
QBJECT-ORIENTED DATA STRUCTURE

ANIMATION

By

SHRAVAN KUMAR ARRA
If

Bachelor of Technology

Jawaharlal Nehru Technological University

Hyderabad, India

1989

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of the

requirements for
the Degree of

MASTER OF SCIENCE
July, 1992

.. ~
\C\C\a-
~~1~

.I '

Oklahoma State Univ. Library

OBJECT-ORIENTED DATA STRUCTURE

ANIMATION

Thesis approved :

Thesis Advise

~-z.~

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express sincere appreciation to Dr. Blayne Mayfield for his

encouragement, advice and moral support during the course of the thesis.

Many thanks go to Dr. Miller for his valuable suggestions and help with relevant

material. My thanks also go to Dr. Hedrick for his encouragement to participate

in the seminar at Oklahoma Academy of Sciences. I thank Dr. Mayfield, Dr.

Miller and Dr. Hedrick for serving on my committee.

I extend my sincere thanks to Dr. John Stasko of Georgia Institute of

Technology for his valuable suggestions. His Xtango program was very useful

in designing this application. I also thank Dr. Sharda for allowing me to use his

computer hardware and software. My sincere thanks to Office of Business and

Economic Research for their help with the 386 computer.

My parents and family supported me all the way and helped me keep the

end goal constantly in sight. Thanks also go to my close friend Sriram who

gave me moral support through out my thesis. I also thank my roommates

Venu, Jasti and Karra.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

II. RELATED WORK . 4

Ill. PROPOSED SYSTEM . 9

User's View . 9
Programmer's View . 10

Program Component . 11
Animation Component . 12

IV. OBJECT-ORIENTED PROGRAMMING AND C++ 14

Object-Oriented Concepts . 14
Abstraction . 15
Encapsulation . 15
Modularity . 16
Hierarchy . 17
Polymorphism . 18

V. DESIGN AND IMPLEMENTATION . 20

Object-Oriented Analysis . 20
Identification of Objects . 21
Definition of Classes . 22
Hierarchial Organization of Classes 23

Object-Oriented Design . 23
Design of the Graphical User Interface 24
Design of Animation Library 26

Implementation . 28
Implementation of Graphical User Interface 28
Implementation of Animation Library 31

VI. FUTURE DIRECTIONS . 39

VII. CONCLUSIONS . 40

iv

BIBLIOGRAPHY 41

APPENDIXES

APPENDIX A - USER'S GUIDE 44

APPENDIX B - WINDOWS PROGRAMMING 51

v

LIST OF FIGURES

Figure Page

1. Overview of the System . 12

2 II" II d "h II R I t" h" 18 . 1s a an as a e a 1ons 1p .

3. Example of a User Class . 45

4. The Main Window of the GUI 47

5. The About Dialog Box . 48

6. The OopaRect Class . 50

7. The OopaArrow Class . 50

Vl

CHAPTER I

INTRODUCTION

"A picture is worth a thousand words." Often one does not find bugs in a

program though they exist. If the same program is presented in the form of

pictures, it may be easier to find bugs. To understand any object, one almost

always starts with pictures though one may not need them later. Program

animation shows a lot of information in pictures, thus gives better understanding

of programs and algorithms. A new and improved algorithm of dynamic

Huffman trees came from viewing an animated version of Knuth's dynamic

Huffman trees[JSV85]. Such software is also useful for instructors, project

engineers etc. in explaining to their clients (students, programmers, etc.) what

an algorithm does and what it is supposed to do. For example, a student may

get a better understanding of Quicksort by viewing an animated version of it

with different sets of input.

A program may have one or more data structures. To animate a program

one must animate the data structures of a program. A data structure is the

mathematical model of the data in an ADT (Abstract Data Type) 1, and it

represents the ways in which data items of the ADT are related. In other words

1 An Abstract Data Type is a mathematical model with data and a collection of
operations defined on that data.

1

2

a data structure consists of data and the operations that can be applied to that

data. In object-oriented programming, data and operations are grouped

together and called an object. When operations are performed on a data

structure, the data may be changed and hence the physical structure of the

data structure may also be changed. To a programmer dealing with textual

results of a program, it takes a lot of time to understand the results that are

presented in this form. Data structure animation aims at graphically displaying

the changes in the data structure, using incremental motion. For example, a

push operation on a stack data structure might be displayed by moving an

element (a rectangle may be used to represent each element of the stack) to

the top of the stack marked by an arrow. The arrow is then moved upwards to

show the updating of the top pointer. Displaying a data structure at a point of

time only gives the current state of the data structure. Though it is good to be

able to see the current state of the data structure in the form of a picture, it may

not help to understand what operations are being done and how the operation

is being performed. This thesis aims at dynamically displaying the changes in

the data structure as they are done. Such displays can lead to a better

understanding of algorithms and data structures.

The first application of such a visualization system is computer science

instruction. In courses dealing with algorithms and data structures this will be a

very useful tool to demonstrate concepts. Students can experiment with the

system by viewing animations for different sets of inputs. This can reveal some

special cases that were not known to the student before. Advanced students

3

can use this tool to develop new data structures. Similarly, -such a tool can be

useo in research to experiment with new data structures. Another important

application of program animation is in software maintenance. Once a large

piece of software is developed it is very difficult for a person to make

modifications in the future. But if the software is animated, it should be easier

to understand the software. Program animation could assist in teaching deaf

students. Simulation is another potential area where program animation can be

applied. For example, when such a system is used to simulate an operating

system, one can see the graphical objects (representing the jobs) entering into

the ready queue, moving to the CPU, etc. It also ought to be useful in program

debugging.

Program animation can be static, where the animation can be seen only for

a fixed set of inputs. It can also be dynamic, where the animation can be seen

with different inputs. Animation of an object-oriented program consists of

animation of its objects. In this thesis only dynamic program animation is

considered. A prototype demonstrating the features and importance of such a

package is also designed and implemented as part of the thesis.

CHAPTER II

RELATED WORK

Visualization as a means to understand programs and algorithms has been

a subject of study since the 1960s. Visualization of programs in the early years

was done more with video tapes and films. As the media suggest, the

visualization was static, i.e if an algorithm was animated once for particular data

it could be viewed any number of times only for those particular data. The

disadvantage of such a system was that it did not allow users to experiment

with the model being displayed. "L6: Bell Telephone Laboratories Low Level

Linked List Language" produced by KnowltonJt(~€)_91 in 1966 was the first

computer-generated movie. It showed how an assembly level list processing

language works.

Hopgood's film on hashing algorithms(1974), Booth'~_lBK75]

"PQ-trees"(19~).and Baecker's~~~81] "Sorting out Sorting"(1981) are among

other important films that were made. Hopgood's movie contained three views:

a hash table, a graph indicating the number of probes needed to insert an item,

and the maximum number of collisions to insert an item. The movie depicted

the actions for different inputs. Booth's film showed the working of several

algorithms on PQ-trees. When there was a change in the data structure, the

transformation was shown in smooth incremental animation. Baecker's "Sorting

4

5

out Sorting" illustrated a number of different sorting algorithms.

