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PREFACE 

Self-sustained shear layer oscillations over open cavities beneath 

a laminar boundary layer were studied experimentally. The cavities 

were rectangular in cross-section. The research concentrated upon 

determining the effects of rotating the leading edge of the cavity 

relative to the flow direction. The leading edge was rotated from an 

initial position normal to the flow direction to angles up to 30 

degrees from the normal. Measurements were performed in an open 

return wind tunnel with freestream velocities ranging from 20 to 44 

m/s. The cavity depth was fixed at 6.35 mm and the streamwise 

length was varied from 6.55 to 13 mm. Constant temperature hot

wue anemometers together with a dynamic signal analyzer were 

used to analyze the signals from the shear layer. For a particular 

cavity size, resonance frequency increased with increasing 

freestream velocity, while for a fixed freestream velocity as the 

cavity length was increased, the resonance frequency decreased. As 

the cavity was rotated, the resonance frequency gradually decreased. 

Due to inconsistent pattern no general relationship could be 

developed from the cross-correlation measurements. 

I would like to express my sincere appreciation to Dr. F. W. 

Chambers for his invaluable suggestion, guidance and support as well 

as the help he provided in each phase of this study as major advisor. 
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shear layer thickness at x 
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characteristic thicknesses at the leading edge 
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CHAPTER I 

INTRODUCTION 

The phenomenon of fluid flow over cavities m flat surfaces is of 

significant importance because of its relevancy to many practical 

problems. This type of flow occurs in a wide variety of applications 

of which uncovered cavities on flight vehicles to house optical 

instruments, landing gear-wells and bomb-bays on aircraft, 

Helmholtz resonators, ring cavities around projectiles, slotted-wall 

wind tunnels, continuous laser cavities and cavities in ship hulls and 

on aircraft wing surfaces are only a few to be mentioned. It is 

important because the presence of the cavity may cause cavity 

oscillations which in turn may lead to structural vibration and 

fatigue, noise generation, drastic changes in mean drag and heat 

transfer of the body which houses the cavity. The cavity also 

produces the separated shear layer and an internal recirculating 

flow. The flow patterns change with changing cavity geometry. 

According to Charwat et al. (1961 ), cavities can be divided into 

open and closed cavities depending on the cavity length to depth 

ratio and the flow pattern. For flow over open cavities the boundary 

layer separates at the upstream corner and reattaches near the 

downstream corner, while in closed cavities the separated layer 

reattaches at the cavity bottom and separates again ahead of the 
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downstream wall. They also experimentally found that the dividing 

line between open and closed cavities at supersonic speeds and for a 

turbulent boundary layer as ratio of length to depth was L/D = 11. 

Sarohia ( 1977) experimentally approximated the demarcation line by 

LID = 7 - 8 at low subsonic speed with laminar separation. The 

nomenclature used is explained in Fig. 1. 

Open cavities are further classified into shallow and deep cavities. 

Cavities are considered shallow for L/D > 1 and deep for L/D < 1, a 

rough estimate based on experimental findings regarding the 

mechanism of oscillations produced. (Sarohia, 1977) 

Depending on the mechanism of generation, cavity-type 

oscillations can again be classified into three categories as defined by 

Rockwell and Naudascher (1978). They define them as, "(a) fluid 

dynamic, where oscillations arise from inherent instability of the 

flow; (b) fluid-resonant, where oscillations are influenced by 

resonant wave effects (standing waves); (c) fluid-elastic, where 

oscillations are coupled with the motion of a solid boundary." These 

are represented in Fig. 2, reproduced from Rockwell and Naudascher 

(1978). 

Because of practical importance, many experimental studies have 

been performed on cavity oscillations covering many different 

aspects of the flow. However none of these works considered the case 

of non-parallel flow over rectangular cavities. This report is based on 

the experimental investigation of resonance characteristics of a 

shallow, open cavity subjected to low-speed, non-parallel flow. 

The following factors were investigated to determine the 

ch arac teri s tics 
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Figure 1. Schematic of separated shear layer flow over a 
cavity with geometrical and flow parameters 
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1. Mean velocity profile in boundary layer at leading edge. 

2. Resonance frequencies at different freestream velocities and 

angles of rotation. 

4 

3. Auto and cross-correlations at different spatial locations for phase 

·measurements of the shear layer velocity fluctuations at different 

freestream velocities and angles of rotation. 



CHAPTER II 

LITERATURE REVIEW 

Self-sustained oscillations occur for flow over cavities due to the 

instability of shear layer. Rockwell (1977) suggested that these 

oscillations involve feedback of a disturbance to the sensitive, initial 

growth region of the free shear layer. This disturbance is amplified 

in the streamwise direction causing large amplitude oscillations of 

the shear layer. Among the three types of oscillations classified 

earlier, only the fluid-dynamic oscillations are considered in this 

report. This type of oscillation is controlled by the inherent 

instability of the cavity shear layer and strongly enhanced by the 

presence of the downstream edge of the cavity. Depending on the 

feedback and amplification conditions, certain disturbances are 

amplified more than others and cause the cavity to oscillate at a 

resonance hequency. 

