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CHAPTER I 

INTRODUCTION 

General Statement of the Problem 

This thesis describes a neural network used to predict 

the sludge blanket depth of a secondary clarifier of a waste 

water treatment plant. The objective of the thesis was to 

develop a neural network on a personal computer, train the 

neural network to learn how the sludge depth changes from 

experience, and then use the trained neural network to 

predict the sludge blanket depth. 

A neural network is a new computing technique in 

artificial intelligence. Neural networks can learn, 

memorize, and generalize from experience and events. What 

the neural network does is mimic the human brain logically. 

First the neural network is taught example cases. After the 

neural network has learned, it can simulate the thinking of 

the human brain based on the examples learned. This project 

uses the neural network technique to predict the clarifier 

sludge depth in a waste water treatment process. 

In an activated sludge plant, the purpose of the 

secondary clarifier is to provide a quiescent area in which 

solids will separate from treated water. Therefore, within 
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the secondary clarifier there are normally three separate 

areas: an area of clear water relatively free of solids; an 

area where discrete straggler floc particles are settling 

down to form a blanket; and an area which contains the 

solids that have separated from the mixed liquid to form the 

sludge blanket. The sludge blanket depth is measured to the 

top of the relatively thin, but quite homogenous, upper 

surface of the accumulated sludge blanket. The sludge 

blanket depth is the distance from the surface of the 

clarifier to the top of the sludge blanket (Hobson, 1986) 

In the waste water treatment process, the clarifier 

sludge blanket depth changes frequently. This depth is a 

function of the activated sludge process. During a daily 

cycle, the depth of the sludge blanket in a final clarifier 

will change mostly due to the effects of changing waste 

water flow rates. Changes that occur over a longer period 

of time (days or weeks) are usually caused by operator 

process adjustments (or the lack of them) (Hobson, 1986) 

Factors affecting the depth include raw waste water 

strength, nutrients in the system, dissolved oxygen in the 

aeration basin, detention time, pH, temperature, influent 

flow rate, and operator process adjustments. 

Sometimes the changing sludge blanket depth can cause 

problems in the treatment process. The solids 

concentrations in the final effluent will increase if the 

sludge blanket is too high in the clarifier. Unmanaged 



sludge blanket depth changes can also be disastrous to the 

clarifier. For example, the sludge blanket could rise in a 

clarifier and flow over the effluent weirs. For plant 

operation, the sludge blanket depth should stay within the 

design range (Hobson, 1986). 

Therefore, monitoring and predicting the depth of 

sludge blanket is very important. This allows the operator 

to anticipate other problems such as denitrafication in the 

clarifier. It is also important for the operator to make 

decisions about return sludge flow adjustment. 

3 

There are several methods for monitoring the depth of 

the sludge blanket in the secondary clarifier. Some use 

permanently installed instruments such as the airlift pump 

tube and the ultrasonic blanket detector. Others, such as 

the electronic detector, the sight glass and the caretaker, 

are more often used manually by the operator to sample or 

measure the sludge blanket (Hobson, 1986). However, they 

are all physical methods. They do not predict the sludge 

blanket depth. Currently it is difficult to find a 

mathematical equation to predict the sludge depth. Since 

the neural network can learn from experience, we can collect 

many cases of the sludge blanket changes and train the 

network with these cases. After the network is trained, it 

may serve as a model to predict the sludge blanket depth. 



Why a Neural Network? 

The reason a neural network was chosen in this research 

was because conventional techniques can not predict the 

depth of the sludge blanket. Sludge blanket depth is a 

complex phenomenon. Neural networks offer improved 

performance over conventional technologies in the area of 

complex mapping and modeling complex phenomena. 

Neural networks are an emerging computational 

technology. They have the abilities of adaptive learning, 

self-organization, and generalization. Adaptive learning 

is one of the most attractive features of neural networks. 

By adaptive learning, neural network can learn to 

discriminate patterns based on examples (Maren et al., 

1990). During the training of the network, we do not have 

to work out an a priori model and specify probability 

distribution functions. Neural networks use their adaptive 

learning capabilities to self-organize the information they 

receive during training. After the neural network is 

trained, it can predict output based on inputs that the 

network has never seen before. 

Sludge blanket depth depends upon multiple interacting 

parameters. There are no current mathematical methods to 

4 

predict sludge blanket depth. When large amount of measured 

data are available, neural network can be tried. Such is the 

case for the database of the Gerber Baby Food Waste Water 

Treatment Plant which lS the data source for this study. 
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Successful neural network applications generally have the 

above characteristics. Therefore the project is suitable to 

apply neural network technology (Bailey and Thompson, 

1990a) . 

Objectives of the Study 

The objective of this research is to design and 

implement a multiple layer back propagation neural network 

for modeling the sludge blanket depth for the Gerber Baby 

Food Waste Water Treatment Plant. 

Procedure 

The first step was to prepare the training data and 

testing data. The training and testing data were collected 

from the database of Gerber Baby Food Waster Water Treatment 

Plant. The proper input variables need to be selected based 

on the parameters affecting the sludge blanket depth. The 

output variable is the sludge blanket depth. The data were 

transformed, scaled and divided into two sets - training 

data and testing data. 

To design a neural network, it is necessary to select 

the neural network paradigm and determine the number of 

processing units in each layer. Neural network software 

must be selected. Finally the design must be implemented on 

the selected software. 
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The last step is to implement the neural network. The 

goal is to create a functioning neural network that provides 

the most accurate and consistent model possible. Iterative 

building, training, and testing is used to refine the neural 

network (Bailey and Thompson, 1990a) . First the training 

data are used to train the neural network. The training 

process is monitored for problems. Then the network is 

tested using the test data. Finally, the test results are 

plotted. 

Neural Network Simulation Tool 

ExploreNet 3000 was used as the development environment. 

It is a fully automated commercial development package. 

This software is designed with user-adjustable parameters 

for easy tailoring to the requirements of the application. 

It contains the fundamental structure and processing 

equations for more than twenty different neural network 

paradigms. It allows the user to control the number of the 

hidden layers, the size of each layer, and the values of the 

transfer function constants. Five back-propagation neural 

networks are available within ExploreNet 3000. 



CHAPTER II 

BACK PROPAGATION NEURAL NETWORKS 

Among the possible architectures for neural networks are 

back error propagation, counter propagation, adaptive 

resonance theory, Madline Rule III, and Nestor's Reduced 

Coulomb Energy. Back error propagation is the most popular 

and successful neural network learning paradigm. Back 

propagation can solve problems dealing with general mapping 

approximations, pattern classification, data modeling, 

process control, and signal processing, which can be viewed 

as a pattern recognition problem. Successful back 

propagation applications in these areas have been reported. 

NeuralWare's Applications Development Services and Support 

(ADSS) group has developed a successful bankruptcy 

prediction application using the back propagation network 

{Coleman et al., 1990). Beale and Demuth (1992) used the 

back propagation method to obtain a mathematical model for a 

real system to be controlled. 

The Architecture of Back Propagation Neural Networks 

Back-propagation networks are usually layered. The 

layers, or slabs are referred to as the input slab, the 

hidden slab(s), and the output slab. There is also a 
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training slab. Figure 1 shows the basic form of a neural 

network. The bottom layer is the input layer and is the 

only layer in the network that receives external input. The 

layers above are the hidden layers. Hidden layer can be one 

layer or two layers and usually not more than three layers. 

The top layer is the output layer, which gives the output of 

the network. Every layer of the network consists of one or 

more processing units called neurons. Each layer is fully 

connected to the next higher level. The highest level of 

the hidden layers is connected to the output layer. The 

training slab is connected to the output slab in a one-to­

one manner (HNC, Inc., 199lc). 

Output slab Output Unit 

Hidden slab 3 

Hidden slab 2 Hidden Units 

Hidden slab 1 

Input slab Input Units Training slab 

Figure 1. A Five Layered Back-propagation Network 



How Does the Back Propagation Network Solve Problems? 

There are two modes of back propagation network 

operation - training mode and producing mode. In the 

training mode, the network requires two sets of data: an 

example set of input vectors and a corresponding set of 

desired output vectors. The goal of back propagation 

network training is for the network to learn to reproduce a 

mapping or functional relationship from these two kinds of 

vectors. After training, the network is used in production 

mode. If trained correctly, the network should be able to 

produce correct output responses for any input vectors, 

which may not have been presented to the network during 

training. 

9 

When the network is given an input vector and 

corresponding target output vector in the training mode, the 

input slab receives the input vector and the training slab 

gets the corresponding output vector. The training slab is 

connected to the output slab directly without any 

mathematical computations. The input slab fans out the 

input data without making calculations. The data flows 

along the connections toward the hidden slabs and the output 

slab. Each processing unit of the hidden slab transforms 

the incoming data by executing the equations associated wich 

each processing unit. It then outputs the transformed data 

to the next layer. Each processing unit of the output slab 



does a similar transformation on the data it receives from 

the last hidden layer. The output of the output layer is 

then compared to the target output vector in the training 

slab. The errors between the two vectors are calculated. 

10 

The error is then used to calculate new weights for all 

processing units in the hidden slabs and the output slab. 

The new weight for a processing unit results in a new 

computing equation associated with the processing unit. The 

determination of the new weights is based on a simple 

concept: the weights are corrected so that the error is 

lessened and as a result future responses of the network are 

more likely to be correct. This process is repeated until 

it appears that the network has learned as well as it can. 

After the network has learned, it can be used in the 

producing mode. In the producing mode, the weight 

associated with each processing unit will not change. The 

only input to the network is the input vector. The output 

is the neural network response to such input. If the neural 

network is trained properly, the response of the trained 

neural network should agree with the desired output. Even 

if the inputs to the network have never been seen in the 

training process, a well trained network can still give an 

appropriate output response. This is called generalization. 

Neuron 

A neuron is the basic information processing 11nit in 

the neural network. Figure 2 shows a basic back-propagation 
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neuron (Dayhoff, 1990). Every neuron has inputs, weights, 

an activation function, bias input, and outputs. The neuron 

is shown in the center, the inputs at the left, and the 

outputs at the right. There are n inputs, which are the 

outputs from other neurons or processing units in the 

previous layer, and m outputs. The outputs are fanned out 

to become inputs to the next layer of neurons. 

There is a bias input to every neuron in the back 

propagation neural network. Usually the bias input lS set 

to one. The bias can be viewed as a threshold of a neuron. 

It determines the activation level of a neuron. 

There are weights associated with each input to the 

neuron. The input to the neuron is thus a weighted sum of 

all inputs on the left and bias input. The output of a 

neuron to a hidden or output slab is calculated by applying 

an activation function to the weighted sum of the inputs to 

the neuron. 

Weight 

Weights are numbers associated with each interconnection 

between neurons in the different layers. Before training, 

they are initialized to random small numbers and are 

adjusted during learning. After learning is completed, the 

weights are fixed. These final values of weights are then 

used during "recall" sessions. Figure 2 illustrates the 

weights along the incoming connections to the neuron. 



, S j =weighted sum 

f(S j )=Output 

Figure 2. A Basic Back-propagation Neuron 

Learning and Testing 
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Learning and testing are two main steps used in the 

implementation of a neural network. A network is said to 

adapt, or learn, if over time the response of the network 

becomes better. The back-propagation neural network employs 

supervised learning. During learning the network is 

presented with the desired output for every input. The 

actual output of the network is then compared with the 

desired output to produce a measurement of "error." The 

weights are adjusted to decrease the error between the 

network's output and the desired output. A training data 

set is used for training and is presented to the network 

many times. After training is stopped, the performance of 

the network is tested using a testing data set which was 

never seen by the network during the training. 
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Learning Algorithm 

The back-propagation learning algorithm involves a 

forward propagating step followed by a backward propagating 

step. Both the forward and backward propagation steps are 

done for each input vector and the corresponding output 

vector. Once the forward propagation and backward 

propagation are completed on one set of input/output 

vectors, this iteration of the network is complete and the 

next iteration of the network is ready to begin. 

Forward Propagation 

The forward propagation step begins when the input 

vector is presented to the input slab. The input slab fans 

out the inputs to each neuron in the first hidden slab. The 

neurons in the first hidden slab calculate their outputs by 

applying a sigmoid transfer function to the summation of all 

the inputs to the neurons. The neurons of the first hidden 

slab then fan out the calculated outputs to the neurons in 

the next slab. This process continues on each successive 

slab. Every neuron sums its inputs and executes a transfer 

function to calculate its output. Finally the neurons of 

the output slab calculate the actual output of the network. 

The forward propagation step stops when the neurons of 

output slab output the neural network's result (Dayhoff, 

1990). 



Backward Propagation 

After the forward propagation step, the network 

calculates the error by comparing the actual output of 

network with the desired output vector. Then the network 

changes the weights associated with each neuron in the 

output slab. The changing of the weights usually is based 

on the learning rule of the specific network. Back 

propagation neuron networks use the generalized delta rule 

14 

(Appendix A) . This process continues backward, starting 

with the output slab and moving to the first hidden slab. 

This process is called the back propagation step. The back 

propagation step stops when all the weights in the network 

have been changed. In this back propagation step the 

network corrects its weights in such a way as to decrease 

the network calculated error (Dayhoff, 1990). 

The Error Value 

The generalized delta rule calculates an error for 

every neuron in the network. The error value associated 

with each neuron reflects the amount of error associated 

with the weight of that neuron. This parameter is used 

during the weight correction while learning is taking place. 

A large error value indicates that a larger correction 

should be made to the neuron's weights. The sign of the 

error reflects the direction in which the weights should be 

changed (Dayhoff, 1990). 
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Processing Equations 

The Multiple Layer Back Propagation network of the 

ExploreNet software was used in this study. The processing 

equations discussed here are from the software manual (HNC, 

Inc., 199lc). 

Forward Propagation Equations 

The forward propagation step is initiated when an input 

pattern is presented to the network and continues until the 

output slab neuron calculates the network output. For the 

input slab, the neurons fan out the input vector without any 

information processing. For the hidden and output slab, the 

neurons sum the inputs and calculate the output by applying 

the sigmoid transfer function to the summation. 

Figure 3 illustrates a neuron of a hidden slab and the 

output slab in the forward propagation step. For the hidden 

slab, the calculated output is sent to upper level neurons 

as inputs. For the output slab, the neurons do not fan out 

the calculated output. The calculated output of the output 

slab is the actual network output. 

In Figure 3, the Ilij (j= 0, 1, ... n) are the inputs 

from connection j. N1i is the neuron i. 1 indexes the slab. 

W 7 ~~ stands for a weight from connection J to neuron i in 
-~.J 

the slab 1. z1 i is the output of the neuron i, which is the 
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input to upper level neurons or the network output if neuron 

i is in the output slab. 

Output 

Neuron i on slab l 

Input 

Bias I lij 

Figure 3. The Forward Propagation Step 

Each neuron on a hidden or output slab has one 

connection from each neuron on the preceding slab (see 

Figure 1) Associated with each of these connections is an 

adaptive weight, W]ij, where 1 indexes the slab, ithe 

neuron, and j the connection. In addition, each hidden and 

output slab neuron receives a constant input value of 1 from 

an auxiliary slab, called the bias slab. The weight 

associated with this constant input, W]iO is called the 
I 

threshold or bias weight. These threshold weights allow the 
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network to approximate a broader class of mappings than 

would be possible without them. The output of a neuron of a 

hidden or output slab, Zli, is calculated by applying an 

activation function to the weighted sum of the inputs to 

that neuron. The equation for this process is given by 

1\ll-1 

L; = Wlio + L W!ii x Z(l- t)j 

H 

Zn = f(ln) 

(1) 

( 2) 

where M1_ 1 is the size of the preceding slab, Z (l-1)j is the 

output of the jth neuron of the preceding slab, and f is the 

activation function. The function f is a sigmoid curve. It 

is illustrated in Figure 4. 

-5 -3 -1 3 5 

X 

Figure 4. A Sigmoid Transfer Function 

The sigmoid curve that was used is given by 

1 
f(x) = 1 -x 

+e 
( 3) 
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This curve is relatively flat at both ends, and has a 

rapid rise in the middle. When xis less than -3, f(x) is 

close to Oi when xis greater than 3, f(x) is close to 1. 

Since the operand of equation (2) is the weighted sum of 

neuron k, we have 

f(IJ;) = -IJ; 
1 +e 

(4) 

After the sigmoid function is computed on I, the 

resulting value becomes the output of neuron k. This value, 

the output of neuron k, is sent along all output 

interconnections to upper level neurons. 

Backward Propagation Equations 

Learning rules for the back propagation network requires 

that the network's desired output response be known for each 

input vector. Thus, during training each output neuron must 

also be supplied with a desired output by the training slab. 

After forward propagation, the desired output is compared to 

the actual output of the output slab. The network 

calculates the error for the output slab based on this 

comparison. These error values are passed back to neurons 

on previous slabs which use them to calculate their own 

error valuesi hence the name "back propagation." The 

weights of output and hidden slabs are adjusted using these 

error values so as to decrease the total mean squared error 



(MSE) generated by the network over the training set of 

data. The MSE is defined as 

MSE = L(obs - pred)2 /n 

where obs is the observed value and pred is the value 

predicted by the network. The learning rules have been 

derived so as to implement a gradient descent on the error 

function. The derivation of this result can be found in 

appendix A. 
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Figure 5 illustrates the back-propagation step. In this 

figure information flows from the output slab toward the 

input slab. Here the error values D are calculated for 

neurons of output and hidden slabs and weight changes are 

computed for all interconnections. The calculations begin 

at the output layer and progress backward through the 

network to the input layer. 

The calculation of error 8 depends on whether the neuron 

lS a member of the output slab or one of the hidden slabs. 

It is simple to compute for the output layer and somewhat 

more complicated for the hidden layers. The error for a 

neuron on the output is 

81i = f' (ln)(Ti- Zli) (5) 

where 

81i = the error for neuron i. 

Ti = the target value for neuron i. 
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Zli = the output value for neuron 1. 

f' (Ilil= the derivative of the sigmoid function f. 

