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NOMENCLATURE

activity of component i in a mixture (dimensionless).
Helmbholtz energy (kJ).
energy of a lattice (kJ).

fraction of lattice sites occupied by molecular segments in the Sanchez-
Lacombe model (dimensionless).

fraction of lattice sites occupied by holes in the Sanchez-Lacombe model
(dimensionless).

fagacity of component i (dimensionless).

athermal Guggenheim combinatorial factor (dimensionless).
nonrandom Guggenheim combinatorial factor (dimensionless).

new interaction parameter in Flory-Huggins equation (dimensionless).
Gibbs energy (kJ).

Gibbs energy of mixing (kJ).

excess Gibbs energy in the mixture (kJ).

Boltzman constant (1.3806x10-23 J K1), interaction parameter in Group
Contribution Lattice-Fluid model (dimensionless).

number of moles of component i (kmol).
number of molecules in the ensemble (dimensionless).
number of holes in the lattice (dimensionless).

number of interaction sites available to component i (dimensionless).
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AS
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total number of lattice sites (dimensionless).

number of contacts between the molecules of the same type in case of
nonrandom mixing (dimensionless).

number of contacts between the molecules of different types in case of
nonradom mixing (dimensionless).

number of contacts between the molecules of the same type in case of random

mixing (dimensionless).

number of contacts between the molecules of different types in case of random

mixing (dimensionless).
pressure (Pa).
reduced pressure (dimensionless).
characteristic pressure (Pa).

effective chain length of surface area parameter for component i
(dimensionless).

internal canonical partition function (dimensionless).
translational partition function (dimensioniess).

canonical partition function (dimensionless).

surface area parameter for group k (dimensionless).
number of segments in a molecule of type i (dimensionless).

average number of segments in the mixture in Sanchez-Lacombe model
(dimensionless).

gas constant (8.314 kJ kmol-! K-1).
entropy of mixing (kJ K).
temperature (K).

reduced temperature (dimensionless).



T* charactenistic temperature (K).

\2 molar volume of component i (m?* kmol™); volume per segment of component i
(m3).

vy volume of a lattice site (m3 kmol!).

v reduced volume of component i (dimensionless).

Vm reduced volume of the mixture in UNIFAC-free volume activity coefficient
model (dimensionless).

V¥ characteristic volume per segment in the Sachez-Lacombe model (m?);
charactteristic molar volume in the GCLF-EOS model (m3 kmol-!).

v volume (m3).
AV volume change of mixing (m?).
X, mole fraction of component i (dimensionless).

z configurational partition function (m3N),

z coordination number (dimensionless); interaction parameter in Sachez-
Lacombe model (dimensionless).

Greek Symbols
B /KT (J0).
Y mole fraction activity coefficient of component i (dimensionless).

T nonrandomness parameters of component i in the Group Contribution Lattice-
Fluid model (dimensionless).

rij nonrandomness parameters between different components in the Group
Contribution Lattice-Fluid model (dimensionless).

5 flexibility parameter (dimensionless).
5, solubility parameter of component i (J m=3)1/2

84 contribution to the solubility parameter from dispersive forces (J m3)!2



K,
A,

v (m}
Vi

contribution to the solubility parameter from polar forces (J m™3)1/2

contribution to the solubility parameter from hydrogen bonding forces
(J m3)12.

energy of interaction per unit of surface area (kJ m2).
interaction energy in the Sanchez-Lacombe model (k).

characteristic interaction encrgy between a segment of molecule i and a
segment of molecule j (kJ).

surface area fraction of component i (dimensionless).

Wilson model nonrandomness parameter for i-j contacts (dimensionless).
molar chemical potential of species i (kJ kmol™).

change in chemical potential upon mixing for species i (kJ kmol™?).
number of groups of type k in molecule m (dimensionless).

reduced density (dimensionless).

symmetry parameter (dimensionless).

volume or segment fraction of species i (dimensionless); fugacity coefficient of
component i (dimensionless).

Flory-Chi parameter for the residual term in the Flory-Huggins theory
(dimensionless).

functional group surface area fraction (dimensionless).

number of configurations to one molecule in the Sanchez-Lacombe partition
function (dimensionless).

number of configurations in the pressure ensemble in the Sanchez-Lacombe
model (dimensionless).



CHAPTER I
INTRODUCTION

Phase equilibrium thermodynamics is the key to the success of the processes that
produce useful chemicals with specific, desirable properties in the chemical and
pharmaceutical industries. These processes rely on the ability to efficiently and
economically separate the desired species from a mixture containing a variety of
products. Furthermore, development of new and more powerful separation processes
rely upon advances in the separation sciences. The purpose of this research is to improve
the understanding of phase equilibrium thermodynamics of polymer solutions.

The usefulness of thermodynamic information gleaned from polymer solutions has
long been recognized. Thermodynamic information is a necessity in predicting the
behavior of a polymer system in the initial polymerization process, through the removal of
possibly toxic volatile materials, to its performance as an end-product. Phase equilibrium
properties of polymer solutions affect how these processing steps can be carried out. An
appropriate design of each specific operation requires the knowledge of the
thermodynamic properties of the polymers, solvents, plasticizers, diluents, etc. involved in
a mixture. Another application arises in the processing of polymer blends. Polymer
compatibility has been the subject of considerable interest, and thermodynamic models are
needed to predict the compatibility of two polymers. Phase equilibrium information is also
frequently applied in biochemical engineering for purification operations. One such
separation technique is to use aqueous-polymer two-phase systems to separate a wide
variety of biomaterials, such as proteins, nucleic acids, fragile subcellular particles,

microorganisms, etc. Classical solution theories have been used to correlate the



partitioning of biomolecules. Phase equilibrium thermodynamics in polymer solutions is
an underlying key to development of separation and purification techniques applicable to
biological materials. Phase equilibrium thermodynamics is an essential element in most
non-mechanical separation processes.

Early interest in polymer solutions concerned measurements such as osmotic
pressure. Not until the 1960's was it appreciated that liquid-liquid phase separation upon
changing temperature (or pressure) is a general phenomenon in polymer solutions, and
that a polymer is fractionated by differential partitioning of its species between the two
phases (Kennedy, 1978). These observations inspired the growth of interest in polymer
solution thermodynamics.

Phase equilibrium thermodynamics provides two approaches to correlate the
thermodynamic properties at equilibrium. One is the equation-of-state method and the
other is the activity coefficient method. Activity coefficient models have been the primary
method to deal with polymer solutions. However, activity coefficient models are typically
applicable to the condensed phase, and it is not convenient to use activity coefficient
models in systems containing supercritical components because in this case hypothetical
standard states have to be assumed. The equation-of-state methods overcome these
shortcomings, but the difficulty has been finding a general equation of state applicable to a
wide variety of molecules (i.e. large or small; polar or nonpolar) in both the vapor and
dense phases. However, as pointed out by High (1990), the benefits of an equation of
state outweigh the liabilities. If possible, equations of state are preferred over activity
coefficient models for calculation of phase equilibria.

Any successful model, either an activity coefficient model or an equation of state
model, requires a good understanding of the nature of intermolecular forces. The case of
polymer solutions is necessarily more complicated because consideration must be given
not only to interaction between similar and unlike molecules, but also to the configuration

of a long molecular chain of polymer. It has been customary to apply statistical mechanics



to relate the phase behavior of macroscopic systems to the properties of small particles
such as atoms, molecules, etc. The partition function Q can be related to the Helmholtz
energy A by:

A=-RTInQ. ¢))

Other thermodynamic functions of interest, such as enthalpy, entropy, and chemical
potential p; for the ith component of the mixture, can be related to the partition functions
by means of classical thermodynamic functions.

The object of statistical mechanics is to determine the macroscopic properties as a
function of molecular properties. The problem has been that of expressing Q in terms of
molecular and state variables. As a rule, polymers are mixtures of macromolecules
varying in chain branching, sequence of monomer units, stereoregularity, and molecular
weight. These differences make the study of polymer properties a difficult matter. It has
been common to interpret a polymer molecule as an "assemblage of small segments"
connected together in some way and more or less free to interpenetrate other such
assemblies (Kennedy, 1978). A variety of statistical mechanical models have been
proposed to deal with the combinatorial problem of counting the number of ways in which
the polymers and solvents in the system can be arranged and estimating the energy
assigned to each such arrangement. The problem has been approached in several ways
leading to a variety of statistical mechanical models.