Referring to Wooley and Karamcheti(l974), Komerath et al (1987) 

reported that "tones could be generated only at those modes where 

the integrated amplification was greater than unity and thus 

provided a criterion for tone selection." Wooley and Karamcheti 

(1974) described disturbances by a stream function 

\}1 (x, y, t) = <!> (x, y) ei[S (x) - rot] 

where 
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0 
along with the condition dn indicating that velocity component 

in the normal direction vanishes at the boundary, while the values of 

k determine the frequency of the respective normal modes. This 

happens when a wave generated in a closed system is in phase with 

the reflected wave; the two will reinforce each other. Consequently, 

there will be a buildup of energy in that mode of wave travel 

resulting in resonant standing waves. These standing waves are 

referred to as normal modes of oscillation. 

Although many studies have been performed covering different 

aspects of the oscillation characteristics of cavities, none of those 

considered non-parallel flow over cavities. Consequently the 
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literature survey has been performed on current literature available 

on parallel flow over cavities. From those, the most notable 

contributions of other researchers are discussed below. 

The first extensive study on this topic was performed by 

Karamcheti (1955). He studied the acoustic field of two-dimensional 

shallow rectangular cavities of different lengths mounted in a blow

down tunnel. The range of Mach number was from 0.25 to 1.5 and 

schlieren and interferometric techniques were employed for 

observation. Hot wire anemometry was employed for measurement 

purposes. He observed that a minimum cavity length is required for 

the onset of cavity oscillations for a given freestream Mach number 

and depth. Later Gharib and Roshko (1987) explained that below this 

minimum width, "the shear layer smoothly bridges over the cavity 

with no distinct oscillation in it." It was also observed that some 

combinations of Mach number and cavity length gave rise to two 

intermittent frequencies. That is, the frequency jumped between two 

resonant conditions. 

Numerous investigations have been made regarding the effects of 

Mach number on non-dimensional frequency for both laminar and 

turbulent boundary layers. On the basis of observation of high speed 

shadowgraphs of cavity oscillations, Rossiter (1966) derived a 

formula to predict the oscillation frequency. He performed the tests 

with subsonic and transonic flow (0.4 < M < 1.2) over shallow 

rectangular cavities. This formula is given by 

s = fl = n- a 
U _1 +M 

kv 

(1) 
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where kv IS the vortex convection speed as a fraction of the 

free stream velocity U, M is freestream Mach number, a IS a constant, 

and n = 1 ,2,3 etc The mode of oscillation is defined as the value of n. 

Rossiter (1966) assumed that the variations in phase difference 

between pressures along the shear layer with Mach number were 

due to variations in cavity temperature and hence sound speed. He 

also assumed that the vortices shed from the upstream cavity corner 

are convected at a constant phase velocity through the shear layer, 

resulting in linear phase distribution. The phase velocity of these 

vortices is independent of the cavity geometry and flow 

configuration. He observed the principal source of acoustic radiation 

being located near the trailing edge, which can be effectively 

suppressed by adding a small spoiler at the trailing edge. However, 

Rossiter's formula does not predict the mode or modes in which the 

cavity is most likely to oscillate. 

Rossiter's formula was correlated with numerous experimental 

results obtained from the investigations of Heller et al. (1971). They 

studied a variable-depth rectangular cavity (length-to-depth ratios 

from 4 to 7) in the Mach number range from 0.8 to 3. The formula 

was found to hold well at Mach numbers 0.8 and 1.5, poorly at Mach 

number 2, and worse at Mach number 3 with a = 0.25 and kv = 0.57. 

They noticed that one poor asumption made by Rossiter was a 

zero cavity recovery factor, i.e. the speed of sound in the cavity was 

assumed to be equal to the freestream speed of sound. Though this 

assumption introduced only a small error at low Mach numbers, the 

error was much greater at higher Mach numbers. Their experimental 

results indicated a recovery factor close to unity (0.8 - 0.95) rather 
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than to zero. Hence, they modified Rossiter's formula for higher Mach 

number range assuming the cavity sound speed to be equal to the 

freestream stagnation sound speed. The improved formula is 

(2) 

and n = 1 ,2,3, . . . etc. 

with the restriction of its application to shallow cavities only. The 

comparison of the two formulae are given in Fig. 3 reproduced from 

Heller et al. (1971). 

Ungar et al. (1977) used Rossiter's modified formula giVen by 

Heller et al. (1971) to correlate with their experimental results. Their 

observation was, "Oscillations begin to appear at low Mach numbers 

and become most intense slightly above M= 1; at very high Mach 

numbers, say M > 3, the oscillations are often found to decrease." 

Their results indicate that the modified formula matches best for M > 

0.5. 

They also reported that for low Mach numbers, the oscillation 

frequencies for deep cavities (L/D < 2) could be well predicted by 

with n = 1 ,2,3, ... etc. 

where C denotes the speed of sound m au. 

(3) 
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Figure 3. Non-dimensional frequencies as a function of Mach 
number. (a) Rossiter's formula; (b) Modification of 
Rossiter's formula. • , L/0=4; .A , L/0=5.7; • , L/0=7; Ch 
Krishnamurty; El , Rossiter; -v , White; m=mode of 
oscillation (Heller et al.,1971) 
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Deviations from the above equation at higher Mach numbers were 

attributed to the shear layer over the cavity mouth which might 

cause an effective stiffening effect at the open end. 

Heller and Bliss (1975) suggested that for cavities which are 

neither shallow nor deep (1.0 < L/D < 2.0), frequency prediction is 

difficult and the occurrence of "shallow" or "deep" cavity behavior 

depends on Mach number with increasing Mach number tending to 

make cavities effectively more shallow. 

