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PREFACE

This paper presents a new matrix scaling method by Chandler for improving the
stability of pivoting algorithms and making it easier to estimate the condition of a problem
and the accuracy of the solution.

The algorithm has been implemented using FORTRAN, and compared with
Hamming's matrix scaling method with respect to their performance prior to Gaussian
elimination with the partial pivoting method. Numerical results on 36100 matrices tests
indicate that the new method is efficient as well as robust.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

This thesis studies matrix scaling methods in numerical analysis. Matrix scaling
methods are used to improve the stability of pivoting algorithms and make it easier to
estimate the condition of a problem and the accuracy of the solution. These methods are
useful in solving linear equation systems.

What is matrix scaling? It is the method of scaling a matrix by rows and columns
(or the reverse) to make the largest element in any row or column equal to, or close to 1.
How to scale a matrix? A matrix is scaled by multiplying any row or column by a
nonzero number or substituting any unknown with a new one which is a multiple of the
old one.

Forsythe and Moler (1967) state that "the need for proper scaling of a matrix is
very compelling if we are to devise a program to solve as many linear equation systems as
possible," but "it is quite unclear to us how to program a reasonable scaling of a general
matrix." Since the lack of equality in the sizes of the elements of a matrix is responsible
for the question, it is reasonable to try to scale the rows and columns of a matrix to
balance it.

For a linear system of equations Ax=>b, the various components x, frequently have
different physical measure units. To unify the system, we always need to scale the matrix
before solving the linear system of equations. If we multiply two nonzero diagonal

matrices D, to b and D, to x, the original equations are changed to 4D,x = D,b which is



the same as D;'4D,x = b. Therefore, we can look at D;' 4D, as a scaled equivalent of 4
where D;'4 is a row-scaled equivalent of 4 and 4D, is a column-scaled equivalent of 4.
In general for scaling, it is not necessary to select the elements of D] and D, very
precisely. In floating-point computation with base 8, we could choose the elements of
D;" and D, as integer powers of the base f§ so that only the exponents of the float-point
number elements of A are changed but the fractional parts or mantissas of them are
unchanged (Forsythe and Moler, 1967, p.23). Therefore, there are no rounding errors in
such scaling. If the elements of D;' and D, are integer powers of the base § and 4’
=D['AD,, A’ is B-scaled equivalent to A. Forsythe and Moler (1967) state that "Let
floating-point matrices 4 and A’ (=D['4D,) be B-scaled equivalent. Suppose that b=D,b’.
Then, if the indices of the pivot elements and their order of selection have been fixed in
advance, the solution by Gaussian elimination in floating-point arithmetic of the systems
Ax=>b and A'’x"=b" will produce precisely the same significands in all answers and all
intermediate numbers (unless there is an exponent overflow or underflow)". "The only
possible effect that scaling a matrix by integer powers of 3 can have on elimination is to
alter the choice of pivot elements”". Therefore, improper scaling method may make a
general pivoting method inadequate.

Let Ax=>b be a linear system with non-singular matrix and n unknowns. To figure
out the effect of uncertainty of A and & on the solution x, we set the original linear system
Ax=b as (A + 8 A)(x + 6x)=b and A(x + dx)=(b + 6 b).

For (A + 6A)(x + 6x)=b, we get that (Forsythe and Moler, 1967, p.23)

|8 “ d(A)” 4 where cond(A)=“A”'”A_l”~

ferad =V

For A(x + 8x)=(b + §b), assuming b#0 we get that (Forsythe and Moler, p.20, 1967)

”5"” cond(A) 58] where cond(A)zuA"'UA_l"'

I+ ol



If the condition number is small, then small perturbations in 4 or b lead to small
perturbations in x. The inequality cond(4)2>1 is always true (Kincaid and Cheney, 1991,

p.166), because cond(4)=|4|- ”A""?. “AA "“=1. If ¢ is any scalar, we can get

cond(cA)=cond(4). If A is a symmetric matrix, we have cond(A)='%2l where A, and A,

are the eigenvalues of largest and smallest magnitude (Wilkinson, 1965, p.191). Defining

_l5 |8]

the relative error of x by p = ” “ and the corresponding relative residual by p, = W or

gL

4

we get

1 < Px <cond(A) (Forsythe and Moler, 1967, p.54).
cond(A)

A matrix with a large condition number is said to be ill-conditioned. For an ill-
conditioned matrix 4, there may be small changes in 4 or b that can generate big changes
in x (Hamming, 1971, p.117). If the condition number is of moderate size and the results
are not sensitive to small changes in the coefficients, the matrix is said to be well-
conditioned (Noble, 1969, p.231). In general, we decide whether the condition of a
matrix is good or poor by the condition number. The bigger the condition number is, the
worse the condition is, usually. Conversely, the smaller the value is, the better the
condition is. However, poor scaling may inflate the condition number without degrading
the accuracy of x.

E le. A= :
Xampie. .
0 10-10

1 0
We get 4™ = {O o' 0} and the condition number k_(A4) = 10", but the numerical

solution of a system with matrix 4 has no subtraction and is very accurate.



Since the condition number is an upper bound of the true condition, sometimes we
can use it to as reference index. The condition number is defined with respect to a chosen

norms. The natural norm associated with the 1, 2, and ©° vector norms are

l4], = mjaxila,j[ (maximum absolute column sum),
i=1

V2

|4|, = { maximum eigenvalue of 4" 4}"* (spectral or Euclidean norm).

"A[L = maxiia,.jl (maximum absolute row sum) (Noble, 1969, p.429).
i =l

For using pivots to get optimum solutions, we must avoid pivots elements which
are small in absolute value because cancellation could cause incorrect results. Therefore,
we need to choose the largest element in every column with row interchange. This
method is the well-known partial pivoting method (Forsythe and Moler, 1967, p.35).

For equilibration, we scale the rows or columns of the matrix 4 such that the rows
or columns attain more or less equal norms for some vector norm. In general we know
that equilibration tends to reduce the condition number of matrix A (Van Der Sluis, 1970,
p.75). Therefore, how to design a proper scaling method is very important.

The following examples (Forsythe and Moler, 1967, p.34 and p.40) show the cases of (1)
well-scaled problem without pivoting, (2) well-scaled problem with partial pivoting, and
(3) badly-scaled problem with partial pivoting.
Example. Assuming three-decimal floating arithmetic, we need to solve the system
0.000100 x, + 1.00 x, = 1.00
100 x,+1.00x, =200
the true solutions are x,=1.00010=1.00 and x,=0.99990=1.00
(1) well-scaled without pivoting;
The solution is by Gaussian elimination without interchange. We have
0.000100 x, +1.00 x, = 1.00
-10,000 x, =-10,000.



x,=1.00 and x,=0.00 (wrong due to subtractive cancellation of leading significant
digits).
(2) well-scaled with partial pivoting :
The solutions are by Gaussian elimination with interchange. We have

1.00 x, + 1.00 x, =2.00
1.00 x, =1.00

x,=1.00 and x,=1.00 (correct).

(3) badly-scaled with partial pivoting:
We multiply the first original equation by 10°;
10.0 x, + 100,000 x, = 100,000

1.00 x, +  1.00x,=  2.00.

Because 10.0 > 1.00, after elimination we get

I

10.0 x, + 100,000 x, = 100,000
-10,000x, = -10,000.
The results x,=0.00 and x,=1.00 (wrong) are incorrect also.

From the above examples we know (1) Solving a well-scaled problem without
pivoting, we may get bad results. (2) Solving a badly scaled problem with pivoting, we
may also get bad results. (3) Solving a well-scaled problem with pivoting, we get good
results. Lack of pivoting can produce very poor results, but pivoting without scaling can
also produce very poor results. For partial pivoting, row equilibration is sufficient. For
complete pivoting, we need to scale both rows and columns.

A new method, to attempt to solve the problem of matrix scaling, was designed by
Chandler. I will test this method with different sizes (from 2 to 20) of dimension to
understand the condition of convergence after scaling the matrix each time. Similarly, I
will test other methods in the same condition and compare the results.

This thesis is organized as follows:



In Chapter 11, I will explain how to generate an exponentially random matrix, how
to scale a symmetric positive definite matrix, how to scale a general matrix, how to judge
whether the scaled matrix is converging exactly or linearly, the condition number &,,, and
Hamming's method.

In Chapter III, I will study the convergence of the scaled matrix, then I collect
results and analyze data for any kind m*n (m,n>=2 and m,n<=20) dimension scaled
matrix, each dimension with 100 different random matrices and give an example of
problem of Gaussian elimination with the partial pivoting method and how to use
Chandler's and Hamming's methods to solve linear equation systems.

In Chapter IV, I will give conclusions based on the previous chapters.

Finally, a source program which implements these different matrix scaling methods

and output data will be put into appendices.



CHAPTER 11

METHODOLOGY

In this chapter, I mainly describe Chandler's matrix scaling method (Chandler,
1992) and Hamming's matrix scaling method (Hamming, 1971, p.115). Therefore, this
chapter will introduce (1) how to generate an exponentially random matrix, (2) how to
scale a symmetric positive definite matrix, (3) how to scale a general matrix by Chandler's

method, (4) how to judge whether the scaled matrix is converging exactly or linearly, (5)

the condition number &k, and (6) Hamming's method.

pp?

How to Generate an Exponentially Random Matrix

A random matrix of our method is generated by a pseudo random number
generator ( Cheney and Kincaid, 1980, p.203). Using the pseudo random number
generator with a seed (initial value), we can get a fixed sequence of floating-point numbers
uniformly distributed between 0 and 1. Namely, if we set different seeds in initially, the
random number generator generates different fixed sequences of floating-point numbers.
The desirable purpose is easily to debug a program and get a new sequence of uniformly
distributed numbers as the seed is changed. The following is the expression of the random

number generator
[, = (7°1_)mod (2*'-1) ¢))



X, =i~ whereix1 Q).
The initial value /, is called the seed. After initializing the seed /, from formula (1), the
sequence of /,, /,, ... is generated between 1 and 2*' —1. From formula (2), we get a
sequence of x,, x,, ... between 0 and 1. Besides the elements of the matrix including tiny
numbers, we also want huge magnitude elements included in our random matrix so that
we multiply the sequence of x,, x,, ... by 30.0 as exponents of the decimal base. We get
all the elements of a random matrix in the range of 10° ~ 10*°. We can set different

numbers of rows and columns and use for-loops to call the generator with different seeds

to get any dimension and different random matrices.
How to Scale a Symmetric Positive Definite Matrix

If A is a symmetric positive definite matrix, then A=B" B. We could freely choose
a matrix B, then scale B as || col. of B || = 1 by normalizing each column of B to unit
length. From A=B’B, we would then get the symmetric positive definite matrix A where
a,=1, Ia jk} <1 when j#k (as large as possible). Similarly, we scale a symmetric positive

definite matrix A by dividing a,, by \/a,a, . We also get the same matrix a,=1, ‘a fk' <1

when j#k.

Example:

- NN
W NN

8
Set matrix B=| 1
4

% %%
(1) Scale Bby || col. of B||=1,weget B=|% % %/|. After B" B, we get the matrix
% KA



1 3 27 3%3

A= 2347 1 19, 1.

3463 ‘%1 1
81 22 34
(2) From A=B"B, we get A={22 9 19|. After dividing a, by ,/a,a,, , we get the
34 19 49
]' z 27 3%3

same result A=|24, 1 1% 1.

4, 19
> 63 21 1

How to Scale a General Matrix by Chandler's Method

If we perform Gaussian elimination on a general matrix using floating point
arithmetic, we must use some kind of pivoting in order to have a stable algorithm that
gives accurate results (Wilkinson, 1965, p.212; Forsythe and Moler, 1967, p.35). In
partial pivoting we search on and below the main diagonal of the first column of the

unreduced part of the matrix.

A

Reduced

Zero

Search here, in partial pivoting

We use the element of largest magnitude as the next pivot.
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If the matrix A is scaled arbitrarily, partial pivoting can give bad results even on a
well-conditioned matrix A (Forsythe and Moler, 1967, p.40). To prevent this we should
scale the matrix performing Gaussian elimination. For partial pivoting it is sufficient to
scale only the rows of A. This operation, often called row equilibration (Wilkinson, 1965,
p.213), is carried out by dividing each equation by the coefficient of largest magnitude in
that equation. In partial pivoting there is no reason to scale the columns of A, as this
could not affect the choice of pivot.

An algorithm that is even more stable than partial pivoting is complete pivoting, in
which the entire unreduced square portion of the matrix is searched at each stage. Again,
the element of largest magnitude becomes the next pivot element. For complete pivoting
it is necessary to scale columns as well as rows. One might think that you could just
"scale rows, then scale columns", in each case dividing by the coefficient of largest
magnitude. Unfortunately, this method often gives different results than "scale columns,
then scale rows", and there is no rationale for choosing one method over the other. Also,
either method can leave some elements with a smaller magnitude than necessary, allowing
greater error than necessary in the numerical solution of the linear system.

We wish to adapt the simple "scale rows then scale columns" algorithm to one that
will still scale any matrix but which, if applied to a symmetric positive definite matrix, will
produce the diagonal scaling shown above in one iteration. One method that will do that
is
(1) Scale rows by dividing by the square root of the largest magnitude element,

(2) Scale columns,
(3) Scale rows.

Expressed in the mathematical formula, this method of "scale down" is:

_ DLU) _
(1) DL(J) = T 40 K R where J= 1 to number of rows,
(2) DR(K) = iy T %; Where K= 1 to number of columns,
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_ DL(J) —
(B)DL(J)= DL A KT OREY where J= 1 to number of rows.

This algorithm scales down large elements. It has at least three disadvantages, however,
(1) The small elements are often smaller than necessary. (2) The condition number is
often larger than necessary. (3) The results of this rows-columns-rows algorithm is
different from the corresponding columns-rows-columns algorithm. The small elements
need to be scaled up. Perhaps the simplest way to scale elements up is to invert each
nonzero element, scale the matrix down and invert the elements back again. So we
alternate the "scale up" and scale down" procedures iteratively, finishing with "scale
down" to produce the desired elements of unit magnitude in the final scaled matrix.

Expressed in mathematical formulas, this method of "scaling up" is:

DL(J
(1) DL(J)=— ) where J=1 to number of rows,
N min|DL(J y*A(J K)*DR(K)|

(2) DR(K) = 50 Jfff(‘ﬁ), prcky Where K=1 to number of columns,

_ DL(J) —
(3) DL(J) = L 4T KRR where J=1 to number of rows.

In this procedure two switches are used, one called INV to control scaling up (INV=1) or
down (INV=0), the other is called MRC to decide whether to scale rows (MRC=1) or
columns (MRC=0) first. We set two arrays as the left and right diagonal scaling matrices
to keep the magnitude of left (DL(*)) and right (DR(*)) diagonal scaling matrices after
every scaling down or up. These two arrays are set to 1.0 in all elements initially. The
usage of this subroutine is to call SCALA with INV=1 and then with INV=0. Repeat this
pair of calls until the DL and the DR diagonal matrices all converge, but compare their
values only after the calls with INV=0, so that the final operation is a "scale down".

Note:
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After scaling, the original system Ax=b is changed to DL(J)A(J,K)DR(K)x'= DL(J)b'

d](” d](')
where DL = DR =

O )
d, d,

DR(J) - Right Diagonal Scaling Matrix

H ..... “

B DL(K) - Left Diagonal Scaling Matrix

How to Judge Whether the Scaled Matrix Is Converging

Exactly Or Linearly

This method has the extremely unusual feature that some elements of DL and DR
may converge exactly to their final values in a finite number of iterations while other
elements converge at only a linear rate toward their limits. The iteration has never failed
to converge, although convergence has not been proved. Repeatedly scale up and down
the matrix till the scaled matrix converges. The ratio of magnitude of the change of
elements of the diagonal scaling matrices to the elements themselves is used to judge
whether the matrix is converging exactly or linearly. In general, if the ratio is close to 0
(£107") and the number of iterations is less than (number of rows + number of columns
+ 10), the matrix has converged exactly. On the other hand, if the ratio is converging
slowly or the number of iterations is greater than (number of rows + number of columns +
10), the matrix is converging linearly.

