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CHAPTER I 

INTRODUCTION 

Since conventional data base management systems CDBMS) 

have developed for handling one-dimensional data objects, such as integers, 

real numbers, or strings, they are not proper for handling multi

dimensional data objects, e.g., boxes or polygons. For example, B-tree and 

I SAM indexes are the structures for one dimensional data objects. Multi

dimensional data have been increasing in many areas, for instance, map data 

processing in geographic information system (GIS) allows a user to collect, 

manage, and analyze large volumes of spatially referenced data [7, 11, 15] 

and computer aided design (CAD) needs to store and retrieve very large 

number of rectangles. To satisfy these new applications, several data 

structures have been proposed. 

To be efficient, multi-dimensional data structures have to satisfy fast 

access to objects in the database as well as possess efficient space 

utilization. There are two types of search applications given below: 

(!)point query: find all . objects containing a given point in the 

space, 

(2)range query: f1nd all objects intersecting wtth a given range. 

For example, finding all states that have land within 100 mtles of a 

particular potnt is a kind of range search operation. 
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Mult1-d1mens1ona11ndex structures proposed earlier, for example, the 

binary tree, the k-d tree [2] and the Quad tree [ 1 J cause problems with 

secondary memory paging systems. The object of this thesis is to improve 

the performances of the R-tree (an extension of the B-tree ink

dimenstons) [8] and the R+-tree <an updated version of the R-tree) [ 121. 

We propose an improved data structure, the Mult1-R tree, to remove the 

redundancy tn leaf level nodes of the R+-tree and to provide better search 

performance. After we gtve a brief description of the R-tree and the R+

tree structures in Chapter II, the detailed structure and algorithms for 

searching, insertion, de let ton and splttting of the MR-tree are introduced 

tn Chapter Ill. In Chapter IV, the R-tree and the R+-tree analysts methods 

are briefly discussed as a preview of the MR-tree analysis in Chapter v. 
Chapter V provides performance analyses on the MR-tree for exact point 

query and range query and the results are compared with those of R+-tree. 

Chapter VI gives conclusion on the MR-tree. 



CHAPTER II 

LITERATURE REVIEW 

In this Chapter, several data structures which have been proposed to 

handle multi-dimensional data objects are discussed briefly. Multi

dimensional data can not be represented by point very well. For example, a 

rectangle in 2-d space requires 4 coordinates (e.g., upper right and lower 

left corners) to represent its position in the space. To handle spatial 

objects efficiently, a data base system requires an index mechanism to 

retrieve data items according to their spatial locations. Since traditional 

one-dimensional data base indexing structures were not appropriate for 

multi-dimensional spatial searching, a new indexing structure was needed. 

Some data structures have been considered to handle multi

dfmensional point data [4]. Among those structures, cell methods are not -
general enough for a dynamic structure because cell boundaries must be 

decided in advance [3]. Quad tree [1] and K-d tree [2] do not allow paging of ~--~ -- ----
secondary memory. In a paging system, a disk page can hold about 50 nodes 

depending on its page size. Therefore, a tree with small fan-out (the 

number of pointers to subnodes) is not appropriate (expensive). The ~=-d-B. 

tree [5] was developed to work in a paging environment but it can handle 
_..,.---··-----~-·--·-·--···· «-~-

point data only. Grid file [6] and BANG file [ 14] can handle non-point data by 
------------·~-···~·-·••••••••··-~-~ .... ~ ..... ---- -L--
mapping each object into a point in a higher dimensional space. The GBD 

tree [16] is a data structure with homogeneous nodes. It is a kind of mixed 

structure of the R-tree and grid file. In the GBD tree, an entry consists of 

3 
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child pointer, DZ expression, and MBR. DZ expression is used to determine 

the position in the tree structure where an entity is located and MBR is used 

to eliminate irrelevant nodes during search operations. For DZ expression, 

binary division 1s used where dividing axis is selected alternatively 

between x andy axis for two dimensional cases. The MBR denotes the 

minimal bounding rectangle to enclose all data in· the node pointed by the 

ch11d pointer as in the R-tree. However, the GBD tree allows overlapping 

between intermediate rectangles CMBR). 

The purpose of the MR-tree is to improve the R-tree and the R+-tree 

performances. So those data structures are discussed 1n detatlin this 

Chapter. 

Structure 

R-tree: The dynamic Index Structure 

for Spatia 1 Searching 

The R-tree is an extension of the B-tree to k-dimensions. It is a 

height-balanced tree with index records stored in leaf nodes containing 

pointers to data objects. The R-tree consists of two node types, an 

intermediate node and a leaf node. Leaf node entries consist of two parts, 

a tuple identifier being used to refer to a tuple in the data base and 

coordinates representing ann-dimensional rectangle which is a box 

enclosing the spatial object. An intermediate node can hold up to C 

(capacity of a node) entries and each of them consists of a child pointer 

pointing to the node at a lower level and coordinates representing a 

rectangle which completely encloses all rectangles in the target subtree. 

Let's define M and mas follows [8]: 



M : maximum number of entries 1n one node, 

m : minimum number of entries 1n one node Cm )= M/2). 

The R-tree sat1sf1es the followtng properties [8]: 

1 >every leaf node contains between m and M index records unless it is the 

root; 

5 

2) for each 1ndex record (l,tuple-1dent1f1er) 1n leaf node, I 1s the smallest 

rectangle that spat1a11y conta1ns the n-d1mens1onal object represented by 

the 1nd1cated tuple; 

3) every non-leaf node has between m and M ch11dren unless 1t 1s the root; 

4) for each entry (l,ch11d-po1nter) 1n a non-leaf node, 1 1s the smallest 

rectangle that spat tally contatns the rectangles tn the ch11d node; 

5) the root node has at least two ch11dren unless 1t 1s a leaf; 

6) all leaves appear on the same level. 

In Figure 1, rectangle 1 is a leaf level rectangle which 1s the 

minimum enclosing box of a data object. Rectangle 11, 12 and 13 are 

intermediate nodes, for example, rectangle It encloses rectangles 1, 2, 

and 3 completely. 
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Figure t. Sample Rectangle Arrangement and the R-tree 
Structure 

Since the R-tree uses a dynamic insertion algorithm, it allows 

overlapping among the intermediate rectangles. In Figure t, intermediate 

rectangles I t and 12, and intermediate rectangles 12 and 13 overlap. If 

there exists k-overlapping of an area and a search range includes that 

area, it is necessary to take all k possible paths to find objects 

overlapping with search area. For examples, if shaded area represents 

the search range then intermediate rectangles 11 and 12 overlap with 

search range. However, only It contains data (leaf level) rectangles 

overlapping with search range. In this stmple example, such a false 

search may look ltke a trivial problem. But if node capacity is 50 and tree 

height is more than 3 then the cost of false searching ts increased. In 

order to solve th1s problem, a packing technique was proposed in [ 1 0]. 

But this packing algorithm can not be appHed on every single insertion. 



Operations 

Search tog 

The search algorithm descends the tree from the root to a manner 

stmnar to a B-tree. But more than one subtree under a node vtstted may 

need to be searched. The search algorithm e11m1oates irrelevant regions of 

the indexed space and examines only data near the search area. Let El 

represent the rectangle part and EP denote a tuple-identifier or child

pointer [8]. 

Algorithm R-SEARCH: given an R-tree whose root node fs T, f1od a11index 

records whose rectangles overlap a search rectangleS. 

s l.[search sub-tree] If T fs not a leaf, check each entry E to determine 

whether El overlaps S. For all overlapping entries, invokeR-SEARCH on the 

. tree whose root node 1s pointed to by EP. 

7 

S2.[Search leaf node] If T ts a leaf, check a11 entries E to determfne whether 

El overlaps S. If so, E is a qua11fytng record. 

Insert ton 

Inserting index records for new data tuples ts stm11ar to insert too In a 

B-tree in that new index records are added to the leaves, nodes that 

· overflow are sp11t, and splits propagate up the tree. The R-tree insertion 

algorithm has sub-algorithms Chooseleaf, Sp11tNode, and AdjustTree. Ftrst, 

ffnd a leaf node to fosert new rectangle toto. The Chooseleaf algorithm 
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selects the proper leaf node which gives minimum enlargement to include 

the new rectangle. Second, ff the leaf node 1s already full, invoke SplltNode 

to split a node into two nodes. Then the AdjustTree algorithm ascends from 

the leaf node to the root node to adjust covering rectangles and propagates 

node splits as necessary [8]. 

Deletion 

The deletion algorithm removes an index record from the R-tree. Sub

algorithms are Findleaf and Condense Tree. Findleaf finds the leaf node 

containing the index entry. CondenseTree eliminates the node If It has too 

few entries and relocates Its entries. For this, the INSERTION algorithm fs 

Invoked. Reinsertion incrementally refines the spatial structure of the tree 

and prevents gradual deterioration [8]. 

Splitting 

In order to insert a new rectangle into a full leaf node containing M 

entries, it is necessary to divide theM+ 1 entries between two nodes. The 

division should be done in a way that makes it as unlikely as possible that 

both new nodes w i 11 need to be examined on subsequent searches [ 8]. S i nee 

the decision whether to visit a node depends on whether its covering 

rectangle overlaps the search area, the total area of the two covering 

rectangles after a split should be minimized [ 1 O]. In Figure 2, (a) takes 

more space than (b). (a) is bad split and (b) is good split. There exist 

three different splitting mechanisms. 
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Figure 2. Bad (a) and Good (b) sp11ts [8] 
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Exhaustive AlgOrithm. Straightforward but expensive method. Used as 

a standard for comparison with other algorithms [8]. 

Quadratic Cost Algorithm. This method attempts to find a small-area 

split but is not guaranteed to find the smallest area possible. It picks two 

of theM+ 1 entries to be the first elements of the two new groups by 

choosing the pair that would waste the most area if both were put into the 

same group. For each pair of entries E 1 and E2 compose a rectangle J 

including E II and E21. Calculate d= area (J)- area (E 11 >-area (E21 ). 

Choose the pair w1th the largest d. Those two rectangles E 1 and E2 become 

the I st entry of two nodes. Then the remaining entries are assigned to 

groups one at the time [8]. 