Since the mid-1970s the focus of research in animation has changed to

animation of data structures. Several systems have been built that automatically

produce a static graphical display of a program's data structures from the

information available to the system debugger at run time. The advantage of

such systems is that data structures in any arbitrary program can be viewed

without altering the program in any way. These systems give a static picture of

the data structure. They do not show what operation is being performed and

how the data structure is changing. They only show the picture of the data

structure before and after the operation. l~nse by Brad A. Myers[BAM83]
', ~

followed this style. It is a prototype that lets the programmer view the data

structures in a desired fashion. Incense was written in and for the Mesa

programming language. The user specifies the variable name to get its pictorial

display. One or more formats are associated with each data type. The user

selects one of these formats. _fl_ROYJDE- (Process Visualization and Debugging

Environment) by Moher[TGM85] goes a step further into program debugging
'-----

using graphical display of data structures. P8_0VI[)E bas the features of most

of the traditional dynamic debuggers. It extends beyond these with additional

features such as pictorial displays, interactive control, etc. It is also a prototype.

It was actually introduced to demonstrate the principles behind a style of

debugging which improves access to the details of program execution. It has

been implemented on a multiple monitor workstation.

Research on algorithm animation systems started in the mid 1970s, but they

6

caught more attention only in the 1980s. Baecker'~RMB75] system developed
,..--- --·---~---~----~

in the mid-1970s was the first known system to aim at algorithm animation.

Ya~s>d's[EY74] system for illustrating programs and p~~q_~r's[JMD74]
-·~-------·-···· ' . . ---·- ~-----------·-...

system for animating micro- PL/1 programs were among those developed at

around the same time. ~ALSA-1 ~OQ Animus were among those that came in
'------------ ------~

the 1980s. BALSA(Brown University Algorithm Simulator and Animator) is a
....._______ _ ____..------~

software environment designed to animate programs. The "algorithm designer"

writes a software program to be animated and identifies "interesting events" in

the programs. The "animator" implements the graphical pictures of the

animation. The "script writer" uses the high level command facilities to produce

scripts containing specific material for presentation to users. The "user" makes

use of these scripts or directly interacts with the dynamic graphical

representation of this algorithm. It was designed to work on a network

interconnecting all the machines in a laboratory. On a network, the program

can be run in broadcast mode where all the students can only view the

algorithm, and in Independent mode where each student runs his own

animation. London and Duisberg animated a collection of algorithms in

Smalltalk[LQ~S] by using Smalltalk's MVC(Modei-View-Controller) paradigm .
......___ ~ \. __

Duisberg's Animus system used "temporal constraints" to describe the

appearance and structure of a picture as well as their evolution over time.

Brown's BALSA-I [JYU:I.BS9] concentrated more on algorithm animation and

introduced the concept of interesting events and scripts. BALSA-II was later

developed from BALSA-I. Kleyn and Gingrich applied the animation techniques

7

to object-oriented systems in their system called GRAPHTR~C~[MP8~]. In this______________ . _ _._ '----· ---- ,_ - -..

system they concentrated on presenting concurrently animated views of object-

oriented systems. In this a viewer can see object-object relationships, a method

invocation graph, etc. concurrently. The user first executes the program in

recording mode. In this mode, information such as originator of a message,

recipient object, name of the invoked method and values of arguments, is

recorded and stored. Then the user runs the program in animate mode where

the user views the above information in a graphical display. The speed of the

animation can be varied. PECAN[SPR84] also presents concurrent views of a
'--.. _______ ___. .. - -

running program. PECAN presents multiple views of the user's program and its

semantics. It presents a syntax-directed editor, a declaration editor, a

structured flow graph editor, expression trees, flow graphs etc. This is primarily

a program development system rather than a program animation system. An

interesting feature of this system is the reverse execution display of a program.

Currently this system cannot provide data views such as different graphical

displays for trees, queues, etc. Thinkpad[R~S_??l and P.V.[~_f3_gDP85] are

other programs that are connected to this area. Stasko's TANGO[JTS90] is the
.......________ ----------·-

latest among the algorithm animation systems. In this, Stasko introduces the

path-transition paradigm for animation design. Tango is a framework that

simplifies animation design. It works with three components; an algorithm

component, a mapping component, and an animation component. The path

transition paradigm is based on four abstract data types: locations, images,

paths, and transitions. Present research claims to improve Tango to animate

object-oriented programs and parallel programs. A tool called

Dance(Demonstrational ANimation CrEation) is also being designed.

8

Visual technology not only influenced the animation of programs but also the

whole programming environment. Developments in graphics workstations are

also aiding this process of visualization. The above research and the growing

visual technology demonstrate the importance of current research in program

visualization.

CHAPTER Ill

OVERVIEW OF THE SYSTEM

Description of the problem

The purpose of this package is to provide a prototype to demonstrate data

structure animation. The prototype has a simple user-friendly Graphical User

lnterface(GUI) and a library that aids the animation of data structures. The

library provides classes to animate basic data structures such as arrays, stacks,

queues, and linked lists. The GUt should help the user in using the prototype.

The user can run an animation, zoom in, zoom out, and change the speed of

the animation.

The system can be viewed differently from a user's point of view and the

programmer's point of view.

User's View

The animation of the user program is done in three steps. They are

1) The animator creates the animations.

Animations are created by writing animation classes using the animation class

library. This library has classes for basic objects that are needed for animation.

The graphical objects that are provided to him are rectangle, arrow, array, etc.

9

Some operations provided include movement, and change of color and size.

2) The user annotates the program.

10

The user opens the source program and marks those statements after which a

change in the state of the animation is needed. The user also specifies which

animation function is to be called when that statement is encountered.

3) The user executes the program and watches the animation.

During the execution of the program the user can toggle between two modes:

a) View mode:ln this mode the user can only view the animation of the

program. Once the program starts execution the animation starts in the

edit mode.

b) Edit mode: In this mode the user is provided with the following options:

i) Change the speed of animation.

ii) Zoom in/zoom out a part of the animation window.

iii) Scroll the window to see the covered portions of the data structure.

Programmer's View

This system aims at animating object-:oriented programs. With this a user

can obtain a graphical picture of the data structures of a program. As

operations are being performed on a data structure the changes in the data

structure are shown as movements and transitions of graphical objects that

represent the data structure. The transitions include changes in size, color, etc.

Since this is a research project, only a prototype demonstrating the abilities is

built rather than a full-fledged package. The most important point to be noted

11

in the development of such a system is that animation displays cannot be

created automatically. An algorithm's operations cannot be deduced by the

system from the source code but must be denoted by a person with knowledge

of the operations performed by the algorithm[BS85]. Hence for each

operation(a significant event) in the algorithm, the user creates the animation

using the graphical objects that are provided to him in this package.

The system consists of the following two components :

1) Program Component

2) Animation Component

Figure 1 shows a block diagram of the system. The programmer writes a data

structure program that needs to be animated. The animator(may be the

programmer) designs the animation scenes using the animation component.

Program Component

The program component consists of a C + + program that has one or more

data structures in it. This may be written with classes and other object-oriented

techniques such as inheritance and overloading.

The user marks the interesting events. Interesting events are those where a

change in the state of the animated version of the data structure is desired. For

example, the change can be a change of the height of an object representing

the change in the value of the object. When an interesting event is

encountered, a message indicating the change desired in the animated data

structure, is passed. Examples of interesting events are updating the TOP

12

pointer of a stack data structure, inserting a node in a linked list, balancing

action in AVL-trees, etc. In a program using inheritance, it is possible to use

inheritance in the animation program corresponding to the inheritance in the

program being animated. For example, if an AVL tree inherits the three

traversal methods(preorder, inorder, postorder} from a BS tree, then the

animation class of the AVL-trees can inherit from the animation class of BS

trees. In this case, one needs to take care to include all the classes in the files

of the animation component.