Hence Rockwell and Naudascher (1978) reported that "The 

frequencies of cavity oscillations seem to be predictable on a purely 

theoretical basis for some cases, and on a semi -empirical basis for all 

cases. Amplitudes of cavity oscillations, however, have not been 

adequately predicted." 

Komerath et al.'s (1987) review indicated that the oscillation 

frequencies corresponding to the different modes usually are not 

integral multiples of the frequency of the lowest mode. Generally the 

values of Strouhal numbers are in bands, the first around 0.6, the 

second from 0.8 to 1.3, the third from 1.3 to 1.6 and so on (Sarohia, 

1977). 

They also reported that a predominant frequency is often 

observed. Rockwell and Naudascher (1978) said that Rossiter 

investigated the concept of a predominant mode of shallow cavity 

oscillation. His results are reproduced in Fig. 4 from Rockwell and 

Naudascher (1978). Referring to Karamcheti (1955), Komerath et al. 

( 1987) said that this ts more usual for a laminar boundary layer. For 

an explanation, they also reported that, "Wooley and Karamcheti, m 

their study of edgetone generation, have shown that the dominant 
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Figure 4. Variation of Strouhal number for flow past a shallow 
cavity. Dark circles represent amplitudes of pre
dominant modes k=cavity resonance mode, 
n=semiempirical mode (Rockwell and Naudascher, 
1 97 8) 
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frequency should correspond to the mode receivmg the largest 

integrated amplification. In the absence of any other knowledge of 

the flowfield, the safest prediction is that the second mode, 

corresponding to a Strouhal number based on cavity length of 

approximately 1, is likeliest to be the predominant one. However, the 

first mode, corresponding to a Strouhal number of approximately 0.5, 

IS likely to be the loudest, if it occurs." 

However, Tam and Block (1978) reported that over most of the 

Mach number range (M > 0.2), only one discrete frequency (excluding 

harmonics) was found for deep cavities. A completely different type 

of dependence of the Strouhal number was found for M < 0.2 which 

they attributed to tones that are generated by the normal mode 

resonance mechanism instead of the feedback mechanism. A similar 

conclusion was drawn by Buell (1971 ). 

From experimental evidence, it has been established that a 

combination of different parameters (i.e. cavity size and freestream 

Mach number) are to be satisfied for the onset of cavity oscillations. 

Covert ( 1970) analytically showed that there exists a critical value of 

velocity when the frequency of excitation closely corresponds to the 

natural frequency without external convection, below which the 

cavity will not oscillate. His analysis also indicates a constant 

Strouhal number at the onset of instability. Both results were 

justified by experimental evidence. However, one limitation of his 

analysis is its failure to indicate the process by which the oscillations 

stop at higher velocities. 

As most researchers tried to predict oscillation frequency for a 

given cavity geometry and freestream Mach number, Parthasarathy 
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et al. (1985) investigated usmg a completely opposite approach. They 

tried to optimize geometric and aerodynamic parameters to generate 

some discrete frequencies. The tests were conducted at low Mach 

number range from 0.12 to 0.24 for deep cylindrical cavities in a flat 

surface. Using their experimental data for curve fitting, they deduced 

the following simple relation to determine the resonant frequency 

given by 

f= c 
(4{1-M) (D+d)} 

(4) 

where D is the depth, d is the diameter of the cavity and M Is the 

freestream Mach number. The results also indicated multiple peaks 

of the resonance curve which is consistent with East's results for a 

rectangular cavity with variable depth as reported by Parthasarathy 

et al. 

Almost all the papers considered so far discussed only high speed 

flows in the range of moderate subsonic to high supersonic Mach 

numbers. Sarohia (1977) investigated laminar axisymmetric flows at 

low subsonic Mach numbers for both variable depth and width of the 

shallow cavity. Hot wire anemometry, correlation analysis and flow 

visualization techniques were employed for observation. He reported 

that cavity oscillation is practically independent of depth unless it is 

of the order of boundary layer thickness (D/oo = 0( 1 )) of cavity shear 

flow. This condition delayed the transition of the free laminar shear

layer flow to a turbulent one. He also observed that for a fixed cavity 

depth and freestream Mach number, as the width was increased 

oscillations jumped to a higher mode, and at a critical value (L/oo = 

8.15), the two modes occurred alternately but never simultaneously. 



According to Buell (1971 ), this was caused by the increasing 

difference between shedding and normal mode frequencies which 

diminished the response amplitude, and finally resulted in a 

different mode. 

1 5 

Several authors have reported the dependency of oscillation 

characteristics on shear layer thickness and its growth rate. As the 

shear layer grows while passing over the mouth of a cavity, 

characteristic shear layer thicknesses (i.e. 8,8 *,e) also mcrease. Heller 

and Bliss (1975) reported that for a turbulent shear layer with 

subsonic flow, this thickness can grow from a small initial value to 

20% of the streamwise distance from the cavity leading edge. 

