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CHAPTER I 

INTRODUCTION 

The development of processors with pipelined arithmetic units has offered an 

economical way of increasing the speed of vector supercomputers since the 1960s 

when the first generation vector supercomputers arrived [1]. The hardware, called 

the pipeline, is divided into a series of substages called the pipeline stages. Each 

substage of the pipeline will execute a portion of the overall task (process) 

performed by the pipeline. The input for the overall task performed by the pipeline 

is streamed into the first pipeline sta~e, and the output of the overall task emerges 

from the last stage of the pipeline. Each intermediate stage of the pipeline will 

receive its input datum from the previous pipeline stage, compute and send the 

Fesults directly to the subsequent pipeline stage. While the results are being sent to 

the subsequent pipeline stage, a new input datum from the previous stage may be 

received. As soon as a pipeline stage receives.a new input datum, it starts 

computing the output of the portion of task assigned to it, independent of the other 

stages, resulting in an overlapped execution similar to the assembly line in an 

industry [1 ]. This overlapped execution makes it possible for the input of the overall 

task to be continuously streamed to the first stage of the pipeline without waiting for 

the output to emerge from the last stage of the pipeline. Thus, the throughput of a 

processor that has pipelines is increased. The architecture of processors that use the 

pipelining technique has evolved from that of a single pipelined architecture similar 

to the TI ASC [2] to a multipipelined architecture similar to the NEC SX-2 [3 and 

4]. Table I [5] shows the architecture configuration of some of the supercomputers 
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TABLE I 

THE TREND IN SUPERCOMPUTERS AND HIGH-END 
MAIN FRAME SYSTEMS 

System Model Archltecture Max no of Processor type Max memory Peak 
confisuratwn £rocessors ca£aclt~ £erformance 

Cray X-MP/4 MP With SM and direct 4 process'ors Custom ECL 16MWmCM 840 Mflops 
mterconnect 128MW m 

SSD 
Cray 2 MP With SM and direct 4 processors Custom ECL 256MW 2 Gflops 

connect 1 lOP' 
Cray 3 MPwith SM 16 processors · GaAs/ECL 2GW 16 Gflops 
Cyber 205 UP with scalar processor 1' processor Custom CMOS 4MW 400 Gflops 

and 4 vector pipelmes 
ETA-10 MP With SM 8 processors Custom 256mW 10 Gflops 

18 lOPs 
FUJitsU VP-200 UP With multiple 1 processor CustomECL 32MW 533 Mflops 

functiOnal pipes 
NECSX-2 UP With 16 functional 1 processor_ Custom 32MW 1 3 Gflops 

pipes 
Hitachi S-810 UP With ~uluple 1 processor Custom 32MW 840 Mflops 

pipelmes 
HEP-1 MP with SM and switch 16 processors Custom 256MW 160 Mflops 

network 
illM MP With SM and direct 4 process<;>rs Custom TCM 2GBCM 480 Mflops 
3090/400/VF connect 16TBEM 
Umvac MP with SM and direct 4 Processors, 4 Custom 16MW 67Mflops 
1194/ISP X 2 connect lOPs, 2 ISPs 
CDC Cyberplus MC With DM and nng 64 processors Custom 512 KW per 65 Mflops 

connect processor and 620MIPS 
per processor 

ConnectiOn SIMD With DM hypercube 64 K processmg VLSI/CMOS 32 MBytes >1000 
machme embedded in a global elements gate array Mflops 250 

mesh Mflops 
BBN Butterfly MP With SM VIa butterfly 256 processors M68020 custom 128 MW 256 Mips 

switch network coprocessor 
Lora! MPP SIMD 128x128 mesh with, 16K pr,ocessmg CMOS/SOS8 128MB 470 Mflops 

DM elements processmg 
elements per 
chip 

illMGF 11 SIMD With reconfigurable 576 .pro~essmg Custom floatmg 2MB per 20 Mflops 
Benes network elements pomt processor processor per processor 

1 1 GB total 11 Gflops 
illMRP3 MP With SM/DM and fast 512 processors 32-bll RISC 128MW 800 Mflops 

network 1300 MipS 
Cedar Hierarchical MP With SM 256 processors Alhant/FX 256MW 3.2 Gflops 

clusters 

MP- Multiprocessor, SM- Shared memory, CM- Central memory, SSD- Solid state device, 
lOP -l/0 processor, MM- Memory- Memory, UP- Uniprocessor, DM- Distributed 
memory, TCM- Thermal Conduction Module, MC- Multicomputer, EM- Extended 
Memory, ISP- Integrated Scientific Processors 



and mainframe systems available today. The CRAY-1 [1, 3 and 6] has twelve 

pipelines, with each pipeline executing a different function. The Cyber 205 [1] and 

the Fujitsu VP 200 [1 and 6] are also multipipelined. The NEC SX-2 processor has 

four sets of pipelines. Each pipeline set consists of an adder unit, a multiply/ divide 

unit, a logical unit and a shift unit [4]. Each of these machines has a separate scalar 

processing unit and a separate vecto~ processing unit. The Titan design [7 and 8] 

combines a vector floating-point unit and a sc3.Iai floating-point unit into a unified 

structure. The designers of the CDC/NASF [1] have proposed a fault-tolerant 

architecture which has an extra pipeline to be used if a fault occurs in another 

pipeline. 

The vector processor in the computer systems shown in Table I employs the 

pipelining technique to increase the speed of the processor, which can be further 

increased by dynamically linking the pipelines present in the processor; this is 

termed as the pipeline chain. Pipeline chaining is a linking process that occurs when 

the result obtained from one pipeline unit is directly fed to another [1 ]. The Cray 

computer calls the dynamic link chaining [1] while the Cyber 205 [1] terms the 

dynamic link short-stopping. In recent RISC processors, such as the Intel i860, a 

primitive form of pipeline chaining is achieved. The i860 can link a multiplier 

pipeline and an adder pipeline in a pipeline chain in its dual-mode [9]. 

The architecture of a vector processor in computer systems like the Cray and 

the NEC SX-2 that are available commercially is classified as a register-register 

architecture. A typical register-register architecture of a vector processor is defined 

as the pipelines in the processor connected to the vector registers by an 

interconnection network. Such an architecture is shown in Figure 1. The 

interconnection network may be a multistage switching network, as in the case of 

the HEP-1 (Table I), or a crossbar network [10 and 11 ], as in the case of the 

Burrough Scientific Processor (BSP) [1]. 

3 



INTERCONNECT ION 
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Figure 1. Architecture of a Regjster-Register Type Vector Processor 



As seen in Table I, most of the supercomputer systems were fabricated with 

the prevalent transistor and ECL technologies. These machines tend to be large 

and costly. Advances in the area of Very Large Scale Integrated (VLSI) circuit 

fabrication technology today have made the fabrication of such large systems as 

single-chip processors possible [12]; single-chip fabrication of these systems will lead 

to a reduction in cost and area occupied by these systems. Wafer Scale Integration 

(WSI) is a single-chip technique to fabricate such complex systems [12, 13 and 14]. 

In 1966, TI fabricated the first Large Scale Integrated (LSI) circuit by 

fabricating much smaller-sized components on an intact substrate, and then wiring 

the components that are functional, directly with each other [12]. This process, 

WSI, can be regarded as a special form of packaging in which the extra wiring 

normally used to interconnect the packages is fahricated on the surface of a wafer 

substrate containing the components and mounted inside a single package [12]. 

Intermil wiring significantly reduces problems like the wiring capacitances present in 

conventional circuits or ceramic carriers [12]; wiring capacitances present will 

reduce the speed of the fabricated system. Further, in WSI, interconnection 

densities are increased since the Wire dimensions used are smaller when compared 

to conventional circuits or ceramic carriers [12]. Further, closeness of the 

components fabricated using WSI le'ads to shorter interconnection wiring, which in 

turn enhances the speed of the fabricated circuit, and decreases the power 

requirement for the 1/0 drivers of the fabricated circuit [12]. 

But the major design challenge in WSI is the presence of faulty modules in 

the fabricated circuit [12]. With the increased application of computer systems in 

important activities like telecommunication, banking, that control everyday life, it is 

absolutely essential to make the computer systems reliable and cheap [15]. The 

existing technique of replacing circuit boards would be impractical if faulty modules 

are present in the computer systems fabricated using WSI, because we cannot assure 
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a design which will be one-hundred percent fault-free. Therefore, we have to design­

the system fabricated using WSI in such a way that we will be able to achieve a 

functional design even though there are faulty modules in the system; a system 

designed in this manner is termed as a fault-tolerant system. Since we cannot assure 

one-hundred percent functional cells or m~dules in the computer systems fabricated 

using WSI, we need a technique that will identify the faulty modules in the 

fabricated system. After this identification, the technique should be able to 

construct a fault-free system using the fault-free modules or cells in the wafer [14]. 

Faults in a system fabricated using WSI can be classified into two broad 

types: static faults and dynamic faults [17]. The static faults are permanent ones, 

such as broken bonds or cracks in the wafer which lead to the loss of a submodule or 

part of a circuit in the wafer [17]. The dynamic faults are temporary ones; for 

example, a shift in the threshold voltage [17]. In this report we will deal only with 

the static faults. 

The usual method used to compensate for a faulty module in a system 

fabricated using WSI is to add a spare module to the system during the fabrication 

process itself [17]. After fabrication, the faulty modules present in the system are 
' ' 

detected, and a suitable reconf~guration algorithm developed prior to the 

fabrication, is applied to substitute the spare module in place of the faulty module 

[17]. The designers of the WSI memory chip have used this technique, termed the 

redundancy technique, to achieve fault-tolerance [13]. Designers of commercial 

systems like the VAX 8600 [18] and the IBM 3090 [19] have also achieved fault­

tolerance by using the techniques shown in Table II [15], which also shows the 

techniques applied f?r achieving fault-tolerance in some of the other computer 

systems available commercially. 

The first objective of this thesis is to develop the architecture of a register­

register type single-chip vector processor. As our second objective, the vector 
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TABLE IT 

A TAXONOMY OF FAULT TOLERANCE TECHNIQUES 
IN COMMERCIAL COMPUTING SYSTEMS 

Structure Detection Recovery Sources of failure Techniques 
tolerated 

U mprocessor 
VAX8600 Hardware Software Hardware Hardware error 

detection 
IBM 3090 Hardware Hardware/ Hardware Hardware error 

Software detection, retry, 
workaround 

Multicomputer 
Tandem Hardware/ Software Hardware, design, Check pointing, 

Software environment "I'm alive" 
messages 

VAX3000 Hardware Hardware Hardware, Duplication and 
environment matching 

Multiprocessor 
Teradata Hardware Software Hardware, Duplication 

environment 
Sequoia Hardware Software Hardware, Duplication and 

environment matchin~ 



processor designed must have the capability to dynamically link the pipelines in the 

processor. WSI is the technique to be used in the proposed fabrication of the single­

chip vector processor. Therefore, due to the presence of faulty modules in the 

fabricated single-chip processor, fault-tolerance has to be achieved in the intended 

processor design, and it is our third objective. 

To achieve our first two objectives, we propose a three-level vector processor 

structure whic;h is referred to as Fault-Tolerant Vector Processor (FTVP). To meet 

our third objective, a simple translation procedure is provided to achieve fault­

tolerance within the FTVP. The study ofFTVP originates from a two-level pipeline 

structure, called the pipeline net, proposed in [20]. The proposed pipeline net, which 

will be discussed in Chapter ll, is capable of dynamically linking pipelines with the 

help of interconnection networks in the structure. 

We have used the crossbar network as an interconnection network in the 

FfVP to provide full interconnection capability for fast data access. The dynamic 

pipeline-linking capability, chaining, of the FTVP is demonstrated by using the 

Livermore loop benchmark programs [21] listed in Appendix A. Speedup and 

throughput analysis for the FTVP are done using the Livermore loops. The analysis 

follows the steps taken by [20]. Based on the analysis presented here, an FTVP 

hardware architecture is recommended for fabrication using the WSI. 

8 



CHAPTER II 

SINGLE-CHIP VECTOR PROCESSOR 

. Interconnection Network 

As seen from Figure 1, the interconnection network routes the vector data 

from the vector registers to the pipelines in the vector processor and vice-versa; 

therefore, it is an important aspect of the processor. The two major network 

techniques that exist today are the multistage switching network technique and the 

crossbar network technique. A three-stage cube switching network [1] and a two­

sided normal crossbar network are shoWn. in Figure 2 and Figure 3, respectively. 