Expressed in a mathematical formula,
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|ADL(J)| or |ADR(K)|
max(|DL(J),|DL_SAVE (J))) =~ max({DR(K)||DR_SAVE (K)|)

ratio=

where DL SAVE(J)=previous value of DL(J), ADL(J)=DL(J)—DL_SAVE (J)
DR_SAVE(K)=previous value of DR(K), ADR(K)= DR(K)—- DR_SAVE (K).
Exactly : ratio <107 and Num_Iter. < (number of rows + number of columns + 10)
Linearly : not exactly
This method has always produced the same scaling whether MRC=0 or MRC=1,
and the small elements of the scaled matrix always seem to be as large as possible, in some

sense.

The Condition Number

In general we know how to use the condition numbers &, (row max) and £,
(column max) to measure the condition of a matrix, but these reference indices relate to
the absolute error, not the relative error. For a more accurate measure of the condition of
a matrix, we need to use a reference index of relative error. & ,,, the condition number of
Gaussian elimination of partial pivoting, is a reference index of relative error.

i largest _|element|_in_scaled_matrix
P smallest _|pivot|_in_Gaussian_elim.with_ p.p.on_the_ scaled_matrix

Example:
6 12 24

The matrixis |3 4 5 |. The largest element of absolute value in the matrix is 24.
2 8 10

Using Gaussian elimination with the partial pivoting method, we get the matrix
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6 12 24 6 12 24 6 12 24
3 4 5|=|0 2 -5(=/0 4 2 | Thesmallest of absolute value of pivots

2 8 10 0 4 2 0 0 -6
(6, 4, -6) is 4. Therefore, we get the condition number & ,,= 24/4=6.

Hamming's Method

This method is a method of simultaneous row and column scaling. At first the

rows are multiplied by 2% (i =1,...,m) and the columns are multiplied by 2% (j =1,...,n)

al | al,n

and all of the m*n elements are multiplied by 2" . Ifthe matrix 4=|............. and
a,;...a,,

[a,.j] =2% where i=1,..,m and j=1,..,nthen the new exponentis b, +M+r, +c, .

To minimize the sum of the squares of the logs of the absolute values of the nonzero
elements in the scaled matrix,

n o+l
welet m=Y " (b, +M+r,+c)’. Then we differentiate with 7, and c, to get

i=1 j=1

n+l

%”- =2 G, +M+r+c)=0 (=1,..,m)
i J=1

% =23 b, +M+r+c)=0  (=1,..n)
j i=l

and we set the negative of the average of all the b, as

l % .
M= ——2 Zb‘. ; =-(average matrix element)
m-niga

Therefore, we get



r= -l z (b, ; + M)=-(average row element + M) and
=

-1 &
c;=— 2 (b, ; + M)=-(average column element + M).
m

i=1
The new exponent
b,+M+r, +c,
= b,; - M - (average row element) - (average column element)

= b, + (- M/2 - (average row element)) + (-M/2 - (average column element))

b,; + ((half average matrix element) - (average row element))

+ ((half average matrix element) - (average column element))
Therefore, we can design Hamming's scaling method as the following six steps:
(1) accumulate the logarithm of the absolute value of the elements in each row, then get
the average (ROW_AYV) of each row.
(2) accumulate the logarithm of the absolute value of the elements in each column, then
get the average (COL_AYV) of each column.
(3) accumulate the logarithm of the absolute value of the elements in the matrix, then get
the half average (HALF_AV) of the matrix.
(4) DLUJ)=EXP(HALF _AV-ROW_AV(J)).
(5) DR(K)=EXP(HALF_AV-COL_AV(K)).
(6) A'J,K)=DL()*A(J,K)*DR(K).

15



CHAPTER III

RESULTS

In this chapter, I mainly (1) make an illustration of the convergence of the scaled
matrix, (2) collect results and data analysis, including iteration and percentage of exact
convergence and reduction of the condition number by Chandler's and Hamming's
methods, for several sizes m*n (m,n>=2 and m,n<=20) dimension scaled matrix, each
dimension with 100 different random matrices, (3) give an example of a problem of
Gaussian elimination with the partial pivoting method and how to use Chandler's and

Hamming's methods to solve linear equation systems.

Hlustration of Using Chandler's Method: the Convergence of

the Scaled Matrix

Example of Linear Convergence of Chandler's Method

16
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2.814985E+06 2.213478E +06 4.762788E +21
The matrix to be scaled is | 6.519498E +19 3.142927E +17 4.973675E+17|.
1.139945E +08 1.114884E +22 6.154004FE +17

The condition numbers are k_=1.7104E+02 and k,=1.7101E+02. The inital left (DL(*))

The

S = O
_— 0 O

1
and right (DR(*)) diagonal scaling matrices are DL=DR=|0
0

convergence of the DL and DR matrices is shown in TABLE L



TABLE1

THE CONVERGENCE OF DL AND DR MATRICES

18

Iteration DL aplg, Ratio DR ADRA - Ratio
1 (LD 1.118E-08 -1.000E+00 6.741E-08 -1.000E+00
2,2) 2.275E-13 -1.000E+00 6.026E-11 -1.000E+00
3.3) 1.488E-12 -1.000E+00 1.876E-14 -1.000E+00
2 (1) 6.871E-08 8.372E-01 2.488E-07 7.291E-01 0.529
2,2) 6.163E-14 -7.291E-01 1.002E-10 3.989E-01 0.340
3.,3) 8.945E-13 -3.989E-01 3.055E-15 -8.372E-01 0.071
3 (D 1.081E-07 3.648E-01 0.685 3.449E-07 2.786E-01 0.305
2,2) 4.446E-14 -2.786E-01 0.103 1.138E-10 1.195E-01 0.271
3,3) 7.876E-13 -1.195E-01 0.180 1.940E-15 -3.648E-01 0.187
4 (LD 1.211E-07 1.072E-01 0.329 3.742E-07 7.838E-02 0.263
2,2) 4 098E-14 -7.838E-02 0.203 1.175E-10 3.132E-02 0.255
3.3) 7.629E-13 -3.132E-02 0.231 1.732E-15 -1.072E-01 0.232
5 1. 1.246E-07 2.796E-02 0.268 3.819E-07 2.020E-02 0.253
2,2) 4.015E-14 -2.020E-02 0.237 1.185E-10 7.923E-03 0.251
(3.3) 7.569E-13 -7.923E-03 0.245 1.684E-15 -2.796E-02 0.246
6 (Lb 1.255E-07 7.065E-03 0.254 3.839E-07 5.088E-03 0.251
2,2) 3.995E-14 -5.088E-03 0.247 1.187E-10 1.987E-03 0.250
3.,3) 7.554E-13 -1.987E-03 0.249 1.672E-15 -7.065E-03 0.249
7 (1) 1.257E-07 1.771E-03 0.251 3.844E-07 1.275E-03 0.250
2,2) 3.990E-14 -1.275E-03 0.249 1.187E-10 4.970E-04 0.250
(3,3) 7.550E-13 -4.970E-04 0.249 1.669E-15 -1.771E-03 0.250
8 (LD 1.258E-07 4.430E-04 0.250 3.845E-07 3.188E-04 0.250
2.,2) 3.988E-14 -3.188E-04 0.250 1.188E-10 1.243E-04 0.250
(3.,3) 7.549E-13 -1.243E-04 0.250 1.668E-15 -4.430E-04 0.250
9 (L,1) 1.258E-07 1.108E-04 0.250 3.845E-07 7.971E-05 0.250
(2,2) 3.988E-14 -71.971E-05 0.250 1.188E-10 3.107E-05 0.250
3.3) 7.549E-13 -3.107E-05 0.250 1.668E-15 -1.108E-04 0.250
10 (LD 1.258E-07 2.770E-05 0.250 3.845E-07 1.993E-05
2,2) 3.988E-14 -1.993E-05 0.250 1.188E-10 7.768E-06
3,3) 7.549E-13 -7.768E-06 0.250 1.668E-15 -2.770E-05




19

After scaling, the matrix is changed to

1.3623885E-07 3.3096120E£—-11 1.0000000E + 00
1.0000000£ +00 1.4893515E~06 3.3096124F£ —11|. From the above table, the
3.3096121E£ —-11 1.0000000E+00 7.7511279E-10

relative differences 424/, and APR/. are getting smaller and smaller in what we call linear
convergence. The ratios, the quotients of any two successive ADL or ADR, finally all
converge to 0.250. As for condition numbers, they are changed from the original
k.=171.04 and £,=171.01 to k_=1.00 and k,=1.00 which are optimal. Moreover, the
condition number £, is changed from original 171.01 to 1.00. Because the minimum
value of a condition number is 1, the matrix is well scaled.

Using Hamming's scaling method, the matrix is changed to

6.056871F —-02 6.629677E—-06 2.490344F +06
2.0031585+05 1344251E-01 3.713679E —05|. The condition numbers of
8.242073E-05 1122089FE+06 1.081275E-02

Hamming's method are changed from k_=171.04 and £,=171.01 to k_=12.432 and
k,=12.432. The condition number £, is changed from 171.008 to 12.43 also. Therefore,
using Hamming's method in this example, we also get good results for the scaled matrix,

but not optimal.
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Example of Exact Convergence of Chandler's Method

7915819 +02 1046740E+25 2.698205F +28
The matrix to be scaled is | 1.192224F +01 2.220116E+00 3.424969FK +01|. The
9.410550F +22 3.530955E+17 2.654004F +27

condition numbers are k_=2.2264E+27 and k,=2.6679E+27. The inital left (DL(*)) and

right (DR(*)) diagonal scaling matrices are DL = DR = The convergence of

S O -
S = O
- O O

the DL and DR matrices is shown in TABLE II.

TABLE I

THE CONVERGENCE OF DL AND DR MATRICES

Iteration DL ADL/ Ratio DR ADR/ Ratio
1 (LH 2.934E-15 -1.000E+00 5.558E-02 -9.444E-01
(2,2) 1.508E+00 3.373E-01 3.255E-11 -1.000E+00
3,3) 1.911E-22 -1.000E+00 1.262E-14 -1.000E+00
2 (L1 1.059E-15 -6.388E-01 2.007E-02 -6.388E-01
2,2) 4.177E+00 6.388E-01 9.013E-11 6.388E-01
3.,3) 5.292E-22 6.388E-01 3.496E-14 6.388E-01
3 (L,L1) 1.059E-15 0.000E+00 0.000 2.007E-02 0.000E+00 0.000
2,2) 4.177E+00 0.000E+00 0.000 9.013E-11 -1.434E-16 0.000

3.3 5.292E-22 0.000E+00 0.000 3.496E-14 0.000E+00 0.000

After scaling, the matrix is changed to
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1.6844848F —14 1.0000000L +00 1.0000000F +00
1.0000000E +00 8.3600273FE —10 5.0032545E —12 |. The condition numbers are
1. 0000000E +00 1.6844848L —14 4.9117968FE —08

changed to k_=8.0082E+07 and k,=8.0082E+07 and the condition number &, is
changed from the original 7.8912E+22 to 2.00204E+07. Therefore, the matrix using
Chandler's method is scaled well in this case of exact convergence. Using Hamming's

method, the scaled matrix is changed to

1.869264F —11 L 177970E+06 4.541454F +04
1.765520E +05 1.566791E£ —-01 3.615068E —05|. The condition numbers are
3.030099E +05 5.418195E-06 6.090999F -01

changed to k.=5.3649E+06 and k,=3.3898E+06. The condition number k,, is changd
from the original 7.89123E+22 to 3.26395E+06. Therefore, using Hamming's method to
scale this matrix we also get good results in this case, in fact better than for Chandler's

method, as judged by these three condition numbers.

Results Colection And Data Analysis

For more details on Chandler's method, I tested m*n matrices where m,n <=20 and
m,n >=2. Each dimenson includes 100 different matrices generated from 100 different
random number seeds. After scaling all these 36100 matrices, I collected all results, mainly
divided into three parts which are the average number of iterations of exact convergence,
the percentage of elements of DL, DR that converged exactly, and the reduction of the
condition number k_, and k,, by Chandler's and Hamming's methods Furthermore, I draw
the comparison Figure 1 to Figure 7 from the results of (1) n*n (2) 2*n (3) 3*n (4) 5*n

(5) 10*n (6) 15*n (7) 20*n matrices where n>=2 and n<=20.



The Average Iteration of Exact Convergence

We define the average iteration of exact convergence as

2 Exact _Conv. Iter.

Avg.Exact_ Conv. Iter.= 5
- Num.of . Matrices

20 ¢
154
ter. 10 1
54

0 t + + {

0 5 10 15 20

27 $040000000000000000
15+
ter. 1+
0.5+

0 + 1

0 5 10 15 20

Figure 2. Iter. of Exac Conv. of 2*n matrices



Figure 3. Iter. of Exac Conv. of 3*n matrices

12+

ter. 6+

Figure 4. Iter. of Exac Conv. of 5*n matrices

12'F
10 +
84
ter. 6+
44
24
0 + + + 4

0 5 10 15 20

Figure 5. Iter. of Exac Conv. of 10*n matrices
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10 4+
ter. 8 4

Figure 6. Iter. of Exac Conv. of 15*n matrices

20 +
15+
lter. 10 +
54

0 } + ¥ {

0 5 10 15 20

Figure 7. Iter. of Exac Conv. of 20*n matrices

For the above graphs, using Chandler's method, in general we get the following
conclusions :
(1) For n*n matrices, the iteration of exact convergence tends to increase with increasing

n.
(2) For any kind of 2*n matrix, it converges exactly on the second iteration.
(3) For an m*n matrix, the smallest m=3 that gives linear convergence.

(4) For m*n matrices, if m is fixed, in general, the larger n is, the more iterations exact

convergence requires.
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Percentage of Elements of DL, DR That Converged Exactly

The following Figures from Figure 8 to Figure 14 are the percentage of elements

that converge exactly.

100 +
80 +

60 S —y
40 4+ —J— DR

20 +

%

Figure 8. Percentage of Elements with Exact Conv. of n*n matrices

100 - IR

80 +
. 0T —e—DL
* 401 —i— DR
20 4+
0 . 4
0 10 20

Figure 9. Percentage of Elements with Exact Conv. of 2*n matrices
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[
80 +

60 4+ ¢ DL
401 —m— R

20 4+

Figure 10. Percentage of Elements with Exact Conv. of 3*n matrices

100 +
80 +

60 ¢+ &— DL
40 + —#— DR

20 +

Figure 11. Percentage of Elements with Exact Conv. of 5*n matrices

100 +
80 4
, 5071 —e—DL
* 40 4 —ii— DR
20 4+
0 + —
0 10 20

Figure 12. Percentage of Elements with Exact Conv. of 10*n matrices
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Figure 13. Percentage of Elements with Exact Conv. of 15*n matrices
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Figure 14. Percentage of Elements with Exact Conv. of 20*n matrices
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From the above graphs, we get the following conclusions about the percentage of

elements of DL, DR that converged exactly:
(1) For 2*n matrices, 100% of them give exact convergence.

(2) The curves of DL and DR are very close.

(3) For m*n matrices where n>10, the curve tends to a horizontal asymptote. The curve

of 2*n matrices is 100%, 3*n matrices tend to about 60% , 5*n matrices tend to about

40% , 10*n, 15*n, and 20*n matrices tend to about 20%.
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Reduction of the Condition Number

I calculated the condition number of n*n matrices where 2<=m<=20. To point

out the improvement due to the scaling methods, I accumulated the condition number k_

and k,, of Chandler's and Hamming's methods. Then, I get the reduction of both method's

condition numbers from the original matrix by the following formulas

z Kham

KC an
REDU_K,,,, =log,, %Eh_; and REDU_K,,, =log,, Sk,

The following Figures from Figure 15 to Figure 18 show the reduction of the condition

number k_ and k,,.

10 15 20

ot
a4

o o

-10 &
-15 4

log(Kchan/Koriq)

-20 4
-25 4
-30 1

Figure 15. REDU_Kchan of n*n matrices

log{Kham,/Korig)

Figure 16. REDU_Kham of n*n matrices
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2 KePosan . Kpp,
REDU _Kpp.,., =log,, =——— and REDU_Kpp,,, =log,, =&—=
h 10 z A 10 ZKDpon‘g

orig

-10 4+
-16 4
-20 +
-25 4
-30 1

log(Kppchan/Korig)

Figure 17. REDU_Kppchan of n*n matrices

5

o]

541
-10 4
-15 4
-20 4
-25 4
-30 1

tog(Kppham/Korig)

Figure 18. REDU_Kppham of n*n matrices

Note that if the REDU K is less than zero, the condition number is reduced. On the other

hand, if the REDU K is greater than zero, the condition number is increased.