Animation Component

The animation component contains a conventional program library of

classes that are useful to the user in building the animations. The animator can

use the library to write animation classes with greater flexibility. In the design of

this library, a bottom-up approach is adopted starting with basic objects. The

basic objects to be provided, such as rectangle, arrow, point, straight line, etc.

are identified. The classes are then designed with data and operations. The

program for this thesis also demonstrates the design of animations, using these

graphical objects, of standard data structures such as structures, arrays,

stacks, queues, linked lists, etc.

13

r·······-····••n•••••··················;

i I! I

II b I
I I . . :

•I ltilll
L..........!

CHAPTER IV

OBJECT-ORIENTED PROGRAMMING AND C++

Object-Oriented Concepts

Booch[BG91] describes object-oriented programming as "a method of

implementation in which programs are organized as cooperative collections of

objects, each of which represents an instance of some class and whose

classes are all members of a hierarchy of classes united via inheritance

relationships." In programming, a big problem is generally decomposed into

smaller parts. In the traditional procedural approach, a problem is decomposed

into smaller routines whereas in the object-oriented approach, a problem is

decomposed into smaller objects. This helps in organizing the inherent

complexity of software systems. Procedural programming techniques

concentrate on functions and actions whereas object-oriented techniques

concentrate on logical objects that contain both data and functionality in a

single unit. The term "object-oriented programming" is derived from the object

concept in the Simula 67 programming language.

Large software systems are generally very complex. It is often required to

enhance or modify some part of the software. With software that does not

follow abstraction and encapsulation principles(as described below), there is a

14

15

good chance that a lot of work would be needed to do the required

modification. Hence it is very important that a software designer keeps

abstraction and encapsulation in mind while designing the components. Object­

oriented programs are implemented with abstraction and encapsulation.

According to Booch[BG91], an object-oriented program must have the following

properties :

1) Abstraction

2) Encapsulation

3) Modularity

4) Hierarchy

When implemented properly, these result in a system that is flexible and

reusable. Such a system will have a long life.

Abstraction

An abstraction denotes only the essential characteristics of an object that the

user needs to know. It focuses on the interface of the object and hence serves

to separate the external interface from its internal implementation. C + +

facilitates abstraction by means of public functions of a class. Public functions

of a class are the only way an operation can be done on the private data of an

object.

Encapsulation

Encapsulation, also known as data hiding, is a technique for minimizing

16

interdependencies among separately written modules by defining strict external

interfaces. There should be no other way to manipulate an object's internal

data. Encapsulation assures designers that compatible changes can be made

safely without affecting the clients or users of the object. In C++, member

variables and functions of a class can have one of the three attributes: private,

protected, and public. A public variable or function is accessible both inside

and outside the class. Protected variables can be accessed only by member

functions of the class and member functions of its immediate child. Private

variables can be accessed only within the class and are completely invisible

outside that class. Hence by using the private construct data can be hidden or

encapsulated.

Modularity

Booch [BG91] defines modularity as "the property of a system that has been

decomposed into a set of cohesive and loosely coupled modules."

Modularization of a program consists of dividing a program into modules that

can be compiled separately but which have connections with other modules. In

traditional procedural programming, modularization is primarily concerned with

the meaningful grouping of subprograms using the criteria of coupling and

cohesion. In object-oriented programming, the problem is subtly different; the

task is to decide where to physically package the classes and the objects .from

the design's logical structure which are distinctly different from

subprograms[GB91]."

17

Hierarchy

A set of abstractions often forms a hierarchy and, by identifying these

hierarchies the understanding of the problem is simplified. Beech states

hierarchy as "a ranking or ordering of abstractions". There are two kinds of

hierarchies: "is a" relationship and "has a" relationship. Inheritance falls under

the "is a" category of hierarchy. Reusability is often an essential attribute of

software. Inheritance is a reusability mechanism in object-oriented languages

for sharing behaviors among or between classes. There are two types of

inheritance: single inheritance and multiple inheritance. In single inheritance,

the child class has only one parent whereas in multiple inheritance the child

class has multiple parents. In C + + both "is a " and "has a" relationships can

be used. An instance of a class can be defined as one of the private variables

of another class. For example, the declaration of class B is as follows :

class B {

}

A anlnst;

public:

Here anlnst is an instance of class A. Class B contains an instance of class A.

This is an example of the "has a" relationship. Inheritance can be used to get

the "is a" relationship. The declaration of class B is as follows :

18

class B : public A {

public:

}

In the following figure each oval represents a class.

Figure 2. "is a" and "has a" Relationship

Polymorphism

Another important aspect of object-oriented programming is polymorphism.

Polymorphism refers to an object's capability to select the correct internal

method based on the type of data received in a message. This is also referred

to as overloading. In C + +, the overload keyword can be used to overload a

function. There are two different types of overloading: function overloading and

19

given the same name as long as their arguments differ in their type. Sometimes

a function needs to be written for different types of input. Function overloading

helps to improve the interface provided to the users of the class. Sometimes

an abstract class is defined from which other classes are derived. An abstract

class cannot have instances of its own. It provides a common interface to its

derived classes. The functions in the abstract class are made "pure virtual"

functions by assigning the definition of that virtual function to zero. Since these

pure virtual functions are redefined in the derived classes it is called pure

polymorphism.

In operator overloading, a function is written with the name of the function as

the operator. This is used mainly to make an operator accept arguments of

different type other than the standard type that is provided in the definition of

the language. For example, the operator "+" can be overloaded to add two

matrices. In such a case, a function whose name is "+" is written with the

matrices as arguments.

CHAPTER V

DESIGN AND IMPLEMENTATION

Object-Oriented Analysis

This system is an object-oriented system. Hence an object-oriented analysis

is used. Object-oriented analysis is an approach that emphasizes defining the

characteristics and behavior of the program within a system of objects. The

purpose of analysis is to provide a detailed description of the problem. In

object-oriented analysis, we seek to model the world by identifying the objects

that form the vocabulary of the given problem. Then the commonalities

between the objects are observed and the objects are grouped. A common

definition for each group can be given in the form of a class. Once the classes

are identified, logical relationships and interactions among them are noted and

a hierarchy of classes is obtained. At the end of the analysis, classes and their

hierarchies are ready for design. To support object-oriented programming the

following points are focussed :

1) Identification of objects and definition of classes

2) Hierarchical organization of classes

For the convenience of the reader the description of the problem is

reproduced in this chapter. The purpose of this package is to provide a

20

21

prototype to demonstrate data structure animation. The prototype has a simple

user-friendly Graphical User lnterface(GUI), and a library that aids data structure

animation. The library provides classes to animate basic data structures such

as arrays, stacks, queues, and linked lists. The GUI helps the user in using the

prototype. The user can run an animation and change the speed of the

animation.

Identification of Objects

The above problem states that the prototype has a simple user friendly GUI.

It allows the user to run an animation and change the speed of the animation.

