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CHAPTER I 

INTRODUCTION 

Hydrogen sulfide (H2S) is a well known naturally occurring substance. It is 

commonly found in natural gas. It is also often present in refinery "off gas" streams and 

in exit gas streams from hydrodesulfurizers. 

Most hydrocarbon materials whether gas, liquid or solid, occur in natural mixtures 

with varying sulfur contents. For various reasons this sulfur content must be lowered. 

The removal of sulfur from crude oil is achieved by hydrodesulphurization giving 

hydrogen sulfide. Sweetening of sour gas also produces large volumes of hydrogen 

sulfide. The volumes of hydrogen sulfide requiring processing will continue to increase. 

Clearly, if the hydrogen fraction of the H2S is recovered it could be recycled back to 

hydrodesulfurization units to achieve further sulfur removal from the feed stock. 

The Claus process is probably the only commercially successful method for 

processing hydrogen sulfide. While this is an effective technique for processing hydrogen 

sulfide, one valuable part of the molecule, the hydrogen is lost to water during the 

oxidation and reduction steps. This thesis investigates the use of a new technology, 

frequency tuned capacitive discharge reactors, to dissociate hydrogen sulfide into 

elemental sulfur and hydrogen. 

Hydrogen sulfide is environmentally undesirable and is expensive to remove from 

waste gases. The Clean Air Act requires that H2S be controlled to concentrations of less 

than 50 ppm. The findings of this research could well provide a simple alternative to 
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conventional methods of processing H2S from oil refinery "sour gases." The practical 

and economic implications could be far reaching. 

2 

A decomposition process yielding sulfur and hydrogen under moderate reaction 

conditions shows considerable commercial promise for a variety of applications in the 

hydrocarbon industry. The economic potential for such a process is staggering. Each year 

the.UnitedStates produces almost seven million tons of waste H2S. This represents a loss 

of more than 125 billion standard cubic feet of' hydrogen per year accounting for an annual 

cost of over $225 million [11 ]. 

Circumventing the unfavorable thermodynamic requirements of the overall 

decomposition is the underlying key to using H2S as a hydrogen source. It is important to 

note that this does not imply a violation of fundamental physical laws. It is however, 

possible to optimize product yields by carefully choosing various reaction parameters and 

process conditions without violating fundamental chemical concepts. 

The decomposition ofH2S has already been accomplished in a thermal plasma 

reactor. However, the process conditions are extremely severe and require a very high 

input of power. According to recent reports, efforts at Kurchatov Institute, Moscow, 

Russia have moved on to an industrial scale with a l.OMW installation at a natural gas 

processing facility [14]. This thesis is an attempt to achieve the decomposition ofH2S at 

atmospheric pressure and temperature and at low power consumptions. 

Research on alternating current, silent glow discharge reactor (SGDR) began at 

Oklahoma State University (OSU) in 1987 as a cooperative effort with the Naval Research 

Center. To date, most of the research on these reactors has been done at the Naval 

Research Center and OSU. Work at Oklahoma State University [20,32] has shown that a 

SGDR can be fine tuned by varying the frequency of the voltage applied to the reactor. 

Much of the research reported in the literature came before the existence of an optimum 

frequency was known. Thus, many of the earlier experiments reported were carried out at 

a fixed frequency, which is generally much lower than optimum frequency. This single 



fact is the major reason why past investigators did not fully exploit and develop plasma 

reactors using alternating current [11 ]. 
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An efficient glow discharge reactor has many potential industrial applications, such 

as: 

• purification of stack gases from factories, 

• emergency air purification in building and hazardous materials storage areas, 

• destruction of hazardous waste gases ; and 

• use as a chemical synthesis reactor. 

The following advantages can be realized by destructing H2S in a SGDR. 

• The OJ>erating temperature would be very low. 

• There will be no requirement of catalyst. 

• The reaction can be carried out at or near atmospheric pressure. 

• An extra salable product, namely hydrogen, can be obtained. 

• The reactor itself can be used as a pollution control device for very low H 2S 

concentrations. 

The objectives of this research are as follows. 

• To build the experimental apparatus and have it operate properly and safely. 

• To experimentally determine the key operational and design parameters for the 

reactor. 

• To determine the degree ofH2S conversion. 

• To assess the potential of the new technology and make further recommendation 

for continued research. 

The preceding paragraphs should be sufficient to provide a strong justification for 

carrying out this study from an applied point of view. Also the thought of developing a 

simple and economic method itself would seem to provide additional motivation to 

undertake such a study. 
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A review of the literature on destruction of hydrogen sulfide is presented in 

Chapter 2. Chapter 3 describes the experimental set up and the safety factors considered in 

building the experimental apparatus. The experiments conducted are discussed in 

Chapters 4 and 5. 

Results are presented in graphical manner and where necessary in tabular fonn. Chapter 6 

gives a brief dicussion on the thennodynamic consideration. Finally a general discussion 

of all the'relevant data obtained and their implications are discussed in Chapter 7. 



CHAPTER II 

LITERATURE REVIEW 

Background 

The Claus process involves the partial oxidation of hydrogen sulfide to SOz and 

subsequent reaction ofHzS and SOz to form water and sulfur. Overall this is a highly 

exothermic reaction. An alternative to the Claus process may well be based on non­

oxidative decomposition ofHzS to Hz and S. The advantage of having an extra salable 

product is counterbalanced by the fact that this reaction is endothermic. The 

decomposition of molecules into smaller molecular species can be brought about by 

various means. Essentially these processes require a sufficient energy supply to rupture the 

chemical bonds. A brief description of the plasma concept is given below. This chapter is 

further divided into sections that deal with different methods of HzS destruction. 

Plasma Origin 

Plasma is defined as the state of ionized gases. It was described by Crookes in 

1879 as "a world where matter may exist in a fourth state." In recent times this has 

attained an important and a crucial place in research and industry worldwide [5]. 

5 
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Sir William Crookes used a tube and evacuated it to a low pressure under which 

conditions electrical current can be forced through the gas. When excited by the electrical 

energy, the rarefied gas showed a glow. This tube then came to be known as the so called 

"glow discharge tube" and has become a basic tool of researchers in plasma studies. The 

"fourth state of matter" was given the name "Plasma" by Irving Langmuir in 1928 [5]. 

General Mechanism of Plasma Reactions [11, 30] 

Gases are normally good electrical insulators. However, under the influence of an 

applied electric field of sufficient strength gas molecules can be ionized. Electric 

conduction then takes place and an electrical discharge occurs. Given the right current 

conditions, gas breakdown can occur and a discharge results. It actually fills the gap 

between the electrodes with a soft glow. 

The alternating current silent glow discharge reactor (SGDR), also known as the 

alternating current corona reactor, glow discharge reactor, or alternating current silent 

discharge plasma reactor, utilizes electrical energy to create a relatively low temperature 

plasma (electric discharge) in a reactor cavity. When organic or inorganic materials flow 

in the plasma, their chemical bonds are broken by absorbing the electrical energy of the 

plasma. Elemental atoms and free radicals result, which then recombine to form simpler 

reaction products. 

There are two types of common plasmas, thermal induced and electrically induced. 

An important difference exists between these two types of plasmas. Thermally induced 

plasmas are in thermal equilibrium, and the temperature of the neutrals and charged 

species are in equilibrium (isothermal). However, in electrically induced plasmas, the 

temperatures of the charged and neutral species can be quite different. 
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In glow discharges, induced by alternating current, the ions and molecules and free 

radicals are roughly at ambient temperatures, while the electron temperature is two to 

three orders of magnitude greater. Reactions in plasmas are fundamentally different than 

normal combustion reactions. In plasmas the initial step is believed to be rupture of the 

chemical bonds by electrons, in contrast to standard kinetic models, where the initial step 

in combustion reactions involves collision of.the reactant molecules. 

Plasma Decomposition ofH2S 

Electrical discharge reactors have been used in the study of chemical reactions for 

many years. Different types of electrical discharge reactors have been used to study a 

wide range of phenomena. The earliest work began around 1927 and concentrated on 

direct current reactors. 

The influence of the silent electrical discharge upon hydrogen sulfide was studied 

by Schwarz and Kunzer'[23] in 1929. They used a Siemen tube inside a furnace and 

passed pure hydrogen sulfide at,various velocities and temperatures. It was reported that 

dissociation took place to a certain extent and then was overcome by recombination 

caused by activation of the sulfur by the discharge. Their results showed that H2S can be 

dissociated by an electric discharge and marked the beginning of research in this field. 

In 1965, a technology that involved decomposition of H2S into its constituent 

elements by electric discharge was patented by a Japanese company [15]. A glow 

discharge was carried out with a current of 0.264 amperes at 825 volts and 218 mm Hg 

pressure in a cylindrical electrode made of stainless steel. It was reported that after a 

discharge of 1 minute and with 1.631iters ofH2S, 0.53 grams of S ( 99.6% pure) and 

0.38 liter of H2 were produced. The remaining gas consisted ofunreacted H2S. This 



technology is no longer in use presumably, due to being expensive and requiring low 

pressure. 

Recent work by Soviet scientists reported the dissociation of H2S in a non­

equilibrium microwave generated plasma [2, 26]. The reported conversion ranged from 

40% to 90%. However , no information is available regarding the specific reaction 

conditions. 
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Rusonov et al., [26] have studied the effect of spatial non-equilibrium in the 

decomposition of H2S in a plasma. They showed that the centrifugal forces present in the 

discharge lead to spatial separation of the substances and as a consequence disturbed the 

chemical equilibrium, thereby slowing down the reverse reaction and increasing the 

conversion. The achievement of the centrifugal effect is believed to have reduced the 

energy consumption considerably. 

Researchers at the Argonne National Laboratory [12] have reported that H2S 

·conversions in excess of99% can be achieved by recycling unconverted H2S back to a 

microwave plasma reactor. It was also reported that this process is more economical than 

the conventional waste treatment process. The reactor used in this research was reported 

similar to the one used by the Soviets. 

Many theoretical and experimental studies have been devoted to the dissociation of 

H2S in "thermal plasmas." The mechanism for this process and its output and energy 

characteristics have been investigated [2,21 ]. The rate of dissociation of H2S in a thermal 

plasma has been reported to be determined by a limiting step, H2S + M ~ H + HS + 

M. 

Nester et al. [18] proposed addition of small amounts of oxygen in order to reduce 

the limiting significance of the above reaction. Potapkin and coworkers [21] have 

determined that the primary mechanism for dissociation of H 2S is a function of the 

amount of oxygen in the mixture. They concluded that the energy costs of obtaining the 

products is significantly reduced with the presence of oxygen in the initial mixture. 



The dissociation of hydrogen sulfide mixed with propane in a thermal plasma was 

studied by Balebanov et al. [3]. They showed that hydrocarbons hinder making sulfur by 

HzS decomposition in a thermal plasma. Also the energy consumed in making hydrogen 

decreases as the propane level rises. It was also reported that the yield characteristics 

improve when oxygen is added, at the start. 
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Vastola and Stacy [29] studied the effect of hydrocarbons on the plasma induced 

dissociation of HzS. Results shown indicate that HzS can be completely dissociated by an 

electric discharge to produce molecular hydrogen and carbon disulfide. These 

experiments were conducted using a power source of 1.2 kW and 120 MHz RF induction 

heater. 

Reaction Mechanism ofHzS in a Thermal Plasma 

Potapkin et a1.,[21] have investigated numerically the dissociation process in 

thermal plasma. The main elementary stages of the process are established. The main 

reaction that determines the dissociation kinetics was found to be H2S ~ H + HS. The 

atomic hydrogen that was formed in this case entered into reaction with HzS; H + H2S 

~ HS+ Hz. In their tum, the HS radicals reacted with each other to form molecular 

hydrogen and disulfur; HS + HS ~ H2 + Sz. 

The following gives the complete mechanism proposed by Potapkin et al. 