The crossbar network provides full interconnection capability between any 

input-output terminal pair. It must be noted here that we will be dealing with only 

input-output combinations where. no two input-output terminal pairs have the same 

output; that is, each input terminal is associated with an unique output terminal. 

Due to the full interconnection capability, the crossbar network can connect all 

possible multiple input-output combi'nation without any conflict, that is, "blocking" 

[1]. Hence, the crossbar network is termed a non-blocking network; it also provides 

a fast data transfer rate due to its non-blocking nature [11 ]. But, the major concern 

in the development of the crossbar network is the cost of an NxN crossbar network, 

which is proportional to O(N2), where N is the number of inputs or outputs in the 

network and N2 is the number of switches in the network; this cost growth rate 

which is proportional to O(N2) is prohibitively high for large N. Therefore, the 

O(N2) cost growth rate has proved to be the major obstacle in the crossbar network 

fabrication using LSI or VLSI technology [11 ]. 

9 
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On the other hand, an NxN multistage switching network has a cost growth 

rate which is proportional to O(Nlog2N) [1], where N is the number of inputs or 

outputs and Nlog2N is the number of switches in the network. The O(Nlog2N) cost 

growth rate is less than the O(N2) cost growth rate. For example, let us consider a 

case with N = 32. The cost growth rate for the crossbar network is proportional to 

0(1024), as the number of switches in the network is 1024; in case of a multistage 

network the cost growth rate is proportional to 0(160), as the number of switches in 

the network is 160. However, the apparent advantage in cost for a multistage 

switching network is offset by an increase in the transfer delay between any input­

output terminal pair due to the complexity of each multistage switch, and due to 

data blocks (explained in the next paragraph) in the network [11]. For example, in 

case of a Banyan tree multistage switching network the transfer delay through the 

network is proportional to O(Na(log2N)2), where 0 < a < 1 [11 ]. Whereas, the 

transfer delay through a crossbar network is proportional to O(N) [11 ]. Let us 

consider the case when N = 32. The transfer delay through the crossbar network is 

proportional to 0(32) and for the Banyan tree is proportional to 0(830) 

( = 0(32(1og232)2)), if a = 1. We see an enormous increase in the transfer delay in 

case of the multistage switching networks. 

Most multistage switching networks are blocking networks. A network is 

defined as blocking when there are conflicts in the use of network communication 

links for the simultaneous connection of more than one input-output terminal pair. 

Once again it must be noted that we will be dealing only with multiple input-output 

combinations where no two input-output terminal pair have the same output. For 

example, as shown in Figure 3, in the case of a multistage cube network there is a 

conflict in the network communication link between stage 1 and stage 0 (enclosed 

between hatched lines) for the input-output terminal pairs (5-0) and (7-1); 

therefore, data to be sent through one input-output connection has to be held and 
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sent after the other connection is accomplished, thereby increasing the overall data 

transfer time. 

Multistage switching networks may be used to effect a compromise between 

the data transfer rate and network cost. A trade-off has to be accomplished by 

sacrificing speed for the network cost while selecting a multistage network. If a 

multistage switching network is present in the system with multiple data flow, it will 

slow the system due to its blocking nature. Therefore,' in applications where speed 
' ' 

is not of prime importance, the multistage switching networks can be used to 
' ' 

achieve a low cost design by sacrificing speed [11]. When any multistage switching 

network is fabricated using WSI, the network is' vulnerable to failures during the 

fabrication process due to the complexity 'i,nvolved in the multistage switches and 

interconnection links [11]; these failures lead-to the presence of faulty switches and 

links in the network. Therefore, to improve the ability of multistage networks to 

tolerate the presence of faulty modules, designers have proposed to add one or 

more extra switch stages to the existing networks [22, 23 and 24]; however, fault­

tolerance in these designs is restricted to the faulty module in a certain location 

rather than any general location. The extra stage cube proposed in [22] is an 

example of such a design. In the case of an eight-input extra stage cube network, 

the network cannot tolerate multiple faulty switches in stages n, 0 and stages n-1, ... 

1, simultaneously (where stage n is the extra stage provided) [22]. This does not 

map to the real situation where faulty modules are distributed at random locations. 

Further, adding an extra stage to the existing multistage network increases the 

complexity of the network, making it vuln~rable 'to failures during fabrication. Since 

a switch in the multistage network i~ used to connect more than one input-output 

terminal pair, in case of fault in the switch, the input-output connections done 

through that switch cannot be accomplished. But, in case of a crossbar network 

12 



since a switch connects only one input-output pair, a switch fault affects only that 

input-output connection. 

The multistage switching networks also result in an irregular hardware 

structure due to the complex switches and criss-crossing of interconnection links; if 

system designers wish to modify the existing network structure, that structure must 

be altered in its entirety [11]. The crossbar network, on the other hand, has a 

regular matrix-like structure similar to the memory structure; this matrix-like 

structure gives system designers more flexibility in adding switches and links without 

redesigning the whole structure. In addition, the crossbar network has a simple 

control mechanism due to the nature of switch access and s~itch function when 

compared to any multi'stage switching network; multistage switches are usually 

multifunctional, whereas crossbar switches perform only one function [11]. The 

crossbar network is arranged in the form of a matrix, and the arrangement is 
' -

referred to as a switching matrix [11]. Only two control signals, represented as the 

row and column signals, need to. be generated by the control unit to access any 

particular crossbar switch in the switch matrix [10]. This simple access leads to the 

design of a simple control unit, which reduces the area occupied by th~ control unit 

and reduces the control overhead [11]. This reduction in control unit area implies 

that more area is available for the expansion of the existing crossbar network. 

Further, the VLSI implementation of a multistage network does not 

necessarily result in lesser area when compared to .a crossbar network as stated 

earlier in this section. The. Banyan multistage switching network, which is a 

representation of the other multistage switching networks like the Cube, the Omega, 

has a cost growth rate which is proportional to Q(N2) and not the predicted 

O(NlogzN) [11]. Further, crossbar networks ofsize 32x32 and 32x64 have already 

been fabricated using WSI [11]. The areas occupied by these networks are 3.4x3.4 

mm2 and 3.4x7.8 mm2, respectively. 

13 



Therefore, based on the above discussion, we can state that for the WSI 

single-chip fabrication of a vector processor, a crossbar network is more suitable 

than a multistage switching network. Since the vector processor requires a network 

that provides full interconnection capability and has fast data-transfer rate, the 

crossbar network is:ideal. 

Pipeline Net 

As stated in Chapter I, the study of the FfVP to be introduced in the next 

section originates from the pipeline net discussed in this. section. Therefore, we will 

discuss about the pipeline net as an introduction to the FfVP. Using the pipelines 

and the crossbar netWork, a pipeline net is proposed in [20]. The pipeline net is 

constructed from interconnecting multiple functional pipelines through two buffered 

crossbar networks [20]. The pipeline net is a two-level structure, and is made' of 

multiple functional pipelines (~), two buffered crossbar networks (BCN) and a set 

of vector registers (R) [20]. Multiplexers are used to connect the Rs to the FPs, or 

the FPs to the FPs [20]. , All FPs are identical and multifunctional [20], and each FP 

can execute addition, subtraction, divisio:q, multiplication or a logic function during 

a particular cycle [20]. The Rs holdt~e·operand and results. The BCNs provide a 

dynamic connecting path among the FPs and Rs. A collection of fetch/store 

pipelines are used to transfer data between the main memory and Rs, similar to the 

memory access pipelines present in the,Cray X-MP and the Fujitsu VP-200 [20]. 

The pipeline net'is used for the computation of Vector Compound Functions 

(VCF) [20]. The VCFs are a collection of linked scalar operations to be executed 

repeatedly many times in a looping structure [20]. This looping structure is referred 

to as the forpipe loop. The VCFs are converted into the forpipe loops, and are 

evaluated by the pipeline net [20]. The syntax of a forpipe loop is 
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forpipe i := 1 ton do <body> 

All VCFs are represented in this syntax [20]. For example, consider the following 

FORTRAN loop: 

DO 1 I = 1 to 400 
1 X[/)_=· Q + Y[I] * ( R * Z[/+10] + T * P[/+11]) 

This is represented in the syntax of forpipe loop as . 

forpipe i: = 1 to 400 do 
begin · 

x[i] := ·q + y[i] * ( r * z[i+ 10] + t * p[i+11]) 
e~ . . 

where i is the loop index, and the compound statement within begin-end forms the 

loop body. 

The VCFs are evaluated in twp steps.· In the fir.st step, configuration of the 

pipeline net is done using the SET instructio.ns. The actual execution is done in the 

second step by the START instruction, enabling the operations of a particular cycle. 

The SET instruction is used to select the function of a pipeline, or the connection 

pattern in a crossbar network. The syntax of a SET instruction is 

SET unit, value · . 

The unit is either a functional pipeline or a crossbar network [20]. If the unit refers 

to a functional pipeline, then the value denotes the arithmetic or logic operation 

performed by the pipeline. If the umt refers to a crossbar network, then the value 

denotes the connection pattern in the crossbar network [20]. 

A START instruction is issued to enable the pipeline net operati'on. The 

syntax of a START instruction is 

STARTm, k 

This implies "start to execute for m clock periods with an operand entering the 

pipeline net every,k clock' period" [20]. 

The FORTRAN loop presented previously is used as an example for the 

pipeline net implementation. The program graph 9f the above loop is shown in 
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Figure 4. Let the add and multiply functions require two and four clock periods, 

respectively. The program graph is mapped to the pipeline net as shown in Figure 5. 

Following are the sequence of setup instructions needed to ~et up the pipeline net: 

SET FPJ, *; 
SET FP2, *; 
SETFP3, +; 
SET FP4, *; 
SETFP5, +; 
SETBCNJ, a; 
SET BCN2, /3; 

: Set FPl to multiplication 

: Set BCNl to' co:imection pattern a 

Figure 6 shows the crossbar network implementation obtain~d after the execution of 

SET instructions. After the pipeline net is configured, the VCFs are evaluated by 

passing the operand from the Rs through the pipeline net by issuing a START 

instruction. The final result is stored back in an register (R). 

Even though the pipeline net is capable of vector processing, it does not 

favor WSI fabrication due to the irregrilarity in its structure. Multiplexers, present 

in the pipeline net, require additional control signals apart from the control signals 

required for the crossbar switches. This leads to the design of an additional control 

unit for the multiplexers. Functional pipelines that can execute all the basic 

arithmetic and logic functions are difficult to design, and are vulnerable to failures 

during fabrication due to their complexity. The methods for introduction of the 

delays in the crossbar network and the' procedures to convert the program graphs to 

pipeline nets are complicated. It hasn't been clearly determined whether the 

software or hardware is going to execute them. Further, the register-register 
' ' ' 

transfer is not considered in the pipeline net design. Finally, to start the execution 

phase of any pipeline net operation, an exact prediction of the number of clock 

periods required for the execution of the VCFs is needed, as shown in the START 

instruction; this will be difficult. 

The proposed FfVP overcomes all the above difficulties in various manners. 

For instance, the FfVP proposed in this study has a regular structure favoring WSI 
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fabrication. No multiplexers are present, and the switch control is simple. A. 

pipeline which can execute either multiplication or addition is considered, which 

leads to a simpler pipeline design than that required for the pipeline net. Buffers in 

the interconnection networks are eliminated, and data buffering (to be explained in 

the section on the arithmetic units of the FfVP) is done by the hardware. 
' ' 

Hardware data buffering eliminates the need for an accurate prediction of the 
-

number of clock periods req:uired for the execrition of any FfVP operation. Finally, 

the FfVP is designed to execute all types of data transfer involving in the vector 

processor. 

Basic Structure of FfVP 

A structure of the FfVP suitable for WSI is shown in Figure 7. A three-level 

crossbar network is used to interconnect the arithmetic units and vector registers. 

The first-level network is Crossbar Network 1 (CBNl), the second-level is CBN2, 

and the third-level is CB~4. CBNl is logically separated into two parts, CBNl and 

CBN3, to simplify understanding; but, physically CBN3 is a part of CBNl. Both 

vector and scalar processing are supported by this architecture as explained in the 
' ' 

subsequent sections. The vector :reg~siers 'are connected to the arithmetic units by 

CBNl. Feedback connections from the arithmetic units to the arithmetic units are ,< 

done by CBN2 a~d CBN3. CBN2 and CBN4 connect the arithmetic units to the 

vector registers. The register-register connection is done by CBN4 through CBNl. 

