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CHAPTER I 

INTRODUCTION 

Studies have been carried out on neural networks for-a 

long period of time in the hope of ~imulating human 

behavior. They are called neural networks because they are 

composed of computational elements functioning in a way very 

similar to the biological neural networks [15]. 

Neural networks represent a more intelligent approach 

to information processing. These models attempt to 

accomplish good performance using massively parallel nets 

composed of many computational elements attached by links 

with variable weights [19]. Compared to the traditional von 

Neumann computer which performs a program of instructions 

sequentially, neural net models stand superior, because they 

work in parallel, because they can learn or be trained about 

a certain task, because they can formulate generalizations 

[21]. 

Neural networks typically consist of five principal 

components: computational elements, connections between 

units, adaptive coefficients of connections, transfer 

functions, and learning laws [19]. 

A useful neural 'network model, especially for 

classification tasks, is the multilayered feedforward model. 

These general models are called feedforward networks since 
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activations are fed from the input layers through the 

network toward the output layer with one or more hidden 

layers between the input and output units [25]. These 

2 

hidden layers are not connected directly to either the input 

or output units. Typically in these networks units can have 

continuous values between o and 1 as determined by a 

sigmoidal transfer function. 

A hidden layer allows the neural network to form its 

own internal representation of mapping input tooutput. This 

network is then independent of the relationships built into 

the input data but can determine for itself what is 

important in representing the mapping for the particular 

decision situation [16]. This provides the neural network 

with the flexibility to learn any type of input-output 

relationship. 

The network is trained using data to recognize or 

categorize on the basis of appropriate input data. To use 

the network to categorize, the attributes of a particular 

object are presented to the network and the unit values are 

fed through the network, resulting in the activation at the 

output layer. This output activation indicates the 

appropriate categorization of the object [6, 23]. 

The method of backpropagation has become the standard 

process used in the training of this type of neural network 

[12]. Basically, the backpropagation algorithm attempts to 

minimize the sum of the squares of errors at the output 

layer during the training process. A training set is 

comprised of pairs of input values and the desired output 
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3values which the network should provide by feeding forward 

the input data through the network. The algorithm computes 

an error for each output unit proportional to the difference 

between the obtained network output and the desired output 

for a particular training case. Network connection weights 

are adjusted so as to minimize the sum of squared error 

[19]. 

The training of a neural network takes place in the 

following manner. A training set of input patterns is 

made available. The multilayered network is initialized 

with random interconnection weights. The input conditions 

of the training example are presented to the network and the 

activations are fed forward through the network, resulting 

in output at the output layer. This output obtained by the 

network is compared to the desired output for those 

particular input patterns. Network weights are adjusted 

such that the difference between the actual output and the 

desired output is minimized. Adjustments due to the output 

error are propagated backward through the network, starting 

at the output layer and moving back toward the input layer. 

The procedure is repeated over the training set until the 

network converges. This convergence implies that the neural 

network has learned the underlying characteristics of the 

problem and is able to produce the targeted responses given 

the inputs. 

Computer simulations of artificial neural networks store 

the values of interconnection weights and unit biases in an 

internal representation (e.g., an array of floating-point 
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numbers) with accuracies of parts per million or less. In 

contrast, in hardware implementations of neural nets, 

devices used to implement weights and biases have limited 

accuracy, typically specified as a tolerance, such as a 

tolerance rate or a percent of the nominal value. 

Previously Stevenson and associates described an analytical 

study of the sensitivity of layered networks with threshold 

logic units [20). They reported that the probability of an 

error increased as the weight perturbation ratio increased 

to 0.5 as a maximum limit. In the present study, Monte 

Carlo techniques are used to investigate the effect of 

random weight and bias variation on the performance of a 

feedforward neural network pattern classifier trained with 

the back propagation algorithm. 

In studying the effects of random weight variation we 

want a classification problem which we could control and 

characterize precisely. To accomplish this, we attempt to 

recognize the presence of groups of ones in binary strings. 

For this problem, the input patterns can be divided into 

groups characterized by their distances from the class 

boundary. With various combinations of these groups, we 

construct training sets, ranging from those containing only 

typical patterns of each class (interior patterns) to those 

of border patterns. 



CHAPTER II 

LITERATURE REVIEW 

Perfect Learning and Generalization 

Perfect learning and generalization have been considered 

as major fields in recent research in the area of adaptive 

training. Ahmad and Tesauro [1] have studied neural network 

generalization and factors that have influence on it. They 

determined relationships between the size of the network, 

the size of the training examples, and the performance of 

the network. They showed that the output error, in a fixed 

size network, decreases exponentially with the increase in 

the training set size. They also showed that for a fixed 

performance, the size of the training set increases linearly 

with the size of the network. They found that the border 

patterns were the most important patterns among all training 

examples. They showed that if a certain number of random 

training examples is used to train a network, and if the 

same number of border patterns is used to train a similar 

network, then the latter network will generalize better than 

the former one. 

Baum and Haussler [3] studied the relation between the 

size of network and the number of training patterns chosen 

at random distribution. They showed that if the number of 

5 
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training patterns is greater or equal to O(W/k * log(N/k)) 

where, k is a constant greater than 0 and less than or equal 

to 1/8, N is number of nodes in the network, W is number of 

input and output weights, and the network is capable to 

classify a fraction (1 - k/2) of the training patterns, then 

the network will correctly classify a fraction of (1 - k) of 

future test patterns. 

Yu and Simmons [24] compared two measures of perfect 

learning in a feedforward neural network trained by 

specified input patterns. The first one is the sum of the 

squared errors. The other one is the correctness ratio 

which is the percentage of successfully classified patterns 

in the training set. They showed that the two measures are 

not similar and they presented the descending epsilon 

technique with which the backpropagation method results in a 

high correctness ratio. 

Perugini and Engeler [17] examined the learning time for 

two layer backpropagation networks trained with boolean 

training examples to classify boolean equations. 

Less work has. been done on the subject of weight 

errors. Stevenson and associates [20] analyzed the 

sensitivity of feedforward layered networks of threshold 

logic unit elements to weight errors. They approximated and 

derived a function between the probability of error for a 

large network output and the percentage change in the 

weights. They reported that when the number of layers in 

the network and the change in the weights increases, then 

the probability of output error increases. They also 



reported that in a network which has a large number of 

weights-per unit and units per layer, the output error is 

independent of the number of weights and units in that 

network. 

Monte Carlo Method 

Random Numbers 

7 

The numbers I x, I x2 I ••• I xn in an interval I 

constitutes a sequence of random numbers if Xi satisfies 

some distribution properties, and if these distribution 

properties are invariant for subsequences extracted from the 

sequence (Xi), for alliin the interval (1,N). These 

numbers can be used to simulate natural phenomenas using 

computer, to provide random samples to be examined rather 

than examiming too many existing cases, to solve complicated 

numerical problems, to make unbiased decisions, and to test 

the effectiveness of computer algorithms [13]. For 

practical purposes, random numbers are obtained by means of 

digital computers according to arithmetical algorithms, 

i.e., random numbers generators. Such numbers will not be 

genuinely random, since they are produced by some 

deterministic sequence of computing operations. They can be 

described as pseudorandom numbers. 

The basic random numbers sequence is the sequence of 

uniform random numbers in the interval (0,1). From a 

sequence of uniform random numbers one may obtain random 

numbers with any distribution in any interval I. The most 



used random numbers generators are the congruential 

generators including the multiplicative generators [13]: 

Xj+1 = AXj (modula T) 

where X1 is given, A is a constant used as the multiplier, 

T is a constant used as the modulus. 

And the mixed generators: 

Xj+1 = (BXj + C) (modula T) 

where X1 is given, B is a constant used as the multiplier, 

c is a constant used as the increment, T is a constant used 

as the modulus. 
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The sequence of random numbers'generated by these 

periodic relations has the diffeciency of repeating itself 

into cycles of infinite loops. We can achieve maximal cycle 

lengths by choosing proper values for the constants. 

Monte Carlo Variance and Estimator 

The Monte Carlo Method involves a random sampling 

process. Samples are drawn from the original source through 

sampling procedures governed by specified probability laws 

[11]. Statistical data are collected from the samples, and 

consequences concer~ing the original source will be 

available through analysis of these data. A different 

choice of the probability laws and different ways to draw 

inferences from the data lead to different Monte Carlo 

techniques [11]. Generally, Monte Carlo methods are 

designed for the study of complicated systems with many 



interacting components. The behavior of the compon~nts is 

governed by known probability laws. It is always possible 

to incorporate these same laws into the Monte Carlo 
,, 
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computational method,, so that· processes occurring during the 

simulation will be analogou~. to processes in the original 

source [18]. 
- ' 

If we use a correctly defined Monte Carlo model to 
' ' 

compute the sampling value X with-an expected value of E, 

then in one simulation run ·irte obtain for ·X the value Xi. 

' •' 
Using another random numbers sequence ·and recomputing the 

value of X, we get Xj, where_ X; is not equal to Xj. Through 

N simulation runs, the average value of X is AVG: 

AVG = (1/N) 

AVG becomes concentrated abdut E as N increases, thus the 

precision of Monte carlo calculations depends on the value 

of N. In practice, this precision is usually estimated by 

the sample variances [11]: 

N 
S = ( 1/N-1) * i~1 ~Xi - AVG) 

-The standard deviation is: 

STD = sqrt(S) 

The upper limit of calculation result is: 

U = E + STD 



The lower limit of calculation result is: 

L = E - STD 

Backpropagation ~ule 

In order to apply the backpropagation rule in a 

network, we must be able to compute the derivative of the 

10 

error function with respect to any weight in the network and 

then change the weight according to. the rule [19]: 

Delta(W .. ) = epsilon * e. *'a. 
1 J 1 J 

The weight on each line should be changed by an amount 

proportional to the product ?f the error, e, in the unit 

receiving input along that line, times the activation, a, 

of the unit sending activation along that line. The 

difference is in the exact determination of the "e" term. 

The determination of the error is a recursive process that 

starts with the output units. I·f a unit is an output unit, 

its error is given by 

where neti = :E(Wij * aj) + biasi, and f' (neti) is the 

derivative of the activation function wit~ respect to a 

change in the net input to the unit. The error term for 

hidden units for which there is no specified target is 

determined recursively in terms of the error terms of the 

parent units and in terms of the weights of those 

connections between the hidden unit and its parents. It is 
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given by 

ei = ~(ej*Wji) * f' (neti) 

whenever .the unit is not an output unit. 