H2S + M ¢:> H + HS + M 

H + H2S <=> H2 + HS 

HS + HS <=> H2S +S 

S + H2S <=> H2 + Sz 

S + HS <=> H + Sz 



H+ HS ~ H2+S 

HS + HS ~ H2 + s2 

S+S+M ~ S2+M 

s2 + s2 + M ~ s4 + M 

The rate constants for the forward reactions were reported to be taken from 

literature data; and the rate constants of the reverse reactions calculated via the 

equilibrium constants. This mechanism is a development of earlier kinetics proposed by 

Balebanov et al. [ 2 ]. The kinetic curves obtained by these two mechanisms have been 

reported to show agreement in the range of 3- 5% [21 ].The critical scheme proposed in 

reference 2 is given below. The mechanism used here is a very simplified one, where the 

effect of reverse reactions was not taken into account. 

H2S ~ H+HS 

H + H2S ~ H2 + HS 

HS + HS ~ H2S + S 

S + H2S ~ H2 + s2 
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Temurova et al.[27] investigated the dissociation process in a barrier discharge 

plasma. They conducted an analysis of the mechanism reported in reference 2 and 

concluded that a mechanism involving ions and free radicals does not explain the 

experimental results. They based their conclusions on the account of energy consumption 

for the H2 molecule, which was significantly higher according to the mechanism than that 

found experimentally in their research. They put forward the following mechanism: 

(H2S) + + n H2S ~ (H2S)n + 

(H2S)n + + e ~ nH2 + n/2S2 

While these are some significant reports on kinetics ofH2S decomposition in a thermal 

plasma, inconsistencies do seem to exist, suggesting the need for further investigation. 

Boenig Herman in his book [5], says "it is typical of plasma processes that, for a given 

molecular feed, a process can proceed chiefly via ionic reactions under one set of plasma 
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parameters and chiefly by a free radical mechanism under a different set of plasma 

parameters". 
Thermal Decomposition 

Raymont in his authoritative work on the thermal decomposition of H2S has 

reported that direct decomposition is a very unlikely contender for a viable process to 

produce hydrogen from H2S. In his work [16], he suggested alternate techniques such as 

upset equilibrium and thermodynamic loop system as attractive routes to achieve hydrogen 

production. 

Catalytic Decomposition 

Hydrogen sulfide reacts with a wide variety of inorganic substances, particularly 

transition metals and oxides to give hydrogen and a sulfide. Reactions of this type have 

been extensively studied. 

The use ofNi [13] and NiO [32] has been investigated in surface chemisorption of 

H2S. In both cases H2S decomposes at the surface of the solid resulting in the liberation 

of hydrogen, but the sulfur atoms are irreversibly bound either by strong chemisorption or 

by formation of molecular sulfide by reaction with the surface atoms of the solid. 

The use of iron and nickel [6] for adsorption of H 2S has been studied. The 

interaction of H2S with metals and non-metallic elements has been reported to result in the 

formation of sulfides from which sulfur cannot be recovered. Also, most of these 

processes require high temperature and high vacuum. 



Radiolytic Decomposition 

The alpha and gamma radiolysis ofHzS has been the subject of research in the 

recent past. However very little information is available and there is need for further 

investigation of this mode of decomposition. Torrey [25] dissociated HzS into its 

elemental components by radiolysis. He-deduced a mechanism involving high energy Hz 

atoms and SH radicals. Huyton and Woodward [9] found that hydrogen and sulfur were 

produced with gamma particle radiation. 

Photochemical Decomposition 

12 

The effect of light at various wavelengths on HzS has been studied by several 

investigators. Darwent and Roberts [1] made an extensive study on the photochemical 

decomposition at various temperatures and pressures using cadmium and mercury lines as 

the energy source. They deduced a free radical mechanism for the photochemical 

reaction. They observed that the yield of Hz was independent ofHzS at pressures above 

200 Torr. However, temperature dependence of the yield has been reported to vary with 

wavelength of light used. 

Very recently Gratzel [17] showed that H2S can be split catalytically into its 

components by visible light. The use of an aqueous transparent suspension of colloidal 

cadmium sulfide particles loaded with ruthenium dioxide is believed to be the key to the 

process. This process has been patented in Switzerland. 
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Other Decomposition Methods 

Ultrasonic irradiation has been shown to produce colloidal deposits of sulfur from 

aqueous hydrogen sulfide solutions [19]. Electrochemical oxidation has been reported to 

have brought about the decomposition and similar process have been patented both in 

Germany and USA. 

As reported in reference [14] the petrochemical industry has been looking at 

several alternatives to the CLAUS/SCOT process in order to recover hydrogen, but none 

have developed beyond bench scale testing. The HzS treatment alternatives apart from 

those discussed above include 

• Chemically promoted thermal decomposition, 

• Combination of electrolysis and chemical decomposition, 

• Liquid-metal conversion; 

These approaches produced hydrogen instead of water, but all were abandoned 

because of poor yield, high energy cost, or some other process limitations. 

One process being studied at the Amoco Research Center involves a complex 

series of reactions, including an indirect electrochemical reaction followed by a 

purification step to recover sulfur [14]. The sulfur produced in this process was reported 

to be a sticky, gummy mass that proved very difficult to recover and purify. 

Recently Shell and Dow have announced chelate-based HzS waste treatment 

processes. The process is claimed to have better economics than the conventional 

Claus/Scot plant. Ho~ever ,the process does not recover hydrogen, which still ends up as 

water. 

In conclusion, it appears that the decomposition of hydrogen sulfide can only be 

brought about under relatively severe conditions and even then, the yields are poor as 

dictated by the thermodynamics. 



CHAPTER III 

EXPERIMENTAL APPARATUS AND SAFETY 

The first phase of the experimental effort involved non-destructive runs using 

compressed air. This was mainly done to obtain the electrical characteristics of the 

plasma. The second phase of the experimental effort involved the destructive tests. The 

apparatus included a gas handling system, a reactor, the energy supply system (AC power 

source, oscillator, and transformer), exhaust scrubbers and auxiliary instrumentation. A 

schematic diagram of this apparatus is presented in Figure 1. Since hydrogen sulfide is a 

lethal gas, all destructive experiments were conducted at the OSU Hazardous Reactions 

Laboratory. The cylinders and the reactor system were housed in a very well ventillated 

blowout bays located outside the building. 

Experimental Materials and Equipment 

Materials 

a. Compressed Gases: 

H2S -Linde Specialty Gases, 99.5% pure. Used without further purification or 

testing. 

14 
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Air - Linde Specialty Gases, zero grade 

N2- Linde Specialty Gases, dry grade 99.9%. 

b. Solvents : 

Ethanol amine- Fisher Scientific 

Carbon disulfide - Aldrich Chemical 

Equipment 

The following Equipment was used in the experiments. 

a. AC Power Supply - California Instruments, Model 1001 TC 

b. Oscillator-California Instruments, Model 850 T 

c. Flow metering- Rotameter from Fischer and Porter Co., Model No. 10A6\32N, Tube 

Specifications-FP-1\8 -16-G-5/ 448 D009U01. 

d. Watt meter- General Electric, Schenectady, NY., Model No. 3720341, Amp- 5/10, 

Volts-100/200, watts 500/1000/2000. 

e. Multimeter- John Fluke Mfg. Co., inc., Everett, Washington, Model 8050A. 

f. High Voltage Probe- John Fluke Mfg. Co., inc., Everett, Washington, Model 80K6 

g. High Voltage Wiring- Anixter Chicago National , 8mm Silicone resistor core, Taylor 

Prowire. 
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h. Transformer- Jefferson Luminous Tube Transformer, Cat. No.721-411, Primary 120V, 

60 Hz ,Secondary 15000V, 60 MA, Mid Point Grounded. 



Description of Experimental Apparatus 

Gas Handling System 

Just one experimental gas (hydrogen sulfide) and nitrogen were piped into the 

system. However, the gas feed system can be used with slight modification to handle 

additional gases if necessary. The cylinders were located in a very well ventilated cell 

located outside the building for safety. The feed rate of the hydrogen sulfide stream was 

controlled with a simple metering valve on a rotameter. 

Exhaust System 

17 

The gas streams flowed downward through the quartz reactor, where the gases 

dissociated when conditions were right for plasma formation. The main flow was passed 

through a glass wool filter and two bubblers of ethanol amine to remove unconverted 

hydrogen sulfide before being vented to the atmosphere. The solid sulfur deposited on the 

inside walls of the reactor was removed by dissolving in carbon disulfide. The solution 

was then left overnight in a hood for carbon disulfide to evaporate, thus recovering sulfur. 
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Reactor System 

The SGDR used in this research is basically a combination of a capacitive and 

inductive device. It consists of two concentric glass cylinders, which form an annulus for 

gas flow. Silver paint or an inductive coil is wrapped around the outer glass cylinder. A 

second electrode is positioned inside the inner cylinder. When an electric potential is 

applied, the glass walls serve as as a dielectric causing the current to diffuse into the 

plasma or glow in the annulus. Gases flowing in the annulus pass through the plasma 

where plasma energy causes breakage of chemical bonds and subsequent reactions. The 

electrodes never come in contact with the gases during the process. 

Initially the reactor was constructed of pyrex tubing. To provide leak proof 

connection between the steel piping and the glass reactor inlet and outlet ports, Teflon 

swage locks were used. During the first phase of experiments some runs were carried out 

with the reactor under pressure. The reactor made of Pyrex suffered some cracks due to 

localized arcing and subsequent overheating. After this failure, the reactor was made of 

quartz tubing for thermal stability. In the destructive tests Copper mesh was used as an 

inner electrode. Copper coil was wound around the outside of the reactor, which acted as 

the outer electrode. Specifications of different reactors used are given in table 1 below. 



Reactor 

1 

2 

3 

Quartz used in 
destructive test 

Energy System 

TABLE1 
SPECIFICATIONS OF REACTORS 

Outer dia of 
inner tube,cm 

1.50 

1.70 

1.80 

1.80 

Inner dia of 
outer tube,cm 

2.26 

2.85 

2.78 

2.78 

Annular gap 
em 

0.380 

0.575 

0.490 

0.490 

Length 
ems 

25 

24 

61 

28 

The components of this system included an AC power supply, an oscillator for 

frequency tuning and a transformer to step up the voltage. A watt meter was used for 

power measurements. The watt meter was installed between the AC power supply 

equipment and the 110V wall supply. This watt meter measures the total power 

consumed by the whole set up. The power source and other electrical measurement 

equipment was inside the building. 

Auxiliary Instrumentation 

Additional equipment included a multimeter to record the secondary voltage 

applied to the reactor, a watt meter to record the power consumption and a rotameter to 

19 
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control the gas flow. The flow meter was calibrated for hydrogen sulfide under ambient 

pressure and temperature conditions. This was done experimentally with the help of a 

"bubble flow meter". The time taken for the bubble to flow the length of a 100 ml burette 

was clocked, thus giving the actual flow rate corresponding to the rotameter scale. A 

relation was then established by regressing the data points obtained. 

Safety 

Safety was a prime concern in the hydrogen sulfide experimental setup. Hydrogen 

sulfide is a colorless, highly flammable gas with an offensive odor. It is a toxic gas and is 

extremely poisonous in very small quantities. Concentration of 700 ppm by volume and 

above can result in acute poisoning. The odor of hydrogen sulfide in higher 

concentrations is objectionable. It will rapidly deaden the sense of smell, making it 

impossible to sense dangerous concentrations. 

The complete experimental system, excluding the AC power source, the watt 

meter and multimeter was set up in the bay outside the building. The electrical equipment 

was connected to the reactor system by long cables running through the ports that 

connected the main building and the experimental cell outside. This enabled the 

experimental operation to be controlled from a remote place. This also ensured that the 

operator was not in danger of coming in contact with the high voltage wires. 

The effluent from the plasma reactor went to the gas scrubber. The gas scrubber 

consisted of two bubblers containing ethanol amine, which reacted with hydrogen sulfide 

to produce a salt. The gases coming out of the scrubber were vented to the atmosphere. 
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CHAPTER IV 

NON-DESTRUCTIVE TESTS 

One of the objectives of this thesis was to study the physical and electrical 

characteristics of a SGDR. This was done using air as the test gas. By conducting these 

experiments key variables could be identified before performing the destructive tests. 

