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INTRODUCTION 

A thorough amount of information is available relative to soil testing for 

N03-N in soils as a method of improving N-recommendations. However, 

surface soil NH4-N has not been employed as a diagnostic tool in most private 

and public soil testing laboratories. The actual window for soil testing in winter 

wheat production systems of the Southern Great Plains generally takes place 

within the months of July through September (after harvest and before planting 

and fertilization). Soil sampling during this period has been shown to provide 

an indication of residual soii-N before fall fertilization recommendations are 

determined. This measurement has been found to be extremely reliable when 

surface soil N03-N is used as the soil test index. Consequently there have 

been few studies that have established a nitrogen recommendation index with 

simultaneous measurements of NH4-N and N03-N. The objective of this 

experiment was to monitor surface soil NH4-N and N03-N for an entire cycle in 

two long-term experiments and to obtain estimates of their relationship with 

time, environmental variables and grain yield. 
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SEQUENTIAL MEASUREMENTS OF SOIL NH4-N AND N03-N FROM TWO 

LONG TERM FERTILITY EXPERIMENTS WITH VARIABLE N RATES 

ABSTRACT 

Surface soil sampling is one of the few methods available for use as a 

diagnostic tool in the assessment of N recommendations in grain crops. The 

use of applied concepts such as NH4-N in surface soil samples as a function of 

time, remain untested in terms of improving N recommendation strategies. The 

objective of this study was to observe the dynamics of seasonal variations in 

surface soil NH4-N and N03-N in two-long term fertility experiments as affected 

by N rate and to assess their relationship with time. The experimental sites 

were Experiment #222 in Stillwater, OK on a Kirkland silt loam (fine-silty, mixed, 

thermic Udic Argiustoll) and Experiment #502 in Lahoma, OK on a Grant silt 

loam (fine, mixed, thermic Udertic Paleustoll). These experiments were located 

on the Agronomy Research Station in Stillwater, OK and the North Central 

Research Station near Lahoma, OK. Treatments selected included N rates (kg 

ha-1) of 0, 44, 88, and 132 at Stillwater, OK and 0, 22, 44, 66, 88, and 112 at 

Lahoma (P and K rates were adequate and were held constant at both sites). 

A randomized complete block design with four replications was employed at 

both locations. Soil samples (0-15 em) were collected from September, 1991 

through March, 1992. Samples were dried and ground to pass a 20 mesh 
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screen and two subsamples of 2 grams each were then extracted with 20 ml of 

2M potassium chloride (Bremner, 1966) and analyzed for N03-N and NH4-N 

using the 'Lachat-Quickchem' automated flow injection analysis system. Nitrate

nitrogen was determined using the modified Gries-llosvay method (Barns and 

Folkard, 1951; Bremner, 1965). The soil extract, once injected thorough a 

'Lachat' N03 manifold (Quickchem No. 12-107-04-1-b), is passed through a 

column of copperized cadmium which reduces the N03 to N02 (Henriksen & 

Selmner-Oisen, 1970; Jackson et al. 1975). The "reduced" sample is then 

diazotized with sulfanilamide followed by coupling with N-(1-Naphthyl) ethylene

diamine dihydrochloride and absorvance is determined at 520 nm (Lachat 

Instruments, 1989). Analyses of variance were performed by sampling date and 

environmental information was used in the interpretation of results. Regardless 

of the nitrogen rate used for the previous wheat crop, no differences in either 

surface soil NH4-N or N03-N were found when sampling was initiated prior to 

fall fertilization at Stillwater. Although no differences in surface soil NH4-N were 

detected among N rates at Lahoma, significant differences in N03-N were noted 

prior to fertilization. Following fertilizer applications, NH4-N and N03-N 

demonstrated a positive linear relationship with increasing N rate (25 and 11 

days after fertilizers were applied at Stillwater and Lahoma respectively). This 

linear relationship was significant up to 134 days after fertilizers were applied for 

both NH4-N and N03-N at the Stillwater location. Surface NH4-N and N03-N 

were considerably different at the two locations sampled. This was possibly 

due to differences in soil texture or clay content. Surface soil NH4-N and N03-N 
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levels at the Stillwater location did not decrease to near check plot (0 N) levels 

until 134 days following fertilizer applications. Ammonium-N levels increased 

186 days after fertilization suggesting. mineralization of easily labile N pools. At 

the Lahoma site, N03-N levels in all treatments were not significantly different 76 

days following fertilization. Eighty seven and 88 days after fertilizers were 

applied at the Stillwater and Lahoma locations respectively, a tendency for NH4-

N to decrease with a corresponding increase in N03-N was observed. It was 

assumed that fertilizer jsoii-N nitrification was taking place at this time. The 

relationship of NH4-N with N03-N as a function of time was markedly different 

when comparing both locations. Experimental errors from analyses of variance 

were small for both NH4-N and N03-N, indicating that combined field and 

laboratory errors (used for detecting differences among treatments) were 

minimal when compared to the differences observed when changing N rate. 

The inclusion of surface soil NH4-N in addition to the commonly used N03-N 

soil test index may aid in establishing more precise fertilizer recommendations. 

Surface response models of NH4-N versus N03-N and time may further assist in 

defining optimum times for soil sampling if both indexes are to be included in 

the soil N test. 
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LITERATURE REVIEW 

The common forms of N utilized by plants are NH4 + and N03-, however 

N03- is often the predominant source of N because it can be present at higher 

concentrations in soil solution when compared to NH4 + (Tisdale et al., 1985). 