From the above graphs, we get the following conclusions about the reducing rate

of REDU_Kchan, REDU_Kham, REDU_Kppchan, and REDU_Kppham:
(1) All the reduction of REDU_Kchan and REDU_Kppchan are less than zero. In

general, the more n value is, the less reducing is.
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(2) For the curves of REDU_Kham and REDU_Kppham, we can roughly draw two lines
from graphs . The first line where n is between 2 and 5 is ascending steeply (slope around
5/3) and straight. The second line where n > 5 has its slope is around 1. From the figures,
the reduction of the condition number is decreased drastically when dimension n of
matrices is between 2 and S and it is decreased slowly when dimension n of matrices is

between 6 and 11 but when the dimension n>15 it is increased.

Example of problem of Gaussian elimination with partial
pivoting method and how to use Chandler's and Hamming's

scaling method to solve linear equation system

For a linear system of equations Ax=b,Gaussian elimination with the partial
pivoting method is that we select the pivot to be the largest-sized absolute coefficient in
the next column and use the corresponding equation as the basis for the elimination
process. In the following examples, we use three-decimal floating-point arithmetic and
partial pivoting.

Example :
x,+2x,+3x,=6
x,- x,+ x,=1
2107 %+ x,+ x,=2,
The rounded solution is x,=1.0010, x,=1.0004, x,=0.9994.
If we use Gaussian elimination with the partial pivoting method , after the forward
elimination we get
x,+2x,+3x,=6
-3x,-2x,=-5

0.332x,=.333.



Back solving, we get x,=1.00, x,=1.00, x,=1.00 ( the order of pivoting was 1, 2, 3 ).

The other method is to scale the matrix first with 4'=D"' 4D,

1 2 3 6
To form Ax=b, weget A= 1 -1 1} and b=|1]|
2-10% 1 1 2
1 1
Let D/'=| 1 and D,=| 107 .
10* 107

After scaling (Forsythe and Moler, p41).,

1 2-10* 3107
A=1 -10* 10
2 1 1

and the equations become
x,+2° 107 x,+3° 107 x,=6
x- 10%x,+ 107 x,=1
2x,+ x,+ x,=2-10".
Using Gaussian elimination with partial pivoting, we select 2 as our first pivot and
eliminate x,. The equations become
2x+  x,+  x,=2-10°
-0.500x,-0.500x,= -10*
-0.500x,-0.500x,= -10*.
Eliminating x,, the equations become
2x,t+ x,+ x,=2-10*
-0.500x,-0.500x,= -10*

0=0.
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which are singular. The order of pivoting was 3, 2, 1. A general scaling makes the

normal pivoting strategies incorrect.

1 2 3 6
We can express this example with Ax=b where A=| 1 -1 1| and b=|1/|.
2100 1 1 2

Substituting x with D,x’ and b with D,b’, the system is changed to A D x" =D, b".
Multiplying D to both sides of the equal sign, the system could be rewritten as
D'AD,x' =b". Let D,=D;", we get the system A'x'=b’ where A'=D,AD,,.

0119 0 0

Using Chandler's scaling method, weget D, =| 0  0.119 0 |{and
0 0 8.41

841 O 0 1 0.0283 0.0425
D,=| 0 0119 0 | A=D,AD,= 1 -0.0142 0.0142|.
0 0 0119 0.0141 1 1
0.714
b'=D'b=D,b=| 0.119 |. After scaling, we get the order of pivoting 1, 3, 2. Eliminating
16.8

x,, the equations become
x,+ 2x,+ 3x,=6
x,+ 0.999x,=2
-3x,- 2x,=-35.
Eliminating x,, the equations become
x+ 2x,+ 3x,=6

x,+ 0.999 x,=2

0.997x,= 1.
Solving, x,=1.00, x,=1.00, and x,= 1.00. The result is the same as the exact
solution.
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Note that we use this scaled system to select the pivots, but we eliminate in the original

system, not in this scaled system (Forsythe and Moler, 1967, p39).

0.379 0 0

Using Hamming's scaling method, we get D,,, =| 0 0688 0 | and
0 0 118

118 O 0 4.47 0.414 0.542
Dy, =| 0 0546 0 | A'=D,,AD,, =| 812 -0.376 0.328].
0 0 0477 0.0278 6.44 563
2.27
b'=D,,b=|0.688 |. After scaling, we get the order of pivoting was 2, 3, 1. Eliminating
23.6

x,, the equations become

X,- x,+ x,=1
x,+ x;=2
3x,+ 2x,=35.

Eliminating x,, the equations become

X,- x,+ x,=1
x,+ x;=2
-x;=-1.

Solving, x,=1.00, x,=1.00, and x,= 1.00. The result is also the same as the accurate

answer. Both results using Chandler's and Hamming's method are totally the same.

Check the condition numbers £,k , of the original matrix and the other scaled matrices.

For k_, we get k,, =2.22638E+27, k,,,,=291.148, and k,,,=110.111. For k,,, we have

k,..=789123E+22, k ,,,.=70.7531, and £ ,,,,,=44.8679. The condition number of

ppor ppchan

Hamming's scaled matrix is better than Chandler's but not by a great difference. We think

both methods are good methods for solving linear system equations and if there is no big
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difference of the condition numbers, it is hard to say which one is better because the
condition number is an upper bound on the true condition. However, Hamming's method
has the advantage that it does not require iteration. For larger systems, as noted
previously, Hamming's method may actually degrade the condition number and perhaps

should be avoided for that reason.



CHAPTER IV

CONCLUSIONS

This study provide a good method for matrix scaling. This method of Chandler's
is from concepts of scaling a symmetric positive definite matrix, is an iteration which has
never failed to converge, and is derived from the basic scaling definition which is to make
the largest or smallest element in any row and any column to be equal to 1. The results of
numerical tests from 36100 different exponentially random matrices show that Chandler's
method is very competitive because of the following four reasons:

(1) The condition number either k_ or k,, descends drastically from the original matrix to
the scaled matrix by Chandler's method. This means that the upper bound on the true
condition decreases.

(2) The ratio of the largest and the smallest magnitude in matrix is decreased.

(3) Even in large matrices of dimension >=15, the condition number is also decreased,
however, the condition number of Hamming's method is not.

(4) This method could reduce the problem of cancellation in using Gaussian elimination in
solving linear equation system.

Future work might be done in the following aspects:

(1) Measure the cancellation that actually occurs in Gaussian elimination. This is the
truest measure of condition.
(2) Investigate the effects of scaling on the solution of linear least squares problems and

on eigenproblems.

35



(3) Prove that the smallest elements in the scaled matrix are as large as possible.
(4) Prove results about convergence and independence of the results with respect to

MRC=0 or 1.
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APPENDIX A

PROGRAM LISTING

SCALTEST 1.1 -- TEST SUBROUTINE SCALA 11/87

J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
OKLAHOMA STATE UNIVERSITY

oNoNoNeoNeoNe!

INTEGER IN,ITER,J, K, KNPREV,KNVRG,KOUNT,LADIM,LP, M,
* MAXIT,MRC,N,NL,NONES,NPOWRT,NPR,NR,Q,TOTEXACT,
* DLNUMEXA DRNUMEXA FMDL FMDR DLMAT DRMAT

DOUBLE PRECISION A,DL,DR,SCRAT,B,C,DSEED,DRANDM,X BASE,
UNITR,DLH,DRH,ROW,DLSAV DRSAV,DLOLD,DROLD,NUMMAT,
RZERO,DENOM,TOL,HUGE, TEMP,AJKMIN,SUMLOG,SEEDBASE,
DABS,DLOG,DMAX1,NEW, TOTITER,SEEDSAV,CONDPP ,KPPOR,
KPPCHAN,DLOG10,KPPHAM, TOTKPPOR, TOTKPPCHAN, TOTKPPHAM,
KORIG,KCHAN,KHAM, TOTKORIG,TOTKCHAN,TOTKHAM,CONDNO,

L . I

*

LOGKCHAN,LOGKHAM,LOGKPPCHAN,LOGKPPHAM,PERDLEXA PERDREXA
C
DIMENSION A(20,20),NEW/(20,20),DL(20),DR(20), SCRAT(20),
* NL(20),NR(20),DLH(20),DRH(20),ROW(20),DLSAV(20),
* DRSAV(20),DLOLD(20),DROLD(20)
C
IN=5
LP=6
C NPR=12
C M=3
C N=3
LADIM=20
B=0.0D0
C=30.0D0
BASE=10.0D0
DSEED=27469.0D0
RZERO=0.0D0
UNITR=1.0D0
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TOL=1.0D-13
HUGE=1.0D70
SEEDBASE=1.0D5
C
C GENERATE AN EXPONENTIALLY RANDOM MATRIX.
C
DO 390 M=2,20
DO 380 N=2,20
WRITE(LP,30)

30 FORMAT(
*

TOTITER=0.0
TOTEXACT=0
TOTKORIG=0.0
TOTKCHAN=0.0
TOTKHAM=0.0
TOTKPPOR=0.0
TOTKPPCHAN=0.0
TOTKPPHAM=0.0
PERDLEXA=0.0
PERDREXA=0.0
DLMAT=0
DRMAT=0
NUMMAT=0.0
DO 350 Q=1,100
DSEED=SEEDBASE*DRANDM(DSEED)
SEEDSAV=DSEED
DO 20 J=1,.M
DO 10 K=1,N
X=B+(C-B)*DRANDM(DSEED)
A(JK)=BASE**X
NEW(J,K)=A(J,K)
10  CONTINUE
20 CONTINUE
C
C WRITE(LP,30)M,N
C 30 FORMAT(// M ='13,5X,N ='13//
C * 'THE MATRIX TO BE SCALEDIS .../'")
C
C DOS50J=1M
C  WRITE(LP,40)J,(A(J.K),K=1,N)
C 40 FORMAT( ROW'I3/(5X,1PE14.6,4E14.6))
C 50 CONTINUE
KPPOR=CONDPP(NEW,M,N)
KORIG=CONDNO(NEW,M,N)



TOTKORIG=TOTKORIG+KORIG
TOTKPPOR=TOTKPPOR+KPPOR
C
C MRC=2
MRC=1
C
C INITIALIZE DA(*) AND DB(*).
C
DO 60 J=1.M
DLOLD(J)=UNITR
DLSAV(J)=UNITR
DL(J)=UNITR
60 CONTINUE
C
DO 70 K=1,N
DROLD(J)=UNITR
DRSAV(K)=UNITR
DR(K)=UNITR
70 CONTINUE
C
C ITERATE THE SCALING.
C
MAXIT=M+N+10
C NPOWRT=2
C KOUNT=0
KNVRG=0
FMDL=0
FMDR=0

DO 300 ITER=1, MAXIT
CALL SCALA (A,M,N,LADIM,DL,DR, 1, MRC,SCRAT)
CALL SCALA (A,M,N,LADIM,DL,DR,0, MRC,SCRAT)
DO 275 }=1.M

DO 275 K=1,N
NEW(J,K)=A(J, K)*DL(J)*DR(K)
275 CONTINUE
C CALL CONDNO(NEW,M,N)

C
C PRINT DETAILED RESULTS AT EACH ITERATION NUMBER THAT

C IS EQUAL TO A POWER OF TWO.
KOUNT=KOUNT+1

IF(KOUNT.GE.NPOWRT) THEN

C
C
C
C
C NPOWRT=NPOWRT*2
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KOUNT=0
ENDIF

KNPREV=KNVRG

oNoNoNoNe!]

DLNUMEXA=0
DO 90 J=1,M
TEMP=DABS(DL(J)-DLSAV()))/
*  DMAXI(DABS(DL(J)),DABS(DLSAV(J)))
IF(TEMP.LE.TOL) THEN
KNVRG=1
FMDL=1
DLNUMEXA=DLNUMEXA+1
ENDIF
90  CONTINUE
C
DRNUMEXA=0
DO 100 K=1,N
TEMP=DABS(DR(K)-DRSAV(K))/
*  DMAXI1(DABS(DR(K)),DABS(DRSAV(K)))
IF(TEMP.LE.TOL) THEN
KNVRG=1
FMDR=1
DRNUMEXA=DRNUMEXA+1
ENDIF
100 CONTINUE
C
C PRINT THE RESULTS OF THIS ITERATION.
C
IF((KNVRG.NE.1).AND.(ITER LT MAXIT)) GO TO 295
KCHAN=CONDNONEW,M,N)
KPPCHAN=CONDPP(NEW,M,N)
TOTKCHAN=TOTKCHAN+KCHAN
TOTKPPCHAN=TOTKPPCHAN+KPPCHAN
IF(KNVRG.NE.1) GO TO 295
PERDLEXA=PERDLEXA+DLNUMEXA*1.0
PERDREXA=PERDREXA+DRNUMEXA*1.0
IF(FMDL.EQ.1) DLMAT=DLMAT+1
IF(FMDR EQ.1) DRMAT=DRMAT+1
NUMMAT=NUMMAT+1
TOTITER=TOTITER+ITER
TOTEXACT=TOTEXACT+1
GO TO 305
C  WRITE(LP,110)MRC,ITER KOUNT,KNVRG
C110 FORMAT(" MRC ='12,5X,1TER =,13,5X,'KOUNT =13,
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*

5X,KNVRG = [2)

AJKMIN=HUGE

SUMLOG=RZERO

DO 130 J=1 M

DO 120 K=1,N
TEMP=DABS(DL(J)* A(J,K)*DR(K))
IF(TEMP.LE.RZERO) GO TO 120
IF(TEMP.LT.AJKMIN) AJKMIN=TEMP
SUMLOG=SUMLOG+DLOG(TEMP)
CONTINUE

CONTINUE

oloNoNeoNoNoRoNoNoNe!
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C WRITE(LP, 140)AJKMIN,SUMLOG

C 140 FORMAT(' AJKMIN =',1PE15.7,9X,'SUMLOG ='E15.7)

C IF(KNPREV.NE.O .AND. (KOUNT.NE.O .OR. ITER.LE . NPR))
*  GOTO 260

UNTIL EXACT CONVERGENCE OF SOME SCALE FACTOR OCCURS,
AT EVERY ITERATION NUMBER EQUAL TO A POWER OF TWO, AND

C FOR THE FIRST NPR ITERATIONS.

C

C  WRITE(LP,150)(DL{J),J=1,M)

C 150 FORMAT(/ DL ='1PE14.6,4E14.6/(5X,4E14.6))

C  WRITE(LP,160)(DR(K),K=1,N)

C 160 FORMAT(/ DR ='1PE14.6,4E14.6/(5X,4E14.6))

C
C
C PRINT DETAILED RESULTS
C
C

C
C DO170J=1M
C ROW(J)=(DL(J)-DLSAV(J))/

C *  DMAXI(DABS(DL())),DABS(DLSAV())))
C170 CONTINUE

C  WRITE(LP,180)(ROW(J),J=1,M)

C 180 FORMAT(/ RELDIF = 1PE14.3,4E14.3/(9X,4E14.3))
C

C DO 190K=1,N

C ROW(K)=(DR(K)-DRSAV(K))/
C *  DMAXI(DABS(DR(K)),DABS(DRSAV(K)))
C190 CONTINUE

C  WRITE(LP,180)(ROW(K),K=1,N)
C  IFUTERLT.3) GO TO 260
C

C

C

C

DO 200 J=1,.M
DENOM=DLSAV(J)-DLOLD(J)
ROW(J)=RZERO
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C IF(DENOM.NE RZERO) ROW(J)=(DL(J)-DLSAV(J))/DENOM
C200 CONTINUE

C  WRITE(LP,210(ROW(J),J=1 M)

C210 FORMAT(/ RATIO =',5F14.7/(8X,5F14.7))

DO 220 K=1,N
DENOM=DRSAV(K)-DROLD(K)
ROW(K)=RZERO
IF(DENOM.NE RZERO) ROW(K)=(DR(K)-DRSAV(K))/DENOM
220 CONTINUE
WRITE(LP,210)(ROW(K),K=1,N)

oNoNoNoNoNoNoN®!

C260 IF(KNVRG.NE.1 .OR. KNPREV.NE.0) AND.
*  (KOUNT.NE.O .OR. ITER LE.NPR)) GO TO 295

PRINT THE SCALED MATRIX.