When the user has the option to do more than one action at a given point of

time, a menu is desirable. Since the animation is presented in a window, which

can show a data structure only partially, a way to scroll is needed. The user

should be able to zoom in or zoom out if needed. Winblad[WLA88] suggests

that the objects can be identified by picking the nouns from the problem

description and their interface from the verbs. In the nouns of the above

discussion one can see menu and window. The actions or verbs are, run,

change speed, scroll, zoom in, and zoom out. So, a menu to select the above

actions is needed. A window to present the animation is also needed and it

should be scrollable.

The problem also states that, "The prototype has an animation library that

aids data structure animation". The data structures include arrays, stacks,

queues, and linked lists. An array has a fixed number of elements. All the

22

elements are of the same type and their values can vary. Translating this into

the animation domain, an array has fixed number of graphical objects. All the

graphical objects of the array are similar conceptually but may vary in

magnitude and quality. A stack is a list of similar items. Only the item at the

top can be taken out(popping). A new item can be inserted only at the

top(pushing). A queue is a list of elements. Only the front item in the queue

can be taken out. A new element can be added only at the tail of the queue.

Similarly a linked list is a list of elements in which each element points to the

next element. From the above discussion it can be concluded that every data

structure has elements in it. In the animation domain the element is

represented by a graphical object. Pointers are needed to represent how each ·

element points to the next element in a list. Arrows can be used to represent

pointers.

Definition of Classes

After the objects are identified classes are listed. In this problem, the

following classes can be listed.

1) Class Menu

2) Class Window

3) Class Graphical object

4) Class Arrow

5) Class Array

6) Class Stack

23

7) Class Queue

8) Class List

Hierarchical Organization of Classes

From the previous description, it is clear that the GUI and the animation

library can be treated independently. In the GUI part, there are only two

classes. In Microsoft Windows there are two types of windows: windows with a

menu and windows without a menu. Here a window with a menu can be used.

In the animation library section, each of the classes array, stack, queue, and

linked list have graphical objects inside them. So a "has a" relationship can be

established here. A stack can be implemented as a restricted list. A linked list

is an improvement over the stack. So a linked list can be derived from the

stack. Here "is a" relationship can be used.

With classes identified and hierarchy established the system is ready for

design.

Object-Oriented Design

Object-oriented design starts as soon as a formal or informal model of the

problem is ready. It concentrates on identifying the semantics of the classes

identified above. The functions or capabilities of each class are listed. These

functions constitute the interface or protocol of a class. Designing the interface

for a given object may require decisions that change the design of another

object.

24

Design of the Graphical User Interface

In the previous section, a window with a menu was identified as one class

needed for the graphical user interface. The actions that can be performed on

this window are display, scroll, paint, and selection of menu items. Since

Microsoft Windows is inherently object-oriented in part, selection of menu items

is already implemented. The interface to this window class is thus only

scrolling, painting, and displaying. During the process of implementation, more

functions may be added. Functions such as opening, closing, and moving are

inherent in a window created using Microsoft Windows.

The Show function displays the window. This function must be called after

registering the window.

The PaintWindow function is the gateway to the window. Anything that is to

be painted on the window has to go through this function. This enables

recording all the paint commands that paint on the window. Every time an

object is to be painted on the screen, a PaintWindow message is sent to the

MainWindow class. This includes information about where to paint and what to

paint. All this information is stored in a node and inserted in a linked list. An id

number is given to each object painted in the window. When an object is to be

removed from a window, a delete message is sent to the window along with the

id number of the object to be deleted. The PaintWindow routine deletes the

object from the window and deletes its corresponding node from the linked list.

Thus the linked list has only the nodes of the objects that are currently drawn in

the drawing area. The drawing area is virtually an infinite area. Only a part of

25

this is visible at a given time. The window width may be only 640 pixels, but an

object can be drawn anywhere from -x to x, where x is limited only by the

type(eg., short int, long int, etc.) of x. The linked list is useful to store the

information about all the graphic objects including those that are not visible on

the screen. Initially the size of the drawing area is the same as that of a single

full-size window. Whenever an object is to be drawn beyond this area, the

drawing area is extended to include this new object in multiples of 600 pixels.

Thus, if an object is to be added at (-500,200), the drawing area is extended to

the left by 600 pixels.

The PaintWindow function goes through the linked list and draws all the

objects that fall in the active window. Initially, the active window starts at (0,0).

But when a user scrolls, the active window changes and the PaintWindow

function is called to repaint the window to reflect the new active window. The

PaintWindow function translates the logical co-ordinates to the real co-ordinates

using the following formulae :

~eal = xlogical-xactive

Y real = YlogicarY active

It draws each object that is in the active window according to the new real co-

ordinates it calculates. Whenever the drawing area grows in size, the scrollbar

range and the position of the scrollbar thumb change to reflect the new

position. The user can click on the left or right arrow to scroll to the right or left

by 20 pixels respectively. The user can click on the scrollbar to the left or right

of the thumb to move half a page (300 pixels) right or left. Similarly the vertical

26

scrollbar can be used to move up and down.

The zoom in and zoom out functions are built into the PaintWindow function.

The PaintWindow function scales the images according to the current

ZoomScale. The value of ZoomScale is 1 for a normal view, 0.5 for zoom in

and 4 for zoom out view. The active window coordinates are also recalculated

according to the ZoomScale.

Design of Animation Library

In the analysis section, the following classes were identified : GraphicObject,

Arrow, Stack, Queue, and Linked List. In this section the interface to each of

these classes is designed.

GraphicObject Class : Draw, move vertically, move horizontally, change width,

change height and change color are the operations that can be done on an

instance of this class. The object is drawn on a bitmap and a message is sent

to the MainWindow class to display this bitmap. Information about the location,

size and color of the bitmap is also sent.

Arrow Class : Displaying and erasing an arrow are the main functions of this

class.

Stack Class : The operations that can be done on a stack are push and pop.

When a push operation is done, a rectangle (or a circle) is pushed onto the top

of the stack. The top pointer arrow moves up to display the increment in top.

When a pop operation is performed the graphical object on top of the stack

moves out and is erased. The top pointer moves down to indicate the

27

decrement in top.

Queue Class : The operations that can be done on a queue are enqueue and

dequeue. When an enqueue operation is done, a rectangle (or a circle) moves

to the end of the queue and the rear pointer is updated to show the new rear of

the queue. When a dequeue operation is done, the rectangle (or a circle) at

the front of the queue moves out and all the rectangles in the queue move one

element to the front. The rear pointer is updated to show the new rear.

Array Class : The operations that are provided on the objects of this class are

change the value of an element and swap two elements. When the value of an

element changes, this is reflected by the change in the height of that element.

The swap operation is implemented by moving the two elements, in an

incremental motion, to their new position.

List Class : Inserting a node, deleting a node, and traversing the list are the

main operations that can be performed on a list of this class.

Once the design is over, the problem is ready to be implemented.The

advantages of object-oriented design are several. The implementation and

design processes merge close together because object-oriented systems

contain a great deal of design information. A good initial design can be

expressed as an early version of the code. An object-oriented design also

usually results in more reusable code than the process intensive procedural

decomposition approach. It results in systems that are resilient to future

changes. When change is necessary, the unique property of inheritance allows

reuse and extension of the existing model. It is easy to have several teams

working independently on different parts of the design because the data and

operations are localized within objects.

Implementation

28

The implementation process may give rise to change in the design of the

problem. The problem is then redesigned before implementing. This prototype

is implemented in C + + using Microsoft Windows.