However, work by Olsen, 1986 has discussed the importance of NH/ nutrition 

especially during grain filling stages of growth in wheat and corn. Much of the 

N found in surface soil horizons is present in an organic form that may persist 

for long periods of time. Only a small portion of the organic N reservoir of the 

soil is mineralized in each growing season. The rate at which organic-N is 

converted to NH/ and N03- is termed the mineralization rate (Alexander, 1977). 

Organic compounds are mineralized in three sequential reactions: amminization, 

ammonification, and nitrification. The first two are carried out by heterotrophic 

microorganisms and the third mainly by autotrophic soil bacteria (Tisdale et al., 

1985). If readily degradable carbonaceous materials are present in the soil 

environment, NH4 + is assimilated rapidly into newly forming microbial biomass 

(Schmidt, 1982). Under certain circumstances microbial development is limited 

by available C and most of the NH4 + is oxidized to N03- as fast as is formed. 

This is commonly understood as nitrification (Schmidt, 1982). Studies 

conducted relative to nitrification of fertilizers in no till and plowed soils, found 

that ratios of N03- to NH4 + were higher in plowed soils except immediately 

following fertilization, and tillage (plow versus no-till) did not consistently affect 

nitrification when soils of both treatmentw were maintained at the same water 

content (Rice and Smith, 1983). In these studies nitrification was limited 
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primarily by substrate (NH4) supply andjor distribution in the soil profile. It was 

further noted that since water evaporated more rapidly from plowed soils, 

nitrification was sometimes more rapid in no-till soils. 

The dynamics of soil microorganisms are affected by resource quality, 

climate and soil conditions (Lynch and Hobbie, 1988). Microbial growth in soils 

can be slow when periods of activity are followed by longer periods of inactivity. 

Microorganism inactivity is often associated with stress in the natural 

environment (Lynch and Hobbie, 1988). Higashida and Takao (1985) studied 

seasonal fluctuation patterns of microbial numbers in grasslands and found that 

the factor responsible for peaks of bacterial numbers was the supply of 

substrates from the vegetation, and that soil water status also controlled the 

appearance of these peaks. Bramley and White (1989) did not find a 

relationship in four soils studied, between soil pH optimums for nitrification, 

short term nitrification assay (SNA), soil moisture content, soil temperature and 

organic carbon. Microbial activity is influenced by changes in the availability of 

soil moisture (Orchard and Cook, 1983). Linear relationships were found 

between water potential and microbial activity when activity was not limited by 

substrate availability (Orchard and Cook, 1983). Work conducted by Lund and 

Goksoyr, 1980, demonstrated that the highest N mineralization rates occurred 

when 80 to 90% of the total pore space was filled with water and that with 

decreasing moisture, N mineralization continued to decline. However, water 

levels above optimum often reduced mineral N accumulations which was 

possibly due to denitrification (Lund and Goksoyr, 1980). Regarding microbial 



7 

activity and water fluctuations, it has been observed, that drying and rewetting 

periods have an overall effect of increasing the mineralization rate where easily 

available nutrients from dead microorganisms are used, resulting in 

mineralization of humic substances (Lund and Goksoyr, 1980). This helps 

explain why fluctuating water activity in the soil may result in more rapid 

decomposition and mineralization than under a stable moisture level under 

optimal conditions (Lund and Goksoyr, 1980). Aerobic microbial activity is 

enhanced with soil water content up to the point where water displaces air and 

restricts the diffusion and availability of oxygen (Bhaumik and Clark, 1948). 

Therefore, the amount of soil pore space filled with water appears to be closely 

related to soil microbial activity under different tillage regimes (Linn and Doran, 

1984). 

The ability of soil to supply N is influenced by the amount of mineralizable 

organic N, mineralization rate and intensity factors such as moisture and 

temperature (Campbell, 1981). Sabey et al., 1956 studied nitrification of 

ammonium sulfate as influenced by temperature in three soils under laboratory 

conditions and noted that nitrification decreased at lower soil temperatures. 

Complete inhibition was not attained until soil temperature approached the 

freezing point (Sabey et al., 1956). Only slight oxidation of ammonium was 

found to occur under field conditions in soils that were fertilized after soil 

temperature had decreased below 10°C (Sabey et al., 1956). Brady (1990) 

indicated that microbial oxidation of ammonium ions to nitrate ions occurs most 

readily at temperatures of 27 -32°C, and that this effect was negligible when the 
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soil temperature was lowered to 1 0°C. Carbon and N mineralization appears to 

be enhanced in practically all soils by drying temperature as well as drying

rewetting cycles (Agarwal et al., 1971). Greater releases of N were observed 

when incubation ocurred after drying compared to when this step was omitted 

(Agarwal et al., 1971). 

Work by Dalal and Mayer (1987) studying nitrogen mineralization 

potential, and nitrogen mineralization rate in six major soils which had been 

used for cereal cropping for over 20 years, found that mineralizable N could be 

estimated by taking N0 as 5% of the total N in soils having < 40% clay, and 

15% of total N for soils of > 40% clay. The mineralization rate, K, was found to 

be 0.066 week-1 at 40°, 0.054 week-1 at 35°C and 0.027 week-1 at 25°C (Dalal 

and Mayer, 1987). Based on the N mineralization potential (N0) and the 

mineralization rate constant (K), estimates of N availability increased within the 

sequence; loamy sand, coarse sandy loam and loam (Herlihy, 1979). Nitrogen 

availability was found to be consistently higher in the high labile organic matter 

fractions from the soils studied which was possibly due to the effects of soil 

texture in the initial stages of decomposition of organic matter (Herlihy, 1979). 

