | 1200      | -700   |
| 20 | 10 | 0       | 973.31    | 973.31    | -610   |
| 21 | 10 | 0       | 973.31    | 973.31    | -610   |
| 22 | 10 | 0       | 973.31    | 973.31    | -610   |
| 23 | 10 | 5750000 | 750       | 750       | -800   |
| 24 | 10 | 5750000 | 750       | 750       | -800   |
| 25 | 10 | 0       | 973.31    | 973.31    | -610   |
| 26 | 10 | 0       | 973.31    | 973.31    | -610   |
| 27 | 10 | 0       | 973.31    | 973.31    | -610   |
| 28 | 10 | 0       | 973.31    | 973.31    | -610   |
| 29 | 10 | 0       | 973.31    | 973.31    | -610   |
| 30 | 10 | 0       | 973.31    | 973.31    | -610   |
| 31 | 10 | 6750000 | 10000     | 10000     | -610   |
| 32 | 10 | 6750000 | 10000     | 10000     | -610   |
| 33 | 10 | -400000 | 973.31    | 973.31    | -610   |
| 1  | 11 | 0       | 1         | 1         | -610   |
| 2  | 11 | 0       | 1         | 1         | -610   |
| 3  | 11 | 0       | 1         | 1         | -610   |
| 4  | 11 | 0       | 1         | 1         | -610   |
| 5  | 11 | 0       | 1         | 1         | -610   |
| 6  | 11 | 0       | 973.31    | 973.31    | -610   |
| 7  | 11 | -100000 | 1000      | 1000      | -700   |
| 8  | 11 | 0       | 1200      | 1200      | -700   |
| 9  | 11 | 0       | 1200      | 1200      | -700   |
| 10 | 11 | 0       | 1200      | 1200      | -700   |
| 11 | 11 | 0       | 1200      | 1200      | -700   |
| 12 | 11 | 0       | 1200      | 1200      | -700   |
| 13 | 11 | 0       | 1200      | 1200      | -700   |
| 14 | 11 | 0       | 1200      | 1200      | -700   |
| 15 | 11 | 0       | 973.31    | 973.31    | -610   |
| 16 | 11 | 0       | 973.31    | 973.31    | -610   |
| 17 | 11 | 0       | 973.31    | 973.31    | -610   |
| 18 | 11 | 0       | 973.31    | 973.31    | -610   |
| 19 | 11 | 0       | 973.31    | 973.31    | -610   |
| 20 | 11 | 0       | 973.31    | 973.31    | -610   |
| 21 | 11 | 0       | 973.31    | 973.31    | -610   |
| 22 | 11 | 0       | 973.31    | 973.31    | -610   |
| 23 | 11 | 0       | 973.31    | 973.31    | -610   |
| 74 | 11 | 0       | 072 21    | 073 31    | -610   |

ł

~

| i  | j  | Q       | k(i)       | k(j)       | DEPTH  |
|----|----|---------|------------|------------|--------|
|    | _  | (GPD)   | (GPD/FT2)  | _(GPD/FT2) | (FEET) |
| 25 | 11 | 6750000 | 5000       | 5000       | -610   |
| 26 | 11 | 6750000 | 5000       | 5000       | -610   |
| 27 | 11 | 0/00000 | 973,31     | 973 31     | -610   |
| 28 | 11 | -400000 | 973.31     | 973.31     | -610   |
| 29 | 11 | -441237 | 1000       | 1000       | -610   |
| 30 | 11 | 0       | 1          | 1000       | -610   |
| 31 | 11 | 0<br>0  | 1          | 1          | -610   |
| 32 | 11 | 0       | ` <b>1</b> | 1          | -610   |
| 33 | 11 | × 0     | -          | 1          | -610   |
| 1  | 12 | \ O     | 973.31     | 973.31     | -610   |
| 2  | 12 | -100000 | 1000       | 1000       | -700   |
| 3  | 12 | 0       | 1000       | 1000       | -800   |
| 4  | 12 | 0       | 1000       | 1000       | -800   |
| 5  | 12 | 0       | 500        | 500        | -610   |
| 6  | 12 | 0       | 500        | 500        | -610   |
| 7  | 12 | 0       | 500        | 500        | -610   |
| 8  | 12 | 750000  | 750        | 750        | -1000  |
| 9  | 12 | 750000  | 750        | 750        | -1000  |
| 10 | 12 | 750000  | 750        | 750        | -1000  |
| 11 | 12 | 750000  | 750        | 750        | -1000  |
| 12 | 12 | 750000  | 750        | 750        | -1000  |
| 13 | 12 | 0       | 973.31     | 973.31     | -610   |
| 14 | 12 | 0       | 973.31     | 973.31     | -610   |
| 15 | 12 | 0       | 973.31     | 973.31     | -610   |
| 16 | 12 | 0       | 973.31     | 973.31     | -610   |
| 17 | 12 | 0       | 973.31     | 973.31     | -610   |
| 18 | 12 | 0       | 973.31     | 973.31     | -610   |
| 19 | 12 | 0       | 973.31     | 973.31     | -610   |
| 20 | 12 | 6750000 | 5000       | 5000       | -610   |
| 21 | 12 | 6750000 | 5000       | 5000       | -610   |
| 22 | 12 | 0       | 973.31     | 973.31     | -610   |
| 23 | 12 | 0       | 973.31     | 973.31     | -610   |
| 24 | 12 | -441237 | 1000       | 1000       | -610   |
| 25 | 12 | -441237 | 1000       | 1000       | -610   |
| 26 | 12 | 0       | 1          | 1          | -610   |
| 27 | 12 | 0       | 1          | 1          | -610   |
| 28 | 12 | 0       | 1          | 1          | -610   |
| 29 | 12 | 0       | 973.31     | 973.31     | -610   |
| 30 | 12 | -100000 | 1000       | 1000       | -700   |
| 31 | 12 | 0       | 1000       | 1000       | -800   |
| 32 | 12 | 0       | 1000       | 1000       | -800   |
| 33 | 12 | 0       | 500        | 500        | -610   |
| 1  | 13 | 500000  | 1000       | 1000       | -700   |
| 2  | 13 | 500000  | 1000       | 1000       | -700   |
| 3  | 13 | 750000  | 750        | 750        | -1000  |
| 4  | 13 | 750000  | 750        | 750        | -1000  |
| 5  | 13 | 750000  | 750        | 750        | -1000  |
| 6  | 13 | 750000  | 750        | 750        | -1000  |
| 7  | 13 | 750000  | 750        | 750        | -1000  |
| 8  | 13 | 0       | 973.31     | 973.31     | -610   |
| 9  | 13 | 0       | 973.31     | 973.31     | -610   |