Rockwell (1977) suggested that momentum thickness growth rate 

(S(x)) depends on the time mean Reynolds number, possible 

turbulent shear stress across the boundary layer, and cavity 

geometry at and downstream of the shear layer separation as shown 

in Fig.l. Using a linear growth rate approach he found that an 

increase in growth rate decreases the predicted value of cavity 

length required for oscillation. The effects were more severe for 

higher modes of oscillation. However, the trend was completely 

opposite for short cavities (i.e. high frequencies) which he attributed 

to severe decrease in amplification factor in the streamwise 

direction. 

Karamcheti (1955) conducted experiments for both laminar and 

turbulent boundary layers. He reported that, "While in the laminar 

case only a single dominant frequency was observed at a giVen gap 

width and Mach number, in the turbulent case two frequencies of 
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nearly equal strength were recorded. The higher of these frequencies 

was nearly twice the other." 

Sarohia (1977) experimentally found that the shear layer grows 

almost linearly in all modes of cavity oscillation. No abrupt increase 

in growth rate was noticed for increasing cavity width as the cavity 

flow switched from one mode of oscillation to another. An increase m 

shear layer thickness at the upstream cavity corner delayed the 

onset of cavity oscillations. Then comparing with East's results, 

Sarohia concluded that for a given mode of cavity oscillation, the 

non-dimensional frequency (Strouhal number) is lower for a 

turbulent boundary layer separation than for a laminar one. 

Cross-correlation of hot-wire signals at different spatial locations 

m the cavity is the most common technique employed for phase 

measurements of the shear layer velocity fluctuations. Sarohia 

· (1977) found that at a fixed location as one moves toward the cavity 

from outside (x/80 = constant), the phase 'V /2rr (measured in terms of 

wavelength) decreases until a sharp drop occurs. But further inside 

the cavity, the phase of the disturbance increased. The phenomenon 

IS clearly shown in Fig. 5. 

Gharib and Roshko (1987) suggested that by traversing one probe 

along the shear layer while keeping the other fixed at one edge it is 

possible to determine the wavelength and hence the phase velocity u 

(u = A.f), since the oscillating frequency is already known. They also 

presented the following relations 

_T_ = L = fl = n 
2 n: A. u 

where n is the number of wavelengths of fundamental frequency 

contained by the cavity width in the nth mode of oscillation. 
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However, these relations do not hold well as the cavity switches from 

one mode to another. They also mentioned that the relations are 

valid for incompressible flow only. 

Sarohia gave another approximate integral relation L/A. = (n+ l/2) 

where n depends on the mode of cavity oscillation. Another 

important finding was that as cavity width was increased, the 

wavelength increased and the frequency dropped; but the phase 

velocity (u = A.f) increased steadily without any discontinuity as the 

oscillation switched modes. 

These papers suggest that if the oscillation frequency is known 

one can calculate the mode of oscillation using Rossiter's modified 

formula and determine the wavelength and phase difference of the 

signal from cross-correlation measurements. These parameters could 

be used to calculate the velocity of the propagating disturbance. 

Another important aspect of this type of flow is the measurement 

of cavity drag. McGregor and White (1970) reported a 250% increase 

in drag for subsonic internal flow due to cavity oscillations. Also the 

compressibility effect at high Mach numbers and viscosity effect of 

real fluids are important. However, these are not discussed in detail 

as they are beyond the scope of the present investigation. 

Thus the literature review contains many results for rectangular 

cavities subjected to parallel flow. The literature also shows that one 

can predict frequency using the different formulae provided by 

different researchers [Rossiter (1966), Heller et al. (1971)] depending 

on geometric configuration of cavity (shallow or deep) and 

freestream Mach number. One can also perform measurements to 

determine the phase difference, wavelength and phase velocity as 
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suggested by Gharib and Roshko (1987). For rectangular cavities m 

non-parallel flow situations, the literature does not provide 

experimental results or prediction method. Nor have the above 

mentioned methods been applied to such cases. 

The primary objective in the present case is to be able to predict 

the different parameters (frequency, wavelength, phase velocity) for 

non-parallel flow situations. As the cavity is rotated from its axis, the 

streamwise length of the cavity changes according to L' = L/Cos<j>. As 

mentioned in the beginning, these oscillations involve feedback of a 

disturbance from the downstream edge of the cavity to the sensitive 

leading edge. This feedback thus is dependent on the path or cavity 

length it travels. From the fluid dynamic standpoint, the streamwise 

length may be assumed to be a significant governing parameter. The 

pressure wave feedback IS not so clearly dependent upon this length. 

It is expected that as a first approximation, the relations for parallel 

flow situation will still hold if the effective streamwise length of the 

cavity is substituted for the actual cavity length. 



CHAPTER III 

EXPERIMENTAL SET-UP AND PROCEDURE 

In the present study, a rectangular model was made from 6.35 

mm. aluminium plates. The model had an arrangement for a fixed 

depth, D, and a continuously varying length, L. The nose of the model 

was of round shape to avoid flow separation. However, this was not 

sufficient to resonate the cavity as flow visualization revealed that 

the flow separated well before it reached the leading edge of the 

cavity. So the leading edge had to be tilted in the downward 

direction to avoid flow separation. By trial and error the cavity was 

found to resonate at an angle of attack of 13 degrees, as measured by 

a level protractor with an accuracy of 0.5 degrees. Hence throughout 

the whole experiment, this angle was maintained constant, including 

cases with rotation. A schematic of the set-up is presented in Fig. 6. 