The rate constants that describe C and N mineralization vary due to the 

changing complexity of the C compounds decomposed (Honeycutt, 1988). The 

concentration of potentially mineralized nitrogen was greater in surface than in 

subsurface soil and directly proportional to the total soil C (Campbell et al, 

1981). When determining the influence of N fertilizer on N and C mineralization 

from corn residues with a low C:N ratio, it was found that residue N 
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mineralization rates were reduced when N fertilizer was applied to soils with a 

low pH (Clay and Clapp, 1990). Soils with a low pH were found to have 

reduced nitrification rates, which result in high NH4 + concentrations that may 

inhibit microbial populations (Clay and Clapp, 1990). 

Net loss of N occurs in soil through a process called denitrification that 

includes reduction of N03• and N02• with the liberation of molecular N2 and N20 

(Alexander, 1977). There are differences in the adaptation of microbial 

populations of denitrifiers in different soils. For example, denitrifiers in 

temperate soils reduce N03. at lower temperatures than those in subtropical 

soils (Powlson et al., 1987). Denitrification occurred at 10°C in a temperate soil 

with a sharp increase occurring from 5 to 1 oac. This suggested that 

denitrification could be a major cause of N loss in temperate areas during the 

spring when N fertilizer is applied (Powlson et al, 1987). Nitrate-N added to two 

soils maintained under anaerobiosis for 7 days at 1 ac was found to remain in 

the soil and that increasing the temperature to 7°C produced a slow increase in 

denitrification (Jacobson and Alexander, 1980). In general, denitrification was 

found to be markedly inhibited at sac (Bailey and Beauchamp, 1973). 

Incubation temperatures of 5, 10, 15 and 30°C apparently did not influence 

denitrification potential, however, the level of available C was found to affect this 

process (Smid and Beauchamp, 1976). 

Work by Stanford et al, 1973, evaluating soil N availability and uptake of 

labeled and unlabeled N by plants, indicated that average minerai-N recovery by 

whole plants before and during the cropping period was about 85 percent. 
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Stanford, 1973, stated that with good management, recovery of applied N in 

corn grain and stover is between 50 and 70%. At near optimum N rates, 

essentially all of the unrecovered fertilizer N is subject to immobilization during 

decomposition of plant residues. However at rates higher than the optimum, a 

significant portion of the N03- remains mobile and susceptible to loss by 

leaching or denitrification (Stanford, 1973). 

The fate of N in the soils is a function of various factors. Measurements 

of NH4-N and N03-N in soils is affected by soil texture, temperature, moisture, 

organic matter and the interacting relationships between each of these over 

time. The objectives of this study were to evaluate seasonal changes in soil 

NH4-N and N03-N in two long term fertility experiments and their relationship 

with time, measured climatic variables and grain yield. 

MATERIALS AND METHODS 

Two long-term wheat fertility experiments were selected that had a range 

of N rates applied. The sites where sampling was conducted included 

Experiment #222 which was initiated in 1969 on the Agronomy Research 

Station in Stillwater, Oklahoma and Experiment #502 which was established on 

the North Central Research Station near Lahoma, Oklahoma in 1971. Initial soil 

test characteristics at each location are listed in Table 1. The soil type at 

Stillwater, was a Kirkland silt loam (fine, mixed, thermic, Udertic Paleustoll) and 

a Grant silt loam (fine, mixed, thermic, Udic Argiustoll) at Lahoma. The main 

purpose of these experiments was to evaluate long-term wheat grain yield 
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response to applied N, P and Kin areas where continuous wheat is commonly 

grown. The experimental design in both cases was a randomized complete 

block design with four replications. Plot size was 6.09 x 18.3 m at Stillwater, 

and 5.0 x 18.3 m at Lahoma, OK. Four treatments were sampled in Experiment 

#222 and six in Experiment #502 (Table 2). Fertilizer sources (N-P-K) used 

included, ammonium nitrate (NH4N03, 34-0-0), triple superphosphate (0-20-0) 

and potassium chloride (KCI, 0-0-50). Surface soil sampling was initiated before 

fertilizers were applied in the fall and prior to planting. Sixteen cores were 

taken in each plot at each sampling date, to a depth of 15 em. Cores were 

mixed to obtain a complete composite that were dried at ambient temperature 

for 6-7 days depending on the initial soil moisture, and ground to pass a 20 

mesh screen. Two sub-samples of two grams each were extracted with 2M 

potassium chloride (Bremner and Keeney, 1966). Soil extracts were analyzed 

for NH4-N and N03-N using a Lachat-flow injection analyzer. Sampling dates at 

Stillwater were: 9/9/91, 10/4/91, 10/14/91, 11/11/91, 12/5/91, 1/25/92, 

3/13/92 and at Lahoma: 8/28/91, 9/9/91, 9/23/91, 10/4/91, 10/10/91, 

11/13/91, 11/25/91, 1/17/92 and 3/12/92 respectively. At both locations, the 

first sampling date was one day before fertilizers were applied. Amounts of 

NH4-N and N03-N were determined by taking the mean from the two 

subsamples. Daily temperature and precipitation was recorded at Stillwater and 

the same information in addition to soil temperature was obtained at Lahoma. 

Analysis of variance for NH4-N and N03-N in surface soil samples obtained at 

Stillwater and Lahoma was performed including orthogonal contrasts of N rate 
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(linear and quadratic). Surface response models were generated to establish 

the relationships of NH4-N with N03-N and time. Other surface response 

models were evaluated that employed soil temperature and cumulative rainfall. 

RESULTS AND DISCUSSION 

In general, the Lahoma experiment has been conducted on a soil that 

has better drainage than the soil at Stillwater. Both soils fall within the 'Thermic' 

temperature regime, having a mean soil annual temperature of 15°C or higher, 

but lower than 22°C (Soil Conservation Service, 1975). Soil sample analyses of 

variance, by date, are reported for NH4-N and N03-N in Tables 3 and 4 for 

Stillwater and Lahoma, respectively. 