-

-

|    |    |         | 1-(       | 1-(-)     | DDDDI            |
|----|----|---------|-----------|-----------|------------------|
| T  | J  |         | K(1)      | K(])      | DEPTH            |
|    |    | (GFD)   | (GPD/F12) | (GPD/FT2) | (FEET)           |
| 10 | 13 | 0       | 072 21    | 072 21    | <b>C10</b>       |
| 11 | 13 | 0       | 973.31    | 973.31    | -610             |
| 12 | 13 | 0       | 973.31    | 973.31    | -610             |
| 13 | 13 | 0       | 973.31    | 973.31    | -610             |
| 14 | 13 | Ő       | 973.31    | 973.31    | -610             |
| 15 | 13 | 6750000 | 5000      | 5000      | -610             |
| 16 | 13 | 6750000 | 5000      | 5000      | -610             |
| 17 | 13 | 0       | 973,31    | 973.31    | <del>-</del> 610 |
| 18 | 13 | Ő       | 973.31    | 973.31    | -610             |
| 19 | 13 | 0       | 973.31    | 973.31    | -610             |
| 20 | 13 | -441237 | 1000      | 1000      | -610             |
| 21 | 13 | 0       | 1         | 1         | -610             |
| 22 | 13 | 0       | 1         | 1         | -610             |
| 23 | 13 | Ō       | 1         | 1         | -610             |
| 24 | 13 | Ō       | 973.31    | 973.31    | -610             |
| 25 | 13 | -100000 | 1000      | 1000      | -700             |
| 26 | 13 | 0       | 1000      | 1000      | -800             |
| 27 | 13 | 0       | 1000      | 1000      | -800             |
| 28 | 13 | 0       | 500       | 500       | -610             |
| 29 | 13 | 500000  | 1000      | 1000      | -700             |
| 30 | 13 | 500000  | 1000      | 1000      | -700             |
| 31 | 13 | 750000  | 750       | 750       | -1000            |
| 32 | 13 | 750000  | 750       | 750       | -1000            |
| 33 | 13 | 750000  | 750       | 750       | -1000            |
| 1  | 14 | 750000  | 750       | 750       | -1000            |
| 2  | 14 | 750000  | 750       | 750       | -1000            |
| 3  | 14 | 0       | 973.31    | 973.31    | -610             |
| 4  | 14 | 0       | 973.31    | 973.31    | -610             |
| 5  | 14 | 0       | 973.31    | 973.31    | -610             |
| 6  | 14 | . 0     | 973.31    | 973.31    | -610             |
| 7  | 14 | 0       | 973.31    | 973.31    | -610             |
| 8  | 14 | 0       | 973.31    | 973.31    | -610             |
| 9  | 14 | 0       | 973.31    | 973.31    | -610             |
| 10 | 14 | 6750000 | 5000      | 5000      | -610             |
| 11 | 14 | 6750000 | 5000      | 5000      | -610             |
| 12 | 14 | 0       | 973.31    | 973.31    | -610             |
| 13 | 14 | 0       | 973.31    | 973.31    | -610             |
| 14 | 14 | 0       | 973.31    | 973.31    | -610             |
| 15 | 14 | -650000 | 1000      | 1000      | -610             |
| 16 | 14 | -650000 | 1000      | 1000      | -610             |
| 17 | 14 | 0       | 1         | 1         | -610             |
| 18 | 14 | 0       | 1         | 1         | -610             |
| 19 | 14 | 0       | 973.31    | 973.31    | -610             |
| 20 | 14 | -100000 | 1000      | 1000      | -700             |
| 21 | 14 | 0       | 1000      | 1000      | -800             |
| 22 | 14 | 0       | 1000      | 1000      | -800             |
| 23 | 14 | 0       | 500       | 500       | -610             |
| 24 | 14 | 500000  | 1000      | 1000      | -700             |
| 25 | 14 | 500000  | 1000      | 1000      | -700             |
| 26 | 14 | 750000  | 750       | 750       | -1000            |
| 27 | 14 | 750000  | 750       | 750       | -1000            |