DO 290 J=1.M
NONES=0
DO 270 K=1,N
ROW(K)=DL(J)*A(J,K)*DR(K)
IF(DABS(DABS(ROW(K))-UNITR).LE.TOL)
* NONES=NONES+1
270 CONTINUE
WRITE(LP,280)J,NONES,(ROW(K),K=1,N)
C280 FORMAT( ROW'I3,5X,I3,' ONE(S)/
C *  (5X,1PE14.7,4E14.7))
C290 CONTINUE
C
295 DO 240 J=1.M
DLOLD(J)=DLSAV(J)
DLSAV(J)=DL(J)
240 CONTINUE
C

oloNoNoNoNoNoNoNoNo N Ne]

DO 250 K=1,N
DROLD(K)=DRSAV(K)
DRSAV(K)=DR(K)
250 CONTINUE
C
300 CONTINUE
C
C SCALE USING HAMMING'S METHOD, TO COMPARE.
C
305 CALL SCALH (A,M,N,LADIM,NL,NR, DLH,DRH)
C WRITE(LP,310)(DLH(J),J=1,M)
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C 310 FORMAT(/ HAMMING METHOD...” DL =',1PE14.6,4E14.6/
C * (5X,4E14.6))
C  WRITE(LP,160)(DRH(K),K=1,N)

C
DO 330 J=1 M
DO 320 K=1,N
C ROW(K)=DLH(J)*A(J K)*DRH(K)

NEW(J,K)=DLH(J)*A(J,K)*DRH(K)
320 CONTINUE
C  WRITE(LP,40)J,(ROW(K),K=1,N)
330 CONTINUE
KPPHAM=CONDPP(NEW,M,N)
KHAM=CONDNO(NEW,M,N)
TOTKPPHAM=TOTKPPHAM+KPPHAM
TOTKHAM=TOTKHAM+KHAM
350 CONTINUE
TOTITER=TOTITER/NUMMAT
PERDLEXA=PERDLEXA/(M*DLMAT*1.0)*100.0
PERDREXA=PERDREXA/(N*DRMAT*1.0)*100.0
IF(M.EQ.N)THEN
LOGKCHAN=DLOG10(TOTKCHAN/TOTKORIG)
LOGKHAM=DLOG10(TOTKHAM/TOTKORIG)
LOGKPPCHAN=DLOG10(TOTKPPCHAN/TOTKPPOR)
LOGKPPHAM=DLOG10(TOTKPPHAM/TOTKPPOR)

WRITE(6,360)M,N,TOTITER, TOTEXACT, TOTKORIG,TOTKCHAN, TOTKHAM,
*

TOTKPPOR, TOTKPPCHAN, TOTKPPHAM,LOGKCHAN, LOGKHAM,LOGKPPCHA
N,
* LOGKPPHAM,PERDLEXA,PERDREXA
360 FORMAT(M='"13,3X,/N=13,3X,'AVG EXACT ITER='F6.3,3X,

* 'EXACT No.='I5,/TOTAL OF: KINFORIG=',1PE10.3,2X,
'KINFCHAN='E10.3,2X,'KINFHAM="E10.3/10X,'KPPORIG =" E10.3,2X,
'KPPCHAN ='E10.3,2X,'KPPHAM ='E10.3/LOG TOTAL: ',
'KINFCHAN/KINFORIG="E10.3,2X,'KINFHAM/KINFORIG="E10.3/
11X,'KPPCHAN/KPPORIG ='E10.3,2X, KPPHAM/KPPORIG = E10.3/
'PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:1X,
'DL=",1PE10.3,2X,'DR="E10.3)

ELSE

WRITE(6,370)M,N, TOTITER, TOTEXACT,PERDLEXA, PERDREXA
370 FORMAT(M='13,3X,N=13,3X,'AVG EXACT ITER='F6.3,3X,

* 'EXACT No.='I5/

* 'PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:,1X,
* 'DL='1PE10.3,2X,'DR="E10.3)

ENDIF

* ¥ X X %X ¥
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380 CONTINUE
390 CONTINUE

C

C
C
C

@]
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STOP

END SCALTEST

END

SUBROUTINE SCALA (A,M,N,LADIM DL, DR INV MRC,SCRAT)
SCALA 1.1 APRIL 1992
SCALES THE MATRIX A.

J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
OKLAHOMA STATE UNIVERSITY

* %k k ok ok k Kk k %k ok dk & k k %k k k k k k k k k k k ¥k % %k k % X

INPUT QUANTITIES..... A(*,*),M,N,LADIM,DL(*),DR(*),INV,MRC
OUTPUT QUANTITIES.... DL(*),DR(*)
SCRATCH ARRAY........ SCRAT(*)

A(*,*) -- THE MATRIX TO BE SCALED

M  -- NUMBER OF ROWS IN THE MATRIX A

N  -- NUMBER OF COLUMNS IN THE MATRIX A

LADIM -- THE FIRST DIMENSION OF THE ARRAY A
(M.LE.LADIM)

DL(*) -- LEFT DIAGONAL SCALING MATRIX
DR(*) -- RIGHT DIAGONAL SCALING MATRIX
INV - =1 TO SCALE UP SMALL ELEMENTS OF A,
=0 TO SCALE DOWN LARGE ELEMENTS OF A
(THE FINAL CALL SHOULD BE MADE WITH
INV=0)
MRC  -- =1 TO SCALE ROWS FIRST,
=2 TO SCALE COLUMNS FIRST
(EITHER VALUE SHOULD WORK. USE MRC=2 )
SCRAT(*) -- SCRATCH ARRAY OF AT LEAST M LOCATIONS

METHOD...

TO SCALE DOWN LARGE ELEMENTS (INV=0), SUBROUTINE SCALA
CARRIES OUT THE FOLLOWING STEPS...
1. DIVIDE EACH COLUMN (OR ROW, IF MRC=1) BY THE
SQUARE ROOT OF THE LARGEST MAGNITUDE OF ANY
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ELEMENT IN THAT COLUMN (ROW).

2. DIVIDE EACH ROW (COLUMN) BY THE LARGEST MAGNITUDE
OF ANY ELEMENT IN THAT ROW (COLUMN).

3. DIVIDE EACH COLUMN (ROW) BY THE LARGEST MAGNITUDE
OF ANY ELEMENT IN THAT COLUMN (ROW).

TO SCALE UP SMALL ELEMENTS (INV=1), SCALA INVERTS EACH
NONZERO ELEMENT (IMPLICITLY), THEN SCALES DOWN LARGE
ELEMENTS AS DESCRIBED ABOVE, AND THEN INVERTS EACH
ELEMENT BACK AGAIN.

USAGE...
CALL SCALA WITH INV=1 AND THEN WITH INV=0.
REPEAT THIS PAIR OF CALLS UNTIL THE DL(*) AND THE DR(*)
ALL CONVERGE (COMPARE THEIR VALUES ONLY AFTER THE CALLS
WITH INV=0).

FOR A SYMMETRIC POSITIVE DEFINITE MATRIX, CALL SCALA
ONCE ONLY, WITH INV=0.

% ok k ok %k %k ok ok k k k %k k Xk k ok %k k Xk k %k k Xk Xk k * ¥ ¥ ¥ *k %

INTEGER INV,J,JJ K, LADIM,M,MRC,N

DOUBLE PRECISION A,DL,DR,SCRAT,ZSQRT,ARG,ZABS,
* RZERO,UNITR,COLMAX,DRK, TEMP,DABS,DSQRT
DIMENSION A(LADIM,N),DL(M),DR(N),SCRAT(M)

ZSQRT(ARG)=DSQRT(ARG)
ZABS(ARG)=DABS(ARG)

RZERQO=0.0D0
UNITR=1.0D0

IF(M.LT.1 .OR. M.GT.LADIM .OR. N.LT.1) STOP
LOOP OVER THE THREE (SIC) PASSES.

DO 80 JJ=1,2
IF(MRC.EQ.1 .AND. JJ.EQ.1) GO TO 30

SCALE THE COLUMNS.
DO 20 K=1,N

COLMAX=RZERO
DRK=DR(K)
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DO 10 J=1.M
TEMP=ZABS(DL(J)*A(J,K)*DRK)
IF(TEMP.EQ.RZERO) GO TO 10
IF(INV.EQ.1) TEMP=UNITR/TEMP
IF(TEMP.GT.COLMAX) COLMAX=TEMP

10 CONTINUE

IF(COLMAX EQ.RZERQ) GO TO 20
IF(INV.EQ.1) COLMAX=UNITR/COLMAX
IF(MRC.EQ.2 .AND. JJ.EQ.1) COLMAX=ZSQRT(COLMAX)
DR(K)=DR(K)/COLMAX
20 CONTINUE
IF(MRC.EQ.2 .AND. JJ.EQ.2) RETURN
30 DO 40 J=1.M
SCRAT(J)=RZERO
40  CONTINUE
DO 60 K=1,N
DRK=DR(K)
DO 50 J=1.M
TEMP=ZABS(DL())*A(J,K)*DRK)
IF(TEMP EQ.RZERO) GO TO 50
IF(INV.EQ.1) TEMP=UNITR/TEMP
IF(TEMP.GT.SCRAT(J)) SCRAT(J)=TEMP
50 CONTINUE
60  CONTINUE
DO 70 J=1.M
TEMP=SCRAT(J)
IF(TEMP.EQ.RZERO) GO TO 70
IF(INV EQ. 1) TEMP=UNITR/TEMP
IF(MRC.EQ.1 .AND. JJ.EQ.1) TEMP=ZSQRT(TEMP)
DL(J)=DL(J)/TEMP
CONTINUE

@
=
o

CONTINUE

0
(=)

%

END SCALA

:

DOUBLE PRECISION FUNCTION DRANDM(DL)

SIMPLE PORTABLE PSEUDORANDOM NUMBER GENERATOR.

oNoNo ! sNoNo e
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DRANDM RETURNS FUNCTION VALUES THAT ARE PSEUDORANDOM
NUMBERS UNIFORMLY DISTRIBUTED ON THE INTERVAL (0,1).

NUMERICAL MATHEMATICS AND COMPUTING' BY WARD CHENEY AND
DAVID KINCAID, BROOKS/COLE PUBLISHING COMPANY
(FIRST EDITION, 1980), PAGE 203

AT THE BEGINNING OF EXECUTION, OR WHENEVER A NEW SEQUENCE IS
TO BE INITIATED, SET DL EQUAL TO AN INTEGER VALUE BETWEEN
1.0D0 AND 2147483647.0D0, INCLUSIVE. DO THIS ONLY ONCE.
THEREAFTER, DO NOT SET OR ALTER DL IN ANY WAY.

FUNCTION DRANDM WILL MODIFY DL FOR ITS OWN PURPOSES.

DRANDM USES A MULTIPLICATIVE CONGRUENTIAL METHOD.

THE NUMBERS GENERATED BY DRANDM SUFFER FROM THE PARALLEL
PLANES DEFECT DISCOVERED BY G. MARSAGLIA, AND SHOULD NOT BE
USED WHEN HIGH-QUALITY RANDOMNESS IS REQUIRED. IN THAT
CASE, USE A "SHUFFLING" METHOD.

DOUBLE PRECISION DL

10 DL=DMOD(16807.0D0*DL.,2147483647.0D0)
DRANDM=DL/2147483648.0D0
IF(DRANDM LE.0.0D0 .OR. DRANDM.GE.1.0D0) GO TO 10

RETURN
END

SUBROUTINE SCALH (A,M,N,LADIM,NL,NR,DL,DR)
SCALH 13 APRIL 1992
SCALES THE MATRIX A(*,*) USING HAMMING'S METHOD.
RICHARD W. HAMMING, "INTRODUCTION TO APPLIED NUMERICAL
ANALYSIS", (MCGRAW-HILL 1971), PAGES 115-117

J. P. CHANDLER, COMPUTER SCIENCE DEPARTMENT,
OKLAHOMA STATE UNIVERSITY

% %k %k %k % % %k %k %k %k k % %k k %k %k k k k k ¥k k % k *k * * * k % ¥

INPUT QUANTITIES..... A(*,*),M,N,LADIM
OUTPUT QUANTITIES.... DL(*),DR(¥)
SCRATCH STORAGE...... NL(*),NR(*)

A(*,*) -- THE MATRIX TO BE SCALED
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M  -- NUMBER OF ROWS IN THE MATRIX A

N  -- NUMBER OF COLUMNS IN THE MATRIX A

LADIM -- THE FIRST DIMENSION OF THE ARRAY A
(LADIM.GE M)

DL(*) -- LEFT DIAGONAL SCALING MATRIX

DR(*) -- RIGHT DIAGONAL SCALING MATRIX

%k %k %k %k Sk ok de ok Kk dk ok ko k ok ok Ak k ok ok k Kk k k %k k k k k k X %k
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INTEGER M,N,LADIM,NL(M),NR(N),J,K, JKSUM,KSUM
DOUBLE PRECISION A(LADIM,N),DL(M),DR(N),
* ARG,ZABS,ZLOG,ZEXP, RZERO,SUM,SUMK,TEMP HALFAYV,
* DABS,DLOG,DEXP
C
ZABS(ARG)=DABS(ARG)
ZLOG(ARG)=DLOG(ARG)
ZEXP(ARG)=DEXP(ARG)
C
RZERO=0.0D0
C
IF(M.LT.1 .OR. M.GT.LADIM .OR. N.LT.1) STOP
C
C INITIALIZE.
C
DO 10 I=1.M
DL(J)=RZERO
NL(J)=0
10 CONTINUE
C
DO 20K=1N
DR(K)=RZERO
NR(K)=0
20 CONTINUE
C
SUM=RZERO
JKSUM=0
C
C ACCUMULATE ALL SUMS. PROCESS A(*,*) BY COLUMNS.
C
DO 40 K=1,N
SUMK=RZERO
KSUM=0

DO 30 I=1.M
TEMP=ZABS(A(J,K))
IF(TEMP.EQ.RZERO) GO TO 30



TEMP=ZLOG(TEMP)
DL(J)=DL(J)+TEMP
SUMK=SUMK-+TEMP
SUM=SUM+TEMP
NL(J)=NL(J)+1
KSUM=KSUM+1
JKSUM=JKSUM-+1
30  CONTINUE
C
DR(K)=SUMK
NR(K)=KSUM
40 CONTINUE
C
C COMPUTE CL(*) AND DR(*).
C
IF(JKSUM.EQ.0) GO TO 70
TEMP=JKSUM+JKSUM
HALFAV=SUM/TEMP

DO 50 J=1.M
IF(NL(J).NE.0) DL(J)=HALFAV-DL(J)/NL(J)
50 CONTINUE
C
DO 60 K=1,N
IF(NR(K).NE.0) DR(K)=HALFAV-DR(K)/NR(K)
60 CONTINUE
C
C TAKE ANTILOGS.
C
70 DO 80 J=1.M
DL(J)=ZEXP(DL(}))
80 CONTINUE
C
DO 90 K=1,N
DR(K)=ZEXP(DR(K))
90 CONTINUE
C
RETURN
C
C END SCALH
C
END

DOUBLE PRECISION FUNCTION CONDNO(NEW ,M,N)

C******************#************

51
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C CONDNO 1.0  JULY 1993

C

C CONDITION NUMBER OF INFINITY AND ONE BY CHUNG-CHUAN
C WANG,COMPUTER SCIENCE DEPARTMENT,OKLAHOMA STATE
UNIVERSITY

C**********#********************

C

C INPUT QUANTITIES..... NEW M,N

C OUTPUT QUANTITIES.... CONDINF,CONDONE

NEW(*,*) -- THE MATRIX TO BE COUNTED CONDITION No.
M -- NUMBER OF ROWS IN THE MATRIX A
N -- NUMBER OF COLUMNS IN THE MATRIX A
CONDINF -- CONDITION NUMBER OF INFINITY
CONDONE -- CONDITION NUMBER OF ONE
¥ %k sk k % ok dk ok k %k k Kk ok k Kk k K k *k k k k %k % *k Kk k ¥ X X X%
INTEGER N,J,K,M,RROW,COL,XSAV,YSAV,XCOR,YCOR
DOUBLE PRECISION NEW,CONDINF,CONDONE,UL,R, DX
DOUBLE PRECISION INV,TEMP,SCALES, IPS,B,X
DOUBLE PRECISION MAXROW,MAXCOL,IMAXROW,IMAXCOL
DIMENSION INV(20,30),NEW(20,25),UL(20,40),
* R(20),DX(20),SCALES(20),IPS(20),B(20),X(20)

oNoNoNoNeoNeoNe!