Independent variables tested were primary voltage, frequency, pressure and 

electrode material. The dependent variable was secondary voltage. The experiments were 

conducted in a safety hood. Previous research [20,32] showed that for a given set of 
I 

conditions, an optimum frequency existed which would give maximum power input to the 

reactor. Research presented in this chapter shows how this optimum condition is affected 

under different conditions. It is worthwhile to mention that variables like pressure and the 

type of electrode material used in this research were not subjects of previous work . 

Procedure 

An outline of the procedure followed in these experiments is given below, 

1. After ensuring that all electrical connections were properly made, the inlet valve to 

the reactor was opened and the gas was allowed to flow through the reactor. 

2. The power supply was turned on and the primary voltage was set at a desired value. 

21 
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3. Frequency was varied from 60Hz to 1000Hz in steps of 10Hz. Sufficient time was 

allowed (about 5 minutes)for the reading to stabilize before it was recorded. 

4. Steps 2 and 3 were repeated for the same reactor at different primary voltages. 

5. The whole procedure was repeated for several different reactors. 

The graphs presented in figures 2 and 3 show only those points between which the 

plasma was visible. To ensure proper visibility all experiments were carried out in the 

dark. 

Results and Discussion 

The results are presented in a graphical form and discussed in the following 

sections. Experimental data with all fixed conditions are tabulated in Appendix B. 

Secondary Voltage Dependence on Frequency and Primary voltage 

Figures 2 and 3 show the relationship between secondary voltage and frequency at 

different primary voltages and for a particular reactor size. All tests were conducted with 

dry air. Each figure represents a constant primary voltage applied to the transformer. The 

secondary voltage initially increases with an increase in frequency. At a certain value of 

frequency for a particular primary voltage, secondary voltage goes through a maximum 

and then begins to decrease with increasing frequency. The peak is called the optimum 

condition. 

The reason for this optimum condition is believed to be a result of the secondary 

electrical circuit loading on the transformer. Transformers are basically inductive devices 
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and consists of two sets of windings. When a capacitance generating circuit is connected 

to the secondary side of a transformer, a frequency exists where the capacitance of the 

circuit is equal to the inductance of the transformer. This condition is called resonance, 

and at this point secondary voltage goes through a maximum [4]. 

It was observed that as primary \roltage increased, the value of maximum 

secondary voltage increased. The value of optimum frequency also decreases as primary 

voltage decreases. At the same time the range between which the plasma occurs also 

increases. Thus optimum frequency reveals the frequency range to be expected for 

operation of a particular capacitive discharge reactor system. 

Visual observations revealed that the glow was more intense for reactor 1 than for 

reactor 2. Also, the jump in secondary voltage at the start of the plasma was large for 

reactor 1. It is likely that this is because of a smaller gas gap. Work presented in 

reference [30] shows that there is a critical diameter ratio, above which a direct discharge 

results. This ratio was reported to be 1.46. Reactor 2 used in this research has a diameter 

ratio slightly above 1.46. 

It can be seen from the graphs, the value of secondary voltage at optimum 

frequency increases with increasing primary voltage. The same behavior was noticed with 

both types of reactors. These runs were performed at primary voltages ranging from 20V 

to 75V. The trend basically remains the same for all runs. 
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Effect of Changing Electrode Material and Reactor Size 

Figure 4 shows the dependence of secondary voltage on frequency at a fixed 

primary voltage for a scaled up reactor with a silver nitrate inner and outer coating. This 

figure shows a rather unusual phenomenon. The secondary voltage is maximum at lower 

frequencies where the plasma is not existent. The frequency at which plasma becomes 

visible is at a higher value and not at the maximum secondary voltage. The reason for this 

is not clear at this time. The same phenomenon was observed at a different primary 

voltage (50V). The hysterisis was followed this time and the results are as shown in 

Figure 5. However, this observation is not believed to be caused by experimental error. 

The hysterisis study was done by changing the frequency in the reverse fashion once the 

forward cycle was completed. It was observed that the hysterysis does not retrace the 

path followed by the forward cycle. 

A visual observation of plasma revealed that it was brighter and more uniform 

along the length of the reactor than that formed in the previous runs, where the reactors 

were coated with micro paint. A possible explanation to this could be that silver nitrate is 

a better conductor of electricity. Also the secondary voltages were higher at the same 

onditions when compared to the previous reactors. This could be because of bigger size 

of the reactor, which increased the electrode surface area and eventually lead to more 

consumption of power. 

Secondary Voltage Dependence on Pressure , Primary Voltage and Frequency 

Secondary voltage dependence on pressure and frequency for a fixed primary 

voltage is presented in Figure 6. The optimum frequency is attained at approximately the 
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same point for a given primary voltage, but the value of secondary voltage at this 

optimum frequency increases with an increase in pressure. An attempt to conduct these 

experiments at higher primary voltages was made but was not successful. Strong 

localized arcing was observed with subsequent overheating of the reactor. On removal of 

outer electrode coating and careful inspection of the surface of the reactor, cracks were 

observed on the outer wall. Also, the inner electrode coating was badly corroded. 

Error Analysis 

Experimental error of the non-destructive tests was determined using duplicate 

data runs. This was achieved by retaking several data points after a non -destructive run. 

Maximum deviation from the original reading was ±20 volts on the secondary voltage. 

Optimum frequency error was ±10Hz. 



CHAPTER V 

DESTRUCTIVE TESTS 

The purpose of these experiments was to detennine the degree of conversion of 

hydrogen sulfide and how it is affected by primary voltage, frequency and flow rate. The 

experimental apparatus is shown in Figure 1. 

The experimental procedure was divided into two parts. In the first part, for a 

fixed flow rate and primary voltage, the frequency at which deposition starts was noted 

and a range of frequency was selected to carry out specific destructive tests. The second 

part included the specific destructive tests. 

Preliminary Destructive Tests 

The procedure for this part is outlined below, 

1. All electrical connections were checked for proper wiring. 

2. Nitrogen was passed through the reactor for 10 minutes as a purge gas. 

3. With nitrogen still flowing the reactor was switched on .With the primary voltage set 

at a desired value the reactor was run for at least 10 minutes so as to stabilize the 

plasma. 

4. Nitrogen was turned off and H2S was bled into the reactor slowly at a desired flow 

rate. 
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5. Frequency was now varied in steps of 10Hz. The point at which deposition of sulfur 

would start was visually observed and noted . From here on , the experiment was 

continued untill sufficient data points were obtained. The variables involved in this 

data collection were secondary voltage and power. A constant visual monitoring was 

observed throughout the length of experiments. 

6. The sulfur deposited was dissolved using carbon disulfide after the experiment was 

completed. The reactor was rinsed with acetone and then washed with water and 

dried before being used for the next run. 

7. The above steps were repeated for different primary voltages at a fixed flow rate. 

8. The flow rate was then changed and the whole procedure was repeated. 

The data for this is tabulated in appendix C and the results are discussed below. 

Figures 7-10 show the variations of secondary voltage with frequency for a particular flow 

rate and for different primary voltages. 

The basic characteristics remain the same as was found in our preliminary non­

destructive tests. However, the optimum frequency appears to be spread over a wide 

range rather than occurring at a single point. This also gives an indication of the 

dependence of optimum frequency on the gas composition and hence the degree of 

ionization of a gas. 

Table 2 gives an idea of the effect of flow rate and primary voltage variation on 

frequency at which destruction of hydrogen sulfide occurs. It appears that the change in 

flow rate at one primary voltage does not have any significant effect on the frequency at 

which destruction occurs. However, change in primary voltage at a particular flow rate 

seems to shift the frequency at which deposition of sulfur occurs. 
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TABLE 2 

EFFECT OF FLOW RATE AND PRIMARY VOLTAGE ON FREQUENCY 
AT WHICH DEPOSITION OCCURS 

Primary 
Voltage, volts 147.2 

40 670 

50 640 

60 580 

70 540 

Frequency at which deposition occurred ( Hz ) 

.. 
' 

Flow rate ( cc/min ) 

25.2.95 . 367.19 

690 680 

640 640 

590 590 

550 550 

481.15 

670 

640 

590 

540 
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Actual Destructive Tests 

The second part of the procedure involved the actual destructive tests and is 

outlined below, 

1. The reactor was thoroughly cleaned and dried: Steps 1 to 4 of the previous 

procedure was carried out. 
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2. Depending on the flow rate some period of. time was allowed to lapse for the 

nitrogen to pass· out of the reactor before clocking the destructive run. Note that this 

involved visual observation of the plasq1a and the judgment of the author. 

3. Toward the end of the run (10 minutes), secondary voltage, power input and 

atmospheric temperature were noted. 

4. Exactly at the end of the desired p~riod of time the reactor was switched off . 

5. H2S was shut off and nitrogen passed through in order to purge the reactor ofH2S. 

6. The reactor was_then dismantled and the sulfur deposits on the inside of the reactor 

and on the tubing were dissolved in carbon disulfide and carefully collected in 

previously weighed bottles. 

7. The solution was then set in a hood for the solvent to evaporate leaving sulfur 

behind. 

8. The reactor was washed clean with water and dried before the start of next run. 

9. The above procedure was repeated fordifferent frequencies for a particular flowrate 

and primary voltage. 

10. The whole procedure was repeated for a 'different primary voltage. 

The experimental data are tabulated in Appendix C. In the tables shown the first 

column gives the run numbers. Some run numbers are omitted as a result of failure of a 

particular run usually caused by leaking of the flow system or electrical problems. The 

second column gives the frequency at which the test was run and the next three columns 
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give the process conditions. The last two columns give the amount of sulfur recovered 

and the calculated value of percentage H2S conversion, respectively. The results of these 

experiments are presented in a graphical manner and are discussed in the sections below. 

The maximum conversion achieved in all these experiments was 92%. The range 

of conversion obtained under various conditi'ons was very wide (1% to 92% ). The 

calculation ofH2S conversion was based on the ideal gas assumption. The amount of 

sulfur recovered is a key factor in these calculations. The details of the calculations are 

shown in Appendix A. 

Dependence of H2S Conversion on Frequency 

All previous work reported has been at one particular frequency. Results of this 

section are presented in Figures 11-16. Fixed conditions were flow rate and primary 

voltage. The data points typified in these graphs appear to be scattered over a small range 

of conversion. It should be noted that from our preliminary studies on destructive tests, it 

was found that the optimum frequency was observed over a range and not at a single 

point. The findings here seem complimentary to that observed previously. 

Dependence of H2S conversion On Primary Voltage 

Figure 17 shows a plot of percentage conversion versus primary voltage. Percent 

Conversion was taken as the average of the conversions obtained at different frequencies 

for a particular primary voltage. Average conversions obtained were higher at higher 

primary voltages. The data presented are for experiments conducted up to 100 V. Runs 
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at even higher voltages were tried but were unsuccessful. At higher voltages the 

transformer output limit was overshot and the transformer tripped. Persistent tries lead to 

damage of the transformer. Subsequent experiments were conducted only at a primary 

voltage of 70 volts. 

Van Drumpt [28] observed a similar phenomenon in his investigation on oxidation of 

hydrogen chloride. He concluded that conversion increased almost linearly with the 

applied voltage. However his experiments were conducted at a frequency of 50 Hz alone. 

Dependence ofH2S Conversion on Flow Rate 

Figut:e 18 shows the variation ofH2S conversion at different flowrates for a fixed 

frequency and a fixed voltage. Flow rate can have a very profound impact on H2S 

destruction. Higher conversions were obtained at lower flow rates. Piatt [20] in his work 

on methane destruction observed a similar phenomenon. This trend was also observed by 

researchers at Argonne National Laboratory, where they studied H2S destruction in a 

microwave plasma [12]. This phenomena is intriguing, especially because the general 

belief is that plasma reactions are instantaneous. However, these results seem to suggest 

that more time is required in the reaction zone for the larger molecules to break. 