••

| ī                   | i  | 0          | k(i)             | k(i)             | DEPTH  |
|---------------------|----|------------|------------------|------------------|--------|
|                     |    | (GPD)      | (GPD/FT2)        | (GPD/FT2)        | (FEET) |
| <b>0</b> 0          |    | 750000     | 850              |                  |        |
| 28                  | 14 | 750000     | 750              | 750              | -1000  |
| 29                  | 14 | 750000     | 750              | 750              | -1000  |
| 30                  | 14 | /50000     | 750              | 750              | -1000  |
| 31                  | 14 | 0          | 9/3.31<br>072 21 | 9/3.31           | -610   |
| 22                  | 14 | 0          | 9/3.31<br>072 21 | 9/3.31<br>072 21 | -610   |
| 33                  | 14 | 0          | 9/3.31<br>072 21 | 9/3.31<br>072 21 | -610   |
| 1<br>2              | 15 | 0          | 973.31<br>072 21 | 9/3.31<br>072 21 | -610   |
| 2                   | 15 | 0          | 973.31           | 973.31           | -610   |
| 4                   | 15 | 0          | 973.31           | 973.31           | -610   |
| - <del>1</del><br>5 | 15 | 0          | 973.31           | 973.31           | -610   |
| 6                   | 15 | 0          | 973.31           | 973.31           | -610   |
| 7                   | 15 | 0          | 973.31           | 973.31           | -610   |
| 8                   | 15 | 0          | 973.31           | 973.31           | -610   |
| g                   | 15 | 0          | 973.31           | 973.31           | -610   |
| 10                  | 15 | Ő          | 973.31           | 973.31           | -610   |
| 11                  | 15 | -650000    | 1000             | 1000             | -610   |
| 12                  | 15 | -650000    | 1000             | 1000             | -610   |
| 13                  | 15 | 0          | .1               | .1               | -610   |
| 14                  | 15 | 0<br>0     | 973.31           | 973.31           | -610   |
| 15                  | 15 | -100000    | 1000             | 1000             | -700   |
| 16                  | 15 | 0          | 1000             | 1000             | -800   |
| 17                  | 15 | 0          | 1000             | 1000             | -800   |
| 18                  | 15 | 0          | 500              | 500              | -610   |
| 19                  | 15 | 500000     | 1000             | 1000             | -700   |
| 20                  | 15 | 500000     | 1000             | 1000             | -700   |
| 21                  | 15 | 750000     | 750              | 750              | -1000  |
| 22                  | 15 | 750000     | 750              | 750              | -1000  |
| 23                  | 15 | 750000     | 750              | 750              | -1000  |
| 24                  | 15 | 5550000    | 750              | 750              | -1000  |
| 25                  | 15 | 5550000    | 750              | 750              | -1000  |
| 26                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 27                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 28                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 29                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 30                  | 15 | , <b>O</b> | 973.31           | 973.31           | -610   |
| 31                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 32                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 33                  | 15 | 0          | 973.31           | 973.31           | -610   |
| 1                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 2                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 3                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 4                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 5                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 6                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 7                   | 16 | -650000    | 1000             | 1000             | -610   |
| 8                   | 16 | 0          | .1               | .1               | -610   |
| 9                   | 16 | 0          | 973.31           | 973.31           | -610   |
| 10                  | 16 | -50000     | 1000             | 1000             | -700   |
| 11                  | 16 | 0          | 1000             | 1000             | -800   |
| 12                  | 16 | 0          | 1000             | 1000             | -800   |

|    |    |         | 7- 4 1 5  |           |        |
|----|----|---------|-----------|-----------|--------|
| T  | J  |         | K(1)      | K())      | DEPTH  |
|    |    | (GPD)   | (GPD/FT2) | (GPD/FT2) | (FEET) |
| 12 | 16 | 500000  | 750       | 750       |        |
| 11 | 16 | 500000  | 750       | 750       | -850   |
| 15 | 16 | 500000  | 750       | 750       | -850   |
| 16 | 16 | 750000  | 750       | 750       | -850   |
| 17 | 16 | 750000  | 750       | 750       | -1000  |
| 18 | 16 | 750000  | 750       | 750       | -1000  |
| 19 | 16 | 5550000 | 750       | 750       | -1000  |
| 20 | 16 | 5550000 | 750       | 750       | -1000  |
| 21 | 16 | 00000   | 073 31    | 750       | -1000  |
| 22 | 16 | 0       | 973.31    | 973.31    | -610   |
| 23 | 16 | 0       | 973.31    | 973.31    | -610   |
| 24 | 16 | 0       | 973.31    | 973.31    | -610   |
| 25 | 16 | ů<br>0  | 973.31    | 973.31    | -610   |
| 26 | 16 | ů<br>0  | 973.31    | 973.31    | -610   |
| 27 | 16 | 2750000 | 750       | 750       | -610   |
| 28 | 16 | 2750000 | 750       | 750       | -610   |
| 29 | 16 | 2/30000 | 973.31    | 973 31    | -610   |
| 30 | 16 | õ       | 973.31    | 973.31    | -610   |
| 31 | 16 | õ       | 973.31    | 973.31    | -610   |
| 32 | 16 | 0       | 973.31    | 973.31    | -610   |
| 33 | 16 | 0<br>0  | 973.31    | 973.31    | -610   |
| 1  | 17 | Ő       | 973.31    | 973.31    | -610   |
| 2  | 17 | -650000 | 1000      | 1000      | -610   |
| 3  | 17 | 0       | .1        | .1        | -610   |
| 4  | 17 | Ō       | 973.31    | 973.31    | -610   |
| 5  | 17 | -50000  | 1000      | 1000      | -700   |
| 6  | 17 | 0       | 1000      | 1000      | -800   |
| 7  | 17 | 0       | 1000      | 1000      | -800   |
| 8  | 17 | 500000  | 750       | 750       | -850   |
| 9  | 17 | 500000  | 750       | 750       | -850   |
| 10 | 17 | 500000  | 750       | 750       | -850   |
| 11 | 17 | 750000  | 750       | 750       | -1000  |
| 12 | 17 | 750000  | 750       | 750       | -1000  |
| 13 | 17 | 750000  | 750       | 750       | -1000  |
| 14 | 17 | 5550000 | 750       | 750       | -1000  |
| 15 | 17 | 5550000 | 750       | 750       | -1000  |
| 16 | 17 | 0       | 973.31    | 973.31    | -610   |
| 17 | 17 | 0       | 973.31    | 973.31    | -610   |
| 18 | 17 | 0       | 973.31    | 973.31    | -610   |
| 19 | 17 | 0       | 973.31    | 973.31    | -610   |
| 20 | 17 | 0       | 973.31    | 973.31    | -610   |
| 21 | 17 | 0       | 973.31    | 973.31    | -610   |
| 22 | 17 | 2750000 | 750       | 750       | -610   |
| 23 | 17 | 2750000 | 750       | 750       | -610   |
| 24 | 17 | 0       | 973.31    | 973.31    | -610   |
| 25 | 17 | 0       | 973.31    | 973.31    | -610   |
| 26 | 17 | 0       | 973.31    | 973.31    | -610   |
| 27 | 17 | 0       | 973.31    | 973.31    | -610   |
| 28 | 17 | 0       | 973.31    | 973.31    | -610   |
| 29 | 17 | 0       | 973.31    | 973.31    | -610   |
| 30 | 17 | -650000 | 1000      | 1000      | -610   |