Equations can be made predictive through knowledge of the intermolecular
potentials of the systems of interest. The group contribution approach assumes that the
interaction energy between groups will be constant regardless of the overall structure of
the molecule, it offers an efficient way to calculate the intermolecular properties so as to
make the equation of state predictive. The group contribution method has been proven to
be successful in various activity coefficient models, but equations of state based on group
contributions are less common. Holten-Andersen (1985) proposed a group contribution

equation of state for polymer solutions. High and Danner (1989, 1990a) developed a new



group contribution lattice fluid equation of state, which is a modification of the EOS
derived by Panayiotou and Vera (1982a,b). The GCLF equation of state is based on
lattice statistics and has proven to accurately predict solvent activities in various polymer-
solvent systems. One objective of this thesis is to extend the GCLF model to applications
in polymer-solvent liquid-liquid equilibria.

The subject of this thesis is liquid-liquid equilibium. The GCLF equation of state has
been extended to liquid-liquid equilibrium in low molecular weight systems and polymer-
solvent systems, and subsequent testing with experimental data was performed. The
GCLF model is compared with the Sanchez-Lacombe equation of state (1974, 1976a,b,
19‘/"8). The majority of the discussion is related to the behavior of the two models in
liquid-liquid equilibrium,

The content of this thesis is as follows. Chapter 2 provides a general thermodynamic
background. The common phenomenon in liquid-liquid systems is described and how
phase behavior is related to thermodynamic representation is discussed. A brief review of
the most common liquid solution models is given.

Chapter 3 mainly describes the Sanchez-Lacombe and the GCLF equations of
state, which are the equations of state we are investigating in liquid-liquid equilibria.

Chapter 4 discusses the stability analysis in liquid mixtures using the Sanchez-
Lacombe and the GCLF equations of state. The objective of this chapter is to evaluate the
abilities of the two equations of state in the prediction of phase separation.

' Chapter 5 discusses the general algorithm for the calculation of liquid-liquid
equilibrium. The abilities of the Sanchez-Lacombe and the GCLF equations of state in
predicting liquid-liquid equilibria are compared, including upper critical solution
temperature (UCST) and lower critical solution temperature (LCST) behavior and the
pressure dependence and molecular weight dependence of these critical conditions.

Chapter 6 serves as the conclusion, with the purpose of summarizing what was

learned in this research. Suggestions are also provided for future work in this area.



CHAPTER 11
GENERAL THERMODYNAMIC BACKGROUND

This chapter seeks to provide the general thermodynamic background necessary for
the understanding of the phase behavior in polymer solutions and the evaluation of the
application of the models for liquid-liquid equilibrium. First, the basics of solution
thermodynamics and some essential quantities in phase equilibrium are discussed. Then,
the common behavior of liquid-liquid systems and their thermodynamic representation are
discussed.

The objective of this research is to extend the Group Contribution Lattice-Fluid
(GCLF) equation of state to the prediction of liquid-liquid equilibrium and compare it with
the Sanchez-Lacombe (S-L) model. Detailed derivations of the GCLF model and the
Sanchez-Lacombe model can be found in previous work ( Sanchez-Lacombe, 1976a,b,
1978; Panayiotou and Vera, 1982a,b; High, 1990). Only a brief review of the lattice
models is given in this chapter, a more detailed description of the GCLF EOS and
Sanchez-Lacombe models and their application in polymer solutions will be covered in the

next chapter.
Thermodynamic Framework

. The objective in solution thermodynamics is to determine accurate relationships
among physical properties such as temperature, pressure, and composition between
different phases. The criteria for phase equilibrium are discussed, then several important

thermodynamic functions in solution theories are introduced.



Criteria for Phase Equilibrium

Basically, there are two approaches to correlate the properties of different phases at
equilibrium. The first criterion is the equality of T and P for each phase and of the

chemical potential, p;, for each component in each phase.

Pl =pll= _=pN (2)
TI=TH=_=TVN 3)
pl =pll=.=py 4

where the superscripts represent the number of phases at equilibrium.
~ Inaclosed, heterogeneous system the equality of chemical potentials can be replaced
by the equality of fugacities:
fl=fl=_=fN (5)
The general expression for calculating binary liquid-liquid equilibrium using activity
coefficients is given as:
yix{ o =yl xp gt (©)
In the case when the standard states in both phases are the same, the equation
becomes:
vixi = yixl. (7)
There is a second criterion for stable equilibrium, which is that the Gibbs energy of
the system must be at a minimum. Any closed system in stable equilibrium is characterized
by the condition that, at constant pressure and temperature, its free energy of mixing is a
minimum. In partially miscible liquid systems, when equilibrium is obtained, the system
separates into a number of phases and the components are distributed over the phases so
that the total Gibbs energy is at a minimum.
All of the expressions described above are general, exact, and can be applied to small
molecules, polymers or any other solution systems. What is required are accurate

equations of state and activity coefficient models.



Thermodynamic Formalism

In phase equilibrium, the most useful thermodynamic functions are the Gibbs free
energy, chemical potential, and activity coefficient. In polymer solution models,
microscopic properties are frequently related to two quantities: chemical potential and
activity coefficient. These quantities will be used in the ensuing discussion and must be

discussed first.

Gibbs Energy. The Gibbs energy is a state function defined as the thermodynamic
potential in terms of the independent variables P, T, n. The fundamental equation for an

open system is given as:

dG =—SdT +VdP + Y pdn; (8)
i

where,

Hi = ( on, )T,P,nj = ( on; )S,Pﬂj - ( on, )T,an - ( on; )S.V,nj. %)

The quantity W; is the partial molar Gibbs energy, but not the partial molar enthalpy,
Helmbholtz energy or internal energy. Because the independent variables are T and P,
which are arbitrarily chosen in defining partial molar quantities, are also the independent
variables for the Gibbs energy, G.

Gibbs energy is also the most useful thermodynamic function to apply in statistical

mechanics. Microscopic properties can be easily related to the Gibbs energy by:

(?=—RT®M)—[%E%J ] (10)
T.N

where,

Q=3 ePBEON) (1)



where Q is called the canonical partition function. E;(V,N) is the energy of that system of
the ensemble which is in energy state i, the term in parentheses (V,N) indicates the
canonical ensemble. For a liquid or solid, the second term in the brackets in Equation (10)
is negligible, therefore, the Gibbs energy is practically indistinguishable from the
Helmbholtz energy in Equation (1).

Chemical Potential. Chemical potential is defined as partial molar Gibbs energy.

Many models used in polymer solution systems are expressed in terms of chemical
potentials. When equilibrium is obtained, the chemical potential of each component in
each phase should be equal. An absolute value of the chemical potential cannot be
assigned. Hence, we are forced to calculate the changes of chemical potentials or the
differences between the state of interest and a reference state. The difference between the
chemical potential at the state of interest and the standard state is called the relative
chemical potential (Benge, 1986). The choice of a standard state is arbitrary, but it is
quite common that the pure components at the temperature and pressure of the system is
chosen as the standard state.

The relation between the relative chemical potential of component i and the Gibbs

energy of mixing in a multicomponent system is given as:

aAGmiJcin
Ay =#i““?=l:—"§,’1’._i} : (12)
T,P,n;

Activity Coefficient. The activity coefficient is defined as the activity divided by

mole concentration. Activity coefficient has the physical significance of being the ratio of

actual fugacity to the fugacity of an ideal solution at the same conditions. That is:

/i . (13)




Activity coefficients are readily obtained from expressions for the excess Gibbs
energy. The relation between the activity coefficient of an individual component and

excess Gibbs energy is given by:

nYi=Rr =

1

_& _{5(NTgE /RT)] | (14)
' T,Pn,

Excess functions are thermodynamic properties of solutions in excess of those of an
ideal solution at the same temperature, pressure and composition. The excess Gibbs
energy is defined by:

gh= Agmixing — Ag‘r;‘ziixing = Bmixture = 8ideal - (15)
Liquid-Liquid Equilibrium

Phase equilibrium involves two or more phases in contact. This research work
applies to liquid-liquid systems; therefore, an introduction to phase behavior in liquid-
liquid systems is necessary. An understanding of how this phase behavior is represented

by thermodynamic functions is also discussed.
Liquid-Liquid Phase Behavior

Some polymer solutions have been observed to display a lower critical solution
temperature, an upper critical solution temperature, and some display both an upper and
lower critical solution temperature. An adequate theory for polymer solutions should be
able to predict these behaviors. Here, the characteristics of phase behavior are discussed.