Reference [5], gives the suitable gas flow condition in glow discharge plasmas to 

be 10 cc/min. However the condition may not apply to all reactions. It should be noted 

that H2S conversion of more than 90% was obtained at a flow of about 9cc/min. It is not 

clear at this time, if the conversion is affected by the flow rate alone or in general just by 

increasing the residence time. Further investigation is necessary to shed some light on 

this. 
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' 
Dependence of H 2S conversion on Duration of Experiment 

The curve plotted in Figure 19 shows that conversion ofH2S is slightly larger for 

shorter duration of run than those at higher duration runs. This could be because of 

recombination of the sulfur fonned over a period of time. The degree of recombination is 

probably smaller for runs of shorter runs. 

Effect of Using Two Reactors In Series on H2S Conversion. 

The effect of using two reactors in series was studied by arranging two reactors in 

series with parallel electrical connections. The results of this run are tabulated below. 

Conversions obtained were about the same as that obtained for a single reactor for the 

same operating conditions. A possible explanation to this could be the division of power. 

Since the reactors were connected in parallel, the transformer would divide the output 

power equally between the two reactors and consequently conversions in both reactors 

would be less compared to a single reactor. 

It should be noted that the two reactors used were of similar dimensions but of 

different material (quartz and Pyrex). The Pyrex reactor developed cracks during the 

second run itself and further investigation on this was abandoned due to the non­

availability of a second quartz reactor. 
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Figure 19 . Dependence ofH2S Conversion on Duration of Experiment at a 
primary Voltage of 70 Volts, a Flow Rate of 56 CCIMIN 
and a fixed Frequency of 590 Hz 
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TABLE 3 

DATA OF H2S CONVERSION USING TWO REACTORS IN SERIES 

Reactors Run# Frequency Seconda:ty ·Power Temperatute Amount of Percentag;;; 

Used 

2 98 

78 

Hz 

560 

560 

Voltage KV Watts 

63 

72 

101 

102 

Reproducibility 

c 

30 

28 

Sulfur Conversion 

0 1203 

0 1273 

17 

17 5 
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Detennination of experimental error was accomplished with duplicate or ttiplicate 

data runs. The reproducibility data is presented in table 4 below. 
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TABLE4. 

REPRODUCIBILITY DATA 

Run# Frequency Primary Flow Rate Duration of Percentage Maximum 
Hz voltage, volt cc/min run, mins Conversion Percentage 

s Error 

100 560 70 8.7 10 91.9 
103 560 70 8.7 10 88.7 3.5 

101 590 70 8.7 10 823 
104 590 70 8.7 10 77.1 
107 590 70 8.7 10 78.47 5.6 

99 650 70 8.7 10 86.4 
102 650 70 8.7 10 79 8.56 

87 590 70 56 20 18.2 
95 590 70 56 20 17.1 6.6 

88 590 70 56 30 18.24 
94 590 70 56 30 19.15 4.75 

80 590 70 56 10 19.6 
85 590 70 56 10 19.73 0.65 

92 650 70 18.18 5 18.2 
93 650 70 18.18 5 18.4 1.1 

The above range of error seems to be realistic, subject to the experimental 

conditions. It should be noted that the reactor was located outside the building and drastic 

changes in weather conditions did prevail during the course of these experiments. Also, 

the electrical behavior of equipment like AC power supply, oscillator and more 

importantly the transformer play a important role. The state of the reactor walls due to 

charges existing because of previous runs is also believed to affect the electrical 

characteristics of the system. In view of the above, the author believes that a maximum 

relative error of + or - 10 % is very realistic for the equipment and analysis method used 

in these experiments. 
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Analysis of the Product material, Sulfur 

Sulfur collected in the reactor appeared as a bright yellow, solid or film on the 

glassware. All of the material formed would dissolve in carbon disulfide instantly. Some 

of the recovered sulfur was subjected to X-ray diffraction studies at the Chemistry 

Department at OSU by Dr. Elizebeth. M. Holts. The study revealed that the sulfur formed 

was crystalline and of orthorhombic form. It was also inferred that the elemental sulfur 

formed was in the Sg form. 



CHAPTER VI 

THERMODYNAMIC CONSIOERATIONS 

Objective 

A program developed by the NASA Center at Lewis was used to calculate 

equilibrium distribution for decomposition of hydrogen sulfide at various temperatures and 

atmospheric pressure. This was done initially to get an idea of the maximum attainable 

conversion at equilibrium and to be aware of the conditions at which it was possible. This 

eventually lead to the conception of effective temperature in the plasma. 

Introduction 

The principles applied to solution of all problems involving chemical equilibrium 

has been stated by Oliver et al. [24] as " that composition that satisfies the mass balance 

and total pressure specifications and also satisfies all the many simultaneous equilibria 

involved. 

The suitability of modern computers for iterative procedures has accelerated the 

development of a number of practical techniques for calculation of complex product 
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distributions. Chemical equilibrium is usually described by either of two equivalent 

formulations -equilibrium constants or minimization of free energy. The free energy 

minization technique is the one used by NASA scientist and is discussed in detail in 

Appendix E. 

Inference 
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Figure 20, shows the variation of mole fraction of the pertinent species with respect 

to temperature at equilibrium. Complete decomposition of H2S is achieved at a 

temperature of about 5100 K. A conversion of 91.9 %, which was the maximum attained 

in our project corresponds to a temperature of at least 3000 K. This only helps in telling 

that the effective temperature of the plasma was 3000K. More than anything else, it 

points out one of_the important aspects of plasma technology. As already stated the 

thermal energy is substituted by the electrical energy and the idea of achieving the 

destruction at atmospheric pressure and temperature is shown to be possible. 
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CHAP1ER VII 

CONCLUSIONS-AND RECOMMENDATIONS 

Research presented in this thesis was primarily exploratory and used to determine . 

the feasibility ofH2S destruction in a Sil~nt Glow Discharge Reactor (S~DR). 

Experiments were conducted to identify critical variables affecting the destruction process 

and to recommend areas for further investigation. Preliminary experiments were also 

conducted to learn the electrical characteristicsofthe equipment. These preliminary 

experiments were an eipansion of previous work and basically conducted to get a better 

understanding of the plasma environment and to provide a good foundation for later work. 

Conclusions 

The conclusions from these experiments are as follows 

1. An optimum frequency exists which yields a maximum secondary voltage and 

therefore maximum power input to the reactor. The optimum frequency is a function 

of primary voltage, gas composition, reactor size, electrode material and pressure 

condition. 

2. Higher primary voltages gave higher secondary voltages and lower values of 

optimum frequency. The range of frequency over which a plasma occurs increases 

with increasing primary voltage. 
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3. Silver nitrate as an electrode seems to give a good plasma environment (based on 

visual observation), but is not wear resistant and at the same time costly. In the 

author's vie~, the use of coated surfaces is a disadvantage for the type of reactors 

used in this research. In addition any damage to the reactor walls or corrosion of 

inner electrode is not detectable immediately. Use of an inductive coil on the outside 

helps to avoid such handicaps and at the same time provides a visual observation of 

the process going on in the reactor. 

4. The use of copper mesh as an inner electrode and a copper coil as an outside 

electrode seems to work very well. The reasons are, 

• No corrosion problems at higher voltages and temperatures, 

• Cheaper, 

• Plasma formed was uniform and intensity of glow was good on visual 

observation. 

5. Study on scale up of a reactor was not definitive. However, it seems that the 

secondary voltage increases with increasing length of the reactor. From the studies 

of HzS conversion dependence on flow rate, one can deduce that the use of a scaled 

up reactor would pave the way for achieving higher conversions at higher flow rates. 

6. Reactors made of Pyrex glass are not suitable to be used as plasma reactors. This 

was evident by the fact that every reactor used in this research developed cracks due 

to thermal instability. It should be noted that the walls of the reactor heat up during 

the operation of a plasma. 

7. With increase in pressure at a particular primary voltage, the value of optimum 

secondary voltage increases while the optimum frequency shifts only slightly. 

8. For a particular primary voltage, the change in flow rate does change the frequency 

at which HzS destruction starts. However, at a particular flow rate, for change in 

primary voltages, the frequency at which HzS destruction starts, shifts. In effect it 

appears that the destruction starts only after a certain level of input power is reached. 
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9. For a set of fixed conditions, H2S destruction is achieved over a wide range. 

However at frequencies over a certain range the degree of variation on the overall 

conversion achieved is not large. 

10. H2S conversion increases with decrease in -flow rate 

11. Finally, the use of Alternating Current Frequency Tuned Reactor in the destruction 

of hydrogen sulfide, under the right Conditions seems feasible. Feasible at least to the 
< ' 

extent of 92% Conversion ! 

Recommendations 

1. The experimental apparatus used in this research need refinement. Discussions with 
< ' 

the manufacturers indicated that accuracy of the electrical measurement devices 

wanes when not at 60 Hz. Electrical equipment and measuring devices ( 

transformer, watt meter, high voltage probe, multi meter etc) that can function 

efficiently at higher frequencies are required. . ,• 

' ' 

2. The decompositio,n reaction considered in this research involved only pure H2S. In 

practice, of course, H2S sources available for processing contain other components 
''• 

such as carbon dioxide, ammonia, carbonyl sulfide, nitrogen etc. The effect of these 

other components on the process requires careful consideration. 

3. The effect of residence time on the reaction requires further investigation. · 

4. Research to provide insight into the kinetics and mechanism of the process is 

certainly warranted. 

5. Research is needed to determine energy requirements for scale up of plasma reactors. 
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6. Intensive research is needed in developing a reactor design equation and a numerical 

computer simulation model that can be used to optimize and predict hydrogen 

production and to design large scale commercial reactors. 

7. All plasma processes at the moment are operated on empirical knowledge. 

Development of models to describe the phenomena at hand are required to 

understand and quantify the process. Many models have been developed which 

include kinetic expression, fluid and Concentration profiles etc. However, they are 

system dependent i.e. the parameters determined from experiments and the model fit 

each other for that particular reactor geometry. What is needed, are models which 

relate process variables to process parameters and conditions and which can 

phenomenologically describe the process taking place for any reactor geometry, 

temperature and pressure conditions. To do this it probably requires the 

identification of dominant mechanisms. 

8. With the necessary models at hand one can consider on line controls of the plasma 

process as a potential research topic. 

9. Finally research will be needed in the direction of establishing a possible commercial 

process for decomposition ofhydrogen sulfide into hydrogen and sulfur in an 

alternating current, frequency tuned plasma reactor. 



BIBLIOGRAPHY 

1. Darwent B. apd Roberts R. , The Photochemical and Thermal Decompositions of 
Hydrogen Sulfide. Proc. Roy. Soc. (London); 1953; 216A: 344 

2. Balebanov, A V.; Butylin, B. A.; Zhivotov, V.K.; Krokvenko, V.I.; Matolich, R.M.; 
Macheret, S. S.; Novikov, G. I.; Potapkin, B. V.; Rusanov, V.D., USSR. 
Dissociation of Hydrogen Sulfide in Plasma. Dokl. Akad. Nauk SSSR; 1985; 283: 
657-60 [Phys. Chern.] 76. 

3. Balebanov, A.V.; Zhivotov, V.K.; Krasheninilikov, E. G.; Nester, S. A.; Nester, S. A.; 
Potapkin, B. V.; Rusanov, V. D.; Samarin, A. E.; Fridman, A. A; Shulakova, E.V., 
USSR. Hydrogen Sulfide Dissociation in the Mixture with Propane in Microwave 
Discharge. Khim. Vys. Energ; 1989; 23: 440-3 67. 

4. Bedell, F., The Principles o'f the Transformer. New York: Macmillan Company; 1986. 

5. Boenig Herman V. Fundamentals of Plasma Chemistry and Technology: Technomic 
Publication Company; 1988. 

6. Blyholder C. D. and Cagle G.W. Environ., Infrared Spectra of H2S, CS2, S02, 
CH3SH, C2HsSH Adsorbed on Feand Ni. Sci. and Tech.; 1971; 5(2) 158 

7. Computer Program for Calculation of Complex Chemical Equilibrium Compositions 
and Applicatiopns. Sanford Gordon, Bonnie J. McBride and Frank J. Zeleznik: 
Lewis Research Center; October 1984 

8. Czemichowski, A.; Jorgenson, P.; Lesueur, H.; Chapelle, J.; Meguernes, K. Complete 
Decomposition and Vaporization of Hydrogen Sulfide by a Plasma - chemical 
Procedure. Colloq. Phys.; 1990; 51. 