| i  | i  | 0       | k(i)             | k(i)      | DEPTH  |
|----|----|---------|------------------|-----------|--------|
| _  |    | (GPD)   | (GPD/FT2)        | (GPD/FT2) | (FEET) |
|    |    |         |                  |           |        |
| 31 | 17 | 0       | .1               | .1        | -610   |
| 32 | 17 | 0       | 973.31           | 973.31    | -610   |
| 33 | 17 | -50000  | 1000             | 1000      | -700   |
| 1  | 18 | 0       | 1000             | 1000      | -800   |
| 2  | 18 | 0       | 1000             | 1000      | -800   |
| 3  | 18 | 500000  | 750              | 750       | -850   |
| 4  | 18 | 500000  | 750              | 750       | -850   |
| 5  | 18 | 500000  | 750              | 750       | -850   |
| 6  | 18 | 750000  | 750              | 750       | -1000  |
| 7  | 18 | 750000  | 750              | 750       | -1000  |
| 8  | 18 | 750000  | 750              | 750       | -1000  |
| 9  | 18 | 5550000 | 750              | 750       | -1000  |
| 10 | 18 | 5550000 | 750              | 750       | -1000  |
| 11 | 18 | 0       | 973.31           | 973.31    | -610   |
| 12 | 18 | 0       | 973.31           | 973.31    | -610   |
| 13 | 18 | 0       | 973.31           | 973.31    | -610   |
| 14 | 18 | 0       | 973.31           | 973.31    | -610   |
| 15 | 18 | 0       | 973.31           | 973.31    | -610   |
| 16 | 18 | 0       | 973.31           | 973.31    | -610   |
| 17 | 18 | 2750000 | 750              | 750       | -610   |
| 18 | 18 | 2750000 | 750              | 750       | -610   |
| 19 | 18 | 0       | 973.31           | 973.31    | -610   |
| 20 | 18 | 0       | 973.31           | 973.31    | -610   |
| 21 | 18 | 0       | 973.31           | 973.31    | -610   |
| 22 | 18 | 0       | 973.31           | 973.31    | -610   |
| 23 | 18 | 0       | 973.31           | 973.31    | -610   |
| 24 | 18 | 0       | 973.31           | 973.31    | -610   |
| 25 | 18 | -650000 | 1000             | 1000      | -610   |
| 26 | 18 | 0       | .1               | .1        | -610   |
| 27 | 18 | ~ 0     | 973.31           | 973.31    | -610   |
| 28 | 18 | -50000  | 1000             | 1000      | -700   |
| 29 | 18 | 0       | 1000             | 1000      | -800   |
| 30 | 18 | 0       | 1000             | 1000      | -800   |
| 31 | 18 | 500000  | 750              | 750       | -850   |
| 32 | 18 | 500000  | 750              | 750       | -850   |
| 33 | 18 | 500000  | 750              | 750       | -850   |
| 1  | 19 | 750000  | 750              | 750       | -1000  |
| 2  | 19 | 750000  | 750              | 750       | -1000  |
| 3  | 19 | 750000  | 750              | 750       | -1000  |
| 4  | 19 | 750000  | 750              | 750       | -1000  |
| 5  | 19 | 750000  | 750              | 750       | -1000  |
| 6  | 19 | 0       | 973.31           | 973.31    | -610   |
| 7  | 19 | 0       | 973.31           | 973.31    | -610   |
| 8  | 19 | 0       | 973.31           | 973.31    | -610   |
| 9  | 19 | 0       | 973.31           | 973.31    | -610   |
| 10 | 19 | 0       | 973.31           | 9/3.31    | -610   |
| 11 | 19 | 0       | 9/3.31           | 9/3.31    | -610   |
| 12 | 19 | 2750000 | 750              | 750       | -610   |
| 13 | 10 | 2/50000 | /50              | /50       | -610   |
| 14 | 19 | 0       | 9/3.31<br>072 21 | 9/3.31    | -010   |
| TO | 19 | U       | A12.2T           | 9/3.3L    | -010   |