IF(M.EQ.N) GO TO 400
GO TO 530
C
C SELECT THE LARGEST SUM OF ABSOLUTE VALUSE OF ELEMENTS OF
ROW
C
400 MAXROW=0.0
DO 420 J=1.M
TEMP=0.0
DO 410 K=1,N
TEMP=TEMP+DABS(NEW(J,K))
410  CONTINUE
IF(MAXROW.LT.TEMP) MAXROW=TEMP
420 CONTINUE
C
C SELECT THE LARGEST SUM OF ABSOLUTE VALUSE OF ELEMENTS OF
COLUMN
C
MAXCOL=0.0
DO 440 K=1,N
TEMP=0.0
DO 430 J=1.M
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TEMP=TEMP+DABS(NEW(J.K))
430  CONTINUE
IF(MAXCOL.LT.TEMP) MAXCOL=TEMP
440 CONTINUE
C
C GET THE INVERT MATRIX NEW
C
CALL INVERT(M,NEW,20,INV,UL,20,B,X,SCALES, IPS, R, DX)
C
C GET THE LARGEST SUM OF ABSOLUTE ELEMENTS OF ROWS OF INVERT
MATRIX
C
IMAXROW=0.0
DO 490 J=1 M
TEMP=0.0
DO 480 K=1,N
TEMP=TEMP+DABS(INV(J,K))
480  CONTINUE
IF(IMAXROW LT.TEMP) IMAXROW=TEMP
490 CONTINUE
C
C GET THE LARGEST SUM OF ABSOLUTE ELEMENTS OF COLUMNS OF
INVERT MATRIX
C
IMAXCOL=0.0
DO 510 K=1,N
TEMP=0.0
DO 500 J=1.M
TEMP=TEMP+DABS(INV(J,K))
500 CONTINUE
IF(IMAXCOL LT . TEMP) IMAXCOL=TEMP
510 CONTINUE
C
C GET THE CONDITION NUMBER OF INFINITY AND ONE
C
CONDINF=IMAXROW*MAXROW
CONDONE=IMAXCOL*MAXCOL
CONDNO=CONDINF
RETURN
530 END
DOUBLE PRECISION FUNCTION CONDPP(NEW,M,N)
C*******************************
C CONDNO 1.0  JULY 1993

C
C CONDITION NUMBER OF GAUSSIAN ELIMINATION WITH
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C PARTIAL PIVOTING METHOD, CHUNG-CHUAN

C WANG,COMPUTER SCIENCE DEPARTMENT,OKLAHOMA STATE
UNIVERSITY

C %% k% % ok %k ok ko ok ok ok ok ok ok K ok ok ok ko k K ok ok & K K K

C INPUT QUANTITIES..... NEWMN

C OUTPUT QUANTITIES.... CONDPP

NEW(*,*) -- THE MATRIX TO BE COUNTED CONDITION No.
M -- NUMBER OF ROWS IN THE MATRIX A
N -- NUMBER OF COLUMNS IN THE MATRIX A
LARGEST ABSOLUTE VALUSE OF ELEMENT IN
SCALED MATRIX
CONDPP =
SMALLEST ABSOLUTE VALUE OF PIVOT IN
GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING ON THE SCALED MATRIX
% %k dk ok ok 3k %k ok ok ok ok dk ok k k k %k 3k k k dk >k %k Kk Kk k ok k kx k ok
INTEGER J K M,N
DOUBLE PRECISION NEW,CONDPP, MAXELE,MINPIVOT,MINPIV
DIMENSION NEW(20,20)

oloRoNoNoNoNeoNeNoNoXe)

IF(M.NE.N) GO TO 710
C
C GET THE LARGEST ABSOLUTE VALUE OF ELEMENT IN SCALED MATRIX
C
MAXELE=0.0
DO 700 J=1.M
DO 700 K=1,N
IF(MAXELE LT.DABS(NEW(J,K))) MAXELE=DABS(NEW(J,K))
700 CONTINUE

C
C GET SMALLEST ABSOLUTE VALUE OF PIVOT IN GAUSSIAN ELEMINATION

C WITH PARTIAL PIVOTINGON THE SCALED MATRIX
C
MINPIVOT=MINPIV(NEW ,M,N)
CONDPP=MAXELE/MINPIVOT
710 END

DOUBLE PRECISION FUNCTION MINPIV(NEW,M,N)
C***#*lk*************************
C CONDNO 1.0 JULY 1993
C
C MINIMUM PIVOT OF GAUSSIAN ELIMINATION WITH
C PARTIAL PIVOTING METHOD, CHUNG-CHUAN WANG,
C COMPUTER SCIENCE DEPARTMENT,0KLAHOMA STATE UNIVERSITY
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C % % % %k % % % ok Kk ok ok ok ok ok K ok Kk Ak koK ok ko k k ok ok ko K X

C INPUT QUANTITIES..... NEWMN
C OUTPUT QUANTITIES.... MINPIV

NEW(*,*) -- THE MATRIX TO BE COUNTED CONDITION No.
M -- NUMBER OF ROWS IN THE MATRIX A
N -- NUMBER OF COLUMNS IN THE MATRIX A
MINPIV - ABSOLUTE VALUE OF MINIMUM PIVOT OF
GAUSSIAN ELIMINATION WITH PARTIAL
PIVOTING ON THE SCALED MATRIX
sk ok k 3k dk ok ok &k 3k ok ok ok sk k %k ok k k k k %k %k %k k k k ok k k Xk X
INTEGER LJ,K,M,N,MAXROW
DOUBLE PRECISION NEW,MINPIV,GAU,MAXPIV, TEMP
DIMENSION NEW(20,20),GAU(20,20), TEMP(20)

oloNoNoNoRoNoKe!

DO 800 J=1.M
DO 800 K=1,N
GAU(J,K)=NEW(J K)
800 CONTINUE
C
C SELECT THE LARGEST PIVOT IN NEXT COLUMN
C
MINPIV=1.0D70
DO 860 I=1,M-1
MAXPIV=0.0
DO 810 J=LM
IF(MAXPIV.LT.DABS(GAU(J,1))) THEN
MAXPIV=DABS(GAU(,1))
MAXROW=]
ENDIF
810 CONTINUE
IF(MINPIV.GT.MAXPIV) MINPIV=MAXPIV

C
C SWAP WITH THE Ith ROW, IF MAXROW NOT EQUAL TO I
C
IF(MAXROW.EQ.I) GO TO 830
DO 820 K=1,N

TEMP(K)=GAU(L,K)

GAU(LK)=GAU(MAXROW K)

GAUMAXROW,K)=TEMP(K)

820 CONTINUE

C
C ELIMINATE I+1 TO M ROWS' THE Ith COLUMN AND COEFFICIENT CHANGE

C
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830 DO 850 J=I+1,M
DO 840 K=I+1 N
GAU(J,K)=GAU(J, K)-GAU(J,1)/GAU(L)* GAU(L,K)
840 CONTINUE
GAU(J,1)=0.0D0
850 CONTINUE
860 CONTINUE
IF(MINPIV.GT.DABS(GAU(M,M))) MINPIV=DABS(GAU(M,M))
END

C
C FMNEW.CNTL LINEAR SYSTEM SOFTWARE FROM FORSYTHE AND
MOLER
C

SUBROUTINE DECOMP(N,NEW,LA UL,LUL,SCALES IPS,LP)
C
C DECOMPOSES A INTO THE PRODUCT A=L*U, WHERE L IS A MONIC
LOWER
C TRIANGULAR MATRIX AND U IS UPPER TRIANGULAR. STORES L- AND U
IN
C THE ARRAY UL.
DECOMP PERFORMS ABOUT N**3/3 MULTIPLICATIONS.

C
C
C G. E. FORSYTHE AND C. B. MOLER, -COMPUTER SOLUTION OF LINEAR
C ALGEBRAIC SYSTEMS- (PRENTICE-HALL, 1967)
C
C

J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE
UNIVERSITY
C
C IMPLICIT REAL*8 (A-H,0-Z)
C
DOUBLE PRECISION NEW,UL,SCALES, IPS
DIMENSION NEW(LA,N),UL(LUL,N),SCALES(N),IPS(N)

ZERO=0.0D0
UNITY=1.0D0
C
C INITIALIZE IPS, UL, AND SCALES.
C
DO 20 I=1,N
IPS(D)=1
ROWNRM=ZERO
DO 10J=1,N
UL(LJ)=NEW(,J)
C ROWNRM=AMAX1(ROWNRM, ABS(UL(L,J)))



ABSUL=UL(LJ)
IF(ABSUL.LT.ZERO) ABSUL=-ABSUL
IF(ABSUL.GT.ROWNRM) ROWNRM=ABSUL
10  CONTINUE
IF(ROWNRM.GT.ZERO) THEN
SCALES(I)=UNITY/ROWNRM
ELSE
SCALES(I)=ZERO
ENDIF
SCALES(I)=UNITY/ROWNRM
20 CONTINUE
C
C PERFORM GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING.
C
NM1=N-1
DO 60 K=1,NM1
BIG=ZERO
DO 30 I=K,.N
IP=IPS(])
C SIZE=ABS(UL(IP,K))*SCALES(IP)
ABSUL=UL(IP K)
IF(ABSUL LT.ZERO) ABSUL=-ABSUL
SIZE=ABSUL*SCALES(IP)
IF(SIZE.GT.BIG) THEN
BIG=SIZE
IDXPIV=I
ENDIF
30 CONTINUE
IF(IDXPIV.NE K) THEN
J=IPS(K)
IPS(K)=IPS(IDXPIV)
IPS(IDXPIV)=]
ENDIF
KP=IPS(K)
PIVOT=UL(KP,K)
KP1=K+1
DO 50 I=KP1,N
IP=IPS(I)
EM=-UL(IP,K)/PIVOT
UL(IP,K)=-EM
IF(EM.NE.ZERO) THEN

DO 40 J=KPI N
40 UL(IP,J)=UL(IP,J)+EM*UL(KP,J)
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C INNER LOOP. USE MACHINE LANGUAGE CODING IF COMPILER DOES
NOT
C PRODUCE EFFICIENT CODE.
C
ENDIF
50 CONTINUE
60 CONTINUE
KP=IPS(N)
RETURN
END
SUBROUTINE SOLVE(N,UL,LUL,B,X,IPS)

SOLVES A*X=B USING UL FROM DECOMP.
SOLVE PERFORMS ONLY ABOUT N**2 MULTIPLICATIONS.

G. E. FORSYTHE AND C. B. MOLER, -COMPUTER SOLUTION OF LINEAR
ALGEBRAIC SYSTEMS- (PRENTICE-HALL, 1967)

oNoNoNoNoNeoNe!

C IMPLICIT REAL*8 (A-H,0-Z)

C
DOUBLE PRECISION UL,B,X,IPS
DIMENSION UL(LUL,N),B(N),X(N),IPS(N)

NP1=N+1
C PERFORM FORWARD SUBSTITUTION.
IP=IPS(1)
X(1)=B(IP)
DO 20 I=2N
IP=IPS(I)
M1=I-1
SUM=B(IP)
DO 10 J=1,IM1
10 SUM=SUM-UL(IP,))*X(J)
20 X(I)=SUM
C PERFORM BACK SUBSTITUTION.
IP=IPS(N)
X(N)=X(N)/UL(IP,N)
DO 40 IBACK=2,N
[=NP1-IBACK
IP=IPS(J)
P1=T+1
SUM=X(I)
DO 30 J=IP1.N
30  SUM=SUM-UL(IP,})*X(J)
40 X()=SUM/UL(IP,])
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RETURN
END
SUBROUTINE IMPRUV(N,NEW,LA,UL,LULB,X,DIGITS,IPS,R DX,LP)

C
C AIS THE ORIGINAL MATRIX, UL IS FROM DECOMP, B IS THE RIGHTHAND
SIDE,
C AND X IS THE APPROXIMATE SOLUTION FROM SOLVE,
C IMPRUV IMPROVES X TO MACHINE ACCURACY AND SETS DIGITS TO THE
NUMBER
C OF CORRECT DIGITS IN THE FIRST ITERATE OF X,
C IMPRUV PERFORMS ABOUT N**2 DOUBLE PRECISION MULTIPLICATIONS
PER
C ITERATION.
C THE USE OF AN ARRAY DUBLX WOULD SAVE TIME AT THE EXPENSE OF
STORAGE.
C
G. E. FORSYTHE AND C. B. MOLER, -COMPUTER SOLUTION OF LINEAR

ALGEBRAIC SYSTEMS- (PRENTICE-HALL, 1967)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*16 SUM,DUBLA DUBLX
DOUBLE PRECISION SUM,DUBLA,DUBLX
DOUBLE PRECISION NEW,UL,B,X,IPS,R,DX

C
C
C
C
C

DIMENSION NEW(LA,N),UL(LUL,N),B(N), X(N),R(N),DX(N),IPS(N)

ZLOG(ARG)=ALOG(ARG)
C ZLOG(ARG)=DLOG(ARG)
C
C EPS AND ITMAX ARE MACHINE DEPENDENT.
C EPS IS THE RELATIVE ACCURACY OF THE FLOATING POINT MANTISSA.
C

ZERO=0.0D0

ONE=1.0D0

TWO0=2.0D0
C COMPUTE MACHINE EPSILON.

XX=ONE

10 XX=XX/TWO

TEMP=ONE+XX

IF(TEMP.GT.ONE) GO TO 10

EPS=XX+XX
C ALNTN IS THE NATURAL LOG OF TEN.

XX=10.0D0

ALNTN=ZLOG(XX)



C ITMAX IS TWICE THE NUMBER OF SIGNIFICANT DECIMAL DIGITS IN
g A FLOATING POINT MANTISSA. THIS IS SOMEWHAT ARBITRARY.
ITMAX=ONE-TWO*ZLOG(EPS)/ALNTN
C
XNORM=ZERO
DO 20 I=1N
C XNORM=AMAX1(XNORM,ABS(X(I)))
ABSX=X(I)
IF(ABSX.LT.ZERO) ABSX=-ABSX
IF(ABSX.GT.XNORM) XNORM=ABSX
20 CONTINUE
IF(XNORM.LE.ZERO) THEN
DIGITS=-ZLOG(EPS)/ALNTN
RETURN
ENDIF
C
DO 60 ITER=1,ITMAX
DO 40 I=1,N
SUM=ZERO
DO 30 J=1,N
DUBLA=NEW(LJ)
DUBLX=X(J)
30 SUM=SUM+DUBLA*DUBLX
DUBLA=B(J)
40  R()=DUBLA-SUM
C

C IT IS ESSENTIAL THAT A(LJ)*X(J) YIELD A DOUBLE PRECISION RESULT

C AND THAT THE ABOVE + AND - BE DOUBLE PRECISION.
C
CALL SOLVE(N,UL,LUL,R,DX,IPS)
DXNORM=ZERO
DO 50 I=1,N
T=X(I)
X(D=X(I)+DX(I)
C DXNORM=AMAX1(DXNORM,ABS(X(I)-T))
ABSXM=X(I)-T
IF(ABSXM LT ZERO) ABSXM=-ABSXM
IF(ABSXM.GT.DXNORM) DXNORM=ABSXM
50 CONTINUE
IF(ITER EQ.1) THEN

C
C DIGITS=-ALOG10(AMAX1(DXNORM/XNORM,EPS))

DIG=DXNORM/XNORM
IF(EPS.GT DIG) DIG=EPS

60
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DIGITS=-ZLOG(DIG)/ALNTN
ENDIF
IF(DXNORM LE EPS*XNORM) RETURN
60 CONTINUE
C
RETURN
END
SUBROUTINE INVERT(N,NEW,LA,INV,UL,LUL,B,X,SCALES, IPS R, DX)
C
C INVERTS THE MATRIX A.
C FOR ILL-CONDITIONED MATRICES THIS ROUTINE IS MUCH MORE
ACCURATE THAN,
C E.G., MATINV, BUT IT IS ALSO MUCH SLOWER.