Ili = weighted sum of inputs to i 

Training Slab 

Output Slab 

Hidden Slab 3 

Hidden Slab 2 

Hidden Slab 1 

Input Slab 

Figure 5. Backward Propagation in Training 

The quantity (Ti - Zli) reflects the amount of error. 

The f' part of the term "scales~ the error to force a 



21 

stronger correction when the sum is near the rapid rise in 

the sigmoid curve. 

For the hidden layer, the calculation of 8 is changed 

to a form that determines the contribution of each hidden 

slab neuron to the error seen at the slab above it. This 

calculation is given by 

MI+I 

81i = f' ( Li ) I 8 (I + I ) k \V (I + I ) ki ( 6) 
k=l 

where ~1+1 is the number of neurons on the subsequent slab. 

The sum over k represents the contribution of the ith hidden 

element to the errors seen at the subsequent neurons. 

The adjustment of the connection weights is done using 

the 8 values of the processing unit. The equations for 

~Wlij and wnew are the same for output and hidden slabs. 

Each interconnection weight is adjusted by taking into 

account the 8 value of the unit that receives input from 

that interconnection. The connection weight adjustment is 

~ Wtii = a8Zn- lli ( 7) 

wnew wold ~ w 
lij = lij + lij ( 8) 

This is called the generalized ~ rule. The variable a 

in the weight adjustment equation is the learning rate. Its 

value is commonly between 0.25 and 0.75 and chosen by the 

neural network user. The value of a reflects the rate of 

learning of the network. Values that are very large can 

lead to instability in the network, and unsatisfactory 
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learning. Values that are too small can lead to excessively 

slow learning. 

Convergence 

When a network is trained successfully, it produces more 

accurate answers more often as the training session 

progresses. 

of learning. 

It is important to have a quantitative measure 

The MSE is usually calculated to reflect the 

degree to which learning has taken place in the network. 

This measure reflects how close the network is to getting 

the correct answers. As the network learns, its MSE 

decreases. Generally, a transformed MSE value below 0.1 

indicates that a network has learned its training set 

(Dayhoff, 1990). 



CHAPTER III 

FACTORS AFFECTING THE SLUDGE BLANKET DEPTH 

A Brief Overview of Activated Sludge Systems 

The activated sludge process is a biological technique 

to remove organic matter in waste water. Figure 6 

illustrates a typical biological waste water treatment 

plant. The raw water is the waste water to be treated. The 

plant mainly consists of two sections. The first is the 

biological reaction tank called the aeration basin, and the 

second is called the secondary clarifier. After treatment 

clear water flows out of the plant from the effluent pipe. 

Aeration Basin Clarifier 
Raw Water ...----------. Effluent 

-/~ 
/ 

·~mW· Sludge Blanket 

Return Sludge 
Waste Sludge 

Figure 6. A Typical Activated Sludge Process 
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The aeration basin is the place where the biological 

treatment of the waste water takes place. Inside the 

aeration basin there are many microorganisms, for which the 

organics in the waste water serve as food. Thus the 

microorganisms reduce the organics in the waste water by 

converting the waste constituents to more microorganisms. 

The purpose of the aeration basin lS to provide contact 

between the organics and the microorganisms in an oxygen­

rich environment conducive to the growth of the 

microorganisms (Junkins et al., 1988). 

The purpose of secondary clarifier is to separate the 

biomass generated by biological treatment. The mixed liquid 

in the aeration basin forms large floes which flow into the 

secondary clarifier. These floes settle to form a sludge 

blanket in the clarifier. The clear water is on the top of 

the clarifier and will flow out from the effluent weir. The 

sludge in the bottom of the clarifier leaves the clarifier 

from the bottom opening. 

Some of the settled activated sludge leaves the 

clarifier and goes into the recycle line. The recycled 

sludge from the clarifier to the aeration basin is called 

return activated sludge. The purpose of the return sludge 

is to maintain a sufficient concentration of activated 

sludge in the aeration basin so that the required degree of 

treatment can be obtained in the time interval desired. 

The excess activated sludge is wasted from the return 

sludge line. The purpose of wasting sludge is to maintain a 
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constant level of mixed liquor suspended solids and a 

constant retention time in the aeration basin. The wasted 

sludge is discharged to the sludge handling facilities. 

The basic mechanism of the activated sludge process can 

be represented by the following biological reaction: 

02 Organic Material+ Microorganisms--~ Microorganisms+ C02 + H20 +Energy 

To activate the above biological reaction, oxygen is 

added to the system in the aeration basin. The 

microorganisms in the water utilize complex organic material 

as a food source to produce more microorganisms plus carbon 

dioxide gas, water and energy. The microorganisms are 

eventually settled out from the secondary clarifier as waste 

biomass. The carbon dioxide gas is dispersed into the 

atmosphere. The water produced in the biological reaction 

leaves the system as part of the final effluent. The energy 

produced is utilized by the microorganisms to maintain their 

life systems (i.e., reproduction, digestion, and movement} 

(Junkins et al., 1988}. 

Sludge Blanket Depth 

The sludge blanket is located at the bottom of the 

secondary clarifier as illustrated in Figure 6. The sludge 

blanket depth is the distance from the water surface of the 

secondary clarifier to the top of the sludge blanket. It is 
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located at the top of the relatively thin, but quite 

homogenous, upper surface of the accumulated sludge blanket. 

The sludge blanket depth in secondary clarifiers is 

checked every day. It is important to maintain a sludge 

blanket approximately three feet deep in clarifiers. Too 

high a sludge blanket indicates poor settling and/or solids 

not being withdrawn (recycled and wasted) from the bottom of 

the clarifier fast enough so that solids are accumulating 

quicker than they are being removed. Too low a sludge 

blanket means poor settling due to dispersed growth or 

solids are being pulled from the bottom of the clarifier at 

a too high rate. It is desirable to have a concentrated 

sludge blanket on the bottom of the clarifier in order to 

reduce the volume of liquid that must be recycled and/or 

wasted (Junkins et al., 1988). 

Factors Affecting the Sludge Blanket Depth 

Activities of bacteria in the aeration basin and sludge 

characteristics of the system determine the sludge blanket 

depth. Factors affecting the depth include raw waste water 

strength, nutrients in the system, dissolved oxygen in the 

aeration basin, detention time, pH, temperature, influent 

flow rate, and operator process adjustments. 
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~ Waste Water Strength 

The organic material in the waste water serves as a food 

source for the microorganisms in an activated sludge system, 

and the energy required by bacteria is derived from its 

oxidation as shown by the biological reaction. The chemical 

oxygen demand (COD) in the biological reaction is usually 

used as a measure of the amount of organics present in the 

waste water. COD is defined as the total quantity of oxygen 

required to oxidize all organic matter to carbon dioxide and 

water by the action of a strong oxidizing agent under acid 

conditions. COD reflects the waste water strength. 

Any significant changes in the waste water 

characteristics affect the growth of the microorganisms in 

the treatment system. If COD loading increases 

significantly, then there may be too much food present for 

the microorganisms in the system. This excess food will 

result in a rapid growth of bacteria, which will produce a 

young biomass. The young biomass, sometimes called sludge, 

can cause poor settling in the secondary clarifier. If the 

organic loading decreases, there will be not enough food for 

the microorganisms in the system. This will reduce the 

growth rate and the system's biomass population could 

diminish. This will form rapid settling floes and result in 

an increased suspended solids concentration in the final 

effluent. Therefore a proper balance between food and 

microorganism must be maintained (Junkins et al., 1988) 
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EQQQ and Microorganism Ratio 

In order to generate a good settling sludge, a correct 

microorganism population must be maintained to properly 

handle the organic materials coming into the system. The 

food to microorganism (F/M) ratio is defined as the ratio of 

pounds of influent COD to pounds of MLVSS under aeration 

basin. MLVSS is the mixed liquid volatile suspended solids, 

and is used to approximate the bacteria's concentration in 

the aeration basin (Junkins et al., 1988). 

Nutrients 

Microorganisms need nutrients such as nitrogen and 

phosphorus to sustain their life system. In industrial 

waste water, ammonia and phosphoric acid are usually added 

to provide sufficient nitrogen and phosphorus. The bacteria 

require nitrogen to produce other bacteria and phosphorus to 

generate the enzymes they need to break down organics in the 

waste water. 

A rule of thumb is one pound of phosphoric acid with one 

pound of ammonia for 100 pounds of COD removed from the 

system. Insufficient nitrogen can result in filamentous 

bacterium that settles poorly. In addition, the lack of 

nitrogen inhibits the production of new cells, while the 

existing cells continue to remove organic matter. As a 

result, the microorganisms excrete excess by-products 



resulting in a fluffy floc which also settles poorly 

(Junkins et al., 1988). 

Dissolved Oxygen 
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The biological reaction equation shows that the 

microorganisms need oxygen to survive. Oxygen is added to 

the aeration basin using mechanical methods. To ensure 

sufficient oxygen is being added to the system, a dissolved 

oxygen (D.O.) concentration of 1 to 2 mg/l should be 

maintained in the aeration basin. In the summer months, the 

bacteria are more active, and thus need more oxygen. In 

addition, as the temperature of the waste water increases, 

the oxygen saturation value decreases. These two phenomena 

require more oxygen be supplied to maintain the same D.O. 

concentration. In the winter, the amount of oxygen provided 

to the system should be decreased (Junkins et al., 1988). 

DQ Uptake Rate 

Dissolved oxygen uptake rate is used to measure the rate 

at which D.O. is used in a sample of mixed liquid collected 

from the aeration basin. D.O. uptake rate reflects the 

activity of the microorganisms in the aeration basin. A low 

oxygen uptake rate in the aeration basin is an indication of 

impending problems. For example, lower than normal influent 

COD loading, improper pH, low D.O., or the presence of toxic 

material will cause low D.O. uptake rates. A high oxygen 
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uptake rate indicates higher organic loading to the plant 

than usual. Dissolved oxygen uptake rate is measured every 

day in a treatment plant (Junkins et al., 1988). 

Temperature 

Temperature affects the settling characteristics in the 

secondary clarifier. In the winter, the colder waste water 

becomes more dense. This results in poorer settling sludge. 

In the summer, the sludge settles more easily. Also the 

temperature greatly affects the activity of microorganisms. 

When temperature increases by 20°F, the activity of the 

microorganism increases by a factor of two. In the plant 

operation, increasing MLVSS in winter and decreasing MLVSS 

in summer are used in order to compensate seasonal 

temperature change. Usually, the bacteria can thrive in a 

temperature from 80°F to 90°F (Junkins et al., 1988). 

A proper pH value is needed to maintain a healthy and 

active system. The biological activity is highly related to 

the pH value. Bacteria can survive in a pH range from 5.0 

to 10.0 1 but they thrive between pH value of 6.5 and 8.5. 

When pH is below 6.5, fungi become the predominant organism 

in the water. This will produce poor settling solids. If 

the pH is too high, phosphorus will precipitate and become 

unavailable for bacteria. Under extreme high or low pH 



condition, the plant biological population will be killed 

(Junkins et al., 1988). 

~ Minute Settling ~ 
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The 30 minute settling test is one of the best process 

monitoring tools. It is a measure of sludge settle ability 

in the clarifier. The 30 minute settling test simulates the 

condition of the secondary clarifier. A strict procedure is 

used to accomplish the test. The sample used in the test 

represent the mixed liquid flowing out of the aeration basin 

to the secondary clarifier. The sample is collected either 

just before it leaves the aeration basin or at some point 

prior to its entry into the secondary clarifier. This test 

is a key indicator of sludge condition because it simulates 

the condition in the secondary clarifier. Therefore, the 

thirty minute settling test can be used to predict sludge 

blanket depth (Junkins et al., 1988). 



CHAPTER IV 

NEURAL NETWORK DESIGN 

The Concept Phase Design 

The concept phase develops the approach to building the 

neural network application. It determines which type of 

application to consider. Then according to the type and 

requirements of the application, the proper neural network 

paradigm is chosen. Finally the neural network size/ output 

type, and training method are decided on the basis of the 

selected network paradigm (Bailey and Thompson, 1990a) . 

There are about two-dozen neural network paradigms. To 

select a proper paradigm, the type of application 

represented by the project must be determined. The current 

project is to predict the sludge blanket depth based on a 

number of input variables. It is a data modeling or 

functional mapping application. For a data modeling 

application/ there are basically two kinds of suitable 

neural networks. They are counter propagation networks and 

back propagation neural networks. Since the back 

propagation network is better than counter propagation 

network in data modeling/ the back propagation network was 

selected for the network paradigm. Within the back 

propagation network family, multiple layer back propagation 
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networks are very popular and have more processing power. 

Thus, a multiple layer back propagation network was 

selected. 
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The output of a back propagation neural network can be 

pattern, real number, and classification output. The output 

requirements of the application determine the neural network 

output type. The output of this application is sludge 

blanket depth, which is a real number. Thus, the output of 

network must be a real number. 

The training method is limited by the selected neural 

network paradigm. Back propagation neural networks require 

supervised training. Supervised training requires pairs of 

data consisting of an input vector and the correct result. 

The training data for this study is the database of the 

waste water treatment plant of the Gerber Baby Food factory. 

In the training data, the desired output is the sludge 

blanket depth. It is fed into the training slab to "teach" 

the network. The input vector consists of eleven 

parameters. The input vector elements are waste water 

loading rate, mixed liquid suspended solids in the aeration 

basin, food-microorganism ratio, ammonia nitrogen, nitrate 

nitrogen, dissolved oxygen, D.O. uptake rate, temperature in 

the aeration basin, recycle rate, recycle suspended solids, 

and 30 minute settling in the clarifier. 

The HNC Neurosoft™ Multilayer Back propagation Network 

(MBPN) software package was used in this study. The HNC 

version of the MBPN is derived from the work of Professor 



David Rumelhart and the Parallel Distributed Processing 

Group (HNC Incorporated, 1991c) . 

HNC-MBPN supports up to three hidden layers. It also 
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offers a choice of five parameterized activation functions 

and can implement four versions of the learning rule: normal 

update, batching, smoothing, or batching and smoothing. The 

network may be configured to calculate performance 

statistics, such as Mean Squared Error. The error value for 

each neuron is stored as a local memory variable for easy 

retrieval during network debugging. All network states, 

weights, and local memory values use 32-bit, floating-point 

representations, making the input and training data very 

easy to scale. 

The Design Phase Design 

The design phase specifies initial values and conditions 

for the selected neural paradigm at the node, network, and 

training levels. The design phase comprises several steps 

to determine the type of nodes or processing elements, size 

and connectivity of the network layers, and learning 

algorithm and parameters (Bailey and Thompson, 1990a) 

~ Neuron Level Design 

The neuron level design is to determine what neurons or 

processing units to use. First the type of inputs to 

neurons should be determined. The inputs to each neuron in 
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the network was selected as real numbers. The inputs to the 

first layer neurons need to be scaled so that they all fall 

within the active range of the transfer function of the 

neurons. The active range of a transfer is shown in the 

figure 7. Next a procedure for combining inputs needs to be 

selected. A commonly used combination of inputs is a 

weighted sum of the inputs, which is supported by the HNC­

MBPN software. 

0~ 

-0 

X 

Active Range 
< .. > 

Figure 7. The Active Range of a Transfer Function 

The final step in the neuron level design is to choose 

a transfer function based the type of inputs and outputs and 

learning algorithm to be used. Back propagation networks 

require that the transfer function be differentiable at all 

points. Also the neurons manipulate continuous values such 
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as linear or sigmoidal transfer functions. The sigmoidal 

function was chosen as the transfer function. HNC-MBPN 

provides four kinds of sigmoid transfer functions. They are 

logistic, hyperbolic tangent, threshold linear function, and 

inverse tangent. Within these four transfer functions, the 

logistic is the most widely used. Therefore initially the 

logistic transfer function was chosen. The parameters of 

the transfer function need to be determined by experiments. 

~ Network Level Design 

The network level design is to determine how to put 

individual neurons together to form a network. Decisions at 

the network level design include the number of slabs, the 

size of each slab, and how to connect each slab (Bailey and 

Thompson, 1990a) . 

HNC-MBPN requires one input slab, one output slab, and a 

variable number of hidden slabs. The maximum number of 

hidden slabs cannot be over three. Hidden slabs are used to 

abstract and pull features from inputs. Increasing the 

number of hidden slabs augments the processing power of the 

network but significantly complicates training, increases 

the training time, and requires more training examples. A 

rule of thumb is to start with one hidden layer and monitor 

the training results. If it is hard to train the network or 

the MSE increases, add more hidden slabs. 



37 

After selecting the number of slabs for the network, the 

second step is to determine the number of neurons in each 

slab. Choosing the proper number of neurons in each slab of 

the network is critical. Different configurations have a 

great deal of impact on later network performance. 

The input slab is used to present all the input 

variables to the network. The number of nodes in the input 

slab should be enough to present input patterns to the 

network. Since all the input variables are real numbers, a 

single node in the input slab can be configured to represent 

one input variable. Thus the number of nodes in the input 

slab is equal to the number of input variables. The 

sequence of input variables presented to the input slab can 

be any order. 

For the output slab, the number of neurons required is 

determined by neural network paradigm and the type of 

expected output from the network. The output variable is to 

predict the sludge blanket depth which is a continuous 

number. A single neuron can hold a real number in this 

network. For the back propagation network, the number of 

output slab neurons is equal to the training slab neurons. 

Therefore the output slab has one neuron which outputs a 

real number representing the predicted sludge blanket depth. 

For the hidden slabs, the number of nodes in each slab 

is determined through experimentation. Finding the right 

number of hidden neurons is the most challenging aspect of 

configuring a back-propagation network. With too few 
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neurons in the hidden slabs, the network can not perform the 

complex mapping. On the other hand, with too many neurons, 

the network can easily find a set of weights to memorizes 

all the input patterns. This is called table lookup. In 

this case, the network just memorizes all the input patterns 

which have been presented to the network. The network 

actually does not extract the salient features of input 

patterns. When new input patterns are presented to the 

network, the network will give an incorrect response. 

Therefore, the network loses the capability of 

generalization. 