| i  | j  | Q          | k(i)      | k(j)      | DEPTH  |
|----|----|------------|-----------|-----------|--------|
|    |    | (GPD)      | (GPD/FT2) | (GPD/FT2) | (FEET) |
|    |    |            |           |           |        |
| 16 | 19 | 0          | 973.31    | 973.31    | -610   |
| 17 | 19 | 0          | 973.31    | 973.31    | -610   |
| 18 | 19 | 0          | 973.31    | 973.31    | -610   |
| 19 | 19 | 0          | 973.31    | 973.31    | -610   |
| 20 | 19 | -650000    | 1000      | 1000      | -610   |
| 21 | 19 | -550000    | 973.31    | 973.31    | -610   |
| 22 | 19 | · <b>O</b> | 973.31    | 973.31    | -610   |
| 23 | 19 | -50000     | 1000      | 1000      | -700   |
| 24 | 19 | 0          | 1000      | 1000      | -800   |
| 25 | 19 | · <b>O</b> | 1000      | 1000      | -800   |
| 26 | 19 | 500000     | 750       | 750       | -850   |
| 27 | 19 | 500000     | 750       | 750       | -850   |
| 28 | 19 | 500000     | • 750     | 750       | -850   |
| 29 | 19 | 750000     | 750       | 750       | -1000  |
| 30 | 19 | 750000     | 750       | 750       | -1000  |
| 31 | 19 | 750000     | 750       | 750       | -1000  |
| 32 | 19 | 750000     | 750       | 750       | -1000  |
| 33 | 19 | 750000     | 750       | 750       | -1000  |
| 1  | 20 | 0          | 973.31    | 973.31    | -610   |
| 2  | 20 | 0          | 973.31    | 973.31    | -610   |
| 3  | 20 | 0          | 973.31    | 973.31    | -610   |
| 4  | 20 | 0          | 973.31    | 973.31    | -610   |
| 5  | 20 | 0          | 1         | 1         | -610   |
| 6  | 20 | 0          | 1         | 1         | -610   |
| 7  | 20 | 2750000    | 750       | 750       | -610   |
| 8  | 20 | 2750000    | 750       | 750       | -610   |
| 9  | 20 | 0          | 973.31    | 973.31    | -610   |
| 10 | 20 | 0          | 973.31    | 973.31    | -610   |
| 11 | 20 | 0          | 973.31    | 973.31    | -610   |
| 12 | 20 | 0          | 973.31    | 973.31    | -610   |
| 13 | 20 | 0          | 973.31    | 973.31    | -610   |
| 14 | 20 | . <b>О</b> | 973.31    | 973.31    | -610   |
| 15 | 20 | 0          | 973.31    | 973.31    | -610   |
| 16 | 20 | -550000    | 973.31    | 973.31    | -610   |
| 17 | 20 | . 0        | 973.31    | 973.31    | -610   |
| 18 | 20 | -50000     | 1000      | 1000      | -700   |
| 19 | 20 | 0          | 1000      | 1000      | -800   |
| 20 | 20 | 0          | 1000      | 1000      | -800   |
| 21 | 20 | 500000     | 750       | 750       | -850   |
| 22 | 20 | 500000     | 750       | 750       | -850   |
| 23 | 20 | 500000     | 750       | 750       | -850   |
| 24 | 20 | 750000     | 750       | 750       | -1000  |
| 25 | 20 | 750000     | 750       | 750       | -1000  |
| 26 | 20 | 750000     | 750       | 750       | -1000  |
| 27 | 20 | 750000     | 750       | 750       | -1000  |
| 28 | 20 | 750000     | 750       | 750       | -1000  |
| 29 | 20 | 0          | 973.31    | 973.31    | -610   |
| 30 | 20 | 0          | 973.31    | 973.31    | -610   |
| 31 | 20 | 0          | 973.31    | 973.31    | -610   |
| 32 | 20 | 0          | 973.31    | 973.31    | -610   |
| 33 | 20 | 0          | 1         | 1         | -610   |

S.,

.

| i                                | j  | Q       | k(i)      | k(j)      | DEPTH  |
|----------------------------------|----|---------|-----------|-----------|--------|
| <u>منى باردىنى مىتىنى بارانى</u> |    | (GPD)   | (GPD/FT2) | (GPD/FT2) | (FEET) |
|                                  |    |         |           |           |        |
| 1                                | 21 | 0       | 1         | 1         | -610   |
| 2                                | 21 | 0       | 1         | 1         | -610   |
| 3                                | 21 | 2750000 | 750       | 750       | -610   |
| 4                                | 21 | 0       | 973.31    | 973.31    | -610   |
| 5                                | 21 | 0       | 973.31    | 973.31    | -610   |
| 6                                | 21 | 0       | 973.31    | 973.31    | -610   |
| 7                                | 21 | 0       | 973.31    | 973.31    | -610   |
| 8                                | 21 | 0       | 973.31    | 973.31    | -610   |
| 9                                | 21 | 0       | 973.31    | 973.31    | -610   |
| 10                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 11                               | 21 | -550000 | 973.31    | 973.31    | -610   |
| 12                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 13                               | 21 | -50000  | 1000      | 1000      | -700   |
| 14                               | 21 | 0       | 1000      | 1000      | -800   |
| 15                               | 21 | 0       | 1000      | 1000      | -800   |
| 16                               | 21 | 500000  | 750       | 750       | -850   |
| 17                               | 21 | 500000  | 750       | 750       | -850   |
| 18                               | 21 | 500000  | 750       | 750       | -850   |
| 19                               | 21 | 750000  | 750       | 750       | -1000  |
| 20                               | 21 | 750000  | 750       | 750       | -1000  |
| 21                               | 21 | 750000  | 750       | 750       | -1000  |
| 22                               | 21 | 750000  | 750       | 750       | -1000  |
| 23                               | 21 | 750000  | 750       | 750       | -1000  |
| 24                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 25                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 26                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 27                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 28                               | 21 | 0       | 1         | 1         | -610   |
| 29                               | 21 | 0       | 1         | 1         | -610   |
| 30                               | 21 | 0       | 1         | -<br>1    | -610   |
| 31                               | 21 | 0       | 1         | 1         | -610   |
| 32                               | 21 | 3250000 | 750       | 750       | -610   |
| 33                               | 21 | 0       | 973.31    | 973.31    | -610   |
| 1                                | 22 | 0       | 973.31    | 973.31    | -610   |
| 2                                | 22 | 0       | 973.31    | 973.31    | -610   |
| 3                                | 22 | 0       | 973.31    | 973.31    | -610   |
| 4                                | 22 | 0       | 973.31    | 973.31    | -610   |
| 5                                | 22 | 0       | 973.31    | 973.31    | -610   |
| 6                                | 22 | -550000 | 973.31    | 973.31    | -610   |
| 7                                | 22 | 000000  | 973 31    | 973 31    | -610   |
| 8                                | 22 | -50000  | 973.31    | 973 31    | -610   |
| ğ                                | 22 | 0       | 1000      | 1000      | -610   |
| 10                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 11                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 12                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 13                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 14                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 15                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 16                               | 22 | 750000  | 1000      | 1000      | -1000  |
| 17                               | 22 | ۰<br>۵  | 972 21    | 972 21    | -610   |
| 18                               | 22 | 0       | 973.31    | 973.31    | -610   |