Lfnear Cost Algorithm. Find extreme rectangles along all dimensions. 

After normalization, select the most extreme pair [8]. 

[ffnd extreme rectangles along all dlmensfons] Along all dimensions find the 

entry whose rectangle has the highest low side and the one with lowest 

hfgh side. Record the separation. 



[Adjust for shape of the rectangle cluster] Norma11ze the separations by 

dividing by the width of the entire set along the corresponding dimension. 

[Select the most extreme pair] Choose the pa1r w1th the greatest 

normalized separation. 

10 

In Figure 3, along each dimension (this case 2-d) f1nd rectangles which 

have highest low side or lowest high side. Then normalize by using the 

width (e.g., wd 1 and wd2) of the intermediate rectangle for each dimension. 

'ald2 'w'2 

....._,--...,...~~--!- )( 
~ 'ald1 

Figure 3. Linear-Cost Algorithm 

Conclusion 

( w1 w2 ) 
max wd1 wd2 

I 

The R-tree structure has been shown to be useful for indexing spatial 

data objects that have non-zero sizes. Nodes corresponding to disk pages of 

reasonable size (e.g. 1024 bytes> have values of M that produce good 

performance. 
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The linear node-sp11t algorithm proves to be as good as more 

expensive techniQues. It ts fast and the slightly worse Quality of the sp11t 

does not affect search performance not1ceably. Figure 4, Figure S,and Figure 

6 show the performance comparisons between Quadrat1c and linear sp11t 

methods [8]. 

.1\5.------------. 

P19H 
touohtd 
ptr 
quaHfving .1 
rtoOI"d 

o- quldrltio ~·· m-M/3 
L•'Hntw ~lgo. m-2 

1000 2000 3000 4000 5000 

fbnbtr of rtoOI"ds 

F1gure 4. Search Performance vs. Amount 
of Data: Pages Touched [8] 



~~--------------~ 

1000 2000 3000 4000 sooo 
fbnbtr of rtoords 

Figure 5. Search Performance vs. Amount 
of Data: CPU Cost [8] 

200ic Q- quHr-.tto 1lgo. m-M/3 
L• 'Hntr 1lgo. m-2 

1Sic 

1000 2000 3000 

fbnbtr of noords 

L 

F1gure 6. Space Required for the R-tree 
vs. Amount of Data [8] 
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R+-Tree: A Dynamtc Index Structure 

for Multi-dimensional Objects 

The R-tree is a direct extension of the B-tree for multi-dimensional 

13 

objects. The R-tree is a balanced tree and has at least 50~ space "L. 

ut111zation. Since R-trees are built using dynamk insertion algorithms, the 

structure may provide excessive space overlap and dead space in the 

nodes. That ·gives bad performance. When we consider the performance of 

the R-tree, the concept of coverage and overlap are important. An efficient 

R-tree demands minimal coverage and overlap which are defined as follows 

[ 12]: 

coverage: total area of all the rectangles associated with the node of 

that level; 

overlap: total area contained within two or more nodes. 

---:> The main difference between the R-tree and the R+-tree is that 

the the R+-tree does not allow overlapping among the intermediate 

rectangles. The R+-tree allows the partitioning of rectangles to provide 

zero overlap between intermediate rectangles. Upon splitting, an 

intermediate rectangle is partitioned into two different intermediate 

rectangles and all sub-rectangles on the partition lfne are also divided. 

If a leaf node rectangle is on the partition ltne, it is divided into two with 

the same object name in both intermediate rectangles. 

Figure 7 shows grouping of rectangles using R+-tree and Figure 8 is the 

. structure of the R+-tree. In Figure 7, rec_tangle 3 is on the split lfne\lf]t_ ~ 
data rectangle (leaf level rectangle) is on a partition 1ine, it is not split and . . 

just stored in both intermediate rectangles [ 12]. Rectangle 3 is stored in 

intermediate rectangles 11 and 12. In this case its coordinates tn both 
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intermediate rectangles are not changed. If an intermediate rectangle is on 

the partition 11ne, 1t spltts into 2 sub-regions. 

Figure 7. Rectangle Arrangement 

Figure 8. The R+-tree for Figure 7 

The R-tree structure may have excessive space overlap and dead space 1n 

the nodes that results in bad performance. The R+-tree attempts to improve 

R-tree performance. 
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Structure 

The R+-tree has the same structure as the R-tree. It has intermediate ~ 

nodes and leaf nodes def1ned as follows [ 12]: 

leaf node: Coid , RECT) 

where old is an object identifier used to refer to an object in the data base. 

RECT 1s used to describe the bounds of data objects. For example, in a 2-

dtmenstonal space, an entry RECT ts of the form (Xlow,Xh1gh,Ylow,Yhtgh). 

intermediate node: (p,RECT) 

where p is a pointer to a lower level node of the tree. 

The R+-tree allows parttt1ons to sp11t rectangles so zero overlap among 
_______ _,__.__,_,.....,._,~~W..~••"~•'"""""'•'-"'''~'">•~·-------· ....... '<O .. •ft••'-""•~""'~•-"•• ,,. ••••"• •o '-••.. .~. "•• >•~c-.•• " "•-. "•••• ,,,-••-••>•" • 

intermediate node entries can be achieved. This is one difference of the R+-

tree from the R-tree. The R+-tree has the following properties [ 12]: 

1) For each entry (p,RECT) in an intermediate node, the sub-tree rooted at 

the node pointed to by p contains a rectangle R if and if only R ts covered 

by RECT. The only except ton ts when R ts a rectangle at a leaf node; in 

that case R must just overlap with RECT. 

2) For any two entries (p 1 ,RECT 1 > and Cp2,RECT2) of an intermediate node, 

the overlap between RECT 1 and RECT2 ts zero. 

3) The root has at least two children unless it ts a leaf. 

4) All leaves are at the same level. 

_, ... 
....... ::...--.. 

-....;;;;;. 
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Operat1ons 

Search tog 

The R+-tree search algortthm ts stm11ar to the one used to the R-tree. 

The tdea is to first decompose the search space toto disjoint sub-regtons 

and for each of these descend the tree unttl the actual data objects are 

found in the leaf nodes. Nottce that a major difference between the R+-tree 

and the R-tree is that to the latter, sub-regions can overlap, thus leading to 

more expensive search fog [ 121. 

RP _SEARCH (N, W): N is a node pointer and W ts a search area. Let NR be a 

node pointed by node pointer N. 

s 1. If the NR ts not a leaf node, then for each entry (p,RECT) of NR check 1f 

RECT overlaps W. If so, RP_SEARCH (p, W). 

52. If NR ts a leaf node, check all objects RECT in NR and return those that 

overlap wfth W. 

Insert jon 

In the R•-tree, Insertion 1s done by searching the tree and Inserting the 

rectangle into a leaf node. An input rectangle may be Inserted toto more than 

one leaf node, the reason being that 1t may be broken to sub-rectangles 

along extsttng partitions of the space. Overflowing nodes are split and 

splits are propagated to parent and child nodes. A sp11t of a parent node 

may Introduce a space partition that affects the child nodes [ 12]. 
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RP_INSERT (N,IR): N is root node pointer and IR 1s input rectangle. Let NR 

be a node pointed by node pointer N. Find where IR should go and add it to 

the corresponding leaf node. 

11. If NR is not a leaf node, then for each entry (p,RECT) of NR check 1f RECT 

overlaps IR. If so, RP_INSERT (p, IR). 

12. If NR ls a leaf node, insert IR into NR. After the insertion of new 

rectangle 1f NR has more than M entries, call SPLITNODE (N) to re-organize 

the tree. 

Deletion 

Delet1on of a rectangle from the R+-tree ls done as to the R-tree. In 

the R+-tree, lt may be necessary to remove a data object from more than 

one leaf node because the R+-tree allows a rectangle to be partitioned [ 121. 

RP_DELETE (R,IR): R is node pointer and IR ls the input rectangle. 

D 1. If R is not a leaf, then for each entry (p,RECT) of R check if RECT 

overlaps IR. If so, RP_DELETE (CHILD,IR), where CHILD ts the node pointed 

to by p. 

02. If R 1s a leaf, remove IR from Rand adjust the parent rectangle that 

encloses the rema1ntng rectangles. 

Node Spllttlng 

When a node overflows a splitting algorithm ts needed to produce two 

new nodes. Two sub-nodes cover mutually dtsjotnt areas so tt ts necessary 

to search for a good parttt1on that decomposes the space toto two sub-
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regions. In the R+-tree spl1tt1ng algorithm, contrary to the R-tree sp11tt1ng 

algor1thm, downward propagation of the sp11t may be necessary. For 

example, in Figure 9, suppose A is a parent node of B which 1n turn 1s a 

parent node of C. If node A has to be sp11t, then lower level nodes Band C 

have to be sp11t too by the property ( 1 >of the R+-tree. But objects tn the 

leaf node are not sp11t; th1s is just for eff1c1ency reasons since rectangles 

in the leaf pages cannot account for further downward sp11ts [ 12] . 

.. 

A B IC I 

E 
Perttt1on 
11ne 

Figure 9. Rectangles on Part1t1on Une [ 12] 

The R+-tree node splitting algor1thm consists of 4 sub-routines, Sp11tNode 

(R), Partition (S,fO, Sweep (axis,Oxy,fO, and Pack (S,fO. 

Conclus1on E----

The main advantage of the R+-tree as a variation of the R-tree Is 

Improved search performance, especially In point queries, where there can 

be even more than 50% saving in d1sk accesses over an R-tree [ 12]. Also 

this structure behaves exactly as a k-d-B tree In the case where the data 

are points instead of non zero area objects <rectangles). Th1s Is s1gn1flcant 
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in the sense that k-d-B trees have been shown (by empirical means) to be 

very efficient for indexing point data. Figure 10 through Figure 13 show the 

performanc;e comparison between the R-tree and the R+-tree. Let's define 

density as the number of segments wh1ch contatn a given point. Figure 1 o 
and Figure 11 show disk accesses required for search used to index 100,000 

segments with total density of 40. Figure 10 shows the number of disk 

accesses as a function of large segment density C02) when the large 

segments account for 10~ of the total number of segments (N1= 90,000 and 

N2= 1 0,000). In Figure 10, the large segment density is increased as the 

number of long segments increase. In such a case, an R-tree may require 

more than twtce the page accesses as the number required by an R+-tree. In 

Figure 11, Dl represents small segments density. In Figure 12 and Figure 13 

the number of dtsk accesses ts illustrated for segment queries on an R-tree 

and an R+-tree. In Chapter IV, R-tree and R+-tree performances are 

analyzed. 
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CHAPTER Ill 

MUL T 1-R CMR) TREE 

Introduction 

The MR-tree is a data structure to handle multi-dimensional data. 