Implementation of Graphical User lnterface(GUI)

The GUI consists of a window with a menu. Each window also has a

handle. Every window has a device context that describes the attributes of the

window such as background color, foreground color, etc. There should be a

way to obtain the handle of the window and the device context of the window in

order to draw on it. Hence functions GetHandle and GetWinDC are provided.

Every window should be capable of displaying itself on the screen. This

function is provided by using the function Show. Apart from these there may

be other attributes and operations that can be done on a window. Hence there

is a basic window class and specific window classes are derived from this class.

In Microsoft Windows, each window has a callback function generally called

WndProc associated with it. This is the function which is responsible for doing

the actions that a user requests. For example, if a user resizes a window, this

function takes care of drawing the new window. This function varies from

window to window, so it is not implemented in this class. Instead, it is declared

29

as a pure virtual function. This makes the class an abstract class and hence no

instances of this class can be created. The window needed for the GUI has to

be registered in order to show it on the screen. This is done in different ways

for different windows. So a MainWindow class is derived from the window class

and improved by adding a window title and functions Register and

MainWindow. The MainWindow function is a constructor that creates the

window. The WndProc function is redefined in this class. It is responsible for

many actions that the user performs on the window. It processes a user's

action such as clicking in the window, selecting a menu item, quitting from the

application, etc. With these considerations a basic window class and a

MainWindow class are implemented.

The menu is a resource that can be called when registering the window. It

is prepared using Borland's WRT(Whitewater Resource Toolkit). This menu is

given a resource id and used when registering the window class. Each menu

item is given a different id number. When a user selects a menu item, a

WM _COMMAND message is sent to the WndProc function with the id number

of the menu item as the wParam parameter. The WndProc tests the wParam in

a big switch statement and performs the corresponding action.

The GUI also consists of three dialog boxes: about box, speed box, and

open box. When the user clicks ABOUT under the SPECIAL menu a dialog box

showing the application name, its icon, and the author's name, comes up. This

icon is actually a bitmap. The SPEED option under the OPTIONS menu

displays a dialog box with a scrollbar control and buttons. The user can click

30

to the left or right to decrease or increase the speed. The dialog boxes

process input from the user and perform some actions. So a callback function

is written for each dialog box. Whenever a dialog box has to be displayed, an

instance of this procedure is created and the control(user input) gets

transferred to the dialog box. Now all the mouse and keyboard messages are

received by the dialog box callback function. When the user closes the dialog

box, the control gets transferred back to the WndProc. The dialog boxes are

also predesigned resources. They are also designed using Borland's WRT.

The application is minimized into an icon when the user clicks on the

minimize button on the top right corner. The application opens up when double

clicked on this icon. Windows sends a WM _PAINT message to the WndProc.

Initially the window is blank when maximized. So the application has to paint

when it receives a WM_PAINT message. In this case, it paints the active

window contents. Resizing also erases the window. But a WM _PAINT

message is sent when the window is resized or when it is focussed. The code

under the WM _PAINT case in the WndProc takes care of painting the active

window. Selecting ZOOM IN option under the VIEW menu, makes the image

bigger. The ZOOM OUT option under the VIEW menu gives a smaller image

on the screen. The user selects the NORMAL option under the VIEW menu to

come back to the normal view. This is implemented by erasing the screen and

redrawing the screen with the new scaled images and co-ordinates. The ZOOM

IN option is not currently supported for Super VGA monitors. All the resources

are released when the user selects QUIT under the FILE menu.

31

Up/down scrolling and left/right scrolling is also implemented. A

WM _ HSCROLL message is sent to the WndProc when the user clicks on the

horizontal scroll bar. At this point, the wParam parameter is checked to

determine if the user clicked on the left arrow or the right arrow or on the left

side of the caret or on the right side of the caret. The caret is a small square in

the scroll bar that indicates the current position of the image inside the window.

It is also referred to as the thumbtrack. Depending on the value of the wParam

parameter , the corresponding action is carried out. Clicking on the right arrow

scrolls the contents of the window 20 pixels to the left. The position of the caret

is updated. The uncovered portion of the window is painted by sending a

PaintWindow message to the window. Similarly vertical scrolling is

implemented. Caret dragging is not implemented.

Implementation of Animation Library

This involves the implementation of the classes that were identified before.

GraphicObject Class : A graphical object can have current position, height,

width, and color information as its attributes. It can have other attributes that

help in implementing the class such as id number and the bitmap. The

methods that were identified are :

DrawRect : A graphical object is drawn when this message is sent to the object.

To draw a graphic object one needs to specify the position, height, width, color,

and shape of the object. If a text is to be displayed, the text should also be

specified. This function draws a bitmap of the given shape. The object cannot

32

be more than 100 pixels wide and 100 pixels tall. If a width or height of more

than 100 pixels is specified, a width or height of 100 pixels is taken. The color

is specified by sending a Color structure. The Color structure consists of three

fields: red, blue, and green. These fields are integers and have a value in the

range 0 to 255. When this message is sent to the GraphicObject class, it sends

a message to the window class to paint in the drawing area. Thus all painting

occurs in the window class. This function draws the object on a bitmap and

this bitmap is sent to the window class.

MoveRectHoriz: The graphical object should be able to move horizontally. To

move the graphical object, the distance to be moved is to be specified. If the

distance is negative, the object moves to the left, and if it is positive it moves to

right.

MoveRectVert: To move the graphical object vertically, the distance to be

moved is to be specified. If the distance is negative, the object moves up and if

it is positive, it moves down.

A rudimentary way of achieving the moving effect is to erase the object in

the current position and redrawing it in a new position. If the new position is in

the direction of motion, and, if this redrawing process is continuously done the

object moves. But when this approach was taken, there was a lot of flicker in

the image. Another approach is to have a border of the same color as the

background, around the object. This can be done in two ways. Consider a

rectangle object whose height is 'h'. One way is to draw a rectangle with h-2

pixels height and 1 pixel of border on both top and bottom. This approach

33

leads to a smaller rectangle than requested. It is desirable to have a border of

two or more pixels. In this case, there is a big difference between the actual

height specified and the height of the drawn rectangle. Instead, a border can

be drawn outside the rectangle. This makes the actual height of the rectangle

h + 2. This may lead to problems if the user is not aware of the implementation.

For example, if a user draws rectangles of height 10, one at y=30 and one at

y=40, the border is lost on the common boundary of the two rectangles. So a

dynamic approach is adapted which will not only avoid the flicker but also will

give the exact width and height as specified.

In this approach, the object is drawn as usual. When the object is to be

moved, a bitmap of size 5 pixels wider or taller is created depending on the

direction of motion. A white border is drawn on only one side of the bitmap

depending on the direction of movement. For example, for a vertical upward

motion, a white border is drawn at the bottom edge of the bitmap. The actual

object is drawn on the bitmap in the rest of the area. When this bitmap is

displayed on the screen in incremental positions, the objects move smoothly

without flicker.

A delay is introduced between two steps. This delay depends on the

current speed as selected through the SPEED option under the OPTIONS

menu. The delay is device independent.

DeleteRect: This method erases the graphical object from the screen. It does

this by painting the area occupied by the object with the color of the

background. It does this by sending a message to the MainWindow class. The

corresponding node is deleted from the linked list. The actual object is not

deleted, but is only erased from the screen.

ChangeRectWidth, ChangeRectHeight : To change the height or width of the

object, specify the new width or height of the object.