ι

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                            | i    | j  | 0          | k(i)       | k(i)      | DEPTH  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|------------|------------|-----------|--------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                             |      |    | (GPD)      | (GPD/FT2)  | (GPD/FT2) | (FEET) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 10   |    | •          |            |           |        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 19   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 20   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 21   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 22   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 23   | 22 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 24   | 22 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 25   | 22 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 26   | 22 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 27   | 22 | 0          | , <b>1</b> | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 28 - | 22 | 5000000    | 750        | 750       | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 29   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 30   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 31   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 32   | 22 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 33   | 22 | , <b>O</b> | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 1    | 23 | -550000    | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 2    | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 3    | 23 | -50000     | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 4    | 23 | 0          | 1000       | 1000      | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 5    | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 6    | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 7    | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 8    | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 9    | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 10   | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 11   | 23 | 750000     | 1000       | - 1000    | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 12   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 13   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 14   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 15   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 16   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 17   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 18   | 23 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 19   | 23 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 20   | 23 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 21   | 23 | 0          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 22   | 23 | Ő          | 1          | 1         | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 23   | 23 | 5000000    | 750        | 750       | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 24   | 23 | 0          | 973.31     | 973,31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 25   | 23 | Ő          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 26   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 27   | 23 | 0          | 973.31     | 973.31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 28   | 23 | Õ          | 973.31     | 973 31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 29   | 23 | -550000    | 973.31     | 973 31    | -610   |
| 31 23 -50000 973.31 973.31 -610   32 23 0 1000 1000 -610   33 23 750000 1000 1000 -1000   1 24 750000 1000 1000 -1000   2 24 750000 1000 1000 -1000   3 24 750000 1000 1000 -1000 | 30   | 23 | -500000    | 973.31     | 973.31    | -610   |
| 32 23 0 1000 1000 -610   33 23 750000 1000 1000 -1000   1 24 750000 1000 1000 -1000   2 24 750000 1000 1000 -1000   3 24 750000 1000 1000 -1000                                   | 31   | 23 | -50000     | 973 31     | 073 31    | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 32   | 23 | · 0        | 1000       | 1000      | -610   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 33   | 23 | 750000     | 1000       | 1000      | -1000  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                              | 1    | 23 | 750000     | 1000       | 1000      | -1000  |
| 3 24 750000 1000 1000 -1000 -1000                                                                                                                                                 | 2    | 24 | 750000     | 1000       | 1000      | -1000  |
|                                                                                                                                                                                   | 3    | 24 | 750000     | 1000       | 1000      | -1000  |

| i        | i  | 0       | k(i)      | k(j)      | DFDTH  |
|----------|----|---------|-----------|-----------|--------|
| _        | ,  | (GPD)   | (GPD/FT2) | (GPD/FT2) | (FEET) |
|          |    |         |           |           |        |
| 4        | 24 | 750000  | 1000      | 1000      | -1000  |
| 5        | 24 | 750000  | 1000      | 1000      | -1000  |
| 6        | 24 | 750000  | 1000      | 1000      | -1000  |
| 7        | 24 | 0       | 973.31    | 973.31    | -610   |
| 8        | 24 | 0       | 973.31    | 973.31    | -610   |
| 9        | 24 | 0       | 973.31    | 973.31    | -610   |
| 10       | 24 | 0       | 973.31    | 973.31    | -610   |
| 11       | 24 | 0       | 973.31    | 973.31    | -610   |
| 12       | 24 | 0       | 973.31    | 973.31    | -610   |
| 13       | 24 | 0       | 1         | 1         | -610   |
| 14       | 24 | 0       | 1         | 1         | -610   |
| 15       | 24 | 0       | 1         | 1         | -610   |
| 16       | 24 | 0       | 1         | 1         | -610   |
| 17       | 24 | 0       | 1         | 1         | -610   |
| 18       | 24 | 5000000 | 750       | 750       | -610   |
| 19       | 24 | 0       | 973.31    | 973.31    | -610   |
| 20       | 24 | 0       | 973.31    | 973.31    | -610   |
| 21       | 24 | 0       | 973.31    | 973.31    | -610   |
| 22       | 24 | 0       | 973.31    | 973.31    | -610   |
| 23       | 24 | Ő       | 973.31    | 973 31    | -610   |
| 24       | 24 | ů<br>0  | 973.31    | 973.31    | -610   |
| 25       | 24 | -500000 | 973.31    | 973.31    | -610   |
| 26       | 24 | -50000  | 973.31    | 973.31    | -610   |
| 27       | 24 | 0       | 1000      | 1000      | -610   |
| 28       | 24 | 750000  | 1000      | 1000      | -1000  |
| 20       | 24 | 750000  | 1000      | 1000      | -1000  |
| 30       | 24 | 750000  | 1000      | 1000      | -1000  |
| 30       | 24 | 750000  | 1000      | 1000      | -1000  |
| 32       | 24 | 750000  | 1000      | 1000      | -1000  |
| 32       | 24 | 750000  | 1000      | 1000      | -1000  |
| 1        | 24 | 750000  | 1000      | 1000      | -1000  |
| 1<br>2   | 25 | 750000  | 072 21    | 1000      | -1000  |
| 2        | 25 | 0       | 973.31    | 973.31    | -610   |
| ے<br>ا   | 25 | 0       | 973.31    | 9/3.31    | -610   |
| 4        | 25 | 0       | 973.31    | 9/3.31    | -610   |
| 5        | 25 | 0       | 973.31    | 973.31    | -610   |
| 07       | 25 | 0       | 973.31    | 9/3.31    | -610   |
| /        | 25 | 0       | 9/3.31    | 973.31    | -610   |
| 8        | 25 | 0       | 1         | 1         | -610   |
| 9        | 25 | 0       | L .       | 1         | -610   |
| 10       | 25 | 0       | 1         | 1         | -610   |
| 11       | 25 | 0       | 1         | 1         | -610   |
| 12       | 25 | 0       | 1         | 1         | -610   |
| 13       | 25 | 5000000 | 750       | 750       | -610   |
| 14       | 25 | 0       | 973.31    | 973.31    | -610   |
| 15       | 25 | 0       | 973.31    | 973.31    | -610   |
| 10<br>10 | 25 | 0       | 973.31    | 973.31    | -610   |
| 17       | 25 | 0       | 973.31    | 973.31    | -610   |
| 18       | 25 | 0       | 973.31    | 973.31    | -610   |
| 19       | 25 | 0       | 973.31    | 973.31    | -610   |
| 20       | 25 | -500000 | 973.31    | 973.31    | -610   |
| 21       | 25 | -50000  | 973.31    | 973.31    | -610   |