9. Huyton D. W. and Woodward T. W., The Effect of Elecron Scanvengers on the Gama 
Radiolysis of Gaseous Hydrogen Sulfide. Can. J. Chern.; 1970; 48: 2300. 

10. Zelezenik F.J. and Gordon S. Calculation of Complex Chemical Equilibria. Ind. Eng. 
Chern.; 1968; 60(6): 27. 

11. Johannes A.H. (Oklahoma State University). Personal Communication. 

61 



12. Harkness, John B.L.; Gorski, Anthony J.; Daniels, Edward J., Argonne, IL 60439, 
USA. Hydrogen Sulfide Waste Treatment by Microwave Plasma Dissociation. 
Proc. lntersoc. Energy Convers. Eng. Conf; 1990; 25th: 197-202 49, 51. 

13. Besten I. E. and Selwood P. W., The Chemisorption of Hydrogen Sulfide, Methyl 
Sulfide and Cyclohexene on SupJ>orted Nickel Catalysts. Journal of catalysis; 
1962; 1: 93. 

' 

62 

14. Gorski A J., Daniels E.J. and Harkness J.B.L., Treatment of Hydrogen Sulfide Waste 
Gas. Energy systems Divisions, Argonne National Laboratory; 1990 

15. Maruzen Oil Company Limited, Japan; July 9. (1965); 14413. 

16. Raymont, M. E. D., The Thermal Decomposition of Hydrogen Sulfide. Calgary, 
Alberta: The University of Calgary; 1974. 

17. Gratzel M., Visible Light Cleaves Hydrogen Sulfide. Chern Engg. News; July 27, 
1981; 59(30): 40. 

18. Nester, S. A; Rusanov, V. D.; Fridman, A. A., USSR. Dissociation of Hydrogen 
Sulfide in Plasma with Low Oxygen Content, Khim. Vys. Energ; 1988; 22: 461-4 
52 

19.Schmitt P .D., Oxidation Promoted by Ultrasonic Radiation. J. Am. Chern. Soc.; 1929; 
51: 370. 

20. Piatt, M. A., Methane Destruction in an Alternating Current Plasma Reactor, 
Oklahoma State University, Stillwater: 1988. 

21. Potapkin, B. V.; Rusanov, V. D.; Strelkova, M. 1.; Fridman,A. A., USSR.Hydrogen 
Sulfide Dissociation Kinetics in Thermal Plasma. Khim. Vys. Energ; 1988; 22: 
537-40 76. 

22 .. Potapkin, B. V.; Rusanov, V. D.; Strelkova, M. 1.; Fridman,A. A., USSR. Influence 
of Oxygen Additions on the Kinetics of Hydrogen Sulfide Dissociation in Thermal 
Plasma. Khim. Vys. Energ; 1990 24: 156-61. 

23. Schwarz R. and Kunzer W., Influence of the Silent Electrical Discharge Upon 
Hydrogen Sulfide. Z. Anorg. Allgem. Chern.; 1929; 183: 287 

24. Oliver R.C., Stephanou S. E. and Baier R. W., Calculating Free Energy Minimization. 
Chern. Eng. Eng.; Feb 19 (1962): P.121. 

25. Torrey, R. M.P., Diss. Abs. Int. B.; 1970; 30(8): 3599. 



26. Rusanov, V. D.; Fridman, A. A.; Macheret, S. 0., Moscow, USSR. Effect of Spatial 
Non-equilibrium Behaviour During the Dissociation of Hydrogen Sulfide in a 
Nonuniform Plasma.Doll. Akad. Nauk SSSR; 1985; 283: 590-4 [Phys.]. 

27. Teimurova, F. A.; Rasulov, A.M.; Klimov, N. T., USSR. Dissociation of Hydrogen 
Sulfide in Barrier Discharge Plasma. Khim. Vys. Energ; 1991; 25: 378-9 67. 

63 

28.Van Drumpt, J.D., Oxidation of Hydrogen Chloride with Molecular Oxygen in a Silent 
Electrical Discharge. Ind. Eng. Chern Fundam.; 1972; 11: 594-5 

29. Vastola, F. J.; Stacy W. 0., University Park, Pa., USA. The Plasma-induced Reaction 
of Hydrogen Sulfide with Hydrocarbons. Am. Chern. Soc., Div. Fuel Chern., 
Prepr; 1967; 11: 234-7. 

30. Tsai, Ven Yen., Conceptual Design and Performance Analysis of Frequency Tuned 
Capacitive Discharge Reactors. Oklahoma State University, Stillwater: 1990 

31. White, W. B.; Johnson S. E. and Dantzig, G. B., Chemical Equilibrium in Complex 
Mixtures. J. Chern. Phys.; 1958; 28(5): 751. 

32. Thomas W. J. and Ullam U. Chemisorpt~on of Hydrogen Sulfide and Carbon Disulfide 
on Sulfided Nickel Oxide and Vanadium Pentoxide. J.Catalysis; 1969; 15( 4): 342. 



APPENDIX A 

SAMPLE CALCULATION 

64 



Sample calculations for run 100 are as follows: 

Experimental Data : 
Amount of sulphur collected= 0.1043 grams 
Flow Rate = 8. 7 cc/min 
Duration of Run = 10 minutes 
Pressure = 1 atm 
Temperature = 299 K 

Assumptions : . 
1. Ideal gas. Therefore the equation'PV=nRT,~applies. 
2. overall stoichiometric equation is 

HzS---> Hz + S 

R, the gas constant= 0.0821 (atm-liter)/(K-Mole) 

HzS going in= 0.00871iters/minute 

_1 atm x·0.0087liters/min x 10 mins 
therefore, moles of HzS going in='----:---,------------------,..--------------­

o:o821 atm-liter/mole-K X 299 K 

= 0.00354 moles 

Moles of sulphur collected= (0.1043 grams) I (32.02 grams/mole) 

= 0.00325 moles 

H2S going out would be = 0.00354 ·- 0:00325 

= 0.00029 moles 

· moles HzS in - moles HzS out -
Percentage Conversion= -~---------------------------------- x. 100 

moles HzS in 

= (0.00354 - 0.00029)/ (0.00354) x100 

= 91.90% 
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APPENDIX-B 

NON-DESTRUCTIVE TEST DATA 
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Reactor :1 

TABLE 5 

NON-DES1RUCnvE TEST DATA CORRESPONDING TO FIGURE 2 
RUN! 

Electrode : Silver paint 

Primary Voltage : 20 V 

Type of Gas : Air 

Frequency- Hz. 

670 
680 
690 
700 
710 
720 
730 
740 
750 
760 

Secondary Voltage -'KV 

2.90 
2.88 
2.86 
2.84 
2.80 
2.78 
2.76 
2.74 
2.70 
2.60 

Frequency -Hz · 

770 
'780 

790 
800 
810 
820 
830 
840 
850 
860 

TABLE 6 

Secondary Voltage - KV 

2.50 
2.44 

.2.40 
2.38 
2.36 
2.34 
2.30 
2.20 
2.00. 
1.98 

NON-DES1RUCnvE TEST DATA CORRESPONDING TO FIGURE 2 
RUN2· 
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Reactor : 1 Electrode : Silver Paint 

Primary Voltage: 30V 

Type of Gas : Au 

Frequency - Hi Secondary Voltage- KV '. Frequency - Hz Secondary Voltage- KV 

600 3.40 680 3.04 
610 3.36 690 3.00 
620 3.30 700 2.90 
630 3.24 710 2.84 
640 3.20 c 720 2.80 
650 3.16 730 2.78 
660 3.12 740 2.78 
670 3.10 750 2.76 
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TABLE 6 (CONTINUED) 

Frequency- Hz Secondary Voltage- KV Frequency - Hz Secondary Voltage- KV 

760 
770 
780 
790 
800 
810 
820 

2.70 
2.60 
2.52 
2.50 
2.44 
2.40 
2.38 

TABLE 7 

830 
840 
850 
860 
860 
'880 
890 

2.36 
2.32 
2.30 
2.26 
2.20 
2.16 
2.10 

NON-DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 2 
RUN3 

Reactor : 1 Electrode : Silver Paint 

Primary Voltage: 40 V 

Type of Gas : Air 

Frequency- Hz Secondary Voltage- KV Frequency - Hz Secondary Voltage- KV 

520 4.00 740 2.72 
550 3.98 750 2.68 
560 3.96 760 2.60 
570 3.80 770 2.58 
580 3.70 780 2.50 
590 3.60 790 2.44 
600 3.58 800 2.42 
610 3.52 810 2.40 
620 3.40 820 2.38 
630 3.30 830 2.32 
640 3.24 840 2.28 
650 3.20 850 2.24 
660 3.18 860 2.20 
670 3.12 870 2.16 
680 3.08 880 2.10 
690 3.00 890 2.06 
700 2.92 900 2.02 
710 2.84 910 2.00 
720 2.80 920 1.98 
730 2.78 



TABLE 8 

NON-DES1RUCTIVE TEST DATA CORRESPONDING TO FIGuRE 2 
RUN4 

Reactor : 1 Electrode : Silver Paint 

Primary Voltage: SOY 

Type of Gas : Air 

Frequency - Hz Secondary Voltage Frequency - Hz Secondary Voltage 

430 5.20 630 3.58 
440 5.36 640 3.48 
450 5.58 650 3.32 
460 5.58 660 .. 3.24 
470 5.52 670 3.18 
480 5.28 680 3.14 
490 5.20 690. 3.00 
500 5.12 700 2.92 
510 4.90 710 2.84 
520 4.80 720 2.80 
530 4.64 730 2.78 
540 4.50 740 2.76 
550 4.40 750 2.72 
560 4.30 760 2.68 
570 4.16 770 2.62 
580 4.04 780 2.60 
590 4.00 790 2.56 
600 3.90· 800 2.48 
610 3.70 850 2.48 
620 3.64 900 2.08 
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TABLE 9 

NON-DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 3 
RUNS 

70 

Reactor : 2 Electrode : Silver Paint 

Primary Voltage : 20V 

Gas: Air 

Frequency - Hz Secondary Voltage- KY_ Frequency - Hz 

670 3.16 160 
680 ·3.20' '770 
690 3,18 780 
700 3.16 '790 
710 3.10 800 
720 3.00 8l0 
730 2.90 ,820 
740 2.84 830 
750 2.80 840 

TABLE 10 

Secondary Voltage- KV 

2.76 
2.72 
2.66 
2.60 
2.56 
2.52 
2.46 
2.42 
2.40 

NON, DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 3 
RUN6 

Reactor : 2 

Primary Voltage : 3'0V 

Gas: Air 

Frequency- KHz 

600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 

Secondary Voltage- K;V 

3.60 
3.56 
3;50 
3.40 
3.30 

'3.24 
'3.20 

3.16 
3.12 
3.06 
3.00 
2.96 

Frequency - KHz 

740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 

Electrode : Silver Paint 

Secondary Voltage- KV 

'2.82 
2.80 
2.78 

.2.76 
2.72 
2.66 
2.62 
2.60 
2.56 
2.50 
2.46 
2.42 



TABLE 11 

NON DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 3 
RUN7 

Reactor :2 Electrode : Silver Pamt 

Prim,ary Voltage : 40V 

Gas: Air 
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Frequency - KHz Secondary V~Itage- KV Frequency - KHz Secondary Voltage- KV 

500 4.3Q 730 2.86 
510 4.21' 740 2.80 
520 4.18 750 2.78 
530 4.10 760 2.76 
540 4.04 770 2.72 
550 4.00 780 2.66 
560 3.96 790 2.60 
570 3.88 800 2.56 
580 3.80 810 2.50 
590 3.70 820 2.46 
600 3.60 830 2.42 
610 3.56 840 2.40 
620 3.52 850 2.38 
630 3.44 860 2.34 
640 3.38 870 2.30 
650 3.28 880 2.24 
660 3.22 890 2.20 
670 3.18 900 - 2.16 
680 3.14 910 2.10 
690 3.10 920 2.04 
700 3.02' 930 2.00 
710 2.96' 940 3.96 
720 2.90 950 1.9 