G. E. FORSYTHE AND C. B. MOLER, -COMPUTER SOLUTION OF LINEAR
ALGEBRAIC SYSTEMS- (PRENTICE-HALL, 1967)

sNoNoReoNe!

N IS THE ORDER OF A.
N MUST NOT EXCEED THE DIMENSION OF B OR X.

LA IS THE FIRST DIMENSION OF THE ARRAYS A AND AINV.

UL RETURNS THE TRIANGULAR DECOMPOSITION MATRICES. UL MUST
E
C DIMENSIONED AT LEAST NBY N.
C LUL IS THE FIRST DIMENSION OF THE ARRAY UL,
C
C EXAMPLE (INVERSION OF A 6 BY 6 MATRIX OF RANDOM NUMBERS)....
C
C DIMENSION NEW(20,25),INV(20,30),UL(15,35),B(20),X(20),
C IN MOST CASES, A, AINV, AND UL WOULD PROBABLY BE SQUARE
ARRAYS.
C
C J. P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHOMA STATE
UNIVERSITY
C

TOoOOOO

DOUBLE PRECISION NEW,INV,UL,B,X,SCALES,IPS,R DX
DIMENSION NEW(LA,N),INV(LA,N), UL(LUL,N),B(N),X(N),
* SCALES(N),IPS(N),R(N),DX(N)
C
CALL DECOMP(N,NEW,LA,UL,LUL, SCALES, IPS,LP)
DO 30 J=1,N
DO 10K=1,N
10  B(K)=0.0D0
B(J)=1.0D0
CALL SOLVE(N,UL,LUL,B,X,IPS)



C

CALL IMPRUV(N,NEW,LA UL, LUL,B,X,DIGITS,IPS R, DX,LP)
-DIGITS- IS IGNORED.
DO 20 K=1 N
20 INV(KJ)=X(K)
30 CONTINUE
RETURN
END
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APPENDIX B

OUTPUT DATA

M= 2 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100

TOTAL OF: KINFORIG= 2.054E+28 KINFCHAN= 1.183E+02 KINFHAM= 1.183E+02
KPPORIG = 4.143E+27 KPPCHAN = 1.033E+02 KPPHAM = 1.033E+02

LOG TOTAL: KINFCHAN/KINFORIG=-2.624E+01 KINFHAM/KINFORIG=-2.624E+01
KPPCHAN/KPPORIG =-2.560E+01 KPPHAM/KPPORIG =-2.560E+01

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N= 3 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N= 4 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02
M= 2 N= 5 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N= 7 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N= 8 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N= 9 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=10 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=11 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=12 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=13 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=14 AVGEXACT ITER=2.000 EXACT No.= 100
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M= 2 N=15 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=16 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=17 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=18 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=19 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 2 N=20 AVGEXACTITER=2.000 EXACT No.= 100

M= 3 N= 2 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 3 N= 3 AVGEXACTITER=2419 EXACT No.= 93

TOTAL OF: KINFORIG= 7.445E+26 KINFCHAN=6.372E+11 KINFHAM= 5.458E+13
KPPORIG = 5.459E+26 KPPCHAN = 1.593E+11 KPPHAM = 2.005E+13

LOG TOTAL: KINFCHAN/KINFORIG=-1.507E+01 KINFHAM/KINFORIG=-1.313E+01
KPPCHAN/KPPORIG =-1.553E+01 KPPHAM/KPPORIG =-1.344E+01

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 9.534E+01 DR= 9.534E+01

M= 3 N= 4 AVGEXACTITER=2.494 EXACT No= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 8.277E+01 DR= 8.427E+01

M= 3 N= 5 AVGEXACT ITER=2.695 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=7.683E+01 DR=7.927E+01

M= 3 N= 6 AVGEXACTITER=2.774 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 7.262E+01 DR=7.698E+01
M= 3 N= 7 AVGEXACTITER=2.738 EXACT No= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.944E+01 DR= 7.398E+01

M= 3 N= 8 AVGEXACTITER=3.305 EXACT No= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=6.911E+01 DR= 7.088E+01

M= 3 N= 9 AVGEXACT ITER=3.330 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.705E+01 DR= 6.894E+01

M= 3 N=10 AVGEXACTITER=4.297 EXACT No= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.667E+01 DR= 6.692E+01

M= 3 N=11 AVGEXACT ITER=6.300 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.333E+01 DR=6.436E+01
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M= 3 N=12 AVGEXACT ITER=7.350 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.267E+01 DR= 6.250E+01

M= 3 N=13 AVGEXACTITER=6680 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.300E+01 DR= 6.169E+01

M= 3 N=14 AVGEXACT ITER=7.420 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.200E+01 DR= 6.443E+01

M= 3 N=15 AVGEXACTITER=5.930 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.300E+01 DR= 6.533E+01

M= 3 N=16 AVGEXACTITER=6.170 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.133E+01 DR= 6.350E+01

M= 3 N=17 AVGEXACTITER=6.570 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.333E+01 DR= 6.341E+01

M= 3 N=18 AVGEXACTITER=6.380 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.400E+01 DR=6.472E+01

M= 3 N=19 AVGEXACT ITER=6.470 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=6.367E+01 DR= 6.332E+01

M= 3 N=20 AVGEXACT ITER=6.470 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.300E+01 DR= 6.340E+01

M= 4 N= 2 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 4 N=3 AVGEXACTITER=2.500 EXACT No.= 94

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 9.202E+01 DR=9.113E+01

M= 4 N=4 AVGEXACTITER=2776 EXACT No.= 76

TOTAL OF: KINFORIG= 1.741E+28 KINFCHAN=2.658E+14 KINFHAM= 3.892E+18
KPPORIG = 3.405E+24 KPPCHAN = 4.188E+12 KPPHAM = 1.045E+18

LOG TOTAL: KINFCHAN/KINFORIG=-1.382E+01 KINFHAM/KINFORIG=-9.651E+00
KPPCHAN/KPPORIG =-1.191E+01 KPPHAM/KPPORIG =-6.513E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=7.961E+01 DR=7.895E+01

M= 4 N= 5 AVGEXACTITER=2.878 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.585E+01 DR=7.122E+01

M= 4 N= 6 AVGEXACTITER=3.260 EXACT No.= 77

M= 4 N= 9 AVGEXACT ITER=6.384 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.971E+0]1 DR= 5.323E+01
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M= 4 N=10 AVGEXACT ITER=6.687 EXACT No.= 99
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.97SE+01 DR= 5.141E+01

M= 4 N=11 AVGEXACTITER=7.621 EXACT No.= 95
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.816E+01 DR= 5.187E+01

M= 4 N=12 AVGEXACTITER=7263 EXACT No= 99
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.823E+01 DR= 5.093E+01

M= 4 N=13 AVGEXACTITER=7.366 EXACT No.= 93
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.946E+01 DR= 5.153E+01

M= 4 N=14 AVGEXACT ITER=7.838 EXACT No.= 99
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL~ 4.798E+01 DR= 5.058E+01

M= 4 N=15 AVGEXACTITER=7.188 EXACT No.= 96
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.844E+01 DR= 5.104E+01

M= 4 N=16 AVGEXACTITER=8.708 EXACT No.= 96
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4 635E+01 DR=4.798E+01

M= 4 N=17 AVGEXACTITER=8.250 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.864E+01 DR=5.115E+01

M= 4 N=18 AVGEXACTITER=17.946 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.538E+01 DR= 4.698E+01

M= 4 N=19 AVGEXACTITER=8.745 EXACT No= 94
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.840E+01 DR=4.916E+01

M= 4 N=20 AVGEXACT ITER=8.957 EXACT No= 94
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=4.574E+01 DR= 4.654E+01

M= 5 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 5 N= 3 AVGEXACT ITER=2.438 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 8.427E+01 DR= 8.352E+01

M= 5 N= 4 AVGEXACTITER=2.592 EXACT No= 76
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=7.526E+01 DR=7.467E+01

M= 5 N= 5 AVGEXACTITER=3.320 EXACT No.= 75

TOTAL OF: KINFORIG= 1.679E+27 KINFCHAN=2.031E+15 KINFHAM= 1.836E+24
KPPORIG = 4.348E+23 KPPCHAN = 6.029E+13 KPPHAM = 7.045E+18

LOG TOTAL: KINFCHAN/KINFORIG=-1.192E+01 KINFHAM/KINFORIG=-2.961E+00
KPPCHAN/KPPORIG =-9.858E+00 KPPHAM/KPPORIG =-4.790E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.400E+01 DR=6.533E+01

M= 5 N= 6 AVGEXACT ITER=3.563 EXACT No.= 71
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.662E+01 DR= 5.822E+01

M= 5§ N= 7 AVGEXACT ITER=3.753 EXACT No.= 81
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PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.333E+01 DR= 5 .750E+01
M= 5 N= 8 AVGEXACTITER=6.494 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4 828E+01 DR= 5.029E+01
M= 5 N=9 AVGEXACTITER=8.033 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.565E+01 DR= 4.746E+01
M= 5 N=10 AVGEXACTITER=8902 EXACT No= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.26]E+01 DR= 4.696E+01
M= 5 N=11 AVGEXACT ITER=9.052 EXACT No.= 97
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.062E+01 DR= 4.133E+01
M= 5 N=12 AVGEXACTITER= 7935 EXACT No.= 93
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=4.172E+01 DR= 4.453E+01
M= 35 N=13 AVGEXACTITER=7.720 EXACT No= 93
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.935E+01 DR= 4.243E+01
M= 5 N=14 AVGEXACTITER=8.341 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.886E+01 DR= 4.164E+01
M= 5 N=15 AVGEXACTITER=8.921 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3 910E+0] DR=4.120E+01
M= 5 N=16 AVGEXACTITER=9.052 EXACT No= 96
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.000E+01 DR= 4 102E+01
M= 5 N=17 AVGEXACTITER=9.042 EXACT No.= 96
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.854E+0] DR=3.989E+01
M= 5 N=18 AVGEXACTITER=10.484 EXACT No= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL~ 3.780E+01 DR=4.145E+01
M= 5 N=19 AVGEXACTITER=9.606 EXACT No.= 94

DL=3.809E+01 DR=4.037E+01

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

M= 5 N=20 AVGEXACT ITER=9.857 EXACT No.= 9]

: DL=3.670E+01

DR=3.890E+01

M= 6 N= 2 AVGEXACTITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.000E+02

DR= 1.000E+02

M= 6 N= 3 AVGEXACTITER=2.763 EXACT No.= 93

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=8.441E+01

DR= 8.459E+01

M= 6 N= 4 AVGEXACTITER=2.921 EXACT No= 76

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=7.303E+01

DR=7.072E+01

M= 6 N= 5 AVGEXACTITER=3.355 EXACT No.= 76

DL= 6.754E+01

DR= 6.737E+01

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

M= 6 N= 6 AVGEXACTITER=4.343 EXACT No.= 70
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TOTAL OF: KINFORIG= 2.665E+26 KINFCHAN= 1.444E+12 KINFHAM= 4.456E+20

KPPORIG = 1.267E+24 KPPCHAN = 3.308E+11 KPPHAM

=3.994E+17

LOG TOTAL: KINFCHAN/KINFORIG=-1.427E+01 KINFHAM/KINFORIG=-5.777E+00
KPPCHAN/KPPORIG =-1.258E+01 KPPHAM/KPPORIG =-6.501E+00
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.333E+01 DR= 5.500E+01

M= 6 N=7 AVGEXACTITER=5.798 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 4.603E+01

DR= 4 847E+01

M= 6 N= 8 AVGEXACT ITER=6.333 EXACT No.= 81
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=4.383E+01

DR= 4.506E+01

M= 6 N=9 AVGEXACTITER=8.269 EXACT No.= 93
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=4.444E+01

DR=4.492E+01

M= 6 N=10 AVGEXACT ITER=10.516 EXACT No.= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.938E+01

DR= 4.330E+01

M= 6 N=11 AVGEXACTITER=8.516 EXACT No.= 95
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.825E+01

DR= 4 144E+01

M= 6 N=12 AVGEXACTITER=11.596 EXACT No.= 94
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

:DL=3.617E+01

DR= 4.051E+01

M= 6 N=13 AVGEXACT ITER=10.784 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.447E+01

DR=3.925E+01

M= 6 N=14 AVGEXACTITER=9.467 EXACT No.= 9
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 3.481E+01

DR=3.762E+01

M= 6 N=15 AVGEXACTITER=9.784 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 3.542E+01

DR=3.735E+01

M= 6 N=16 AVGEXACT ITER=8.558 EXACT No= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 3.469E+01

DR= 3.866E+01

M= 6 N=17 AVGEXACT ITER=8.967 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.352E+01

DR=3.370E+01

M= 6 N=18 AVGEXACTITER=9.920 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.295E+01

DR= 3.563E+01

M= 6 N=19 AVGEXACTITER=11.744 EXACT No.= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

DR= 3.287E+01

M= 6 N=20 AVGEXACTITER=9.553 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.157E+01

DR=3.571E+01

M= 7 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=1.000E+02

DR= 1.000E+02

M= 7 N= 3 AVGEXACTITER=2.679 EXACT No.= 8l
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 8.289E+01

DR=8.354E+01




M= 7 N= 4 AVGEXACTITER=3.263 EXACT No.= 80
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY
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:DL=7.125E+01 DR=6.938E+01

M= 7 N= 5 AVGEXACTITER=4.378 EXACT No= 74
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

:DL=5.502E+01 DR=5.514E+01

M= 7 N= 6 AVGEXACTITER=5385 EXACT No.= 78
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=5.165E+0]1 DR=5.534E+01

M= 7 N= 7 AVGEXACTITER=8.398 EXACT No.= 88

TOTAL OF: KINFORIG= 3.012E+24 KINFCHAN=4.295E+12 KINFHAM= 1.215E+18

KPPORIG = 5.157E+22 KPPCHAN = 1.522E+11 KPPHAM

=3.167E+16

LOG TOTAL: KINFCHAN/KINFORIG=-1.185E+01 KINFHAM/KINFORIG=-6.394E+00
KPPCHAN/KPPORIG =-1.153E+01 KPPHAM/KPPORIG =-6.212E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=4.951E+01 DR= 4.886E+01

M= 7 N= 8 AVGEXACTITER=9.000 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 4.483E+0]1 DR=4.598E+01

M= 7 N= 9 AVGEXACTITER=10.635 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.429E+01 DR=3.569E+01

M= 7 N=10 AVGEXACT ITER=8.784 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.734E+01 DR=3.795E+01

M= 7 N=11 AVGEXACTITER=9.292 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.547E+01 DR= 3.902E+01

M= 7 N=12 AVGEXACTITER=9.864 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.312E+01 DR=3.627E+01

M= 7 N=13 AVGEXACT ITER=9.604 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.046E+01 DR=3.373E+01

M= 7 N=14 AVGEXACT ITER=10.067 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.066E+01 DR=3.339E+01

M= 7 N=15 AVGEXACTITER=9.012 EXACT No.= 8l

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.316E+01 DR= 3.638E+01

M= 7 N=16 AVGEXACTITER=9.091 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.019E+0]1 DR= 3.395E+01

M= 7 N=17 AVGEXACTITER=7977 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.003E+01 DR=3.135E+01

M= 7 N=18 AVGEXACT ITER=12.119 EXACT No= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.857E+01 DR=3.168E+01

M= 7 N=19 AVGEXACT ITER=10.322 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.989E+0]1 DR=3.279E+01

M= 7 N=20 AVGEXACTITER=11.235 EXACT No.= 81

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.875E+01 DR=3.185E+01
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M= 8 N= 2 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 8 N= 3 AVGEXACTITER=2902 EXACT No= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=8.521E+01 DR= 8.374E+01

M= 8 N= 4 AVGEXACTITER=4.513 EXACT No.= 78
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.763E+01 DR= 6.474E+01

M= 8 N=5 AVGEXACTITER=7.179 EXACT No.= 95
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.605E+01 DR= 5453E+01

M= 8 N= 6 AVGEXACTITER=7.386 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=4.730E+01 DR=4 811E+01

M= 8 N= 7 AVGEXACT ITER=8.897 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=4.124E+01 DR=4.122E+01

M= 8 N= 8 AVGEXACTITER=9.277 EXACT No.= 94

TOTAL OF: KINFORIG= 1.879E+24 KINFCHAN=2.073E+11 KINFHAM= 1.833E+21
KPPORIG = 2.875E+19 KPPCHAN = 3.899E+08 KPPHAM = 7.613E+17