~

| i  | i  | 0       | k(i)             | k(i)             | DEDUR  |
|----|----|---------|------------------|------------------|--------|
|    | ,  | (GPD)   | (GPD/FT2)        | (GPD/FT2)        | (FEET) |
|    |    |         |                  |                  |        |
| 22 | 25 | 0       | 1000             | 1000             | -610   |
| 23 | 25 | 750000  | 1000             | 1000             | -1000  |
| 24 | 25 | 750000  | 1000             | 1000             | -1000  |
| 25 | 25 | 750000  | 1000             | 1000             | -1000  |
| 26 | 25 | 750000  | 1000             | 1000             | -1000  |
| 27 | 25 | 750000  | 1000             | 1000             | -1000  |
| 28 | 25 | 750000  | 1000             | 1000             | -1000  |
| 29 | 25 | 750000  | 1000             | 1000             | -1000  |
| 30 | 25 | 0       | 973.31           | 973.31           | -610   |
| 31 | 25 | 0       | 973.31           | 973.31           | -610   |
| 32 | 25 | 0       | 973.31           | 973.31           | -610   |
| 33 | 25 | 0       | 973.31           | 973.31           | -610   |
| 1  | 26 | 0       | 973.31           | 973.31           | -610   |
| 2  | 26 | 0       | 973.31           | 973.31           | -610   |
| 3  | 26 | 0       | 973.31           | 973.31           | -610   |
| 4  | 26 | 0       | 973.31           | 973.31           | -610   |
| 5  | 26 | 0       | 1                | 1                | -610   |
| 6  | 26 | 0       | 1                | 1                | -610   |
| 7  | 26 | 0       | 1                | 1                | -610   |
| 8  | 26 | 5000000 | 750              | 750              | -610   |
| 9  | 26 | 0       | 973.31           | 973.31           | -610   |
| 10 | 26 | 0       | 973.31           | 973.31           | -610   |
| 11 | 26 | 0       | 973.31           | 973.31           | -610   |
| 12 | 26 | 0       | 973.31           | 973.31           | -610   |
| 13 | 26 | 0       | 973.31           | 973.31           | -610   |
| 14 | 26 | 0       | 973.31           | 973.31           | -610   |
| 15 | 26 | -500000 | 973.31           | 973.31           | -610   |
| 10 | 26 | -50000  | 973.31           | 973.31           | -610   |
| 1/ | 26 | 0       | 1000             | 1000             | -610   |
| 18 | 26 | 750000  | 1000             | 1000             | -1000  |
| 19 | 26 | 750000  | 1000             | 1000             | -1000  |
| 20 | 26 | 750000  | 1000             | 1000             | -1000  |
| 21 | 26 | 750000  | 1000             | 1000             | -1000  |
| 22 | 26 | 750000  | 1000             | 1000             | -1000  |
| 23 | 26 | 750000  | 1000             | 1000             | -1000  |
| 24 | 26 | 750000  | 1000             | 1000             | -1000  |
| 25 | 26 | 0       | 973.31           | 973.31           | -610   |
| 26 | 26 | 0       | 973.31           | 973.31           | -610   |
| 27 | 26 | 0       | 973.31           | 973.31           | -610   |
| 28 | 26 | 0       | 973.31           | 973.31           | -610   |
| 29 | 26 | 0       | 973.31           | 973.31           | -610   |
| 20 | 20 | 0       | 9/3.31           | 9/3.31           | -610   |
| 22 | 20 | 0       | 9/3.31           | 9/3.31           | -610   |
| 22 | 20 | 0       | 1                | 1                | -610   |
| 1  | 20 | 0       | 1                | 1                | -610   |
| 2  | 27 | 0       | 1                | 1                | -010   |
| 2  | 27 | 0       | L<br>072 21      | ⊥<br>973 31      | -610   |
| 4  | 27 | 0       | 973.31<br>073 21 | 973.JL<br>073 21 | -010   |
| 5  | 27 | 0       | 973.JL<br>072 21 | 973.JL<br>072 21 | -610   |
| 6  | 27 | 0       | 973.31           | 973.31           | -610   |
| 0  | 21 | 0       | J/J.J.           | 973.JT           | 010    |