34

This is implemented by deleting the current object and redrawing it with the new

width, or height.

OopaArrow Class : An arrow can have the current position, direction, width

and height as the attributes. These are declared as private variables. The

methods that were identified are :

DrawArrow : This method draws the arrow at the specified location. The width,

height, and direction of the arrow are to be specified. The arrow cannot be

wider or taller than 100 pixels wide. If a width or height of more than 100 pixels

is given, a width or height of 100 pixels is assumed. The mc:hod actually draws

an arrow bitmap already created using Borland's WRT. It loads the bitmap from

the resource file that was already created and draws it in a temporary bitmap.

This bitmap is sent as a parameter in the message sent to the window class.

DeleteArrow : This erases the given arrow from the screen. It does this by

painting the area occupied by the object with the color of the background. It

does this by sending a message to the MainWindow Class. The corresponding

node is deleted from the linked list. The actual object is not deleted but is only

erased from the screen.

Array Class : This class represents an array of graphical objects. The methods

that were identified are:

35

DrawArray : This method draws an array of graphical objects of fixed size. This

method is overloaded to provide a default draw method. In one method, the

user does not need to specify anything. In another, the user needs to specify

the position of the first element of the array, width, height, shape, color of the

elements of the array, and distance between the elements.

DrawVarArray :This method draws an array of variable sized elements, the

height of the element being proportional to the value it represents.

The array class consists of an array of graphic objects. A DrawRect message

is sent to each of the elements in the array.

Swap : This method swaps two specified elements. This is done by exchanging

the position of the objects. If object1 and object2 are being swapped, object1

moves slowly up and then to the right. Object2 moves slowly down and then to

the left. Object1 moves down to take place of object2 and vice versa. This

effect is achieved by sending MoveRectHoriz and MoveRectVert messages to

the objects being swapped.

ChangeEiementHeight : This method changes the height of the specified

element of the array. This represents the change of the value of an element.

ChangeEiementWidth : This method changes the height of the specified

element of the array. This represents the change of the value of an element.

These two methods are implemented by deleting the old element and drawing

the element with the new width or height.

Stack Class : This class represents a stack of graphical objects. The methods

that were identified are :

36

OopaStack : This is the default constructor for the stack class. This is

overloaded to provide a more customized constructor where the position of the

stack, width, height, shape, and color of each node can be specified. This

class is used to animate a stack implemented using arrays. Thus an array of

graphical objects is created in the constructor.

-OopaStack :This is the destructor which deallocates the memory that was

allocated for the array of graphical objects.

OopaPush : This function moves a node from outside the stack onto to the top

of the stack. The object is initially drawn to the left of the first element of the

stack. This object moves up by the size of the sack, then it moves horizontally

to the maximum position of the stack and then down to the current top of the

stack. It updates the arrow position to reflect the new stack top.

OopaPop : This function moves a node from the top of the stack vertically to

the maximum height of the stack and then it moves horizontally. The object

moves down and is erased finally. It also updates the arrow position to reflect

the new stack top.

Queue Class : This class represents a queue of graphical objects. The

methods that were identified are :

OopaQueue : This is the default constructor for the queue class. This is

overloaded to provide a more customized constructor where the position of the

queue, width, height, shape, and color of each node in the queue can be

specified. This class is used to animate a queue implemented using arrays.

Thus an array of graphical objects is created in the constructor.

- OopaQueue : This is the destructor which deallocates memory that was

allocated for the array of graphical objects.

37

OopaEnqueue : This method moves a node from outside the queue to the rear

of the queue. It updates the position of the rear arrow.

OopaDequeue : This method moves a node from the front of the queue and

deletes it. It moves each node in the queue by one element towards the front

and updates the position of the rear arrow.

Linked List class : This class represents a linked list of graphical objects. The

methods that were identified are :

OopaUst : This is the constructor for the list class. It is overloaded to provide a

customized constructor where the user can specify the location of the list,

width, height, color, and shape of the nodes. Each node in the linked list has a

graphical object and an arrow object.

- Oopalist : This is the destructor for the list class. It deletes each node from

the head until there are no more nodes. It finally deletes the header.

Createlist : This method draws the header of the list. It is called before any

insertions are made.

lnsertlnlist : This method inserts a node in the list. This moves a new node

from just above the header of the list until it reaches the correct position. It

then redraws the list with this node inserted in it.

Redrawlist : This method erases the graphical objects that are part of the list

and redraws the list.

AppendTolist :This method appends a node to the list. This moves the new

node from outside the list until it reaches the end of the list.

DeleteNode : This method searches for a given node and erases the node it

found. It redraws the list after deletion.

38

CHAPTER VI

FUTURE DIRECTIONS

This package is very useful in many ways. But to design animations, a

programmer has to write code for the animation using the animation library. This

is a time consuming process. Unless the animation is going to be used for a long

time, or by many people, it may not be an easy tool to use. So we need an easier

way to build animations. One way is to build a visual programming kit specifically

designed for use with this tool. Such a kit should enable the animator to build

animations by simple demonstrations. The demonstrations are sensed by a

program and code consisting of calls to the library routines is generated. For

example, the user should be able to create graphical objects, move them, and

resize them, using just a mouse. Thus the user can build animations by pointing

and clicking instead of writing code using animation library routines. An extensive

animation library with more graphical objects and operations will help build visually

attractive animations. If the time taken to build animations is reduced, the

application can be used more efficiently in debugging. Since the animation library

is built using object-oriented techniques it is easier to add more graphical objects

using existing objects. Composite objects can be designed using Multiple

Inheritance. If curved paths are added to the existing library, the package can be

used to visualize the motion of particles.

39

CHAPTER VII

CONCLUSIONS

Day by day programming is becoming more efficient. Better methods to

write programs are being sought as the need for efficient maintenance is

increasing. Computers have become a part of almost everybody's life. A day

may come when everybody will know computer programming. The concepts of

object-oriented programming helps in efficient maintenance. The program

animation systems will be useful to make programs easily understandable. The

growing visual technology and the research in this direction prove that learning

programming is going to be very useful. The principles of program animation

are also useful for visual debuggers. With these in mind, a prototype was built

to demonstrate the animation of data structures such as arrays, linked lists,

stacks, and queues. The technique of object-oriented programming has helped

in providing access to the library so that users can derive from existing classes

and build better animations without having to rewrite the whole class. The

prototype was tested on a VGA and super VGA monitors. Only the zoom in

feature does not work on super VGA monitors. The user needs Microsoft

Windows 3.0 or later to run this package. It can be run in both standard and

enhanced modes of windows.

40

BIBLIOGRAPHY

[AM89] Ambler, Allen L. and Burnett, Margaret M. Influence of visual
technology on the evolution of language environments. IEEE
Computer 22, 2(0ctober-1989), 9-22.

[BAM83] Myers, Brad A. INCENSE: A System for displaying data structures.
Computer Graphics 17, 3(July-1983), 115-125.

[BK75] Booth, K. PQ-Trees, 16mm color silent film, 12 minutes, 1975.

[BS85] Brown, Marc H. and Sedgewick, Robert. Techniques for algorithm
animation. IEEE Software 2, 1 (January-1985), 28-39.

[EY74] Yarwood, Edward. Towards program illustration. M.Sc. Thesis,
Department of Computer Science, University of Toronto, Toronto,
ON, 1974.