Various connection patterns in t~e crossbar networks are accomplished by 

crossbar switch settings. The control signals needed to accomplish the various 

connection patterns are simple; this is due to the fact that the nature of switch 

access in the crossbar network is simple as explained in the section on 

interconnection networks. Each vector register of the FfVP is a simple register 
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which can store only one vector datum. Each arithmetic unit of the FrVP consists 

of two buffers and a pipeline. The pipeline in the arithmetic unit can execute either 

addition or multiplication. The two buffers present in the arithmetic unit provide 

data buffering (to be explained in the section on the arithmetic units of the FrVP). 
' ' 

Since the FrVP is proposed as a Slngle-chip processor, the presence of faulty 

modules in the FrVP due to WSI fabrication are of major concern. The types of 

faulty modul~s that may be present in the fabricated FrVP, and the method for 
' ' 

achieving fault-tolerance are discussed in Chapter ill. Simple instructions are 

proposed to allow the.FfVP to build a long pipeline chain. This will be the major 
' ' 

application of the.FfVP. The hardware resources .are "exposed" to the software and 

are controlled by simple instructions as in the case ofa RISC processor [24 and 37]. 

We will restrict our discussion to the setting up of one pipeline chain at a time in the 

FfVP. Multiple pipeline chains are not ~owed to be set up in the FrVP. If more 

than one pipeline chain needs to be set up, the pipeline chains are set up 

sequentially. Having given a general introduction of the FfVP, we will discuss the 

structure of a vector register and the' arithmetic unit present in the FfVP next. The 

crossbar network used to interco~ect the ~ithmetic units and vector registers has 

been discussed earlier in this chapter,' apd.therefore, will not be discussed further. 

Structure of the Vector Register 

Figure 8 shows the structure of a vector register in the FTVP, each of which 

consists of an array of sc~ar registers and a set of control logic. Each vector register 

can hold only one vector datum and is associated with four control logic codes: 

count, skip, SO /DEST flag and busy flag. The control logic code is set explicitly by 

a special instruction which will be discussed in the section on basic instructions. The 

count gives the number of scalar elements of a vector stored in the vector register. 
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Scalar data is stored in a vector register with count = 1. The skip gives the skip 

distance to the next element of a vector stored in the vector register; the SO/DEST 

flag indicates whether the particular vector _register is the source register or 

destination register for a pipeline chain operation; the busy flag indicates the 

availability of the vector register. 

INPUT 
PORT 

INPUT 
ENABLE 

VECTOR REGISTER 

IIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
SKIP . COUNT BUSV SO /DEST 

L..--__ 1 CJ 0 D 

Figure 8. Structure of a Vector Register 

~OUTPUT 
PORT 

~OUTPUT 
ENABLE 

Each vector register has one input port and one output port. Data is written 

into the vector register through its input port, and read from the vector register 

through its output port. Each port qf the register has an enable signal 

accompanying the data in the port: Data in the ports of any vector register are valid 

only when the enable signal of the respective ports is true. Each vector register 

allows only one access at a time, ,as each register has only one control logic code. 

Either a read or write operation can be performed by the vector register at any 

particular period of time, since t~e registers allow only one access at a time. 

Simultaneous read and write operations are not allowed by the vector registers of 

theFfVP. 
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To access the data stored in a vector register, tl;:te busy flag of the register 

needs to be checked. If the busy flag of the register is set, then it implies that the 

register is busy with some read or write operation, and it cannot be accessed. If the 

busy flag of the vector register is not set, then the access mode of the register may 

be set by initializing the count, skip and SO /DEST codes. A trigger signal from the 
' ' ' 

control unit is then sent to access the yector register. This trigger signal 

automatically sets the busy flag of the register, thereby preventing it from another 
' ' 

access until the task assigned to it is completed. 

If a vector register is specified as a source register, then, upon receipt of the 

trigger signal, the data stored in the register are sent tqrough the output port, one 

element per clock cycle, and the control logic is 'updated. During the read 
'I ~ -

operation, the output port e:p.able signal of the vector register is true until· all the 

elements of the stored data are sent, thus indicating the validity of the emerging 

data. The count logic of the register is decremented for every element of the vector 

sent through the output port. If count = 0, then all the elements of the vector would 
' 

have been sent, and the enable sign~! of the output port is automatically reset. 

If a vector register is specified as a destination register, then when the enable 
"' 

signal of the input port becomes true, data in the input port is written into the 

register, one element per clockcycle, ~pdating the control logic until the register 

receives all the elements of the assigned vector. When the enable signal of the input 

port becomes low, it implies that all the ~lements of the assigned vector have been 

written into the register. After data are sent or received by a register, the busy flag 

of the register is automatically reset. If all the 'busy flags of the vector registers 

present in the FTVP are kept in a centralized control unit, the set of flags will be 

equivalent to the scoreboard register in a RISC processor [25]. 

A vector register of the FTVP can be read or written by the external memory 

or by an arithmetic unit or by another vector register. All source registers for a 
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particular pipeline chain send the stored data synchronously to the arithmetic units 

with a common trigger signal from the control unit. This is termed the execution 

phase and is started by a special instruction discussed in the section on the basic 

instructions of the FfVP. 

Structure of an Arithmetic Unit 

Figure 9 shows the structure of an arithmetic unit in the FIVP. Each 

arithmetic unit consists of two buffers and a pipeline which is either an adder or a 

multiplier. Each arithmetic unit consists of two input ports and one output port. 

Data in each port of the arithmetic unit has a signal, termed as the enable signal, to 

indicate the availability of valid data in the port. 

INPUT P~1( I) EN ABLE INPUT PCRT(2) El-l ABLE 

Buffer Buffer 

~ ~ 

OJTPU1 POR1 EN o'la.E 

Figure 9. Structure of an Arithmetic Unit 
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The enable signal to the input ports of the arithmetic unit will originate 

either from the output port of a vector register or from the output port of another 

arithmetic unit. When the results begin to emerge out of the last stage of the 

pipeline in the arithmetic unit, the enable signal of the output port automatically 

becomes true. The enable signal remains true until all the results have emerged out 

of the pipeline. 

Since an arithmetic unit may be involved in a long pipeline chain, the two 

input vectors to that arithmetic unit may arrive at different times, traversing 

different paths in the FfVP. These path delays have to be equalized in order to 

synchronize the arrival of both input vectors to the pipeline. This is referred to as 

data buffering and is done by the two buffers present in the arithmetic unit. For 

example, consider an arithmetic unit which requires two vectors IN(l) and IN(2) for 

evaluation. Suppose, IN(l) has arrived at the input port(l) of the arithmetic unit 

before IN(2). Since IN(l) has arrived before IN(2), IN(l) is held in a buffer of the 

arithmetic unit until IN(2) arrives. The arrival of IN(2) is indicated by its enable 

signal. When the enable signal of IN(2) becomes true, it implies that IN(2) has 

arrived; therefore, IN(l)held in the buffer and IN(2) which has arrived at the input 

port(2), are sent to the pipeline in th~ arithmetic unit for processing. In this way, we 

can ensure that both the input vectors' are fed to the pipeline in the arithmetic unit 

at the same time. This hardware buffering frees the compiler from the need to 

provide data buffering, as in the case of the pipeline net design [20]. 

In a situation where one input vector to an arithmetic unit is shorter than the 

other input vector, the last element of the shortest input vector to the arithmetic 

unit is held in a buffer and used as the input to the pipeline until all the elements of 

the other input vector are sent to the pipeline. For example, if IN(l) and IN(2) are 

the two vectors to an arithmetic unit, and the number of elements of IN(l) is 10 and 

IN(2) is 20. After the first 9 elements of both IN(l) and IN(2) have been sent to 
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the pipeline, the lOth element of IN(l) (which is the last element) is held in the 

buffer of the arithmetic unit and used as the input to the pipeline, until all the 10 

remaining elements ofiN(2) have been sent to the pipeline. In this way, the'FTVP 

can handle scalar-vector operations because a scalar data is a vector with one 

element. 

Chaining Capability 

Pipeline chaining in the FTVP is a linking process that occurs when the 

results obtained from one arithmetic unit are fed directly to another arithmetic unit. 

FTVP has the capability of providing long pipeline chains, and accomplishes 

chaining by various switch settings in the interconnection networks. This differs 

from the dual-mode.of the i860 where two pipelines are linked through the special 

dual-mode instructions [9]. Consider the FORTRAN loop example whose program 

graph was given in Figure 4. The. program graph is translated to the FTVP 

implementation as shown in Figure 10., Since all the source registers for a particular 

pipeline chain send the data stored in them simultaneously upon receipt of a trigger 

signal, Y and Q arrive at the input ports ofAU3 and AU6, respectively, before the 

other input vectors to AU3 and AU6 arrive. Therefore, Y and Q a:re held in the 

buffers of AU3 and AU6, respectively, until the other input vectors to AU3 and 

AU6 arrive. The delay involved due to different path lengths is thus equalized 

automatically by this hardware buffering. 

A series of FORTRAN kernels have been developed by the US National 

laboratories to evaluate the performance of vector processors and supercomputers 

[21]. These FORTRAN kernels are called the Livermore loops. The Livermore 

loops have been extracted from various vector processing applications. Fourteen 

Livermore loops have been commonly used over a decade as the primary means to 
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obtain a simple snapshot of the complex architectural performance of a vector 

processor [21]. The Livermore loops provide typical benchmark programs for 

vector processing applications. Even though the operation and performance 

measureme11t of a vector processor cannot be expressed as a simple set of numbers, 

the livermore loops have served as the primary benchmark programs for nearly a 

decade [21 ]. ·Since we have not actually fabricated the FfVP shown in Figure 7, the 

livermore loops present a theoretical way of evaluating the FfVP performance. 

The Livermore loops are listed in Appendix A. 

Figure 11 shows the pipeline cbaining performed for. Livermore loop 9. The 

result obtained from one arithmetic unit is directly sent to the next arithmetic unit 

through CBN2 and :CBN3. Only the final result is sent back to a destination vector 

register. Similar kinds of chaining operations can· also be done for other livermore 

loops. Livermore loops 8, 13 and 14 are not evaluated because of the indirect array 

addressing in loop 13, and the unknown index calculations in loop 8 (SIG) and loop 

14 (GRD, DEX). livermore loops 4; 5, 6, 9 and 11 can be evaluated by the FfVP 

only if simultaneous read and wri~e operations are allowed by the vector registers, 

since they have recurrence relatio.nship. This is due to the fact that Livermore loops 

4, 5, 6, 9 and 11 have the same source and destination registers. Even though the 

FfVP will not be able to evaluate the vector loops with recurrence relationships 

right now, we proceed assuming that the FfVP will be able to evaluate when the 

registers allow simultaneous read arid write operations. But Livermore loops 2 and 

3 can still be evaluated by the FfVP even though there is a recurrence relationship, 

because, scalar data stored in the register Q' for the loops 2 and 3 will be sent 

towards the arithmetic units before the results of the respective pipeline chains are 

written back into the register Q. For this reason, no simultaneous read and write 

operations is required for these loop evaluations. 
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The evaluation of livermore loops 4, 5, 6, 9 and 11 by the FfVP will be slow 

as they are essentially scalar operations. For example, consider the Livermore loop 

11 shown below: 

DO 11 I = 2, 1000 
11 X(K) = X(K-1) + Y(K) 

We see that there is a recurrence~relationship between X(K) and X(K-1). A new 

iteration for the calculation of X(K) cannot be started until the previous iteration is 

completed. If a pipeline with three stages· is assumed, then a new iteration can be 

initiated only when the pipeline has sent the results of previous iteration; therefore, 

no overlapping is done. Due to this nqn-overlapping execution a new iteration can 

only be initiated every third clock period. Only one stage of the pipeline will be 

evaluating at a particular clock period, while the other two stages are idle due to this 

non-overlapping evaluation. This type of problem has been studied by Kogge who 

proposed a double cycling method to reduce the pipeline idle time in this kind of 

situation [26]. The double cycling method serves to reduce the vector loop that has 

a recurrence relationship.to a vector loop that has a latency of one [26]. Latency is 

defined as the number of clock periods that elapse between two successive 

iterations. If the pipelining is achieved, then a new iteration may be done every 

clock period due to overlapping. But in Livermore loop 11, since no overlapping is 

done, the latency is high (three, if a' pipeline with three stages is assumed). To 

reduce the latency in the above loop, consider the following modification. 

X(K). = 
X(K-1) = 
X(K-2) = 

X(K-1) + Y(K)' 
X(K-2) + Y(K-1) 
X(K-3) + Y(K-2) 

• • • • • • • (1) 
• • • • • • • (2) 
• • • • • • • (3). 