Stillwater, OK, Experiment #222 

A significant linear response of NH4-N to N fertilization was found at all 

dates excluding September 9 and March 13 (Table 3 and Figure 1). Air 

temperature maximums and precipitation for this same time period are plotted 

accordingly in Figure 2. Surface soil NH4-N in the first sampling date (prior to 

fertilization) was found to be significantly affected by N rate (Table 3, 0.10 

probability level). Following fertilization surface soil NH4-N showed 

corresponding increases with N rates and time up to 63 days (Figure 1). 

However, surface soil NH4-N in the check plot (ON) did not increase with time. 

A tendency for small decreases was noted for NH4-N, 63 to 134 days after 
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fertilizers were applied. With the increased temperature and cumulative 

precipitation received (134 to 186 days after fertilizers were applied), a marked 

increase in NH4-N was noted for the last sampling date (Figures 1 and 2). Crop 

uptake and accumulation of N03-N and NH4-N in vegetative tissue is known to 

be taking place during this time (Gardner and Jackson, 1976, Raun and 

Westerman, 1991). However, even with the crop variable included, the 

significant increase in NH4-N 134 to 186 days after fertilizers were applied 

suggests that ammonification was taking place. 

Similar to results for NH4-N noted at this location, a significant linear 

response to N fertilization was found for N03-N at all dates excluding 

September 9 and March 13 (Table 3 and Figure 1). Twenty five days after 

fertilizers were applied, N03-N levels increased significantly and then declined at 

the 35 and 63 day sampling dates for all treatments. Given that these plots are 

representative of long-term applications, it was interesting to observe an 

increase in N03-N in the check plot where no fertilizers have been applied for 

over 20 years. This suggests that fluctuations in minerai-N as a function of the 

total organic-N pool were still notable in plots receiving no N for over twenty 

years. Because temperature and precipitation were favorable for mineralization 

and more specifically, nitrification, between the first and second sampling date, 

an expected increase in both NH4-N and N03-N was expected since N 

applications would narrow the C:N ratio. This was also noted in the check plot 

receiving no N fertilization. Nitrate-N subsequently increased between the 63 

and 87 day sampling dates in all plots receiving N. This increase was 
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associated with a corresponding decrease in NH4-N at the same respective 

dates. Given the abnormally low (late October) followed by abnormally high 

ambient temperatures (mid November) in association with above average 

precipitation received during this time period, it is thought that nitrification was 

taking place (Figures 1 and 2). The markedly low temperatures noted at the 

beginning of November (-5 to 1 0°C) may have affected microbial oxidation of 

NH/ -N to N03"-N. According to Brady (1990), this process proceeds rapidly at 

soil temperatures of 27 to 32°C and is negligible below 1 0°C. Between the 

fourth and sixth sampling (63 to 134 days after fertilization), the mild 

temperature conditions (13 to 23°C) associated with short wetting and drying 

periods (precipitation) may have favored the nitrification process. Work by 

Lund and Goksoyr, 1980 has indicated that fluctuating water activity in the soil 

can result in more rapid decomposition and mineralization of the microbial 

biomass. Only very small changes in surface soil N03-N were noted during the 

134 to 186 day period (Figure 1). The nitrification rate may have been slower 

than that mentioned for ammonification, however, because N03-N is mobile and 

is known to accumulate in wheat during this time period (134 to 186 days), it 

was not surprising to find small differences in this soil test variable. By the final 

sampling date, 186 days following fertilization, surface soil N03-N levels were all 

less than 10 mg kg-1 which was very similar to that noted when sampling was 

initiated. Because surface soil N03-N would be subject to crop depletion, 

leaching, and possible immobilization andjor denitrification during the 186 day 

period, only limited amounts were expected in these surface samples following 
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the given time period. 

Lahoma, OK, Experiment #502 

In Experiment #502 near Lahoma, OK, analyses of variance for surface 

soil NH4-N indicated that the main effect of N-rate was significant in seven of the 

nine sampling dates (Table 4). Partitioning the main effect of N rate into 

orthogonal linear and quadratic single degree of freedom contrasts 

demonstrated that surface soil NH4-N was detectable as a linear function of N 

rate at all sampling dates excluding August 28 before fertilizers were applied. 

Following fertilization, NH4-N was significantly affected by N rate up to 196 days 

after fertilization. Surface soil NH4-N and N03-N are represented as a function 

of time and N rate in Figure 3. Unlike results noted at the Stillwater location, 

NH4-N levels were below 10 mg kg-1 by 88 days after fertilizers were applied. 

However, similar to that noted at the Stillwater location, NH4-N showed positive 

linear correlation with N rate immediately following fertilization. Only limited 

fluctuations in NH4-N were observed 11 to 76 days after fertilizers were applied. 

From 76 to 88 days after fertilizers were applied, a sharp decrease in NH4-N 

was noted with a corresponding tendency for increased surface soil N03-N. By 

the last two sampling dates, 141 and 196 days after fertilization, NH4-N levels 

had declined significantly. It is important to note that even within this extremely 

small range (0-10 mg kg-1 NH/ -N) a significant linear relationship was detected 

for N rate 88, 141 and 196 days after fertilization. This would appear to indicate 

that the combined experimental precision (random error) and associated 
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laboratory accuracy (bias error) was extremely sensitive. Because this was also 

noted at the Stillwater location, it would further suggest that the experimental 

precision needed to estimate NH4-N (given the procedures employed) within a 

long-term experiment, is more than adequate. If NH4-N were to be used as a 

soil test index variable for improving N recommendations, present laboratory, 

sampling and field experimental procedures appear to be minimizing random 

and bias errors since the controlled independent variable (N rate) was highly 

significant. 