The MR-tree has the same node structure as the R-tree and the R+-tree. It 

consists of leaf nodes and intermediate nodes. All objects are stored 

in leaf level nodes and intermediate nodes consist of intermediate 

rectangles. Each intermediate rectangle completely encloses all of the 

rectangles at lower levels. 

The main idea of the MR-tree ts to distribute data objects into several 

subscreens (data spaces) to provide zero duplication of data objects among · 

leaf level nodes. The MR-t~_~e provt_~_~_§-~~ro.QverlafL~ffi~ng inter~diate ~ 

~d furth~_r.~mQy_~.i~Q~Of!~D.~Y in l~~L.DQQ~.§.:. By removing the 

rectangle(s) which are selected by the MR-tree splitting algorithm from a 

screen, the MR-tree eliminates the redundancy at leaf level nodes. Each <:::·-· 
. ---

subscreen is associated with a subtree. For example, Figure 14 and Figure 
~---·~-----~-~- _ ... ~-~ ···~~~-·~-~~-~"····--···- ••• '->~-· .-..... "'-~·--·--- ... if-· ··~-"--•·-..•••«"'·""~'"'"'-·'" 

15 show subscreens of the MR-tree for Figure 7 in Chapter II. By excluding 

rectangle 5 from Figure 7, we obtain the 1st subscreen with a neat 

arrangement of intermediate rectangles as shown in Figure 14. The 

rectangle 5 now ts inserted into the 2nd subscreen as shown in Figure 15. 

The corresponding subtrees of the 1st and the 2nd subscreens are shown in 

Figure 16. Obviously, at the leaf level, there is no duplicated data 
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rectangle. In R+-tree (as shown 1n F1gure 8), each of data rectangles 3 and 

5 was located at more than one leaf node. The MR-tree 1s a forest of 

subtrees. 

f-i1-----~ 10 I 

: 1 GJ: I I 
I 3 I 
I I L..... "' 

I r-ow I 
I I 
I I 
I I 

: 4 : 12 
I I 
I I 
I I 
I I 
lirrrl 

:······---·----~ 

~QI3 ~ 
I 6 I 
I I 

L ••••••••••••••••••• • 

F1gure 14. Rectangles in the 1st 
Sub-screen of the MR-tree 

F1gure 15. Rectangle in the 2nd 
Sub-tree of the MR-tree 



(a) 

Figure 16. (a)the 1st Subtree for 
Figure 14 

lsi I I 
(b) 

(b)the 2nd Subtree for 
Figure 15 
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In Chapter V, we further provide the method to obtain the number of sub

trees for the MR-tree with uniformly distributed segment objects. If 

parallel processors are used, search procedures for all sub-trees can be 

executed simultaneously. Thus the MR-tree provides better performance 

for both range queries and point queries than those of the R+-tree and R

tree. Query performances are discussed in Chapter V in detail. 

Structure 

A leaf node entry of the MR-tree is of the form 

(t-id , COOR) 

where t-1d is a tuple ident1fier used to refer to a data object in the 

data base and COOR are the coordinates which def1ne the minimum 

enclosing box of a data object. In the 2-d1mens1onal case, COOR consists of 

4 coordinates representing lower left and upper right corners. An 

intermediate node entry 1s of the form 

(Pt, COOR) 

where Pt is the pointer to its ch11d node at the lower level and COOR are the 

rectangle coordinates enclosing all sub-rectangles in the child node. The 

MR-tree has the properties described as follows. 
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1) For each entry <Pt, COOR) 1n an Intermediate node, the subtree pointed 

to by Pt contains rectangle R 1f and only 1f R 1s covered by 

COOR. Thts property 1s sim11ar to the property of the R+-tree. 

However, it 1s noted that the R+-tree allows an exception of thts 

property at leaf levetnodes but the MR-tree does not. Th1s 1s one of 

the major differences between the R+-tree and the MR-tree. 

2) No duplicated data objects appear at the leaf level. 

3) Zero overlap occurs between entr1es of intermediate nodes. 

4) The root node has at least two ch11dren unless tt is the leaf. 

5) All leaves are at the same level. 

Let's consider the following example. 

Figure 17. An Organization of Rectangles 1nto an R+-tree 
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Figure 18 is the R+-tree structure for the rectangles in Figure 17. 

Obv1ous1y, the redundancy at leaf level of the R+-tree increases as the 

overlapping of data objects increases. 

Figure 19. Organized Rectangles on the 1st Subscreen 

Figure 20. The 1st Subtree Structure of the MR-tree 
Corresponding to Figure 19 
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F1gure 22. The 2nd Subtree Structure of the 
MR-tree Corresponding to F1gure 21 
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Figure 19 and Figure 21 show sub-screens of the MR-tree for 

rectangles as shown in Figure 17. Figure 20 and Figure 22 are the sub

trees for rectangles in Figure 19 and Figure 21 respectively. The height of 

the 1st subtree is 2 and that of the 2nd subtree is 1. The number of disk 

accesses in point query is the height plus one. In this example, the number 

of disk accesses of the R+-tree is 4 while the MR-tree needs 5 disk 

accesses, (3 for the t st subtree and 2 for 2nd subtree). However, parallel 

processing of the MR-tree can reduce the time for point query by parallel 
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searchtng on all subtrees. If shaded rectangle (~)represents search 

area, the R+-tree has to access 8 pages, potnted by R 16, R 17, R 11, R 13, 

R14, R3, R7, and R9. The MR-tree only needs 7 page accesses, 5 for the 1st 

sub-tree and 2 for the 2nd sub-tree for the same search range. Again, 

para 11 e 1 processors can execute search processes for sub-trees 

s1mu1taneous1y and the ttme to access data pages·whtch contatn objects 

overlapping with the search range tn the MR-tree can be reduced. In thts 

case, the MR-tree for parallel processing will require the ttme needed to 

access 5 disk pages instead of 7. 

The R+-tree can not handle a range deletion operation efftctently. In 

the R+-tree data rectangle (leaf level rectangle) may not be completely 

enclosed by tts upper level intermediate rectangle(s) by the property of the 

R+-tree which allows partition of intermediate rectangles. For example, in 

F1gure 17, data rectangle 19 ts not completely enclosed by the intermediate 

rectangle R10. If a data rectangle 1s on a partition 11ne, 1t posstbly resides 

across more than one intermediate rectangle. And tn each intermediate 

rectangle, it has complete coordinates no matter what the boundary 

coordinates of tntermedtate rectangle(s). If de let ton ts done by range (delete 

all data objects overlapping wtth gtven range), not by exact coordinates as 

usual, duplicated data objects may not be completely deleted from the R+

tree. Thts could happen tf the deletion range does not overlap all 

intermediate rectangles containing such a data object inside of them. In 

Figure 17, for example, tf the shaded rectangle (~)denotes the 

deletion range, rectangles 19 and 12 are tnvolved 1n the deletion. Data 

rectangle 19 exists tn intermediate rectangles R6, R8, and R 10. However, 

deletton range only overlaps R 10. This means that only rectangle 19 tn R 10 

can be deleted and the other intermediate rectangles, R6 and R8, are 
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transparent to the R+-tree deletion algorithm. To solve this problem, the 

R+-tree may have to use a two step process: search all data rectangles 

overlapping with the deletion range by using search algorithm and then 

delete data objects one by one by using deletion algorithm with exact 

coordinates of each object. In the MR-tree, there 1s no such a problem since 

data rectangles are completely enclosed by upper level intermediate 

rectangles. If the R+-tree uses a two step process as 1n the above example, 

the total number of page accesses is 17 (4 for search and 13 for deletion). 

On the other hand, the MR-tree just needs 4 page accesses. Also deletion 

can be done by parallel processing. If so, only need time to access 2 disk 

pages. 

More quant 1 tat ive ana lyses of performance are given 1n Chapter IV and 

Chapter V. 

Operations 

Searching 

The searching algorithm consists of two parts, SEARCH1 and 

SEARCH2. The purpose of SEARCH 1 is used to call SEARCH2 as many times 

as the number of sub-trees tn the MR-tree. SEARCH2 algorithm is almost 

the same as those of the R-tree and the R+-tree. SEARCH2 recursively 

searches the tree to get all overlapping data objects. If parallel 

processors are used then SEARCH1 can be eliminated, since searching 

procedures on the subtrees can be initiated at the same t1me. 



SEARCHl (W) 

Input : 

W: coordinates of the search area 

Output: 

Data objects which overlap with W 

P: Array containing root pointers of each sub-tree 

n: Number of sub-trees 

1: subscript 

N: node pointer 

1= 0 

S 1 . 1 [ Repeat the search for a 11 sub-trees] 

If i < n 

N= P[j) 

call Search2 (N, W) and i= i + 1 

else 

return all data objects overlapping W 

SEARCH2 (N, W) 

Input: 

N: node pointer 

W: coordinates of the search area 

Output: 

Data objects which overlap w1th search area W 

30 



NR: node pointed by node pointer N 

S2.1 [ Search 1ntermed1ate rectangles ] 

If NR is not a leaf node then 

check each entry < consists of £oin1er to the child node and 

.c.QQB.d1nates which deftne the mtntmum rectangle enclosing the 

rectangles 1n ch11d node~ <Pt~COOR)) in the node NR 

If there exists an entry having overlapping COOR in node NR then 

call SEARCH2 (Pt~ W) 

else 

exit 

else 

Goto 52.1 

S2.1 [ Search leaf node rectangles l 

If NR 1s a leaf node then 

check all entries tn NR 

If there exist COOR overlapping with the search area W then 

return a 11 of them 

Insertion · 

The insertion algorithm consists of four parts: INSERT 1, 

INSERT2~ CHECKENTRY and ADJUST. The purpose of INSERT 1 is to find a 

proper sub-tree to locate rectangle NEW. If there extsts a proper sub

tree then insert NEW 1nto that sub-tree. If not, then create a new root 
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and insert NEW into the root. CHECKENTRY checks whether NEW can be 

safely tnserted tnto a node or not. ADJUST adjusts entry coordinates of an 

intermediate rectangle after insertion of NEW tnto the entry. 