The depth and width of the model were fixed at 6.35 mm and 

101.6 mm respectively and the length could be varied continuously 

from 6.5 mm. to 35 mm. The length could be measured up to an 

accuracy of 0.0254 mm. To analyze the cavity flow, hot-wire probes 

were inserted from outside into the shear layer both at the leading 

and trailing edges. These probes were fixed at particular locations (x 

= 0 mm and 6.55 mm and y = 1 mm) of the cavity. A schematic of 

this arrangement is presented in Fig. 7. 

20 
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Figure 7. 

Schematic of the cavity showing cross-correlation 

technique. 
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To measure the velocity profile, a hot-wire probe was installed at 

the leading edge of the cavity which could be moved with 0.0254 

mm accuracy across the shear layer. Measurements were made at an 

interval of 0.127 mm with a sampling frequency of 2000 samples 

per second and a record length of 5000 samples. 

Constant temperature hot-wire anemometry was used to measure 

both mean and fluctuating velocity components in streamwise 

direction. Measurements were made by data acquisition through a 

12-bit AID converter (Metrabyte model DAS-160 1) and a 386-33 

MHz IBM compatible personal computer. Frequency spectrum 

measurements were made using both a Spectral Dynamics SO 345 

spectrum analyzer and a HP 35665A two channel dynamic signal 

analyzer. Cross-correlation measurements were made through the 

two channel dynamic signal analyzer. The output of the power 

spectrum and cross-correlation measurements were displayed on the 

screen and printed. 

For all measurement purposes the set-up was AC coupled. For 

frequency measurements, the instrument range was fixed from 0 to 

10 (12.8 in HP 35665A) KHz and an average of 50 samples were 

taken giving a total record length of 1.562 seconds (HP 35665A). 

Measurements were made both for leading and trailing edge probes 

simultaneously to ensure consistency of measurements using the 

dynamic signal analyzer. 

In cross-correlation measurements, the phase difference was 

measured in terms of time delay. The instrument range was from 0 

ms to 3.9 ms and an average of 100 samples were taken giving a 

total record length of 0.7812 seconds. To avoid wrap around error, a 
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correlation weighing function was chosen which suppresses the first 

and last quarter of the time record, and passes the center part of the 

time record. This is required to avoid amplitude inaccuracies in 

cross-correlation measurements. Also the signals were constantly 

monitored through an oscilloscope. The flow was found to be 

intermittently turbulent with comparatively higher turbulence 

intensities at lower speeds. Flow visualization techniques, using tufts 

and surface oil flows were employed to ensure that the flow 

remained unseparated until it reached the leading edge of the cavity. 



CHAPTER IV 

RESULTS 

The resonant condition was achieved by tilting the set-up 

downward, giving an angle of attack of 13 degrees. This ensured a 

laminar boundary layer with intermittent turbulence and it 

remained unseparated until the leading edge of the cavity. This 

condition was chosen after a senes of diagonostic tests. 

It was experimentally observed that for a given set of flow 

conditions, a minimum cavity length is necessary for the onset of 

cavity oscillation. As reported by other researchers, it was also 

observed that for a given cavity, there exists a minimum velocity 

below which no cavity oscillation occurs. However, no demarcation 

line was determined, as this was not the main objective. 

The resonance characteristics of a shallow, rectangular cavity 

subjected to non-parallel flow were investigated in detail in the 

present study. Fig. 8 shows typical power spectrum measurements as 

observed on HP 35665A screen. The spectra were formed from the 

signals of hot wire anemometer probes located at 0 mm and 6.55 mm 

positions at . a vertical distance of approximately 1 mm above the 

plate. The upper half shows a distinct resonant peak (7456 Hz) at the 

leading edge. The lower half shows a resonant peak (7456 Hz) at the 

trailing edge. Measurements were made at both ends to check 

25 
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consistency of results. The resonance frequency of the hot-wire 

signal was determined from the spectra measured by fast Fourier 

transform (FFT) analysis. This was non-dimensionalized by 

converting it into Strouhal number (S=fL/U) and was plotted against 

non-dimensional width (L/8) of the cavity. 

Considering flow over an inclined plate, the Falkner-Skan solution 

was used to calculate the estimated momentum thickness, which was 

very thin and difficult to measure. Details of the solution are 

presented in Appendix B. The Falkner-Skan flow is a boundary layer 

similarity solution assuming the freestream velocity over the plate 

U(x) = Kxm/(2-m), where K is a constant. The parameter m is a 

measure of the pressure gradient, with a positive m indicating a 

favorable pressure gradient. However, the experimental flow was not 

rigorously compared to this solution. 

Measurements were made both for fixed cavity lengths (7 to 13 

mm) and for fixed free-stream velocities (20 to 44 m/s). For a gtven 

cavity size, resonance frequency was found to increase with 

increasing free stream velocity. On the other hand, for a fixed speed 

of the freestream the resonance frequency decreased as the cavity 

length was increased. This phenomenon can be observed from Fig. 9. 

Also, as the cavity was rotated from its axis, the resonance frequency 

dropped gradually. These results are presented in Fig. 10 and 11 in 

non-dimensional form. In Fig. 10 absolute cavity length L was used, 

while in Fig. 11, L was replaced by effective stream wise length L' = 

L/Cos<j>. In Fig. 11 first mode of oscillation occurred at a non

dimensional frequency about 0.9 which slowly increased with 

increasing L/8. At a value of L/8 = 49.8, the oscillation jumped to the 
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second mode and the cavity was found to oscillate at a Strouhal 

number of about 1.2. The oscillation mode was determined from the 

simple relation n=L/A, while the method of computing A is described 

m the following paragraphs. 