As a general rule, to eliminate table lookup, the number 

of neurons in each hidden slab is decreased. Decreasing the 

neurons ln the hidden slab also improves generalization 

capabilities and performance to new input patterns. To 

improve the network processing power and performance 

accuracy, increase the number of neurons on each hidden 

slab. The number of neurons in the first hidden slab should 

approximately equal the number of nodes in the input slab. 

If there is more than one hidden slab, reduce the number of 

neurons in the second and third slabs sequentially. The 

number of neurons in the highest hidden slab can not be 

equal to the number of output slab neurons. Otherwise the 

output slab is redundant. Based on these considerations and 

experimentation, eleven neurons were chosen for the first 

hidden slab which is equal to the number of nodes in the 

input slab. Eight neurons were used in the second hidden 
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slab. Six neurons were used in the third hidden slab which 

is more than the number of output slab neurons. 

The connectivity of the network describes how neurons 

are linked together. The HNC implementation of the 

Multilayer Back Propagation Network is a feed-forward neural 

network. Usually feed-forward networks connect nodes in one 

slab to those in the succeeding slab with no feed-back and 

no intralayer connections. This is called a fully 

connecting adjacent slab network. Generally, this kind of 

connecting configuration is best because it provides the 

most flexibility when the training algorithm is searching 

for suitable weights. The training algorithm can nullify 

unnecessary links by setting their weights to zero. Also 

the HNC software provides special connections between the 

input vector and the output vector. If these connections 

are enabled, each output neuron receives an input from each 

node in the input slab. 

In this work the fully connected network without the 

input-output connection was used. For the input slab, every 

node is connected to each neuron in the first hidden slab. 

Every neuron in the hidden slab is connected to each neuron 

in the succeeding hidden slab. The neurons in the third 

hidden slab connect to the neuron in the output slab. There 

are no feed-back and intralayer connections in the designed 

network. Figure 8 illustrates the design of the network. 
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Figure 8. The Design of the Network 



CHAPTER V 

IMPLEMENTING THE DESIGNED NEURAL NETWORK 

The implementation phase builds on the decisions 

regarding the network characteristics made in the design 

phase. The goal of implementation is to create a 

functioning neural network that provides the most accurate, 

consistent, and robust model possible. Iterative building, 

training, and testing is used to refine the neural network 

(Bailey and Thompson, 1990b) . The implementing process 

includes gathering the training and testing data sets, 

preparing the data sets for training and testing the 

network, designing the application using the ExploreNet 

software, building the individual module for the 

application, training the network, and testing the training 

process. 

Gathering the Training and Testing Data Sets 

To implement a neural network, two sets of data are 

needed. The first one is the training data set. The second 

is the testing data set. The training data is used to train 

the network. After the network is trained, its performance 

is assessed by the testing data. Thus the first step to 
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implement a neural network is gathering the training and 

testing data sets. 
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The quality of training and testing data sets plays an 

important role in implementing a neural network. To train a 

network properly, the training data should be representitive 

of the problem. It should include routine as well as 

unusual observations and all of the boundary condition cases 

likely to be encountered (Bailey and Thompson, 1990b) . 

Usually collecting as much training data as possible can 

solve the problem. However, if the training data's quality 

is poor, the network can not learn the salient features of a 

function. Thus, rather than just focusing on data volume, 

one must concentrate on the quality and representativeness 

of the data set. To improve the quality of a data set, 

statistical methods are used to select the data set from all 

possible records. The testing data set is used to test the 

performance of a network. The testing data is collected at 

the same time as the training data collection. The data 

type to collect is determined by the problem. The current 

study requires continuous data. 

The data sets used to implement the network were 

collected from a database of Stover and Associates. It is a 

Dbase III Plus database (Dbase III Plus, 1986). Three years 

of data were available. Every day there is one record. 

Each record consists of ninety-eight fields. Only twelve 

fields in this database were used in the network 

implementation. These fields are the input and output 
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fields of the network to be implemented. The sludge blanket 

field is used as an output field for the network. The input 

fields for the network are loading rate, mixed liquor 

suspended solids in the aeration basin, oxygen uptake rate 

in the aeration basin, food-microorganism (F/M) ration, pH 

value in aeration basin, dissolved oxygen in aeration, 

recycle suspended solid concentration, recycle flow rate, 

ammonia nitrogen in clarifier, nitrate nitrogen in 

clarifier, and thirty minutes settling value in clarifier. 

The output field will connect to the training slab during 

training and serve as a teacher. During testing the output 

values do not participate in the calculations of the network 

and are used to assess the performance of the network. The 

input fields are input to the input slab during the training 

and testing of the network. The testing data set was 

collected from the database at the same time as the training 

set was collected since both data sets consist of the same 

fields. 

Usually there are no records for the weekend. During 

the weekday sometimes there are missing data for some 

fields. When extracting records from the database, records 

with zero values were not included in the input and output 

fields from the database. The data was exported from the 

database into text file format. The operation to export 

data from the database is done by a Dbase III Plus program 

(Appendix B) . 
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After the data is exported from the database, it can not 

feed into the network directly. The data set presented to 

the network must be meaningful to the neural network. If 

the training data has too many errors, it will complicate 

the network's learning process. Therefore, some data 

preparation is necessary. 

To evaluate the quality of records exported from the 

database, multiple regression was applied. It was found 

that the R square value for a linear regression relating 

sludge blanket depth to the input variables based on all of 

the data was less than 0.1. There is almost no correlation 

between sludge blanket depth and the selected input 

variables for the whole data set. However, applying 

multiple regression to small subsets of records, the R 

square values vary from 0.1 to 0.9. This means that for 

some time periods the input and output are correlated and 

for some they are not. The procedure that was used to 

screen out data that apparently did not correlate well with 

the remaining data was based on multiple regression. An R 

square of 0.7 was selected as a dividing point. Multiple 

regression was applied to sequences of records. If the R 

square was less than 0.7, this sequence of records was 

removed from the data set. After this process, the R square 

of the whole remaining data set was greater than 0.5. The 

selected data set had 392 records. 



The data set had too many incomplete records to enable 

observations lagged by one day or more to be used as input 

variable. 
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The selected data set was split into a training data set 

and a testing data set. Sixty records were picked as the 

testing data set. This ensured that the characteristics of 

testing data set are the same as the training data set. The 

sludge blanket depth in the testing data set was not fed 

into network during the training session. 

The sludge blanket depth in the testing set was used to 

assess the performance of the network by comparing it with 

network output during the testing session. If the network 

successfully predicts the value of the sludge blanket depth 

in the testing data set, the network is trained 

successfully. The training data set is listed in table 5 in 

Appendix C. The testing data set is 1n table 6 in Appendix 

c. 

Data Set Preparation 

After the training and testing set was collected and bad 

data were removed, the data sets were prepared for training 

and testing the network. The purpose of preparing the data 

sets for the network was to convert the data into a proper 

form and make the training process easier. The data were 

standardized using the Z_score transformation by 

substracting the mean and dividing by the standard 
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deviation. The transformed sludge blanket depth was scaled 

to the range -1 to +1. 

The reason for using this transformation is as follows. 

The neural network is a computing technology. It has some 

special characteristics. 

to absolute magnitudes. 

First, the neural network responds 

It does not place any physical 

importance on input variables. If a variable has a large 

magnitude, it will have much influence on the network's 

output. In other words, the bigger the magnitude of a 

variable, the larger the variable's influence on the network 

even though the larger variable may in fact be less 

significant. Second neural networks not only pay attention 

to the magnitude of input variables, but to their 

variability as well. For instance, if there are two input 

variables with the same magnitudes but one has values 

fluctuating between the top and bottom of the data range and 

the other having values staying at one end of the data 

range, the two variables will have different influence on 

the network (Crooks, 1992). 

For this problem it can be sees that the input variables 

have different magnitudes. This mainly is because the 

different input variables have different measuring units. 

It is hard to say that the bigger the variable, the more 

significant it is. For example, one can not say that the 

F/M ratio is less significant than the pH value in 

determining the sludge blanket depth. The input variables 

also have a lot of fluctuation. For example, the pH value 
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ranges from 7.0 to 8.0 most of time and seldom is below 6.0. 

The dissolved oxygen uptake rate is usually below 5.0. It 

is hard to say that pH is more significant than dissolved 

oxygen uptake rate. Since the neural network pays attention 

to the magnitudes and variability of input variables, the 

data must be scaled to make them comparable in magnitude and 

variability. One solution is to scale all input variables 

and sludge blanket depth using the Z_score transformation. 

The Z score is defined as a deviation from the mean in 

terms of a number of standard deviations. The Z score is 

computed by subtracting the mean and dividing the difference 

by the standard deviation. 

z score= _O_b_s_e_r_v_ed_-_M_e_an_ 
- Standard deviation 

( 9) 

Since there are 11 input variables and one output 

variable, 12 means and standard deviations are calculated. 

The mean and standard deviation calculations are based on 

data in table 5 and table 6 in Appendix C. After the 

Z score transformation, the transformed data mainly varied 

from -3 to +3. This data range is within the activated 

range of the transfer function of neurons assuming that the 

sigmoid transfer function is used and the upper and lower 

bound is from -1 to +1. 

The transformed sludge blanket depth ranged from -3 to 

+3. Since the bias input of the OULput neuron is one, the 
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output of the network was scaled to range between -1 and +1. 

This scaling was done by dividing by 3. 

All the above Z score transformations and scaling on the 

input and output variables are completed within the 

ExploreNet software. The means and standard deviations for 

all the variables are calculated outside the software to 

save network training time. 

Design of the Network 

After preparation of the training data set, the next 

step is to design the network using the ExploreNet software. 

ExploreNet is a workbench for building, training, testing, 

and applying neural networks. It provides retrieving, 

formating, transforming, displaying, and saving facilities. 

ExploreNet applications usually are built into modules. 

Each module in an application represents a software device 

to perform some specific task (HNC, Inc., 1991a). 

Nine module types are available. The modules used in 

this application were the file, form, data, network, and 

graph modules. File modules are used to connect the 

ExploreNet application to a disk data file. The form module 

is used to set up interactive customized screen forms. It 

was used to display the MSE, desired output, and neural 

network output during training and testing. Data modules 

provide the capability to manipulate data using mathematical 

and logical computations. They were used to transform and 
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scale the input data before the data are fed into the 

network. The network module was used to define, create, and 

run the network within an ExploreNet application. It was 

used to implement the multiple layer back propagation 

paradigm. Graph modules were used to display two 

dimensional graphs on the screen showing both desired and 

network outputs during the training and testing of the 

network. 

To identify data to be manipulated by a module, items 

must be created in ExploreNet. Items are used to store 

values. A module may have three kinds of items. Input 

items are items whose value may be supplied by a connection 

from one module to another module. The values of output 

items from one module may be connected to supply values to 

input items for another module. Both input and output items 

are created, described, and named by the user. The control 

items are build into the modules and can not be created by 

the user. The user controls the behavior of a module by 

setting the values of control items. 

Modules are linked by connections. The connections 

between modules are a mapping of all items from one module 

to items of another module. The correspondence between 

source output items and destination input items constitute 

the mapping. Connections are used to transfer the data 

between the source module and destination module and to 

determine which of the connected modules must be executed 



first. The connections among modules are created by the 

user. 

The design of this application is shown in Figure 9. 
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The name of a module is labeled in this diagram. The input 

module is a file module. Its purpose is to read from an 

input file. A set of input data corresponds to one record 

in the training data file. The input module passes the set 

of input data to the Z score module. The z score module is 

implemented by the data module. The Z_score module performs 

the Z score transformation. The z score transformed record 

is passed to the scale module. The scale module scales the 

transformed sludge blanket depth. The scale module is a 

data module. The transformed records from the scale module 

are fed into the neural network. Input variables are mapped 

into the input slab of the network and sludge blanket depth 

is mapped into the training slab. At the same time, the 

transformed sludge blanket depth from the scale module is 

send to the desired output module that is a graph module 

where it lS plotted on screen for monitoring the training 

process. The network module implements the multiple layer 

back propagation. The behavior and mode of operation of 

network modules are controlled by setting predefined control 

items. The MSE, desired output, and network output are 

directed to the MSE module. The MSE module is a form 

module. It displays the actual value of MSE, desired 

output, and network output in a form for monitoring the 

training process. The neural network prediction of sludge 



51 

blanket depth is output to a scale back module. The scale 

back module converts the network's output into proper units. 

Finally the network's output is plotted by an output module 

that is a graph module. 

Input Z score Scale 

Desired 

Output 
MSE 

Figure 9. Design of the Application 

Network 
Output 

A module is created by choosing the type of modules 

needed and specifying a variety of options and parameter 

values to tailor the module to a specific need. The process 

of specifying how a module is to behave is called building 

the module. The ExploreNet has build windows for each 

module. Each module has a different build window. The 

build window is used to define how the module will work. 

ExploreNet also provides the ability to create a 

customized item type. Before building an individual module, 
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three customized items were created. The first one was 

called input[l2] item. It is a vector with twelve elements. 

Each element is defined as a real number. Elements indexed 

from zero to ten are used to represent independent 

variables. The twelfth element is used to stand for the 

dependent variable of sludge blanket depth. The second item 

was called output[l2] item. Output[l2] has a similar 

definition to input[l2]. The third item was called 

predict[l]. It is defined as vector with one real number 

element. Input[l2] is used as an input item to modules and 

output[l2] as an output item. Predict[l] is used to store 

an output value. 

Building the Input Module 

The input module is built from a file module. The file 

module is used to access records in the training data file 

or cases to be solved after training. By default the file 

module is set to work with ASCII data files. The files must 

be delimited data files with commas or spaces between every 

field and a carriage return or line feed character (or both) 

after every data record. The input data file used was an 

ASCII file delimited by blanks between fields and a line 

feed between records. 

The first step in building the input module is to 

specify the module type as an input module inside the type 

menu option of its build window. The define menu is used to 
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define the input file name and file search path. Finally 

under the define menu, the input item is created by naming 

it and specifying the item type. One item was created in 

this module called input[] which has an item type of 

input [12] . Therefore, the input item is a vector with 

twelve elements. Elements indexed from 0 to 10 are for 

independent variable. The twelfth element of input item is 

the value of sludge blanket depth. 

Building the Z score Module 

The Z score module was built from the data module. The 

Z score module was used to compute the Z score 

transformation of input data. The input vector was passed 

from the input module to the Z score module. Every element 

of the input vector is transformed into its Z score value. 

The mean and standard deviation of each variable was 

calculated using spreadsheet software. 

The Z score module is built within a data module using 

input items, output items, and transformations. The Z score 

module has one input item and one output item. They are 

input[12] and tr_input[12] Twelve transformations are 

created from 

tr _ input[ i ] 
Input[ i ] - mean; 

std; 
( 10) 

where meani and stdi are the mean and standard deviation 

shown in table 1. 
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TABLE 1 

INPUT MEANS AND STANDARD DEVIATIONS 

Index Variable Name 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Loading Rate to Aeration, lbs/day 

MLVSS in Aeration, mg/1 

D.O. Uptake Rate, mg/1 

F/M ratio in Aeration Basin 

pH in Aeration Basin, s.u. 

Dissolved Oxygen, mg/1 

Recycle Suspend Solids/ mg/1 

Recycle Rate, MGD 

NH3-N, mg/1 

N03-N 1 mg/l 

30 min. Settling, ml/30 minute 

Sludge Blanket Depth, ft 

Building the Scale module 

8894 

3773 

21.85 

7609 

873.9 

5.745 

0.211 0.158 

7.334 0.301 

3.696 1.636 

6482 1474 

0.507 0.164 

1.104 3.005 

35.25 15.23 

543 240.6 

8.754 1.614 

The scale module was also built from the data module. 

It is used to scale the Z scale transformed sludge blanket 

depths. The scale module has two items and two 

transformations. These two items are input[12] data type. 



They are similar to the two items in the Z scale module. 

The transformations of the scale module are 

tr input[ 0 .. 10] = Input[ 0 .. 10 ] 

(11, 12) 

tr input[ 11 ] = Input[ 11 ] 3 

Building ~ Network module 

The network module is the reason for this project. 

Building the network module is to define, create, and 
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implement the ideas in the network design phase. 

most important part of this project. 

It is the 

The network module in ExploreNet provides predefined 

neural networks and interactive control of network 

parameters and operations. In this project MBPN paradigm is 

the neural network to be implemented. ExploreNet associates 

each neural network paradigm with a different network 

module. All items are predetermined by the neural network 

paradigm (i.e., type). These items consist of the network's 

constants, states, weights, and local memory. Building a 

MBPN network module is to define these constants, states, 

and local memory. During the implementing cycle of this 

application, iterative building, training, and testing is 

used to refine the neural network parameters. Many 

experiments were done to finalize all these parameters. The 

experimental results of these parameters are shown in 

Figure 10. and 11. 



Input Slab Size 

Output Slab Size 

Hidden Slab Sizes 

Connect Input to Outputs 

Initial Weight Maximum 

Activation Function Type 

Lower Bound 

Number of Entries 
(Zero for no table) 

MBPN Load Time 

Network Size Parameters 

II Number of Hidden Slab 3 

Hidden 0 Hidden I Hidden2 

II 8 6 

Miscellaneous Parameters 

NO Random Seed L o.o 

0.1 Learning Method 

Activation Function Parameters 

L __ Logistic J 
Upper Bound Steepness 

Activaton Function Lookup Table Parameters 

Low Limit Upper Limit 

Figure 10. MBPN Load Time Constants 



57 

MBPN Run Time 

Learning Control Parameters 

Learning Enable [~~~~] Learning Method Normali 

Error Tolerance 
-----1 

i -~·~ ____ j Batch Size 0 

Learning Rate Parameters 

Hidden Slab 0 Alpha i Hidden Slab 0 Beta 
- -- -- -, 

I 0.1 ! 0.0 
--·- _j 

Hidden Slab 1 Alpha 
--~ 

Hidden Slab I Beta 
! . 