INSERT 1 (P, NEW) 

Input: 

P: Array conta1n1ng root pointers of each sub-tree 

NEW: coordinates of newly inserted rectangle 

output: 

A new MR-tree after insertion of NEW 

n: number of sub-trees 

i: subscript 

N: node pointer 

SN: splttnode potnter 

1= 0 

11.1 [Find a proper subtree to insert NEW] 

N= P[i] 

SN= I NSERT2 (N , NEW) 

If insertion of NEWts successful 

If SN 1s not NULL 

create a new root and locate Nand SN as 1ts entries 

Go to 11.2 

else 

i= i + 1 

if (1 < n) 



Go to 11.1 

else 

create a new subtree root and 1nsert NEW into that root 

ex1t 

11.2[ Reinsert rectangles] 

After 1nsert1on of NEW into a sub-tree, if there is rectangle(s) 

removed during SPLIT procedure then reinsert those rectangle(s) 

1nto subsequent subtrees. 

I NSERT2 (N , NEW) 

Input: 

N: node pointer 

NEW: coordinates of newly inserted rectangle 

output: 

Insertion of rectangle NEW into a sub-tree 

Pt: node pointer in an entry pointed by E 

E: entry pointer 

SN: splltnode pointer 

NR: node pointed by node pointer N 

12.1[Search intermediate node] 

If NR is not intermediate node 

E= CHECKENTRY (N, NEW) 

If E is not NULL 
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SN=INSERT2(Pt,NEW) 

If insertion 1s successful 

ADJUST (E) 

else 

Return NULL to INSERT 1 

12.2[1nsert NEW into leaf node] 
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If NR is a leaf node, insert NEW into NR. If the rectangle NEW makes node 

have more than M entries (node capacity), then call SPLIT (N) tore

organize the sub-tree. 

CHECKENTRY (N , NEW) 

input: 

N: node pointer 

NEW: coordinates of newly inserted rectangle 

output: 

If NEW can be included into an entry (upper level intermediate 

rectangle) of node NR safely, then return that entry pointer to INSERT2 

If not, then return NULL. 

NR: node pointed by node pointer N 

Cl(lf more than 1 entry overlaps] 

If more than one entry <Pt, COOR) overlaps with NEW, then 

return NULL 



C2[0ne entry overlaps with NEW] 

If one entry overlaps w1th NEW, then get the mtntmum enlargement of 

that entry to enclose rectangle NEW 

If enlarged rectangle overlaps w1th other entries, then 

return NULL 

else 

return that entry pointer 

C3[No entry overlap with NEW) 

If there 1s no entry overlapping rectangle NEW, then for each entry, 

get minimum enlargement and check whether each enlarged rectangle 

overlaps with other entries 

If there ts no entry which can enclose NEW without overlapping with 

other entries 

return NULL 

· else 

Input: 

select an entry which has minimum enlargement to enclose NEW 

return that entry pointer 

ADJUST (E) 

E: entry pointer (an entry (Pt, COOR)) 

output: 

entry pointer with new adjusted coordinates 

A 1 [get MAX and MIN coordinates along all d1mensions] 

35 



Along all dimensions get MAX and MIN coordinates for the entries in Pt 

(Pt is the child node pointer 1n an entry pointed by E) 

A2[Adjust coordinates 1n entry] 

Adjust coordinates of entry with those extreme coordinate values 

Deletion 

The deletion operation consists of two parts: DELETE 1 and DELETE2. 
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DELETE 1 caJJs DELETE2 as many times as the number of sub-trees in the 

MR-tree. DELETE2 finds rectangle(s) ftrst and then deletes the rectangle(s) 

from a sub-tree as in R+-tree. Again parallel processing can remove 

DELETE 1 by executing DELETE2 processes simultaneously. Also the MR-tree 

can handle range deletion operation efficiently as mentioned before. 

DELETE 1 (P,DEU 

Input: 

P: pointer array containing the roots of sub-trees 

DEL: coordinates of rectangle to be deleted 

output: 

new tree after deletion 

k: number of subtrees 

i: subscript 

N: node pointer 

NR: node pointed by node pointer N 



i= 0 

D 1.1[ Repeat searching for all sub-trees] 

If i < k 

N= P[1] 

DELETE2 (N , DEU and 1= 1 + 1 

If the number of entries of NR is zero, then remove N from P 

else 

ex1t 

DELETE2 (N,DEU 

Input: 

N: node pointer 

DEL: coordinates of rectangle to be deleted 

Output: 

new structure after deletion of rectangle DEL 

NR: node pointed by node pointer N 

D2. 1 [Search intermediate nodes] 
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If NR 1s not a leaf node, then for each entry (Pt , COOR) of node NR, check 

whether COOR overlaps DEL. If so, call DELETE2 CPt, DEL) 

If deletion 1s successful then adjust coordinate of the entry. 

D2.2[ De Jete DEL from leaf node] 

If NR 1s leaf, then 

remove DEL from leaf node. 

In deletion, the R+-tree may have to traverse an excess1ve number of paths 



to delete a data object, since it allows duplicated data objects among the 

leaf nodes. For example, if node capacity 1s 50 and a data object overlaps 

with 40 different intermediate nodes, then the R+-tree has to take 40 

different paths to delete that object. As in R+-tree, many deletions degrade 

the space util1zat1on of the MR-tree. To have better performance, subtrees 

need to be reorganized periodically. 

Node Sp11tt1ng 

The d1fference of the MR-tree from the R+-tree 1s the splitting 

algorithm. The node sp11tting algorithm consists of three parts: SPLIT, 

PARTRECT and DECOMPOSE. SPLIT routine calls PARTRECT to decide a 

partition line. PARTRECT decides a partition line and returns s 1 and 52, 

sets of rectangles in partitioned sub-regions. Data (leaf level) rectangles 

on the part1t1on line are removed and re-inserted into subsequent 

subtree. 

SPLIT (N) 

input: 

N: node pointer 

Output: 

re-structured tree 

SN: sp11tnode pointer 

S: set of rectangles 1n the node pointed by N 

s 1, 52: sets of rectangles 1n each sub-region 



L: set of rema1n1ng rectangles 

5P 1 [Find a proper part 1 t 1on ltne] 

Call PARTRECT (N). Let G 1 and G2 represent two sub-reg tons decided 

by PARTRECT. Create a new node pointed by 5N for 52. 

5P2[5tore rectangles into sub-nodes] 

Put the rectangles 1n sets 51 and 52 tnto the nodes pointed 

by Nand SN respectively. And return SN and the set of rema1n1ng 

rectangle(s) L= S- 51 -52. 

PARTRECT (N) 

Input: 

N: node pointer 

Output: 
·Two sets of rectangles S 1 and 52 

NR: node potnted by node potnter N 
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SECT: array contatntng the number of rectangles 1n each section (the number 

of sections 1s 2 (M+ 1) -1 ). Starttng and endtng coordtnates of entrtes 

along all d1mens1ons dec1de sect tons (Figure 23). 

P l[No split] 

If the number of entrtes in NR ts less than or equal toM <capactty of 

node), then do not need to spltt the node. 

P2[Set lowest coordinates] 
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Decide the lowest coordinates along all dimensions for the rectangles in 

NR and let those coordinates be the starting position. 

P3[Check partition section) 

For all dimensions, call DECOMPOSE (N, SECT). Then check if there exists 

a SECT[i] that gives 0. If SECT[i]= 0, then a clear cut (no rectangle 

is on partition 11ne> exists. Select that section. If there exists more 

than one clear cut, then select 1 for which SECT[1] provides minimal 

coverage. 

P4[Calculate costs] 

For all dimensions, calculate the cost between the factors which decide 

the efficiency of the MR-tree (minimal coverage and minimal 

number of spl1tting rectangles). Then select the partition line which 

gtves the smallest cost. 

PS[Store rectangles in each sub-region into sets S 1 and 52] 

Store rectangles in the 1st sub-region and the 2nd sub-region into s 1 and 

52, respectively. Then returnS 1 and 52. 

DECOMPOSE routtne decomposes tntermedtate nodes into sections by 

projecting starting and ending coordinates of each entry and decides the 

number of entries overlapping wtth each section. At any position in a 

section, the number of overlapping rectangles is the. same. 

DECOMPOSE CN,SECT) 

Input: 

N: node po1nter 

SECT: array containing the number of rectangles in each section 

Output: 



SECT <SECT[i] contains the number of intersecting rectangle(s) 

1n a section) 

DC 1 [get the number of rectangle(s)J 

i= 0 

wh11e < 1 < 2 CM+ 1)) 

for all entries in NR and NEW, check overlap. If an entry overlaps 

with SECT[1) then increase SECT[i] by 1. 

i= i + 1 

DC2{returnl 

return SECT 
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In Figure 23, assuming C=4, insertion of rectangle 5 makes the node 

overflow. PARTRECT algorithm removes rectangle 4 and puts it into the 2nd 

sub-screen (Figure 24 (b)) to provide minimal coverage. Along all 

dimensions calculate the number of rectangles in a section. The number of 

rectangle(s) is the same at any position in a section. Then select a 

section having minimum number of rectangles. If there exists more 

than one section, then select a section which gives minimum coverage. 

The rectangle(s) in a selected section are eliminated from the sum of 

coverage. 
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F1gure 24. (b) The 2nd Subscreen for F1gure 23 



CHAPTER IV 

ANALYSIS PREVIEW 

Introduction 

The purpose of this chapter is to provide the preview for analysis on 

the MR-tree by introducing analyses of the R-tree and the R+-tree. The 

contents of this chapter are base on [ t 3]. Both data structures have been 

proposed to handle multi-dimensional data objects. The R+-tree is a 

variation of the R-tree [8]. The R+-tree differs from the R-tree in that it 

avoids overlapping between intermediate data rectangles by allowing 

partition of rectangles. The analyses are made for uniformly distributed 

llne segments but can be generalized for objects in higher dimensions. The 

transformation of a data object i~to a point in higher dimension is 

introduced and the formulas to get the number of disk accesses in point 

query for the R-trees and the R+-trees are introduced. Also performance 

comparisons between those two data structures are given. As we expected, 

the R+-tree outperforms the R-tree in searching performance, especially in 

point query. The R+-trees has good performance in the cases where there 

are few long segments and many small ones [ 13]. 