The application of the rule then involves two phases: 

During the first phase the input is presented and propagated 

forward through the network to compute the-output value for 

each unit. This output is then compared with the desired 

one, resulting in an e~ror term for each output unit. The 

second phase involves a backwarq pass through the network 

during which the error term is computed for each unit in the 

network. This backward pass allows the recursive 

computation of the errors. once these two phases are 

complete, we can compute for' each weight, the product of the 

error associated with the unit it sends to times the 

activation of the unit it recieves from. These products can 

then be used to compute actual weight changes on a pattern 

by pattern basis, or on overall patterns. 

Activation Functions 

After computing the net input to each output unit, the 

activation of the output unit is then determined according 

to an activation function. Several functions are available 

[19]: 

- Linear function. In this function, the activation of 

output unit is simply equal to the net input. 

- Linear threshold. In this function, each of the output 

units is a linear threshold unit; that is, its 



activation is set to 1 if its net input exceeds o, and is 

set to 0 otherwise. 

- Stochastic. In this function, the output is set to 1, 

with a probability p given by the logistic function: 

P(O; = 1) = 1 1 (1 + e**-net;) 

12 

- Continuous sigmoid. In this function, each of the output 

units takes on an activation that is nonlinearly related to 

its input according to the logistic function: 

0; = 1 I (1 + e ** -net;) 

The derivative of the backpropagation learning rule 

requires that the derivative of the activation function, 

f'(neti), exists. In most works on backpropagation, the 

logistic activation function is used, because it is a 

continuous nonlinear function. In order to apply the 

learning rule, we need to know the derivative of this 

function with respect to its net input, net;. It is given 

by: 

Thus, for the logistic activation function, the error term, 

e, for an output unit is given by: 

and the error for a given hidden unit is given by: 
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Learning by Pattern or by Epoch 

The derivation of the backpropagation supposes that we 

are taking the weight changes summed over all patterns. In 

this case, we can present all patterns and then sum the 

changes before.adding them·to the ·original weights. 

Instead, we can. compute weight ·qhanges on each pattern and 

add them to the original weights after each pattern rather 

than after each' epoch. When there. is a very large set of 

patterns, the version in which weights are changed after 

each pattern is more satisfying. 

I!Uplementation 

The program in APPENDIX A lmplements the 

backpropagation rule just described~ Processing of a single 

pattern occurs as follows: 

A pattern is read from tpe input file and is clamped on the 

input units; that is, the~r activations are set to 1 or 0 

based on the values found in the input pattern. Next, 

activations are computed. For each hidden and output unit, 

the net input to the unit is computed and then the 

activation of the unit is set. The routine that performs 

this computation is: 

PROCEDURE COMPUTE_OUT; 
BEGIN 

loop for all hidden and output units 
initialize netinput by bias value 

loop for all hidden units 
begin 

loop for all input units 
netinput = netinput + (activation * weight) 



output = activation function of netinput 
end; 
loop for_all output units 
begin 

end; 
END; 

loop for all hidden units 
netinput = netinput + (activation * weight) 
output = activ~tion function of netinput 

Next, the error and delta :-terms are comp'!lted. 

Initially, they are" set to O"for" all units. Then, error 
' -
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terms are cal'culated for each output unit. For these units, 

error is the difference between.the desired and the obtained 

output of the unit. After the error has been computed for 

each output unit, we perform a recursive computation of 

error and delta terms for hidden units. The program 

iterates backward over the units, starting with the last 

output unit. The first thing it does in each pass through 

the loop is set delta for the current unit, which is equal 

to the error for the·unit .~imes the derivative of the 

activation function. Then, once it has deltq. for the 

current unit, the program passes this back to all 

predecess~r ~ni'ts that have connections a:oming into the 

current unit. By the tim~ a particular unit.becomes the 

current unit, all of its parents wi~l have already been 

processed, and the sum of all its error will have been 

accumulated, so it is ready to have its-·delta computed. The 

code for this is as follows: 



PROCEDURE COMPUTE_ERR; 
BEGIN 

END; 

loop for all hidden and output units 
initialize error by zero 

loop for all output units· 
begin 

end; 

calculate difference between desired and actual 
calculate pattern squared ~rror 
accumulate total ~quared error . 
calculate output error 

loop for all output units 
begin 

end; 

loop for all hidden units 
begin 

end; 

backpropagate the output error 
calculate hidden error 

After computing errors .and deltas, the weight change 

amounts are then computed from the deltas and activations. 

The change amounts for the bias terms are also computed. 

These computations occur in the following routine: 

PROCEDURE COMPUTE ERR MUL~ACTV; 
BEGIN 

END; 

loop for all hidden units 
begin 

loop for all input nodes 
multiply hidden error by input activation 

end; 
loop for all output units 
begin 

loop for all hidden units 
multiply output error by hidden activation 

end; 

This routine adds the weight changes caused by the 

present pattern into an array where they can potenially be 

15 
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accumulated over patterns. These changes actually lead to 

changes in the original weights either after processing each 

pattern or after each entire epoch of processing. 

For each weight, a delta weight is first calculated. 

The delta weight is equal to the accumul,ated weight changes 

plus a fraction of the previous delta weight, where the size 

of the fraction is d~termined by the mom~ntum. Then, this 

delta weight is added into the weight, so that the weight's 

new value is equal to its old value plus the delta weight. 

The same computation is performed for all of the bias terms. 

The following routine performs these computations: 

PROCEDURE CHANGE_WT; 
BEGIN 

loop for all hidden units 
begin 

loop for all input units 
begin · 

calculate delta of weight 
add delta of weight to original weight 

end; 
end; 
loop for all output unit~ 
begin 

loop for all hidden units 
begin 

calculate delta of weight 
add delta of wefght :to original weight 

end; 
end; 
loop for all hidden and output units 
begin 

calculate delta of bias 

end; 
END; 

add delta of bias to original bias 



CHAPTER III 

THE PATTERN CLASSIFICATION PROBLEM 

The Training Method 

Multilayered feedforward neural networks are powerful 

environments which map from a finite dimensional input space 

to the output space. One of the most desirable 

characteristics ,of such networks is their ability to learn 

from examples and to generalize from the training set to 

similar data not contained in the training examples. There 

are three critical factors that affect generalization in 

neural networks [14]: network architecture, training 

algorithm, and training set. Architecture determines a 

group of mappings from the input space to the output space. 

This group of mappings must be broad enough to include the 

correct mappings for the problem to be solved. The role of 

the training algorithm is to obtain this correct mapping 

using appropriate train~ng examples. Training in 

feedforward networks can be achieved by gradually changing 

the weights according to a backpropagation algorithm to 

minimize the error in given inputs according to desired 

outputs in the training set. Once the network architecture 

and the training algorithm have been chosen, the training 

set will ultimately determine the mapping represented by the 

17 



network and its generalization capability. Thus, how to 

select a training set to accomplish maximum generalization 

is of central importance for any application. 

18 

The selection of certain input patterns to be trained 

is unlimited. We may choose typicpl patterns from each 

class to be used as a training set. The difficulty in this 

approach is that there are no obvious ways to define and 

select typical patterns of a -class. We may choose patterns 

that are close to each other in input space even they bel9ng 

to different classes. These patterns have been called 

border patterns [1]. Some experimental work has been done, 

using this approach, on boolean numbers such as the majority 

function (1]. They have shown that with appropriate network 

architecture and a backpropagation training algorithm, a 

training set containing the complete border patterns is 

sufficient to guarantee a perfect generalization. 

In particular, we need to determine border and typical 

sets. We need to know how the network performs when trained 

with typical examples selected from both classes. How it 

performs when trained with both· interior,and· border or 

incomplete border patterns. We need to know whether it is 

necessary to use complete border patterns to get perfect 

generalization. 

These questions are investigated usin~ classification 

in binary strings. The approach will be to partition the 

whole set of input patterns into groups such that patterns 

within groups have the same distance from the class 

boundary, and patterns between groups have a different 



19 

distance from the class boundary (22]. The border patterns 

are those groups near the boundary. On the other hand, 

typical patterns of a class are those groups that are in the 

interior of a class, or far away from the class border. By 

using a combination of these groups~ we can form training 

sets of a mixture of various distances from the boundary, 

including those of border and typical patterns. 'This method 

of selecting the training sets facilitates a systematic 

method for accomplishing the required sets of input data for 

this work. l 

Investigations are per~o,rmed in a series of experiments 

that attempt to recognize presence of clumps of ones in 

binary strings. The first output is desired to be 0 if 

there are two or more clumps of 1's in the input pattern 

while the second output is desired to be 1. The first 

output is desired to be 1 if there are less than two clumps 

of 1's in the input pattern while the second output is 

desired to be 0. The networks used are three layer 

feedforward networks. The network with 5 input nodes and 

three hidden nodes, which are fully connected to the input 

and output layers, represents a powerful testing environment 

because this architecture is successful to realize boolean 

functions. The output is displayed on two output units. 

The output function for·nodes in :the hidden and output 

layers is a sigmoid. 

The network is initialized with random weights. The 

backpropagation algorithm with momentum is use~ to train the 

network. The learning rate and momentu~ used in all the 
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experiments are 0.5 and 0.9 respectively. The weights are 

updated every epoch which consists of all the patterns in 

the training set. Continuous cycling through the training 

set pr9ceeded until the sum of squared errors reached 0.001. 

After training ~the network, .·it is ready for testing with 

test set. 

Characterization of Input 'Patterns 
' ' 

The network with five inputs~ with the powerful 

architecture, will be the major testing environ~ent. There 

are 32 possible input patterns that can be clamped on the 

input nodes. Exactly half of the patterns shows two or more 

clumps of l's and the other half shows zero or one clump. 

In the input space, some of these patterns are close to the 

border separating the two classes and some are located in 

the interior of each class· .. ·To determine which patterns are 

near the border and which ones are in the interior of a 

class, the nearest neighbors of each pattern are examined. 

If a pattern in a given class has at least one nearest 

neighbor that belongs to the other class, this pattern 

should be characterized as close to the border. Otherwise, 

the pattern is characterized to be in the interior of a 

class. Further, the distance from a pattern to the class 

border will be ranked according to its number of nearest 

neighbors in the opposite class. 

We can find all the nearest neighbors of a pattern by 

calculating the Hamming distances from this pattern to the 

other patterns in the input set. Then, the nearest 
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neighbors of a pattern are those patterns that differ by one 

bit from the given pattern. With the defined ranking 

method, each input pattern can have either o, 1, 2, or 3 

nearest neighbors of opposite class. Accordingly, that 

pattern can be assigned to one. of four g:r;-oups, A, B, c, or D 

corresponding to o, 1, 2, or .3 neighbors respectively. 