! 0.1 I 0.0 
'-- ----~ -- __ _j 

... 
---··· ------1 : 

Hidden Slab 2 Alpha 0.1 i Hidden Slab 2 Beta 0.0 
__ ) 1_ 

Output Slab Alpha 0.1 Output Slab Beta 0.0 

Miscellaneous Parameters 

Statistics Enable on Table Lookup off 

Linear Activatoin Function on Output Slab no 

Figure 11. MBPN Run Time Constants 
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The network parameters can be classified into load time 

parameters and run time parameters. In ExploreNet, they are 

called load time and run time constants. The load time 

constants contain information that is used in creating the 

network, such as slab sizes, connection patterns, and an 

initial random seed for initializing weights. These 

parameters may not be changed after the network has been 

loaded or created. The run time constants contain 

parameters, such as learning rates, which may be changed 

after the network has been created to alter the way in which 

it operates (HNC, Inc., 199la). 

Building the MSE Module 

MSE module is used to monitor the training session. 

The MSE module displays the desired output, predicted 

output, and MSE variable of the network for every record 

presented to the network. During the training session, the 

MSE module displays the following window dynamically. 

MSE 

Desired 

Predict 

MSE 



59 

The MSE module is built from the form module provided 

by ExploreNet. During the design of the MSE module, three 

modules are created. They are called desired item, predict 

item, and MSE item. All these items are real numbers. 

Desired item gets the value from the training slab that is 

the target output. Predict item is mapped from the variable 

in the output slab and is the network output. MSE item is 

mapped from the statistics slab and shows the mean square 

error of the network. 

Building ~ Scale back Module 

The scale back module is used to scale the network 

prediction back to their original units. The scale back 

module is built from the data module in the ExploreNet 

software. This module processes only one input item, one 

output item, and one transformation. The input item to the 

scale back module is mapped from the network prediction and 

is called mbpnout. The output item has a data type of real 

that is called Out. The output item is used to hold the 

transformed value of the scale back module, which is a real 

data type. The transformation that is applied is 

Out = mbpnout x 3 (13) 
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Building ~ Screen Display Modules 

The screen display modules are used to display 

graphically the desired output and network's output on 

customized screen windows. There are two separated display 

modules in the application. They are called the desired 

output module and network output module. They are all built 

from the graph module in ExploreNet. Each module has one 

item that will be plotted on the customized windows. The 

item in the desired output module is mapped from the 

training slab in the network. The item in the network 

output module is mapped from the output slab in the network. 

These two items have the data type of time, which means that 

they are going to plot against the time sequence. 

Building ~ Connections gnd Mappings Between Modules 

After building the individual modules, the connections 

and the mappings in each connection are created. The 

connections between modules control the data flow within the 

application. The mappings inside each connection determine 

how data flow from one module to another. The connections 

between modules are shown in the Figure 9. The mappings for 

each connection are shown in the following equations. In 

these equations, the left side of an equation is the item 

name of the destination module; and the right side is the 

item name of source module. 
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Z_score.input[0:11] = Input.input[0:11] (14) 

Scale.input[0:11] = Z_score.tr_input[0:11] (15) 

Network.input_slab.state[0:10] = Scale.tr_input[0:10] (16) 

Network.training_slab.state[O] Scale.tr_input[11] (17) 

Desired_output.sdp.y = Scale.tr_input[11] (18) 

MSE.desired = Network.training_slab.state[O] (19) 

MSE.mse = Network.statistics slab.state[O] (20) 

MSE.predict = Network.output_slab.state[O] (21) 

Scale_back.mbpnout = Network.output_slab.state[O] (22) 

Net_output.sdp.y = Scale back.out (23) 

In the above equations, equation (14) is the mapping 

from the input module to the Z score module. After the 

input vectors are transformed into Z_score values, they are 

directed to the scale module through mapping equation (15) . 

Then data are mapped into the network module through 

equations (16) and (17). Equation (16) does the mapping of 

the elements indexed from one to ten of tr_input[0:10] into 

the eleven neurons of the input slab of the network. 

Equation (17) maps the sludge blanket depth into the neuron 

of the training slab in the network module. Equation (20) 

transfers the network's output in the output slab into the 

scale back module. After the scale back process, the scale 

back module passes the scaled result to the network output 

module to plot the result on the screen display window. 

Equation (18) does the mapping between the scale module and 

desired output module for displaying the output graphically. 

Equations (19), (20), and (21) complete the mapping between 
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the network module and MSE module for monitoring the actual 

value of desired output, predicted output, and MSE during 

the training process. 

Training and Testing the Network 

After the networks are constructed for all the modules, 

connections, and mappings, the training process takes place. 

During the training session, only the training data set is 

applied to the network. Usually the training session takes 

several thousand cycles for this application. When training 

the network, the training process is monitored through the 

display of the MSE module and the graphic display of the 

desired output and network output. Sometimes at the 

beginning of the training, the network did not show any 

learning. If this is the case, the procedure is stopped and 

the network parameters are modified. The training process 

is restarted. When the mean square error of the training 

process reaches a minimum, the training process is 

completed. If the MSE is small, the testing process can be 

applied. If the MSE is large, the training process has 

failed and the network must be rebuilt by redefining 

transformations and using other possible methods that could 

train the network. 

After the training process, the testing process takes 

place. The testing process is the final step in determining 

if the training process was successful. If the network has 
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learned the functional relationship contained in the 

training data set, the testing process serves as a method to 

access the performance of the network. 

During the testing process, only the testing data set 

is plugged into the network. During testing the process is 

monitored through the graphic display of desired output and 

network output. If the plots of desired output and network 

output basically matched each other, it indicates the 

network has been trained. Otherwise the network is not 

trained with the capability of generalization to data 

outside the training data. This indicates the network did 

not learn the functional relationship inside the training 

data. Instead it remembered all the training cases 

presented in the training set. If this was the case, the 

network had to be rebuilt and another training process 

undertaken. 

The design of the network parameters, data transform 

equations, and the mapping equations presented in this 

chapter are the final results after the training and testing 

process. After the testing process showed successful 

training, the network's output and the desired output were 

placed in a disk file for analysis. 



CHAPTER VI 

RESULTS AND DISCUSSION 

The training processes took about 300,000 training 

cycles using 332 training records. The final training mean 

square error was 0.15 feet. 

Figure 12 shows the trend plot of the actual sludge 

blanket depth used in the training process. The actual 

sludge blanket depth was used as a target output during the 

training processes. The predictions of the sludge blanket 

depth for the training data are also shown in the Figure 12. 

The depth units of the trend plot are feet which are the 

actual measurement units of the sludge blanket depth. 

Figure 13 is a plot of the network prediction against 

the target output for the training processes. Figure 14 is 

the plot of the errors of the network output for the 

training processes. In Figure 14, the mean of the error is 

0.028 feet, the standard deviation is 0.39 feet, and the MSE 

is 0.15 feet. 

Figures 12 and 13 show that the trend of the prediction 

is in agreement with the target trend. This indicates that 

the network has learned the functional relationship between 

the input variables and the target output for the training 

data. The network output is smaller than the target output. 
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The fact that the predictions are not in exact agreement 

with the observed data indicates that the network is not 

over trained. An over trained network memorizes all of the 

input and output patterns in the training data set. The 

network prediction and the target output would be exactly 

the same if the model is over fitted to the training 

records. 

To evaluate the training process, linear regression was 

applied to the predicted and the observed sludge blanket 

depths. The regression results for predicted versus 

observed sludge blanket depth of the training process are 

shown in Table 2. 

TABLE 2 

REGRESSION OUTPUT FOR TRAINING DATA 

Constant (a) 

Std Err of Coefficient a 

Std Err of Y Est 

R Squared 

No. of Observations 

Degree of Freedom 

X Coefficient (~) 

Std Err of Coeficient ~ 

0.3019 

0.0959 

0.269 ft 

0.9648 

328 

326 

0.9656 

0.0109 



In Figure 13 there four points plotted at 3.9 feet on 

the predicated scale. This plotting results from 

constraints in the configuration of the neural network. 

These four points were omitted in the above regression 

analysis. 
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The regression output shows that the overall correlation 

coefficient for the network prediction and the observed 

sludge blanket depth is 0.98. The slope of the regression 

line is 0.97 feet and the intercept is 0.30 feet. To 

evaluate the regression slope and the intercept, a test of 

hypotheses concerning the intercept a and the slope ~ are 

shown as follows (Haan, 1977} 

To test H0 : a = 0 versus Ha a ::~; 0, compute 

t = (a - 0.0)/Sa = (0.3019 - 0.0)/0.0959 = 3.148 

t.975,330 1. 96 

Since ltl > t_ 975 ,330 , reject H0 a = 0. 

To test H0 : ~ = 1 versus Ha ~ ::t; 1, compute 

t = (b- 0.0)/Sb (0.9656 - 1}/0.0109 = -3.156 

t_975,330 1. 96 

Since ltl > t_975,330' reject H0 • n. - 1 . p - . 

Even though statistically the intercept is significantly 

different from zero and the slope is significantly different 

from one, the actual differences are so small as to have 

little physical significance. 
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Data normalization is a part of the data scaling process 

for the sludge blanket depth variable. The data 

transformation equations used for sludge blanket depth 

ensure that the sludge blanket depth, which actually varied 

from 3.9 to 13.6, will be transformed to the interval -1 to 

+1. The network will generate ±1 for a sludge blanket depth 

out of this range. In Figure 12 there are four data points 

below the low boundary set up by the transformation 

equation. The trained networks gives 3.9 feet as the 

network prediction when the target output is below 3.9. 

Figure 12 shows that the lowest value the network can 

predict is 3.9 feet and introduce some bias in the mean. 

The back propagation network has a long training time. 

The smaller the MSE, the longer the time needed to reduce 

the MSE. Because of the data normalization procedure with 

the training data set, continued training did not improve 

the mean square error. However, from the above plots, it 

can be seen that the network already learned the function 

between input and target output for the training data. The 

errors associated with the normalized output are quite 

small. Therefore, the training processe was stopped at this 

point. 

After the training process was completed, the testing 

data set was used to test the trained network. The trend 

plot of the ranked target output is plotted in Figure 15. 

This plot is used to assess the performance of the trained 

network. Figure 16 compares the trend of predictions 
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against the observed sludge blanket depths. Figure 17 is a 

plot of the regression analysis of the predictions against 

target output. Table 3 gives the results of the regression 

analysis. Figure 18 shows the error distribution of the 

network's prediction for the test data. 
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Figure 16. Network Prediction and the Ranked Measured 
Output 
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Figure 17. Regression Analysis of the Network Prediction 
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TABLE 3 

REGRESSION OUTPUT FOR TESTING DATA 

Constant (a) 

Std Err of Y Est 

R Squared 

No of Observations 

Degrees of Freedom 

X coefficient {p) 

Std Err of Coefficient p 

1.9565 

0.73 ft 

0.70 

60 

58 

0.778 

0.067 
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All of the plots associated with the testing processes 

are based on the sorted sludge blanket depth. Figure 16 

compares the trend plot of network output with the trend of 

the corresponding sludge blanket depth. From this plot it 

can be seen that the trends of network prediction agree with 

the observed sludge blanket depth. This indicates that the 

network has been trained. The functional relationship 

embedded in the training data set has been learned to a 

certain extent by the network. 

The network prediction process shows some errors. This 

can be seen from the trend plot of the testing process. 

Figure 18 gives the distribution of errors of the 

predictions for the testing data set. The mean of the 



prediction errors is -0.1 feet, the standard deviation is 

0.79 feet, and the MSE 1s 0.62 feet. 
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From the Figure 14 and Figure 18, it can be seen that 

the means and the sample standard deviations are quite close 

for the training and testing data. For the testing data the 

mean of the errors is smaller than and the standard 

deviation is the same as that for the training data set. 

This again indicates that the trained network has be 

trained. The trained network is not over trained or the 

model is not over fitted. If the model is over fitted, the 

testing results should be worse than the training results. 

The errors in the testing results are due to the training 

because the error distributions are same for both training 

and testing. 

The errors in the training process can be caused from 

two sources. First, there are a lot of errors in the 

training data set. Every variable in the training data set 

has errors. The sludge blanket depth itself has a lot of 

measurement errors. This can be seen from Figures 12 and 

15. These plots of observed sludge blanket depth contain a 

lot of noise. The measured sludge blanket depth only shows 

a rough estimate of the settled sludge position in the 

clarifier. The measurement of the sludge blanket depth can 

be affected by many factors such as the location of the 

measurement. The sludge blanket depth in the training data 

is a teacher to the network. If the teacher contains a lot 



of errors, the trained network is trained to produce these 

errors. 
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Second, because all of the values of sludge blanket 

depth are not completely transformed between -1 to +1, it is 

difficult to reduce the networks' training MSE by increasing 

training time. Therefore, the trained network still 

contains some errors. The MSE of the trained network is 

0.62 feet. 

After training and testing the network, another new set 

of testing data became available (Table 7, Appendix C). 

This set of new testing data contained 125 records. These 

new data were independent from previous training and testing 

data set. There was no data screening on this new set data. 

Figures 19 and 20 show the testing results with this new 

set data. Figure 19 shows the trend plots for both measured 

and predicted sludge blanket depths. Figure 19 indicates 

that the trend of prediction lS ln agreement with the 

measured trend. When the measured sludge blanket depth had 

a big jump, the predicted sludge blanket depth also gave a 

similar jump. Figure 20 is a plot of the network prediction 

against the measured sludge blanket depth for the new 

testing data. 

1 . 

The regression line for this plot is close to 

In these plots, there are several outlying points. 

There was no data screening associated with this set of new 

data. Table 4 shows the regression results. 
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Figure 19. Network Prediction and New Measured Sludge 

Blanket Depth 
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Figure 20_ Testing Results of the New Testing Data Set 
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TABLE 4 

REGRESSION ANALYSIS OF NEW TESTING DATA SET 

Number-of Std of 

Points Deleted R2 a Error MSE 

0 points 0.30 3.0* 0.676** 5.18 1. 53 

4 points 0.67 2.19* 0.77** 1. 28 0.86 

8 points 0.72 1.79* 0.8 0.84 0.67 

* significantly differ from zero at 95% level 

** significantly differ from one at 95% level 

In Table 4, the first colume shows the number of points 

removed from the testing results when the regression 

analysis was done. Row 1 shows the regression results with 

no points taken out from the testing results. Row 2 shows 

regression results when 4 points were taken out from the 125 

data points. All these four points had a prediction error 

greater than 3 feet. Row 3 shows the results with 8 points, 

whose absolute prediction error was greater than 2 feet, 

were removed from the analysis. 

Even though the prediction error is statistically large, 

this model can still be used as an analytical tool. For 

example, during the daily operation of a waste water 

treatment plant, what the operators needs to know is what 
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range the sludge blanket is in. If the sludge blanket is 

too high or too low, the effluent suspended solids will 

increase. This model can provide an estimate of sludge 

blanket depth. 

The model also shows the possibility of using neural 

computing techniques in modeling waste water treatment 

parameters. If the parameters used as the target output in 

training have fewer errors, the network should model this 

parameter very well. For example, the 30-minute settling in 

the secondary clarifier usually has fewer measurement 

errors. If the neural network is applied to such a 

parameter, a better model should be obtained. 

In conclusion, the results of this study indicate the 

potential to use the neural network technique to model the 

sludge blanket depth of the secondary clarifier in the waste 

water treatment. This can be attributed to the network's 

abilities of adaptive learning, self-organization, and 

generalization. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Modeling the sludge blanket depth in the secondary 

clarifier of an industrial waste water treatment plant was 

studied using a neural network system. A five layer back 

propagation neural network system was used. The network had 

three hidden layers, one input layer, and one output layer. 

The network was trained using the supervised training 

algorithm. During the training process, the network was 

found to be adaptable to the environment. The network's 

output was trying to mimic the target output. After the 

network was trained, it was tested using a set of testing 

data which was not used in the training process. 

The modeling was implemented using the ExploreNet 

software. MBPN (multiple layer back propagation network) 

was selected as the network paradigm. The application was 

built into modules. Each module completed a specific task. 

The network module is the heart of the application. Other 

modules are used to read data from a disk, write data to a 

disk file, and display the predictions graphically. 

The training of the network took about 300,000 training 

iterations. The training data set had 332 training records. 

It was selected from a large collection of measured data. 
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The mean square error of the network output after the 

training process was 0.15 feet. 
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The test result of the trained network showed that the 

neural network technique is able to model the sludge blanket 

depth in the secondary clarifier of a waste water treatment 

plant. The trend in the predictions of sludge blanket depth 

is the same as the observed sludge blanket depth in the 

secondary clarifier. The problem with this model is that 

the predictions of sludge blanket depth have an error with 

mean equal to -0.1 feet, a standard deviation of error equal 

to 0.79 feet, and a MSE of 0.62 feet. The model can not 

predict exact sludge blanket depth partially due to errors 

in the measured sludge blanket depth. This model can only 

give an estimate of the depth of the sludge blanket in the 

clarifier. Since there is no mathematical solution to this 

problem available, this model still has applicability in an 

operational setting. 

The training by supervised learning requires the target 

output should be accurate. In order to obtain accurate 

network prediction, this research suggests that the noise in 

the signal of sludge blanket depth should be reduced. To 

improve the quality of the training data set, an expert in 

the plant operation should be involved in selecting a good 

training data set. 

This research shows that the neural network is a 

powerful tool in modeling environmental problems. With some 



modification, the network can be used to model other 

parameters in the waste water treatment process. 
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APPENDIX A 

GENERALIZED DELTA RULE 
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Generalized Delta rule says that the weight change 

between the neuron i and j depends on three factors: bj, Zj, 

and a (Rumelhard & McClelland, 1986). Oj is the error value 

of the target unit j. Zj is the output value for the 

originating unit i. a is the learning rate whose value is 

decided by the network user. 

Since the error value, denoted by the variable 8j, is 

simple to compute for the output slab and somewhat more 

complicated for the hidden slabs, only the derivation for 

the output slab is shown here. 

Let P be a set of vector-pairs, (xl, tl) , (x2, t2) , 

(xp, tp) . The error that is minimized by the 

generalized delta rule is the sum of the squares of the 

errors produced by the pattern set P for all output neurons. 