Surface soil N03-N from the nine Lahoma sampling dates demonstrated 

linear increases with N rate both before fertilization and up to 76 days following 

the time when fertilizers were applied (significant N-Rate linear effect, Table 4). 

It was interesting to note a significant relationship between soil N03-N and N 

rate (Aug 28, 1991 before fertilizers were applied in 1991) more than 1 year 

after fertilizers were applied in 1991 (August 2, 1990). However, prior to 

fertilization only the 88 and 112 kg N ha·1 rates were significantly greater than 

the check indicating that residual amounts (following harvest) in the soil were 

minimal for the 22, 44, and 66 kg N ha·1 rates (Table 4 and Figure 3). The 

marked decrease in soil N03-N 36 to 42 days after fertilization is difficult to 

explain. During this time period, soils at this site were initially very wet and then 

subjected to abnormally- high temperatures for over 20 days (Figure 4). 

Marginal decreases were then noted up until the last sampling date, 196 days 

after fertilization where small increases in N03-N were found (Figure 4). Surface 

soil N03-N found in the 141 and 196 day sampling dates was below that 
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measured before fertilization when sampling was initiated (Figure 4). 

Surface Response Models 

A quadratic surface response model of NH4-N versus N03-N and time 

employing a linear interaction term (NH4-N * Time) was generated for the 

combined data obtained at Stillwater (-1 to 186 days) and Lahoma (-1 to 196 

days). Following the independent relationship noted between surface soil NH4-

N and N03-N as a function of time, surface response models allowed further 

observation of possible interactions. Individual regression equations, and 

significance levels are reported accordingly in Table 5. Graphic illustration of 

the surface response models are found in Figures 5 and 6 for the Stillwater and 

Lahoma experiments respectively. In both models, the main effects of NH4-N 

and NH4-N2 were highly significant in predicting surface soil N03-N (Table 5). 

In addition, both models demonstrated significant independent effects of Time 

and NH4-N*Time. It was expected that the difficulty in detecting surface soil 

NH4-N at Lahoma (narrow range observed at the end of the sampling period), 

could be associated with the lower cation exchange capacity present at this 

site. Surface soil nitrate-N at this location should also have been lower than 

that observed at Stillwater since these soils are well drained and would thus be 

subject to more rapid N03-N leaching losses. In general, both surface 

response models mirrored independent observations of NH4-N and time and 

N03-N with time. However, when combined, multiple regression equations were 

both significant at the 0.001 probability level and accounted for more than 50% 
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of the variability in surface soil N03-N. The utility of the surface response 

models discussed lies in the ability to detect surface soil NH4-N and N03-N at 

levels that continue to reflect linear changes in N rate. In addition, once the 

sampling cycle is complete, these models may further assist in identifying 

optimum times for soil sampling if both NH4-N and N03-N are to be included 

within the soil test index. Because a high level of precision was noted in the 

detection of surface soil NH4-N and N03-N it is of utmost importance to identify 

the ideal concentration range (time), in order to improve the accuracy of 

ultimate fertilizer N recommendations. 
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CONCLUSIONS 

Sequential surface soil samples (0-15 em) were taken during the months 

of August 1991 through March, 1992 from two long-term soil fertility 

experiments with variable N rates (Experiment #222, Stillwater, OK and 

Experiment #502, Lahoma, OK). Samples were analyzed for NH4-N and N03-N 

as defined by Bremner and Keeney, 1966. In general, it was difficult to detect 

differences in surface soil NH4-N and N03-N prior to the time when fertilizers 

were applied (September). However, a linear response was observed between 

surface soil NH4-N and N03-N and N rate 134 and 196 days after fertilization at 

Stillwater and Lahoma respectively. Although both data ranges for surface soil 

NH4-N and N03-N were small ( < 10 mg kg-1) at the Lahoma location (>42 days 

after fertilization) experimental precision was still adequate in being able to 

detect significant differences as a function of N rate. Results from this study 

suggest that NH4-N may need to be included within the soil N test which at 

present establishes N recommendations based only on N03-N. Upon the 

completion of analysis from surface soil samples taken for the entire cycle 

(September through August), it may be possible to define the optimum time 

when sampling should take place that includes both NH4-N and N03-N. 

Surface response models of N03-N versus NH4-N and Time are expected to 

assist in this regard. Future work in refining N recommendations for crop and 

forage yields should include both NH4 + -N and N03--N analyses. 
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Table 1. Soil description and soil test characteristics. 

Location Soil pH p K Bl 
Classification mg kg1 mg kg-1 

Stillwater fine-silty, 5.0 61 366 6.7 
Experiment mixed, thermic 
#222 Udic Argiustoll 

Lahoma fine, mixed, 5.3 146 822 6.7 
Experiment thermic Udertic 
#502 Paleustoll 

pH 1:1 soil:water, P and K = Mehlich Ill. 
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Table 2. Treatments sampled at each location 

Treatments N p K 
-----------------kg ha-1 ---------------

Stillwater, Experiment #222 

0 26 33 
2 44 26 33 
3 88 26 33 
4 132 26 33 

Lahoma, Experiment #502 

2 0 17 50 
3 22 17 50 
4 44 17 50 
5 66 17 50 
6 88 17 50 
7 112 17 50 
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Table 3. Analyses of Variance for N~ -N and N~ -N from seven sequential 
sampling dates in Experiment #222, Stillwater, OK. 