Figure 12 shows the variation m frequency with the angle of 

rotation for different freestream speeds. For a given speed the 

frequency dropped with increasing angle. 

Phase difference and wavelength of the propagating disturbance 

were measured by cross-correlating the hot-wire signals at two 

different spatial locations in the cavity. Measurements were made 

for a fixed cavity size (L = 6.55 mm ) but for freestream speeds 

ranging from 35 to 44 m/s and for angles of rotation ranging from 0 

to 30 degrees. 

The phase difference was measured in terms of time delays 

observable as absolute maxima in the cross-correlation 

measurements. Figure 13 and 14 shows two typical cross-correlation 

measurements. In Fig. 13 a distinct peak is observable indicating the 

time delay. Fig. 14 shows multiple peaks which was common to most 

of the cases during the experiments. Since one could not arbitrarily 

choose the proper peak, several peaks were used to calculate the 

different parameters. Since the delay T was known, hence the 

convective velocity u = L'/T could be computed. Also from the 

measured oscillating frequency f, wavelength A was computed from u 

= Af. Though the exact reasons for multiple peaks could not be 

determined, the presence of intermittent turbulence in the boundary 

layer flow ahead of the cavity and vibration of the set-up are 

possible causes. 



32 

9e+3~----------------------------------------~ 

8e+3 0 
0 

A 0 

A 
N 7e+3 • A ::r= • 
s:: • ...... 
;>-. D U = 35.84 rn/s A U = 41.13 rn/s 0 s:: 6e+3 Q) 
::s • U = 38.69 m/s 0"' 0 U = 43.59 rn/s Q) 

~ 

5e+3 
D 

D 
D 

4e+3 
0 10 20 30 40 

Angle of rotation 

Figure 12. Effect of angle of rotation on frequency 



i 
ni -I VpL·· ::::~.. 

Figure 13. 

33 

100 

A typical cross-correlation measurement - ideal case 



H,-' 
' 

F'.ecd 

Figure 14. 

34 

~ 90. 7.3~! u~· e c Y: 99~676 n\)pt::,····,= 
..,.-.--~-- --.-----~ 

.. I 

I 
1 
I 
I 

- ----· --_ .. ,...;_-~--' 
R\.113: 100 3 .. r399rn5ec 

A typical cross-correlation measurement - worse case 



35 

Cross-correlation measurements were also performed using a 

longer recording length of 1 second, instead of 7.812 ms. An average 

of 50 samples were taken and the output is presented in Fig. 15. It 

indicates a sinusoidal frequency of 20 Hz which remained constant 

throughout the experiment and matched the constant wind tunnel 

blower shaft rpm (1200). So it was independent of the freestream 

speed. These low frequency oscillations resulted m waviness 

observed in short time correlation measurements. 

The effect of angle of rotation on convective velocity for different 

freestream speeds is presented in Fig. 16. Measurements did not 

indicate any consistent pattern of dependency of the convective 

velocity on either parameter. 

From Fig. 17 to Fig. 20, the variations m calculated convective 

velocity for a given set of flow conditions are presented as the cavity 

was rotated from 0 to 30 degrees. These ranges in the convective 

velocity result from using all of the multiple peaks in the cross

correlations in calculating the convective velocity. No arbitrary 

judgement was made as to which was the "true" peak. Other 

researchers observed the ratio u/U to vary from 0.4 to 0.6. In the 

present study the different peaks yielded values from 0.3 to 0.9. 

Figure 21 represents attempts to measure velocity profile at the 

leading edge of the cavity. These measurements were made for two 

different freestream velocities. Using the Falkner-Skan solution, the

boundary layer thickness was estimated to be slightly less than 1 

mm (0.04 in.) for the higher velocity case and over 1 mm for the 

lower velocity case. The profile indicates that for the higher velocity 

case, freestream speed was attained at a height of about 0.8 mm 
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above the leading edge. For the higher velocity case the profile is 

quite unusual. This likely is explained by the fact that the 

measurements were complicated by probe vibrations and the 

intermittent appearance of turbulence, drastically changing the 

measured profile. It would be expected that transition would be 

more likely to appear at the higher velocity. 
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CHAPTER V 

DISCUSSION 

Two bands of non-dimensional frequencies were observed 

ranging from 0.90 to 0.96 and 1.2 to 1.3 indicating two different 

modes of oscillation. It was assumed that the frequency response 

would be governed by the effective streamwise length ( L' = L/Cos<j> ) 

of the cavity as substituted in Rossiter's modified equation. But those 

substitutions resulted in oscillation modes halfway between two 

integers while one would expect an integer value. This trend was 

observed for all but 30 degree cases. It was probably because for 

small angles of rotation, the effective streamwise length did not vary 

that much in comparison to the frequency measured. It is 

appropriate to mention again that the literature (Heller et al., 1971) 

indicates that the modified equation matches best for M > 0.5 which 

is much higher than the experimental Mach number (M = 0.122). 

Complete comparisons for the case with U = 42.32 m/s and L = 7 mm 

have been presented in Table I. Moreover, it might be possible that 

as the cavity was rotated, the streamlines did not necessarily 

maintain the original direction but deviated following the leading 

edge of the set-up and made a different angle than anticipated. 