[GRCDP85] Brown, Gretchen P., Carling, RichardT., Herot, Christopher, F.,
Kramlich, David A., and Souza, Paul. Program visualization:
Graphical support for software development. IEEE Computer 18,
2{August-1985), 27-35.

[JMD74] James, DeBoer M. A system for the animation of micro-PL/1
programs. M.Sc. thesis, Department of Computer Science,
University of Toronto, ON, 1974.

[JSV85] Jeffrey, Vitter S. Design and analysis of dynamic Huffman coding.
Proc. 26th Annual Symp. on the Foundations of Computer
Science, October 1985, pp. 293-302.

[JTS90] Stasko, John T. A practical animation language for software
development. Proc. of IEEE 1990 lnt'l Cont. on Computer
Languages. August 1990, pp. 1-10.

[JTS90] Stasko, John T. Tango: A framework and system for algorithm
animation. IEEE Computer 23, 2(September-1990), 27-39.

[KK66] Knowlton, Kenneth C. L6: Bell telephone laboratories low-level
linked list language, two black and white sound films, 1966.

41

[LD85]

[MHB89]

[MP88]

[RES85]

[RMB75]

[RMB83]

[SPR84]

[STY87]

[TGM85]

[UR90]

[WL84]

[WLA88]

[VR90]

London, Ralph L. and Duisberg, Robert A. Animating programs
using Smalltalk. IEEE Computer 18, 2(August-1985), 61-71.

42

Brown, Marc H. Algorithm animation. MIT press, Cambridge, MA.,
1988.

Kleyn, Michael F. and Gingrich, Paul C. GraphTrace -
Understanding object-oriented systems using concurrently
animated views. OOPSLA' 88 Conference(September 25-30, San
Diego, CA). ACM/SIGPLAN, New York, 1988, pp. 191-205.

Rubin, Rober V., Colin, Eric J., and Reiss, Steven P. ThinkPad: A
graphical system for programming by demonstration. IEEE
Software. 2, 1 (March-1985), 73-78.

Ronald, Baecker M. Two systems which produce animated
representations of the execution of computer programs. ACM
SIGCSE Bulletin 7, 1 (February-1975), 158-167.

Ronald, Baeker M. Sorting out Sorting. 16mm color sound film, 25
minutes. 1981.

Reiss, Steven P. Graphical program development with PECAN
program development systems. ACM transactions on Software
Engineering 14, S(June-1988) 849.

lsoda, Sadahiro., Shimomura, Takao., and One, Yuji. VIPS: A
Visual debugger. IEEE Software 4, 1 (May-1987), 8-19.

Thomas, Moher G. PROVIDE: A Process Visualization and
Debugging Environment. Technical Report, University of Illinois at
Chicago, Chicago, IL, July 1985.

Urlocker, Zack .Object-oriented programming for Windows. BYTE
15, 2(May- 1990), 287-294.

Finzer, William. and Gould, Laura. Programming by rehearsal.
BYTE 9, 2(June-1984), 187-210.

Winblad, Ann L. Object-Oriented Software. Addison-Wesley,
Reading, MA., 1990.

Haarslev, Volker and Moller, Ralf. A framework for visualizing
object-oriented systems. Proc. of ECOOP jOOPSLA •go
Conference(Oct. 21-25, Ottawa, Canada). ACM/SIGPLAN, New
York, 1990, pp. 237-244.

APPENDIXES

43

APPENDIX A

USER'S GUIDE

This chapter discusses how to use the animation library in a program to be

animated. It also provides information on how to use the graphical user interface

during animation.

This package can be used to animate a C++ program. To animate a program,

one may use the animation classes provided in the animation library or write one's

own animation classes. First, the file "OODSA.H" must be included in the program.

The animation library in this prototype has classes to animate arrays, stacks,

queues, and linked lists. To write more animation classes one can inherit from

these classes or write completely independent classes. One can also create

customized views of a given class by inheriting from that class. Since this is a

prototype, the package can animate only a single instance of a data structure at

a time. If the user tries to animate more than one instance of a data structure or

multiple data structures, the user needs to take care of the position of each of

these data structures on the graphics screen; otherwise, they may overlap.

In C + +, a data structure can be written in the form of a class with data as

private variables and operations as public members functions. The purpose of this

package is to animate the operations done on the data structure, i.e, when an

operation is done in the user program, it has to be shown graphically on the

44

45

screen. To achieve this effect, the user has to declare an instance of the

animation class to be used, in the private section of the class declaration. The

animation class can be one of the classes provided in the animation library or an

animation dass written by the user. For example, to animate a stack data

structure, "OopaStack" class from the animation library can be used. Whenever

an operation is done on the user data structure, the corresponding operation

should be done on the animation object. To do this, a message has to be sent

to the animation object inside the function definition of the user data structure. For

example, if the user is trying to animate a stack data structure, the user class may

look like the code in figure 3.

Figure 3. Example of a User Class that Animates a Stack
Data Structure.

46

In the above example, the user first declares an instance of OopaStack. The user

sends the push message to mystack inside the push operation of the UserStack.

Similarly other operations of UserStack can be animated.

Once the program is written with animation objects, the program has to be

precompiled. This can be done by the following command :

PRECOMPILE USERPROG.C OUTPUT.C

Then compile output.c using BorlandC+ + 2.0 or later. Then the output.exe file

under Windows is run to see the animation. This opens a window with scrollbars

and a menu at the top of the window.

Graphical User Interface

The graphical user interface mainly consists of a window with horizontal and

vertical scrollbars, and a menu.

Scroll bars

The user can scroll to the right by clicking on the left arrow on the scrollbar

and to the left by clicking on the right arrow. Similarly the user can scroll

vertically by clicking on the up and down arrows.

Main menu

The menu can be accessed by pressing the AL T key and the underscore

letter or by pointing and clicking with the mouse. The animation starts when

the user selects RUN under the FILE menu. When the user selects SPEED

47

under the options menu, a dialog box with a scrollbar control comes up. The

user can increase or decrease the speed of animation by clicking the left or

right arrow of the scrollbar control. Keyboard arrows can also be used. Speed

is initially set to medium speed. If the user changes the speed but decides not

to save it, the user can click the CANCEL button. The ABOUT item under

SPECIAL will open up a dialog box which gives a brief information about the

package and its creator. It also has the OODSA icon in it.

I

Figure 4. The Main Window of the GUI

011.111:1: Odrmted D~il S1rudl.IR:! Arllmil'tiiJ•

ShraY&n K:. Ami

Figure 5. The About Dialog Box

Animation Library

The Animation Library is divided into two groups :

1) Basic object classes

2) Data structure classes

The Basic object classes group contains the basic objects needed for

48

animation. This prototype provides a graphic object class and an arrow class in

this group. Most data structures can be drawn by using these classes. The

data structure classes group contain the data structure animation classes that

use the basic object classes.

The graphic object class draws a bitmap on the screen moves it horizontally

49

or vertically, changes its width or height, etc. The package provides two

shapes(rectangle, circle) and either of these shapes can be used. The package

currently provides only straight paths.

OopaRect Class

The OopaRect Class provides the bitmaps needed for animation. The following

table gives the attributes of a bitmap and operations that can be done:

OopaArrow Class

The OopaArrow Class provides the arrows needed to represent pointers. The

following figure gives the attributes of an arrow and operations that can be done

on them.