TABLE 12 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 3 
RUNS 

Reactor :2 Electrode : Silver Paint 

Primary Voltage: SOY 

Gas: Air 
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Frequency - Hz Secondary Voltage- KV Frequency - Hz Secondary Voltage- KV 

400 4.42 660 3.30 
410 4.44 670 3.60 
420 4.46 680 3.56 
430 4.48 690 3.42 
440 4.50 700 3.38 
450 4.34 710 3.30 
460 4.58 720 3.24 
470 4.62 730 3.18 
480 5.40 740 2.98 
490 5.16 750 2.86 
500 4.82 760 2.82 
510 4.70 770 2.78 
520 4.44 780 2.76 
530 '4.38 790 2.74 
540 4.24 800 2.72 
550 4.10 810 2.70 
560 4.02 820 2.62 
570 3.98 830 2.60 
580 3.84 840 2.54 
590 3.70 850 2.50 
600 3.62 860 2.44 
610 3.58 870 2.40 
620 3.56 880 2.38 
630 3.52 890 2.36 
640 3.46 900 2.32 
650 3.38 



TABLE 13 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 3 
RUN9 

Reactor : 2 Electrode : Silver Paint 

Primary Voltage: 60V 

Gas: Air 
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Frequency - Hz Secondary Voltage- KV Frequency - Hz Secondary Voltage- KV 

360 5.70 640 3.90 
370 6.00 660 3.70 
380 6.20 680 3.60 
390 6.60 700 3.50 
400 7.60 720 3.30 
420 7.70 740 3.20 
440 7.20 780 3.10 
460 6.80 800 2.90 
480 6.20 820 2.70 
500 5.70 840 2.50 
520 5.40 '860 2.40 
540 5.00 880 2.20 
560 6.70 900 2.10 
580 4.50 920 2.00 
600 4.30 999 1.40 
620 4.10 
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TABLE 14 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 3 
RUN10 

Reactor :2 Electrode : Silver Paint 

Primary Voltage : 75V 

Gas: Air 

Frequency - Hz Secondary Voltage KV Frequency- Hz Secondary Voltage KV 

100 8.60 560 4.80 
150 8.20 580 4.50 
200 7.70 600 4.30 
250 7.60 620 4.00 
300 8.20 640 3.90 
320 9.60 660 3.70 
340 11.80 680 3.60 
350 12.20 700 3.50 
380 11.40 720 3.40 
400 10.00 740 3.30 
420 8.80 760 3.20 
440 8.00 780 3.10 
460 7.60 800 2.90 
480 6.50 850 2.60 
500 6.00 900 2.20 
520 5.50 950 1.70 
540 5.00 999 1.40 

TABLE 15 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 4 
RUN.12 

Reactor :3 

Primary voltage : 45V 

Gas: Air 

Frequency - Hz 

100 
110 
120 
130 

Secondary Voltage - KV 

5.18 
4.97 
4.80 
4.61 

Frequency -Hz 

150 
160 
170 
180 

Electrode : Silver Nitrate 

Secondary Voltage- KV 

4.30 
4.14 
4.02 
3.90 
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TABLE 15 (Continued) 

Frequency- Hz Secondary Voltage- KV Frequency- Hz Secondary Voltage- KV 

140 4.44 190 3.80 
200 3.70 430 2.74 
210 3.60 440 2.67 
220 3.53 450 2.60 
230 3.46 460 2.54 
240 3.40 470 2.48 
250 3.34 480 2.42 
260 3.30 490 2.37 
270 3.26 540 2.22 
280 3.23 550 2.18 
290 3.22 560 2.13 
300 3.21 570 2.09 
310 3.20 580 2.05 
320 3.20 590 2.04 
330 3.21 600 2.01 
340 3.23 610 1.98 
350 3.26 620 1.94 
360 3.30 630 1.90 
370 3.18 640 1.86 
380 3.13 650 1.83 
390 3.04 660 1.80 
400 2.97 700 1.66 
410 2.89 ' 750 1.28 
420 2.81 

TABLE 16 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 5 
RUN13 

Reactor :3 

Primary Voltage :50V 

Gas: Air 

Frequency- Hz Secondary Power - watts 
voltage- KV 

60 6.46 89 
70 6.24 65 
80 6.02 64 
90 5.78 62 
100 5.56 61 
110 5.34 60 

Frequency - Hz 

140 
150 
160 
170 
180 
190 

Electrode : Silver 
Nitrate 

Secondary Power- watts 
voltage- KV 

4.77 59 
4.61 58 
4.46 58 
4.32 58 
4.20 58 
4.10 58 
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TABLE 16 (Continued) 

Frequency - Hz Secondary Power - watts Frequency - Hz Secondary Power - watts 
voltage- KV voltage- KV 

120 5.14 60 200 3.99. 60 
130 4.95 59 210 3.90 60 
220 3.81 60 999 0.32 56 
230 3.74 60 980 0.38 66 
240 3.68 60 970 0.41 66 
250 3.62 60 960 0.43 66 
260 3.57 59 950 0.46 66 
270 3.54 60 940 0.49 66 
280 3.51 60 930 0.52 66 
290 3.49 60 920 0.54 66 
300 3.48 60 910 0.73 66 
310 3.47 60 900 0.60 66 
320 3.48 60 890 0.63 66 
330 3.49 60 880 0.67 65 
340 3.47 100 870 0.70 65 
350 ~.35 100 860 0.74 65 
360 3.24 100 850 0.78 65 
370 4.47 98 840 0.82 65 
380 3.04 97 830 0.87 65 
390 3.05 97 820 0.92 65 
400 2.96 97 810 0.97 65 
410 2.87 97 800 1.03 65 
420 2.79 96 790 1.09 69 
430 2.72 96 780 1.16 70 
440 2.64 95 770 1.23 70 
450 2.68 95 760 1.31 70 
460 2.63 95 750 1.41 72 
470 2.57 95 740 1.51 73 
480 2.51 95 730 1.64 75 
490 2.45 95 720 1.60 76 
500 2.40 94 710 1.62 76 
510 2.35 92 700 1.65 76 
520 2.30 91 690 1.67 77 
530 2.24 91 680 1.68 77 
540 2.20 91 670 1.71 77 
550 2.16 90 660 1.74 77 
560 2.11 90 650 1.76 77 
570 2.06 90 640 1.79 77 
580 2.02 89 630 1.82 80 
590 1.98 87 620 1.84 81 
600 1.94 87 610 1.86 81 
610 1.91 86 600 1.89 81 
620 1.88 85 590 1.93 82 
630 1.86 85 580 1.95 82 
640 1.84 85 570 1.98 82 
650 1.80 84 560 2.02 83 
660 1.77 83 550 2.03 83 
970 0.39 60 540 2.07 84 
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TABLE 16 (Continued) 

Frequency - Hz Secondary Power- watts Frequency - Hz Secondary Power- watts 
voltage- KV voltage- KV 

510 2.20 85 280 4.24 98 
500 2.25 85 270 4.36 96 
490 2.30 91 260 4.45 90 
480 2.35 91 250 4.40 82 
470 2.41 92 240 3.70 62 
460 2.47 92 230 3.76 60 
450 2.53 92 220 3.84 58 
440 2.60 92 210 3.92 58 
430 2.63 92 200 4.02 58 
420 2.68 92 190 4.13 57 
410 2.76 92 180 4.24 57 
400 . 2.80 92 170 4.36 57 
390 2.88 95 160 4.50 57 
380 2.95 96 150 4.65 57 
370 2.05 96 140 4.82 57 
360 3.15 96 130 5.00 57 
350 3.26 97 120 5.20 57 
340 3.40 98 110 5.40 57 
330 3.49 99 100 5.61 57 
320 3.64 99 90 5.85 58 
310 3.80 99 80 6.08 60 
300 3.95 100 70 6.32 63 
290 4.11 100 60 6.54 67 

TABLE 17 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 6 
RUN14 

Reactor :3 Electrode: SilverNitrate 

Primary Voltage : 30V Pressure: 30 Psig 

Gas: Air 

Run# Pressure - Psig . Frequency - Hz Secondary Voltage- KV 

60 4.30 140 4.40 
70 4.40 150 4.50 
80 4.40 160 4.60 
90 4.40 170 4.60 
100 4.40 180 4.60 
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TABLE 17 (CONTINUED) 

Run# Pressure - Psig Frequency- Hz Secondary Voltage- KV 

110 4.40 190 4.70 
120 4.40 200 4.80 
130 4.40 210 4.80 
220 4.80 680 9.40 
230 4.90 690 8.80 
240 '5.00 700 8.20 
250 5.00 710 7.60 
260 5.10 ," 720 7.20 
270 5.20 730 6.80 
280 5.20 740 6.40 
290 5.40 750 6.00 
300 5.60 760 5.60 
310 5.70 770 5.40 
320 5.80 780 5.20 
330 6.00 790 4.80 
340 6.20 800 4.70 
350 6.40 810 4.50 
360 6.60 820 4.30 
370 6.80 830 4.10 
380 7.20 840 4.00 
390 7.20 850 3.80 
400 7.80 860 3.60 
410 8.20 870 3.60 
420 8.60 880 3.40 
430 9.20 890 3.40 
440 9.20 900 3.20 
450 10.40 910 3.0 
460 11.3 920 3.00 
470 12.30 930 2.80 
480 12.40 940 2.70 
490 15.00 950 2.60 
500 17.20, 960 2.50 
510 20.20 970 2.40 
520 23.70 980 2.30 
530 21.40 990 2.20 
540 20.60 999 2.00 
670 10.40 



TABLE 18 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 6 
RUN15 

Reactor :3 Electrode: SilverNitrate 

Primary Voltage: 30V Pressure: 40 Psig 

Gas: Air 
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Frequency - Hz Secondary Voltage-KV Frequency - Hz Secondary Voltage-KV 
' -

60 4.20 '440 9.60 
70 4.30 450 10.20 
80 .· 4.30 460 11.00 
90 4.40 470 11.9 
100 4.40 480 13.00 
110 4.40 490 14.30 
120 4.40 500 16.20 
130 4.40 510 18.4 
140 4.40 520 21.50 
150 4.50 530 15.20 
160 4.50 540 16.00 
170 4.60 550 16.40 
180 4.60 560 15.20 
190 4.60 570 14.20 
200 4.70 580 23.80 
210 4.80 590 23.40 
220 4.80 600 21.4 
230 4.90 610 19.2 
240 5.0 620 17.4 
250 5.00 630 15.70 
260 5.10 640 14.30 
270 5.20 650 13.00 
280 5.30 660 12.00 
290 5.40 670 10.90 
300 5.50 680 10.00 
310 5.60 690 9.20 
320 5.80 700 8.60 
330 6.00 710 8.00 
340 6.20 720 7.50 
350 6.20 730 7.00 
360 6.40 740 6.60 
370 6.60 750 6.30 
380 7.00 760 6.00 
390 7.40 770 5.60 
400 7.80 780 5.40 
410 8.10 790 5.20 
420 8.60 800 5.00 
430 9.00 810 4.70 