The main operations that have been considered by other researchers in 

the past can be summarized as point query and range query. Of course, 

insertion, deletion, and modification have to be supported in a dynamic 
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environment. In this chapter, performance analyses are made on po1nt query 

only. 

Assumptions 

If we cons1der boxes as potnts tn 4-d1mens1onal space, the proofs or 

forthcom1ng analyses can be eas11y derived [13]. To represent a box aligned 

with the axes, 4-coordinates are needed (the x andy coordinates of the 

lower-left and upper-r1ght corners). Since 4-d spaces are d1ff1cult to 

111ustrate, examine line segments ( 1-d objects) instead of boxes (2-d 

objects) and transform the segments into points 1n a 2-d space. Each 

segment 1s uniquely determ1ned by (Xstart,Xend) ,the coordinates of 1ts start 

and end points. In the case of 11ne segments, the screen co11apses to a line 

segment, wh1ch, by convention, starts at 0 and ends at 1. Figure 25 shows 

some 11ne segments and F1gure 26 shows the1r 2-d representat1ons. 

F 
A • B 

c D E 

0 

Figure 25. Line Segments on the Screen [ 13] 
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There exist several properties related to this transformation as follow [ 13]: 

1) There are no points below the diagonal, since Xstart <= Xend· 

2) Line segments of equal size 11ke Band C in Figure 25, are represented by 

points that lie on a line parallel to the diagonal. 

3) Line segments not entirely wlth1n the screen, such as A are allowed. In 

analysis, retain only screen clipped portion. 

4) Points outside the shaded area in Figure 26 are of no interest, because 

the corresponding segments do not intersect with the screen. 

5) The segments covering a given point Xo of the screen are transformed to 

points in the shaded area as shown in Figure 27. 

6) The shaded area ln Figure 28 correspond to all the segments tntersecttng 

with the segment (X1,X2). 

7) The shaded area tn Figure 29 corresponds to all the segments covered 

completely by the segmentS (X1,X2). 
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o x1 x2 

Mstrt 

Figure 29. The shaded Area Corresponds to Segments Covered 
Completely by the Segment (x1,x2) [13] 

We assume that [ 1 3] 

1) the 11ne segments of a given size are uniformly distributed, 

2) they need not be totally within the screen. 

The starting points of these segments divide the interval (-a , 1) into N+ 1 

equal subintervals, where N is the number of segments and a is the size. 

For example, in Figure 31 the starting polnts of each segment on the xstart 

divide (-a, 1) into 6 equal s1ze subintervals. 

0 0~ 1 
Figure 30. N= 5 Segments of Stze a= .25, 

Uniformly Distributed on the 
Screen [ 13] 
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0 1 

Xstrt 
F1gure 31. The 2-d rransformat1on of 

the Segments of F1gure 30 [ 13] 

The reason for cons1der1ng the c11pped-off portion of the segments 1s to 

ma1nta1n a constant overlap for the po1nts on the screen. Let Ov <overlap) 

be the number of segments that conta1n a g1ven po1nt <Ov < C). 

Analys1s of R+-tree 
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We exam1ne two cases, one s1ze case and two s1ze case. In the one s1ze 

case, N segments of s1ze a un1formly d1str1buted on the screen are used. In 

the two s1ze case, N 1 segments of s1ze a 1 and N2 segments of s1ze a2 are 

considered. The segments of each set are uniformly d1str1buted on the 

screen. 



Parameter 

c 

f 

h 

h+ 

Description [ 13] 

The capacity of the data pages 

( = data records per page ) 

the fanout of the internal node 

of the tree: f sons per node 

height of an R-tree 

(the root considered at level 1) 

height of an R+tree 

Lemma: Given N segments of size a, uniformly distributed on the screen, a 

1 ine segment (query segment) of size q intersects with intsect (N,a,q) 

segments [ 13], where 

(8 + Q) 
1ntsect(N,e,Q)= ( 1 + e) (N + 1) ( 1) 
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Proof: Consider Figure 32. We have 11ne AB', of size 1 +a, on horizontal axis 

by projecting the line AB. The query region Intersects the line AB on a 

segment CD by property 6, whose projection C'D' is of size a+q. The fraction 

of the intersected segments(= points on line CD, or points on llne C'D') 1s 

length (CD) I length (AB) = (a+q) I ( 1 +q). Since the line AB Is divided into 

N+ 1 equal intervals by the points, the line CD will contain on the average 

a+q 
1 +a (N + 1) 

points [ 13]. This Is exactly the number of line segments that intersect w1th 

given query segment q. Th1s formula does not depend on the position of the 



query segment. If q= 0, that is query segment 1s a point, then we have the 

formula for the overlap: 

Corollary: Given N segments with size a, uniformly distributed on the 

screen, the overlap 1s constant, and g1ven by the formula [ 13]: 

e 
Ov(N,e)= 1 + 8 (N + 1 ) (2) 

From ( 1 ) and (2) we have 

intsect (N,a,q)= Ov (N,a) + q (N+ 1-0v (N,q)) < 1') 

C' D' B' 

Figure 32. N Segments of Size a <represented as points), 
Uniformly D1stributed on the Screen [ 13] 
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For example, in Figure 33, we can get the number of overlapping segments by 

equation: 

Ov(N, a)= Ov(5, 0.5)= [0.5 I ( 1 +0.5)] * (5+ 1 )= 2. 



---------------------

0 o.s 

----------------------

1 
I 

1.25 

Figure 33. Segments of Stze .5 each: overlap (Ov)= 2 [ 13] 

g+-trees. One-stze Case 
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Assume that we haveN segments of s1ze a, uniformly d1str1buted on 

the screen. Let h+ be the height of the R+-tree, whtch is assumed to be full, 

that is every data page contains C (capacity) entries, each internal node has 

f sons. The total number of data pages is f'+ dividing the screen 1nto ;a+ 
intervals. Each interval stze ts 1 I ;a+ and one page corresponds to one 

interval. Stnce each page is fu11, we should have [ t 3] 

1 C= 1ntsect(N,e, 7 ) 
or 

or 
+ N+1-0 

h = lo~ c _ 0 

Where 0 ts the overlap 0= Ov (N,a> of given set of segments [ 13]. The total 

number of dtsk accesses r+da for point <exact> query ts the height increased 

by one, to account for the retrieval of the data page [ 13]. 

N+1-0 
r+de= 1 + lo~ c _ 0 (3e) 
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or, s1nce N » 1 and N » 0, 
. N r+da; 1 + log, C _ 0 (3b) 

In a po1nt query, the number of d1sk accesses to f1nd all objects 

overlapping with a g1ven po1nt 1s just its height plus one. This means that 

all objects overlapping with a point can be found in one leaf node. 

R+-tree, Two-S1ze Case 

Assume there are two sets of segments, N 1 segments of s1ze a 1 and N2 

segments of size a2. Each set of segments is uniformly distributed on the 

screen respectively. Again a tree is assumed to be full. So we can use the 

same arguments as in one size case [ 13]. 

or 

or 

or 

1 1 C= 1 ntsect(N,a1, T) + 1 ntsect(N,a2, f'+ ) 

C - OY 1 -OY2= -4.- (N 1 + 1 - Qy 1 + N2 + 1 - Ov2) 
f' 

h+ = l 00 _ N 1 + N2 +2 - Ov 1 - Ov2 
~ C- Ovl -OY2 

h+* loo __ N_ 
~C-OY 

where N= N1 + N2 

Ov 1 = Ov (N 1 ,a 1) the overlap due to set 1 segments 

Ov2= Ov (N2,a2) the overlap due to set 2 segments 

Ov= ov 1 + Ov2 the total overlap 

Therefore, we have 

r+da"' 1 + loa. N (4) 
'I" gy c- Qy 



EQ. (4) holds for any number of sets of segments <not just two> [ 131. The 

result depends on the total number of segments and the total overlap. 

Analysis of R-trees 

R-trees. One-Size Case 
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Again we assume that N uniformly distributed segments of sfze a are on 

the screen and that the tree is full. Therefore, the segments are grouped 

into N/C pages, in groups of size C. Each page is characterized by the 

"minimum enclosing segment", that covers all the segments in the page [ l3]. 

In the R-tree, the upper level rectangles just group lower level rectangles 

without concern about overlapping between rectangles. For example, in 

Figure 34, A is the minimum enclosing segment for the segments 1 ,2,31and 

4. 

Ffgure 34. Illustration of Father of Level 1 (C= 4) [13] 
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The segments A,B,and Care referred to by "father of level 1" [ 13]. 

_ ( 1 +e) ( ) 
af1thtr,1- (N+1) C-1 + 8 (5) 

and they are also uniformly distributed on the screen [ 13]. 

Data pages are grouped into N I (CO groups, each group containing f data 

pages (therefore Cf segments), to form the lowest level of internal nodes of 

the R-tree ("father of level 2"). So the general equation is 

1 +a ( i-1 ) 
af1thtr,f = N+ 1 Cf - 1 +a (6) 

The fathers of level i are uniformly distributed on the scree [ 131. The root of 

the R-tree corresponds to the father of level h+ 1. The OV,father.i for the 

father of level 1 is the number of fathers of level i containing a given point 

on the screen. The number of fathers in level i is [ 13] 

- N 
Nflthtr ,i - Cfi-1 (7) 

So OV,father.i is ,from the corollary (Eq. 2) [ 13] 

8 
Qy 'fattwr t= 1 ~~ '1 (Nflthtr ,i + 1 ) (8) 

I flthtr 11 

which becomes 

Ov-1 
Qy 16..&1.- • = 1 + -;::;t:'f -,.u..,. ,1 Cf 

(9) 



56 

To get the number of disk accesses in the R-tree for a point query, one needs 

to find the number of fathers which contain the given point. That is 

h+1 
rde: L OY ,flthtr ,i 

i-1 

(10) 

where h is the height of the R-tree [ 13]. 