Substituting (2) and (3) in (1) and substituting it back in the original equation, we 

have 

DO 11 K = 2, 1000 
B(K) = Y(K-2) + Y(K-1) + Y(K) 

11 X(K) = X(K-3) + B(K) 
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This implies that the calculation of X(K) is dependent on X(K-3) and not X(K-1), 

which implies that the next iteration in the calculation of X(K) is dependent on the 

results obtained three iterations before and not on the results from the previous 

iteration. Therefore, overlapped evaluatien can be done, and latency can be 

reduced. The calculation of B(K) can be overlapped with the calculation of X(K), 

and new iteration can be initiated every clock period. 

The Kogge's double cycling method is a two-step evaluation method. For 

example, in the modified Livermore loop 11 shown above, calculation of B(K) is the 

first step, and calculation of X(K) is the second step. The two steps can be 

combined into a single step and evaluated, as shown here: 

DO 11 K = 2, 1000 
11 X(K) = Y(K-2) + Y(K-1) + Y(K) + X(K-3) 

The Kogge double cycling method is used to recast Livermore loop 5 also, as shown 

in Appendix B. The Kogge double cycling method is effective only when the 

number of stages in all the pipelines of the FfVP are same, so that the method can 

be applied uniformly to all the pipelines no matter what function they execute [26]. 

In addition, to apply Kogge's double cycling method in the FfVP, the vector 

registers of the FfVP must allow simultaneous read and write operations. 

Basic Instructions 

The basic instructions required for the FfVP are divided into four groups: 

the register read/write and register control instructions, the arithmetic instructions, 

the network instructions and the execution phase instructions, all of which are 

shown in Table III. Each instruction shown in Table III is assumed to be executed 

in one clock period. The initial group consists of a memory-register write operation 

and a resister-memory read operation which are executed by the LOAD and 

STORE instructions, respectively. The MOVE instruction executes the 
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TABLE ill 

BASIC INSTRUCTIONS FOR THE FTVP 

Instructions Type Comments 

Group - 1 Register read/write and 
register control 
instructions. 

LOAD reg., variable Memory to Regu;ter Write Load the variable in the memory 
to the specified register. 

STORE reg., variable Register to Memory Write Store the data in the register in 
the memory. 

MOVE source, destination Register - register transfer Register - register transfer 
instruction instruction. 

REG(reg., len, skip, SO/DEST) · Register control . Loads t:])e control parameters . . 
into the control logic of the 
specified register. 
reg - Specified register 
len - Length of the data stream 
skip - Skip distance 
SO/DEST - Source or 

destination 

Group - 2 Arithmetic Instructions 

add sl, s2, d Pipelined add instruction sl, s2 denote the two sources 
(registers "r" or temporary 
variables "t"); d denotes the 
destination (registers "r" or 
temporary variables "t"). 

mul sl, s2, d Pipelined multiply 
instruction · 

Group - 3 Network instruction 

set( k, i, j) Set the crossbar switch specified 
by k, i, j, where "k" is the 
network index (CBNl, CBN2, 
CBN3, CBN4), "i" and "j" are 
the row and column indexes of 
the crossbar switch. 

reset( k, i, j) Resets the crossbar switch 
specified by k, i, j. 

Group - 4 Execution phase 
instruction 

start (list of registers) Starts the execution phase Starts the execution phase and 
triggers the vector registers 

wait (list of registers) Holds the FTVP idle until all the 
specified registers are ready. 



register-register data transfer. The REG instruction sets the control logic code of 

the specified vector register. All register read or write instructions must be 

preceded by a REG control instruction to set the access mode of the register. The 

second group are the add and mul arithmetic instructions. Each arithmetic 

instruction has two source variables and one destination variable. The source and 

destination variables of an arithmetic instruction can be either a register or a 

temporary variable (denoted by t). Temporary variables are provided in the 

arithmetic instructions to facilitate setting up of a pipeline chaih. The third group of 
' ' 

instructions, set and reset; are used to set and reset a-crossbar switch, respectively. 

The final group of instructions, start and wait, start and hold the execution phase in 

the FfVP, respectively. The wait instruction holds the FfVP from executing any 

new instruction until all the registers specified in the list receive their data. During 

the start of the execution phase, all vector registers that send their data towards the 

arithmetic units are triggered by a common trigger signal from the control unit, and 

this achieved by the start instruction. 

Since we have restricted ourselves to the execution of one pipeline chain at a 

time in the FfVP, the typical pattern of instructions that occur for every pipeline 

chain is shown below: 

Sequence 

1 

2 
3 
4 

5 
6 

7 
8 
9 

10 

Pattern 

Set the control logic of the registers for 
the memory-register access. 
LOAD instruction:. 

, Wait for the data to be loaded. 
Set the control logic of registers for the pipeline 
chain. 
Generate the arithmetic instructions. 
Virtual to physical translation. Generate the 
switch settmgs. 
Start the execution phase. 
Wait for the results. 
Set the register control of the result register for 
the register-memory access. 
Store the result in the memory. 
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The control logic for the registers that need data from the memory are 

initially set by the ~G instructions for memory-register access. Memory access is 

then done by the WAD instruction. A wait instruction is issued to hold the FIVP 

from executing any new instruction until all the registers in the list receive data from 

the memory; this is due to the fact that data loaded from the memory to the vector 

registers will ~ary in length, and the FIVP Q~.eds ·to w~t until every specified 

register receiyes every element of the assigned vector from th~ memory. After the 

memory access, the mode of all source registers involved in a pipe}ine chain is reset 

for the pipeline chain operation. This is due to the fact that during the LOAD 

operation these registers received data from the memory, and therefore, were 

destination registers. For a pipeline chain, these registers send their data towards 

the arithmetic units, and therefore, are source registers. The arithmetic instructions 
' ' ' 

are then generated. Th~ compiler then generates the virtual addresses of the 

pipelines based on the arithmetic instructions. A translation procedure generates 

the physical pipeline addresses from the virtual addresses. The crossbar switch 

settings are then computed from the physical addresses. A translation procedure, 

and the reasons for the translation procedure are discussed in Chapter III. Once a 

pipeline chain is set, the start instructi~n is issued to start the execution phase. A 
,,, 

wait instruction is issued to hold the FfVP from executing any new instruction until 

the destination registers of the pipeline chain specified in the list receives every 

element of the res,ults. After the results are received, the mode of the destination 

registers are set for the register-memory access. The final results are sent back to 

the memory after completion of the execution phase by the STORE instruction. 

Figure 12 sh~ws the instructions generated for the example FORTRAN loop 

we have been considering till now. Scalar data loaded in the registers rl, r3 and r6 
I 

have count = 1. Once the execution phase is started, data stored in the source 
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Sequence Instructions Comments 

1 REG(rl, 1, 1, DEST) 
The register control logics are set REG(r2, 400, 1, DEST) 

REG(r3, 1, 1, DEST) for memory-to-register read 

REG(r4, 400, 1, DEST) operation. 

REG(r5, 400, 1, DEST) 
REG(r6, 1, 1, DEST) 

' 
2 LOADr1, R 

LOADr2,Z 
The variables are read from the LOADr3, T 
memory to the registers. 

LOADr4,P 
LOADr5, Y 
LOADr6,Q 

3 wait(r1, r2, r3, r4, r5, r6) Wait tillall the registers have 
received their data. 

4 REG(r1, 1, 1, SO) 
REG(r2, 400, 1, SO) The source registers for the pipeline 
REG(r3, 1, 1, SO) chain operations are once again set. 
REG(r4, 400, 1, SO) Register r7 is the final destination 
REG(r5, 400, 1, SO) register. 
REG(r6, 1, 1, SO) 
REG(r7, 400, 1, DEST) 

5 mul r1, r2, t1 
mul r3, r4, t2 Arithmetic instructions. 
add t1, t2, t3 
mul r5, t3, t4 
add r6, t4, r7 

6 Virtual to physical address Translation procedure. 
translation and generation of switch 
settings 

7 start(r1, r2, r3, r4, r5, r6) Start of the execution phase 

8 wait(r7) Wait till all results are written into 
register r7. 

9 REG(r7, 400, 1, SO) Register-to-memory write. 

10 STOREr7,X Final results are stored in the 
memo~ 

Figure 12. Instructions for the Example Loop 



registers are sent to the arithmetic units, one element per cycle. The final results 

stored in register r7 are sent back to the memory. 

The compiler is responsible for setting up one pipeline chain at a time. Since 

the FTVP is a RISC type processor, the compiler is assumed to know the exact 

content of the number of hardware resources in the FTVP. If the instructions for a 

particular vector loop are more than the hardware resources in the FTVP, the 

compiler divides the bigger loop into smaller vector loops, and evaluates the smaller 

vector loops one by one. The rules for division of a big vector loop into smaller 

vector loops are presented in Chapter IV. Further, the compiler is responsible for 

the allocation of all source and destination registers for a particular pipeline chain. 

A pipeline chain is removed by the reset instructions if the need arises. Otherwise 

the settings of the previous pipeline chain may be maintained for future use. The 

method by which the compiler achieves these is beyond the scope of this thesis. 

We choose the software approach to build a pipeline chain in the FfVP over 

the hardware approach to minimize the control unit hardware required; this 

minimization leads to reduction in the chip-space occupied by the FTVP. But this 

software approach will introduce a large control overhead which hopefully will be 

offset by the speed enhancement ach-ieved by single-chip implementation. 
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CHAPTER ill 

FAULT-TOLERANCE IN THE FfVP 

.. 

As stated in Chapter I, the first objective of this thesis is the proposed 

fabrication of the FfVP introd~ced in Chapter ·n as ~ single~chip processor. The 

technique for the proposed single-chip fabrication is WSI. A short discussion on 
' ' 

WSI is included in .Appendix C. As ~iscussed in Chapter I, a.major drawback to the 
' ' 

FfVP fabrication'using WSI is the presence of faulty modules in the FfVP. We 

must find a way to det~ct the faulty modules present in the fabricated FfVP, and 

provide a technique that would make the FTVP fault-tolerant. However, detection 

of faulty modules in the FTVP is not the area of study of this thesis. Various 

techniques for fault-detection exist and are dealt extensively in [27, 28 and 29]. One 

technique for achieving fault-tolerance is by providing redundancy in the form of 

extra modules during fabrication to compensate for the faulty modules in the 

system. After fabrication, suitable .routing algorithms developed prior to fabrication 

are applied to avoid the faulty·modul~s, and utilize the good ones t~ obtain a 

functional design. In our proposed FTVP, a simple translation procedure achieves 

fault-tolerance. No redundancy in the form of extra F(VP mod1,1l~s will be provided 
'• ' 

during the proposed fabrication. Our translation procedure avoids the bad modules 

in the FTVP, and uses the good ones to set up a pipeline chain. The translation 

procedure convert~ the virtual addresses generated by the compiler to· the physical 

addresses in the FTVP. ~ased on the physical addresses, t?e compiler computes the 

crossbar switch settings to build a pipeline chain. 
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Types of Fault and Fault Vectors 

The proposed WSI architecture of the FivP is shown in Figure 13. The 

general types of faulty modules that may be present in the FTVP are classified as a 

faulty arithmetic unit, a faulty register, a faulty crossbar network link, and a faulty 

crossbar network switch. A faulty arithmetic unit will include both the buffer and 

pipeline faults, and will be henceforth referred to as a pipeline fault. If a pipeline in 

the fabricated FTVP is faulty, a new fault-free pipeline is selected. A new fault-free 

register is selected in the case of a faulty register .. Links in the crossbar networks 

are classified as horizontal and vertical. Links are represented by the vertical and 

horizontal lines in Figure 13. The link~ interconnecting CBN2 and CBN3 are 

considered as the horizontal links of CBN2. The links interconnecting CBN2 and 

CBN4 are considered as the vertical links of CBN4. In the case of a faulty 

horizontal link in CBN1 or CBN4, the register connected to that particular link 

cannot be accessed. Therefore, a new register must be selected. Since a new 

register is selected, we consider a horizontal link fault in CBN1 or'CBN4 as a 

register fault. In the case of a fa.ulty horizontal link in CBN2 or CBN3, a new fault­

free horizontal link is selected. A vertical link fault in CBN1, CBN2 or CBN3 is 

considered as a pipeline fault and a new pipeline is selected. This is due to the fact 

that a faulty vertical link in CBN1, CBN2 or CBN3 denies access to the pipeline 

connected to that particular vertical link. Therefore, a new pipeline must be 

selected. A new fault-free verticalli~k is sdected in the case of a faulty vertical link 

in CBN4. A switch fault. present in any of the four networks is considered a vertical 

link fault for simplicity. Therefore, the steps taken for avoiding a faulty vertical link 

discussed previously, are implemented in case of a switch fault. 