Any synthetic polymer is a mixture of molecules of different molecular weights. It is
itself a multicomponent system and its solution is a multicomponent system as well.
Hence, a solution of polydisperse polymer and a single solvent is actually a
multicomponent system. However, it can be viewed as a binary system if the

heterogeneity index is small. In the present work, like the Flory and Holten-Andersen
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equations of state, the polymers are considered to be monodisperse. The effects of
polydispersity on the calculation results have been reviewed by High (1990). The present
polymer solution theories have not been able to deal with the polydisperse polymer
solutions with a high degree of accuracy. In the present work, all experimental data are of
low degree of dispersity (My,/Mp, <1.06 ) except for the system of HDPE (high density
pol;}ethy]ene) and hexane, the heterogeneity index of HDPE in this system is 1.37.

The critical solution behavior of polymer solutions is classified into two types by the
shape of the cloud-point curve in the temperature-concentration diagram. The cloud point
curve of the upper critical solution temperature (UCST) is convex upward in the
temperature-composition diagram with a maximum, where the mutual solubility increases
with increasing temperature. The temperature of this maximum point is called the upper
critical solution temperature. The cloud point curve of the lower critical solution
temperature (LCST) is concave upward with a minimum, which is known as the lower
critical solution temperature. Partial miscibility occurs at the temperatures above the
LCST or below the UCST. The existence of the UCST or LCST is a very common
phenomenon in polymer solutions. Upper and lower critical states may exist in the same
sysiem. A few examples of closed regions of immiscibility have been observed, as shown
in Figure 1b. In the polymer-poor solvent system, the two regions of miscibility are
merged to give an "hourglass" shape. as shown in Figure 1c.

The molecular weight of the polymer affects the upper and lower critical solution
temperatures. The maximum point of UCST is shifted to a higher temperature and a
lower concentration with increasing molecular weight of the polymer; while the minimum
point of LCST tends to move toward lower temperature and lower concentration as the
molecular weight of the polymer increases. By increasing the molecular weight of the
polymer, the UCST is raised and the LCST is lowered, thus enlarging the region of
immiscibility. The pressure also affects the UCST and LCST phenomena, it has been

observed that the UCST decreases and LCST increases as the pressure increases.
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Figure 1. Schematic Liquid-Liquid Temperature-Composition Phase Diagram
for Various Mixtures. (a) A Mixture with a LCST Above a UCST;,
(b) A Mixture with a UCST Above a LCST (Closed-loop Diagram);
(c) A Mixture with a Tendency Toward Greater Miscibility at
Intermediate Temperature (Hourglass Diagram).
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Criteria for Phase Splitting

Many liquid systems exhibit partial miscibility, which is usually termed phase
splitting. The most convenient criterion to evaluate phase splitting is the Gibbs energy of
mixing. In a binary system, if the formation of additional phase can lower the Gibbs
energy of the system, then the mixture splits into two phases.

The phasé splitting can be represented by a diagram of the Gibbs energy of mixing
versus mole fraction where the curve is partly concave downward, as shown in Figure 2.
Notice that Curve 1 has a positive second derivative of the Gibbs energy everywhere, thus,
the system is a homogeneous phase for all compositions. Curve 2 is partly concave
downward having a common tangent enclosing the region of the curve exhibiting
immiscibility. The Gibbs energy within this area is minimized by splitting into two phases
having the concentration x' and x", respectively. A set of these tie-line points yields the
binodal or phase boundary curve. The region of instability corresponds to area between
X'sp and x"g,. The two inflection points, X', and x"gp, where the second derivative of
excess Gibbs energy with respect to composition is zero, are called spinodal points. The
locus of these points is called the spinodal curve.

The criterion for phase splitting for a binary liquid mixture is:

(_a_z_A_gl%) <0 (16)
rp

ox2
- Phase splitting can also be evaluated via the excess Gibbs energy. In a binary
solution, the excess Gibbs energy can be expressed as:
gE = Emixture — X181 — X282 — RT[X] Inx; +x; 1n4"2]- a7
The criterion for phase splitting can be rewritten as:

20E
(J—)T.P +RT(—1— —-1-) <0. (18)

ox? X] X
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Curve 1 Corresponds to a System Exhibiting Complete Miscibility;

Figure 2. Gibbs Energy of Mixing Versus Mole Fraction in a Binary System.
Curve 2 Represents Partial Miscibility.
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| In the case of an ideal solution, Gibbs energy of the mixture is equal to zero, so the
ideal solution cannot exhibit phase splitting. Mixtures of real fluids do not form ideal
solutions. It is noted from Equation (18) that the excess Gibbs energy must be negative
for the system to phase split.

Figure 3 illustrates the binodal and spinodal curve on a temperature-composition
plane. The region between the two spinodal points is an unstable region, so a total system
with a composition in this region leads to spontaneous phase separation. The region
between a binodal and spinodal point is a metastable region. A system with a composition
in this region does not spontaneously separate. In this situation an activation energy is
necessary for phase splitting.

The first three derivatives of the Gibbs energy of mixing are very helpful in analysis
of phase separation. The first derivative of the Gibbs energy of mixing is identical to the
relative chemical potential, which is expressed by Equation (12). The binodal curve,
which is the locus of the phase boundary between the one-phase and two-phase regions of
the binary mixture, can be determined by the following relations:

e=pf (19)
or,
Ape = ApP. (20)

The second derivative of Gibbs energy of mixing is the stability condition. It
predicts phase separation and spinodal curve, which is the boundary between unstable

region and metastable region of the mixture.

azAgmiring _ %)
( ax? )p,r—( ox; PT<0' @

The third derivative of Gibbs energy of mixing, in a binary mixture, is used to find

the critical or plait point. That is the point of incipient instability or incipient phase
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Figure 3. Typical Temperature-Composition Phase Diagram for a Binary System.
The Solid and Dashed Curves Are the Binodal and Spinodal Curves,
Respectively.
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separation. The binodal and spinodal curves both pass through the plait point, the second

and third derivatives of Gibbs energy of mixing must be zero at this point.
Polymer Solution Models

Polymer solutions are characterized as liquid mixtures wherein the molecules of one
component are very much larger than those of the other one. High (1990) commented
that all of the present models applied in polymer solutions can be classified into two
categories: lattice models and van der Waals models. Our major concern is the application
of lattice models to liquid-liquid equilibrium, the van der Waals-type models are only

briefly introduced in the section.
Lattice Theory

In both the lattice models and van der Waals type models, the thermodynamic
functions are related to the microscopic properties of the molecules by the canonical
partition function. Generally, the canonical partition function is split into a translational
contribution and an internal contribution:

Q =OrOnt = kinZQne- (22)

The translational partition function, Q,;, depends upon the positions and motions of
the centers of mass of the molecules in the mixture. It is usually split into a product of
two factors, one is the kinetic partition function, Qy;,, arising from the kinetic energy, the
other factor, Z, is called the configurational partition function which arises from the
potential energy. The internal partition function Q,,, accounts for rotational, vibrational
and electronic effects in the fluids. The van der Waals models use a radial distribution
function to evaluate the translational partition function. The radial distribution function
accounts for the probability of finding the center of another molecule as a function of the
distance from the center of the first molecules. The Flory equation of state and Holten-

Anderson equation of state are the examples of van der Waals type models. For lattice
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models, Guggenheim (1952) stated that on comparing a mixture with its pure constituents
all contributions to the free energy of mixing from the internal partition function Q;;, will
cancel out.