| ī       | j        | Q          | k(i)             | k(j)      | DEPTH         |
|---------|----------|------------|------------------|-----------|---------------|
|         |          | (GPD)      | (GPD/FT2)        | (GPD/FT2) | <u>(FEET)</u> |
| -       | 07       | •          |                  |           |               |
| /       | 27       | 0          | 973.31           | 973.31    | -610          |
| 8       | 27       | 0          | 973.31           | 973.31    | -610          |
| 9       | 27       | 0          | 973.31           | 973.31    | -610          |
| 10      | 27       | -500000    | 973.31           | 973.31    | -610          |
| 11      | 27       | -50000     | 973.31           | 973.31    | -610          |
| 12      | 27       | 750000     | 1000             | 1000      | -610          |
| 13      | 27       | 750000     | 1000             | 1000      | -1000         |
| 14      | 27       | 750000     | 1000             | 1000      | -1000         |
| 10      | 27       | 750000     | 1000             | 1000      | -1000         |
| 10      | 27       | 750000     | 1000             | 1000      | -1000         |
| 10      | 27       | 750000     | 1000             | 1000      | -1000         |
| 10      | 27       | 750000     | 1000             | 1000      | -1000         |
| 19      | 27       | /50000     | 1000             | 1000      | -1000         |
| 20      | 27       | 0          | 9/3.31           | 9/3.31    | -610          |
| 21      | 27       | 0          | 9/3.31           | 973.31    | -610          |
| 22      | 27       | 0          | 973.31           | 973.31    | -610          |
| 23      | 27       | 0          | 973.31           | 973.31    | -610          |
| 24      | 27       | 0          | 973.31           | 973.31    | -610          |
| 25      | 27       | 0          | 973.31           | 9/3.31    | -610          |
| 20      | 27       | , <b>U</b> | 9/3.31           | 973.31    | -610          |
| 27      | 27       | 0          | 9/3.31           | 9/3.31    | -610          |
| 20      | 27       | 0          | 973.31           | 973.31    | -610          |
| 29      | 27       | 0          | 973.31           | 9/3.31    | -610          |
| 30      | 27       | 0          | 9/3.31           | 9/3.31    | -610          |
| 31      | 27       | 0          | 9/3.31           | 9/3.31    | -610          |
| 32      | 27       | 0          | 9/3.31           | 9/3.31    | -610          |
| 33<br>1 | 27       | 0          | 9/3.31<br>072 21 | 9/3.31    | -610          |
| 1<br>1  | 28       | 0          | 973.31           | 9/3.31    | -610          |
| 2       | 28       | 0          | 973.31           | 9/3.31    | -610          |
| S<br>A  | 20       | 0          | 973.31           | 9/3.31    | -610          |
| 4       | 20       | U          | 9/3.31           | 9/3.31    | -610          |
| 5       | 20       | -500000    | 973.31           | 9/3.31    | -610          |
| 7       | 20       | -50000     | 973.31           | 9/3.31    | -610          |
| 0       | 20       | 750000     | • ±<br>1000      | 1000      | -610          |
| 0       | 20       | 750000     | 1000             | 1000      | -1000         |
| 3       | 20       | 750000     | 1000             | 1000      | -1000         |
| 11      | 20       | 750000     | 1000             | 1000      | -1000         |
| 10      | 20       | 750000     | 1000             | 1000      | -1000         |
| 12      | 20       | 750000     | 1000             | 1000      | -1000         |
| 14      | 20       | 750000     | 1000             | 1000      | -1000         |
| 15      | 20       | 750000     | 1000             | 1000      | -1000         |
| 16      | 20       | 0          | 1000             | 1000      | -1000         |
| 17      | 20       | 0          | 1000             | 1000      | -1000         |
| 10      | 20       | 0          | 1000             | 1000      | -1000         |
| 19      | 20       | 0          | 1000             | 1000      | -1000         |
| 20      | 20<br>20 | 100000     | 750              | 750       | -1000         |
| 21      | 20<br>20 | 1000000    | 750              | 750       | -610          |
| 22      | 20       | 1000000    | 750              | 750       | -610          |
| 23      | 20       | 1000000    | 1000             | 1000      | -1000         |
| 24      | 28       | 1000000    | 1000             | 1000      | -1000         |
|         | 20       |            |                  |           | 2000          |

| Q<br>(CPD) | k(i)      | k(j)      | DEPTH  |
|------------|-----------|-----------|--------|
| (GPD)      | (GPD/F12) | (GPD/F12) | (FEET) |
| 1000000    | 1000      | 1000      | -1000  |
| 1000000    | 1000      | 1000      | -1000  |

| 28 | 1000000 | 1000 | 1000 |
|----|---------|------|------|
| 28 | 1000000 | 1000 | 1000 |
| 28 | 1000000 | 1000 | 1000 |
| 28 | 1000000 | 1000 | 1000 |
| 28 | -441237 | 1000 | 1000 |
| 28 | -441237 | 1000 | 1000 |
|    |         |      |      |
|    |         |      |      |

i

25

26

27

28

29

30

31

32

j

28

28

-1000

-1000

-1000

-1000

-610

-610

VITA 2

#### Jack E. Gazin

### Candidate for the Degree of

#### Master of Science

#### Thesis: A REGIONAL MODEL OF A HIGH PLAINS AQUIFER, NORTH-CENTRAL MEXICO

Major Field: Geology

#### Biographical:

Personal Data: Born in Kingfisher, Oklahoma, July 19, 1957, the son of John H. and Docia I. Gazin.

- Educational: Graduated from Kingfisher High School, Kingfisher, Oklahoma, 1975; Defense Language Institute, Presidio of Monterey, Monterey, California, 1976; U.S. Air Force School of Applied Cryptologic Sciences, 1976; received Bachelor of Science Degree in Geology from Oklahoma State University in Stillwater, Oklahoma in July, 1984. Completed the requirements for the Master of Science Degree in May, 1992.
- Professional Experience: Research Assistant, Department of Geology, Oklahoma State University, May 1985, to December, 1985; Engineering Aid, USDA-ARS Outdoor Hydraulics Laboratory, Lake Carl Blackwell, Stillwater, Oklahoma, May 1986, to August, 1987; Teaching Assistant, Department of Geology, Oklahoma State University, May 1986, to August, 1987.