These results, however, did not indicate any significant 

improvement when compared with the results obtained using the 
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TABLE I 

COMPARISON OF RESULTS USING ROSSI1ER'S 
MODIFIED EQUATION 

f (Hz) L' (mm) Mach no. n (S=fl!U) 

7875.000 7.000 0.122 2.680 
7850.000 7.027 0.122 2.680 
7850.000 7.108 0.122 2.680 
7800.000 7.247 0.122 2.660 
7675.000 7.450 0.122 2.626 
7525.000 7.724 0.122 2.580 
7425.000 8.083 0.122 2.550 

n' (S=fl'/U) 

2.680 
2.690 
2.720 
2.750 
2.780 
2.820 
2.900 

Note: These results were obtained for a free stream speed of U = 
42.32 m/s. The cavity length was fixed at L = 7 mm. The experiment 

was performed at an atmospheric pressure of P = 731.4 mm of 

mercury and at a room temperature t = 29.50 C. The last two columns 

give a comparison between mode of oscillation using absolute and 

effective streamwise length of the cavity respectively. 
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actual length in the equation (see Table 1). Note that these results 

give n = 2.55 - 2.68. So it was concluded that Rossiter's modified 

equation can not be applied to either parallel or non-parallel flow 

situations for this case. 
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Hence an effort was made to correlate the results with other 

prediction methods. Current experimental results indicate that it IS 

more appropriate to use Michalke's ( 1965) solution of the Orr

Sommerfeld equation for a free shear layer to determine the 

wavelength and mode of oscillation. Using a non-dimensional 

frequency of ~=27tf8/U, the number of waves ar contained within the 

cavity was obtained from the numerical solution presented by 

Michalke. Using the simple relation 'A=21t8/ar (Rockwell, 1977), the 

associated wavelength and mode of oscillation n=L/'A were computed. 

These results were found to be very close to an integer. e was 

estimated from a solution for Falkner-Skan flow. This introduced 

some error due to its limitation to specific type of velocity profile 

which did not exactly match the experimental velocity profile. For 

calculation parameters and results readers are referred to Table II. 

However experimental values were mostly higher than theoretical 

values which might be attributed to the fact of deviation of the 

experimental condition from the theoretical one. For example the 

solution was derived approximating an inviscid shear layer with a 

hyperbolic tangent velocity profile. One major limitation of this 

method is its incapability of predicting the frequency which needs to 

be experimentally determined. So further investigation is necessary 

to find an alternate method to overcome this limitation. 



TABLE II 

RESULTS FROM MICHALKE'S SOLUTION 

U (m/s) Angle (phi) Frequency(Hz) T (micro sec) Theta (mm) Beta Wave no. Lambda (mm) n (theory) n (expt.) 

35.840 0.000 4928.000 198.364 0.137 0.118 0.176 4.890 1.340 
1 0.000 4864.000 328.064 0.139 0.119 4.970 1.340 
20.000 4736.000 297.546 0.142 0.118 5.070 1.370 
30.000 4544.000 311.920 0.152 0.121 5.430 1.390 

38.690 0.000 7008.000 190.735 0.132 0.150 0.235 3.530 1.850 
10.000 6976.000 244.141 0.134 0.152 .3.580 1.860 
20.000 6848.000 221.252 0.137 0.152 3.660 1.950 
30.000 6656.000 331.415 0.147 0.159 3.930 1.920 

41.130 0.000 7520.000 312.805 0.128 0.147 0.235 3.420 1.920 
10.000 7456.000 251.770 0.130 0.148' 3.480 1.910 
20.000 7200.000 152.588 0.133 0.146 3.560 2.000 
30.000 6976.000 244.141 0.142 0.151 3.800 1.990 

43.590 0.000 8032.000 221.252 0.124 0.143 0.235 3.310 1.980 
10.000 8000.000 335.693 0.126 0.145 3.370 1.970 
20.000 7872.000 282.288 0.129 0.146 3.450 2.020 
30.000 7496.000 331.415 0.138 0.149 3.690 2.050 

Note: These results were obtained using Michalke's solution of Orr-Sommerfeld equation. The 

experimental conditions were same as provided in Table I. The last two columns compare the 

mode ·of oscillation using Michalke's solution and experimental results respectively. 

0.978 
1.590 
1.400 
1.420 
1.340 
1.700 
1.520 
2.200 
2.350 
1.880 
1.100 
1. 700 
1.780 
2.680 
2.200 
2.480 
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As observed in Fig. 17 to 20, the convective velocity was found m 

some cases to be higher than the typical values, (0.4-0.6) reported by 

other researchers. This difference may have been caused by the 

location of the fixed hot-wires used in the cross-correlation 

measurements. Changing flow parameters, such as the initial 

boundary layer thickness and the shear layer thickness likely have 

very strong effects on phase measurements, as evidenced by Sarohia 

(1977). He showed that for a fixed x location of the cavity as one 

moves along non-dimensional vertical distance y/80, the phase 

drastically changes. This is shown in Fig. 5. Since the experiment was 

conducted for different velocities, for changing y/80, at different 

velocities measurements were presumably made at different phases 

as sensed by the hot-wires. 