TABLE 19 

NON-DESTRUCTIVE TESTS CORRESPONDING TO FIGURE 6 
RUN16 

Reactor :3 Electrode: SilverNitrate 

Primary Voltage: 30V Pressure: 40 Psig 

Gas: Air 

Frequency - Hz Secondary Voltage- KV Frequency- Hz Secondary Voltage- KV 

60 4.40 440 9.50 
70 4.40 450 9.20 
80 4.40 460. 10.90 
90 4.40 470 11.80 
100 4.40 480 12.90 
110 4.40 490 14.20 
120 4.40 500 16.20 
130 4.40 510 18.40 
140 4.40 520 21.20 
150 4.50 530 24.80 
160 4.50 540 28.20 
170 4.60 550 30.40 
180 4.60 560 30.40 
190 4.60 570 29.00 
200 4.70 580 27.30 
210 4.80 590 24.80 
220 4.80 600 22.20 
230 4.80 610 20.00 
240 4.90 620 18.00 
250 5.00 630 16.00 
260 5.10 640 14.40 
270 5.20 650 13.20 
280 5.20 660 12.00 
290 5.40 670 11.00 
300 5.50 680 10.00 
310 5.60 690 9.20 
320 5.80 700 8.60 
330 6.00 710 8.po 
340 6.20 720 7.40 
350 6.40 730 7.00 
360 6.60 740 6.50 
370 6.80 750 6.20 
380 7.00 760 5.80 
390 7.40 770 5.50 
400 7~70 780 5.20 
410 8.00 790 5.00 
420 8.50 800 4.80 
430 9.00 810 4.60 
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APPENDIX-C 

PRELIMINARY DESTRUCTIVE TEST 

DATA 
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TABLE 20 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 7 
RUN 1 

Primary Voltage: 40 V 

Flow Rate: 147.2 cc/min 
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Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 

11.2 710 27.2 
11.6 720 27.2 
12.2 730 27.2 
12.6 740 27.2 
13.2 750 27.4 
13.6 760 27.4 
14.4 770 27.4 
15.0 780 27.6 
15.8 790 27.4 
16.6 800 27.3 
17.6 810 27.2 
18.6 820 26.8 
19.8 830 26.4 
21.0 840 26.0 
22.4 850 25.6 
24.0 860 25.0 
25.2 870 24.6 
26.0 880 24.2 
26.4 890 22.4 
26.8 900 22.8 
27.0 

TABLE 21 

PRILIMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 7 
RUN 2 

Primary Voltage :50 V 

Flow Rate: 147.2 cc/min 

Frequency - Hz Secondary Voltage KV Frequency -Hz Secondary Voltage KV 

510 14.2 570 18.4 
520 15.0 580 19.4 
530 15.6 590 20.4 
540 16.2 600 21.6 
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TABLE 21 (CONTINUED) 

Frequency - Hz Secondary Voltage KV Frequency- Hz Secondary Voltage KV 

630 25.8 820 32.0 
640 27.4 830 32.0 
650 28.2 840 31.8 
660 28.8 850 31.2 
670 28.2 860 30.8 
680 28.2 870 30.2 
690 28.0 880 29.6 
700 28.2 890 29.0 
710 29.0 900 28.4 
720 28.6 910 27.8 
730 28.8 920 27.2 
740 25.8 930 26.6 
750 25.4 940 25.8 
760 25.8 950 25.2 
77 30.2 960 24.4 

780 30.4 970 23.4 
79 31.0 980 22.4 
800 31.2 990 21.6 
810 31.8 999.9 20.8 

TABLE22 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 7 
RUN 3 

Primary Voltage 50 V 

Flow Rate: 147.2 cc/min 

Frequency Hz Secondary Voltage KV Frequency Hz Secondary Voltage KV 

450 16.4 600 31.4 
460 17.0 610 31.8 
470 17.4 620 32.4 
480 18.0 630 32.8 
490 18.6 640 33.0 
500 19.4 650 33.2 
510 20.2 660 33.0 
520 21.0 670 33.2 
530 22.0 680 33.6 
540 23.0 690 34.0 
550 24.0 700 34.0 
560 25.4 710 34.4 
570 26.6 720 34.6 
580 28.2 730 34.8 
590 29.8 740 35.0 



TABLE 23 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 7 
RUN 4 

Primary Voltage: 70 V 

Flow Rate: 147.2 cc/min 
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Frequt;ncy - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

400 16.4 530 26.6 
410 17.0 540 28.0 
420 17.4 550 29.6 
430 17.8 560 31.0 
440 18.4 570 32.0 
450 19.0 580 32.4 
460 19.8 590 32.6 
470 20.4 600 33.2 
480 20.6 610 33.2 
490 22.2 620 33.4 
500 23.2 630 33.8 
510 24.2 640 33.8 
520 25.2 

TABLE24 

PLRILIMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 8 
RUNS 

Primary Voltage: 40V 

Flow Rate : 252.5 CC/MIN 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

500 10.0 680 23.2 
510 10.2 690 24.2 
520 10.4 700 24.6 
530 10.8 710 24.8 
540 11.2 720 25.0 
550 11.6 730 25.0 
560 12.0 740 25.0 
570 12.6 750 25.0 
580 13.2 760 25.0 
590 13.8 770 25.0 
600 14.6 780 24.8 
610 15.4 790 24.2 
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TABLE 24 (CONTINUED) 

Frequency - Hz Secondary Voltage KV Frequency- Hz Secondary Voltage KV 

620 16.2 800 23.6 
630 17.2 810 23.2 
640 18.4 820 22.6 
650 19.6 830 22.0 
660 20.8 840 21.6 
670 21.0 

TABLE25 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 8 
RUN 6 

Primary Voltage :50 V 

Flow Rate : 252 cc/min 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

450 8.6 650 22.2 
460 8.8 660 22.4 
470 9.0 670 22.4 
480 9.4 680 22.4 
490 9.6 690 22.4 
500 10.0 700 22.4 
510 10.2 710 22.2 
520 10.8 720 22.2 
530 11.2 730 22.2 
540 11.8 740 22.4 
550 12.2 750 22.4 
560 12.8 760 22.6 
570 13.4 770 22.6 
580 14.4 780 22.6 
590 15.2 790 22.8 
600 17.4 800 22.8 
610 18.2 810 22.6 
620 19.6 830 21.8 
630 20.~ 840 21.0 
640 21.8 850 20.4 



TABLE 26 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 8 
RUN 7 

Primary Voltage: 60 V 

Flow Rate : 252.5cc/min 
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Frequency- Hz Secondary Voltag~ KV Frequency - Hz Secondary Voltage KV 

550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 

15.8 750 20.2 
16.4 760 20.4 
17.2 770 20.4 
18.2 780 20.2 
19.2 790 20.2 
20.4 800 20.2 
21.2 810 20.2 
21.6 820 20.2 
22.0 830 20.0 
21.2 840 19.8 
21.2 850 19.6 
20.8 860 19.4 
20.6 870 18.8 
20.6 880 18.4 
20.6 890 17.8 
20.6 900 17.2 
20.6 910 16.6 
20.4 920 15.8 
20.4 930 15.2 
20.4 940 14.6 

TABLE 27 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 8 
RUN 8 

Primary Voltage: 70 V 

Flow Rate: 252.5cc/min 

Frequency - Hz Secondary Voltage KV Frequency- Hz Secondary Voltage KV 

510 16.6 
520 17.4 
530 18.0 
540 18.8 
550 19.6 
560 19.8 

590 
600 
610 
620 
630 
640 

21.8 
21.4 
21.4 
20.8 
20.2 
20.6 
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TABLE 27 (CONTINUED) 

Frequency -Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

670 20.2 820 20.6 
680 20.1 830 20.6 
690 20.2 840 20.4 
700 20.0 850 20.0 
710 20.0 860 19.6 
720 20.0 870 19.2 
730 20.0 880 18.6 
740 20.0 890 18.0 
750 20.0 900 17.4 
760 20.2 910 16.8 
770 20.4 920 16.2 
780 20.4 930 15.4 
790 20.8 940 14.8 
800 20.8 950 14.2 
810 20.6 

TABLE 28 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 9 
RUN 9 

Primary Voltage: 40V 

Flow Rate :367.2 cc/min 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

550 10.6 730 22.4 
560 11.0 740 22.2 
570 11.6 750 22.2 
580 12.0 760 22.0 
590 12.6 770 22.0 
600 13.4 780 21.8 
610 14.0 790 21.2 
620 15.0 800 20.8 
630 15.8 810 20.0 
640 17.0 820 19.4 
650 18.2 830 18.8 
660 19.4 840 18.2 
670 20.8 850 17.4 
680 21.4 860 16.8 
690 22.2 870 16.0 
700 22.4 880 15.2 
710 22.4 890 14.6 
720 22.4 900 13.8 



TABLE 29 

PRILIMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 9 
RUN 10 

Primary Voltage :50 V 

Flow Rate : 367.2 cc/min 

88 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

550 
s6o 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 

11.0 730 21.4 
11.4 740 21.6 
12.0 750 21.6 
12.6 760 21.6 
13.4 770 21.8 
13.2 780 21.8 
15.0 790 21.8 
16.0 800 21.8 
19.2 810 21.4 
20.4 820 21.0 
21.2 830 20.2 
21.6 840 19.6 
21.6 850 19.0 
21.6 860 18.2 
21.6 870 17.4 
21.6 880 16.8 
21.4 890 16.0 
21.4 900 15.4 

TABLE 30 

PRILIMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 9 
RUN 11 

Primary Voltage: 60 V 

Flow Rate: 367.2 cc/min 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

510 
520 
530 
540 
550 
560 
570 

13.6 
14.2 
14.4 
15.0 
15.6 
16.2 
17.4 

740 
750 
760 
770 
780 
790 
800 

22.2 
22.4 
22.4 
22.6 
22.4 
22.4 
22.2 
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TABLE30 (CONTINUED) 

Frequency- Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

600 19.8 830 21.6 
610 20.8 840 21.2 
6f0 21.6 850 20.6 
630 22.0 860 19.8 
640 22.2 870 19.2 
650 22.2 880 18.4 
660 22.2 890 17.4 
670 22.2 900 16.6 
680 22.2 910 15.8 
690 22.2 920 15.0 
700 22.2 930 14.2 
710 22.2 940 13.2 
720 22.2 950 12.6 
730 22.2 

TABLE 31 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 9 
RUN# 12 

Primary Voltage : 70 V 

Flow Rate: 367.2 cc/min 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

450 14.8 680 22.0 
460 15.4 690 22.2 
470 15.8 700 22.2 
480 15.2 710 22.0 
490 16.8 720 22.2 
500 17.0 730 22.0 
510 18.8 740 22.0 
520 18.8 750 21.8 
530 19.6 760 21.8 
540 20.6 770 21.8 
550 21.2 780 21.8 
560 22.6 790 21.6 
570 22.4 800 21.4 
580 22.4 810 21.4 
590 22.6 820 21.2 
600 22.6 830 20.8 
610 22.2 840 20.4 
620 22.4 860 19.4 
630 22.2 870 18.8 
640 22.0 880 18.0 
650 21.8 890 17.2 



TABLE32 
PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 10 

RUN 13 

Pnmary Voltage: 40 V 

Flow Rate : 481.15 CC/MIN 
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Frequency - Hz Secondary Voltage KV Frequency -Hz Secondary Voltage KV 

550 10.6 730 22.0 
560 11.2 740 22.0 
570 11.6 750 21.8 
580 12.2 760 21.6 
590 13.0 770 21.2 
600 13.6 780 20.8 
610 14.6 790 20.4 
620 15.4 800 19.6 
630 16.4 810 19.0 
640 17.2 820 18.4 
650 18.2 830 17.6 
660 19.4 840 17.0 
670 20.4 850 16.4 
680 21.2 860 15.6 
690 21.8 870 15.0 
700 22.0 880 14.2 
710 22.2 890 13.6 
720 22.2 900 12.8 

TABLE 33 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 10 
RUN 14 

Primary Voltage : 50 V 

Flow Rate : 481.15 cc/min 

Frequency - Hz Secondary Voltage KV 

510 
520 
530 
540 
550 
560 
570 
580 

11.0 
11.4 
12.0 
12.8 
13.4 
14.0 
14.6 
15.4 

Frequency- Hz 

610 
620 
630 
640 
650 
660 
670 
680 

Secondary Voltage KV 

18.2 
19.0 
20.8 
21.8 
22.2 
22.2 
22.2 
22.2 
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TABLE 33 (CONTINUED) 

Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

710 22.6 810 21.6 
720 22.6 820 21.0 
730 22.6 830 20.2 
740 22.6 840 19.6 
750 22.6 850 18.8 
760 22.6 860 18.0 
770 22.4 870 17.2 
780 22.4 880 16.4 
790 22.2 890 15.6 
800 22.0 900 14.8 