From a molecular viewpoint, deviations from ideal behavior in liquid solutions
mainly come from two effects. First, forces of attraction between unlike molecules are
qualitatively different from those between like molecules, giving rise to a nonvanishing
enthalpy of mixing. Second, the differences in size or shape between unlike molecules
cause a different molecular arrangement in the mixture from that for the pure liquids,
giving rise to a nonideal entropy of mixing. Therefore, it is convenient to describe the
behavior of the molecules in terms of these two contributions. The first contribution
considers only the size and shape of the molecules; no interactions between the molecules
are assumed. This contribution is the combinatorial or the athermal term. The second
contribution is commonly referred to as the residual term or attractive energy term. This
contribution is calculated by a product of a characteristic energy of interaction per contact
and the number of contacts in the system.

Prausnitz et al. (1986) gave an insightful comment on the rule of studies of
thermodynamics: "The history of modern science has shown repeatedly that a quantitative
description of nature can often be achieved most successfully by first idealizing natural
phenomena, i.e., by setting up a simplified model, either physical or mathematical, which
crudely describes the essential behavior while neglecting details. ..... The behavior of
nature is then related to the idealized model by various correction terms ..... which were
neglected in the process of idealization."

The development of lattice models is a typical example. The last forty years have
witnessed great improvement in lattice theories. In the 1940's, the Flory-Huggins model
was introduced, which is a simple model based on the regular solution theory. It was only
useful for mixtures of molecules which are chemically similar and which differ only in size.

In the1960's, the concept of local compositions was used to improve the results from
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these "idealized" models. Without considering the intermolecular interactions the
molecules in the system tend to be evenly distributed. However, the differences of
intermolecular interactions tend to make the molecules segregate either with the like
molecules or the unlike ones. The concept of local compositions was used to correct the
combinatorial term for the nonrandomness that results from intermolecular forces, which
led to a nonrandom combinatorial expression. Later, the introduction of group
contributions made it possible to use the available equilibrium data to predict phase

equilibnia of unknown systems.

Flory-Huggins Model

The first lattice model, known as Flory-Huggins model, was independently
developed by Flory (1941) and Huggins (1941, 1942). They gave a solution to the
combinatorial arrangement problem for a binary system comprising a polymer and solvent.
In this lattice model, one lattice site is occupied by a solvent molecule or polymer segment
of similar size. No heat of mixing is assumed, and the entropy of mixing arises only from
the configurational consideration disregarding the effects due to molecular interactions.

The result is an expression for the athermal, configurational entropy of mixing:

ég—=%(—;-=—mln¢1-mln¢z (23)
where n; and n; are the number of moles of solvent and polymer molecules, respectively.
@, and @, are the volume fraction of solvent and polymer, respectively.
The resulting expression for activity of the solvent is given by:
Ingi=In(1-g)+(1-1/r)$, (24)
where r is the number of segments occupied by a chain of polymer molecule.

However, the assumption of no enthalpy of mixing is invalid for most solvent-

polymer solutions. To correct for energetic effects, Flory (1942) suggested adding a
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enthalpy term to account for interactions between lattice sites, which led to the following
expression for the solvent activity:

Ing =In(1-¢)+(1-1/r)p + x5 25
where 7 is the interaction parameter or the Flory-y parameter. As first proposed by Flory
(1942), x is a dimensionless parameter independent of composition. For an athermal
solution, X equals zero. The solubility of the solvent can be estimated from the value of .
A "good" solvent has a negative y, while the solubility decreases as the value of
increases. The critical value of i is approximately 0.5.

The Flory-Huggins model implies that the major contribution to the Gibbs energy of
mixing and, hence, the activity in polymer solutions, is entropic in nature. As has been
widely recognized, there are deficiencies with the Flory-Huggins model. The most serious
deficiency is the assumption of no volume change on mixing. Since the total volume that
can be occupied in the lattice is fixed and no vacancy is allowed, volume changes cannot

affect the thermodynamic potential functions such as the Gibbs energy.
Modifications of the Flory-Huggins Model

The Flory-Huggins model continues to be the starting point for most developments
in statistical mechanical interpretation of polymer solutions and mixtures. Much of the
progressive development of the classical Flory-Huggins model is in the interaction
parameter term.

The interaction parameter for non-polar systems can be estimated using Hildebrand-

Scott solubility parameters:
= (§-6) 26
1= (81-8) (26)
where v] is the liquid molar volume of the solvent, 8] and &, are the solubility parameters

of the solvent and polymer, respectively. The volubility parameter, d; is defined as the
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square root of the cohesive energy density, which is the energy change upon isothermal
vaporization of one mole of saturated liquid to ideal-gas state.

Conventionally, only dispersive forces are involved in the definition of the cohesive
energy density. Hansen (1969) suggested that the cohesive energy be divided into
contributions due to dispersion forces, dipole-dipole forces, and hydrogen bonding forces,
so that the polar molecules or the molecules having hydrogen bonds can be modeled.

Recalling that y is a constant in the Flory-Huggins model, no entropic contribution is
associated with it. Blanks and Prausnitz (1964) extended the definition to account for the
configurational contributions:

X=X+ 3p(61- 62 @7
where the entropic contribution to the Flory-y, Xs, is equal to 1/z, z is the coordination
number of the lattice.

Other modifications to the Flory-Huggins theory stem from considering the
temperature, composition, or even molecular weight effect on the interaction parameter.
An expression of the Gibbs energy of mixing with concentration-dependent and
temperature-dependent interaction parameters for polymer solutions was independently
developed by several authors (Guggenheim, 1952; Maron, 1959; Koningsveld,
1968a,b,c). The expression can be written in the following form (Koningsveld and

Staverman, 1968a,b,c):

LOmisine — gy 10y + Lingy + (T, 02) 0002 28)

where Y is replaced by a concentration-dependent interaction parameter g(T,$7).

Several forms of the new interaction parameter, g(T,92), have been suggested.
Koningsveld and Staverman (1968b,c) suggested using a truncated power series expansion
in ¢7:

g=8(T)+ g2+ 203 (29)
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&(7) =g0,1+go,271:+80,3T+ g,4InT. (30)
Casassa (1977) stated that the classical lattice treatment of Flory and Huggins has
proven to be quite useful for modeling liquid-liquid equilibrium in solvent-polymer systems
exhibiting UCST behavior. If UCST systems were the only systems of interest, minor
modifications could be made to the classic theory to render it sufficient for modeling these

UCST systems.

Local composition and Group contribution

The development of lattice models has been a process of adding correction terms to
various features. In the 1960's, the concept of "local compositions" has allowed great
progress in the development of polymer solution theories. The Flory-Huggins model does
not account for the probability of overlapping chains and for the density differences
between polymer and solvent. Wilson (1964) proposed a new activity coefficient
correlation derived from the Flory-Huggins theory. He suggested using the "local
composition" concept, which accounts for the local composition effects caused by the
differences in intermolecular forces. Wilson presented the following expressions for the

activities in a binary solution:

Ina; =Inx; —In(x + Apzxz) +x2[x1 ':\Il\zlle - Az:;z-l’_ x2] ey

A A
Ina; =lnx; —In(x +A21xl)+x1[xl +11\212xl - Aglxlz-ll- xz] (32)

where A}, and A, are binary adjustable parameters which are related to characteristic
energy differences. The Wilson equation can be readily extended to multicomponent
systems using only parameters obtained from binary systems. The main deficiency of the

Wilson equation is its inability to predict partial miscibility.
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The introduction of group contributions made the application of solution theory
more practical in industrial applications. The basic idea of this approach is to regard the
real solution as the combination of various functional groups, i.e., an acetone molecule is
constructed from a methyl group and a CH3CO group. Real solutions are composed of
countless number of chemical compounds, while the number of function groups which
constitute these compounds is much smaller. The basic assumption of group contributions
is that a physical property of a fluid is the sum of contributions of individual functional
groups in the molecules. The contribution made by one group is independent of the other
group present. Thus, it is possible to predict the properties of a large variety of unknown
solutions from experimental data obtained from functional group contributions.