N h= log,y 

Finally, we have the following equation from < 11 >and (9) [ 13]. 

rde- h + 1 + OY - 1 ..l._ ( 1- j_) ( 12) - c f-1 f"+1 

In equation ( 12), we assume that h is integer. If not, we can either use 

linear interpolation, or replace the sum of Eq. ( 1 0) with an integral from i= 

0.5 to i= h+ 1.5. The difference in the two approximations is small (less 

than 2%) [ 13]. · 

R-tree. Two-Size Case 

We consider two sets of segments, N 1 segments of size a 1 and N2 

segments of size a2. The segments 1n each set are uniformly distributed on 

the screen respectively. A tight packing of segments in data pages is 

obtained by storing C 1 = C* (N 1/N) and C2= C* <N2/N) consecutive segments 

of set 1 and set2 respectively 1n each data page, starting from left to right 

(N= N 1 +N2). C 1 and C2 are refereed to by effective capacity for the set 1 and 

set2. Each set has N/C fathers of level 1,w1th sizes 
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1+a1 
a 1 ,flthtr ,1 = N 1 + 1 (C 1-l)+a 1 

1+a2 
a2 ,flthtr ,1 = N2+ 1 (C2-a)+a2 

by (5) [ 13]. This means that every father of large size covers completely 

the corresponding father of smaller size. If the subscript oom represents the 

dominating set, the R-tree behaves exactly the same as if [ 13] 

- we had Noom segments of size a00m 

-the fanout was f as before 

-the data page capacity was C00rr1 

The only effect of the dominated set 1s that 1t occupies a fraction 1-N00m/N 

of the data pages reducing their effective capacity to Coom for elements of 

the dominating set. So we obtain the following formula for the two size 

case [ 13]. 

n:la: h + 1 + ...;;.Oy.;.;~;.;.;.;.;...-_1 -L( 1- .L) (13) 
f-1 fh+1 

where 

h= 1o~li = loo_l!l = loo_ N2 
C o:lf C 1 o:lf C2 

and 
dom= [ 1 1f e1,fether ,1 > a2,fether ,1 , 

2 otherwise. 

The Equation ( 13) holds for any number of sets of segments (not just two). 
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Analytical Results 

The number of disk accesses between the R-tree and the R+-tree are 

compared In the case of point query. The performance gain can be defined as 

following [ 13]: 

Perf.Gain= < (rda- r+da) I <rda)) *1 00 

where rda ts the number of disk accesses in the R-tree and r+da is the 

number of disk accesses in the R+-tree. 

One-Size Case 

Figure 35 and Figure 36 show the number of disk accesses required to 

handle point query In an R-tree and R+-tree for a file of N segments with Ov 

overlap. The R-tree has worse performance than the R+-tree because more 

searching required. 

In Figure 37, the gain in performance decreases as the total number of 

segments Increases since the R+-tree creates many sub-segments trying to 

keep all intermediate node segments non-overlapping. Up to 30% 

improvement can be achieved [ 131. 
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F1gure 35. D1sk Access for One-s1ze Segments, 
as a Function of Ov; N= 100,000 [ 13] 

s.o 

4.0 
Disk 
Aootss 

1.0~------------~--._--~ 
2 3 4 s 6 7 

10 10 10 10 10 10 
fbnbtr of stgmtnts 

Figure 36. D1sk Accesses for One-Size Segments, 
as a Funct1on of N; Ov= 40 [ 13] 
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Figure 37. Performance Gain for One-Size Segments, as 
a Function of Ov; N= 100 to 1,000,000 [ 13] 

Two-size Case 
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Figure 38 and Figure 39 show the disk accesses between the R-tree and 

the R+-tree in point query used to index N 1 +N2= 100,000 segments with 

total overlap Ov=Ov 1 +Ov2= 40. Figure 39 shows the number of disk accesses 

as a function of the number of large segments N2, when the small segment 

overlap Ov 1 =5. These figures show the problem that the R-tree has in 

handl1ng few ,lengthy segments. Improvements up to 70% can be achieved 

[ 13]. As the number of lengthy segments increase, the R+-tree loses its 

performance because of many sp11ts necessary to prevent intermediate node 

overlapping. But lengthy segments are fewer than small segments in actual 

situation (e.g., in a VLSI design> [ 13]. 
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Figure 38. Disk Accesses for Two-Size Segments, 
as a Function of Ov 1; N2= 10,000 [ 13] 
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Figure 39. Disk Accesses for Two-Size Segments,
as a Funct1on of N2; ov 1 =5 [ 13] 
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N= 100,000 [ 13] 

62 



CHAPTER V 

ANALYSIS OF THE MR-TREE 

Introduction 

Each subtree in the MR-tree has the same structure as the R+-tree 

except that there are no duplicated data objects at leaf nodes. We consider 

point query and range query to analyze its performance. Line segments are 

used again instead of boxes and they are transformed into points in 2-d 

space by their starting and ending coordinates. Detailed methodology for 

this transformation was given in Chapter IV. 

In the R+-tree, the number of disk accesses is the height of the tree 

increased by one in point query. Since the R+-tree does not allow 

overlapping between intermediate rectangles, there exists only one entry in 

the node which overlaps with the given point in each level if there exist 

overlapping objects at leaf level node. Eq. 3 (b) in Chapter IV denotes the 

number of disk accesses of the R+-tree in point query. 

We examine two cases as in Chapter IV, one size case and two size 

case. In the one size case, we consider N segments of size a, uniformly 

distributed on the screen. In the two size case, we consider N 1 segments of 

size a 1 and N2 segments of size a2, the segments of each set are 

distributed uniformly on the screen respectively. 
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Figure 41. Uniformly Distr1buted Une Segments of Size a 
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Figure 41 shows uniformly distributed line segments. Let's assume 

that capac1ty (C) of anode is 5 and overlap (Qv) 1s 4 as above. If we use the 

R+-tree to organize these llne segments, we need 21 leaf nodes to hold all 

llne segments. We can get this value from the Eq. (4) wh1ch estimates the 

number of disk accesses 1n a point query. 

r+de ... 1 + loa. N (4) 
"' ~C-OY 

where 

C ~ Ov (Number of 1 eef 1 eve 1 nodes) 

Such a property of the R+-tree makes good performance 1n point query. The 

number of disk accesses of the R•-tree in point query 1s just its height plus 



one. For example, all line segments overlapping wlth a given point x 1 in 

Figure 41 can be found in one leaf node (n3) in F1gure 43. 
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F1gure 42. Data Pages when Using the R+-tree 

n1 n2 n3 n17 

F1gure 43. Overlap of Data Objects Between Nodes of the R+-tree 
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In Figure 44, all uniformly distributed line segments are on the line L. Since 

we consider only one size case, there exists only one line parallel with the 

diagonal. The capacity of a node is greater than or equal to the overlap, c >= 

Ov. This means that in Figure 45, an enlargement of a segment of Figure 44, 

the length of the line segment A is smaller than or equal to that of line 

segment B. Therefore, as in Figure 44, two subtrees are enough to enclose 

all l1ne segments in the one size case. 

Now, the number of nodes in the leaf level can be obtained. The number 

of leaf nodes in the 1st subtree is the same as the number of stairs in 

Figure 44. One section of a "stair step" consists of two parts, capacity and 

overlap. So can get the equation 

A 

Figure 46. I Jlustrates the Splitting Algorithm 
of the MR-tree 

For example, in Figure 46, if we assume that Ov is 3 and C is 5 then a node 

of the 1st subtree can contain as many line segments as its capacity. A 
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sta1r (ABC) ho1ds 5 Jine segments, 1 ,2,3,9 and 10. However, insertion of 

line segment 11 makes the node overf1ow and the node needs to be sp11t by 

sp11tting a1gorithm. The MR-tree sp1itt1ng algorithm finds out that a 

disjoint zone exists between 1 ine 3 and 9, represented by thick Jine C'D. 

This property of sp11tt1ng a1gorithm is to reduce the number of subtrees. 

Therefore, line segments in ABC splits into two nodes, AB'C' and DEF, and 

those two nodes can stay in the same subtree 52 without over1apping. The 

number of Jeaf nodes in the 2nd subtree can be obtained by 

51 ( 15) 52=---

~ 
where tfvj 1s used to sat1sfy the property of the MR-tree sp11t algor1thm 

as mentioned above. 
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I 

---2 3 : 
___ 41 
___ 15 

9 
;---- 10 11 

12 
--===~113 

n1 n2 

I 
I 

.... 
1 
--- 1718 

___ 1920 
___ 21 

Figure 47. The 1st Subscreen of the MR-tree for Figure 41 



Figure 48. Arrangement of Data Objects in Leaf 
Nodes for Figure 47 
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Figure 49. The 2nd Subscreen of the 
the MR-tree for Figure 41 

n1 n2 

Figure 50. Arrangement of Data Objects 
in Leaf node for Figure 49 
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Figures 47 through Figure 50 show the organization of line segments using 

the MR-tree. The number of disk accesses is the height of a subtree plus one. 

The height of a subtree is 

hi= 109tSi 

where hi is the height of ith subtree. So the number of disk accesses in 

point query (Mda) is 

n 
Mda = I: ( 1 + ht ) ( 16) 

PO 
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where n is the number of subtrees ( 1 size case, n=2). 

If parallel processors are used, searching for each subtree can be 

executed s1multaneously and can reduce the t1me to access overlapping data 

objects in a point query. For example, the MR-tree for Figure 41 has 

51 (the number of data pages for subtree 1 )= N I (C + Ov)= 21 I 9 = 2.3 and 

h1 (the height of subtree 1 )= logf 51 = logf 2.3 = 0.5 

As we can see in Figure 47, the actual number of disk accesses of the 1st 

subtree 1s one. On the other hand, the R+-tree has 1.9 as its height which 

can be obta1ned by the same way. This means that the number of disk 

accesses in the R+-tree for point query is 2.9. Parallel processing of the 

MR-tree can result in reducing disk access time by almost 200% in this 

simple example. Even though parallel processing requires time for 

communication, it is nominal. 