Table 1 shows each input pattern and its nearest neighbors 

in the opposite .class.-

TABLE 1 

INPUT PATTERNS AND THEIR NEIGHBOURS 

Input pattern Nearest Neighbors in Opposite Class 

00000 ----- ----- -----
00001 0010'1 01001 10001 
00010 0101,0 10010 -----
00011 0101_1 10011 -----
00100 00101 10100 -----
00101 00100 00001 00111 
00110 101),.0 ----- -----
00111 00101 10111 -----
01000 01010 01001 -----
01001 01000 00001 -----
01010 01000 00010 01110 
01011 00011 01111 -----
01100 01101 ----- -----
01101 01100 ' ,01111 -----
01110 ()1010 ----- -----
01111 01101 ' 01011 -----
10000 10100 10010 10001 
10001 10000 00001 -----
10010 10000 00010 -----
10011 00011 ----- -----
10100 10000 00100 11100 
10101 ----- ----- -----
10110 00110 11110 -----
10111 00111 11111 -----
11000 11010 11001 -----
11001 11000 ----- -----



Input pattern 

11010 
11011 
11100 
11101 
11110 
11111 

TABLE 1 (Continued) 

Nearest Neighbo"rs in Opposite Class 

11000 11110 -----
11111 ----- -----
10100 11101 -----
11100 11111 -----
11010 -1.0110 -----
1110l .11011 10111 

Table 2 shows partition A which consists of input 

patterns that have o neighbors. 

TABLE 2 

PARTITION A ·(ZERO NEIGHBOURS} 

CLASS 1 CLASS 2 

00000 10101 

Table 3 shows partition B which consists of input 

patterns that have 1 neighbor. 
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TABLE 3 

PARTITION B (ONE NEIGHBOUR) 

CLASS 1 

00110 
01100 
01110 

CLASS 2 

10011 
11001 
11011 

Table 4 shows partition C which consists of input 

patterns that have 2 neighbors. 

TABLE 4 

PARTITION C (TWO NEIGHBOURS) 

CLASS 1 CLASS 2 

00010 01001 
00011 01011 
00100 01101 
00111 10001 
01000 10010 
01111 10110 
11000 10111 
11100 11010 
11110 11101 

Table 5 shows partition D which consists of input 
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patterns that have 3 neighbors. 

TABLE 5 

PARTITION D (THREE NEIGHBOURS) 

CLASS 1 

00001 
10000 
11111 

'' 

CLASS 2 

00101 
01010 
10100 

Table 6 summarizes all .the characterizations of 

input patterns. There are_an equal numbers of patterns 

from each class in any given partition. 

TABLE 6 

CHARACTERIZATION OF ALL PATTERNS 

Partition Number o.f Number of 
Patterns Neighbors 

A 2 0 

B 6 1 

c 18 2 

D 6 3 
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To support decisions that can be made from testing 

previous characterizations, more binary strings are 

partitioned and characterized. 

Regarding four input patt~rns, there are 16 possible 

inputs that can be clamped on the input nodes. In this case 

the patterns in the classes are not even. In the input 

space, some of these patterns are close to the border 

separating the two classes and some are located in the 

interior of each class. 

Table 7 shows each input pattern and its nearest 

neighbors in the opposite class. 

TABLE 7 

INPUT PATTERNS AND THEIR NEIGHBOURS 

Input pattern Nearest Neighbors in_ Opposite Class 

0000 
0001 0101 1001 
0010 1010 
0011 1011 .. 
0100 0101 
0101 0100 0001 0111 
0110 
0111 0101 
1000 1010 1001 
1001 1000 ·ooo1 
1010 1000 0010 1110 
1011 0011 1111 
1100 1101 
1101 1100 1111 
1110 1010 
1111 1101 1011 



Table 8 shows partition A which consists of input 

patterns that have 0 neighbors. 

TABLE 8 

PARTITION A (ZERO NEIGHBOURS) 

CLASS 1 

0000 
0110 

CLASS 2 

Table 9 shows partition B which consists of input 

patterns that have 1 neighbor. 

TABLE 9 

PARTITION B (ONE NEIGHBOUR) 

CLASS 1 CLASS 2 

0010 
0011 
0100 
0111 
0100 
1110 
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Table 10 shows partition C which consists of input 

patterns that have 2 neighbors. 

,TABLE' 10 

PARTITION C (TWO NEIGHBOURS) 

CLASS 1 

0001 
1000 
1111 

CLASS 2 

1001 
1011 
1101 

Table 11 shows partition D which consists of input 

patterns that have 3 neighbors. 

TABLE 11 

PARTITION D (THREE NEIGHBOURS) 

CLASS 1 CLASS 2 

0101 
1010 
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Table 12 summarizes all the characterizations of 

input patterns. There are different numbers of patterns 

from each class in the partitions. 

TABLE 12 

CHARACTERIZATION OF AL~ PATTERNS 

Partition Number of Number of 
Patterns Neighbors 

A 2 0 

B 6 1 

c 6 2 

D ·2 3 

Regarding six input patterns, there are 64 possible 
' ' 
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inputs that can be clamped on the input nodes. In this case 

the patterns in the classes ~re .not even. .In the_ input 

space, some of these patterns are close to the border 

separating the two classes and some are located in the 

interior of each class. 

Table 13 shows partition A which consists of input 

patterns that have 0 neighbors. 



TABLE 13 

PARTITION A (ZERO NEIGHBOURS) 

CLASS 1 CLASS 2 

'000000 010101 
------ 100101 
------ 101001 
------ 101010. 
------ 101011 
------ 101101 
------ 110011 
------ 110101 

Table 14 shows partition B which consists of input 

patterns that have -1 neighbor. 

TABLE 14 

PARTITION, B (ONE NEIGHBOUR) 

CLASS 1 CLASS 2 

010011 
011001 
011011 
100011 
100110 
100111 
110001 
110010 
110110 
110111 
111001 
111011 
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Table 15 shows partition C which consists of input 

patterns that have 2 neighbors. 

TABLE 15 

PARTITION C (TWO NEIGHBOURS) 

CLASS 1 

000110 
001100 
001110 
011000 
011100 
011110 

CLASS 2 

001001 
001011 
001101 
010001 
010010 
010110 
010111 
011010 
011101 
100001 
100010 
100100 
101100 
101110 
101111 
110100 
111010 
111101 

Table 16 shows partition D which consists of input 

patterns that have 3 neighbors. 
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TABLE 16 

PARTITION D {THREE NEIGHBOURS) 

CLASS 1 CLASS 2 

000010 000101 
000011 001010 
000100 .010100 
000111 .101000 
001000 ------
001111 ------
010000 ------
011111 ------
110000 ------
111000 ------
111100 ------
111110 ------

Table 17 shows partition E which consists of input 

patterns that have 4 neighbbrs. 

TABLE 17 

PARTITION E {FOUR NEIGHBOURS) 

CLASS 1 

000001 
100000 
111111 

·CLASS 2 
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Table 18 summarizes all the characterizations of input 

patterns. There are different numbers of patterns from each 

class in the partitions. 

TABLE 18 
' ' 

CHARACTERIZATION OF ALL P~TTERNS 

Partition Number of Number of 
Patterns Neighbors 

A 9 0 

B 12 1 

c 24 2 

D 16 3 

E 3 4 

Regarding seven input patterns, there are 128 possible 

inputs that can be clamped on the input nodes. In this case 

the patterns in the classes are not even. In the input 

space, some of these patterns are close to the border 

separating the two classes and some are located in the 

interior of each class. 

Table 19 summarizes all the characterizations of input 

patterns. There are different numbers of patterns from each 

class in the partitions. 
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TABLE 19 

CHARACTERIZATION OF ALL PATTERNS 

Partition Number of Number of 
Patterns Neighbors 

A > 34 0 

B 30 1 

c 30 , .' 2 

D 16 3 

E 15 4 

F 3 5 

Training and Test~ng Simulation Results 

In the experiments, the total number of possible input 

patterns is divided into two sets: a training set and a 

testing set. Training sets: are formed using various 

combinations of different groups as defined in the previous 

section. Each training set is one of thre~ basic ~ypes. 

1. A Subset of border patterns. 

2. Interior patterns ·only. 

3. A Combination of interior and border patterns. 

A series of experiments are performed using these 

training sets. In each of these experiments, the network 

is tested with a testing set which is the whole or part of 

the complement set of the corresponding training set. The 
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classification is considered to be correct if· the outputs of 

the network were within 0.2 of the desired value of 1 or o. 

Table 20 shows the performance results for the 

experiments using the interior and mixtures of interior and 

border patterns as training sets for four input networks. 

TABLE 20 

RESULTS FOR MIXTURES OF INTERIOR AND 
' BORDER PATTERNS 

Experiment Number Training Set Testing Set % Correct 
Ratio 

1 A B+C+D 41.23 

2 A+B C+D 52.00 

3 A+C. B+D 52.00 

4 A+D. B+C 10.00 

5 A+B+C D 15.50 

6 A+B+D c 52.00 

7 A+C+D B 100.00 

Table 21 shows the results of experiments using subsets 

of border patterns as training examples for four input 

networks. 



TABLE 21 

RESULTS USING ONLY BORDER PATTERNS 
AS TRAINING SETS 

Experiment Number Training Set ~esting Set 

8 B 'A+C+D 

9 c A+JHD 

10 D , A+B+C 

11 B+C A+D 

12 B+D A+C 

13 C+D A+B 

14 B+C+D A 

% Correct 
Ratio 

60.55 

55.10 

15.00 

35.10 

52.00 

100.00 

100.00 
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Table 22 shows ~he performance results for the 

experiments using the interior c;tnd mixtures of in'terior and 

border patterns as training sets for six input networks. 