Derr and co-workers (1959, 1962) used the group contribution approach to develop
an activity coefficient expression. Derr and Deal (1969) expanded this idea to develop the
Analytical-Solution-Of-Groups (ASOG) method for liquid solutions (Fredenslund et al.,
1975). Abrams and Prausnitz (1975) extended Guggenheim's quasichemical treatment to
the systems containing molecules of different size. The resulting UNIQUAC (Universal
Quasi-Chemical) equation is composed of two parts: combinatorial and residual terms.
Staverman's (1950) combinatorial entropy is used in UNIQUAC equation for athermal
mixtures and the residual term is determined by Guggenheim's quasichemical theory.
UNIQUAC method provides a satisfactory description for many typical mixtures in vapor-
liquid equilibria and liquid-liquid equilibria, and only two adjustable parameters are
required. Fredenslund et al. (1975) developed a predictive activity coefficient model
based on UNIQUAC method using the concept of group contributions. The parameters
reflecting the sizes and surface areas in the combinatorial term are treated as the sum of
contributions from individual groups. The residual activity coefficient is calculated by
contributions of constituent functional groups through combining rules. The method
provided a useful tool for solving practical phase equilibrium problems as encountered in

chemical process design.
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Group contribution has proven to be helpful in engineering applications. It is a
useful complement for solution theories because the present theoretical knowledge has not
yet reached a stage where any experimental data can be predicted with high accuracy

without empirical parameters.

Other Lattice Models

Oishi and Prausnitz (1978) extended the UNIFAC model to polymer solutions by
including a contribution to the free volume differences between the polymer and solvent
molecules, which was suggested by Flory's equation-of-state theory. For mixtures of
ordinary liquids, free volume makes only a negligibly small contribution. However, for
mixtures of solvents and polymers, Oishi and Prausnitz reported that it is often significant.
The expression for the activity coefficient of a solvent in a polymer is given by:

Inay = Inafom +1nafes+lnalﬁ’ (33)

where the free volume contribution is given by:

‘71/3_1 v vl/3
In alfv = —3clln[-‘;’i7t7]—01(3;—1)(m)- (34)

The Oishi-Prausnitz approach was compared with the present model in the
application of vapor-liquid equilibrium in the previous work, the present model is generally
as accurate or slightly more accurate than the Oishi-Prausnitz method (High, 1990). The
application of the Oishi-Prausnitz method requires the densities of the pure solvent and
pure polymer at the temperature of the mixture of interest and the structure of the solvent
and polymer. But since polymer densities data are rare, as pointed out by High (1990), it
is a serious weakness of the Oishi-Prausnitz method.

There is growing interest in what have been called "lattice fluid” models. In these
models, the assumption is made that a fluid is a mixture of molecules and holes. In

essence, they are lattice models in which some of the lattice sites are occupied while others
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remain empty (holes). This approach was introduced by Sanchez and Lacombe (1974).
They developed a lattice-fluid model in terms of an equation-of-state approach.
Panayiotou and Vera (1982a,b) also developed an equation of state based on lattice-fluid
theory. In this model nonrandomness of the arrangement of molecules is taken into
account. High and Danner (1989, 1990a) modified the Panayiotou-Vera equation of state
and combined it with a group contribution technique to make the equation of state
predictive. The model is known as the GCLF model (Group Contribution Lattice-Fluid
model). The development of the GCLF model! is based on the Panayiotou-Vera model in
the same manner as the UNIFAC method is based on the UNIQUAC model. The
Sanchez-Lacombe and GCLF equations of state will be described in more detail in the
next chapter, and their prediction ability for pure components and liquid-liquid equilibrium

will be compared.



CHAPTER III

THE SANCHEZ-LACOMBE AND THE GROUP
CONTRIBUTION LATTICE-FLUID MODELS

The purpose of this chapter is to describe the two lattice models: the Sanchez-
Lacombe (S-L) and the Group Contribution Lattice Fluid (GCLF) models. Both the
Sanchez-Lacombe and the GCLF models are based on the Lattice-fluid theory and well-
developed Guggenheim's quasichemical theory. Before discussing the two models the

basics of statistical mechanics and lattice-fluid theory will be introduced.
Statistical Mechanics and Lattice-Fluid Theory

Statistical mechanics describes the behavior of macroscopic systems in terms of
micfoscopic properties of particles such as atoms, molecules, etc. The bridge linking the
microscopic properties and the macroscopic world is the partition function. The
Helmholtz energy is related to the partition function by Equation (1).

Instead of the commonly used canonical ensemble, Sanchez and Lacombe (1976)
started from a pressure ensemble to develop an equation of state. The Gibbs energy and
the configurational partition function are related by:

G=—kTInZ(T,P) (35)

where,
Z(T,P)=Y Y Q(E,V,N)exp[-B(E + PV)] (36)
V E

where Q(E, V,N) is the number of configurations in a system of N molecules having a

configurational energy E and volume V. In the Sanchez-Lacombe equation of state, the

25
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number of configurations, €, is evaluated by Guggenheim's expression (Guggenheim,

1952) for random mixing:

o-|n3)

At the limit of infinitely large coordination number, the number of configurations is

Nr! qu 212
NIV ( N,!J ' 7

approximated as:

Q=(1/fp)Ne(w! [N (38)
where  is the number of configurations available to one molecule in the close-packed
state, fo = N,/ (Ny+rN) and f =rN/(N, +rN) are fraction of empty sites and
fraction of occupied sites, respectively. The expression above with the large z limit is
called "Flory approximation” because a similar formula was first obtained by Flory
(Sanchez and Lacombe, 1976b).

The GCLF model is based on the canonical ensemble, Guggenheim's expression

(1952) for nonrandom mixing is used for the canonical partition function:

N;
o-[n(5) Toswos(-5)

where ; and o are the flexibility parameter and symmetry number of molecule i,
respectively. These parameters are used to characterize the configuration of a molecule.
In a binary system, the random combinatonial, g., and the nonrandomness combinatorial,

gnr» are given by (Guggenheim, 1952):

2/2
g = N" Nq' (40)
TN JIINY N

(41)
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where N©

2, IT/,;’ are the numbers of contacts between the molecules of the same type and

that of different types in the case of random mixing, respectively. Nj;, ]V,-j are the

numbers of contacts between the molecules of the same type and that of different types in
the case of nonrandom mixing, respectively.

Unlike the Flory-Huggins model, the volume occupied by one segment, or one
"mer", is not necessarily equal to the volume of the solvent. Holes are allowed to exist in
lattice fluid models. The assumptions and description of lattice-fluid model in an square
lattice square are introduced as below:

1. A lattice consists of Nj molecules containing r; mers and Ny, empty sites, the total
number of lattice sites can be expressed as:

N, =KN; + Np,. (42)

2. The number of interaction sites available to a molecule containing r segments ( a
r-mer) is the sum of neighboring sites adjacent to each site along the chain, excluding the
sites occupied by bonded neighbors. The number of these interactions can be represented
by zqj, where z is the coordination number and q; is the effective chain length, which is
related to the molecule's surface area. The parameter g; is defined by the expression:

2qi=(n-2)(z-2)+2(z-1)=r(z-2)+2. (43)

3. The total number of nearest neighbor pairs in the system is (z/2)N;, but the

interactions occur only between the nearest neighbors. Thus, the total number of

interaction sites available in the system is:
zNg = z( N +qiN;). (44)
4. In the lattice-fluid models, there are two types of lattice sites: "holes" and "mers".
The interactions between hole-hole, hole-mer and bonded mer-mer pairs are assigned a

zero energy, the only nonzero interaction energy occurs between nonbonded mer-mer

interactions.
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Sanchez-Lacombe Model

Sanchez and Lacombe (1974) developed a new equation of state based on the
lattice-fluid theory. In the Sanchez-Lacombe model, random mixing of molecules and
holes are assumed. Mixing rules for the volume of the molecules are necessary because the
volume of one mer of a pure component in pure state is not identical to that in the

mixture.
Mixing Rules

One characteristic of the volume change upon mixing is that the volume occupied by
one molecule, which is termed close-packed volume, is conserved. If a molecule 1 occupies
1;° sites in the pure state and has a close-packed molecular volume r;."v:, it will occupy 1j
sites in the mixture and have the same average closed-packed volume v*

p;"v; =t =" (45)
v is the average close-packed molecular volume in the mixture. A close packed mass
density is defined so that;

p;=M; V"= M;/(r°v]) (46)
where M; is the molecular weight of component i.