LOG TOTAL: KINFCHAN/KINFORIG=-1.296E+01 KINFHAM/KINFORIG=-3.011E+00
KPPCHAN/KPPORIG =-1.087E+01 KPPHAM/KPPORIG =-1.577E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.816E+01 DR= 3.989E+01

M= 8 N= 9 AVGEXACT ITER=10.565 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.735E+01 DR=3.725E+01

M= 8 N=10 AVGEXACTITER=8.977 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.608E+01 DR= 3.636E+01

M= 8 N=11 AVGEXACT ITER=9.180 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.455E+01 DR=3.463E+01

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.175E+01 DR= 3.218E+01

M= 8 N=13 AVGEXACTITER=11.682 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.250E+01 DR= 3.629E+01
M= 8 N=14 AVGEXACTITER=11.190 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.589E+01 DR= 2.806E+01

M= 8 N=15 AVGEXACTITER=8.736 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2 830E+01 DR=2.835E+01

M= 8 N=16 AVGEXACT ITER=10.705 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.770E+01 DR=2.905E+01

M= 8 N=17 AVGEXACTITER=11.231 EXACT No.= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.747E+01 DR=3.083E+01

M= 8 N=18 AVGEXACTITER=9.694 EXACT No.= 85
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PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.824E+01 DR= 3.059E+01

M= 8 N=19 AVGEXACTITER=9.930 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.427E+01 DR= 2.931E+01

M= 8 N=20 AVGEXACT ITER=10.793 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.561E+01 DR= 2.744E+01

M= 9 N= 2 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02

M= 9 N= 3 AVGEXACTITER=3.214 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=7.712E+01 DR=7.817E+01

M= 9 N= 4 AVGEXACTITER=5278 EXACT No= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.444E+01 DR=6.639E+01

M= 9 N= 5 AVGEXACT ITER=9.625 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=5.202E+01 DR= 5.364E+01

M= 9 N= 6 AVGEXACTITER=9.521 EXACT No.= 94
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.047E+01 DR= 5.053E+01
M= 9 N= 7 AVGEXACTITER=9.910 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.444E+01 DR= 4.350E+01

M= 9 N= 8 AVGEXACTITER=10.614 EXACT No.= 88

M= 9 N= 9 AVGEXACT ITER=10.395 EXACT No.= 86

TOTAL OF: KINFORIG= 1.874E+24 KINFCHAN= 7.245E+13 KINFHAM= 2.284E+18
KPPORIG = 5.802E+19 KPPCHAN = 1.166E+13 KPPHAM = 2 380E+16

LOG TOTAL: KINFCHAN/KINFORIG=-1.041E+01 KINFHAM/KINFORIG=-5.914E+00
KPPCHAN/KPPORIG =-6.697E+00 KPPHAM/KPPORIG =-3.387E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.501E+01 DR=3.514E+01

M= 9 N=10 AVGEXACT ITER=7.805 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.231E+01 DR= 3.368E+01

M= 9 N=11 AVGEXACTITER=9.416 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.433E+01 DR= 3.544E+01

M= 9 N=12 AVGEXACTITER=12.444 EXACT No.= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.000E+01 DR=3.056E+01

M= 9 N=13 AVGEXACTITER= 9385 EXACT No.= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.808E+01 DR= 3.043E+01

M= 9 N=14 AVGEXACTITER=11.037 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.008E+01 DR= 3.267E+01

M= 9 N=15 AVGEXACT ITER=10.860 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.545E+01 DR= 2.907E+01




M= 9 N=16 AVGEXACT ITER=10.494 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.641E+01
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DR=2.809E+01

M= 9 N=17 AVGEXACTITER=8.429 EXACT No= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.341E+01

DR=2.626E+01

M= 9 N=18 AVGEXACTITER=9.310 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2474E+01

DR= 2.560E+01

M= 9 N=19 AVGEXACT ITER=11.648 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2323E+01

DR= 2.709E+01

M= 9 N=20 AVGEXACTITER=11.897 EXACT No.= 78

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 2 450E+01

DR=2.718E+01

M=10 N=2 AVGEXACT ITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.000E+02

DR= 1.000E+02

M=10 N=3 AVGEXACTITER=5.125 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=6.716E+01

DR=6.932E+01

M=10 N= 4 AVGEXACTITER=7.854 EXACT No= 96

: DL= 5.990E+01

DR= 5.885E+01

M=10 N= 5 AVGEXACT ITER=8.505 EXACT No= 97

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 5.093E+01

DR= 5.175E+01

M=10 N= 6 AVGEXACTITER=9.011 EXACT No.= 94

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.362E+01

DR= 4.486E+01

M=10 N= 7 AVGEXACTITER=11.244 EXACT No.= 86

: DL= 3.907E+01

DR=3.953E+01

M=10 N= 8 AVGEXACTITER=10.218 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.747E+01

DR= 3.822E+01

M=10 N= 9 AVGEXACT ITER=8.727 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.727E+01

DR=3.598E+01

M=10 N=10 AVGEXACT ITER=11.435 EXACT No= 92

TOTAL OF: KINFORIG= 1.007E+23 KINFCHAN= 8.476E+12 KINFHAM= 1.425E+19

KPPORIG = 5.657E+19 KPPCHAN = 3.078E+09 KPPHAM

=5467E+18

LOG TOTAL: KINFCHAN/KINFORIG=-1.007E+01 KINFHAM/KINFORIG=-3.849E+00
KPPCHAN/KPPORIG =-1.026E+01 KPPHAM/KPPORIG =-1.015E+00
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.293E+01 DR=3.315E+01

M=10 N=11 AVGEXACT ITER=9.744 EXACT No.= 90

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.022E+01 DR= 3.061E+01l

M=10 N=12 AVGEXACT ITER=10.943 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.885E+01 DR= 3.046E+01

M=10 N=13 AVGEXACT ITER= 7876 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.719E+01 DR= 2.740E+01



73

M=10 N=14 AVGEXACT ITER=11.000 EXACT No.= 90

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.644E+01

DR=2.825E+01

M=10 N=15 AVGEXACTITER=9.341 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 2.440E+01

DR= 2.557E+01

M=10 N=16 AVGEXACT ITER=11.069 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.391E+01

DR= 2.766E+01

M=10 N=17 AVGEXACT ITER=10.477 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.442E+01

DR= 2.640E+01

M=10 N=18 AVGEXACTITER=9.382 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.461E+01 DR=2.790E+01
M=10 N=19 AVGEXACTITER=11.447 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.271E+01 DR= 2.458E+01
M=10 N=20 AVGEXACTITER=10.931 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.195E+0]1 DR= 2.534E+01
M=11 N= 2 AVGEXACTITER=2.000 EXACT No.= 100

DL= 1.000E+02 DR= 1.000E+02

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

M=11 N= 3 AVGEXACTITER=7.840 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 7.009E+01

DR= 6.900E+01

M=11 N= 4 AVGEXACTITER=7.032 EXACT No.= 94

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=6.393E+01

DR= 6.344E+01

M=11 N=5 AVGEXACT ITER= 8587 EXACT No.= 92

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=5.079E+01

DR= 5.065E+01

M=11 N= 6 AVGEXACTITER=10351 EXACT No.= 94

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 4.700E+01

DR= 4.681E+01

M=11 N= 7 AVGEXACTITER=7.032 EXACT No.= 95

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.943E+01

DR= 3.925E+01

M=11 N= 8 AVGEXACTITER=8.818 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.626E+01

DR= 3.665E+01

M=11 N= 9 AVGEXACTITER=11.024 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.117E+01

DR= 3.280E+01

M=11 N=10 AVGEXACT ITER=10.449 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

:DL=2.921E+01

DR=3.135E+01

M=11 N=11 AVGEXACT ITER=9.977 EXACT No.= 86

TOTAL OF: KINFORIG= 6.240E+25 KINFCHAN= 9.848E+10 KINFHAM= 2.697E+21

KPPORIG = 6.240E+25 KPPCHAN = 9.517E+09 KPPHAM

=2.068E+19

LOG TOTAL: KINFCHAN/KINFORIG=-1.480E+01 KINFHAM/KINFORIG=-4.364E+00
KPPCHAN/KPPORIG =-1.582E+01 KPPHAM/KPPORIG =-6.480E+00



PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.780E+01
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DR= 2.791E+01

M=11 N=12 AVGEXACTITER=10.033 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.897E+01

DR= 2.949E+01

M=11 N=13 AVGEXACT ITER=10.446 EXACT No.= 92

DR= 2.742E+01

M=11 N=14 AVGEXACTITER=11.640 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.537E+01

DR= 2.799E+01

M=11 N=15 AVGEXACTITER=10.516 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.547E+01

DR=2.645E+01

M=11 N=16 AVGEXACT ITER=10.765 EXACT No.= 81

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 2.559E+01

DR=2.755E+01

M=11 N=17 AVGEXACT ITER=10.229 EXACT No.= 83

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.322E+01

DR=2.424E+01

M=11 N=18 AVGEXACTITER=11.375 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.283E+01

DR= 2 551E+01

=11 N=19 AVGEXACTITER=10.704 EXACT No.= 81

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.099E+01

DR=2.391E+01

M=11 N=20 AVGEXACTITER=11.897 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.059E+01

DR= 2.276E+01

M=12 N= 2 AVGEXACTITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.000E+02

DR= 1.000E+02

M=12 N= 3 AVGEXACTITER=6.240 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=7417E+01

DR= 7.300E+01

M=12 N=4 AVGEXACTITER=7526 EXACT No.= 95

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=6.167E+01

DR= 6.132E+01

M=12 N=5 AVGEXACTITER=8.842 EXACT No.= 95

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=5.061E+01

DR= 5.179E+01

M=12 N= 6 AVGEXACTITER=8.104 EXACT No.= 96

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.731E+01

DR= 4.688E+01

M=12 N= 7 AVGEXACT ITER=9.293 EXACT No.= 92

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.732E+01

DR=3.773E+01

M=12 N= 8 AVGEXACTITER=8412 EXACT No.= 97

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.720E+01

DR=3.698E+01

M=12 N= 9 AVGEXACTITER=9.719 EXACT No= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.202E+01

DR=3.321E+01

M=12 N=10 AVGEXACT ITER=10.076 EXACT No.= 79



PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY
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: DL=3.101E+01 DR= 3.000E+01

M=12 N=11 AVGEXACTITER=11.233 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.703E+01 DR=2.939E+01

M=12 N=12 AVGEXACTITER=11.306 EXACT No.= 85

TOTAL OF: KINFORIG= 1.138E+22 KINFCHAN= 1468E+12 KINFHAM= 1.377E+19

KPPORIG = 1.002E+16 KPPCHAN = 7.221E+10 KPPHAM

=8.782E+17

LOG TOTAL: KINFCHAN/KINFORIG=-9.889E+00 KINFHAM/KINFORIG=-2.917E+00
KPPCHAN/KPPORIG =-5.142E+00 KPPHAM/KPPORIG = 1.943E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.696E+01 DR=2853E+01

M=12 N=13 AVGEXACT ITER=10.402 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

M=12 N=14 AVGEXACTITER=11.134 EXACT No.= 82

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.571E+01 DR=2587E+01

M=12 N=15 AVGEXACTITER=12.198 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2316E+01 DR=2411E+01

M=12 N=16 AVGEXACTITER=10.701 EXACT No.= 77

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.262E+01 DR=2.240E+01

M=12 N=17 AVGEXACTITER=12.131 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.282E+0]1 DR=2.381E+01

M=12 N=18 AVGEXACT ITER=9966 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.238E+01 DR=2.341E+01]

M=12 N=19 AVGEXACT ITER=11.560 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.163E+01 DR=2.393E+01]

M=12 N=20 AVGEXACT ITER=11.609 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.117E+01 DR=2.397E+01

M=13 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.000E+02 DR= 1.000E+02

M=13 N= 3 AVGEXACT ITER=6.620 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=7.215E+01 DR= 7.333E+01

M=13 N= 4 AVGEXACTITER=9.073 EXACT No.= 96

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=6.018E+01 DR=6.068E+01

M=13 N=5 AVGEXACTITER=9.525 EXACT No.= 99

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=5.120E+01 DR=5.212E+01

M=13 N= 6 AVGEXACT ITER=10.622 EXACT No.= 90

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.085E+01 DR=4.167E+01

M=13 N= 7 AVGEXACTITER=9.589 EXACT No.= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=4.094E+)1 DR=4.127E+01
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: DL=3.330E+01 DR= 3.295E+01

M=13 N= 9 AVGEXACT ITER=8.929 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

:DL=3.430E+01 DR=3.176E+01

M=13 N=10 AVGEXACT ITER=10.881 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.967E+01 DR= 3.000E+01

M=13 N=11 AVGEXACT ITER=10.540 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.732E+01 DR=2.884E+01

M=13 N=12 AVGEXACTITER=9.778 EXACT No.= 81
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

:DL=2.735E+01 DR=2.809E+01

M=13 N=13 AVGEXACT ITER=12.885 EXACT No.= 78

TOTAL OF: KINFORIG= 9.963E+19 KINFCHAN=2.107E+11 KINFHAM= 7.019E+18

KPPORIG = 2.324E+15 KPPCHAN = 2.493E+09 KPPHAM
LOG TOTAL: KINFCHAN/KINFORIG=-8.675E+00 KINFHAM/K

=3.500E+16
INFORIG=-1.152E+00

KPPCHAN/KPPORIG =-5.970E+00 KPPHAM/KPPORIG = 1.178E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 2.544E+01 DR=2.673E+01

M=13 N=14 AVGEXACT ITER=11.365 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.416E+01 DR=2.521E+01

M=13 N=15 AVGEXACTITER=10.012 EXACT No.= 80

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.423E+0]1 DR=2.608E+01

M=13 N=16 AVGEXACT ITER=8.667 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.225E+01 DR=2.463E+01

M=13 N=17 AVGEXACT ITER=8.662 EXACT No.= 80

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.096E+01 DR=2.022E+01

M=13 N=18 AVGEXACT ITER=10.352 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.944E+01 DR=2.088E+01

M=13 N=19 AVGEXACTITER=13.118 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.000E+01 DR=2.155E+01

M=13 N=20 AVGEXACTITER=11.575 EXACT No.= 80

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.115E+01 DR=2.244E+01

M=14 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.000E+02 DR= 1.000E+02

M=14 N=3 AVGEXACT ITER=5.840 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=6.929E+01 DR=6.833E+01

M=14 N= 4 AVGEXACT ITER=8.796 EXACT No.= 98

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=5.736E+01 DR=5.714E+01

M=14 N= S5 AVGEXACTITER=10.054 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=4.930E+01 DR= 4.848E+01
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M=14 N= 6 AVGEXACT ITER=8.930 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.103E+01

DR= 4.147E+01

M=14 N= 7 AVGEXACTITER=11.556 EXACT No.= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.167TE+01

DR= 4.016E+01

M=14 N= 8 AVGEXACTITER=11.875 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.661E+01

DR= 3.622E+01

M=14 N= 9 AVGEXACTITER=8.729 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.294E+01

DR= 3.085E+01

M=14 N=10 AVGEXACTITER=11.071 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.126E+01

DR=3.012E+01

M=14 N=11 AVGEXACT ITER=11.550 EXACT No.= 80

: DL=2.991E+01

DR= 3.000E+01

M=14 N=12 AVGEXACTITER=11.205 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 2.800E+01

DR=2.708E+01

M=14 N=13 AVGEXACT ITER=10.556 EXACT No.= 81

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.593E+01

DR= 2.659E+01

M=14 N=14 AVGEXACTITER=11.449 EXACT No.= 78

TOTAL OF: KINFORIG= 2.083E+22 KINFCHAN=6.333E+09 KINFHAM= 4.800E+22

KPPORIG = 1.830E+17 KPPCHAN = 1.276E+08 KPPHAM = 9.619E+16

LOG TOTAL: KINFCHAN/KINFORIG=-1.252E+01 KINFHAM/KINFORIG=3.626E-01

KPPCHAN/KPPORIG =-9.156E+00 KPPHAM/KPPORIG =-2.793E-01
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.353E+01

DR= 2 408E+01

M=14 N=15 AVGEXACTITER=11.500 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.378E+01

DR=2.463E+01

M=14 N=16 AVGEXACTITER=12.214 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.262E+01