The compiler, while assigning the pipelines and networks through the 

translation procedure, does not know the exact physical location of the faulty 
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modules in the fabricated FfVP. But since the proposed FfVP is considered to be 

a RISC-type processor, the compiler is assumed to know that there are faulty 

modules in the fabricated FfVP. Therefore, the compiler generates the virtual 

addresses which have to be mapped to the exact physical addresses of the FTVP, 

taking into account the faulty modules in the FfVP. This mapping is accomplished 

by a translation procedure. The tranSlation procedure uses the fault vectors 

presented below while determining the physical address in the FfVP. 
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The fault-free modules in the FfVP are represented at the software level by 

the fault vectors. It is important to note here that the fault vectors will contain the 

physical addresses of the fault-free modules in the FfVP. The fault-free registers in 

the FfVP are represented by the register fault vector. Similarly, the fault-free 

pipelines and the fault-free links are represented by the pipeline fault vector and the · 

link fault vector. Since a switch fault is considered as a vertical link fault, no 

separate fault vector is provided for the fault-free switches. 

The pipeline fault vector contains the physical address of the fault-free 

pipelines in the FfVP. A pipeline fault in the FfVP may occur as a result of the 

pipeline fault itself, or in the case of CBNl, CBN2 or CBN3, a vertical link fault or a 

switch fault. Therefore, the physical address of the pipeline which satisfies any of 

these situations is not present in the pipeline fault vector. Since the FfVP will have 

two sets of pipelines, namely adders and multipliers, each set of pipelines will have a 

pipeline fault vector to r~present that particular set. 

The register fault vector contains the physical address of the fault-free 

registers in the FTVP. A register fault in the FfVP may occur as a result of the 

register fault itself, or a horizontal link fault in CBNl or CBN4. Therefore, the 

physical address of the register which satisfies any of these situations is not present 

in the register fault vector. 



The link fault vector contains the physical address of the fault-free horizontal 

links in CBN1, CBN2 or CBN3. In the case of CBN4, the link fault vector contains 

the physical address of the fault-free vertical links. 

Translation Procedure 

Since the proposed FfVP is considered to be a RISC type processor, the 

compiler is assumed to have the knowledge of the number of fault-free hardware 

resources available for processing. Further, the compiler is assum,ed to be aware 

that there are faulty modules in the fabricated FfVP. But the compiler will not be 

aware of the exact location of the faulty modules in the FfVP. Therefore, the 

compiler generates a virtual address which is mapped to the physical address in the 

FfVP avoiding the faulty modules. A translation procedure maps the virtual 

addresses generated by the compiler to the physical addresses of the FfVP, 

avoiding the faulty modules. The compiler then computes the switch settings 

needed to set up a pipeline chain, using the fault-free pipelines and links. The steps 

involved in the translation procedure for each pipeline chain are: 

Step 1: Determine the type of network. 

Step 2: Assign the virtual pip~line and row addresses. 
~ ' 

Step 3: Obtain the physical pipeline and row addresses by a 1-to-1 mapping 

procedure. 

Step 4: Calculate the switch settings. 

Based on the type of instruction generated by the compiler, the switching 

networks for that particular instruction are assigned in step 1 of the translation 

procedure. The virtual pipeline address (p') and the horizontal link virtual address 

corresponding to CBN2 (i") for an instruction are assigned in step 2 of the 

translation procedure. The virtual addresses generated in step 2 are 1-to-1 mapped 
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to the physical addresses of the FfVP using the fault vectors in step 3. The switch 

settings are then computed from the pipeline physical addresses to set up a pipeline 

chain in step 4. Once a pipeline chain is set, a start instruction is issued to start the 

execution phase. The group I instructions shown fu Table lll are not considered as 

instructions required for a pipeline chain, as no pipelines are involved while these 

instructions are executed; only arithmetic ins~ctions use the pipelines in the 

FfVP. 

Now we will presept the rules for assigning the switching networks for the 

arithmetic instructions as per step 1 of the translatio~ procedure.· As seen in Table 

III, each arithmetic instruction generated by the compiler bas three variables: two 

source variables and one destination variable. If the source variable in an 

arithmetic instruction is a register, it implies that the arithmetic instruction requires 

input datum from a register. If the source variable in an arithmetic instruction is a 

temporary variable, it implies that the arithmetic instruction requires input datum 

from another arithmetic unit. , If the destination variable in an arithmetic instruction 

is a register, it implies that the results of the arithmetic·operation have to be stored 

in a register. If the destination variable in an arithmetic instruction is a temporary 

variable, it implies that the results of the arithmetic operation are to be sent to 

another arithmetic unit. Therefore, netw<;»rks are assigned to each variable of the 

arithmetic instruction so as to achieve the above conditions,. and the rules for 

assigning the networks are given below: 

Rule 1: If the source variable in·an arithmetic instruction is a register, the network 

assigned for that source variable is the CBNl. Thisis due to the fact that the 

arithmetic operation performed corresponding to the instruction, requires data from 

a register, and the data has to be fetched through CBNl. 

Rule 2: If the source variable in an arithmetic instruction is a temporary variable 

(denoted by t), the network assigned for that source variable is the CBN3. This is 
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due to the fact that the arithmetic operation performed corresponding to the 

instruction, requires data from the output port of another arithmetic unit, and the 

data has to be fetched through CBN3. 

Rule 3: If the destination variable in an arithmetic instruction is a temporary 

variable, the network assigned for that destination vanable i~ the CBN2. This is due 

to the fact that the results of the arithmetic op~ration performed by the instruction, 

have to be sent to another arithmetic unit, and it has .to be done through CBN2. 

Rule 4: If the dest~nation variable in 3n arithmetic instruction is a register, the 
> 

networks assigned for' that destination' variable are th,e CBN2 and CBN4. This is 

due to the fact that the results of the-arithmetic operation performed corresponding 

to the instruction, have to be stored in a register, and this has to done through CBN2 
' ' 

and CBN4. 

For example, consider the instruction add rl, tl, r2. The switching networks 

assigned for this instruction are 

Variable 
rl (source) 
t1 (source) 
r2 (destination) 

Switching Network 
CBNJ 
CBN3 
CBN2 
CBN4 

Rule 
1 
2 
4 

Mter step 1 is executed, the virtUal addresses for an instruction are 
' ' ' - ' 

generated by the compiler in step i. -The virtual pipeline address for a particular 

instruction ranges from 0 to (number of fault-free pipelines - 1}. For e~ample, if 

there ar_e four fault-free pipelines in an FfVP, then the virtual pipeline address 

rangesfrom 0 to 3. The virtual horizontal link address for a particular instruction 

ranges from 0 to (number of fault-free horizontal links of CBN2- 1}. The virtual to 

physical mapping proced)Jre is executed then to obtain the physical addresses in step 

3. The switch settings required for building a pipeline chain are then computed 

from the physical addresses in step 4. This final step is discussed before step 3, 

however, for ease in understanding the entire process. 
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In step 4 of the translation procedure, the crossbar switches are set in the 

interconnection networks by the compiler through the set instructions. Each 

network assignment in step 1 has a corresponding set instruction. As seen from 

Table III, a set instruction requires 3 parameters: ''k."- the type of network, "i" - the 

row number of a crossbar switch in that network, and 'J"- the column number of the 

switch in that network. The following are ,the. rules for determining the three 

parameters: 

Rule 5: k for a switch setting is determined based on the rules 1, 2, 3 and 4. 

Rule 6: In the case of CBN1 or CBN4, the index i equals to the physical address of 

the assigned register in the arithmetic instruction. For CBN2, a virtual index i" is 

generated by the compiler, which is mapped to i by a 1-to-1 mapping procedure to 

be discussed later .. The physical index i thus generated is aiso the physical index i of 

CBN3 for the same variable. 

Rule 7a: For CBNl, CBN2 or CBN3,jis computed from the pipeline physical 

address (p) obtained from the mapping procedure in step 3 of the translation 

procedure. Ifj corresponds to the first source variable in the arithmetic instruction, 

thenj = 2p (where pis the physical address of the pipeline). Ifj corresponds to the 

second source variable in the arithmetic instruction, thenj = 2p + 1 (where p is the 

physical address of the pipeline). If j .corresponds to the destination variabl{( in the 

arithmetic instruction, then j · = p (where p is the physical address of the pipeline). 

Consider the instruction add r1, t1, r2. Let the pipeline physical address (p) assigned 

to this instruction be 2. The j indexes corresponding to the three variables in the 

instruction are 

Variable 
r 1 (first source) 
t1 (second source) 
r2 (destination) 

j Index 
2 * 2 = 4 
2*2+1=5 
2 
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Rule 7b: For CBN4, the physical indexj is equal to the physical index i of the 

preceding CBN2 switch setting (for the arithmetic instructions, every CBN4 

assignment will be preceded by a CBN2 assignment, according to rule 4 ). 

Rule 8: For the MOVE instruction only one network is assigned and the network is 

CBN4. This is due to the factthat the register-register data transfer performed 

corresponding to the instruction has to be ~ccomplished by CBN4 in an FfVP. 

The Virtual to physical 1-to-1 mapping procedure executed in step 3 of the 

translation procedure is shown in Figure 14. The mapping procedure involves two 
- ' 

steps. In the first step, the pipeline physical address (p) is q})t~ned from the 
' -

pipeline virtual address (p'). In the s~c~nd step, the vi~tual.index i" generated for 

CBN2 is mapped to the physical address (i) by t~e mapping procedure. The two 

Steps invol~ed in the mapping procedure are e~lained bel9w. 

Step 1: The virtual pipeline address (p') generated by the compiler in step 2 of the 

translation procedure forms the column number of the pipeline fault vector. The 

address stored in that column of the pipeline fault vector is the p~ysical address of 

the pipeline. The physical column indexj required for the switch settings in CBNl,. 

CBN2 or CBN3 are computed based on rule 7a. 
' -

Step 2: The virtual index link.addre~~ for ~BN2 (i'') generated by the compiler in . 
step 2 of the translation procedure f~rms the column number of the link fault vector 

of CBN2. The address stored in that column of the link fault vector (i') forms the 

column number of the link fault vector of CBN~. The address stored in that column 

of the link fault vector of CBN3 is the physical index i for CBN2 and CBN3 by rule 

6. But, if a CBN2 assignment is followed by a CBN4 assignment, then the index i' 

obtained forms the colurpn number of the link fault vector of CBN4. The address 

stored in that column of the link fault vector is the physical index i for CBN2 and the 

physical indexj for CBN4 according to rule 7b. 
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Step 1: For CBNl, CBN2 and CBN3 

V1rtue1 P1pelme Address 

P1pel1ne Fault Vector 

Phys1 cal P1 pel1 ne Address 

Phys1cal Sw1tch Index 

Step 2: For CBN2, CBN3 arid CBN4 

I 

L- ----

L mk Fault Vector of CBN2 

L 1 nk fault vector of CBN3 or CBN4 

Phys1 eel Index 1 for CBN2 end CBN3 by rule 6 
or Phys1cel Index 1 for CBN2 end 1ndex J for 
CBN4 by rule 7b 

Figure 14. 1-to-1 Mapping Procedure 
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Example 

The translation procedure discussed in the previous section is demonstrated 

using the example FORTRAN loop for various fault conditions. An eight pipeline 

structure shown in Figure 15 is considered with no register fault. Let the index k for 

CBN1, CBN2, CBN3 and CBN4 be 0, 1, 2, 3 and 4, respectively. The indexes i and j 

ate shown in Figure 15. Let the physical address for rl - > r7 be 0- > 7, respectively. 

Pipeline fault vector for the multipliers is denoted as pipeline fault vector(l) and for 

the adders as pipeline fault vector(2) .. The arithmetic instructions for the loop (from 

Figure 12), and the networks assigned by the rules 1, 2, 3 and 4 are 

Arithmetic instruction 

mul r1 r2 t1 
mul r3 r4 t2 
add t1 t2 t3 
mul r5 t3 t4 
add r6 t4 r7 

The virtual addresses generated are 

Operation 

mul 
mul 
add 
mul 
add 

Virtual pipeline 

0 
1 
4 
2 
5 

Network assigned 

CBN1 CBNl CBN2 
CBN1 CBN1 CBN2 
CBN3 CBN3 CBN2 
CBN1 CBN3 CBN2 
CBNl CBN3 CBN2 

CBN4 

Virtual index i" for CBN2 

0 
1 
2 
3 
4 

The link fault vectors with no link faults are shown below. 