To see the effect of the leading edge probe on the trailing edge 

probe, cross-correlation measurements were made with the cavity 

completely covered. Measurements did not indicate any interference 

sensed by the trailing edge probe caused by the leading one. This 

conclusion was reached from the fact that no distinct peak was 

observed in the cross-correlation display. 

Current experimental results indicate that Rossiter's modified 

equation can not be applied to the present case. Michalke's solution 

indicated some improvement with the limitation of predicting the 

frequency as mentioned earlier. The multiple peaks observed in 

cross-correlation measurements yielded some convective velocity 

ratios (0.3 - 0.9) ususally higher than reported by other researchers 

(0.4 - 0.6). So further investigation is necessary to find a suitable 

prediction method for non-parallel flow cases. 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The purpose of this investigation was to get an idea about the 

oscillation characteristics of a shallow open cavity subjected to non

parallel flow. Based on the research findings the following 

conclusions were drawn: 

1) Weak dependence of frequency response on the angle of rotation 

was observed. 

2) No general relationship could be developed between convective 

velocity and freestream velocity or angle of rotation. 

Rossiter's method could not be applied to the present case. 

Michalke's solution indicates some improvement with the limitation 

of frequency prediction. 

A question was encountered during the course of the work. This is 

"The effect of low-frequency noise of the wind tunnel itself on the 

results." 

For extensions of this research, it is recommended that improving 

measurement technique is required so that the hot-wires sense 

unchanged flow parameters under different test conditions during 

phase measurements or to traverse the hot wire to see phase 

changes with locations. 
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APPENDIX A 

DATAFORDUTERENTCAVITYLENGTHS 

L = 7 mm L = 10 mm L = 13 mm 
U(m/s) f(Hz) U(m/s) f(Hz) U(m/s) f(Hz) 

20.200 2425.000 20.320 2025.000 22.060 2600.000 25.090 3275.000 24.930 3525.000 26.770 3300.000 29.610 3950.000 30.280 4475.000 31.400 3925.000 35.000 6275.000 36.340 5550.000 34.940 4475.000 40.080 7600.000 41.220 6350.000 38.880 4975.000 
44.360 6900.000 42.870 5525.000 

DATAFORDUTERENTANGLESOFROTATION 

u (m/s) Angle (phi) Frequency(Hz) T (micro sec) 

35.840 0.000 4928.000 198.364 
10.000 4864.000 328.064 
20.000 4736.000 297.546 
30.000 4544.000 311.920 

38.690 0.000 7008.000 190.735 
10.000 6976.000 244.141 
20.000 6848.000 221.252 
30.000 6656.000 331.415 

41.130 0.000 7520.000 312.805 
10.000 7456.000 251.770 
20.000 7200.000 152.588 
30.000 6976.000 244.141 

43.590 0.000 8032.000 221.252 
10.000 8000.000 335.693 
20.000 7872.000 282.288 
30.000 7496.000 331.415 
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APPENDIXB 

FALKNER-SKAN SOLUTION 

Falkner-Skan solution is a boundary layer similarity solution for 

wedge flows. The most common form of the equation is 

f" + ff' + m(l - f2) = 0 

where the parameter m IS a measure of the pressure gradient. A 

positive m indicates a favorable pressure gradient while a negative 

m denotes an unfavorable pressure gradient. The boundary 

conditions are given by 

f(O) = f(O) = 0 

U(x) = f( ) 
where U Tl , 

and f(a) = 1 

Tl = YV (r ~ 1 U~:)), and m=_g_ 
l+r 

However, to apply this solution the freestream velocity 

distribution is required to be U(x) = Kxm/(2-m), where K is a 

constant. Given an angle of attack a, m = 2a/rr.. In the present case, 

for an angle of attack of 13 degrees m = 0.144. With this value of m, 

the equation was solved by Runge-Kutta iterative process to satisfy 

the boundary conditions for given values of f'(O). As the cavity was 

rotated( <1>) from 0 to 30 degrees, the effective angle of attack changed 

(tana' = tana/Cos<)>) to some extent. Considering this for different 

angles of rotation the following values were obtained. 
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TABLE III 

RELATIONSHIP BETWEEN ANGULAR 
ROTATION AND f'(O) 

0 

10 

20 

30 

f"(O) 

0.63261 

0.63562 

0.63562 

0.65435 

From these values, the shear layer momentum thickness e can be 

determined using the relation 
6 = f"<O> 

[u Cos<!>~ 
2vx r 

where for experimental conditions of temperature t = 29.50 C and 
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atmospheric pressure of P = 731.4 mm of mercury, kinematic 

viscosity v = 1.656 E-5 m2/s and x = 0.0508 m indicating the 

distance between the leading edge of the cavity and the leading edge 

of the set-up. The results presented in the tables wete obtained 

under these conditions. 

In the Falkner-Skan velocity equation, assuming K to equal to the 

freestream speed, for experimental freestream speeds different 

cavity leading edge velocities were computed. This is presented in 

the following table : 



57 

TABLE IV 

RELATIONSHIP BETWEEN FREE STREAM SPEED AND EDGE VELOCITY 

U m/s 

35.84 

38.69 

41.13 

43.59 

Ue m/s 

32.2 

34.77 

36.96 

3 9.17 

This table gives an idea as to how the edge velocity varies with 

the freestream speed. All Strouhal numbers are calculated based on 

the free stream speed. 
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