DR= 2.426E+01

M=14 N=17 AVGEXACTITER=13.414 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.135E+01

DR=2.197E+01

M=14 N=18 AVGEXACT ITER=11.322 EXACT No.= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.135E+01

DR= 2.265E+01

M=14 N=19 AVGEXACTITER=12.860 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.135E+01

DR= 2.130E+01

M= 14 N=20 AVGEXACT ITER=14.604 EXACT No.= 9]
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.080E+01

DR= 2.104E+01

M= 15 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02

DR= 1.000E+02

M=15 N= 3 AVGEXACTITER=6.580 EXACT No.= 100
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PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 7.380E+01 DR= 7.300E+01

M=15 N= 4 AVGEXACT ITER=8.143 EXACT No.= 98
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.912E+01 DR= 5.893E+01

M=15 N= 5 AVGEXACT ITER=10.286 EXACT No.= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.703E+01 DR= 4.637E+01

M=15 N= 6 AVGEXACTITER=8.944 EXACT No= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.345E+01 DR= 4 438E+01l

M=15 N= 7 AVGEXACT ITER=10.424 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.014E+01 DR= 3.804E+01]

M=15 N= 8 AVGEXACT ITER=10.213 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.296E+01 DR= 3.371E+01l

M=15 N= 9 AVGEXACTITER=9.709 EXACT No.= 86

M=15 N=10 AVGEXACT ITER=10.622 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.114E+01 DR= 2.988E+01

M=15 N=11 AVGEXACT ITER=10.952 EXACT No.= 83
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.835E+01 DR=2.8]5E+01

M=15 N=12 AVGEXACT ITER=9.506 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.306E+01 DR=2.343E+01

M=15 N=13 AVGEXACT ITER=8.965 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.535E+01 DR=2.416E+01

M=15 N=14 AVGEXACTITER=10.721 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.287E+01 DR=2367E+01

M=15 N=15 AVGEXACT ITER=11.846 EXACT No.= 78

TOTAL OF: KINFORIG= 1.037E+19 KINFCHAN=4.391E+08 KINFHAM=2372E+18
KPPORIG = 1.446E+14 KPPCHAN = 4 834E+06 KPPHAM =2.522E+17

LOG TOTAL: KINFCHAN/KINFORIG=-1.037E+01 KINFHAM/KINFORIG=-6.407E-01
KPPCHAN/KPPORIG =-7.476E+00 KPPHAM/KPPORIG = 3.241E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.376E+01 DR=2.182E+01

M=15 N=16 AVGEXACT ITER=13.405 EXACT No.= 79
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.169E+01 DR= 2.191E+01

M=15 N=17 AVGEXACT ITER=12.253 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.169E+01 DR= 2.279E+01

M=15 N=18 AVGEXACT ITER=14.780 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.187E+01 DR= 2.310E+01

M=15 N=19 AVGEXACTITER=14.034 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.969E+01 DR=2.021E+01




M=15 N=20 AVGEXACT ITER=14.913 EXACT No.= 92
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PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.138E+01 DR= 2.114E+01
M=16 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02
M=16 N= 3 AVGEXACTITER=5.890 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.813E+01 DR=6.867E+01
M=16 N= 4 AVGEXACT ITER=8.030 EXACT No.= 99
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.486E+01 DR= 5.530E+01

M=16 N=5 AVGEXACTITER=7495 EXACT No.= 93
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 5.289E+01

DR=5.161E+01

M=16 N= 6 AVGEXACTITER=8.527 EXACT No.= 93
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.052E+01

DR=3.889E+01

M=16 N= 7 AVGEXACT ITER=9.484 EXACT No= 91
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.393E+01

DR=3.375E+01

M=16 N= 8 AVGEXACTITER=9.112 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.462E+01

DR=3.427E+01

M=16 N= 9 AVGEXACT ITER=10.458 EXACT No.= 83
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.065E+01

DR=2,972E+01

M=16 N=10 AVGEXACTITER=17.975 EXACT No.= 81
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.901E+01

DR=2.790E+01

M=16 N=11 AVGEXACTITER=10.889 EXACT No.= 81
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.654E+01

DR=2.570E+01

M= 16 N=12 AVGEXACT ITER= 8474 EXACT No= 78
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 2.500E+01

DR=2.756E+01

M=16 N=13 AVGEXACT ITER=11.012 EXACT No.= 83
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.508E+01

DR=2.475E+01

M=16 N=14 AVGEXACT ITER=8.600 EXACT No.= 90
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.319E+01

DR=2.389E+01

M=16 N=15 AVGEXACT ITER=12.513 EXACT No.= 76
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.072E+01

DR=2.070E+01

M=16 N=16 AVGEXACT ITER=12.565 EXACT No.= 85

TOTAL OF: KINFORIG= 3.318E+16 KINFCHAN=7.086E+08 KINFHAM= 1.313E+20
KPPORIG = 1.810E+14 KPPCHAN = 1.280E+07 KPPHAM = 1.032E+16
LOG TOTAL: KINFCHAN/KINFORIG=-7.670E+00 KINFHAM/KINFORIG= 3.598E+00
KPPCHAN/KPPORIG =-7.150E+00 KPPHAM/KPPORIG = 1.756E+00
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.132E+01 DR= 2.081E+01

M=16 N=17 AVGEXACT ITER=11.181 EXACT No.= 83

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.229E+01 DR=2.232E+01
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M=16 N=18 AVGEXACT ITER=12.709 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.071E+01 DR=2.300E+01

M=16 N=19 AVGEXACT ITER=13.303 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.728E+01 DR= 1.881E+01

M=16 N=20 AVGEXACTITER=15.511 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.861E+01 DR=2.017E+01

M=17 N= 2 AVGEXACTITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.000E+02 DR= 1.000E+02

M=17 N=3 AVGEXACTITER=6.110 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=6.906E+01 DR= 6.900E+01

M=17 N= 4 AVGEXACTITER=6.896 EXACT No.= 96
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=5.797E+01 DR= 5.859E+01

M=17 N= 5 AVGEXACTITER=8851 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.692E+01 DR= 4.805E+01

M=17 N= 6 AVGEXACTITER=8.208 EXACT No.= 96
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 4.063E+01 DR=4.028E+01

M=17 N= 7 AVGEXACT ITER=11.326 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.574E+01 DR=3.494EH)I

M=17 N= 8 AVGEXACT ITER=9.728 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.376E+01 DR=3.356E+01

M=17 N= 9 AVGEXACT ITER=10.299 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DR=3.052E+01

DL= 3.198E+01

M=17 N=10 AVGEXACTITER=10.293 EXACT No.= 82
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2877E+01 DR=3.037E+01

M=17 N=11 AVGEXACTITER=9.212 EXACT No.= 85
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DR=2.674E+01

DL= 2.886E+01

M=17 N=12 AVGEXACT ITER=11.725 EXACT No.= 80
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.346E+01 DR=2.313E+01

M=17 N=13 AVGEXACT ITER=12.292 EXACT No.= 89
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DR=2.195E+01

DL=2.254E+01

M=17 N=14 AVGEXACTITER=12.070 EXACT No.= 86
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.216E+01 DR=2326E+01

M=17 N=15 AVGEXACT ITER=10.205 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.126E+01 DR=2.174E+01

M=17 N=16 AVGEXACT ITER=10.966 EXACT No.= 87
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.961E+01 DR=2.040E+01
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M=17 N=17 AVGEXACT ITER=13.000 EXACT No.= 90

TOTAL OF: KINFORIG= 1.230E+17 KINFCHAN= 1.720E+10 KINFHAM= 2.801E+21

KPPORIG = 4.579E+13 KPPCHAN = 2.411E+08 KPPHAM

= 1.101E+16

LOG TOTAL: KINFCHAN/KINFORIG=-6.854E+00 KINFHAM/KINFORIG= 4.357E+00
KPPCHAN/KPPORIG =-5.279E+00 KPPHAM/KPPORIG = 2.381E+00
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.993E+01 DR= 2. 124E+01

M=17 N=18 AVGEXACT ITER=15.333 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.116E+01 DR=2011E+01

M=17 N=19 AVGEXACTITER=13.077 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.875E+01 DR= 1.961E+01

M=17 N=20 AVGEXACTITER=13.791 EXACT No.= 91

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=1.836E+01 DR= 1.934E+01]
M= 18 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02
M= 18 N= 3 AVGEXACTITER=7.200 EXACT No.= 100
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 6.761E+01 DR= 6.933E+01
M=18 N= 4 AVGEXACTITER=7.590 EXACT No.= 100

:DL=6.250E+01 DR=6.250E+01]

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

M=18 N= 5 AVGEXACTITER=9.636 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=4.779E+01

DR= 4.750E+01

M=18 N= 6 AVGEXACT ITER=9.064 EXACT No.= 94
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.948E+01

DR=3.812E+01

M=18 N= 7 AVGEXACTITER=9.663 EXACT No.= 92
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.696E+01

DR=3.649E+01

M=18 N= 8 AVGEXACTITER=9.842 EXACT No.= 95
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=3.456E+01

DR=3.382E+01

M=18 N= 9 AVGEXACTITER=9.307 EXACT No.= 75
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

:DL=3.119E+01

DR=3.007E+01

M=18 N=10 AVGEXACTITER=11.167 EXACT No.= 84
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.632E+01

DR=2.571E+01

M=18 N=11 AVGEXACT ITER=9.295 EXACT No.= 88
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL= 2 487E+01

DR=2.541E+01

M=18 N=12 AVGEXACT ITER=12.228 EXACT No.= 79
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.489E+01

DR=2.468E+01

M=18 N=13 AVGEXACTITER=13.410 EXACT No.= 83
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY

: DL=2.390E+01

DR=2.298E+01

M=18 N=14 AVGEXACTITER=9.988 EXACT No.= 82
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PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.317E+01 DR= 2.152E+01

M=18 N=15 AVGEXACT ITER=13.966 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2. 146E+01 DR= 2.084E+01

M=18 N=16 AVGEXACTITER=16.023 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.884E+01 DR= 1.997E+01

M=18 N=17 AVGEXACT ITER=14.157 EXACT No= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.829E+01 DR= 1.970E+01

M=18 N=18 AVGEXACT ITER=13.132 EXACT No.= 91

TOTAL OF: KINFORIG= 5.451E+17 KINFCHAN= 3.406E+09 KINFHAM= 1.312E+19

KPPORIG = 1.173E+13 KPPCHAN = 2.330E+07 KPPHAM

=2.040E+15

LOG TOTAL: KINFCHAN/KINFORIG=-8.204E+00 KINFHAM/KINFORIG= 1.381E+00
KPPCHAN/KPPORIG =-5.702E+00 KPPHAM/KPPORIG = 2.240E+00
PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.880E+01 DR= 1.929E+01

M=18 N=19 AVGEXACTITER=15.511 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.869E+01 DR= 1.842E+01]

M=18 N=20 AVGEXACTITER=14.568 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.970E+01 DR=2.017E+01

M=19 N= 2 AVGEXACT ITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 1.000E+02 DR= 1.000E+02
M=19 N= 3 AVGEXACTITER=5.780 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=7.063E+01 DR= 7.200E+01]
M=19 N= 4 AVGEXACTITER=9.051 EXACT No.= 98

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 5.269E+01 DR= 5.179E+01
M=19 N= 5 AVGEXACT ITER=8.883 EXACT No.= 94

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=4.670E+01 DR=4.787E+01]
M=19 N= 6 AVGEXACTITER=8.289 EXACT No.= 90

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 4.170E+01 DR=4.204E+01]
M=19 N= 7 AVGEXACT ITER=8.663 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=3.378E+01 DR= 3.372E+01
M=19 N= 8 AVGEXACT ITER=11.830 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.931E+01 DR= 2.813E+01
M=19 N= 9 AVGEXACTITER=9.920 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 3.164E+01 DR= 3.093E+01
M=19 N=10 AVGEXACT ITER=10.916 EXACT No.= 83

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL=2.720E+01 DR= 2.590E+01
M=19 N=11 AVGEXACT ITER=11.580 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.452E+01 DR= 2.448E+01




M=19 N=12 AVGEXACT ITER=12.326 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.442E+01
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DR=2.461E+01

M=19 N=13 AVGEXACTITER=12.198 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY: DL= 2.613E+01 DR=2.576E+01

M=19 N=14 AVGEXACTITER=11.200 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DR=2.042E+01

DL=2.037E+01

M=19 N=15 AVGEXACT ITER=12.022 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.111E+01 DR=2.157E+01

M=19 N=16 AVGEXACT ITER=15.548 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.187E+01 DR=2.180E+01

M=19 N=17 AVGEXACTITER=12.115 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DR= 1.941E+01

DL=1.924E+01

M=19 N=18 AVGEXACT ITER=12.278 EXACT No.= 90

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.865E+01 DR= 1.809E+01

M=19 N=19 AVGEXACT ITER=16.348 EXACT No.= 89

TOTAL OF: KINFORIG= 1.148E+16 KINFCHAN= 4.358E+08 KINFHAM= 1.959E+17
KPPORIG = 1.029E+14 KPPCHAN = 2.159E+06 KPPHAM = 1.370E+14

LOG TOTAL: KINFCHAN/KINFORIG=-7.421E+00 KINFHAM/KINFORIG= 1.232E+00
KPPCHAN/KPPORIG =-7.678E+00 KPPHAM/KPPORIG = 1.243E-01

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.070E+01 DR=2.099E+01

M=19 N=20 AVGEXACTITER=14.864 EXACT No.= 88

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.806E+01 DR= 1.778E+01

M=20 N= 2 AVGEXACTITER=2.000 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.000E+02 DR= 1.000E+02

M=20 N= 3 AVGEXACTITER=7.610 EXACT No.= 100

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 7.000E+01 DR= 7.100E+01

M=20 N= 4 AVGEXACT ITER=9.898 EXACT No.= 98

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=5.781E+01 DR= 5.689E+01

M=20 N= 5 AVGEXACTITER=9.446 EXACT No.= 92

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=4.609E+01 DR=4.565E+01

M=20 N= 6 AVGEXACTITER=9.341 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DR=3.922E+01

DL= 4.000E+01

M=20 N= 7 AVGEXACT ITER=9.721 EXACT No.= 86

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.634E+01 DR= 3.505E+01

M=20 N= 8 AVGEXACT ITER=10.057 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.534E+01 DR=3.491E+01

M=20 N= 9 AVGEXACT ITER=10.146 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=3.062E+01 DR= 3.059E+01
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M=20 N=10 AVGEXACTITER=10.976 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.341E+01 DR=2.388E+01

M=20 N=11 AVGEXACT ITER=10.393 EXACT No.= 84

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.476E+01 DR=2.413E+01

M=20 N=12 AVGEXACT ITER=13.057 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.414E+01 DR=2.538E+01

M=20 N=13 AVGEXACTITER=11.765 EXACT No.= 85

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.288E+01 DR=2.308E+01]

M=20 N=14 AVGEXACT ITER=12.685 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.056E+01 DR=2.159E+01

M=20 N=15 AVGEXACT ITER=14.936 EXACT No.= 94

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.840E+01 DR= 1.851E+01l

M=20 N=16 AVGEXACT ITER=13.404 EXACT No.= 89

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=2.084E+01 DR= 2.086E+01

M=20 N=17 AVGEXACT ITER=13.688 EXACT No.= 93

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.898E+01 DR= 1.860E+01

M=20 N=18 AVGEXACT ITER=16.931 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.713E+01 DR= 1.769E+01

M=20 N=19 AVGEXACT ITER=11.621 EXACT No.= 87

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL=1.747E+01 DR=1.779E+01

M=20 N=20 AVGEXACTITER=14.466 EXACT No.= 88

TOTAL OF: KINFORIG= 1.364E+14 KINFCHAN=1.734E+08 KINFHAM=2561E+17

KPPORIG = 3.791E+11 KPPCHAN = 9.069E+06 KPPHAM

=6.906E+14

LOG TOTAL: KINFCHAN/KINFORIG=-5.896E+00 KINFHAM/KINFORIG= 3.274E+00
KPPCHAN/KPPORIG =-4.621E+00 KPPHAM/KPPORIG = 3.261E+00

PERCENTAGE OF ELEMENTS THAT CONVERGED EXACTLY:

DL= 1.875E+01 DR= 1.955E+01
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