Column 0 
CBN1 
CBN2 
CBN3 
CBN4 

1 2 3 4 5 6 7 
u 1 2 3 4 5 6 7 
0 1 2 3 4 5 6 7 
u 1 2 3 4 5 6 7 
0 1 2 3 4 5 6 7 

Fault Free Condition 

Horizontal link physical address 
Horizontal link physical address 
Horizontal link physical address 
Vertical link physical address 

Physical addresses of the pipelines stored in the pipeline fault vectors with 

fault free condition are 
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Column 0 1 2 3 4 5 6 7 
Pipeline fault vector( 1) I 0 1 2 3 I 4 Pipeline fault vector(2) ~___;;~-=--_.;:;.-t.--:r-5~-6....---.7ortf 

We will now consider two instructions mul rl, r2, t1 and add r6, t4, r7 for obtaining 

the switch settings. First consider the mul rl, r2, tl instruction. The virtual pipeline 

address assigned to this ,instruction is 0 which forms .the column number of the 

pipeline fault vector(l) (because the arithmetic instruction is multiplication). The 

address, 0, stored in that column is the pipeline physical address for the instruction. 

The virtual index i" generated for CBN2 is 0, and this forms the column number of 

the link fault vector of CBN2; the address stored in that column is 0, and this forms 

the column number for the link fault veCtor of CBN3. The address stored in that 

column is the physical index i for CBN2. The switch setting generated for the 

variables are 

Variable 
rl 
r2 
t1 

Rules 
5,6, 7a 
5,6, 7a 
5,6, 7a 

The switch settings generated for the rest of instructions are 

Operation 
mul 
add 
mul 

Physicf pipeline !o, 2' 2l Physic!0~ 3jtlch sett!tg1' 1l 
4 2, 0, 8 2, 1, 9 1, 2, 4 
2 0, 4, 4 2, 2, 5 1, 3, 2 

However, the instruction add r6, t4, r7 is a different case. Since the CBN2 

assignment is followed by a CBN4 assignment, rule 7b is applied. The virtual index 

i" generated for this instruction is 4. This forms the column number of the link fault 

vector of CBN2. The address stored in that column forms the column number of 

the link fault vector of CBN4. The address stored in that column of CBN4, 4, is the 

physical index i of CBN2 and physical indexj of CBN4. The switch settings are 

Variable Switch setting Rules 
r6 (0, 5, 10) 5, 6, 7a 
t4 (~3, 11) 5,~7a 
r7 (1, 4, 5) 5, 6, 7a 

(3,6,4) 5,6, 7b 
Figure 16 shows the FfVP implementation. 
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Pipeline Fault Condition 