TABLE 22 

RESULTS FOR MIXTURES OF INTERIOR AND 
BORDER PATTERNS 

Experiment Number Training Set 

1 A 

2 A+B 

Testing Set % Correct 
Ratio 

B+C+D+E 45.00 

C+D+E 55.00 
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TABLE 22 (Continued) 

Experiment Number Training Set Testing set % Correct 
Ratio 

3 A+C B+D+E 55.00 

4 A+D B+C+E 10.00 

5 A+E 'B;i-C+D 60.00 

6 A+B+C D+E 14.20 

7 A+B+D C+E 40.00 

8 A+B+E C+D 60.11 

9 A+C+D_. · B+E 70.00 

10 A+C+E B+D 60.00 

11 A+D+E B+C 100.00 

12 A+B+C+D E 60.50 

13 A+B+C+E' D 50.00 

14 A+B+D+E c 100.00 

15 A+C+D+E B 100.00 

Table 23 shows the results of experiments using subsets 

of border patterns as ~raining examples for six input 

networks. 
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TABLE 23 

RESULTS USING ONLY BORDER PATTERNS 
AS TRAINING SETS 

Experiment Number Training Set, Testing Set % Correct 
Ratio 

16 B 'A+C+D+E 60.55 

17 ,C A+B+D+E 55.1'0 

18 D A+B+C+E 17.00 

19 E A+B+C+D 12.00 

20 B+C A+D+E 37.10 

21 B+D A+C+E 55.00 

22 B+E A+C+D 57.00 
,'" 

23 C+D A+B+E 50.00 

24 C+E A+B+D 70.00 

25 D+E A+B+C 100.00 

26 B+C+D A+E 75.00 

27 B+C+E A+D 50.00 

28 B+D+E A+C 100.00 

29 C+D+E A+B 100.00 

30 B+C+D+E A 100.00 

Table '24 shows the performance results for the 

experiments using the interior and mixtures of interior and 

border patterns as training sets. In the first four 
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TABLE 24 

RESULTS FOR MIXTURES OF INTERIOR AND 
BORDER PATTERNS 

Experiment Number Training Set Testing Set % Correct 
Ratio 

1 A B 50.00 

2 A c 38.89 

3 A D 33.33 

4 A B+C+D 40.00 

5 A+B c 66.67 

6 A+B D o.oo 

7 A+B C+D 50.00 

8 A+C B 100.00 

9 A+C D 0.00 

10 A+C B+D 50.00 

11 A+D B o.oo 

12 A+D c 11.11 

13 A+D B+C 8.33 

14 A+B+C D 16.67 

15 A+B+D c 50.00 

16 A+C+D B 100.00 

experiments, the network was trained exclusively with 

interior patterns of both classes. The average result for 

the four experiments is 40.55 percent. This result suggests 
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~ that this minimum training set contains little specific 

information about the class boundary. Thus typical patterns 

are not candidates for optimal generalization. The other 

experiments gave more interesting results. In both 

experiments 8 and 9, the training set was successful to 

classify Group B, but it was unable to classify Group D. In 

both experiments 14 and,16, training sets of equal size were 

used but they produced two extreme performance in 

generalization. The first was failure while the second was 

very successful. It can be seen that different training 

sets with similar size may produce different performance in 

generalization. In fact, the two training sets differ by 

only one group; instead of B .. in experiment 14, D was used in 

experiment 16. All,of experiments 3, 6, 9, and 14 were 

unable to classify Group D. We can observe that all the 

trained networks having border groups other than D in their 

training sets are incapable ~o classify Group D patterns 

correctly. This suggests that Group D, the closest group to 

the boundary, contains some vital information about the 

class boundary without which a perfect generalization is 

impossible. 

Table 25 shows the results of experiments using subsets 

of border patterns as training examples. 

Group B is the group of border patterns that are 

closest to the interior of a class. It does not have 

precise information about class boundary. On a closer look 

at the test data, we see, from experiments 17, 18, 19, that 

it is perfect classifier for A, it is an acceptable 
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classifier for c, but it is incapable to classify D. 

Group c has the majority number of border patterns and 

is second closest to the class boundary. on a closer look 

at the test data, in experiments 21 a~d 22, Group c was 

perfect classifier for A and' B~ ·· In experiment 23, the 

trained networks failed to ~lassify D patterns correctly. 

We can see from experiment 24 that networks trained with c 

are only average performers. 

Group D is the closest group to the border. Alone, it 

was incapable to classify any ·group in the complement test 

set, experiment 25, 26, 27. 

Experiment 31 shows that networks trained with the 

training set B+C' are" below average performers. Similarly, 

experiment 34 shows that networks trained with the training 

set B+D are average performers .. 

Networks trained with the.training set C+D were able to 

classify Group A, Group B, and 'bhe combination of these two 

groups in the complement test set. Addition of B to this 

training set in experiment 38 has no effect on the 

performance resulted. Similarly, addition of A to this 

training set in experiment 16 has no effect on the 

generalization. Considering all the above results, we can 

see that C+D turned out to be a perfect set. 

We see that all the perfect sets of border patterns 

(experiments 16, 37 and 38) have Group D as their subset. 

Although, D alone is a relatively poor training set for 

generalization, we see that networks trained with border 

patterns excluding D were completely unable to classify D. 
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Addition of A or B to the perfect training set C+D has 

no effect on generalization. We also see that an arbitrary 

subset of border patterns except C+D, e.g., experiment 31 

and 34, is not n,ecessarily a pow~rful training set for 

generalization. 

TABLE 25 

RESULTS USING ONLY BORD~R PATTERNS 
AS TRAINING'SETS 

Experiment Number Training Set Testing Set % Correct 
Ratio 

17 B "' A 100.00 

18 B c 77.78 

19 B D 0.00 

20 B A+C+D 61.54 

21 c A 100.00 

22 c B 100.00 

23 c D, 0.00 

24 c A+B+D 57.14 

25 D A 0.00 

26 D B o.oo 

27 D C' 22.22 

28 D A+B+C 15.38 

29 B+C A 100.00 

30 B+C D 16.67 

31 B+C A+D 37.50 
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TABLE 25 {Continued) 

Experiment Number Training Set Testing Set % Correct 
Ratio 

32 B+D A 100.00 

33 B+D' c 44.44 

34 B+D A'+C 50.00 

35 C+D A 100.00 

36 C+D B 100.00 

37 C+D A+B 100.00 

38 B+C+D A 100.00 



CHAPTER IV 

MONTE, CARLO SIMULATION 

RESULTS AND CONCLUSIONS, 

Implementation 

The program in APPENDIX.B ~mplements the testing 
I 

procedure and then Monte Carlo calculations. Testing of a 

single pattern occurs as follows~ 

First, all input patterns are read and stored in an 

array structure to -facilitate communication with patterns. 

Second, trained weights and biases are read and stored in a 

series of arrays. After that, a single pattern is selected 

to be clamped on the input u~its' setting their activations 

to 1 or 0 according to the-input pattern. Next, the output 

of the network is computed using a routine similar to that 

in APPENDIX A. The routine.~s: 

PROCEDURE TEST_NET; 
BEGIN 

END; 

for i = first hidden to last~output do 
begin 

netinput [i] := bias[i); 
for j = first_weight_to[i] to last_weight_to[i] do 
begin 

netinput[i] := netinput[i] + 
(activation[j] * W[i][j]); 

end; 
activation[i] := logistic(netinput[i)); 

end; 

The order of complexity for the procedure above is 
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o [(nunits-ninputs)*nweights]. After computing the output 
' of the tested pattern, its contribution to the performance 

is calculated using the following routine. 

PROCEDURE COMP_PRFRMNC; 
BEGIN 

END; 

if (patterri 
pss := (1. o 

(0.0 
else 

in class1) then 
- first_out) ~ (1.0 - first_out) + 
- second_ou,t)" '* ( Q. o -:- ~econd_out) ; 

pat_sqrd_err := ((0.0 - first_out) * 
(0.0- first out)) +, 

((1.0- second~out) * 
( 1. 0 - second_ out)) ; 

tot_sqrd_err := tot_sqrd~err + pss; 
if (pattern in class1) then 
begin 

if (first out between 0.8 and 1.2) and 
(second_out between -0.2 and 0~2) then 

correct_classf := correct_classf + 1; 
else 
mis classf := misclassf + 1; 

end; 

The order of complexity for the procedure above is 
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0(1). After training each network with a specified training 

set Monte Carlo techniques were used to define the 

relationship between the tolerance and the network's 

misclassification rate. Weight and bias tolerance rates 

were varied from o to 0.5, as a practical limit, in gradual 

steps with each trained network. For each tolerance rate we 

select 1000 independent sets of perturbed weights and biases 

with individual weights and biases from random number 

generator. Using several sets from both classes, ,we measure 

the misclassification rate with each set of perturbed 

weights and then compute the corresponding mean value and 

the standard deviation of the 1000 values. Calculations 



above are implemented in the following routine. 

PROCEDURE MONTE_CARLO; 
BEGIN 

y := 1000; 
tolerance := o.o; 
for i:= 1 to 10 do 
begin 

end; 
END; 

tolerance := tolerance + 0.05; 
for j:= 1 to trunc(YY do 
begin , 

end; 

fork:= 1·to weight_num do 
begin 

temp := 
toleranc,e*train_weight [k] •random; 

out_weight[~] := train_weight[k] + temp; 
end; 
for k:= 1 to (hi~den+out) do 
begin 

temp2 := tolerance*tbias[k]*random; 
outbias[k] := bias[k] + temp2; 

end; 
for k:= l. to pattern num do 
begin -

TEST_NET; 
COMP_PRFRMNC; 

end; 
expmnt_misclassf_, : = 

sum of misclassf := 

expmnt misclassf + 
(mis_ciassf * (1.0/Y)); 
sum of misclassf + 

- - mis_classf; 
sum of sqrd misclassf := 

- - - sum_of_sqrd_misclassf + 
(mis_classf * mis_classf) ; 

variance of misclassf := (1.0/(Y- 1.0)) * 
(sum_of_sqrd_misclassf -
(1. 0/Y) * 

(sum_of_misclassf*sum_of_midclassf)); 

The order of complexity for the procedure above is 

O[ntolerance[Y[weight_num+(hidden+out)+ 
(pattern_num*O[(nunits-ninputs*weight_num)])]]]. 
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Simulation Results and Discussion 

In all the studies two class problems were considered. 

After training each network with a training set, the 

resulting set of trained weights was taken, after the sum of 

total squared errors reached 0.001 or less, and then used 

for simulation. Monte carlo studies were performed with 

several models using different test sets. All sets were 

taken into consideration except sets with performance less 

than 50 percent at zero perturbation because, this 

performance is considered beyond the theoretical limit, 

i.e., 50% in the two class problem. 

Examining figures in APPENDIX c, figure 1 shows the 

averaged misclassification rate as a function of tolerance 

rate for a network trained with patterns from Group B and 

tested with patterns from Group A. This network has perfect 

performance, zero error, at zero tolerance rate. The data 

indicates that the random variations in the weights and 

biases did affect the performance of this network, and the 

effect increases with the tolerance level. For example, the 

misclassification rate increased from o percent with the 

unperturbed weights to 0.99 percent with a tolerance rate of 

0.25 and then to 6.9 percent with a tolerance rate of 0.5. 