Days after 
Fertilization -1 25 35 63 87 134 186 

Mean Squares Nt\-N 
Source of df Sep 9 Oct 4· Oct 14 Nov 11 Dec 5 Jan 21 Mar 13 
Variation 

Rep 3 18.50 98.75 49.54 80.11 49.91 3.60 15.71 .. .. 
114o.3~r 

. . 
Trt 3 15.36 276.05 527.85 1166.85 121.85 118.16 
Error 9 10.95 36.78 157.24 54.84 56.82 8.30 86.37 

N-Rate linear 1 ** * ** ** ** 
N-Rate quadratic @ * * 

Coefficient 
of Variation, % 32 38 62 35 45 38 41 

Mean Squares NOa-N 
Source of df Sep 9 Oct 4 Oct 14 Nov 11 Dec 5 Jan 21 Mar 13 
Variation 

Rep 3 5.54 138.61 4.55 6.48 8.64 3.28 1.97 . .. .. . . 
Trt 3 5.35 614.26 104.02 71.08 410.66 106.90 7.15 
Error 9 15.39 114.15 36.47 2.80 6.06 2.19 2.84 

N-Rate linear 1 ** * ** ** ** 
N-Rate quadratic ** 

Coefficient 
of Variation, % 44 34 39 17 15 23 26 

@, *,**-significant at 0.10, 0.05 and 0.01 probability levels respectively. Significance levels for 
N Rate linear and quadratic were determined as the probability of obtaining values greater than 
absolute T. 
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Table 4. Analyses of Variance for NH4-N and N03-N from nine sequential 
sampling dates in Experiment #502, Lahoma, OK. 

Days after 
Fertilization -1 11 25 36 42 76 88 141 196 

Mean Squares NH4-N 
Source of df Aug 28 Sep 9 Sep 23 Oct 4 Oct 10 Nov 13 Nov 25 Jan 17 Mar 12 
Variation 

Rep 3 5.26 93.33 45.61 20.37 4.26 15.68 1.80 2.35 6.53 
Trt 5 4.25 306.04 •• 234.95 •• 247.70 •• 333.52"* 285.52 •• 48.82"* 14.32 •• 4.79 
Error 15 2.47 49.83 11.00 10.77 19.01 12.46 2.61 1.71 2.92 

N-Rate linear ** ** ** ** ** ** ** * 
N-Rate quadratic ** ** ** ** ** ** 

Coefficient 
of Variation, % 35 40 40 27 33 32 29 29 45 

Mean Squares N03-N 
Source of df Aug 28 Sep 9 Sep 23 Oct 4 Oct 10 Nov 13 Nov 25 Jan 17 Mar 12 
Variation 

Rep 3 1.98 25.87 15.55 12.21 4.83 1.83 12.38 0.87. 0.57 .. 
1038.63 •• 

.. 
1192.48 •• 169.40 •• 20.36 •• 58.23 •• 7.49 •• Trt 5 101.81 881.51 2.70 

Error 15 13.16 15.81 11.85 31.82 17.854 1.77 13.96 0.25 1.07 

N-Rate linear ** ** ** ** ** * ** ** ** 
N-Rate quadratic * 

Coefficient 
of Variation, % 25 12 10 13 26 22 67 21 27 

@, *, ** - significant at 0.10, 0.05 and 0.01 probability levels respectively. Significance levels for N Rate linear and 
quadratic were determined as the probability of obtaining values greater than absolute T. 
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Table 5. Regression equations, significance and R2 for N03-N (0-15 em soil 
depth) versus time and NH4-N concentration Experiment #222, Stillwater, and 
Experiment #502, Lahoma, OK. 

Location 

Stillwater 

Lahoma 

Model 

Y = 1.205 + 0.636(T) + 1.5101 (NH4 -Nf" 0.50 
-0.004(f )@ - 0.0032(N~ -N*Tf - 0.0017 
(NH4-~f* 

Y = 82.00i* - 1.240(T)'* + 3.011 (N~_ -Nf 0.62 
+ 0.00531 iff - 0.0169 (NH4 -N*T)'* 
-0.00419(NH4 -~)'* 

Significance 
Prob >F 

<0.001 

<0.001 

@, *, ** - significant at 0.1 0, 0.05 and 0.01 probability levels respectively. Multiple regression 
coefficient significance levels determined as the probability of obtaining values greater than 
absolute T. 
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Figure 1. Surface soil (0-15 em) NH4-N, and N03-N with increasing N rates in 
Experiment #222 before and after fertilization, Stillwater, OK. 
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Figure 5. Surface response model of N03-N versus NH4-N and time, Stillwater, 
OK. 
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APPENDIX A. Ammonium-N, (mg kg-1) in the surface soil horizon (0-15 em), Stillwater, Oklahoma. 

Days before and after fertilization(September 9/92) and NH4 -N. 

Replication Treatment -1 25 35 63 87 134 

1 1 8.272 6.44 4.995 3.826 2.755 4.688 

2 1 4.054 17.546 14.890 9.765 9.267 5.691 

3 1 8.920 28.995 17.814 20.473 19.573 5.774 

4 1 9.459 40.831 46.551 29.507 24.838 9.206 

5 2 7.590 5.366 19.975 3.683 2.430 2.178 

6 2 12.195 7.707 9.938 14.309 6.829 3.435 

7 2 5.993 17.138 26.250 24.738 16.912 7.801 

8 2 12.258 21.525 4.424 61.480 56.998 21.226 

9 3 9.584 13.188 6.310 5.892 3.259 3.112 

10 3 9.200 10.577 11.516 7.581 3.665 3.281 

11 3 11.106 16.743 28.102 28.796 21.765 9.139 

12 3 18.170 13.378 35.763 32.228 44.223 15.031 

13 4 17.593 5.049 3.822 4.526 2.650 2.774 

14 4 9.861 8.922 15.830 11.410 5.825 3.801 

15 4 9.282 15.236 23.811 26.457 9.669 8.083 

16 4 11.876. 28.149 50.580 48.488 34.987 15.742 

! 
i 

w 
0) 



APPENDIX B. Nitrate-N, (mg kg-1) in the surface soil horizon (0-15 em), Stillwater, Oklahoma. 