50

Figure 6. The OopaRect Class.

Figure 7. The OopaArrow Class

APPENDIX B

WINDOWS PROGRAMMING

Introduction

History

Microsoft Corporation released Windows 1.0 in 1985 and Windows 2.0 in 1987

after several updates to Windows 1.0. The most significant improvement in

Windows 2.0 was the introduction of overlapped windows in place of tiled windows.

Windows 3.0 was introduced on May 22, 1990. The enhancement in Windows 3.0

is the support of protected mode operation of Intel's 80x86 microprocessors. The

latest release of Windows is Windows 3.1.

Why Windows

Users generally spend a lot of time learning a new software package. But with

Windows this amount of time is reduced because all Windows packages have a

consistent user interface. Once a user learns how to use one Windows

application, learning a second one is very easy. Programs written for Windows do

not directly access the hardware of devices, such as video display and a printer.

Windows has a graphic library that allows easy access to the hardware. The

functions in this graphic library are written in such a way that they will function with

51

52

any device. Hence Windows programs are portable. Windows is a multitasking

environment where more than one program can be running at a given point of

time.

Message-Driven Architecture

At any time, the user using a Windows application can do many things, such

as, resize a window, minimize a window, close a window, etc. For each action

the user performs, the windows application must act accordingly. This is

efficiently done in Windows using a message driven architecture. With this,

whenever a user issues a command, a message is sent to the Windows

application. Windows has queues that receive the messages. It has a system

queue (also called Hardware Event Queue) that receives messages from

keyboard, mouse and timer. It also has a separate application queue for each

running application that receives other types of messages. Windows

appropriately copies messages from system queue to the application queue.

Each application will retrieve messages from its application queue by using

GetMessage function. The messages in the application queue of the active

application are processed first. If there are no more messages in the active

application queue, messages from other application queues are processed. It

is through this messaging system that Windows achieves its multitasking

capabilities. Apart from queued messages there are non-queued messages

that are directly sent to a window procedure. The window procedure is called

as if it was a subroutine that was a part of Windows. In a traditional

53

multitasking system, each application is allotted a time period. If the application

takes more time than the allotted period, it is preempted and another

application is p'rocessed. But in Windows, once Windows starts processing a

message it cannot go to the next application until the current one is finished.

Hence Windows is a non-preemptive multitasking environment.

Memory Management

Memory management is essential in a multitasking environment. When more

than one application is running, an application may erroneously read or write

data that belongs to another application. So a memory management scheme

that prevents such errors is needed.

Movable Memory

When a block of memory is allocated, a program receives a handle that

identifies the memory instead of a fixed address. Such a block of memory can

be moved when needed to decrease fragmentation. But this is transparent to

the programmer because he can still access the same memory using the same

handle.

Discardable Memory

If more memory is needed, the Windows memory manager can do more

than move blocks of memory to reduce memory fragmentation. It can discard

blocks of memory that can be reloaded. An example of discardable memory is

54

code. Since code is not modified during the execution of a program it can be

reloaded when needed.

Fixed Memory

There are situations that require memory be not moved or discarded. For

example, an interrupt handler will require a fixed location in memory since it

must always be ready to process an interrupt. The use of fixed memory should

be limited to special cases like device drivers.

When multiple instances of the same program are running, Windows uses

same code segments and same resources for all instances but different data

segments for each instance. Code segments and resources are demand

loaded and discardable in Windows.

Windows runs in three different modes. They are : 1) Real mode 2)

Standard mode 3) Enhanced mode.

Real Mode

In this mode the logical address is equal to the real physical address. Only

one megabyte address space is available. This runs on all 80xx processors.

Prior to Windows 3.0 all versions of Windows ran only in real mode. Real mode

is fast, but the problem with real mode addressing is that it makes it very

difficult for an operating system to manage memory.

55

Standard Mode

Standard mode gives Windows the benefits of protected mode on the 80286

and the 80386 processors. In this mode, Windows programs get a physical

address space of up to 16 megabytes instead of the 1 Megabyte limit of Real

Mode.

Enhanced Mode

In this mode Windows gets all the benefits of standard mode and a larger

address space. In this mode, the address space can grow to a size that is up

to four times the available physical memory by using virtual memory techniques.

Both standard mode and enhanced mode run under the protected mode of

the 80x86 processor. In protected mode certain rules are enforced when

memory is being accessed. If a program tries to access a memory location,

intentionally or accidentally, that does not belong to it, a CPU interrupt is

generated. In Windows, this results in the abnormal termination of the offending

program and a UAE(Unrecoverable Application Error message) being displayed.

This helps in maintaining order in a multitasking environment.

Graphics Device Interface

Graphics in Windows are handled primarily by functions exported from the

GDI.EXE module. GDI.EXE module calls various driver files in turn. GDI

handles graphic output for the display screen as well as hardcopy devices such

as printers and plotters. In addition to physical devices like video screens and

printers, GDI supports logical or pseudo-devices. Logical devices store a

picture in RAM or on disk.

56

Device Context is the collection of current "attributes" that determine how the

GDI functions work on the device. The attributes are for example, foreground

color, background color, font etc. To be able to draw on a particular device, a

program must first obtain a handle to its Device Context of that device, shortly

called DC. When something is drawn on the device, the current attributes of its

DC are used. For example when you display text on a screen, you don't have

to specify the font and the foreground color. Windows uses the font and the

color in the device context of that screen. There are several functions to get

and change the attributes of a device context.

Memory Device Context

A memory device context is a device context that has a display surface that

exists only in memory. Almost everything that can be done with a device

context can be done with a memory device context. When a memory device

context is created it has a display surface that contains exactly one

monochrome pixel. To make the display surface of the memory device context

larger, a bitmap is selected into the memory DC. Now the memory DC has the

same area as the bitmap. If the bitmap had a picture on it, then that picture is

now part of the memory DC's display surface. Any changes that are made to

the bitmap are reflected in this display surface. A memory device context can

be used to draw an object in memory and do manipulations to it before drawing

57

it on a real device.

Bitmaps

A bitmap is a digital representation of a picture. Each pixel in the image

corresponds to one or more bits in the bitmap. Monochrome bitmaps require

only one bit per pixel; color bitmaps require additional bits to store the color of

the pixel. A bitmap can be constructed using Microsoft's SDKPAINT, Borland's

WRT or by setting the bits of the bitmap in a program. In this thesis we use

Borland's WRT to draw bitmaps. Bitmaps can be drawn, compressed or

stretched on the display device. The function BitBit does this. Blt(pronounced

as blit) means block transfer. This function moves a block of bits from one

device context to another. To draw on the screen, select the DC of the window

as the destination device context. StretchBit function can be used to draw a

stressed or compressed bitmap. These two functions take the coordinates in

terms of logical units.

VITA{

Shravan K. Arra

Candidate for the Degree of

Master Of Science

Thesis: OBJECT-ORIENTED DATA STRUCTURE ANIMATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Hyderabad, India, Feb 17, 1968, the son of Srihari
Arra and Vimala Devi.

Education: Received Bachelor of Technology degree in Electrical
Engineering from Jawaharlal Nehru Technological University, India, in
1989. Completed degree requirements for Master of Science in Computer
Science in July 1992.

Professional Experience: Lab Assistant, Office of Business & Economic
Research, Oklahoma State University, May 1990 to May 1992.