TABLE 34 

PRIUMINARY DESTRUCTIVE DATA CORRESPONDING TO FIGURE 10 
RUN15 

Primary Voltage: 60 V 

Flow Rate : 481.15 CC/MIN 

Frequency - Hz Secondary Voltage KV Frequency- Hz Secondary Voltage KV 

500 13.8 700 22.0 
510 14.4 710 22.0 
520 15.0 720 22.0 
530 15.4 730 21.8 
540 16.2 740 21.6 
550 17.0 750 21.6 
560 18.2 760 21.6 
570 19.0 770 21.4 
580 20.0 780 21.4 
590 20.8 790 21.2 
600 20.8 800 21.2 
610 22.0 810 21.0 
620 22.0 820 20.6 
630 22.2 830 20.4 
640 22.4 840 19.8 
650 22.2 850 19.2 
660 22.2 860 18.4 
670 22.2 870 17.8 
680 22.0 880 17.0 
690 22.0 890 16.2 



TABLE 35 

PRILIMINARY DESTRUCilVE DATA CORRESPONDING TO FIGURE 10 
RUN 16 

Primary Voltage : 70 V 

Flow Rate : 481.15cc/min 
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Frequency - Hz Secondary Voltage KV Frequency - Hz Secondary Voltage KV 

450 13.2 680 21.2 
460 13.8 690 21.2 
470 14.2 700 21.2 
480 14.6 710 21.2 
490 15.0 720 21.2 
500 15.6 . 730 21.2 
510 16.2 740 21.2 
520 16.8 750 21.0 
530 17.4 760 21.0 
540 18.2 770 20.8 
550 18.8 780 20.6 
560 20.0 790 20.6 
570 21.4 800 20.4 
580 22.6 810 20.2 
590 23.0 820 20.0 
600 22.0 830 19.8 
610 22.0 840 19.6 
620 22.0 850 19.2 
630 21.2 860 18.8 
640 21.6 870 18.2 
650 21.6 880 17.8 
660 21.8 890 17.2 
670 21.4 900 16.6 



APPENDIX-D 

DESTRUCTIVE TEST DATA 
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TABLE 36 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 11 

Primary Voltage: 40V 

Flow Rate: 147.2 cc/min 

Duration of Each Run: 10 minutes 

Run Frequency Secondary Power Temperature Amount of Percentage 
Voltage Sulphur 

Number Hz KV Watts c in Conversion 
Grams 

1 690 22.4 92 21 0.0297 1.522 

3 720 22.4 90 23 0.0871 4.46 

4 730 22.8 90 23 0.0187 0.96 

5 740 21.8 94 20 0.0233 1.19 

6 750 22.2 90 25 0.0228 1.17 

7 770 22.0 89 27 0.0179 0.93 

8 780 20.6 84 27 0.0230 1.2 

9 800 19.2 81 28 0.0139 0.73 
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TABLE 37 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 12 

Primary Voltage : SOV 

Flow Rate: 147.2 cc/rnin 

Duration of Each Run : 10 minutes 

Run Frequency Secondary Power Temperature Amount of Percentage 
Vo1tage Sulphur 

Number Hz KV Watts c in Conversion 
Grams 

10 660 22.2 90 29 0.0732 3.85 

11 670 21.8 94 25 0.1160 6.02 

12 690 22.0 94 22 0.0710 3.65 

14 710 21.6 95 21 0.1285 6.60 

15 720 21.4 90 30 0.0646 3.41 

17 730 23.6 88 27 0.0244 1.27 

18 740 23.2 86 28 0.0313 1.64 

19 750 24.0 90 28 0.0690 3.62 

20 770 24.2 89 29 0.0319 1.68 

21 790 21.6 89 28 0.0447 2.34 

22 820 18.8 85 28 0.0396 2.07 
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TABLE 38 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 13 

Primary Voltage : 60V 

Flow Rate: 147.2 cc/min 

Durntion of Each Run : 10 minutes 

Run Frequency Secondary Power Temperature Amount of Percentage 
Voltage Sulphur 

Number Hz KV Watts c in Conversion 
Grnms 

23 610 21.4 90 28 0.1299 6.81 

24 630 21.4 91 28 0.1600 8.4 

25 640 21.2 95 28 0.1559 8.2 

26 650 24.8 95 26 0.1683 8.77 

27 670 25.0 92 26 0.1431 7.45 

28 680 21.4 93 22 0.1535 7.9 

30 690 21.0 92 25 0.1518 7.88 

31 710 22.2 93 24 0.1381 7.15 

32 730 19.4 96 25 0.1649 8.56 

33 750 22.6 94 25 0.1109 5.76 
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TABLE 39 

DESTRUCRTIVE TEST DATA CORRESPONDING TO FIGURE 14 

Primary Voltage : 70V 

Flow Rate : 147.2 cc/min 

Duration of Each Run : 10 minutes 

Run Frequency Secondary Power Temperature Amount of Percentage 
Hz Watts Sulphur 

Number Voltage c in Conversion 
KV Grams 

34 550 20.4 88 26 0.1396 7.27 

35 560 21.0 94 28 0.2437 12.8 

36 570 20.2 98 30 0.2147 11.34 

37 580 20.8 94 31 0.1622 8.60 

38 590 20.6 94 31 0.2097 11.11 

39 600 21.0 98 32 0.1733 9.21 

40 620 20.4 95 32 0.2007 10.67 

42 630 23.0 100 21 0.1791 9.17 

43 650 22.6 97 23 0.3114 16.06 

44 670 22.6 97 24 0.2854 14.77 

45 690 21.8 100 28 0.1673 8.78 
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TABLE 40 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 15 

Primary Voltage: 90 V 

Flow Rate: 147.2 cc/min 

Duration of Each Run: 10 minutes 

Run Frequency Secondary Power Temperature Amount of Percentage 
Hz Watts Sulphur 

Number Voltage c in Conversion 
KV Grams 

46 500 22.0 '120 28 0.2230 11.66 

47 510 21.6 116 32 0.2050 11.00 

48 520 21.6 117 31 0.2127 11.30 

49 530 22.4 120 22 0.1943 10.00 

50 550 22.0 120 22 0.1928 10.07 

51 560 22.4 117 28 0.2050 10.77 

52 570 22.0 115 30 0.1780 9.41 

53 590 21.8 115 30 0.1857 10.18 

54 490 21.6 110 33 0.1827 9.75 

55 610 21.2 110 38 0.1796 9.74 
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TABLE41 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 16 

Primary Voltage : 100 V 

Flow Rate: 147.2 cc/min 

Duration of Each Run : 10 minutes 

Run Frequency Secondary Power Temperature Amount of Percentage 
Voltage Sulphur 

Number Hz KV Watts c in Conversion 
Grams 

56 460 19.2 135 27 0.4337 22.7 

59 470 19.0 135 28 0.2925 15.4 

60 480 18.4 130 30 0.2778 14.7 

62 500 17.8 130 31 0.2667 14.05 

TABLE42 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 17 

Fixed Condition: Flow Rate= 147.2 cc/min 

Primary Voltage, Volts Average Percentage Conversion 

40 1.1 

50 3.15 

60 8.06 

70 9.28 

90 10.74 

100 16.0 
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TABLE43 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 18 

Primary Voltage : 70 V 

Duration of Each Run : 10 minutes 

Run Frquency Secondary Flow Power Temperature Amount of Percent 
Voltage Rate Sulphur in 

Number Hz KV cc/min Watts c Grams Conversion 

100 560 10.0 8.70 100 26 0.1043 91.90 

78 560 11.4 18.18 105 24 0.1036 43.42 

67 560 14.2 56.00 97 24 0.1550 21.00 

35 560 21.0 147.20 94 28 0.2437 12.80 

107 590 10.4 8.70 98 25 0.0893 78.47 

81 590 11.0 18.18 102 26 0.1209 51.10 

68 590 13.8 56.00 101 25 0.1670 22.80 

38 590 20.6 147.2 94 31 0.2097 11.11 

99 650 9.4 8.70 95 26 0.0980 86.40 

83 650 11.2 18.18 98 29 0.1418 60.43 

69 650 13.8 56.00 100 27 0.1470 20.20 

42 650 22.6 147.2 97 23 0.3114 16.06 
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TABLE44 

DESTRUCTIVE TEST DATA CORRESPONDING TO FIGURE 19 

Primary voltage : 70 V 

Flow Rate: 56 cc/min 

Frequency : 590Hz 

Run Secondary Power Duration Temperature Amount Percent 
Voltage of Each of 

Number KV Watts Run in c Sulphur in Conversion 
minutes Grams 

84 13.4 105 5 22 0.0808 21.80 

85 13.0 100 10 32 0.1412 19.73 

86 14.2 101 15 27 0.1753 16.00 

87 14.2 100 20 26 0.2658 18.20 

88 14.4 102 30 25 0.4008 18.24 
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The Free Energy Minimization Technique 

Equilibrium can be defined as that state of a system in which the total free energy 

of that system is a minimum. In essence, all that is required is to obtain an expression for 

the free energy of the system in terms of the potentials of the species involved, and to 

minimize this quantity subject to certain external constraints. 

For chemical systems, the technique was first suggested by White et al. [31] and 

involves the chemical potentials of the species present. The technique as followed by the 

NASA scientists is enumerated here. The equations given below are directly taken from 

reference [7]. The free energy of a mixture of n chemical species containing Xi moles of 

the ith species (in the ideal gaseous state) can be expressed as 

where the chemical potential per kilogram mole of species j is defined to be 

f.l.J- (iJg/ iJnj)T,P,I\i .. t 

and nj is the number of kilogram- mols of species j per kilogram of mixture. 

To detennine the equilibrium composition, it is necessary to find a set of non­

negative values of nj which minimizes equation 5.1, while also satisfying the mass balance 

c<?nstraint expressed as 

n 

~ 3ijDJ - b.o = 0 
J•l 

i=l, ........... ,1 -( 5.2) 

where the stoichiometric coefficients aij are the number of kilogram atoms of element i per 

kilogram-mole of species j and bio is the assigned number of kilogram-atoms of element i 

per kilogram of total reactants. 



104 

Now defining a term G to be, 

t 

G=g+ ~J...(b-bo) -(5.3) 

where A i are lagrangian multipliers. The condition for equilibrium becomes 

-(5.4) 

Treating the variations a nj and aA. i as independent gives 

l 

fl.i + "'\' A,;au = 0 j=l, ............... ,n 
f-1 

-(5.5) 

and the mass balance equation 5.2 . 

Based on the ideal gas assumption, the chemical potential may be written as 

Jlj == fl.io + RTln(D.i In)+ RTln Patm j=l, ............. ,m 

where Jljo for gases U=l tom) is the chemical potential in the standard state. Equations 

5.2 and 5.5 permit the determination of equilibrium compositions for thermodynamic 

states specified by an assigned temperature To and Po. 

The mathematics of the minimization technique can be summarized as follows : 

1. An expression in the form of equation (5.1) is written for the free energy of the 

systems starting with a positive set of values n (n1, ......... nn) for the species involved, 

which satisfies the mass balance constraint in equation 5.2. This set constitutes the 

initial guesses for the product distribution. 

2. A Taylor series expansion of this expression is generated in terms of the differences 

between the final solution seat of values and the starting values assigned. 

3. The expanded function, which is an approximation to the free energy subject to the 

mass balance constraint using Lagrange multipliers. This is done by setting the partial 

differential of the free energy expression with respect to each species equal to zero. 
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4. A set of simultaneous equations result from these equations. Solution of these yields 

a new composition which approximates more closely to the true value than did the 

original guessed set , at the starting of the computation. 

5. This procedure is repeated until the new composition is the same as the previous one 

within desired limits. This set of product values corresponds to the composition 

having the minimum free energy for that system. 

One of the advantages of this technique, is that little prior knowledge of the system 

to be investigated is required .. The method does not require any knowledge of reactions or 

specific equilibria involved. The generality and flexibility of this technique make it ideal for 

tackling a variety of problems involving equilibria. 
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