Days before and after fertilization (September 9/92) and N03 -N. 

Replication Treatment -1 25 35 63 87 

1 1 5.979 12.735 5.862 4.784 4.047 

1 2 13.165 42.090 13.299 7.945 17.068 

1 3 9.722 57.283 18.466 12.175 21.539 

1 4 5.025 44.156 23.258 11.990 28.056 

2 1 8.370 7.177 17.580 2.836 3.381 

2 2 8.695 20.728 12.248 12.029 13.695 

2 3 8.134 34.396 20.383 16.858 24.574 

2 4 17.785 50.465 6.374 15.896 31.429 

3 1 5.850 35.837 6.924 4.482 5.895 

3 2 10.487 26.807 15.326 9.702 9.501 

3 3 11.961 29.870 20.354 11.425 19.922 

3 4 4.843 39.200 21.098 11.492 26.825 

4 1 8.799 10.025 5.619 4.006 4.174 

4 2 5.877 18.098 14.519 10.791 14.360 

4 3 8.646 29.914 20.192 11.054 16.817 

4 4 10.400 44.730 26.281 12.847 26.221 

134 

1.257 

4.794 

7.504 

11.205 

0.965 

4.546 

11.377 

13.021 

1.346 

2.553 

5.668 

12.223 

1.204 

2.667 

9.617 

14.745 

! 

w 
-....! 



APPENDIX C. Ammonium-N, 

- ---r- ···~r-
Replication Treatment -1 

I I 
5.314 

4.991 

3.990 

2.779 

7.559 

2.649 

.2 l 2 l 3.060 

2,383 

3.QR 

1.540 

2 6 5.302 

2 3.762 

3 2 3.291 

5.927 

3 l 4 l 6.46 

3.141 

4. 26 

7.717 

3.940 

4.435 

9.450 

3.762 

5.486 

5.286 

(mg kg-1) in the surface soil horizon (0-15 em), Lahoma, OK. 

Da s before and after fer i h ation A!,lgJJSt 29 2ZL nrl NH -N. 

11 25 36 42 76 88 

7.290 4.995 4.624 5.142 3.5 5 

12.333 0,193 6.307 4.367 3.807 4.458 

29.676 0.683 7.721 6.128 3.992 2.958 

14,442 4.043 11.717 10.424 9.930 3.196 

49.8 9 8.182 12.930 7.471 9.586 5,470 

24.223 16.319 23.178 30.904 22.954 8.865 

11,124 5.005 3.369 3.223 2.1 

17.617 2.275 4.596 5.402 2..598 3.450 

15.0 0 4. 7 a. • 7.7 4 5.898 4.581 

15.315 9.653 14.182 14.506 6.907 2.812 

22.188 .22.054 15.262 23.104 16.644 6,069 

29.560 22.992. 35.616 31.272 34.993 16.963 

5,613 0.344 3.892 4.407 3406 2..633 

7.367 1.382 4.643 5.699 3.232 3.553 

5.7 7 4.970 9.664 11.173 7.151 4.379 

15.035 8.856 11.507 17.225 9,342 5.783 

34.791 12.265 14.313 16 287 18.003 6. 79 

19.964 29.153 17.326 25.683 18.295 12..084 

8.006 1.087 5.816 4.153 5.788 3,372 

10.159 0.813 8.679 17.369 6.848 3.668 

10.078 1.937 7.254 6.227 6.869 _ _3.817 

14.900 8.280 13.622 8.863 12.992 5.234 

19.278 7.239 19.015 8.864 15.543 5.197 

25.138 16.925 28.254 30.699 27.516 11.621 

142 

0.2790 

0,2637 

0.3427 

0.4316 

o. 0 3 

0.6625 

0.23 

0.2357 

0.2745 

0.2735 

0.48 

0,8880 

0.2933 

0.2084 

0.4664 

0.3112 

0.5363 

1.0496 

0.4872 

0.6047 

0.4588 

0.5369 

0.3572 

0.6967 

Ul 
00 



APPENDIX D. Nitrate-N 

Replication I Treatment 

I I 

3 

2 l 4 

2 

I 

(mg kg-1) in the surface soil horizon (0-15cm), Lahoma, Oklahoma. 

Davs b fore and fter fertilization Auoust 28/92l and NO-N. 