Let the pipelines with physical addresses 0 and 4 be faulty. The pipeline fault 

vectors corresponding to this situation are 

Column 0 1 2 3 4 5 6 

~~~~~~~~~~~~~~~~~~~a~ 'r-:1f---i2:--~3--=:;..,l. s 6 ' 
7 

._ __ ___,,, 

The switch settings are 

Virtual pipeline 

0 
1 
4 
2 
5 

Physical pipeline 

1 
2 
5 
3 
6 

Figure 17 shows the FTVP implementation. 

Switch Fault Condition 

Physical switch setting 

. 0, 2, 4) 0, 3, 5) 1, 1, 2 
2, 0, 10) 2, 1, 11) 1, 2, 5 1
0, 0, 2) 10, 1, 3) 1, 0, 1) 

0,4,6) 2,2, 7) 1,3,3 
0,5, 12) 2,3, 13) 1,4,6 

3,6,4 

Figure 18 shows the location of switch faults in the FfVP. Since switch faults 

are considered as vertical link faults; the corresponding pipelines cannot be 

accessed. Therefore, the pipeline fault vectors in such situation are 

Column 0 1 2 , 3 4 5 6 

Pipeline fault vector( 1) ._I ..._1 ----:2:..-...:3~~f-~~±_:-_-_-:__...-_-_-=_,_ _-_-. 
Pipeline fault vector(2) _ 6 7 

7 

Virtual pipeline Physical pipeline Physical switch setting 

0 
1 
4 
2 
5 

1 
2 
4 
3 
6 

Figure 18 shows the FTVP implementation. 

0, 0, 2l 0,2,4 
2,0,8 
0, 4, 6 
0,5, 12) 

1
0, 1, 3l 0,3,5 
2, 1,9 
2, 2, 7 
2, 3, 13) 

1, 0, 1 
1, 1, 2 
1, 2, 4 
1, 3, 3 
1, 4, 6 
3,6,4 
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Figure 17. Routing for Livermore Loop 1 in case of a Faulty Pipelines 
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Pipeline and Switch Fault 

Figure 19 shows the location of faulty pipelines and switches in the FTVP. 

Column 0 1 2 3 4 5 6 7 
Pipeline fault vector(1) It 2 3 J 
Pipeline fault vector(2) ..___-=----'~--+ .... -=_?:5_·:.:_6:::::::1 

Virtual pipeline 

0 
'1 
4 
2 
5 

Physical pipelin(f 

1 
2 
5 
3 
6 

Figure 19 shows the FTVP implementation. 

Link and Switch Fault 

Physical switch setting 

1
0, 0, 2) 
0, 2, 4) 
2, 0, 10) 

· OA ·6) ' ' ' 0, 5, 12) 

1
0, 1, 3) 
0, 3, 5) 
2, 1, 11) 
2,2, 7) 
2, 3, 13) 

1, 0, 1 
1, 1, 2 
1, 2, 5 
1, 3, 3 
1, 4, 6 

' 3, 6, 4 

Figure 20 shows location of faulty links and switches. The pipeline fault 

vectors and link fault vectors are 

Column 0 1 2 . 3 4 5 6 1 
Pipeline fault vector(1) ~l 1....._-=2~~3~· -. +-L-:..4~~"715~~~~=: Pipeline fault vector(2) , _ 6 Z] 

Column 0 
CBN1 
CBN2 
CBN3 
CBN4 

1 2 3 4 5 6 7 
u 1 2 
1 2 3 
0 2 3 
0 1 2 

The switch settings are 

Virtual pipeline 

0 
1 
4 
2 
5 

3 
4 
4 
3 

4 ~. () 7-
5- __Q_ '1 
5 6 7 
5 6 7 

Physical pipeline 

1 
2 
4 
3 
5 

Figure 20 shows the FTVP implementation 

Horizontallink,physical address 
Horizontal link physical address 
Horizontal link physical address 
Vertical link physical address 

Physical switch setting 

'10, 0, 2l 0,2,4 
2,2,8 
0, 4, 6 
0, 5, 10) 

1
0, 1, 3l 0, 3, 5 
2,3,9 
2,4, 7 
2, 5, 11) 

1, 2, 1 
1, 3, 2 
1, 4, 4 
1, 5, 3 
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CHAPTER IV 

EVALUATION 

Speedup and Throughput 

Evaluation of the FfVP is accomplished by using the livermore loops listed 

in Appendix A. The evaluation follows the steps taken in [20]. The time taken by a 

pipeline chain in evaluating an assigned vector loop is computed first. Since vectors 

from all the source registers of a pipeline chain e,merge simultaneously, the total 

time taken for the evaluation of a vector loop will be equal sum of the time required 

to set up a pipeline chain and the time required by a vector datum to traverse 

through the longest path from the input to the output of this pipeline chain. The 

longest path is termed the critical path. Let S be the time taken to build a pipeline 

chain, C be the number of pipelines in the critical path, a be the number of stages in 

an interconnection network (CBNl, CBN2, CBN3 or CBN4), B be the number of 

stages in a pipeline of the Ff\TP, a be the number of clock periods elapsed before 

the next element of the result vector emerges out of a pipeline chain, and N be the 

assigned vector loop length. 

We call the parameterS the setup time for a pipeline chain. The setup time 

depends upon the time taken for decoding the arithmetic instructions corresponding 

to the pipeline chain, the translation procedure involved and the execution of set 

instructions to build that pipeline chain. For the calculation of setup time we need 

an accurate prediction of the time taken for decoding the arithmetic instructions, 

the execution of the translation procedure and the execution of set instructions. 

Even though we have assumed in Chapter II that each arithmetic instruction will be 
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decoded in one clock cycle, we do not have the exact time taken for execution of the 

translation procedure. We therefore consider the setup time as a function of the 

time taken to execute the set instructions only;· even though this will not be an 

accurate setup time, it serves our purpose for the evaluation of FIVP's 

performance. Each arithmetic instruction requires three set instructions 

corresponding to the network assignment in step 1 of the translation procedure; the 

exception is when the destination variable of an arithmetic instruction is a register. 

We need an extra set instruction for the CBN4 ,assignment. In Chapter II we 

assumed that each set instruction is executed in one clock cycle; therefore, the setup 

time will be a function df the number of set instructions generated for a pipeline 

chain. Consider the example FORTRAN loop in which there are 5 arithmetic 

instructions. The number of set instructions for this loop are 5*3 + 1 = 16. Since 

each set instruction is executed in one clock cycle, the setup time for this example is 

16 clock cycles. It is possible to set more than one switch in a clock cycle, but we 

will stick to the original assumption of setting only one switch in a ·clock cycle. 

The parameter C is the number of pipelines in the critical path. In Figure 4, 

C = 4. The latency between each element of the result vector emerging out of the 

pipeline chain is (J. Latency is the number of clock cycles elapsed between each 

result. If there is a recurrence relationship in a vector loop similar to the loops 

discussed in Chapter II, a will be equal to the number of stages in a pipeline of the 

FTVP, because the pipeline needs to be drained before the next iteration in the 

loop can be started; otherwise, a will be equal to one, as explained in Chapter II. 

To reduce the latency in the case of a recurrence relationship, we use the Kogge's 

double cycling method discussed in Chapter II [26]. But to apply the Kogge's 

method, the number of stages in all the pipelines of the FIVP need to be equal (for 

explanation refer Chapter II). To meet this requirement, we assume a pipeline 

similar to the Intel i860's pipeline [9]. The i860 has a three-staged multiplier and a 
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three-staged adder. Further, to apply Kogge's double cycling method, the vector 

registers of the FfVP must allow simultaneous read and write operations. 

We represent the time taken to evaluate the given vector loop by a pipeline 

chain as T(n). From Figure 7 we see that a vector datum in the critical path of a 

pipeline chain crosses CBNl once at the start of the execution phase, CBN2 and 

CBN3 (C-1) times within the pipeline chain, and CBN2 an~ CBN4 once at the end 

of the execution phase. Also, the vector datum passes through a pipeline which is B 

staged, C times., Therefore, the time taken for the first element of the result to be 

written into the destination register of the pipeline chain is (C)(B + 2a) + a clock 

periods. After the first element of th~ result is written into the register, the , 

remaining elements of the result are written into the register every a clock period. 

Therefore, the time taken for theN results of a pipeline chain to be written into the 

register is (C)(B + 2a) + a + a(N- 1), and the total time taken for evaluation is 

T(n) = S + (C)(B,+ 2a) + a + a(N -1) 

For the FIVP, the number of stages (a) in any interconnection network is 1. Each 

pipeline of the i860 has three stages; that is, B = 3. In our initial discussion in 

Chapter II we stated that each element of a vector is written into the vector register 

every clock period. Therefore, a = 1 and 

T(n) = 
= 

S + 1 + (C)(3 + 2) + 1(N-1) 
S + 5C + N 

In the example FORTRAN loop, N = 400, S = 16 (derived before) and C = 
4. So, the number of clock cycles taken for evaluation of the example loop is 436 

cycles. The total evaluation time for each of the livermore loops based on the 

program graphs in Appendix Bare shown in Table IV. We assume that the same 

adder can perform the required subtraction for Livermore loops, by two's 

complement addition through a special instruction sub. 
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TABLE IV 

EVALUATION TIME OF THE LIVERMORE LOOPS 

Loop Number of arithmetic 
Number instructions 

c a s T(n) 

1 5 4 1 16 436 
2 10 5 3 31 654 
3 2 2 3 7 3015 
41 3 2 3 11 532 
51,2 10 10 1 33 416 
61 8 6 3 28 1055 
7 16 7 1 49 209 
91 15 5 1 46 171 
101,3 9 9 1 46 1091 
111,2 3 2 1 10 1019 
12 1 1 1 4 208 

In a vector loop that has recurrence relationship, we cannot achieve less 

evaluation time by dividing the vector loop into smaller loops and isolating the 

recurrent portion of the loop. This can be demo~strated by an example. Consider 

the case of Livermore loop 2 which is divided into two loops as 

Step 1: DO 2 K = 1, 996, 5 
2 T(K) = Z(K)*X(K)+Z(K+1)*X(K+l)+Z(K+2)*X(K+2)+ 

Z(K + 3) *X(K +3) + Z,(K +4) *X(K +4) 

Step 2: DO 3 K = 1, 996, 5 
3 Q = Q+T(K), 

The a for step 1 is "1" as there is no recurrence relationship. The a for step 2 is "3" 

because there is a recurrence relationship. Each element of the input vector, T(k), 

to the adder has to be delayed by the number of clock cycles equal to the number of 

stages in a pipeline of the FTVP for step 2. The total execution time for step 1 is 

268 cycles, and for step 2 is 607 cycles. The total execution time for livermore loop 

2 is 875 cycles, as opposed to 654 cycles shown in Table IV, because of the delay 

caused by step 2. Therefore, it is more advantageous to build a long pipeline chain 

1 Can be executed only if the registers allow simultaneous read and write 
2 Modified by Kogge's double Cycling Method 
3 Has to be divided into small vector loops 
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to evaluate a large vector loop than few short pipeline chains to evaluate small 

vector loops. But a long pipeline chain may result in the use of large buffers. 

Therefore, a trade-off has to be done in selecting the maximum allowable buffer 

size against the evaluation time. 

The next step is to evaluate the FfVP's throughput, which is defmed as the 

ratio of the total number of arithmetic operations performed by the FfVP to the 

total time taken for performing these operations. Let M be the total number of 

pipelines present in an FfVP; this irr~.plies that the total number of arithmetic 

operations performed by the FfVP is MN. Therefore, throughput of the FfVP is 

Hm = MN 
S + 5C + N 

Two parameters have been proposed in [30] to measure the throughput 

performance of a vector processor. H a. is the maximum throughput obtained when 

N approaches infinity, and NJ/2 is the minimum vector length needed to obtain half 

the maximum throughput. For the FfVP, Ha. = M and NJj2 = S + 5C; this implies 

that, in order to achieve the highest throughput (H a,), all the pipelines in the FfVP 

have to be utilized. The initial time to set up a pipeline chain has to be minimized 

in order to achieve at least half the maximum throughput for short vectors. By 

limiting the number of set instructions and executing more than one set instruction 

at a time, the initial setup time can be minimized. Figure 21 shows the results of the 

throughput analysis of the FfVP for various vector loop lengths with a constant 
' 

number of pipelines. While calculating the setup time for Figure 21, we assumed M 

arithmetic instructions forM pipelines so that the highest throughput is achieved. 

The number of pipelines in the critical path (C) is 4 (except forM = 2 where C = 

2). The results of Figure 21 demonstrates that for large vector loop lengths, the 

throughput is constant. 
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Figure 21. Loop Length vs. Throughput 

The next step is to evaluate the relative speedup of the time taken for 

evaluation of a vector loop using M pipelines in the FfVP over the time taken for 

evaluation of that vector loop using a single pipeline in the FfVP. A pipeline in the 

FfVP can evaluate in two modes; the first one is the vector mode when there is no 

input-output recurrence relationship in the assigned vector loop. The second one is 

the scalar mode when there is a recurrence relationship in the assigned vector loop. 

In the FfVP, each vector element emerging from a pipeline in the scalar mode will 

have a latency which is equal to the number of stages in the pipeline, as the pipeline 

has to be drained before the next input element can be sent to the pipeline. 

Therefore, the time taken for evaluation by a pipeline in the scalar mode is Ts = 

BN = 3N. The time taken for evaluation by a pipeline in the vector mode is Ty = 

S1 + 3a + B + N- 1, as the datum passes through CBNl, CBN2, CBN4 and a 

pipeline once, before the results are written into a register. S1, the setup time for a 

single pipeline, for which we need four set instructions (2 for CBNl, 1 for CBN2, 
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and 1 for CBN4), is 4. Moreover, for the FTVP a = 1 and B = 3, resulting in Tv= 

N + 9. Ifwe needM1 number of pipelines in the scalar mode, andM2 number of 

pipelines in the vector mode, the time needed to evaluate the vector loop by a single 

pipeline is T(l) = TsM1 + TyM2 = 3M1N + M2(N + 9). 

Speedup (Sp) of the FTVP is the ratio of the time taken for evaluation of a 

vector loop by a single pipeline, to the total time taken for the evaluation of a vector 

loop in a pipeline chain. Therefore, 

, Sp = T(l) = 3M1N + Afd:N + 9) 
T(n) S +5L' + N 

Figure 22 shows the speedup analysis of the FTVP for various vector loop 

lengths with a constantR (where R =: MJ/M andM = M1 + M2). The figure shows 

that the speedup is constant for large vector loop lengths. We assumed that the 

number of pipelines in the critical path (C) is 4, and the total number of pipelines 

(M) in the FTVP is 16 for the generation of Figure 23. 
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Figure 22. Speedup vs. Loop Length 
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Figure 23 shows the speedup analysis for the Livermore loops that have no 

input-output recurrence relationship, and Figure 24 shows the speedup analysis for 

the Livermore loops that have input-output recurrence relationship. In calculating 

the speedup, we do these following steps. Consider the evaluation of Livermore 

loop 1 in an FTVP with one adder pipeline and one multiplier pipeline; that is, M = 

2. M = M2 as there is no recurrence relationship in this loop. Evaluation of the 

loop is divided into three steps, as there are only two pipelines in the FTVP. The 

three steps are 

Step 1: 1 multiplication. T1(N) = 4+400+5 = 409 

Step 2: 1 multiplication and 1 addition. T2(N) = 7+400+10 = 417 

Step 3: 1 multiplication and 1 addition. T3(N) = 417 

T(n) = T1(N) + T2(N) + T3(N) = 1243 

Therefore, Speedup (Sp) = 2*(400 + 9)/1243 = 1.93 
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Proposed Architecture 

32 

As a final step in the evaluation we propose an architecture of the FfVP 

based on the Livermore loop analysis .. This architecture is proposed to keep the 

number of interconnection links and crossbar switches in the FfVP to a minimum. 

The links in the FfVP are laid out using good conduction lines on the 

semiconductor wafer. These links oc;cupy much of the chip space. Therefore, the 

number of links must be kept to a minimum. Further, reducing the number of links 

reduces the number of crossbar switches in the interconnection networks, which 

further conserves the chip space. For example, since most of the vector operations 

send only their results to the registers, the number of links connecting CBN2 and 

CBN4 can be reduced; this leads to a reduction in the number of crossbar switches 

in CBN2 and CBN4. 
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Figure 25 shows the program graph for livermore loop 1. An FTVP 