Another characteristic is that the total number of pair interactions in the close-packed
mixture is equal to the sum of the pair interactions of the components in their close-packed
pure states.

rN =nr°Ny+r N2 =nN+nN;. 47)

The calculation of the total energy of a lattice is based on the assumption of random

mixing. The total energy in a lattice is expressed in terms of the characternistic interaction

)
energy, € :

E=—(ze/2)N,f2=-€"N,f2. (48)
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the derivation of Equation (48) involves the assumption that the coordination number z is
infinite, the probability of the pair mer-mer interaction, f, equals (r;N;/N;)2. € is the mer-
mer interaction energy, and €*, defined as the total interaction energy per mer,
characterizes the interaction energy between two mers of the same component.

The parameters, 7° and v:, characterize the size of the molecules of the pure
components. For the molecular parameters v* and r in the mixtures, mixing rules are

required to obtain these quantities:

r=XrX = Lhx (49)
v =3 eov (50)
where,
L. 1)
2rPN; Xrox
x; =Ni/ZN;. (52)

The mixing rule for evaluating €* in the mixtures assumes that the characteristic
interaction energy is pairwise additive:
€ = L3 i€, — kT i (53)

where the molecular volume fraction in close-packed state, ¢;, is defined as:

=N i
¢1_Z’;M - N’ (54)
x=(€;+€;-26,)/ kT (55)

A geometric mean formula has been used to evaluate ei;-, however, as already

pointed out by Sanchez and Lacombe (1976b), an adjustable parameter is necessary in the

determination of interaction energy between unlike molecules:

g = z(g;€;)V2. (56)

the next two chapters will show the adjustable parameter affect the phase behavior

predicted significantly.
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The reduced volume, which is used in the Sanchez-Lacombe equation of state, is

defined as:
V=V /rNv = (N + NV / rWw' =1/ p. (57)

Equation of State and Chemical Potential Expression

Based on the Flory's approximation, the Gibbs energy is obtained, then the equation
of state can be found by minimization of the Gibbs energy with respect to reduced volume
v, which yields:

P+ P+T[In(1-p)+(1-1/r)p]=0. (58)
the equation of state for pure components and the mixtures are identical. The reduced

parameters in Equation (58) are given by:

T=T/T, (59)
T =¢"/k, (60)
P=P/P (61)
P*=¢"/v". (62)

| The chemical potential p| in a binary mixture is:

= kT {Ingy+(1-n/n)oy + e[ x+ (19} 1v5) A1z |03} +

ROKT {=p/ Ti+ B9 1 T+ 9((1-p)In(1-p)+ L 1n ) (63)
1
where,
A2=UH-UGL+(h-¢2)x=-An, (64)
L=TIT", R=P/P" (65)

The equation of state has at most three density roots depending on the conditions of
the system. If three roots are found, the highest root corresponds to a liquid root; the
lowest root corresponds to a vapor root; the middle root corresponds to a maximum in the

Gibbs energy of the system (Sanchez-Lacombe, 1976a). In the liquid-liquid equilibrium
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calculations, the liquid root is used to calculate the chemical potentials of the components
in the liquid phases.

- In the Sanchez-Lacombe model, a fluid is characterized by three molecular
parameters: v*,rand e* Sanchez-Lacombe (1976a,b) determined these parameters by
fitting saturated vapor pressure and liquid density data. First, the close packed mass
density is estimated from crystalline densities of the components, thus T* and P* can be
defined as functions of €* and r. The fitting procedure is performed by satisfying the
equation of state and the equations of equality of chemical potentials. For polymer liquids,
the molecular parameters are determined by a nonlinear least-square regression of liquid

density data. The molecular parameters are listed in Tables I and II.
Group Contribution Lattice Fluid Model

Panayiotou and Vera (1982) developed an equation of state based on a constant
lattice site volume for all molecule segments and a finite coordination number. High and
Danner (1989, 1990a) modified the Panayiotou-Vera equation of state and combined it
with a group contribution technique to make the equation of state predictive, which led to

the Group Contribution Lattice-Fluid equation of state (GCLF EOS).

Pure-Component Equation of State

Both Panayiotou-Vera and High-Danner equations of state are based on the
canonical partition function which is given by Equation (39). Panayiotou and Vera
(1982b) showed that nonrandomness does not increase the accuracy of the prediction of
pure component properties and set the nonrandomness factor to unity. Therefore, a
random arrangement of molecules is assumed for pure components.

- The assumptions of the lattice arrangement in the GCLF and the Panayiotou-Vera
models are identical to that in Sanchez-Lacombe's model, however, there are differences in

the definition of lattice volume and coordination number. In the Sanchez-Lacombe model,



TABLE 1

MOLECULAR PARAMETERS OF SOLVENTS FOR
THE SANCHEZ-LACOMBE EQUATION OF STATE*

p* T* v p* 10
(atm) (k) cm3 mol-! g cm’?
Methane 2450 224 7.52 0.50 4.26
Ethane 3230 315 8.00 0.64 5.87
Propane 3090 371 9.84 0.69 6.50
n-Butane 3180 403 10.40 0.736 7.59
n-Pentane 3060 441 11.82 0.755 8.09
Isopentane 3040 424 11.45 0.765 8.24
Cyclopentane 3750 491 10.53 0.867 7.68
n-Hexane 2940 476 13.28 0.775 837
Cyclohexane 3780 497 10.79 0.902 8.65
n-Heptane 3050 487 13.09 0.800 9.57
n-Octane 3040 502 13.55 0.815 10.34
n-Decane 3000 530 14.47 0.837 11.75
n-C, H,, 2990 542 14.89 0.846 12.40
n-C,,Hy 2970 552 15.28 0.854 13.06
n-C,,Hsq 2830 596 17.26 0.88 15.83
Benzene 4380 523 9.80 0.994 8.02
Toluene 3970 543 11.22 0.996 8.50
H,0 26520 623 1.93 1.105 8.46
Methanol 11860 468 3.24 0.922 10.72
Ethyl acetate 4520 468 8.49 1.052 9.87
n-Butyl acetate 3890 498 10.50 1.003 11.03
Diethyl ether 3580 431 9.88 0.870 8.62
Acetone 5260 484 7.54 0917 8.40
Methyl ethyl ketone 4410 513 9.54 0913 828
Acetic acid 8500 562 5.43 1.164 9.51
n-Stearic acid 2710 691 20.92 0.912 14.91

* The parameters are calculated by Sanchez and Lacombe (1976a).
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TABLEII

MOLECULAR PARAMETERS OF POLYMERS FOR
THE SANCHEZ-LACOMBE EQUATION OF STATE"

P* T vt p*
(MPa) (K) cm’ mol-! kg m3
PDMS 320 476 13.1 1104
PVAC 590 509 9.64 1283
PIB 643 354 15.1 974
HDPE 649 425 12.7 904
PMMA 696 503 11.5 1269
PS 735 357 17.1 1105

* The parameters are calculated by Sanchez and Lacombe (1978).
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the volume of a lattice is an adjustable parameter and varies from the pure state to the
mixture. Mixing rules are necessary for the volume for lattice sites in mixtures. In the
Panayiotou-Vera theory, the volume of a lattice site is arbitrarily fixed to be equal to the
volume of a methylene group in polyethylene ( v;, equals 9.75x10-3 m3/kmol ).

Unlike the Sanchez-Lacombe model, the number of lattice sites occupied by a
molecule is not regressed from experimental data, it is a function of the molecular
reference volume.

n=v /v (66)
therefore, only one parameter, v,.', is used to characterize the size of the molecule in the
preéent model, compared to two parameters in the Sanchez-Lacombe model.

In the GCLF model, the coordination number, z, is assumed to be 10 for normal
fluids, while the Sanchez-Lacombe theory assumes infinite coordination number.
Therefore, the calculation of the number of molecule-molecule interactions, and hence the
total energy of the system, is different. In a lattice, the total number of interaction sites

available is (z/2)N;, the pair probability of nonbonded, molecule-molecule interaction is

(giNi)? / N, N4 . The number of interactions between like molecules is denoted by N 2.