Ep = 112 Lj (tpj - Opj)2 (23) 

where tpj is the target output of neuron j. Opj is the 

output value of neuron j. 

oEpi8Wij = 112 • 2 • (tpj -Opj) (OOpj 18Wij) 

- ' t P j - op j J Wop j 1 aw i j J 

For a set of linear units, 

(24) 

- Ipj (25) 

Where Ipj is the input to neuron j. 

Substituting (25) in equation (24), 

oEp 1 aw i j == - ( t P j - op j l • I P j = - o j I P j ( 2 6 l 

As far as the magnitude of the weight change is 

concerned, ~Wij is proportional to the negative gradient. 



Thus the weight change ~Wij is calculated by multiplying a 

step constant a and the negative gradient. 

~Wij = a bj Ipj 

The new weight is, 

Wijnew = WijOld + ~Wij 

{27) 

{ 28) 
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A DBASE III PROGRAM TO EXPORT DATA 
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*Main.prg This is a dBase III Plus program to extract 

*training and testing data from data base. 

*Following is a list of the field names in the database from 

*which the data will be exported. 

*EA_LRC: loading rate to the east aeration basin, lbs/day 
*EA MLVSS: MLVSS in east aeration basin, mg/1. 
*EA_DOUT: dissolved oxygen uptake rate, mg/1. 
*EA_FMC: F/M ratio in terms of COD in east aeration basin. 
*EA_pH: pH in east aeration basin, s.u. 
*EA_DO: D.O. in east aeration basin, mg/1. 
*RSS: recycle suspended solids, mg/1 
*RR: recycle rate, MGD. 
*EC NH3: NH3-N in east clarifier, mg/1. 
*EC-N03: N03-N in east clarifier, mg/1. 
*EC-SETT: 30 min. settling in east clarifier, ml/30 min. 
*EC-SDP: sludge blanket depth in east clarifier, feet. 

Set path to c:\dbase\dbl_sys 

CLOSE ALL 

select 1 
use infobase 
index on date in to c:\dbase\dbl sys\infobase 

go top 

SET FILT TO (ea lrc>O .and. ea mlvss>O .and. ea dout>O ; 
.and. ea fmc>O ~and. ea ph>O .~nd. ea do>O .and~ rss>O ; 
.and. rr>O .and. ec nh3;0 .and. ec no3>0 .and. ec sett>O; 
.and. ec sdp>O) 

COPY TO c:\data.doc FIELDS ea_lrc,ea_mlvss,ea_dout,ea_fmc, 
ea_ph,ea_do,rss,rr,ec_nh3,ec_no3,ec_sett,ec_sdp DELIMITED 
WITH BLANK 

SET FILT TO 

CLOSE ALL 

SET PATH TO 

QUIT 
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TRAINING AND TESTING DATA SETS 
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TABLE 5 

TRAINING DATA AND NETWORK PREDICTION 

Column Name Detination Unit 
No. Record Number 
lnput1 Loading Rate to Aeration Basin lbs/day 
lnPut2 Mixed Liquid Suspended Solids lrng/1 
lnput3 Dissolved Oxygen Uptake Rate lmQ/1 
lnput4 Food and Microorganisms Ratio in Aeration Basin 
InputS I pH in Aeration Basin s.u. 
lnput6 Dissolved OxyQen mg/1 
lnput7 Recycle Suspended Solids mg/1 
InputS Recycle Ratio MGO 
lnput9 Ammonia Nitrogen in Clarifier mQ/1 
lnput10 Nitrate Nitrogen in Clarifier mg/1 
lnput11 30 Minute Settling in Clarifier ml/30 minute 
Output Measured Sludge Blanket Depth feet 
Predict Neural Network Predicted Sludge Blanket Depth feet 

No. lnput1 lnput2 lnput3 lnput4 InputS tnput6 lnput7 InputS lnput9 lnput10 Input 11 Output Predict 
1 6453 3470 21.5 0.16 7.76 4.3 5990 0.577 1.S 1.7 600 11.5 11.6 
2 15303 3245 17.4 0.4 7.63 4.2 47SO 0.64 11.4 17.3 720 11.2 11.6 
3 24691 3570 22.4 0.59 7.4 3.4 4705 0.60B 3.2 19.9 770 12.6 12.6 
4 16792 3730 26.7 0.39 7.24 1 5030 0.616 2.1 2.6 920 12 11.6 
5 36415 3440 32.1 0.91 7.43 1.4 3740 0.589 6.3 4.3 940 0.4 5.1 
6 15607 3165 15.8 0.42 7.69 4.6 3455 0.529 32.05 18.8 920 1 3.9 
7 16913 3170 16.1 0.46 7.57 5 3270 0.425 19.9 25.5 910 2 3.9 
s 27444 3470 18.9 0.68 7.14 3.6 3655 0.451 11.1 48.2 850 3 3.9 
9 1S896 3325 19.7 0.49 6.99 3.5 4160 0.434 1.5 94 900 5.5 6.1 
10 18297 3790 23.7 0.41 6.7 2.6 4725 0.604 3.8 81.5 880 4.S S.O 
11 7971 3650 15 0.19 7.02 4.3 4750 0.619 2.2 36.1 S30 7 7.8 
12 19649 3440 31.8 0.49 7.08 1.3 4550 0.606 8.1 38 720 7 9.2 
13 12874 3635 31.1 0.3 7.14 1.9 4515 0.607 6.9 33.5 720 7 8.3 
14 15132 3670 28.1 0.35 6.65 2.3 4560 0.604 6.1 58.5 675 7.2 7.4 
15 6170 3435 14.6 0.15 7.5 5 4650 0.59 2.1 38 300 8.5 9.9 
16 15347 3175 23.7 0.41 7.08 2.6 3980 0.595 0.9 24.7 290 12 11.8 
17 12333 4760 36.1 0.22 7.33 1.2 5905 0.574 0.81 9.46 450 12 11.4 
18 4911 3895 16.2 0.11 6.17 4.2 6845 0.594 6.3 28.4 650 10 9.4 
19 6755 3720 16.2 0.16 7 4.7 5445 0.61 0.39 24.7 600 11 11.0 
20 5648 3825 22.1 0.13 7.12 4.3 5605 0.578 0.63 18.6 600 9 8.8 
21 7890 3815 22.5 0.18 6.86 3 5775 0.396 4 18.6 570 8.5 8.3 
22 9151 4175 17.6 0.19 7.01 5 7370 0.577 0.49 17.8 480 10 9.9 
23 9642 4160 20.1 0.2 6.99 4.7 5750 0.587 0.27 34.4 470 9.5 9.3 
24 10653 4490 25.4 0.2 6.55 2.9 7545 0.587 0.39 29.8 470 8 7.9 
25 16921 4485 25.4 0.32 6.69 3.2 8425 0.594 2.13 40 440 7.5 7.5 
26 10146 4820 20.9 0.18 7.21 3.8 7245 0.582 1.4 46 540 7 7.7 
27 7514 4165 1 1.2 0.15 7.97 6.7 7035 0.576 0.14 25.9 330 10 10.8 
28 14953 3880 15 0.33 6.97 5.3 6445 0.579 0.6 19.5 :>60 9 9.8 
29 22768 3875 21.6 0.5 7.08 3.6 5056 0.603 0.58 16.2 310 10 11.6 
30 7776 5280 23.2 0.13 7.04 4 7720 0.577 0.78 6.66 340 7.4 7.5 
31 6168 4275 17.1 0.12 7.31 5.6 7120 0.585 0.35 4.92 470 7.5 8.1 
32 22343 4830 24.9 0.4 6.86 4.9 8230 0.595 11.45 10.8 530 7 7.9 
33 19299 4355 17.6 0.38 6.85 4.7 5855 0.562 0.45 21.5 320 8 8.6 
34 19591 4225 28.2 0.4 6.4 1.7 6440 0.582 0.78 27.1 370 7.5 8.3 
35 16494 4875 28.7 0.29 7.27 2.4 7005 0.586 0.49 21.5 390 7.4 10.0 

36 10253 4820 24.3 0.18 7.32 4 8495 0.589 0.65 11.3 600 7 6.9 

37 7899 4010 13 0.17 7.08 6.2 6400 0.596 0.49 17.8 480 7 7.1 

38 8242 4098 11.7 0.17 7.23 6.9 6185 0.593 0.45 14.2 540 8 8.4 
39 6919 3910 16.4 0.15 7.16 5.9 5865 0.59 0.33 9.46 620 7 7.7 

40 5694 4150 16.6 0.12 6.45 6.6 6685 0.595 0.63 18.6 530 7.7 7.3 

41 6075 4375 13.7 0.12 7.05 7.7 6390 0 593 0.41 25.~~ 

I 
540 7.4 7. 

42 12649 4020 14.4 0.27 6.89 6 6410 0.584 0.43 7 2 .~) 610 7 7 2 

43 6044 4585 20.2 0.11 7.16 5.3 8615 0.595 0.37 13.2 680 6.5 7 1 

8 



TABLE 5 (Continued) 

No. lnput1 lnput2 lnput3 lnput4 InputS lnput6 lnput7 InputS 
44 7976 4200 17.6 0.16 6.69 5.2 6980 0.601 
45 18735 4315 22.6 0.37 6.89 4.4 6880 0.594 
46 8376 5005 27.6 0.14 7.25 3.6 8135 0.565 
47 13278 4175 20.1 0.27 5.94 5 5910 0.606 
48 17062 4585 29.3 0.32 6.87 3.8 6165 0.601 
49 6813 4650 10.1 0.13 7.07 8 8655 0.607 
50 17100 4295 20.7 0.34 5.93 4.8 5760 0.595 
51 5900 5250 18.6 0.1 6.94 5.2 7130 0.601 
52 6008 4880 15.9 0.11 7 5.5 7020 0.617 
53 5759 4095 14.8 0.12 6.47 6.5 7220 0.595 
54 10825 4340 20.5 0.21 7.12 6.9 8025 0.607 
55 11241 5275 17.6 0.18 6.97 6.1 9155 0.613 
56 3662 5660 15.'6 0.06 6.87 6.5 10045 0.621 
57 1259 5695 19.1 0.02 6.7 5 8970 0.6 
58 6173 4805 10.8 0.11 7.43 7.9 6345 0.588 
59 4744 4425 10.3 0.09 7.1 6.3 7560 0.588 
60 5179 4595 1 1.4 0.1 7.02 5.1 7310 0.587 
61 7214 4185 20.5 0.15 7.1 4.7 8290 0.606 
62 4312 4090 22 0.09 7.2 5.9 7460 0.601 
63 4599 4140 29 0.1 6.92 6.1 6530 0.594 
64 6313 3820 16.7 0.14 7.12 6 7080 0.611 
65 4079 4590 13.8 0.08 7.25 9.7 7030 0.801 
66 6548 4375 14.9 0.13 7.07 8.8 15205 0.578 
67 9222 4380 16.4 0.18 6.88 6.9 6775 0.595 
68 9201 4435 25.3 0.18 6.79 4.2 7610 0.572 
69 7226 4560 10.3 0.14 7 8.8 7105 0.594 
70 10077 4815 18.2 0.18 6.81 5.6 8090 0.587 
71 4051 4555 19.6 0.08 6.7 5.5 8150 0.607 
72 3908 4145 17.9 0.08 7.04 6.3 8538 0.801 
73 5178 4310 14.2 0.1 6.77 6.2 7650 0.593 
74 5698 4010 14.3 0.12 6.92 6.2 7438 0.593 
75 14561 4015 19.7 0.31 7.07 3.7 7385 0.801 
76 3562 3990 22.2 0.08 6.82 4.6 5436 0.593 
77 5149 3980 27.5 0.11 6.39 4.8 6000 0.593 
78 12701 3665 22.1 0.3 7.17 4.6 5650 0.611 
79 12790 4000 26.2 0.27 6.96 3.2 6275 0.801 
80 8378 4370 24.5 0.16 7.19 2.9 6735 0.587 
81 10123 4375 23 0.2 7 2.5 7420 0.599 
82 6261 4290 22.9 0.12 6.93 2.9 8630 0.801 
83 4332 4570 11 .4 0.08 6.53 7 6255 0.601 
84 8381 3915 13.5 0.18 6.88 3.7 6685 0.594 
85 9166 4455 1 7.1 0.18 7.08 4.5 6810 0.592 
86 20663 4455 33.5 0.4 7.04 2.1 10575 0.583 
87 7486 5025 29.1 0.13 7.34 4.8 10800 0.581 
88 5105 3590 27.2 0.12 6.98 1.9 7538 0.611 
89 8568 3315 31.6 0.22 7.05 1. 7 5275 0.642 
90 6734 3190 16.8 0.18 6.65 2.1 6180 0.63 
91 7174 3050 25.9 0.2 7.07 1.8 5110 0.801 

92 5613 3475 26.1 0.14 7.26 1.4 7250 0.73 
93 6616 3365 2.2.3 0.17 7.21 1.4 7325 0.729 
94 5405 3330 21.2 0.14 6.93 2.2 5575 0.642 

95 7410 4050 11.6 0.16 7.18 5.6 6025 0.617 
96 7152 4075 15.8 0.15 7.15 3.3 7700 0.621 

97 10044 3888 23.8 0.22 7.32 2.2 6625 0.623 
98 13958 3925 43 0.3 7.26 1.3 6325 0.606 

99 8822 4425 324 0.17 7.17 2.8 1025 0.62 

100 3696 3730 23.2 0.08 7.23 2.1 7575 0.533 
101 10185 3205 25.8 0.27 7.25 1 .5 4725 0.61 

102 6639 3240 26.6 0.18 7.38 1.5 ~975 0.764 

103 14535 34}5 28.7 0.36 7.41 2.1 6025 0.601 

104 4365 3170 20.5 0.12 7.26 2.2 4980 0.594 

105 3731 3095 21 0.1 7.04 2.7 5210 0 639 

InputS ilnput10 lnput11 

0.54 12.7 745 
0.58 22.5 775 
0.73 27.1 870 
0.56 31.2 590 
0.37 29.8 575 
0.2 22.5 650 
4.2 29.8 680 

0.69 40 770 
0.24 32.7 860 
0.24 10.8 900 
0.24 14.2 850 

0.22 25.9 830 
0.27 23.6 870 

0.2 16.2 880 

0.35 17 920 

0.39 18.6 800 

0.27 20.5 880 
0.39 19.5 770 
0.43 10 700 
0.58 29.8 700 

0.43 40 665 

16.4 44 340 
21.8 16.2 315 

15 17 320 

2.76 13.2 300 
0.45 19.5 330 
0.37 15.4 300 
0.3 20.5 290 
0.33 27.1 290 

0.43 30 250 

0.39 38 280 
0.39 38 280 

0.37 6.25 300 
0.96 17.8 255 

0.53 40 210 

0.45 38 230 

0.66 20.5 350 

0.6 13.7 355 

0.9 10 360 

0.49 36.1 400 

0.32 24.7 430 

0.37 31.2 380 
0.45 31.2 390 

0.62 11.3 500 

1.01 43 720 

0.3 23.6 730 

0.28 34.4 680 

0.41 40 620 

0.51 40 700 

0.35 48.6 750 

0.35 48.6 790 

0.34 73.5 790 

0.35 43 840 

0.35 43 830 
3.43 41 770 

0.57 21.2 710 

0.51 41.4 550 
0.43 38 570 
0.52 36.1 640 

0.46 36.1 680 

0.38 11.7 790 

0.33 14.2 670 

Output 

7 
6.3 
4.6 

7 
7.5 

7 

6.2 
7.2 

7 

6.8 
6.9 

6.5 

5.9 

6.2 
6.8 

6.8 
7.4 

7.1 

7.5 

8 

8.1 

7.2 

8 
7.8 
8.4 

8 

8 

8 
8.2 

8 

8 
8 

8.4 
8.4 

8.4 

8.2 

8 

8.1 

7.9 

8 2 

8 

8.1 
8.6 

8 

7.1 

8.5 

7 

7.3 

6.2 

6.5 

6.9 
6.6 

7 

6.7 
6.9 

8 
7.9 
7.8 

8 

7.9 

7.1 

6.5 
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Predict 
7.5 
6.9 
5.9 
7.6 
8.2 
8.3 
6.5 
7.2 

7.3 

7.3 

7.5 

7.0 
6.7 

7.0 

7.1 

6.8 
7.4 

7.2 
7.6 
7.9 

8.0 
8.0 
5.6 

7.8 
8.0 
7.8 

8.2 
7.8 

8.3 

7.9 

8.5 

8.7 

8.4 
8. 

10. 

8. 

8. 
8. 

7. 
8. 

7. 

8. 
8. 

3 

3 

4 

5 
0 

8 
5 

7 
3 
6 

5 

3 

4 

5 

5 
3 

2 

6 

5 

7 

0 
8 

9 

0 
7 
!3 

6 

2 

7. 

7. 

8. 

7. 

7. 

7. 

7. 

7. 

7. 

7. 

7. 
7. 

7. 

8 
9. 

8. 

9. 

7. 