This shows an overall increase of 6~9 percent in the 

misclassification rate. This increase was the minimum among 

all other networks with perfect generalization. 

Similarly, figure 2 shows the averaged 

misclassification rate as a function of tolerance rate for a 
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network trained with patterns from the set A+C and tested 

with patterns from Group B. Also, this network has perfect 

performance at zero tolerance rate. The data indicates that 

the random variations in the weights and biases did affect 

the performance of this network, and the effect increases 

with the tolerance level. _For example, the 

misclassification rate.increased from 0 percent with the 

unperturbed weights to 2 percent with a tolerance rate of 

0.25 and then to 25.27 percent with a tolerance rate of 0.5. 

This shows an overall increase of 25.27 percent in the 

misclassification rate. on the contrary, compared to the 

previous network, this increase was the maximum among all 

other networks with perfect generalization. 

Figure 3 shows the misclassification data for an 

imperfect network trained with patterns from Group B and 

tested with patterns from'Group c. It has an error of 22.22 

percent with the unperturbed weights. Supporting previous 

conclusions, the data in the figure indicates that the 

random variations in the weights and biases have an effect 

on the performance of the network, and the effect increases 

when weight and bias error increases. For example, the 

output error increased from 22.22 percent with the 

unperturbed weights to 25.15 percent with a tolerance rate 

of 0.25 and then to 28.52 percent with a· tolerance rate of 

0.5. Random variations contributed an overall increase of 

6.3 percent to the output error. 

Figure 4 shows the output error for more difficult 

classification. The network was trained with patterns from 
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the set A+B and tested with patterns from Group c. The 

difficulty in classification was 33.33 with correct weights. 

This difficulty increased to 35.08 percent with a weight 

error of 0.25 and then to 44.84 with a weight error of 0.5. 

The data in figure 5 is,very similar to that in the 

previous figure. The difficulty in classification is 38.46. 

Group B is the trained ~et and Groups A, C, and D are the 

test set. 1he difficulty increased to 38.53 percent with a 

weight error of 0.25 and then to '43.39 with ·a weight error 

of 0.5. 

The difficulty of classification in figure 6 was the 

most among all considerable networks. The network was 

trained with patterns from G~oup C and tested with patterns 

in the set A+B+D. Compared to all other networks, it has 

the worst output error started at a value of 42.86 percent. 

Perturbation in weights an~ biases increased the error to a 

value close to the theoretf~al ~pper limit beyond which, the 

classification is impossible in 'two class problems. 

Conclusion 

A method was used to partition input binary patterns 

into groups based on their neigqbor numbers which 

indicate the distance from the input pattern to the class 

boundary. By using various combinations-of these groups, 

it is possible to construct a variety of training sets 

including interior and border sets. Supporting results 

in [1], it was shown that if a certain number of random 

training examples was used to train a network, and if the 



same number of border patterns was used to train a 

similar network, then the latter network will generalize 

better than the former one. This suggests that border 

patterns are very recommended to be included in input 

examples used to train networks. Also, .this approach of 

using border patterns facilitates systematic studies in 

the contribution of training sets to generalization. 

Furthermore, this study showed that errors in the 

weights and biases in a neural network classifier affect 

its performance, and the magnitude of the effect 

increases as the magnitude of the random perturbation 

increases. All studies of the relationship between the 

weight tolerance and the failure rate, recommend that 

weight error should be less than 25 percent. Tests in 

which biases were maintained correct and weights were 

perturbed, showed that performances of networks were more 

sensitive to bias errors than weight errors. Tests in 

which one of the input and output weights was fixed and 

the other was varied, showed that errors in output 

weights have more influence on failure rate than errors 

in input weights. 
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APPENDIX A 

THE TRAINING PROGRAM 
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(******************************************************) 
(* *) 
(* THIS PROGRAM IMPLEMENTS THE BACKPROPAGATION *) 
(* PROCESS. THE PROGRAM MAKES USE OF THE NETWORK *) 
(* SPECIFICATION ENTERED BY THE USER, WHICH INDICATES *) 
(* THE ARCHITECTURE OF THE NETWORK. THE NETWORKS ARE *) 
(* ASSUMED TO BE FEEDFORWARD NEURAL NETWORKS. *) 
(* THE USER SPECIFICATIONS INDICATE HOW MANY TOTAL *) 
(* UNITS ARE IN THE NETWORK, AND HOW MANY ARE INPUT *) 
(* UNITS, HIDDEN UNITS AND OUTPUT UNITS. *) 
(* *) 
(******************************************************) 

PROGRAM TRAIN2(input,output); 

const 
MAXl = 50; 
MAX2 = 1000; 

TYPE 

outunits =array [l .. MAXl] of real; 
(* OUTPUT UNITS *) 

inputwts = array [ 1. . MAX2] of real; 
(* INITIAL WTS *) 

outputwts =array [l •• MAX2] of real; 
(* TRAINED WTS *) 

biases =array [l .. MAXl] of real; 
(* INPUT BIASES *) 

outbiases =array [l .. MAXl] of real; 
(*OUT BIASES *)-

t delta bias= array [l .• MAXl] of real; 
- (* .DELTA BIAS *) 

t err actv b =array [l .• MAXl] of real; 
- - (* ERROR MULT BY ACTIVATION *) 

t w =array [l .. MAXl,l •. MAXl] of real; 
(* WEIGHT ARRAY *) 

t err actv w =array [l •. MAXl,l •. MAXl] of real; 
- - (* ERROR MULTIPLIED BY ACTIVATION *) 

t delta_w =array [l •. MAXl,l •• MAXl] of real; 
(* DELTA OF WEIGHTS *) 
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t net =array [l •• MAXl] of real; 
( * NET INPUTS *) 

terror =array [l .• MAXl] of real; 
(* ERROR ARRAY *) 

VAR 

allpats =array [l .. MAX2] of integer; 
(* ARRAY FOR INPUT PATTERNS *) 

i,j,k,e,: integer; 
count: integer; 
curr integer; 

pel : integer;(* COUNTER"FOR PATTERNS OF CLASS ONE*) 
pc2 integer;(* COUNTER FOR PATTERNS OF CLASS TWO*) 
pc integer; ( * COUNTER FOR ALL PATT.ERNS *) 

pss real; (* PATTERN SUM S,QUARED·ERROR *) 
tss real;, (* TOTAL PATTERN SUM SQUARED ERROR *) 
strl St:J;:"ing[SO];(* FILE NAME OF INITIAL WEIGHTS *) 
str2 string[SOJ;(* FILE NAME OF INPUT PATTERNS *) 
str3 string[SO];(* FILE NAME OF OUTPUT WEIGHTS *) 
epoch . integer; . 
ptrnfl 
inwtfl 
owtfl 

inwts 
outwts 
w 

. . 

err actv w 
delta w 

bias 
outbias 
err actv b 
del ta_bi"as 

pats 
0 
net 
error 

text; (* FILE. OF INPUT PATTERNS *) 
text; (* FILE OF INITIAL WEIGHTS *) 
text; (* FILE OF OUTPUT TRAINED WEIGHTS *) 

inputwts; (* INITIAL WTS ARRAY *) 
outputwts; (* TRAINED WTS ARRAY *) 
t w; ( * WEIGHT MATRIX *) 
t' err actv w;(*ERR MULT BY ACTV FOR WT*) 
t=deita_w;- (* WEIGHT CHANGE MATRIX *) 

biases; (* INITIAL BIASES ARRAY *) 
outbiases;(* OUT TRAINED BIASES ARRAY*) 
t err actv b;(*ERR MULT BY ACTV FORBS*) 
t=delta_bias;(* BIAS CHANGE ARRAY *) 

allpats; (* ARRAY FOR INPUT PATTERNS *) 
outunits;(* ARRAY FOR ACTIVATIONS *) 
t_net; (* ARRAY FOR NET INPUTS TO NODES *) 
t_error;(* ARRAY FOR ERRORS *) 

integer; (* NUMBER OF INPUT NODES 
integer; (* NUMBER OF HIDDEN NODES 
integer; (* NUMBER OF OUTPUT NODES 
integer; (* NUMBER OF ALL NODES 

*) 
*) 
*) 
*) 

ninputs 
nhiddens 
nouts 
nun its 
epsilon 
momentum 

: real; 
real; 

min tss err : real; 
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(******************************************************) 
(* P R 0 C E D U R E I N I T I A L I Z E 1 *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS SIMPLY TO KEEP INITIALIZING THE *) 
(* ARRAYS THAT RECORD WEIGHTS AND BIASES CHANGES. IT *) 
(* INITIALIZES THE ARRAYS WITH ZERO VALUES. *) 
(* *) 
(******************************************************) 

PROCEDURE INITIALIZE1; 

var i, j : integer; 

BEGIN 

epoch := 0; 
nunits := ninputs + nhiddens + nouts; 

for i:= 1 to MAX1 do 
begin 

end; 

for j:= 1 to MAX1 do 
delta_w[i][j] := o.o; 

delta_bias[i] := 0.0; 

END; (* PROCEDURE INITIALIZE1 *) 

(******************************************************) 
(* P R 0 C E D U R E I N I T I A L I Z E 2 *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS SIMPLY TO KEEP INITIALIZING THE *) 
(* ARRAYS THAT RECORD THE MULTIPLICATION OF ERRORS BY *) 
(* ACTIVATION FOR BOTH WEIGHTS AND BIASES. *) 
(* IT INITIALIZES THE ARRAYS WITH ZERO VALUES. *) 
(* *) 
(******************************************************) 

PROCEDURE INITIALIZE2; 

var i, j : integer; 

BEGIN 

tss := 0.0; 

for i:= 1 to MAX1 do 
begin 
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end; 

for j:= 1 to MAX1 do 
err_actv_w[i][j] := 0.0; 

err_actv_b[i] := 0.0; 

END; (* PROCEDURE INITIALIZE2 *) 

(****************************~*~***********************) 
(* P R 0 C E D U R E C 0 M P U T E _ 0 U T *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO CALCULATE THE NET INPUT FOR *) 
(* EACH NODE IN THE NETWORK AND THEN USE THE LOGISTIC *) 
(*FUNCTION TO CALCULATE THE CORRESPONDING'ACTIVATION *) 
(* FOR EACH NODE. *) 
(* *) 
(******************************************************) 

PROCEDURE COMPUTE_OUT; 

var i, j : integer; 