- Noe. = Z@N: )
E=Nge; = 2N, €ii. 67

The equation of state in reduced variables is:

Ao zpitain-l 6 68

where r; and q; can be calculated by Equation (66) and Equation(43), the fraction of
interaction sites available to a molecule, 6, is defined as:
61 =qiN1/ Ng. (69)
The reduced parameters in the equation of state are given by:

T = 70
1 ZE1 ’ ( )




= _ 2Pw

o Np +nN,

V1=;Y;=v—h£’;—.n—l)‘ (72)
1 1

where the characteristic interaction energy, €;, is the segment-segment average
interaction energy over the length of the molecule.

The chemical potential expression for pure component is given as:

_H S a=-en 6 5
RT — 1n0'1 +Ing; +1n ) + Ti (g1 +n¥i6y) (73)

where the flexibility parameter 6] and the symmetry number o1 are independent of
composition, temperature and density, therefore they can be canceled out in the
equilibrium calculation.

The equation of state for pure component is characterized by two adjustable

parameters: a characteristic molecular interaction energy €11, and a characteristic

molecular volume v*.
Equation of State for Mixtures

In the equation of state for mixtures, the nonrandom combinatorial is added to
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account for the effect of the nonrandom distribution of the molecules; however, the holes

are assumed to be randomly distributed. Notice in Equation (41), N;; and ]V,)- are used to

account for the numbers of contacts between segments of molecules of the same type and

that of different type, respectively. These parameters are determined from:
Ni=Nglii = —z%&ﬁru (74)
Nij = N2y (75)

where the molecular surface fraction on a hole free basis, 6, is defined as:
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5 _ 29iNi
6= (76)

where E, and Ej are nonrandomness parameters. I",-j represents the nonrandomness
between unlike molecules, and is calculated through the quasichemical expression. The

nonrandomness parameter in a binary system is given by:

: 2
= e - 77
1+1-46,6,(1-G) 77)
where,
G' - exp[ 9(811 +I§%2 - 812):' = exp[ %:I’ (78)
and
6=Y6=1-6;. (79)

i
In a binary system, the nonrandomness parameters must satisfy the conservation of
number of contact sites in the mixture, as given by Panayiotou and Vera (1982a):
611+ 62112 = By + Bl = 1. (80)
The equation of state for mixtures in reduced variables is identical to that for the

pure component case.

P_. vz, w+tqlr-1_ &
—f-ln—-—-—v_1+21n———q-——‘7 = (81)
where,

F=2RT (82)
ZE

p=2Pw (83)
ZE

vi= 2 x,-v;, (84)

r= xf, (85)

q = E-’G“Ii , (86)
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6=> 6. (87)
In a binary mixture, the characteristic reference volume is calculated by Equation

(84), the characteristic interaction energy is calculated by:

€' = Bien1 + 6622 — GBI A, (88)

Ae=¢11+€&3-2¢€);. (89)
In the application of this model to vapor-liquid equilibrium, a geometric mean is used to
calculate £1,. However, in this research of liquid-liquid equilibrium, it is of limited utility.
The parameter €, is calculated by the following expression:

e12 = Venexn (1-k) (90)
where k is sometimes called the Prausnitz's k factor. It is observed that k significantly
affects the phase behavior in the liquid-liquid equilibrium calculation.

The relative chemical potential of component 1 is given:

éﬁ‘_l=1n3’1;+1n"—}+q1m(-‘7 "lfl)
v v v-1 Vi

26, , -6 3
q,(—l:-’i——-%)+%‘7—1nr” ©1)

where 81 ; is the surface area fraction of pure component 1 at the same temperature and
pressure as the mixture. The quantities with index 1 are calculated from the equation of
state for pure component at the same temperature and pressure. The expression for p, is
easily obtained by interchanging the indices 1 and 2.

The procedure for liquid-liquid equilibrium calculation using the GCLF EOS is
similar to that using the Sanchez-Lacombe EOS, liquid root obtained from the equation of
state for mixture is used to calculate the component chemical potentials by Equation (91).
It is also required that the reduced volume, reduced temperature, and surface area fraction
for the pure component are calculated from the pure-component equation of state before

the calculation of chemical potentials.
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The molecular parameters are calculated from the group contribution method.

Besides the characteristic molecular interaction energy, 8:,- and molecular reference

volume, vi*, one more adjustable parameter, k, which is used to adjust the binary

molecular interaction energy, is introduced in liquid-liquid equilibrium calculation.
Group Contribution Technique

| High and Danner (1989, 1990a) calculated molecular parameters for each
compound by fitting the saturated liquid density and the vapor pressure data using the
equation of state and chemical potential expression at several temperatures. The
molecular parameters are expressed in terms of functional group parameters. A second
regression can be performed to calculate functional group parameters from molecular
parameters. High and Danner (1989, 1990a) formulated the following correlations for
determining the group contributions of reference volume and interaction energy

parameters.
Ei,7 =2, Y, OrOm ferk Temm.T (92)
k' m
vir=ar+ LV Rer (93)

where ey is the group interaction energy, and vy is the number of the functional group.

The group surface area fractions, ©y , is calculated from the UNIFAC dimensionless

surface area parameters, Qy:

v, (94)
Y vig,

84" =

Ry in Equation (93) is the group volume parameter. The molecular reference volume can
be determined by linearly interpolating with the group values at 300 and 400 K, where
a300 is 0.02123 and aqqq is 0.02237.
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The molecular parameters ¢;; and v* are determined from a series of n-alkanes,
branches, cycloalkanes, arenes, ethers, ketones, monochlorinated alkanes and water
evaluated at 300 K and 400 K. The temperature dependence of the molecular parameters
can be determined by linearly interpolated using values at 300 K and 400 K. Parameters
for 23 function groups are available from previous work (High, 1990; Parekh, 1991) and
are listed in Table III. The calculation of molecular parameters requires only the

structures of molecules.
Summary

Both the Sanchez-Lacombe and the GCLF equations of state are based on the
lattice-fluid model. The assumption of holes in the lattice, enable the models to describe
both the gas phase and condensed phase. The main differences between the Sanchez-
Lacombe and GCLF models are summarized as follows:

First, an important feature in the Sanchez-Lacombe model is that the Flory
approximation is applied, which states that the coordination number is assumed to be
infinite; In the GCLF model, the coordination number is assumed, somewhat arbitrarily,
to be 10. Second, random mixing of the component molecules and holes is assumed in
Sanchez-Lacombe model; The randomness assumption is also applied in the pure
component state in GCLF model. In the mixture, nonrandomness of component
molecules is accounted for, but the effects of nonrandomness of the holes are ignored.
Third, in the Sanchez-Lacombe model, a lattice site of one component has a different
volume in the pure state and in the mixture, thus mixing rules for lattice sites are
necessary. The requirement can be eliminated by fixing the volume of a lattice, based on
these considerations. In the GCLF model all lattices are assumed to have the same fixed

volume.
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TABLE Il

GROUP CONTRIBUTIONS FOR THE GROUP
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€xk,300 €xk,400 Ry 300 Ry 400 Q.
(kJ/kmol)  (kl/kmol) (m¥kmol) (m3/kmol)
CHj3 640.87 640.79 0.01596 0.01628 0.848
CH, 943 33 987.68 0.01524 0.01498 0.540
CH 2209.38 2708.76 0.01311 0.01175 0.228
C 5378.38 7731.24 0.01071 0.08463 0.150
cy-CHp 895.44 911.40 0.01260 0.01256 0.540
cy-CH 1727.56 2043.28 0.01255 0.01199 0.228
cy-C 4069.49 5993.67 0.01242 0.01126 0.150
AC-H 975.38 971.62 0.01059 0.01073 0.400
AC-CHj3 994 .41 1022.68 0.02465 0.02456 0.968
AC-CHj 1471.59 1581.80 0.02351 0.02302 0.660
AC-CH 2780.93 3281.53 0.02220 0.02060 0.348
AC-C 5452.73 6771.48 0.01985 0.01700 0.270
-O- 868.47 679.56 0.00760 0.00798 0.240
H,0 949.12 1154.31 0.07611 0.07544 1.400
CH3=0- 1237.10 1171.50 0.03117 0.03254 1.488
-CH,C=0- 1542.00 1509.50 0.02968 0.03039 1.180
-CHCI- 1364.400 1387.30 0.04865 0.05036 0.952
-CH=CH- * 1054.480 1110.63 0.02412 0.02390 0.867
-coo- * 1341.670 1308.80 0.02236 0.02327 1.200
-OH- * 1867.920 1466.87 0.00685 0.00752 1.200
-CH,NH- * 1280.830 1215.76 0.02490 0.02443 0.936
>Sio<  * 1064.430 1343.84 0.03376 0.03285 0.4657
Ac-co- * 2181.980 227541 0.02105 0.02263 0.760

The parameters are calculated by High (1990a) and Parekh® (1991).