hardware with 5 pipelines, 4 pipeline-pipeline links and 1 pipeline-register link is 

sufficient for evaluation of this loop. Similar kind of results are obtained for the 

other livermore loops as shown in Table V. 

Loop 
number 

1 
2 
3 
44 
54,5 
64 
7 
94 
104 
114,5 

12 

-~) P1p~ lm~ - Pip~ llnf L inlc 

............. ) Pipeline- Regist~r Link 

Figure 25. Program Graph for livermore Loop 1 

. TABLEV 

liVERMORE WOP PARAMETERS 

Number of Pipelines 
Mul Add 

Pi~ipe Pipe-Register 
link 

3 2 4 1 
5 5 9 1 
i 1 1 1 
1 2 1 2 
5 5 9 3 
3 5 6 4 
8 8 15 1 
7 8 14 1 

9 8 9 
3 2 1 
1 0 1 

Register-
Register 

0 
0 
0 
0 
0 
0 
0 
0 
10 
1 
0 

4 Can be executed only if the registers allow simultaneous read and write 
5 Modified by Kogge's double Cycling Method · 
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As seen from Table V, an F1VP hardware with 16 pipelines (8 adders and 8 

multipliers}, 15 pipeline-pipeline links, 3 pipeline-register links and 4 register­

register links is sufficient for evaluation of most of the livermore loops. These 

requirements are incorporated into the proposed architecture shown in Figure 26. 

3 

Figure 26. Hardware of the Recommended Structure 

From Table V we can see that livermore loop 10 is an exception that has to 

be handled by the proposed hardware in Figure 26. In such cases the original vector 

loop has to divided into smaller vector loops and evaluated one by one. Certain 

criteria for handling these exceptional situations have been established. 

Criterion 1 for the division of a big vector loop is to divide according to the 

number of destination registers and register-register transfers required in the vector 

loop. Criterion 2 is to divide the vector loop according to the number of pipelines 

available in the FTVP. The register-register transfer instructions that can be moved 

outside the loop by rearranging the original vector loop and executed independently, 

are done so; this is criterion 3. We can see that by rearranging the instructions of 
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Livermore loop 10, some of the register-register transfer instructions can be moved 

outside the loop and performed independently. The rearranged loop is 

NO. 10 DO 10 I = 1, 100 
AR = CX(5,I) 
BR = AR-PX(5 I) 

. CR = BR-PX(6:I) 
PX(5,I) = AR 
PX(6,I) = BR 
AR = CR-PX(7,I) 
BR = AR-PX(8,I) 
PX(7,I) =-CR 
PX(8,I) = AR 
CR = BR-PX(9,I) 
AR = CR-PX(10,I) 
PX(9,I) = BR 
PX(10,I) = CR 
BR = AR-PX(ll,I) 
CR = BR-PX(12,I) 
PX114,Il = CR-PX(13,I) 
PX 11,I = AR 
PX 12,I = BR , 
PX 13,I = CR 

10 CONTINUE 

The instructions AR = CX(5,I), PX(ll,I) = AR, PX(12,I) = BR, and PX(13,I) = 

CR can be moved outside the loop. The register-register transfer involved in AR = 
> > 

CX(5,I) should be done before commencement of the pipeline chain operation, and 

the other three instructions should be done after the pipeline chain operation. The 

following is the vector loop after the four instructions were moved outside the loop. 

NO. 10 DO 10 I = 1, 100 
BR = AR-PX(5 I) 
CR = BR-PX(6:I) 
PX(5,I) = AR 
PX(6,I) = BR 
AR = CR-PX(7,I) 
BR = AR-PX(8,I) 
PX(7,I) = CR 
PX(8,I) = AR 
CR = BR-PX(9,I) 
AR = CR-PX(10,I) 
PX(9,I) = BR 
PX(10,I) = CR 
BR = AR-PX(ll,I) 
CR = BR-PX(12,I) 
PX(14,I) = CR-PX(13,I) 

10 CONTINUE 
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Since the architecture proposed in Figure 26 has only 4 register-register links, 

applying criterion 1 to the above instructions, Livermore loop 10 is divided into two 

steps as shown below. 

Step 1: 

N0.10 

10 

Step 2: 

N0.10 

10 

DO 10 I = 1, 100 
BR = AR-PX(S,I) 
CR = BR-PX(6,1) 
PX(S,I) = AR 
PX(6,1) = BR 
AR = CR-PX(7,1) 
BR = AR-PX(8,1) 
PX(7,1) = CR 
PX(8,1) = AR 
CR = BR-PX(9,1) 
CONTINUE 

DO 10 I = 1, 100 
AR = CR~PX(10,1) 
PX(9,1) = BR 
PX( 10,1) = CR 
BR = AR-PX(11,1) 
CR = BR-PX(12,1) 
PX(14,1) = CR-PX(13,1) 
CONTINUE 

Therefore, Livermore loop 10 can be evaluated in two steps by the proposed 

architecture in Figure 26. In obtaining the two steps for the evaluation of Livermore 

10, we had assumed that there are no faulty modules in the architecture proposed in 

Figure 26. If faulty modules are present, then the number of hardware resources 

available for processing will be less; in such a case the original loop has to be further 

subdivided. It is the duty of the compiler to identify these kinds of exceptional 

situations, and divide the assigned vector loop applying the three criterion. 
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CHAPTERV 

CONCLUSIONS AND FUTURE WORK 

A vector processor that can be fabricated as a single-chip processor using the 

WSI fabrication technique was designed in this thesis. The chaining capability of 

the vector processor was demonstrated usipg the Livermore loops. A basic 

instruction set and the translation procedure for the vector processor was 

developed, a speedup analysis was done, and the fault-tolerant capability of the 

vector processor was demonstrated. Based on the Liven:ilore loop analysis, a 

hardware structure, was recommended for fabrication. A method of handling large 

vectors by this proposed hardware was also discussed. 

As seen from the Livermore loop analysis, an FfVP with 16 pipelines is 

sufficient for most practical problems. If more,pipelines are required, the problem 

to be executed can be broken down into many small vector loops and executed one 

by one, or the number of pipelines in the FfVP can be increased. 

Further study needs to be done on providing multiple pipeline chains in a 

single FTVP. An intelligent compiler needs to be developed to implement the 

proposed translation procedure. The vector registers of the FfVP need to be 

expanded to store more than one vector datum, to allow irregularvector accesses 

for complex vector applications, and to allow simultaneous read and write 

operations. In conclusion, the FfVP provides an efficient dynamic chaining and 

fault-tolerance capability. The fault-tolerant capability, along with the WSI 

fabrication, paves the way for an efficient, single-chip processor. The FfVP can be 

used for applications like wave equations, heat transfer and signal processing. 
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APPENDIX A 

LIVERMORE LOOPS 

DO 1 K = 1, 400 
X(K) = Q+Y(K)*(R*Z(K+lO)+T*Z(K+ll)) 

DO 2 K = 1, 996, 5 
Q = Q+Z(K)*X(K)+Z(K+ l)*X(K+ l)+Z(K+2)*X(K+2)+ 

Z(K + 3)*X(K + 3) + Z(K + 4)*X(K + 4) 

DO 3K = 1, 1000 
Q = Q+Z(K)*X(K) 

DO 4 J = 30, 870, 5 _ 
X(L-1) = X(L-1)-X(LW)*Y(J) 
LW = LW+l 

DO 5 I = 2, 998, 3 
X1I) = Z(I)*(Y(I)-X(I-1)) 
X I+ 1) = Z(I + l)*(Y(I + 1)-X(I)) 
X I+2) = Z(I+2)*(Y(I+2)-X(I+l)) 

DO 6 J = 3, 999,3 
I= 1000-J +3 
X1I) = X(I)-Z(I)*X(I + 1) 
X I-1 = X I-1 -Z I-1 *X I) 
x I-2~ = xh-2~-zh-2~*xh-t) 
D07M = 1,120 
X(M) = U(M)+R*(Z(M)+R*Y(M))+T*(U(M+3)+R*(U(M+2) 

+ R *U(M + 1)) + T* (U (M + 6) + R * (U (M + 5) + R *U (M + 4)))) 

D08KX = 2,3 
DO SKY= 2,21 
DUl = U11KX,KY + l,NLll-Ul~KX,KY-l,NLll 
DU2 = U2 KX,KY+l,NL1-U2 KX,KY-l,NLl 
DU3 = U3 KX,KY+l,NLl -U3 KX,KY-l,NLl 
Ul(KX,KY,NL2) = Ul(KY,NLl +All *DUl + Al2*DU2 

+ A13*DU3 + SIG*(Ul(KX + l,KY,NL1)-2*Ul(KX,KY, 
NLl)+ Ul(KX-l,KY,NLl)) , 

U2(KX,KY,NL2) = U2(KY,NLl)+A21*DUl+A22*DU2 
+ A23*DU3 + SIG*(Ul(KX + l,KY,NL1)-2*Ul(KX,KY, 
NLl)+ Ul(KX-l,KY,NLl)) 

U3(KX,KY,NL2) = U3(KY,NL1) + A31 *DUl + A32*DU2 
+ A33*DU3 + SIG*(Ul(KX + l,KY,NL1)-2*Ul(KX,KY, 
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8 

No.9 

9 

NL1)+ U1(KX-1,KY,NL1)) 
CONTINUE 

DO 9 I= 1, 100 
PX(1, I)= BM28*PX(13,I)+BM27*PX(12,I) 

+ BM26 *PX( 11,I) + BM25*PX( 10,I) + BM24 *PX(9,I) + 
BM22*PX(7,I)+CO*(PX(5,I)+ PX(6,I) 
+PX(3,I)) 

CONTINUE 

NO. 10 DO 10 I = 1, 100 
AR = CX(5,I) 
BR = AR-PX(5,I) 
PX(5,I) = AR 
CR = BR-PX(6,I) 
PX(6,1) = BR 
AR = CR-PX(7,I) 
PX(7,I) = CR 
BR = AR-PX(8,I) 
PX(8,I) = AR 
CR = BR-PX(9,I) 
PX(9,I) = BR 
AR = CR-PX(10,I) 
PX(10,I) = CR 
BR = AR-PX(11,I) 
PX( 11,I) = AR 
CR = BR-PX(12,I) 
PX~12,1l = BR PX 14,1 = CR-PX(13,I) 
PX 13,1 = CR 

10 CONTINUE 

No. 11 X(1) = Y(1) 
DO 11 K = 2, 1000 

11 X(K) = X(K-1)+ Y(K) 

No. 12 DO 12 K = 1, 199 
12 X(K) = Y(K+ 1)-Y(K) 

NO. 13 DO 13 IP = 1, 128 
I1 = P( 1,1P) . 
J1 = P(2,IP) 

~j~:~~j : ~j~:~~j: ~Hl:~B 
P 1,IP = P 1,IP + P(3,Jl) 
P 2,IP = P 2,IP +P(4,Jl) 
I2 = P(1,IP) 
12 = P(2,1P) 
P(1,1P) = P(1,IP)+ Y(l2+32) 
P(2,IP) = P(2,IP) + Z(12 + 32) 
I2 = I2+E(I2+32) 
12 = 12+F(12+32) 
H(l2,12) = H(I2,12) + 1.0 
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13 CONTINUE 

No.14 DO 14K = 1,150 
IX=GRD(K) 
XI=IX 
VX(K) = VX(K)+EX(IX)+(XX(K)-XI)*DEX(IX) 
XX(K) = XX(K) + VX(K) + FLX 
IR = XX(K) 
Rl = IR 
RXI = XX(K)-RI 
IR=IR-(IR/64)*64 
XX(K) = RI + RXI 
RH(IR) = RH(IR) + 1.0-RXI 
RH(IR+1) = RH(IR+ l)+RXI 

14 CONTINUE 
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APPENDIXB 

PROGRAM GRAPH OF THE LIVERMORE LOOPS 

Loop 1 

Loop2 
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I ' 

Loop 3 

Loop4 

LoopS 
Modified by Kogge's double cycling method 
D051=2,998,3 
5 X[!]= Z[I] * {Y[I]- Z[I-1] * (Y[I-1]- Z[l-2] * [Y[I-2] -X[I-3]])) 

X[l+l] = Z[l+l] * (Y[l+l]- X[!]) 
X[/+2] = Z[/+2] * (Y[/+2]- X[l+l]) 
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Loop9 

Loop 10 

l <f 
~ 
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Loop 11 
Modified by Kogge's double cycling method 
X[J]= Y[l] 
D011K=2,1000 
11 X[K] = X[K-3] + Y[K] + Y[K-1] + Y[K-2)] 

Loop 12 
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APPENDIXC 

WAFER sc;ALE INTEGRATION 

Wafer Scale Integration (WSI) can be regarded as a special form of 

packaging in which extra wiring, normally used to interconnect the package 

containing working components, is fabricated on the surface of a wafer substrate 

containing the components and mounted inside a single package [12]. This internal 

wiring eliminates many of the problems encountered in the conventional printed 

circuit boards or ceramic carriers [12]. Internal wiring leads to reduced wiring 

length, which, in turn, increases the system speed and decreases the power 

requirement of the I/0 drivers. The reduced wiring length achievable in WSI will 

not necessarily translate into reduced propagation delay, unless the other wire 

dimensions are scaled properly [12]. For example, suppose a metal wire of 

rectangular cross section with length 1, width w and thickness t is located at a 

distanced from a ground plane of th'e same metal [12]. Then the RC charging delay 

of the distributed system is approximately given by [12] 

TRC = w2 
td 

A typical integrated circuit line is made of Aluminium (p = 2.()3 x w-6 n em) on 

SiOz ( € r = 3.9) [12]. If 1 = 20cm, t = d = 0.5 J.Lffi, then TRc = 160ns [12]. If the 

dielectric constant is reduced to unity, then the delay would be only 600ps. This will 

be two orders of magnitude faster than the metal line of a conventional IC 

processing technique. 1 = 20cm line represents a worst-case length for WSI wiring , 

on wafers three to four inches in diameter. This is small when compared to the 

chip-level wiring length of 25m for the IBM 3081 processor unit fabricated using the 
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conventional LSI technology [31 ]. Fifty percent of the CPU time of the IBM 3081 

processor is dominated by the wiring delay [31]. Further, it is possible to obtain high 

propagation speeds in WSI using simple extensions of the existing technology. High 

propagation speeds can be achieved by fabricating thick film LC transmission lines 

rather than thin film lines with J{C charging behavior [12]. The thick film lines that 

favorably effect the propagation times can also help improve the discretionary 

wiring yield, depending on the type of fabrication employed [12]. 

The statical unce~tainty in the wiring delays resulting from wiring of the 

random collection of working components has been one drawback of traditional 

WSI. That is, since the locations of the working cells are not fixed, the wiring delay 

of a given path may vary from wafer t,o wafer. However, since these delays can be 

much shorter than those found in most other packaging arrangements, this could be 

less of a problem than might be expected [12]. 

There are few subjects in solid-state electronics that bring forth many 

negative comments as WSI [39]. These are partly due to the dominance of the 

prevailing VLSI technology which is expected to dominate the field well into the 

future, and lessen the need for WSI 112]. But many designers overlook the fact that 

VLSI actually makes poor use of the enormously large silicon area available. The 

average VLSI chip area grows very slowly even as higher levels of integration are 

achieved. The name WSI implies a quantum jump in more components integrated 

on a monolith piece of silicon than the state-of-art VLSI. The WSI silicon piece is 

much larger than the one used in the state-of-art VLSI, and is normally of wafer size 

[39]. 

The attractiveness of WSI lies in its promise of reduced cost, high 

performance, higher level of integration, greatly increased reliability and application 

potential. Traditionally, the increased component density of a VLSI chip is 

achieved primarily by a downscaling of the feature sizes; only in a secondary manner 

83 



is this increased component density obtained by the use of larger chip dimensions. 

The increase in component density of a VLSI chip due to the shrinkage of the 

minimum feature size has been of several orders of magnitude, while the increase of 

maximum feasible chip area has been modest [39]. Since the practical limit of 

scaling has not been reached, VLSI will continue to dominate WSI. But WSI tries 

to increase the component density still further by bringing an increased chip area, 

which has contributed very little to the VLSI performance. Further, redundancy and 

fault-tolerance in WSI adds reliability to the fabrication increasing the growing 

number of advantages it has over VLSI. 

To avoid multilevel metallization in WSI, it is necessary that the circuit 

design avoid cross-wafer data communication as much as possible. Therefore, 

instead of cross-wafer data communication, the cells fabricated should communicate 

with the neighboring cells. This is possible with the pipelined and bus-oriented 

architectures; therefore, WSI is more suitable for pipelined and bus-oriented 

architectures [39]. The FTVP proposed in this study is a pipelined architecture 

favoring WSI fabrication. The important consequence of this pipelined structure 

fabrication is the avoidance of multilevel metallization. This, in turn, makes it 

practical to apply the state-of-art VLSI fabrication technology to WSI, thereby 

giving it a significant density advantage over the equivalent VLSI implementation. 

To remain competitive over VLSI, any WSI process must satisfy the following 

requirements [39]: 

* Make use of the densest VLSI fabrication process available. 

* Avoid the introduction of additional process as much as possible to keep the 

complexity to a minimum. 

*Avoid cross-wafer communication by using pipeline architectures. 

* Provide multiple external power and ground contacts on the wafer at regular 

intervals. 
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But it must be noted that any advances made in WSI will be reflected on VLSI and 

vice-versa. The major competitors for WSI are the VLSI technology itself, because 

of the rapid decrease in scaling technology which helps in achieving higher chip 

density and the multichip VLSI technology. Table VI shows the figure of merit of 

various technologies [39]. 

TABLE VI 

COMPARISON OF THE PACKAGES OF FIGURE OF MERITS 

Packaging Power Size or Cost Overall Figure 
Approach xDelay Weight of Merit 

Printed wiring 1.00 1.00 1.00 1.00 
board 

Thick-film 1.08 '0.42 1.02 0.46 
multilc;tyer on 
cerarmc 

Ceramic 0.34 0.2 0.65 0.044 
multilayer hybrid 

Thin-film 0.19 0.14 0.6 0.016 
multilayer hybrid, 
populated on one side 

Wafer Scale 0.10 0.09 0.46 0.0041 
Integration 

Thin-film 0.08 0.07 0.44 0.0025 
multilayer hybrid, 
populated on both 
sides 

As seen from Table VI, the multichip hybrid technology has an advantage over WSI 

because it is risk-free and offers high performance due to the advancement in VLSI 

technology. But the multichip hybrid technology requires a large number of 

metallurgical bonds, and has difficulty in heat removal [39]. 
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