BEGIN 

curr := (count-1) * ninputs; 

for i:= 1 to nunits-ninputs do 
net[i] := outbias[i]; 

for i:= 1 to nhi~dens do 
begin 

for j:= 1 to ninputs do 
net[i] := net[i] + (pats[curr+j] * w[i][j]); 

o (. i.) : = 1. 0/ ( 1. o + exp (-net (. i.) ) ) ; 
end; 

for i:= nhiddens+1 to nunits-ninputs do 
begin 

for j:= 1 to nhiddens do 
net [ i] : = net [ i] + ( o [ j ] * w [ i] [ j ]) ; 

o ( . i. ) : = 1. 0/ ( 1. 0 + exp (-net ( • i. ) ) ) ; 
end; 

END; (* PROCEDURE COMPUTE OUT *) 
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(******************************************************) 
(* P R 0 C E D U R E C 0 M P U T E _ E R R *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE COMPUTES THE ERROR TERM FOR EACH *) 
(* OUTPUT AND HIDDEN UNIT. AFTER THE ERROR HAS BEEN *) 
(* COMPUTED FOR EACH OUTPUT UNIT, IT ITERATES BACKWARD*) 
(* OVER THE UNITS PASSING THE ERROR OF CURRENT UNIT TO*) 
(* ALL UNITS THAT HAVE 'CONNECTI9NS COMING INTO THE *) 
( * CURRENT ONE. *) 
(* > • *) 
(*****************************.***********~************) 

PROCEDURE COMPUTE_ERR; 

var i, j : integer; 

BEGIN 

for i:= 1 to nunits-ninputs do 
error(i] :~ o.o; 

for i:= nhiddens+l to nhiddens+nouts-1 do 
begin 

end; 

if (count <= pel) then 
begin 

error(i] := 1.0- o[i]; 
error[i+l] := o.o- o(i+l]; 

end 
else 
begin 

error[i] := o.o- o[i]; 
error[i+l] := 1.0- o[i+l]; 

end; 

pss 

tss 

:= (error[i] * error[i]) + 
(error[i+l] * error[~+l]); 

:= tss + pss;, 

error[i] := error[i] * a(.i.) * 
(1.0- o(.i.)); 

error[i+l] := error[itl] * o(.i+l.) * 
(1.0- o(.i+l.)); 

for i:= nhiddens+l to nunits-ninputs do 
begin 

for j:= 1 to nhiddens do 
error[j] := error[j] + (error[i] * w[i][j]}; 

end; 
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for i:= 1 to nhiddens do 
error ( . i. ) : = error ( • i. ) * o ( • i. ) * ( 1 • 0 - o ( . i . ) ) ; 

END; (* PROCEDURE COMPUTE_ERR *) 
(******************************************************) 
(* P R 0 C E D U R E C 0 M P U T E _ ERR_ MUL_ ACTV *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO COMPUTE THE MULTIPLICATION OF *) 
(* ERROR OF THE RECIEVING NODE BY THE ACTIVATION OF *) 
(* THE SENDING NODE FOR ALL NOPES. *) 
(* *) 
( * * * * * * * *'* * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * *) 

PROCEDURE COMPUTE_ERR_MUL_ACTV; 

var i, j : integer; 

BEGIN 

curr := (count-1) * ninputs; 

for i:= 1 to nhiddens do 
begin 

end; 

for j:= 1 to ninputs do 
err_actv_w[i][j] := err_actv_w[i][j] + 

(error[i] * pats[j+curr]); 

for i:= nhiddens+1 to nunits-ninputs do 
begin 

end; 

for j:= 1 to nhiddens do 
err_actv_w[i][j] := err_actv_w[i][j] + 

(error[i] * o[j]); 

for i:= 1 to nunits-ninputs do 
err_actv_b[i] := err_actv_b[i] + (error[i] * 1.0); 

END; (* PROCEDURE COMPUTE ERR_MUL_ACTV *) 
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(******************************************************) 
(* P R 0 C E D U R E C H A N G E W T *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE CHANGES NETWORK'S WEIGHTS TO THE *) 
(* NEW SET OF ALTERED WEIGHTS THAT PRODUCE THE FINAL *) 
(* VALUES OF TRAINED WEIGHTS TO BE USED IN TESTING *) 
(* PHASE *) 
(* *) 
(******************************************************) 

PROCEDURE CHANGE_WT; 

var i, j : integer; 

BEGIN 

for i:= 1 to nhiddens do 
begin 

end; 

for j:= 1 to ninputs do 
begin 

delta w[i][j]:= 
+ 

(epsilon* err_actv_w[i][j]) 
(momentum* delta_w[i][j]); 

:= w[i][j] + delta_w[i][j]; w[i][j] 
end; · 

for i:= nhiddens+1 to nunits-ninputs do 
begin 

end; 

for j:= 1 to nhiddens do 
begin 

end; 

delta_w[i][j]:= (epsilon* err_actv_w[i][j]) 
+ (momentum* delta_w[i][j]); 

w[i][j] := w[i](j] + delta_w[i](j]; 

for i:= 1 to nunits-ninputs do 
begin 

delta_bias[i] := (epsilon * err_actv_b[i]) 
+(momentum* delta bias[i]); 

outbias[i] := outbias[i] +delta bias[i]; 
end; 

END; (* PROCEDURE CHANGE WT *) 

60 



(******************************************************) 
(* P R 0 C E D U R E R E A D _ D A T A *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO READ INPUT PATTERNS FROM THE *) 
(* PATTERN FILE. THEN IT WILL LOAD THE BIAS AND *) 
(* WEIGHT ARRAYS BY RANDOM VALUES GENERATED FROM *) 
(* UNIFORM RANDOM DISTRIBUTION. *) 
(* *) 
(******************************************************) 

PROCEDURE READ_DATA; 

var i, j : integer; 

BEGIN 

pel 
pc2 
i 

·-.-
:= 
:= 

O; 
0; 
1; 

while not eof(ptrnfl) do 
begin 

readln(ptrnfl, e); 

case e of 
1: pel ·- pel + .-
2: pc2 := pc2 + 

end; 

1; 
1; 

while not eoln(ptrnfl) do 
begin 

end; 

read(ptrnfl, pats(.i.)); 
i := i+l; 

readln(ptrnfl); 

end; (* EOF *) 
pc := pel + pc2; 

for i:= 1 to nunits-ninputs do 
begin 

bias(.i.) :=random; 
outbias ( . i. ) : = bias ( . i. ) ; 

end; 

for i:= 1 to (nouts*nhiddens + nhiddens*ninputs) do 
inwts(.i.) := random; 

END; (* PROCEDURE READ DATA *) 
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(******************************************************) 
(* P R 0 C E D U R E L 0 A D _ N E T *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO LOAD THE WEIGHT MATRIX FROM *) 
(* THE INPUT WEIGHT ARRAY WHICH HAS BEEN FILLED BY *) 
( * RANDOM VALUES . *) 
(* *) 
(******************************************************) 

PROCEDURE LOAD_NET; 

var i, j, k ,: integer; 

BEGIN 

END; 

k := 1; 

for i:= 1 to nhiddens do 
begin 

for j:= 1 to ninputs do 
begin 

end; 
end; 

w[i][j] := inwts[k]; 
k :=,k+1; 

for i:= nhiddens+1 to nunits-ninputs do 
begin 

for j:= 1 to nhiddens do 
begin 

e.nd; 
end; 

w [ i] [ j ] : = inwts [ k] ; 
k := k+1; 

(* PROCEDURE LOAD NET *) 

(******************************************************) 
(* P R 0 C E D U R E P R I N T _ T S S *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO DISPLAY THE TOTAL SQUARED *) 
( * ERROR AFTER EACH EPOCH. *) 
(* *) 
(******************************************************) 

PROCEDURE PRINT_TSS; 
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BEGIN 

writeln('Epoch Counter 
writeln; 
writeln('TSS After Epoch Above 
writeln; 
writeln; 

END; (* PROCEDURE PRINT TSS *) 

= ' 1 epoch: 8 ) ; 

= ' 1 tss : 8 : 4 ) ; 

(******************************~***********************) 
(* M A I N P R 0 G R A M *) 
(******************************************************) 

BEGIN 

writeln; 
writeln('ENTER NUMBER OF INPUT NODES'); 
writeln; 
readln(ninputs); 
writeln; 
writeln('ENTER NUMBER OF HIDDEN NODES'); 
writeln; 
readln(nhiddens); 
writeln; 
writeln('ENTER NUMBER OF OUTPUT NODES'); 
writeln; 
readln(nouts); 
writeln; 
writeln('ENTER VALUE FOR EPSILON'); 
writeln; 
readln(epsilon); 
writeln; 
writeln('ENTER VALUE FOR MOMENTUM'); 
writeln; 
readln(momentum); 
writeln; 
writeln('ENTER MINIMUM TSS ERROR REQUIRED'); 
writeln; 
readln(min_tss_err); 
writeln; 
writeln('ENTER INPUT PATTERN FILE NAME'); 
writeln; 
readln(str2); 
writeln; 
assign(ptrnfl 1 str2); 
reset(ptrnfl); 
writeln('ENTER FILE NAME TO SAVE OUPUT WEIGHTS'); 
writeln; 
readln(str3); 
writeln; 
assign(owtfl,str3); 
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rewrite(owtfl); 

INITIALIZE!; 
READ_DATA; 
LOAD_NET; 

REPEAT 

BEGIN 

END; 

INITIALIZE2; 

for count:= 1 to pc do 
begin 

end; 

COMPUTE_OUT; 
COMPUTE_ERR; 
COMPUTE ERR MUL _ ACTV; 

epoch := epoch + 1; 

PRINT TSS; 
CHANGE_WT; 

UNTIL (tss <= min_tss_err); 

for i:= 1 to nunits-ninputs do 
write(owtfl,outbias(.i.):8:2); 
writeln(owtfl); 

for i := 1 to nhiddens do 
begin 

for j:= 1 to ninputs do 
write(owtfl,w[i][j]:8:2); 
writeln(owtfl); 

end; · 

for i:= nhiddens+l to nunits-ninputs do 
begin 

end; 

for j:= 1 to nhiddens do 
write(owtfl,w[i][j]:8:2); 
writeln(owtfl); 

writeln(owtfl); 

close(ptrnfl); 
.close ( owtfl) ; 

END. (* MAIN PROGRAM *) 
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APPENDIX B 