-1 12 26 37 43 77 89 

9.525 12.462 12.492 18.183 6.237 3.525 2.092 

9.982 19.698 22.226 33.958 13.160 3.920 2.196 

9.091 30.602 25.681 33.167 11.716 4.568 2.322 

17.805 43.556 41.482 56.726 20.168 8.509 12.251 

19.994 39.662 40.090 50.064 2?.507 7,438 8.172 

24.543 54.440 50.645 64.939 25.907 10.784 7.223 

10.304 7.709 11.646 4.947 5.034 2.432 .930 

9.949 16.259 22.005 28.970 10.888 3.982 2.789 

.220 25.873 31.910 39.418 15. 57 5.58 2.962 

9.579 29.832 34.790 42.691 15.219 4.253 2.806 

~-062 47.505 49.475 59.457 _:<_4~2:3 -•·9~3 5. 59 

25.169 53.220 58.559 70.851 29.828 10.659 16.118 

6.163 6.897 14.254 13.283 6.050 2.757 .626 

10.606 17.658 24.343 30.826 13.674 5.232 2.162 

20.0 28.166 34.933 46.86 20.304 .856 3.5 8 

14.989 39.856 41.205 46.376 22.147 5.952 4.336 

15_.jM1 4 .055 43.803 44.492 8.384 4.5_1_3_ 4.723_ 

15.036 45.348 51.768 56.920 21.221 6.66 4.960 

7.674 8.655 9. 61 13.722 4.91< 2.945 .668 

11.065 26.082 24.143 30.540 22.317 4.620 2.175 

12.014 5.282 _;?._5.675 33.641 11.638 !'>.750 4. 08 

15.765 40.645 43.018 51.495 14.132 6.815 4.855 
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APPENDIX E. Maximum daily temperatureCF), Stillwater, Oklahoma 

Day of Sept October November December January 
Month 

1 87 81 36 43 50 

2 79 83 39 33 52 

3 86 87 27 35 48 

4 88 88 37 42 61 

5 84 76 50 53 58 

6 85 70 52 55 57 

7 79 66 57 66 50 

8 91 82 43 60 63 

9 91 82 43 60 46 

10 92 86 58 67 46 

11 92 81 56 64 54 

12 91 92 39 63 59 

13 91 86 62 56 55 

14 88 84 68 49 37 

15 83 73 60 55 42 

16 85 72 62 40 23 

17 79 80 63 54 44 

18 80 88 66 54 50 

19 57 83 73 44 47 

20 64 64 53 37 48 

21 66 69 57 43 58 

22 70 80 68 40 -
23 73 85 54 51 -
24 72 88 46 50 -
25 70 85 52 51 -
26 80 62 48 52 -
27 78 72 60 49 -
28 79 75 62 54 -
29 80 74 75 45 -
30 78 47 73 52 -
31 42 55 -

- Not mcludea 1n tne penoa ot stuay 
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APPENDIX F. Precipitation data, Stillwater (inches), Oklahoma. 
Period of study, September 9, 1991 through January 21, 1992 

Day of September October November December January 
Month 

1 1.62 0 0.45 0 0.20 

2 1.50 0 0 0.27 0 

3 0 0 0.17 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 0.07 0 0 0 0.02 

8 0.15 0 0.02 0 0 

9 0 0 0 0 0 

10 0 0 0 0 0 

11 0 0 0 0 0 

12 0 0 0 1.27 0 

13 0 0 0 0 0.21 

14 0.04 0 0.11 0 0.08 

15 0.23 0 0.14 0 0 

16 0.27 0 0.71 0 0 

17 0.03 0 1.01 0 0 

18 0.89 0 0 0 0 

19 0.37 0 0 0.49 0 

20 0 0 0.09 2.46 0 

21 0 0 0 0 0 

22 0.22 0 0 0.10 

23 0.2 0 0 0.35 

24 0 0 0 0 

25 0.11 0 0 0 

26 0 2.25 0 0 

27 0 0 0 0 

28 0 1.50 0 0.16 

29 0 0 0.02 0 

30 0 0 0 0 

31 0.51 0 
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APPENDIX G. Maximum daily temperature eF), Lahoma, Oklahoma 
Day of September October November December January 

Month 

1 89 82 35 36 51 

2 79 85 36 41 50 

3 81 92 22 38 51 

4 86 93 33 44 na 

5 81 68 48 50 na 

6 83 69 51 54 na 

7 87 67 55 63 48 

8 84 83 55 70 59 

9 90 85 41 59 45 

10 94 85 54 58 45 

11 94 82 42 63 52 

12 94 91 40 60 57 

13 93 84 61 60 56 

14 92 87 67 58 40 

15 86 70 65 41 43 

16 86 70 51 50 24 

17 74 83 48 59 48 

18 77 90 62 47 -
19 57 90 68 40 -

20 65 68 53 38 -

21 63 67 56 41 -

22 74 82 61 55 -

23 73 85 47 48 -

24 72 90 46 48 -

25 69 73 48 45 -

26 86 53 44 49 -

27 79 63 57 45 -
28 82 74 59 41 -

29 85 74 74 41 -

30 82 54 70 49 -

31 35 45 -
na .. o avauau1e, - o me uuea 1n me penoa or sway 
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APPENDIX H. Precipitation data (inches), Lahoma, Oklahoma. 
Period of study, September 1, 1991 through January 21, 1992 

Day of September October November December January 
Month 

1 0.66 0 0 0 0 

2 0.26 0 O.Q1 0 0 

3 0 0 0.01 0 0 

4 0.26 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 0.02 0 O.Q1 0 0 

8 0.06 0 0 0 0 

9 0 0 0 0 0 

10 0 0 0 0 0 

11 0 0 0 0 0 

12 0 0 0 1.04 1.04 

13 0.05 0 0 0 0 

14 0.02 0 0 0 0 

15 0 0 0.24 0 0 

16 0.56 0 0.71 0 0 

17 0.03 0 1.27 0 0 

18 0.07 0 0 0 0 

19 0.08 0 0.08 0.70 0.70 

20 0 0 0.43 0.93 0.93 

21 0.09 0 0 0.14 0.14 

22 0.03 0 0 0.17 

23 0 0 0 0 

24 0.04 0.03 0 0 

25 0.02 0 0 0 

26 0 0 0 0 

27 0 0 0 0.12 

28 0 0.95 0 0.04 

29 0 0 0 0 

30 0 0 0 0 

31 0.54 0 
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