7 7 



TABLE 5 (Continued} 

No. lnput1 lnput2 lnput3 lnput4 InputS ~6 lnput7 InputS 
106 7712 2975 19.9 0.22 6.98 2.3 4490 0.673 
107 7924 2915 18.6 0.23 7.04 2.2 4775 0.61 
108 7292 2860 16.8 0.22 7.06 2.8 6950 0.801 
109 11432 3325 26.1 0.29 7.26 3.1 9450 0.06 
110 5801 3400 27.2 0.15 7.14 2.6 6550 0.224 
111 7286 3025 26.9 0.21 7.3 4.1 8350 0.175 
112 9152 2850 23.4 0.28 7.46 2.6 8350 0.236 
113 10221 2800 23.8 0.31 7.46 3.1 5638 0.337 
114 6417 2838 26.1 0.19 7.38 2.8 6275 0.224 
115 8402 2295 20.2 0.31 7.24 4 4055 0.245 
116 6998 2650 25.4 0.23 7.22 2.9 7288 0.239 
117 26659 3080 31.6 0.74 7.12 3.2 5375 0.273 
118 6055 3115 2,4.1 0.17 6.99 2.6 6875 0.273 
119 3728 2835 19.3 0.1 1 7.33 3.9 6425 0.227 
120 1648 2455 19 0.06 7.27 5 5160 0.281 
121 6175 2085 21.3 0.25 7.29 3.6 4515 0.325 
122 6030 2140 22.6 0.24 7.27 3.3 5580 0.365 
123 3796 2215 19.3 0.15 7.25 3.5 5250 0.267 
124 5458 2475 15.5 0.19 7.32 5.1 5800 0.399 
125 4417 2545 13.7 0.15 7.27 4.8 4913 0.393 
126 5271 2470 13.7 0.18 7.23 4.7 4025 0.381 
127 7469 2395 14.8 0.27 7.29 4.5 5785 0.354 
128 4915 2445 12.5 0.17 7.37 4.7 4188 0.37 
129 6046 2200 13.8 0.24 7.3 4.8 4950 0.391 
130 4732 2330 9.5 0.17 7.26 6.3 4930 0.383 
131 4111 2510 15.5 0.14 7.19 4 6455 0.09 
132 7094 2460 19.3 0.25 7.11 2.7 4495 0.203 
133 3426 2200 16.7 0.13 7.08 5.3 2500 0.303 
134 4936 2438 22.5 0.17 7.16 3 4038 0.274 
135 4705 2300 26.4 0.18 7.15 10.4 5000 0.279 
136 5648 2250 23.5 0.21 7.17 2 4300 0.3 
137 6858 2330 23 0.25 7.33 4.1 4950 0.35 
138 10448 2530 26.6 0.35 7.28 2.4 6350 0.1 12 
139 13181 2585 26.9 0.44 7.32 2.5 6480 0.16 
140 6808 2110 15.5 0.28 7.41 5.3 5255 0.35 
141 8490 2275 23.5 0.32 7.36 2.7 4755 0.36 
142 10268 2715 28.6 0.32 7.38 1.8 5:080 0.107 
143 10539 2550 31.8 0.35 7.42 1 _:) 5245 0.163 
144 8468 2360 27.9 0.31 7.48 1.9 5455 0.228 
145 7658 2470 28.3 0.27 7.45 1.8 6730 0.274 
146 7905 2670 28.8 0.25 7.36 2.4 5100 0.024 
147 8737 2600 24.9 0.29 7.41 4.4 4305 0.121 

148 17165 2830 29.3 0.52 7.45 4 2 6025 0.305 

149 10051 3010 26.5 0.29 7.34 3.6 5945 0.115 
150 6935 1249 28.9 0.48 7.41 1.7 5500 0.284 

151 9746 2970 20.2 0.78 7.46 2 5030 0.23 
1!:>2 12306 2345 19.4 0.45 7.43 2.5 4715 0.2tl4 

153 8521 2785 20.4 0.26 7.43 2.3 5270 0.42 
154 6316 3055 21.8 0.18 7.4 2.5 5855 0.262 
155 5914 2620 14.8 0.19 7.43 3.1 4970 0.373 

156 8201 2305 20.5 0.3 7.43 3.1 6935 0.349 

157 6759 2150 18.8 0.27 7.43 2.6 7235 0.391 
156 8592 2560 21 0.29 7.43 2.4 5640 0.42 

159 5239 3300 13.7 0.14 7.49 4.9 5775 0.339 

160 9286 2955 15.9 0.27 7.53 3.2 7025 0 325 

161 16305 3175 28 0.44 7.46 2 6530 0.239 

162 8486 2085 12.5 0.35 7.57 6.9 9145 0.374 

163 1 1524 3020 25.5 0.33 7.31 4.8 64GS 0.12 

164 7938 29·;o 26.2 0.23 7.25 3.5 6860 0 287 

165 6834 3240 22 0.18 7.14 3.4 6960 0.216 

166 8143 3010 22 0.23 7.07 3.2 7J90 0.154 

167 6H80 2950 19.8 0.2 1.3 3.6 5990 I 0.269 : 

lnput9 lnput10 lnput11 

0.31 34.3 770 

0.46 34.4 770 

1.57 47.3 500 
0.91 43 700 
0.94 50 500 

1.31 50 480 

1.72 33.3 470 

0.54 38 490 
0.94 31.2 570 
0.4 25.9 600 

0.58 40 510 

0.52 41.4 370 

0.63 56.5 480 

0.36 32.25 290 
0.31 25.9 220 
0.34 23.6 180 
0.4 22.5 160 

0.52 19.5 170 

0.4 54 310 

0.38 47.2 370 

0.36 62.4 400 

0.33 47.2 500 
0.34 47.3 630 

0.34 17 620 

0.52 51.6 470 

0.36 47.2 320 

0.39 37.6 270 
0.49 59.6 150 

0.~3 68.8 140 

0.68 81 160 
4.3 77 130 

0.!:>5 23.6 260 
0.49 31.2 270 
0.74 21.5 260 
0.64 14.2 270 
0.35 12.7 330 

0.57 13.2 350 

0.6 21.5 290 

0.69 37.2 240 

0.69 40 200 

0.6<1 62.4 290 

0.74 59.6 360 

0.53 72.2 370 

0.74 62.4 300 

0.96 GH.G 300 

0.53 36.1 410 

0.59 38 330 

0.71 38 350 

0 34.4 445 

0.82 29.8 630 

0.45 31.2 560 

0.57 36.1 G20 

0.55 32.7 650 

0.64 40 600 

0.37 41.4 450 

0.47 J6 1 590 
4 27 1 830 

3.H 22.5 870 
3.7 27.1 830 

7.08 40 
I 

800 

0.57 40 

I 
720 

0.23 40 850 

Output 

7.2 
7.4 
7.1 

7.2 
8.9 

9.1 

9.2 

9 
9.4 

11 
8.9 

9.2 
10 

9.8 
9.5 

9.7 
8.8 

11.5 

9.6 
10 

9.9 

9.2 
8.3 

8.4 

8.2 

8.5 

9.1 

9.5 

9.8 
10.1 

10 

11 
1 1 

10.9 

1 1.5 
10.5 

9.5 

10.1 

1 1 . 1 

10.3 

1 1.3 

11.1 

9.2 

10.5 

10.9 

I 
9.2 
9.9 

9.6 

9.2 

8.8 
9.1 

9.5 

9.3 

9.8 

9 

10 
' 8.5 

7.9 

8.3 

9 

9.2 

8.5 

96 

Predict 

7.8 
8.0 

7.6 
7.1 

8.8 

8.2 
8.7 

9.0 
8.7 

11.2 

8.4 
12.6 

9.4 

10.9 
11.1 

11.6 
11. 1 

11.7 

10.2 

10.4 

10.0 

9.4 

9.6 
10.1 

9.6 

9.0 

9.6 
10.8 

9.5 
10.7 

10.0 
1 1. 7 

10.6 
11. 

11. 
1 1. 

10. 

9. 

10. 

10. 

10. 

10. 

9. 

10. 

0 

6 

3 

3 

9 

8 

2 

4 

3 

2 

3 

6 

7 
0 

8 

1 

0 
2 

6 
2 
4 

3 

7 

4 

7 

0 

10. 

9. 
11. 

9. 
9. 

9. 

9. 

9. 
9. 

9. 

9. 

9. 

8. 

7. 

8 

8 

B. 

8. 

6 

4 



TABLE 5 (Continued) 

No. lnput1 lnput2 lnput3 lr\Put4 InputS lnput6 lnput7 InputS 
168 4971 2625 21.1 0.16 7.3 3.2 6460 0.267 
169 4716 2765 13.4 0.15 7.46 6.7 6416 0.231 
170 9287 2640 19.9 0.3 7.12 5.6 5730 0.314 
171 4738 2685 18 0.15 7.35 5.9 5380 0.352 
172 10500 2520 12.8 0.36 7.37 8.2 6655 0.397 
173 8918 3150 26.4 0.24 7.99 5.2 6000 0.204 
174 9274 2985 18.6 0.27 7.38 6.9 7660 0.336 
175 14167 2890 21.3 0.42 7.33 5 8050 0.335 
176 8878 2880 14.9 0.26 7.54 6.9 7425 0.273 
177 6441 3200 14.6 0.17 7.54 7 6170 0.354 
178 9837 3040 19 0.28 7.13 6.5 6645 0.396 
179 7811 2610 30.4 0.26 7.28 1.6 4305 0.29 
180 6110 2665 24.4 0.2 7.3 2.2 4845 0.442 
181 10130 2805 26 0.31 7.41 2.7 6115 0.526 
182 5996 3170 30.9 0.16 7.3 3.8 5675 0.306 
183 3270 3000 21.2 0.09 7.42 5.5 3350 0.575 
184 5001 2980 30.4 0.14 7.4 4.3 2980 0.588 
185 10033 2530 24.4 0.34 7.4 3.9 4460 0.231 
186 6439 2610 29.8 0.21 7.36 2.9 4915 0.355 
187 3969 2595 22.8 0.13 7.47 4 4080 0.518 
188 6175 2835 23.7 0.19 7.48 2.7 4455 0.347 
189 6399 2590 27 0.21 7.51 3.6 5245 0.501 
190 13093 2805 20.8 0.4 7.42 2.7 5090 0.312 
191 5467 3075 23.7 0.15 7.4 3.3 4890 0.474 
192 7296 2975 28.5 0.21 7.48 2.6 4985 0.503 
193 6021 3080 24 0.17 7.49 3.2 5290 0.361 
194 3955 3080 27.8 0.11 7.49 2.6 5990 0.52 
195 8779 2895 22.8 0.26 7.54 2.7 6155 0.392 
196 9314 2748 15.7 0.29 7.48 4.2 5280 0.526 
197 8239 3025 19.9 0.23 7.5 3.1 5950 0.404 
198 5711 3125 19 0.16 7.81 3.4 5635 0.492 
199 2593 3025 20.5 0.07 7.48 2.6 5800 0.487 
200 7829 3240 18.3 0.21 7.52 3.2 5880 0.48 
201 8147 3330 21.8 0.21 7.55 2.1 6110 0.471 
202 8516 3710 22.3 0.2 7.49 2 5880 0.5 
203 5218 3155 22.3 0.12 7.49 1.2 6305 0.621 
204 5378 3430 11.6 0.13 7.59 6 4770 0.621 
205 6090 3585 1 1 . 1 0.15 7.59 6 5015 0.706 
206 8212 3585 11 .7 0.7 7.5 4.8 5350 0.706 
207 6439 4010 18.1 0.14 7 48 5.1 6130 0.503 
208 13944 3705 18.9 0.32 7.56 2.8 6200 0.5 
209 9968 3320 19.7 0.26 7.58 2.8 7330 0.514 
210 6483 3495 14.6 0.16 7.62 3.5 5630 0.456 
211 7856 3620 18.6 0.19 7.6 3.3 5405 0.595 
212 3766 3560 24.2 0.09 7.57 3.6 5470 0.593 
213 10235 3510 16 0.25 7.58 3.9 5510 0.524 
214 5752 3665 17.4 0.13 7.62 2.8 6400 0.411 
215 12800 3500 20.3 0.31 7.67 4.2 4705 0.414 

216 11173 3600 15.7 0.27 7.71 3.5 5020 0.429 
217 8667 3496 25.3 0.21 8.34 4.4 4936 0.444 

218 13258 3620 22 0.31 7.6 3.5 5605 0.439 

219 7190 3980 19.1 0.15 7.6 4.5 4772 0.359 

220 12675 3650 21.2 0.3 7.48 3.9 4870 0.4 73 

221 10014 3800 16.2 0.23 7.49 3.9 5300 0.456 

222 8440 4020 17.1 0 18 7.42 4.9 5745 0 52 

223 12462 4095 23.5 0.26 7.4G 3.3 6155 0 342 

224 14283 3910 29.2 0.31 7 _44 3.4 5500 0.319 

225 4762 4020 20.3 0.1 7.41 4.6 5580 0.45 i 

226 9598 3415 24.3 0.24 7.44 13.4 5200 0.4()2 

227 11296 3705 21.1 0.26 I 7.53 2.9 6780 0 398 

228 10134 390!::> 21 0.22 

I 
7.52 3.7 ~>800 I OAS:-) I 

229 7226 4125 25.5 0.15 7.54 3.1 5775 I 0.79 ! 

lnout9 lnout10 lnput11 

0.25 32.7 750 
0.29 41.4 700 
0.34 41.4 480 
0.87 40 410 
0.61 50 430 

15 48 460 
6.35 73.5 360 
0.4 41.4 390 

0.48 34.4 570 
0.48 34.4 470 

0.36 28.4 390 
0.38 45 960 
1.75 43 940 
0.48 40 950 
0.4 30.8 920 
0.5 41.4 870 

0.59 38 580 
0.48 43 410 

0.52 41.4 500 
0.48 41.4 470 

0.38 59.6 450 
0.42 28.4 350 
0.4 45 390 

0.54 30.8 460 
0.39 36.1 440 

0.59 41.4 400 
0.44 38 430 
0.42 54.22 480 

0.5 43 530 

0.33 40 580 
0.44 32.7 570 
0.48 40 570 
0.48 43 740 

0.63 38 790 
0.87 37.2 790 

0.96 36.1 840 

0.26 56.S 890 

0.26 52 910 

0.26 40 950 

0.31 49.4 910 
0.43 40 910 
0.53 40 860 

0.47 29 B 910 

0.33 37.7 870 
0.45 12.2 940 

0.76 41 .4 930 

0.45 36.1 910 

0.49 29.8 830 

0.37 32.7 920 

0 35 38 900 

0.53 28.4 900 
0.69 40 900 
0.51 38 880 

0.2 16.7 920 

0.24 36.1 B70 

0.43 28.2 900 
0.35 22.52 900 
O.B 38 850 
072 43 920 
0.53 41 .1 WJO 

O.G4 :w 
I 

910 
0.85 37.7 flflO 

Output 

6.9 
9 

9.7 

10.4 

10.2 
9.7 
10 
10 

10 
10.4 

10.3 

7 

7.2 
6.8 

7.4 

7.8 
10 

9.9 

10.8 

11 

10.7 

11.2 

10 

10.5 
10 

10.5 

10 
9.5 
9.4 

9 

9 
8.9 

8.6 

8.4 

8.4 

8 

9.2 

8 
8.8 

6.8 

7.6 
8.6 

8 
8.4 

7.5 

8.5 
8.5 

7.S 

8.3 

7.2 

9 

8.7 

8 

8.6 

8.8 
7 g 

8 
fi 2 

8 

8.3 

fl.5 

8 

97 

Predict 

8.6 

9.6 
10.1 

10.5 

11.2 

9.9 
9.5 
9.7 

10.8 
11.3 

10.5 
7.6 

7.7 
7.9 

7.9 
8.1 

11.5 

10.0 

10.0 

11.3 

10.1 

11.7 

10.3 
9.9 

10.2 

9.9 
10.2 

9.8 

10.3 

8.7 

9.2 
9.0 

8.9 

9.2 

8. 

7 

9. 

8. 
8 

8 
8 

2 
5 

7 

7.' 

8. 
9. 

8. 

8. 

7. 

4 

0 
6 
8 

3 

7 8. 

7. 5 

8 .. 3 

6 

6 

8. 

7 

8 
8. 

8. 

8. 
g 

8. 
g 

8. 

8 

H 

8 

7 

5 
7 

6 

4 

3 

4 

1 

0 

1 

6 

7 



TABLE 5 (Continued) 

No. lnput1 lnput2 lnput3 lnput4 InputS lnput6 lnput7 InputS 
230 7062 3620 21 0.17 7.53 2 5130 0.608 
231 11593 3455 24.3 0.29 7.62 2.6 5988 0.457 
232 8771 3660 21.4 0.21 7.62 1.8 7000 0.516 
233 12325 3710 23.5 0.28 7.63 1.4 5955 0.321 
234 13019 3720 28.3 0.3 7.68 1.5 5385 0.473 
235 9075 3795 26.9 0.2 7.87 2.6 5715 0.597 
236 5135 3670 22.8 0.12 7.35 2.2 5245 0.583 
237 7431 3555 25.6 0.18 7.38 1.7 6125 0.552 
238 7156 3700 22.9 0.17 7.46 2.3 6670 0.571 
239 6907 3860 18.7 0.15 7.42 3.1 6570 0.488 
240 4373 4296 19.7 0.09 7.48 3.8 6200 0.573 
241 7217 4320 16.1 0.14 7.53 3.9 6575 0.506 
242 10493 4475 23.2 0.2 7.53 2.2 6710 0.492 
243 4834 4355 25.5 0.1 7.43 2 3915 0.516 
244 5949 3915 17.5 0.13 7.52 4.2 7295 0.443 
245 6073 3915 17.7 0.13 7.59 4.7 4895 0.574 
246 13684 3500 20.9 0.33 7.66 3.4 6540 0.49 
247 11483 4255 27.8 0.23 7.54 2.7 7913 0.342 
248 14720 4065 24.7 0.31 7.46 2.4 7988 0.511 
249 3366 3970 15.3 0.07 7.69 5 7010 0.56 
250 3546 4075 15.2 0.07 7.59 5.5 7415 0.571 
251 2178 4535 18.6 0.04 7.67 4.7 8425 0.634 
252 7872 3988 11.9 0.17 7.47 6.1 8050 0.496 
253 8837 4275 15.5 0.18 7.92 4.6 8825 0.24 
254 16402 4550 22.9 0.31 7.46 2.7 8575 0.265 
255 9472 3800 19.4 0.21 8.01 3.2 7150 0.603 
256 8140 4300 18.6 0.16 7.71 3.8 7125 0.649 
257 7995 4838 16.5 0.14 7.57 4.8 6000 0.389 
258 12997 4475 20.8 0.25 7.64 3.3 6225 0.39 
259 5365 4170 14.6 0.11 7.64 5.7 6250 0.697 
260 10581 4615 17 0.2 7.84 4.9 6580 0.703 
261 9732 4720 31.6 0.18 7.34 1.7 l220 0.563 
262 8924 4455 12.2 0.17 7.36 5.8 6885 0.468 
263 4547 3950 18.3 0.1 7.56 4.6 6150 0.703 
264 19571 4875 19.2 0.34 7.6 4.5 6750 0.707 
265 10596 4625 19.2 0.2 7.6 4.5 6750 0.707 
266 12325 4750 25.1 0.22 7.63 2.7 6200 0.57 
267 20023 4625 26.8 0.37 7.66 1.8 6225 0.613 
268 12948 4775 31.9 0.23 7.49 3.5 7625 0.194 
269 4881 4975 2 7.1 0.08 7.49 1.9 6350 0.39 
270 6162 4145 29.9 0.13 7.52 1.8 7550 0.648 