Two 5jze Case 

We consider two sets of segments, N 1 segments of size a 1 and N2 

segments of size a2. The segments of each set are uniformly distributed on 

the screen. Figure 51 shows an arrangement of two different sized line 

segments. For each set of segments in Figure 52, we can obtain ov (the 

number of segments which contain given point xo>. For example, if (N 1 = 6 

and a 1 = 0.5) and (N2= 4 and a2=0.4), 

then 0v 1 = 0.5 (6+ 1 )/ ( 1 +0.5)= 2.3 

Ov2= 0.4 (4+ t )/ ( 1 +0.4)= 1.4 
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F1gure 52. Overlapp1ng Data Objects 
in Two 51ze Case 

Xstert 

From this ,we can get the average overlap Ov for two s1ze segment sets. 

Ov= Ov t + Ov2 

Figure 54, Figure 55, and Figure 56 show how data objects can be 

distributed into subtrees. 
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1- 1st subtree I 

'-~~~----~----~----~----~d.n 
0 n1 n2 n4 1 

Figure 53. An Example of Screen Division in Two Size Case 

In Chapter IV, we indicated that all line segments completely enclosed by a 

given line segment are under one section of the stair. Leaf nodes, n 1,n2,n3, 

and n4, are disjoint with each other and the entries of each node are 

completely enclosed by their parent level entry. Di represents disjoint point 

between leaf nodes ,n1 and ni+ 1, of the 1st subtree. As in one size case, we 

can obtain the number of nodes at leaf level for each subtree. For the 1st 

sub-tree, the same equation as in one size case can be used 

S- N 
1- c + Qy 
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F1gure 54 (a). Data Objects belong1ng to 
the 1 st Subscreen 
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The shaded area 1n Figure 54 (a) includes 11ne segments in the 2nd subtree. 

The 2nd subtree of the two size case is different from the one size case. 

S1nce disjoint point can not be guaranteed between sect1ons (above the 

stair)~ the splitting algorithm sends selected 11ne segment(s) from the 2nd 

subtree to next subtree to avoid overflow. The number of leaf nodes in the 

2nd sub-tree is 

51 
~=--

r+ _£__ 
OY 

where r is the range of the segment sizes and the one stair length of the 1st 

subtree is as 1n Figure 54 (b). So 
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Sl (17) 
S2= c 

Ov + 1 

where C/Ov >= 1 ,since C >= Ov. 

The 3rd subtree acts exactly the same way with the 2nd subtree in the one 

size case, since there exist disjoint points between sections. The number 

of leaf nodes in the 3rd subtree is 

S3= S2 (16) 

~ 
where t*-J ts used to group the rematntng 11ne segments by ustng the 

sp11tting algorithm. So the heights of subtrees can be obtained as follow, 

where 1 <= i <= n (n is the number of subtrees). Therefore, the number of 

disk accesses of the MR-tree in point query is 

n 
Mda = I: ( 1 + ht ) 

i-0 

where n is 3. 

If parallel processors are used, then searching for each tree can be 

executed simultaneously. Therefore, the time for disk accesses depends on 

maximum height of subtrees 

T mda= U * (MAX (hi)+ 1) 

where T mda is the time to access data objects in point query and U is the 

unit time required to access a disk page. Usually the 1st subtree has 

maximum height. For example, the 1st subtree for Figure 19 in Chapter Ill 

was taller than the 2nd subtree. 



Figure 54 (b). Length of a Stair in 
the 1st Subtree. 
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F1gure 55. Data Objects be1ong1ng to the 
3rd Subscreen 
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Range Query 

One Size Case 

Again we assume N segments of size ·a· uniformly distributed on the 

screen. In point query, the R•-tree has a good performance since the 

duplicated data objects in leaf level nodes avoid overlapping between 

intermediate rectangles. When we consider range query instead of point 

query, the R•-tree loses its performance by excessive data page accesses 

caused by redundant data objects in leaf level nodes. In Figure 56, the 

blackened area shows overlapping segments between page p 1 and p2. Th1s 

means that all segments tn blackened area exist in data pages p 1 and p2. In 

point query, such redundancy does not matter because we just need to find 

data objects overlapping with a g1ven point. Such objects can be found in 

one leaf level node since Ov <= C (capacity). Leaf node redundancy of the R+

tree increases the total number of data pages and results in more data 

pages being involved in search area. The number of redundant areas 

(blackened areas in Figure 56) ts 

fh+- 1 

where fh+ is the number of data pages in the R•-tree. We can obtain this 

formula from the R•-tree height equation in Chapter IV. In Figure 57, the 

number of data pages is 6. So the number of redundant areas is 5. Since 1 « 
the number of data pages, the number of redundant areas can be considered 

as the same with the number of data pages. 



0 P1 P2 
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Figure 56. The Redundancy Between 
Leaf Level Nodes 
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Figure 57. The Number of Redundant Area 
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The number of segments in 1 redundant area is the same as the number of 

segments overlapping with a point in point query. The number of segments 

in a redundant area does not depend on the size of data page. It depends on 

the size of segment. The total number of segments in a redundant area is 

h+ f * c : totel number of segments 1n rr -tree 

(fh+ -1 ) * Ov: totel number of redundunt segments in tr -tree 

The redundancy of the R+-tree can be obtained from 

(fh+- 1) * Ov 
Redundency tn R+ -tree= N * 100 ( 19e) 

Another formula to get the redundancy of the R+-tree is 

N N 
~;....._--

C- Ov C 
N 
c 

ov 
* 1 00 = c _ Ov * 1 00 (19b) 

where N I <C- Ov) is the number of leaf nodes when ov is not 0 and N I cis 

the number of leaf nodes when Ov is 0. Both formulas produce the same 

results. Figure 58 shows the redundancy of the R+-tree as a function of Ov 

and Figure 59 shows the comparison of total number of nodes between the 

R+-tree and the MR-tree. The R+-tree's redundancy is increased when Ov is 

increased. If Ov is greater than 40, the redundancy of the R+-tree is 

increased drastically. 
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Figure 58. The Redundancy of the R+-tree 
as a Function of Ov 
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F1gure 59. Total Number of Data Pages (leaf level) vs. ov 
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Figure 60. Redundancy in the R+-tree 
in Leaf Level Nodes 
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In Figure 60, for instance, tf we assume 30 uniformly distributed 

segments of size ·a·, Ov= 4, C= 5 and f= 5 then the number of data pages 

required to hold 30 segments is 26 by Eq. (20). This means 20 data pages out 

of 26 are wasted. As redundancy is increased, the insertion and the de let ton 

costs of the R+-tree are increased by splitting and also search cost, 

especially range search, is tncreased by excessive page accesses. The MR

tree has the advantage in range query as the size of search range and ov are 

increased even for serial processing. In the R+-tree, the number of disk 

accesses can be obtained from height formula [ 13] discussed in Chapter IV. 

N 
Dp: C _ Ov (20) 
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Let SR represent search range. Then R+dp denotes the number of data pages 

involved 1n the search range of the R+-tree. 

fh+l [R+:J 
R+dl: L l~l 

i-0 f1 
(21) 

where 0<= SR <= 1. R+da represents total number of d1sk accesses to 

retr1eve all data pages overlapptng w1th search range SR. 

For the MR-tree, the number of data pages 1n leaf level over1app1ng 

w1th search area can be obtatned as follow 

Mtctp = St * SR 

where St denotes the number of data pages In ith subtree and M1dp represents 

the number of data pages overlapping with SR. Therefore, the number of 

disk accesses of the MR-tree for a range query is 

n 'btl [Mt;-1 
Mdl= ~0 fo C-7")l (22) 

where n 1s the number of subtrees (in the one size case n= 2). 

Two Size Case 

We assume two sets of segments, N 1 segments of size a 1 and N2 

segments of size a2. The segments of each set are uniformly distributed on 

the screen. In the two size case, only the number of segments Nand Ov are 

different factors. As in the two size case of the point query, N= N 1 + N2 and 

Ov= Ov 1 + Ov2. So the same equations as in the one size case can be used for 

the two size case. In the two size case, 3 subtrees were enough to hold all 
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line segments. In two size case point query, we verified that 3 subtrees are 

enough to hold n s1ze 11ne segments. Therefore, Eq. (22) can be used for n 

size case. 

Figure 61 1Figure 62,Flgure 63, and Figure 64 show point and range 

query performances between the R+-tree and the MR-tree. In this analysis, 

we use search range CSR) from 0% (po1nt query> to 1% of data space. As we 

can observe, the R+-tree has the advantage over the MR-tree in point query. 

However, the increment of the search range gives the MR-tree advantage. A 

search range of 1% of the data space is considered as comparatively small 

size. Therefore, the MR-tree further increases its performance when search 

range is increased above 1% of the data space ... 

disk 
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Figure 61. The Number of Disk Accesses 
vs. Search Range 
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Figure 62. The Number of Disk Accesses 
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Figure 64. The Number of Disk Accesses 
vs. Search Range 
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Figure 65. Performance Gatn of the MR-tree (1n serial 
processing) over the R+ -tree as a 
Function of Ov 
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F1gure 66. Performance Ga1n of the MR-tree (1n ser1a1 
processing) over the R+-tree as a 
Funct1on of Ov 

F1gure 65 and F1gure 66 show the performance gain of the MR-tree over the 

R+-tree as a function of Ov (cases of N= 1,000,000 and N= 1 00,000). We 

def1ne performance ga1n as 

R+de - MRde 
Perf. ge1n(l) = MRde x 100 

where R+da 1s the number of d1sk accesses for the R+-tree and MRda 1s the 

number of disk accesses for the MR-tree. Performance ga1n of the MR-tree 

is proportional to Ov and search range. The MR-tree 1s an efficient data 

structure when the density of data 1s h1gh on data space. 

Parallel Processing 

As mentioned, parallel processing gives the MR-tree advantages for 

both range queries and point queries. In parallel processing of the MR-tree, 

each processor executes query operat1ons on a subtree s1multaneously. 
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There is no communication overhead or bottleneck time between processors 

since the host processor just needs to send the search or deletion range to 

all node processors and to receive the results from node processors. Figure 

67 and Figure 68 show point query performances of the MR-tree for parallel 

processing and the R+-tree for serial processing. The MR-tree takes less 

access time to retrieve overlapping data objects than the R+-tree does. 