THE' TESTING AND MONTE CARLO PROGRAM 

65 



(******************************************************) 
(* *) 
(* THIS PROGRAM IS USED TO STUDY THE EFFECT OF RANDOM *) 
(* WEIGHT AND BIAS VARIATIONS ON THE SENSITIVITY OF *) 
(* FEEDFORWARD NEURAL NETWORKS TRAINED WITH THE *) 
(* STANDARD BACKPROPAGATION RULE. AFTER TRAINING EACH *) 
(* NETWORK WITH THE REQUIRED TRAINING SET, MONTE CARLO*) 
(* METHOD IS USED TO DEFINE THE RELATIONSHIP BETWEEN *) 
(* THE TOLERANCE ON THE WEIGHTS AND BIASES AND THE *) 
(* NETWORK MISCLASSIFICATION RATE. *) 
(* *) 
(******************************************************) 

PROGRAM SENSITIVITY (input,output); 

const 

TYPE 

MAXl = 50; 
MAX2 = 1000; 

outunits =array [l •. MAXl] of real; 
(* OUTPUT UNITS *) 

inputwts =array [l •. MAX2] of real; 
(* INITIAL WTS *) 

outputwts = array [, 1. • MAX2] of real; 
(* TRAINED WTS *) 

biases =array [l •• MAXl] of real; 
( * INPUT BIASES *) 

outbiases =array [l .• MAXl] of real; 
(* OUT BIASES *) · 

t delta bias= array [l .. MAXl] of real; 
- (* DELTA BIAS *) 

t_err_actv_b =array [l .• MAXl] of real; 
(* ERROR MULT BY ACTIVATION *) 

t w =array [l .. MAXl,l .• MAXl] of real; 
(* WEIGHT ARRAY *) 

t err actv w =array [l •• MAXl,l •• MAXl] of real; 
- - (* ERROR MULTIPLIED BY ACTIVATION *) 

t delta w =array [l .. MAXl,l •• MAXl] of real; 
(* DELTA OF WEIGHTS *) 
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t net =array [l •. MAXl] of real; 
(* NET INPUTS *) 

terror =array [l .. MAXl] of real; 
(* ERROR ARRAY *) 

allpats =array [l .. MAX2] of integer; 
(* ARRAY FOR INPUT PATTERNS *) 

VAR 

i,j,k,e : integer; 
count: integer; 
curr integer; 
pel : integer;(* COUNTER FOR PATTERNS OF CLASS ONE*) 
pc2 integer;(* COUNTER FOR PATTERNS OF CLASS TWO*) 
pc integer;(* COUNTER FOR ALL PATTERNS *) 

pss real; (* PATTERN SUM SQUARED ERROR *) 
tss real; (* TOTAL PATTERN SUM SQUARED ERROR *) 
strl string[SOJ;(* FILE NAME OF INITIAL WEIGHTS *) 
str2 string[SOJ;(* FILE NAME OF INPUT PATTERNS *) 
str3 string[SOJ;(* FILE NAME OF OUTPUT WEIGHTS *) 
str4 string[SOJ; 
str5 string[SOJ; 

ptrnfl 
inwtfl 
outfl 

inwts 
outwts 
w 
err actv w 
delta w -

bias 
outbias 
err actv b 
delta bias 

pats 
0 
net 
error 

ninputs 
nhiddens 
nouts 
nunits 

text; (* FILE OF INPUT PATTERNS 
text; (* FILE OF INITIAL WEIGHTS 
text; (* FILE OF OUTPUT 

*) 
*) 
*) 

inputwts; (* INITIAL WTS ARRAY *) 
outputwts; (* TRAINED WTS ARRAY *) 
t_w; (* WEIGHT MATRIX *) 
t_err_actv_w;(*ERR MOLT BY ACTV FOR WT*) 
t_delta_w; (* WEIGHT CHANGE MATRIX *) 

biases; (* INITIAL BIASES ARRAY *) 
outbiases;(* OUT TRAINED BIASES ARRAY*) 
t err actv b;(*ERR MOLT BY ACTV FORBS*) 
t=delta_bias;(* BIAS CHANGE ARRAY *) 

allpats; (* ARRAY FOR INPUT PATTERNS *) 
outunits;(* ARRAY FOR ACTIVATIONS *) 
t_net; (* ARRAY FOR NET INPUTS TO NODES *) 
terror;(* ARRAY FOR ERRORS *) 

integer; (* NUMBER OF INPUT NODES 
integer; (* NUMBER OF HIDDEN NODES 
integer; (* NUMBER OF OUTPUT NODES 
integer; (* NUMBER OF ALL NODES 

*) 
*) 
*) 
*) 

correct_classf, cc real; (* COUNTER FOR CC *) 
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mis classf, me real; (* COUNTER FOR MC *) 
y, u, u2, uJ, u4 real; (* FOR CALCULATIONS *) 
exptss, vartss real; 
expmis classf real; (* EXPERIMENTAL VALUES *) 
varmis-classf real; (* VARIANCE VALUE *) 
stdmis-classf real; (* STANDARD DEVIATION *) 
stdtss . real; . 
mtss, ptss real; (* MINUS AND PLUS·VALUE *) 
mmis classf real; (* MINUS VALUE *) 
pmis:classf real; (* PLUS VALUE *) 
r, lamda real; 
temp, temp2 . real; . 

(******************************************************) 
(* P R 0 C E D U R E T E S T _ N E T *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO CALCULATE THE NET INPUT FOR *) 
(* EACH NODE IN THE NETWORK AND THEN USE THE LOGISTIC *) 
(* FUNCTION TO CALCULATE THE CORRESPONDING ACTIVATION *) 
(* FOR EACH NODE. *) 
(* *) 
(******************************************************) 

PROCEDURE TEST_NET; 

var i, j : integer; 

BEGIN 

curr := (count-1) *· ninputs; 

for i:= 1 to nunits-ninputs do 
net[i] := outbias[i]; 

for i:= 1 to nhiddens do 
begin 

for j:= 1 to ninputs do 
net[i] := net[i] + (pats[curr+j] * w[i][j]); 

o(.i.) := 1.0/ (1.0 + exp(-net(.i.))); 
end; 

for i:= nhiddens+1 to nunits-ninputs do 
begin 

for j:= 1 to nhiddens do 
net[i] := net[i] + (o[j] * w[i][j]); 

o ( • i • ) : = 1 • 01 ( 1. 0 + exp (-net ( • i • ) ) ) ; 
end; 

END; (* PROCEDURE TEST_NET*) 
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(******************************************************) 
(* P R 0 C E D U R E R E S E T _ T S S *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE KEEPS INITIALIZING THE TOTAL *) 
(* SQUARED ERROR, AND THE MISCLASSIFICATION VALUES. *) 
(* *) 
(******************************************************) 

PROCEDURE RESET_TSS; 

BEGIN 

tss := 0.0; 

mis classf := O; 

correct classf := O; 

END; (* PROCEDURE RESET TSS *) 

(******************************************************) 
(* P R 0 C E D U R E I N I T V A R S *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS SIMPLY TO KEEP INITIALIZING *) 
(* VALUES WHICH ARE NEEDED TO BE RESET EVERY NEW *) 
(* CYCLE OF CALCULATION. *) 
(* *) 
(******************************************************) 

PROCEDURE INIT_VARS; 

BEGIN 

nunits := ninputs + nhiddens + nouts; 

exptss := 0.0; 

expmis_classf := 0.0; 

u := 0.0; 

u2 := 0.0; 

u3 := 0.0; 

u4 := 0.0; 

RESET_TSS; 

END; (* PROCEDURE !NIT VARS *) 
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(******************************************************) 
(* P R 0 C E D U R E R E A D D A T A *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO READ INPUT PATTERNS' FROM THE *) 
(* PATTERN FILE. THEN IT WILL LOAD THE BIAS AND *) 
(* WEIGHT ARRAYS BY THE TRAINED VALUES OBTAINED FROM *) 
(* THE RESULTING WEIGHTS AND BIASES PRODUCED BY *) 
(* THE BACKPROPAGATION ALGORITHM. *) 
(* *) 
(******************************************************) 

PROCEDURE READ_DATA: 

var i, j, n : integer: 

BEGIN 

pel 
pc2 
n 

:= 
·-.-
·-.-

o: 
o: 
1: 

while not eof(ptrnfl) do 
begin 

readln(ptrnfl, e): 

case e of 
1: pel := pel + 
2: pc2 := pc2 + 

end: 

1: 
1: 

while not eoln(ptrnfl) do 
begin 

end: 

read(ptrnfl, pats(.n.)): 
n := n+l: 

readln(ptrnfl): 

end: (* WHILE *) 

pc := pel + pc2: 

for i:= 1 to nunits-ninputs do 
begin 

read(inwtfl, bias(.i.)); 
outbias (. i.) : = bias (. i.) : 

end: 
readln ( inwtfl) ,: 
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n := 1; 
for i:= 1 to nhiddens do 
begin 

for j:= 1 to ninputs do 
begin 

read(inwtfl,inwts(.n.)); 
n := n+1; 

end;. 
readln(inwtfl): 

end; 

for i:= nhiddens+1 to nunits-ninputs do 
begin . 

end; 

for j:= 1 to nhiddens do 
begin 

end; 

read ( inwtfl , inwts ( ._ n. ) ) ; 
n := n+1; 

readln(inwtfl): 

END; (* PROCEDURE READ DATA *) 

(******************************************************) 
(* P R 0 C E D U R E L 0 A D N E T *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE IS TO LOAD THE WEIGHT MATRIX FROM *) 
(* THE INPUT WEIGHT ARRAY WHICH HAS BEEN FILLED BY *) 
(* THE TRAINED WEIGHTS RESULTING FROM THE *) 
( * BACKPROPAGATION PROCESS. *) 
(* *) 
(******************************************************) 

PROCEDURE LOAD_NET; 

var i, j, k : integer; 

BEGIN 

k := 1; 

for i:= 1 to nhiddens do 
begin 

for j:= 1 to ninputs do 
begin 

end; 
end; 

w[i][j] := inwts[k]; 
k := k+1; 
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for i:= nhiddens+l to nunits-ninputs do 
begin 

for j:= 1 to nhiddens do 
begin 

w[i][j] := inwts(k]; 
k := k+l; 

end; 
end; 

END; (* PROCEDURE LOAD NET *) 