271 6520 4375 24.7 0.13 7.62 2.5 6600 0.666 
272 5721 4350 20.2 0.1 1 7.65 3.1 6125 0.558 

273 11992 41/':J 29.7 0.25 7.64 1.B 6100 0.489 
274 6752 3950 15.7 0.15 7.61 ~-] I 7200 0.636 
275 6992 4125 17.3 0.15 7.52 4 .f_) 6800 0.6 7'J 
276 8443 3975 19.3 0.18 7.58 3.6 7125 0.602 

277 5354 4250 19.6 0.11 7.55 3.7 5990 0.677 

278 7490 3975 21.5 0.16 7.56 3.1 6600 0.744 

279 3612 45~0 17.8 0.07 7.63 3.9 13350 0.501 

280 7685 4475 26.2 0.15 7.6 2.2 7350 0.759 
281 11439 4500 33 0.22 7.61 1.6 6700 0.561 

282 9667 4275 29.1 0.19 7.66 4.1 6700 0.535 

283 17281 4700 22.4 0.31 7.65 2.6 4840 0.464 

284 8632 4840 21.1 0.15 7.66 3.7 6715 0.663 

285 7645 4505 24 0.15 7.64 2 7610 0.576 

286 7100 4455 26.3 0.14 7.6 2.1 8310 0.457 

287 451S 4235 21.1 0.09 7 (i·1 4.7 818<, 0 662 

288 8379 4305 21.3 0.17 1.51 3.3 932':> 0.6013 

289 7710 4880 28.7 0.14 7.59 2.2 8675 CJ3:J'~ 

290 7721 4490 27.3 0.15 7.5 7 2.4 6720 o.'3e 
291 5620 4640 26.7 0.1 7.56 :l 7620 0 638 

InputS lnput10 lnput11 

0.61 35.6 840 
0.4 45 800 

0.34 40 750 
0.81 12.2 850 
0.5 11.7 750 
0.36 8.21 430 

0.29 48.7 540 
0.34 67.8 550 
0.52 68.8 600 
0.28 58.2 750 
0.43 26.2 820 
0.74 12.5 900 
0.41 9.8 900 
0.33 39.2 890 
0.31 76 860 
0.21 17.5 210 
0.13 27.9 210 
0.41 15.5 220 
0.21 21.3 210 
0.19 18.1 250 
0.18 21.2 270 
0.15 25.2 260 
0.19 28 290 
0.16 31.7 290 
0.22 34.8 250 

0.15 50.4 240 

0.21 40 230 
0.12 47.2 220 
0.16 34.6 200 

0.29 13.4 250 

0.41 13.3 270 

0.13 17.2 280 
0.5 29.3 290 

0.25 31.4 460 

0.25 33 460 

0.39 45.4 460 

0.26 36.2 590 
0.25 25 440 

0.31 49.8 230 

0.22 47.8 220 

0.23 32.7 220 

0.22 47 2 390 

0.59 54.~ 380 

0.64 61.5 340 

0.59 34 e 320 

0.17 35.7 30C 

0.14 32.4 300 

0.2 44 300 

0.19 31.5 300 
0.19 52.4 310 

0.2 49.2 350 

0.24 47.6 320 

0.19 48./ 290 

0.21 50.8 290 

0.19 42.2 J10 

0.18 41 .4 310 

0.16 48.6 300 

0.15 53.8 280 

0.13 49.6 260 
0 11 46 ?50 
O.l S 25.5 790 
0 l H 29.9 300 

Output 

10 
10.2 
9.8 
9.2 

9 
10.5 

9.4 

8.5 

8 

8 

8.2 
8 

7.8 

7.1 

7.3 
11.3 
11 

11.2 

11.3 

10 

9.2 

8 
1 1.3 

9 
10 

11.2 

11.2 
10.8 

12 

11.1 

10.8 

10.4 

1 1.1 

7.5 
7.3 
7.3 

8.9 

8 

10.5 
10 

1 1 

8 

8.5 

8.3 

9 
9 

10 

9.8 

9.9 

10 

10 

9 

10 

9 
9.1 

10 
10 

1U 

l 9.8 

10 

I 
10.1 

10.5 

98 

Predict 

9.6 
9.5 
9.6 

9.8 
9.9 

11.0 

9.5 
8.7 

8.7 
7.9 

7.6 

7.2 

8.1 

7.7 

7.6 
11.8 

11.7 
11.1 

11.5 

10.5 

10.2 

9.0 
1 1 .5 

9.3 
10.0 

11.7 
11.7 

11.4 
11 .9 

11 .3 

11.0 

10.2 
11 .4 

8. 
9. 

7 

7 

8.1 
9.r-

1 1 . 

10. 

9. 

10. 

7 
4 

9 

8 

8.f 

9. 4 

8 .~ 

10. 

10. 

10. 

11. 
10. 

10 

9. 

9. 
11 . 

1 1 . 

9 

10. 

10. 
10. 

q 

10 

2 

J 
3 
9 

7 

3 
4 

0 

7 
4 

0 
4 

5 

0 

10. 

10. 7 
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TABLE 5 (Continued) 

No. lnput1 lnput2 lnput3 lnput4 InputS lnput6 loPUt7 InputS loPUt9 lnput10 lnput11 Output Predict 292 4322 4635 27.2 0.08 7.55 3.2 8470 0.727 0.16 30.4 270 10.7 10.7 293 8217 4635 20.6 0.15 7.5 3.1 7845 0.711 0.15 28.7 270 10.8 10.9 294 4417 4705 25.1 0.08 7.53 2.1 7740 0.642 0.11 47.2 280 11 10.7 295 6354 4385 29.6 0.12 7.57 2.1 8345 0.753 0.11 53.6 250 1 1 11.2 296 9861 4690 29.4 0.18 7.57 3.1 8060 0.642 0.1 47 270 11 10.6 297 13177 4740 37.5 0.24 7.56 2.6 8435 0.639 0.13 52.6 270 11.1 10.9 
298 6845 4605 23.2 0.13 7.49 2.4 6260 0.569 0.21 55.8 300 10.8 10.3 
299 6280 4945 28.5 0.11 7.59 3.4 7280 0.547 0.27 57 300 11 11.1 
300 9378 4710 35.2 0.17 7.56 4 6270 0.769 0.2 57.6 290 , 1.5 , 1.4 
301 5892 4805 21.2 0.11 7.57 2.4 7380 0.78 0.15 60 500 9.9 10.0 
302 6729 4370 30.2 0.13 7.54 1.5 6495 0.625 0.17 46.2 610 9.4 9.2 
303 5610 4655 32 0.1 7.55 3.3 6450 0.633 0.2 49.6 660 7 7.5 
304 5683 4945 28.4 0.1 7.49 4.1 9685 0.507 0.2 49.6 700 7.6 7.9 
305 8563 4975 15.6 0.15 7.5 3 8595 0.74 0.15 38.8 820 7 7.5 
306 6142 5795 21.4 0.09 7.51 1.9 8850 0.548 0.11 27.6 850 7 7.0 
307 3577 5590 22.5 0.05 7.55 3 8985 0.579 0.15 37.62 850 7.2 7.4 
308 5834 5645 26.6 0.09 7.48 1.9 9270 0.514 0.13 36.8 810 7 7.4 
309 16006 5515 30.3 0.25 7.48 3.3 8355 0.629 0.19 30.1 770 7 8.0 
310 4627 4780 16.3 0.08 7.58 3.3 7850 0.681 0.14 49 860 7.6 7.8 
311 9406 5080 21.2 0.16 7.56 3.6 8585 0.697 0.12 50 800 7.4 7.7 
312 7208 5110 28.4 0.12 7.52 1.8 8090 0.597 0.11 43 780 6.6 7.0 
313 6702 5192 19.8 0.1 1 7.54 3.3 8360 0.648 0.16 56.2 680 7.9 8.5 
314 4776 5285 23.3 0.08 7.57 2.6 7430 0.653 0.19 52.8 640 8 8.5 
315 6440 4645 30.5 0.12 7.4 2.4 7260 0.718 0.26 57.4 390 8 8.8 
316 3705 5005 26.7 0.06 7.45 3.8 7345 0.689 0.16 61.2 370 8.8 9.0 
317 2667 4060 27.8 0.06 7.52 3.1 8580 0.824 0.13 56.6 320 8 7.7 
318 11147 5385 29.3 0.18 7.36 2.5 9755 0.675 0.89 58.4 300 8.6 8.7 
319 5600 5715 32.2 0.08 7.48 2.3 10590 0.568 0.23 56.6 320 7.9 7.8 
320 9293 5230 29.8 0.15 7.44 2.5 8535 0.643 0.2 54.4 320 8.2 9.1 
321 8554 4930 15.1 0.15 7.43 5.3 6920 0.613 0.24 50 330 8 8.9 
322 5738 4855 18.1 0.1 7.49 4.3 8700 0.622 0.18 44.4 360 8.8 8.4 
323 4927 4780 18.4 0.09 7.53 4.9 7585 0.537 0.16 32.4 410 9 9.7 
324 3849 4472 20.8 0.07 7.49 3.5 7185 0.808 0.16 28.2 410 9.1 9.0 
325 8638 4300 19,6 0.17 7.57 3.2 6235 0.628 0.12 33.4 630 9.1 9.5 
326 5781 4185 18.8 0.12 7.56 3.1 7380 0.792 0.1 21 710 8.8 7.9 
327 2967 4660 21.4 0.05 7.53 2.5 6990 0.801 0.1 21.1 800 8.8 8.1 
328 6921 4680 12.8 0.13 7.52 4.3 6795 0.685 0.19 27 890 8 7.4 
329 6667 4730 19.7 0.12 7.54 2.6 7695 0.62 0.14 24.4 820 8.2 7.6 
330 5936 4770 18.3 0.11 7.54 3 6465 0.67 0.15 24 860 8 7.5 
331 3375 4570 1 7.1 0.06 7.52 2.9 4570 0.648 0.17 27.1 880 7.9 7.7 
332 7223 3895 9.4 0.16 7.44 5.7 4485 0.793 0.14 43.6 960 7.1 7.9 
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TABLE 6 

TESTING DATA AND NETWORK PfiEDICTION 

Column Name Defination Unit 
No. Record Number 
lnput1 Loadina Rate to Aeration Basin lbs/dav 
lnput2 Mixed Liouid Suspended Solids mQ/1 
lnput3 Dissolved Oxygen Uptake Rate mq/1 
lnput4 Food and Microorganisms Ratio in Aeration Basin 
InputS fpH in Aeration Basin s.u. 
lnput6 Dissolved Oxygen mg/1 
Input] Recycle Suspended Solids lmg11 
InputS Recvcle Ratio MGD 

InputS Ammonia Nitrogen in Clarifier moll 

lnput10 Nitrate Nitrogen in Clarifier mall 
lnput11 30 Minute Settling in Clarifier ml/30 minute 

Output Measured Sludge Blanket Deoth feet 

Predict Neural Network Predicted Sludge Blanket Depth feet 

No. Input 1 lnput2 lnput3 lnput4 InputS lnput6 Input? InputS lnput9 Input 10 lnput11 Output Predict 

1 31730 3520 31.7 0.77 7.11 0.7 4630 0.59 0.73 31.2 310 12.1 12.2 

2 8197 3815 19.2 0.18 7.05 4 6355 0.6 2.7 21.5 500 10 5 10.0 

3 13589 4325 28.5 0.27 7.36 3.2 8915 0.59 20.9 40 430 l.l 8.9 

4 12483 4790 29 6 0.22 6.84 3.5 BOOB 0.589 6.5 34 400 7 7.0 

5 5278 4885 19.1 0.09 7 4.4 7240 0.607 0.45 24.7 730 7 7.4 

6 7750 5035 11.7 0.13 6.91 5.3 7660 0.617 0 35 27 1 860 6.8 7.4 

7 15064 4150 16.9 0.31 7.05 4.8 7300 0.6 0.45 31.2 330 8 9.1 

8 14867 4615 27.6 0.28 7.09 2.7 9165 0.595 0.53 31.2 320 8 8.9 

9 6774 3535 21.7 0.16 7.12 2.3 5675 0.801 0.41 40 470 9.8 7.5 

10 8196 3790 23.5 0.19 7.08 1.7 7962 0.602 0.49 41.4 470 9.3 6 1 

11 6117 3205 20.2 0.10 7.21 2 7688 0.53 0.46 4.1-1 630 7.7 6.7 

12 7982 3162 23.8 0.22 7.14 2.2 4912 0.271 2.42 43 750 7.9 8.0 

13 4967 188S 19.1 0.23 6.97 4.9 3254 0.232 0.61 20.~) 590 9 fJ 9 4 

14 6321 2145 18.1 0.25 7.11 5.6 2605 0.357 4 .G7 77.1 560 1 1 10.5 

15 4632 2290 18 0.17 7.24 4.2 5900 0.42 0.33 34.4 200 10 11.1 

16 4172 2445 14.2 0.15 7., 6 4.7 6695 0.337 0.48 S6.S 270 9.4 9.2 

1 7 6161 2530 16.6 0.21 7.18 4.7 5938 0402 0.36 48 6 590 7.9 9.4 

18 3821 2660 13.9 0.12 7.23 5 7020 0.252 0.52 43.5 590 8 8.0 

19 7464 27SO 22 -~) 0.2 3 7.24 , .8 437S 0.29 1 .19 43S 170 11 9.9 

20 6324 2000 14.2 0.27 7.31 4.4 4075 0.395 1.42 50 lG:-i 12 11 .4 

21 12222 2540 32 0.41 7.41 4 5·12::- 0.•:9 0.47 1 ~).4 2~0 10 11 0 

22 6957 2736 22.4 0.22 7.48 3.1 5240 0.159 0. 71 43 215 11 .5 (0.5 

23 59·18 2635 25.1 0.19 7.43 2.2 5050 0.357 0.6 59.6 300 9 10 3 

24 8964 2430 25.7 0.32 7.44 2.2 7005 0.341 0.57 2~) _g 390 9.8 9.7 

25 10292 2890 24.4 0 31 7.43 2.5 556!) 0.191 0.53 40 430 3.5 10.0 

26 15274 2900 21.8 0 45 7.47 3.1 5745 0.4/ 0.37 312 soo 3.? 9.0 

27 5337 340!.> 26.6 0 13 7.12 2.9 6630 0.389 1.u:, 32.7 BlO H.5 8.1 

28 5211 3500 22.1 0.13 7.03 4 8285 0.287 0.49 34.4 rno 8.~ 8.3 

29 15921 2655 15.9 0.51 7.38 5.6 6830 0.233 0.22 344 !360 9 8.4 

30 10615 3045 17.7 0.3 7.35 5.5 7605 0.238 0.34 4 1 .4 800 9.2 8.G 

31 12483 2760 21.2 0.39 7.42 2.2 5235 0.239 1.05 28 4 870 8.7 8.6 

32 G830 3205 28.2 0.18 7.44 2 4890 0.47 0.4S 34.4 G70 9.4 9 7 

33 6902 2905 22.2 0.2 7.57 2.6 4585 0.445 0.5 45 530 9.4 9.2 

34 5807 2910 20.7 0.17 7.46 2.9 5310 0.409 0.44 41 .4 530 9.S 9.0 

35 3970 2725 18.5 0.12 7.43 3.7 5680 0.4 91 0.59 29.8 600 9 9.7 

36 3510 2735 20.5 0.11 7.5 32 5150 0.717 0.61 28.4 ~so 9.1 8.7 

37 5413 3655 18.2 0.13 7.42 4.9 6000 0.63!• 0 :ll •:3 910 8.6 7 .fl 

38 5562 3810 18.6 0.13 7.61 3.2 627S 0.33 0.3'1 :H.4 910 7.8 70 

39 7138 3915 16.2 0.16 7.63 3 6 ~'775 0.287 10 37 3•1 4 8'1 () H_:) 80 

40 11 G·'l1 3~)5~) }3 1 <) 28 7.59 .3. 1 5550 0.4 ,0.6 .J;> .7 H~)O 1'32 n 9 

41 6!333 43·10 24.3 0 13 7.53 1.8 Gl-10 0.43[3 !o 3S 204 900 
17 8 

fl 4 

42 G526 4440 29.4 0 13 7.41 1.6 8100 0 376 10 3,~ 27S 9!)0 7 / 7. 

43 9477 S412 29.4 0.15 7.46 2.7 9225 0.274 O.G :)0.6 B30 G fJ 6 .; 

'~ 4 12~-340 4775 31.'3 0.23 7.49 3.5 7A25 0.19<1 ,O.Jl 4 9 !' 730 l 1 {_) ~) 
' 

i0 . .1 

3 
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TABLE 6 (Continued) 