The MR-tree and the R+-tree has the same access time when Ov is 0 because 

the MR-tree has only 1 subtree. In point query, the disk access time of the 

MR-tree for parallel processing depends on the height of dominant subtree 

(usually the 1st subtree holds more data objects than the other subtrees do). 

For instance, if the MR-tree has 3 subtrees and the heights of the 3 subtrees 

are 5, 4, and 3 respectively then total disk access t1me of the MR-tree 

depends on the 1st subtree (height 5). 
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Figure 67. T1me Compar1son Between the MR-tree (1n Parallel 
Processing) and the R+-tree <Point Query) 



( 1 un1t= 1 d1sk access t1me) 

t1me 

4.0-y------------. 
!.9 

N: 1,000,000 

I.e 

!.7 

3.6 

3.5 

3.4 

3.3 

0 10 20 30 40 50 
Qy 

• R+-tree 
MR-tree 

Figure 68. T1me Comparison Between the MR-tree (in Parallel 
Processing) and the R•-tree (Po1nt Query) 
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Figure 69 through Figure 72 compare range query performances of the 

MR-tree for parallel processing and the R+-tree. As Ov is increased, the 

MR-tree reduces query t1me. Because the MR-tree tends to reduce the 

number of rectangles ln the dominant subtree(s) <usually the 1st subtree) 

when Ov is increased. However, the R+-tree increases the query time when 

Ov 1s increased. The number of nodes in the search range 1s increased since 

an increase 1n Ov increases the number of duplicated rectangles in the R+

tree. As mentioned in Chapter Ill, the MR-tree is efficient 1n deletion 

operation done by exact coordinates or deletion range. Also parallel 

processing can save many disk accesses by executing the deletion processes 

simultaneously. 
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Figure 69. Time Comparison Between the MR-tree (in 
Parallel Processing> and the R+-tree 
<Range Query) 

Figure 70. Time Comparison Between the MR-tree On 
Parallel Processing) and the R+-tree 
<Range Query) 
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F1gure 72. T1me Compar1son Between the MR-tree On 
Parallel Processing> and the R+-tree 
(Range Query> 

Figure 73 through Figure 76 show performance gains of the MR-tree for 

parallel processing over the R+-tree. In this case, we define perf. gain as 

90 
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Perf gain{:C) = R+da - PMRda x 100 
. PMRda 

where PMRda ts the maximum number of disk access among the subtrees. 

As we can observe, the MR-tree has better performances than the R+-tree 

does in point query and range query. Ftgures 73 and 75 show the MR-tree 

performance gain as a function of Ov. Figures 74 and 76 show performance 

gain as a functton of search range. In deletton operation by exact 

coordinates of data object, the MR-tree has the same performance gain as in 

search operation. However, the MR-tree further tncreases its performance in 

de let ton operation by deletion range. 

F1gure 73. Performance Ga1n of the MR-tree (1n Parallel 
Processing) over R+-tree as a Function of Ov 
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CHAPTER VI 

SUMMARY, CONCLUSION, AND 

FUTURE WORK 

The purpose of the MR-tree 1s to remove the redundancy 1n leaf level 

nodes of the R+-tree and to prov1de better search and delet1on 

performances. The MR-tree st1ll keeps the advantage of the R+-tree for 

d1sjo1nt 1ntermed1ate rectangles. As 1n performance analysts of the R+-tree 

and the R-tree~ uniformly d1str1buted 11ne segments of the one stze case 

and the two stze case are used for the MR-tree performance analysts. Stnce 

we need 4 coordtnates to represent a rectangle~ a 4-d space 1s requ1red to 

transform a rectangle 1nto a potnt. However 1t 1s d1ff1cult to 111ustrate a 

4-d space. The MR-tree method 1ncreases the number of subtrees. 

However~ the number of subtrees ts very small. When untformly d1str1buted 

ltne segments are used~ the number of subtrees was two 1n the one s1ze 11ne 

segments case and three 1n the two stze 11ne segments case respect1vely. 

Three subtrees were enough to hold n s1ze 11ne segments (1n Chapter V). In 

typical d1str1but1on s1tuat1on also~ small number of subtrees are expected 

as 1n performance analysts. We have some results from s1mulat1on stud1es 

verifying the MR-tree performance analyses. 

We 1mplemented the MR-tree 1n ser1al and parallel modes by us1ng C 

language. our test used two d1mens1ona1 rectangles, generated by a random 

number generator. In one test 1 0~000 rectangles were used and the capac tty 
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of node was 30. To find the density of rectangles, called covering density 

(Cd), the sum of rectangle areas was divided by the area of data space. The 

covering density was proportional to the Ov of rectangles. In this test, we 

considered four cases of Cd, Cd= 4.61, Cd= 5.52, Cd= 6.47, and Cd= 7.44. 

Data rectangles consisted of many very small sized rectangles and a few 

large ones. For parallel processing, 1PSC/2 concurrent super computer 
. . 

(hypercube) was used. An 1PSC/2 system consists of computer nodes, 1/o 

nodes, and a front end processor. A node is a processor/memory pair. In 

parallel processing, a node processor is assigned to a subtree of the MR

tree. Tables 1 through 4 show the number of disk accesses of the MR-tree 

for serial and parallel processing (where SR represents search range). In 

both cases, serial and parallel, the actual numbers of disk accesses are the 

same but parallel processing has smaller values. Since execution time in 

parallel processing depends on the maximum number of disk accesses among 

subtrees, we used maximum number of disk accesses. For each search 

range, 20 searches were done and the average number of disk accesses were 

obtained from those. SR 0 means point query. 

~ y 

SER 

PAR 

0 1/1000 1/500 1/200 1/100 

14.2 17.0 19.5 24.5 30.9 

3.0 4.6 6.0 9.1 12.3 

(una:• of des) 

Table 1. The Number of Disk Accesses for Serial 
and Parallel Processing (Cd= 4.61) 



~ 
SER 

PAR 

~ 
SER 

PAR 

~ 
SER 

PAR 

0 1/1000 1/500 1/200 1/100 

15.1 16.6 21.0 25.0 32.7 

3.6 5.5 6.7 8.3 12.9 

(un1 t:• of de) 

Table 2. The Number of Disk Accesses for Serial 
and Parallel Processing (Cd= 5.52) 

0 1/1000 1/500 1/200 1/100 

15.7 19.5 20.3 24.8 32.0 

3.0 4.6 5.2 7.1 11.1 
(un1t:• of de) 

Table 3. The Number of Disk Accesses for Serial 
and Parallel Processing CCd= 6.47) 

0 1/1000 1/500 1/200 1/100 

17.1 21.1 23.3 29.2 36.0 

3.0 4.8 5.7 8.4 11.1 
(un1t:• of da) 

Table 4. The Number of Disk Accesses for Serial 
and Parallel Processing (Cd= 7.44) 
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SER 

PAR 

0 1/1000 1/500 1/200 1/100 

2.501 3.940 3.229 3.957 5.133 

0.469 0.792 0.656 1.174 1.653 

( un1t: second) 

Table 5. Time to Access Disk Pages tn Search 
Area (Cd= 6.47) 
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Table 5 shows the t1mes requ1red to handle search operat1ons (po1nt and 

range queries). As we can observe, parallel process1ng reduces query time 

drast1cally. F1gures 77 and 78 are graphic representations for Tables 2 and 

3. 

da 
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Figure 77. Graph Corresponding to Table 2 
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F1gure 78. Graph Correspond1ng to Table 3 

• ser1e1 
parellel 

98 

Perf. ga1n of the MR-tree for parallel process1ng over the MR-tree for 

ser1a1 process1ng can be obtained by 

Perf. galn(l) = SMRd:M;d:MRde M 100 

where SMRda represents the number of d1sk accesses for ser1a1 process1ng 

and PMRda denotes the number or d1sk accesses for parallel process1ng. 

F1gures 79 and 80 show perf. ga1n or the MR-tree as a runct1on or Cd and 

search range respectively. In Figure 81, the number of disk accesses of the 

MR-tree w1th higher Cd is smaller than the that of lower Cd. This result 

ver1f1es the performance analys1s of the MR-tree for parallel process1ng. In 

F1gures 67 through 72, the number or d1sk accesses or the MR-tree 1n query 

operations 1s reduced when ov 1s 1ncreased. The 1ncrement of Cd increases 

ov or rectangles 1n data space. 
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Tables 6 and 7 show the dtstrtbutton of data rectangles between subtrees. 

In the MR-tree, the 1st subtree takes more rectangles than the other subtree 

do. Htgher Cd tends to reduce the number of rectangles and the hetght of s 1 

to avotd overlapptng of tntermedtate rectangles. As a result, query ttme tn 

parallel processtng ts reduced. 

subtree • of rectengl es height 

S1 5656 3 

S2 2698 2 

S3 1142 2 

S4 352 1 

55 83 1 

56 40 1 

S7 29 0 

Table 6. Distribution of Rectangles (Cd= 5.52) 
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subtree • of rectangles height 

51 4944 2 

52 2880 2 

53 1471 2 

54 483 2 

55 123 1 

56 77 1 

57 22 0 

Table 7. Distribution of Rectangles (Cd= 6.47) 

Table 8 shows performance comparison between data structures (R-tree, 

R+-tree, and MR-tree) 1n different data types. The MR-tree obtains good 

performance as the large size data increase (increment of Cd). 

---. structures R+-tree date tvpe ---- R-tree MR-tree 

few large, few small v 

few large, many small v vv 

many large, few small y yy 

many large, many small y yy 

Table 8. Performance Comparison Between Data 
Structures 1n Four D1fferent Data Types 
(v: Better, vv: Much Better) 

The MR-tree has advantages in deletion (by exact coordinates and 

range) and range query. Using of parallel processors gives the MR-tree 
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better performance over the R•-tree not only 1n range query but also point 

query. 

Additional future research includes the following tasks: 

1) Comparison of the MR-tree w1th the other methods <e.g., R-tree and 

R•-tree) for handling multi-dimensional objects. 

2) Maximization of parallel processing of the MR-tree. 

3) Design more efficient partition method for the MR-tree. 
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