(*****************************************~************) 
(* *) 
(* THIS PROCEDURE CALCULATES THE SQUARED E~OR FOR *) 
(* EACH PATTERN AND THE GLOBAL SUM OF SQUARED ERROR *) 
(* FOR ALL PATTERNS. IT ALSO COMPARES THE OBTAINED *) 
(* OUTPUT WITH THE TARGET OUTPUT FOR EACH PATTERN. *) 
(* IF THE ACTUAL OUTPUT IS CLOSE TO THE DESIRED ONE *) 
(* THEN THE PATTERN IS CONSIDERED AS WELL CALSSIFIED. *) 
(* IF THE ACTUAL OUTPUT IS NOT CLOSE TO THE DESIRED *) 
(* ONE THEN THE PATTERN IS CONSIDERED AS MISCALSSIFIED*) 
(* *) 
(******************************************************) 

PROCEDURE COMP_PRFRMNC; 

var i, j : integer; 

BEGIN 

for i:= nhiddens+l to nhiddens+nouts-1 do 
begin 

if (count <= pel) then 
pss := ((1.0- o(.i.))*(l.O- o(.i.))) + 

((0.0 -o(.i+l.))*(O.O - o(.i+l.))) 

else 

pss := ((0.0- o(.i.))*(O.O -.o(.i.))) + 
((1.0 -o(.i+l.))*(l.O- o(.i+l.))); 

tss := tss + pss; (* GLOBAL SUM OF PSS FOR 
~ PATTERN FILE *) 

(* THE MISCLASSIFICATION RULE *) 

if(count <= pel) then 
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end; 

begin 

if( (o(.i.) >= 0.8) and (o(.i.) <= 1.2) and 
(o(.i+1.) <= 0.2) and (o(.i+1.) >= -0.2) ) 

then 
correct classf := correct classf + 1 

else 

mis classf := mis_classf + 1; 

end 
else 
begin 

end; 

if( (o(.i+1.) >= 0.8) and (o(.i+1.) <= 1.2) 
and ( o (. i.) <= o. 2) and ( o (. i.) >= -o. 2) ) 
then · 
correct classf := correct classf + 1 

else 

mis classf := mis classf + 1; 

END; (* PROCEDURE COMP PRFRMNC *) 

(******************************************************) 
(* P R 0 C E D U R E N 0 R M A L I Z E P R I N T *) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE NORMALIZES MISCLASSIFICATION RATE *) 
(* TO %100 AND THEN IT PRINTS OUT RESULTS FOR TSS *) 
(* AND CORRECT CLASSIFICATION RATIO. *) 
(* *) 
(******************************************************) 

PROCEDURE NORMALIZE_PRINT; 

BEGIN 

me ·- mis classf; .-
me := (mc/pc) * 100.0; 

cc := correct classf; 
cc := (ccjpc) * 100.0; 
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writeln(outfl): 
writeln(outfl): 
writeln(outfl): 

write(outfl 1 1 *'): 
writeln(outfl 1 '**************************************'): 

write(outfl 1 ' *'): 
writeln(outfl 1 ' *1): 

write(outfl 1 1 *'): 
writeln(outfl 1 ' 

write(outfl;' 
writeln(outfl 1 1 

write(outfl 1 1 

writ~ln(outfl 1 1 

write (outfl 1 '· 

writeln(outfl 1 ' 

write(outfl 1 ' 

writeln(outfl 1 1 

write.(outfl 1 1 

writeln(outfl 1 1 

write(outfl 1 ' 

writeln(outfl 1 ' 

write(outfl 1 1 

writeln(outfl 1 1 

write(outfl 1 ' 

writeln(outfl 1 ' 

write(outfl 1 ' 

writeln(outfl 1 ' 

write ( outfl 1• ' 

wri teln (out fl. 1 ' 

write(outfl 1 1 

writeln(outfl 1 ' 

*') : 

* 

*') : 

*') : 

* 

*' ) : 
*' ) : 

* 
*' ) : 

*' ) : 
*' ) ; 
*') ; 

write(outfl 1 ' *'): 

*') : 

*' ) : 
TRAINING SET =' I 

str4:6): 
*') : 

*I) : 

*') : 
TESTING SET =I 

I 

str5:6): 
*') : 

*I ) : 

*' ) : 
CORRECT CLASSIFICATION %= 1 1 

cc: 8:2) : 

*') ; 

*') ; 

*I) i 

writeln(outfl 1 '************************************** 1 ): 

writeln(outfl): 

writeln(outfl); 
writein(outfl 1 '************* 

writeln(outfl); . 
writeln(outfl 1 '************* 

writeln(outfl); 

TRAINING SET = ' I 

str4:6); 

TESTING SET =' I 

str5:6); 

writeln(outfl 1 1 ******* START MISSCLASSIFICATION% = 1 

1 me: 8:2) ; 
writeln(outfl); 
write(outfl 1 1 THE MONTE CARLO'); 
writeln(outfl 1 1 SIMULATION RESULTS'); 
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write (outfl, • I ) i 
writeln (outfl, 1 1) ; 
writeln(outfl);---------------------------------
writeln(outfl); 

END; (* PROCEDURE NORMALIZE PRINT *) 

(******************************************************) 
(* P R 0 C ED U R E C H.A N G E,_-W EIGHTS*) 
(******************************************************) 
(* *) 
(* THIS PROCEDURE CHANGES NETWORK'S WEIGHTS TO THE *) 
(*NEW SET OF ALTERED WEIGHTS TO STUDY,THE EFFECT OF *) 
(* WEIGHT PERTURBATION RATIO ON THE PERFORMANCE OF *) 
(* THE SPECIFIED NETWORK. *) 
(* *) 
(******************************************************) 

PROCEDURE CHANGE_WEIGHTS; 

var i, j, k : integer; 

BEGIN 

k := 1; 

for i:= 1 to nhiddens do 
begin 

for j:= 1 to ninputs do 
begin 

end; 
end; 

w[i][j] := outwts[k]; 
k := k+1; 

fori:= nhiddens+1 to.nunits-ninputs do 
begin 

for j:= 1 to nhiddens do 
begin 

end; 
end; 

w[i][j] := outwts[k]; 
k := k+1; 

END; (* PROCEDURE CHANGE_WEIGHTS *) 
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(******************************************************) 
(* M A I N P R 0 G R A M *) 
(******************************************************) 

BEGIN 

writeln: 
writeln('ENTER NUMBER OF INPUT NODES'): 
writeln: 
readln(ninputs): 
writeln: 
writeln('ENTER NUMBER OF HIDDEN NODES'): 
writeln: 
readln(nhiddens): 
writeln: 
writeln('ENTER NUMBER OF OUTPUT NODES'): 
writeln: 
readln(nouts): 
writeln: 
writeln('ENTER TRAINING SET'): 
writeln: · 
readln(str4): 
writeln: 
wri teln ( ''ENTER TESTING SET 1 ) : 

writeln: 
readln(str5): 
writeln: 
writeln('ENTER INPUT WEIGHT FILE NAME'): 
writeln: 
readln(strl): 
writeln: 
assign(inwtfl,strl): 
reset(inwtfl): 
writeln('ENTER INPUT PATTERN FILE NAME'): 
writeln: 
readln(str2): · 
writeln: 
assign(ptrnfl,str2): 
reset(ptrnfl): 
writeln('ENTER OUTPUT FILE NAME'): 
writeln: 
readln(str3): 
writeln: 
assign(outfl,str3): 
rewrite(outfl): 

INIT_VARS: (* MODl 
READ_DATA: 
LOAD_NET: 

NETWORK INITIALIZATION *) 

(* MOD2 : TRAINED WEIGHTS PERFORMENCE *) 
for count:= 1 to pc do 
begin 
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TEST_NET; 
COMP_PRFRMNC; 

end; (* PATTERN FILE TEST *) 

NORMALIZE_PRINT; 

(* MOD3 THE MONTE CARLO METHOD *) 

y := 1000.0; 
lamda := 0.00; 

FOR i:= 1 to 10 DO 

begin 
INIT_VARS; 
lamda := lamda + 0.05; 

writeln('lamda = ',lamda:8:3); 

FOR j:= 1 to trunc(Y) DO 
begin 

RESET_TSS; 

for k:= 1 to 
(nouts*nhiddens + nhiddens*ninputs) do 

begin. 

end; 

r := random; 
temp := 4 * lamda * inwts(.k.) * 

(r -0.5); 
outwts(.k.) :=temp+ inwts(.k.); 

for k:= 1 to nunits-ninputs do 
begin 

end; 

r := random; 
temp2 := 4 * lamda * bias(.k.) * 

(r -0.5); 
outbias(.k.) := temp2 + bias(.k.); 

CHANGE_WEIGHTS; 

for count:= 1 to pc do 
begin 

end; 

TEST_NET; 
COMP_PRFRMNC; 
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exptss 
u 

:= exptss + (tss * (1.0/Y)); 
:= u + tss; 

END; 

u2 

me 
me 

:= u2 + (tss * tss); 

:= mis elassf; 
:= (me/pe) * 100.0; 

expmis elassf := expmis elassf + 
(me* (1.0/Y)); 

:= u3 + me; u3 
U4 := u4 + (me * me); 

vartss := (1.0/(Y - 1.0) * 
(u2 , - (( 1. 0/Y) * (u*u)))) ; 

varmis elassf := (1.0/(Y ~ 1.0) * 
(u4 - ( (l.O/Y).*(u3*u3)))); 

stdtss : = sqr~ (vartss) ; . 

stdmis elassf := sqrt(varmis_elassf); 

mtss ·- exptss - stdtss; .-
ptss ·- exptss + stdtss; .-
mmis elassf ·- expmis_ elassf stdmis elassf; .-- -
pmis elas'sf ·- expmis_ elassf + stdmis elassf; .- -

writeln(outfl); 
write(outfl,' THIS IS A. NEW TEST WITH'); 
writeln(outfl,'TOLERANCE RATE=' lamda:8:2); 
writeln(outfl); 

writeln(outfl, 'E(tss) is 

writeln(outfl,'MNS(tss) is 
writeln(outfl,'PLS(tss) is 
writeln(outfl); 

. ' . 
,exptss:8:2); 
: ' ,·mtss: 8:2) ; 
: ' , ptss: 8 : 2) ; 

writeln(outfl,'E(mis_elassf) is%:' 
,expmis_elassf:8:2); 

writeln(outfl,'MNS(mis_elassf) is:' 
,mmis elassf:8:2); 

writeln(outfl,'PLS(mis_elassf) is :• 
,pmis_elassf:8:2); 

writeln(outfl); 
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END; 

writeln(outfl); 
writeln(outfl); 

close(inwtfl); 
close(ptrnfl); 
close(outfl); 

END. (* MAIN PROGRAM *) 
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APPENDIX C 

THE RELATIONSHIP BETWEEN WEIGHT 

TO~RANCE AND MISCLASSIFICATION RATE 
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