No. lnput1 lnput2 lnput3 lnput4 !nput5 lnput6 lnput7 InputS _InputS lnput10 lnput11 Output Pr.dict 45 4881 4975 27.1 0.08 7.49 1.9 6350 0.39 0.22 47.8 220 10 9.9 46 6162 4145 29.9 0.13 7.52 1.8 7550 0.648 0.23 32.7 220 11 10.8 47 12948 4775 31.9 0.23 7.49 3.5 7625 0.194 0.31 49.8 230 10.5 10.4 48 4881 4975 27.1 0.08 7.49 1.9 6350 0.39 0.22 47.8 220 10 9.9 
49 6162 4145 29.9 0.13 7.52 1.8 7550 0.648 0.23 32.7 220 1 1 10.8 
50 8865 4250 22.4 0.18 7.6 2.9 7750 0.524 0.13 43.4 300 11.5 10.2 
51 7044 4145 28.4 0.15 7.59 2.7 7875 0.638 0.14 40 320 11.5 10.6 
52 15882 4150 45.1 0.33 7.58 1.6 6525 0.591 0.16 31.3 320 11.5 9.5 
53 6009 4255 23.5 0.12 7.59 3.8 7000 0.692 0.29 34.2 330 10 10.6 
54 5365 4825 29.6 0.1 7.6 2.4 6775 0.622 0.19 44 330 10 9.9 
55 7898 5125 32.1 0.13 7.55 4.2 7765 0.641 0.21 58.4 320 11.2 10.5 
56 6183 4050 16.3 0.13 7.49 3.5 7470 0.752 0.23 63 400 10.6 10.5 
57 7893 5300 16;4' 0.13 7.64 3.1 8760 0.482 0.14 43.2 880 7.1 7.1 
58 6718 5090 20.7 0.11 7.55 1.9 8125 0.474 0.07 49.2 870 7.5 6.8 
59 5521 5340 33.4 0.09 7.44 2.3 8980 0.567 0.19 44.4 320 8.1 9.7 
60 5767 5140 27.5 0.1 7.44 2.4 7345 0.766 0.24 39.2 310 8 9.1 
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TABLE 7 

NEW DATA AND NETWORK PREDICTION 

Column Name Defination Unit 

No. Record Number 

Input 1 loading Rate to Aeration Basin lbs/day 

lnout2 Mixed liquid Susoended Solids mg/1 

lnout3 Dissolved Oxvoen Uotake Rate mg/1 

lnout4 Food and Microoraanisms Ratio in Aeration Basin 

InputS :pH in Aeration Basin s.u. 

lnput6 Dissolved Oxyqen mg/1 ··-

lnout7 Recycle Suspended Solids mg/1 

InputS Recycle Ratio MGD 

lnput9 Ammonia Nitroqen in Clarifier mq/1 ··--
lnput10 Nitrate Nitrogen in Clarifier mg/1 

Input 11 30 Minute Settling in Clarifier ml/30 minute 

Output Measured Sludge Blanket Depth feet 

Predict Neural Network Predicted Sludge Blanket Depth feet 

No. Input 11 lnput2 lnput3 lnput4 InputS lnput6 lnput7 InputS lnput9 lnput10 Input 1 1 Output Predict 

1 6188 4185 20.5 0.13 7.48 2.8 6850 0.673 0.21 35 210 12 10.7 

2 6076 4640 27.9 0.11 7.46 2.4 6160 0.688 0.16 33 220 11.4 10.!:> 

3 7737 4475 46.1 0.15 8.38 2.7 6740 0.675 0.22 33.54 250 1 1 .4 4.0 

4 10939 4655 25.9 0.2 7.66 2.9 5630 0.58 4 23.9 250 11.2 1, .5 

5 19603 4505 42.3 0.37 7.61 1.7 6595 0.687 0.26 23.9 250 11.7 8.7 

6 10030 4730 41.8 0.18 7.91 1.3 6172 0.752 0.23 20.3 300 1 1 . 1 8.6 

7 9014 5045 32 0 15 7.58 1.3 7525 0.685 0.96 22.7 300 1 1 9.5 

8 7944 5310 25.3 0.13 7.5 3.9 8145 0.662 0.34 22.9 280 1 1 11.3 

9 6826 5105 20.9 0.11 7.43 1. 7 9025 0.652 0.38 29.6 300 10.9 9.4 

10 5165 5100 21.8 0.09 7.45 2.5 7415 0.1 0.17 33.9 300 10.9 10.0 

1 1 8423 4850 21.9 0.15 7.51 2.1 6925 0.698 0.16 31.9 300 1 1 9.7 

12 4771 5140 24.7 0.08 7.53 3.9 7610 0 66 0.25 30.4 330 11 11 . 1 

13 8149 4940 28.2 0.14 7.46 3.5 4940 0.736 0.18 54 325 8.3 11 .~ 

14 5424 5020 30.4 0.09 7.4 4.6 8365 0.622 0.15 47.6 350 9.1 8.0 

1!:5 8404 5145 35.1 0.14 7.4 3.8 7680 0.702 0.16 5S.6 300 8.5 8.4 

16 9144 4680 25.3 0.17 7.25 3.7 7050 0.669 0./S 59 280 9 8.9 

17 14034 5535 30.1 
0 221 

7.691 4.4 6760 0.697 0.17 GO 760 8.9 11.0 

18 5977 5245 36.9 0.1 7.44 13 9405 0.5C>1 0.17 49 260 10 10.1 

19 4359 4880 25 0.08 7.37 5.3 9405 0. 707 0.19 35 260 9 7 9 1 

20 7016 5030 27.7 0.12 7.47 1.6 7755 0.612 0.15 5n 300 11 10.0 

21 5626 4450 18.7 0.11 7.43 
4 3\ 

6533 0.709 0.2ti 44 230 11 11.0 

22 12658 4675 31.8 0.23 /.4/ 1.9 6185 0.707 0.16 4!3 6 230 11.6 11 .0 

23 10959 4850 43.2 0.19 7.52 2 Gl 9500 0.626 0.19 40.4 260 12 10.5 

24 9223 5650 39.9 0.14 7.53 2.9 5tl50 0.595 0.49 31 290 12 11.0 

25 9873 5512 34.7 0.15 7.53 3.4 8225 0.7:08 0.36 ~4.6 780 1 1 .4 9.4 

26 11935 5288 35.3 0.19 7.4 5 i -~ 75!.:>5 0.704 0.31 3) .6 200 1 1 . 1 10.:! 

27 8654 5045 41.7 0.15 7.49 3 8080 0.645 3.65 50 250 11 10.6 

28 4183 5015 31.8 0.07 7.51 2.1 6950 0.729 0.33 27.2 270 11.8 11.0 

29 9258 4830 27 0.16 7.51 1.9 7730 0.773 0.24 34.8 260 1 1.8 10.6 

30 14904 4815 27.5 0.27 7.571 2.7 8925 0.687 0.24 34 8 370 1 1 .5 10.2 

31 9357 5380 30.1 0.15 7.52 2 9020 0.744 0.24 18.G 4/0 10.8 11 .2 

32 9600 5150 26.9 0.16 fl.41 4.5 9265 0.648 0.19 1f3.2 5.30 8 9.3 

33 5497 5580 19.5 0.08 7.66 7 flOSS 0.569 0.19 17.5 620 10 10.1 

34 6620 5290 20 0.11 7.56 2 8450 0.69 0.18 23 3 630 10 10. 6 

35 3515 5510 73.5 0.05 7.51 1.5 8810 O.Gll 0.19 24.6 710 10 11.1 

36 5126 5120 21.6 0.09 7.~2 7.9 6850 0.702 0.16 78.9 710 10 10 ., 0 

37 12299 5140 17.2 0.2 7 .·19 3.4 8313:::: 0.801 01<1 7 ~" .fl 630 9.3 p ~~ 

38 9907 69c•O 29.4 0.17 7.49 3,5 9190 0 7 0.31 31.1 7~J(j 7.3 1Cf 
I U.Z lj_,. 

39 Rl7u 51320 21.7 0.12 7.59 3 i 101 ()5 0.761 0.1] 2e.3 B~JO 

40 4120 4875 w o.o·; } .55 7 7 8'\RO 0.5.l~ U.2 2~ 81 230 11 9.: 

41 51961 5080 19.3 0.09 7 .4:J 2.5 9370 o n7j 0.1 29.G f~-~.o ,~I fJ' 

42 655U 5G25 24 7 0.1 7.53 2 9~75 0 726 0.1] :l04 8/0 9. 8 



TABLE 7 (Continued) 

No. I lnput2 lnput3 lnput4 InputS lnput6 lnput7 InputS 
43 6514 5465 24.3 0.1 7.56 2.5 9290 0.687 
44 5070 6315 23.3 0.07 7.58 2.2 131~ 0.673 
45 5524 6670 24.7 0.07 7.58 3.5 1 1745 0.754 
46 5828 2325 13 0.21 7.79 5.4 5400 0.796 
47 8863 3465 17.1 0.22 7.67 4.1 9775 0.763 
48 8687 4880 27.2 0.15 7.6 3.5 9485 0.749 
49 5746 5255 26.1 0.09 7.49 3.2 9475 0.712 
50 9462 5195 37.1 0.16 7.51 2.1 10750 0.721 
51 11890 5670 36.1 0.18 7.51 3.5 9275 0.701 
52 12638 6000 30.9 0.18 7.45 4 8700 0.688 
53 7360 5245 17.5 0.12 7.38 4.4 8325 0 693 
54 5036 5385 22.6 0.08 7.37 3.2 8590 0.699 
55 6136 5080 30.4 0.1 7.49 1.8 7640 0.736 
56 7757 5005 38.2 0.13 7.41 3.4 9300 0.746 
57 5540 522.0 35.5 0.09 7.48 4.9 6390 0.716 
58 4975 5034 35.5 0.08 7.39 4.2 8650 0.725 
59 12716 4625 36 0.24 7.41 2.6 9275 0.689 
60 5302 5085 38.2 0.09 7.48 2.5 8335 0.693 
61 4825 4610 26 0.09 7.49 4 7925 0.731 
62 7561 4595 27.3 0.14 7.43 2.3 7930 0.806 
63 6436 4585 27.3 0.12 7.44 2.3 7930 0.806 
64 8271 4575 34.5 0.15 7.42 3.3 8440 0.327 
6"' 5531 4680 15.2 0.1 7.38 5.1 9200 0.73 
66 6212 4415 19.1 0.12 7.43 3.7 7750 0.769 
67 9214 3930 15.9 0.2 7.48 4.6 7705 0.784 
68 10302 4740 21.4 0.19 7.45 2.3 8400 0.256 
69 4386 5260 26.5 0.07 7.41 3 8545 0.71 
70 6754 4795 1 1.5 0.12 7.37 6 8Hi5 0.727 
71 9791 4800 20 0.17 7.47 2.7 9345 0.752 
72 6833 4695 25.3 0.12 7.45 2.1 9010 0 698 
73 4327 4705 22.1 0.08 7.45 3.3 8315 0.751 
74 10923 4415 22 0.21 7.38 1.4 8855 O.fi99 
75 7300 4920 16.9 0.13 7.48 4.9 9156 0.723 
76 6521 5190 23.8 0.11 7.41 2.8 9850 0.658 
77 6454 5875 29.1 0.09 7.44 2.3 8705 0.748 
78 8427 4690 31.5 0.15 7.5 1.7 8470 0.724 
79 11199 4980 33 0.19 7.42 3.2 7205 0.759 
80 5418 5430 28.4 0.09 7.33 3 823:, 0.777 
81 5959 5455 18.9 0.09 7.42 3.1 8575 0.71 
82 10311 5145 27.2 0.17 7.89 2.7 8645 0.721 
83 6102 5255 24.6 0.1 7.57 2.3 7500 0.757 
84 6760 5260 12.7 0.11 7.49 7.2 8970 0.674 
85 6190 5310 22.5 0.1 7.25 3.5 8760 0.634 
86 4763 4760 17.2 0.09 7.4 5.3 9035 0.745 
87 7738 490>0 25.9 0.13 7.5 7.9 8470 0.734 
88 6024 5355 23.8 0.1 7.49 2.9 8945 0.688 
89 3301 4970 2 1.1 0.06 7.52 4.1 7920 0.726 
90 3672 4760 15 .5 0.07 7.42 4.9 7530 0.72 
91 6004 4965 18.5 0.1 7.43 3.9 8565 0.724 
92 7915 4855 29.8 0.14 7.38 3.7 7640 0.673 
93 2740 5080 23.3 0.05 7.34 4.4 7275 0.655 
94 3604 4860 20.3 0.06 7.39 35 8155 0.719 
95 6518 4660 28.7 0.12 7.3 2.5 7815 0.728 
96 4610 5415 19.8 0.07 7.42 2.6 7760 0.676 
97 3879 5215 19 3 0.06 7.44 4.8 74 35 0./35 

98 4258 4635 17.9 0.08 7.46 4.4 7465 0.769 
99 7102 4740 21.3 0.13 7.5 2.6 971S 0.776 

100 61l11 S3001 11.7 0.11 7.45 6.1 8100 0.6f38 
101 6096 5100 16.2 0.1 7.33 4.7 4':)05 0.63S 
102 4261 4505 16.8 0.08 7 38 3.6 70~:) 0 flOfl 

103 5272 4700 1 1. G 0.1 7.33 7.7 79251 0. 7~) 1 
104 1097 J 469S! 2:J 0.2 7.31 2.3 7425 O.fi28 

InputS lnput10 lnput11 

0.17 27.1 790 
0.14 29.4 770 
0.15 22.6 790 

0.1 1 1 180 

0.15 9.9 270 

0.13 10.1 380 
0.35 17.9 410 

0.3 15.9 380 
0.35 17.6 430 
0.37 20.1 370 
0.35 25.1 370 
0.21 24.5 305 
0.21 23.5 300 

0.26 20.6 280 
0.27 30.1 280 
0.25 28.4 270 
0.29 31.2 240 
0.27 29.3 240 

0.27 29.2 240 

0.21 23.9 250 
18.2 20.6 250 

0.26 27.4 275 
0.18 30.6 350 
0.14 24.9 330 
0.22 19.6 340 

0.18 17.1 400 
0.22 19.4 420 
0.18 21.9 520 
0.14 22 430 

0.1 19.5 450 

0.1 1 16.5 570 
0.1 20.2 450 

0 OR 19.7 530 

0.08 19.7 480 

0.13 16 1 450 

0.18 18 440 

0.1 (j 17.1 570 

0.23 27.7 4601 

0.17 31.6 620 

0.17 31 530 

0 2 2:.>.3 560 
0.24 25.7 610 

6.71 27.6 670 

4 61 30.2 720 
0.1() 2 ~).8 700 

8.9 19.4 630 

0.2 17.4 660 

0.18 20.2 700 

0.15 17.8 570 

0.11 19.4 520 

0.33 33.2 480 

0.14 27.3 490 

0.12 35.1 390 

1.38 36 400 

0.17 26.4 390 

0.17 22.3 415 

0.151 26 470 

0 lfi 28 530 

0.12 30 510 
t) .15 27.4 4 70 
0.<13 } t). f) no 
0,56 30 SGO 

Output 

9.7 
9.7 

9 
12.4 

10.4 

10 

11 
10.9 

12 
10 

10.2 

10.9 

1 1 
11.7 

11 
10.9 

11.1 

10.6 

11 

11.8 

11.8 

11.1 

10.2 

10.4 

10.8 

10.2 

10.2 

9 
8.2 
7.8 

9.2 
8.8 

9.2 

8.1 

8.7 

8.7 

8.4 

7.7 

7.9 

8 

7.9 

1 
7.3 

8.3 
8.4 

8 
8.1 
7.6 

7.7 

7.7 

8 
8.7 

8.3 

8.2 

9.2 

9 

9 

7.8 

8 
8.1 

7.6 

8.2 
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Predict 
10.4 
10.0 
10.4 

12.3 
11.5 

10.8 

10.2 
10.7 
10.0 

9.5 
10.5 
10.5 

10.8 

10.5 

11.9 

11.6 
11.3 

11 .2 

12.0 
10.8 

11.5 

10.2 
9.4 

11.2 

11.3 

10.3 
10.8 

9.6 
10.2 

10.7 

10. 0 

10.1 
9.r, 

10. 

9. 

10. 

9. 

9. 

7. 

0 

6 

2 

7 
3 

5 
3 

0 

3 
3 

5 

2 
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TABLE 7 (Continued) 

No. lnputl_l lnput2 lnput3 lnput4 Inputs lnput6 lnput7 InputS InputS lnput10 lnput11 Output Predict 105 4038 5130 26.8 0.07 7.39 2.6 8515 0.822 0.38 71.2 580 7.8 8.2 106 3155 4660 7.2 0.06 7.46 8 7655 0.696 0.36 84 820 7.8 8.8 107 5414 4750 10.1 0.1 7.42 7 8260 0.651 0.3 83.5 820 7.2 8.8 108 5230 4605 11.7 0.1 7.4 6.3 7730 0.68 0.31 72 760 8 8.8 109 9313 5080 21 0.16 7.33 2.7 8185 0.726 0.32 65 730 7.3 7.8 110 5294 5075 19.5 0.09 7.46 4.5 8235 0.709 0.55 71.75 790 8.6 6.3 111 6025 4700 17.1 0.11 7.28 5.5 8430 0.695 0.29 77 900 7.9 7.7 112 4499 4955 18.2 0.08 7.36 5.9 8030 0.697 8.74 99.5 830 8.1 8.7 
113 4139 5055 13.3 0.07 7.39 6.8 7780 0.733 0.31 75.25 860 8 7.4 
114 4065 5025 16.3 0.07 7.33 5.5 8650 0.719 0.28 58.5 850 8.1 8.2 
115 4112 4920 15.4 0.07 7.52 6.1 7620 0.726 0.44 43 880 7.2 7.1 
116 10457 4490 14.8 0.2 7.26 5.9 10250 0.715 0.36 31.4 910 6.6 8.5 
117 7148 4970 • 24.2 0.12 7.27 3.8 8445 0.644 4.12 59.2 890 6.9 7.5 
118 4161 5785 18.9 0.06 7.35 4.5 9825 0.677 0.34 68 865 7.3 7.8 
119 6712 6150 21.9 0.09 7.37 2.4 8590 0.68 0.29 50.25 900 7.3 7.5 
120 4289 5665 9.8 0.06 7.52 7.2 7910 0.684 0.21 21.1 945 6.9 7.3 
121 5747 5595 14.5 0.09 7.46 4.2 9240 0.697 0.27 26.7 930 6.8 7.1 
122 4131 5910 30.3 0.06 7.45 1.7 8635 0.627 0.38 49 910 6.7 8.2 
123 6066 5955 20.6 0.09 7.4 3.5 9930 0.684 3.75 45 910 7.1 6.4 
124 4397 5450 14.3 0.07 7.52 5.4 8795 0.645 0.22 43 920 6.9 6.9 
125 12380 5060 21.8 0.21 7.31 3.3 9525 0.696 0.29 19.2 950 6.5 7.3 
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