CHAPTER IV
STABILITY ANALYSIS

| The objective to evaluate the capabilities of the two models in liquid-liquid equilibria
can be separated into two steps. The first step is to evaluate the abilities of the two
models in predicting phase separation. If the models are able to describe the phase
behavior, then the second step is to compute the compositions in the coexisting phases at
equilibrium. In this chapter, the abilities of the two models in predicting phase separations
were investigated by performing stability analysis. Another reason to perform stability
analysis first is that the region for performing calculations of compositions in the two
coexisting phases is not known a priori. Therefore, stability analysis is necessary to

perform phase equilibrium calculation more effectively.
Stability Conditions

~ The thermodynamic criterion for a stable, single-phase, binary mixture is that the
second derivative of the Gibbs energy of mixing with respect to concentration must be
positive. The stability conditions can also be expressed in terms of chemical potentials, the

stability of a homogeneous phase in a binary mixture requires:

(2&) >0,(§£2_) >0  (spinodal). (95)
axl T.p axz T.p

When the equations above are violated, the system phase splits. Referring to Figure
4, a system with a 1, versus x; like Curve 1 is stable over the entire range of composition,

since (Ap,/dx; )1 p > O for all x; from 0 to 1. In the case of Curve 2, the system is unstable

between two spinodal points S' and S", and thus phase separation occurs. If the
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Figure 4. Diagram of Chemical Potentials Versus Molar Composition Representing
Phase Transition. Curves 1, 2, 3 Represent Complete Miscibility,
Partial Miscibility and Incipient Phase Separation, Respectively.
(Reprinted from Michio, 1982)
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temperature is varied at a fixed pressure, the curve of p; undergoes a change from a shape
like Curve 1 to one like Curve 2. In the course of this change the system should pass
through a stage represented by Curve 3 at a certain intermediate temperature. The
inflection point C on Curve 3 is the critical point. At point C, the first two derivatives of
chemical potential are zero. The chemical potentials can be plotted against compositions in
all regions ( temperature and pressure ) of interest, and the regions of instability can be
determined graphically by studying the shapes of chemical potentials.

Stability Analysis Using the Sanchez-Lacombe
Equation of State

In the application of the Sanchez-Lacombe and GCLF models in liquid-liquid
equilibrium, the geometric mean mixing rule for estimating the binary interaction energy is
of limited usefulness. The binary interaction energy needs to be adjusted to give an
adequate representation for phase separation. This chapter shows how adjustable
parameters affects the phase behavior by performing a stability analysis.

The stability conditions for a homogeneous phase in a binary mixture are given by
Equation (95). In the Sanchez-Lacombe equation of state, Sanchez and Lacombe (1976b)

stated that the stability conditions are satisfied if:

e .o o it S (96)
99 03

For a binary mixture, this stability condition reduces to:

ot [did (6 ¢ e e
p{2¢i’¢s_¢i’¢‘z’x (¢§’ %,)m}:rw Pﬁ}

2 2
< 9_2_) (__1_]+(21_) (L) o7)
\ 93 )\ o)\ 79

where 7y is given by Equation (55), and where,
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AM2=—=—= - =-

12=% T2+(¢1 ®)x=-221, (98)
—ph¢2, |1 _ 1| PV s 99
v P¢,l,¢g)~12 (r]o r20)+kT(v1 v;)s (99)
P"B=\72/{fﬁ[l/(ﬁ—l)+l/r]—2}. (100)

Sanchez and Lacombe (1976b, 1978) termed the left hand side of Equation (97) as a
combination of an energetic contribution and an entropic contribution from the equation of
state, and the right hand side as the combinatorial entropy contribution. The behavior of
the two terms in stability analysis of the HDPE/n-pentane system is shown in Figure 5, the
combinatorial entropy term is not a function of adjustable parameter z, while the curve of
the left hand side term moves up or down as the z varies. As the value of z changes, the
region of instability which satisfy Equation (97) enlarges or shrinks.

" It can be shown how the adjustable parameters affect the phase behavior if we
perform the stability analysis in a three-dimensional diagram. The LHS's and RHS's of the
Equation (97) can be viewed as the surfaces over the temperature-composition plane, as
shown in Figure 6. Figure 6 shows the stability analysis using the Sanchez-Lacombe EOS.
Any cross section at a specific temperature will be reduced to the equivalent of Figure 5.
The surface representative of the LHS in Equation (97) is a curved surface convex
downward with low and high temperature ends at higher levels. The surface slopes from
the dilute polymer side to the dilute solvent side. The RHS surface represents the
combinatorial entropy, which is convex downward, with dilute polymer and dilute solvent
ends at high levels. The LHS surface moves up or down as the value of z varies, while the
RHS surface remain constant. The two surfaces do not intersect at high z values. As the
value of z decreases, the LHS surface moves up and intersects with RHS surface. The
overlapping area is the region of instability because the Equation (97) is violated. The

curves that the two surfaces intersect are the spinodal curves. For example, in the liquid-
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Figure 5. Stability Anal_}:sis in the HDPE/n-Pentane s&stem P=1atm,
T=360K). The RHS of Eequation (97) Is Not a Function
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Figure 6. Stability Analysis Using Sanchez-Lacombe Model on A Temperature-
Composition Plane. The Upper and Lower Surfaces Represent RHS
and LHS Surfaces, Respectively. The LHS Surface Moves Up As the
Value of z Decreases. In This Case the LHS Surface Intersects the
RHS Surface At Lower and Higher Temperature Regions, Which
Implies LCST and UCST Exist in One System.
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liquid equilibrium of the PS/cyclohexane system at atmospheric pressure, for the z values
smaller than 1 and larger than 0.96, LHS surface touches the RHS surface at high
temperature, and thus a LCST results. The LCST decreases as the value of z decreases.
At a z of 0.96, the LHS surface touches the RHS surface at the low temperature region,
and therefore, both LCST and UCST are observed in one system. A one percent change
in z causes more than a 10 K change of critical solution temperature. As the value of z
decreases further, at about z equals 0.959, the LCST and UCST merge to form an
hourglass curve. Figure 6 shows only the case where both LCST and UCST exist in the

system.
Stability Analysis Using GCLF Equation of State

A similar stability analysis can be obtained in the GCLF equation of state. In the
GCLF model, a nonrandom distribution of molecules is assumed. The chemical potential
expression has one term sensitive to the interaction energy and one term which is weak a

function of the interaction energy. The derivative of Ay, with respect to x, can be

obtained and yields:
_ Z‘Iqu I -1 _;él_(aflz) <
2¢°1 | 62 6\ 36,
W 136 g (ov)_ (1, 1)00 2.0 ¢
PRSI ﬁ(v-l)(axz) ‘12(7; +f)ax,_ 2RT ox; (101)

where 0V / dx; can be evaluated from the equation of state,

& _|z, 291926 z6 . / 1
E‘[EC 2RIg? VT 2RT (%942 )x] 55-1)

z2(q/r=1) 8 . Vg
S(5+q/7-1) 2RT %0+2¢ )57 (102)

where,
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a0 _ Vg (v
" wN, (sz)_x’ (103)
ax2 g_g_ ax (104)
oty _ 1B[(1-G)(81-8:)- 88, )] 05
06, J1-46,8,(1-G)
0G _ g% GAep,( 90
36, 99 2 (axz ) (106)
_ oA 2G (107
RT‘/I 488,(1-G)’
_ I;122(1_6.)(61 ——62)
= —= = (108)
J1-48:6,(1-G)
Y = —g)1 + €2 + [124€12(6; - 6)) - 01828215, (109)
x=( -vl)vq/vh+(r]1\,2n)q+(qn %) N, (110)
€=(qz—q1)r—(rz—n)q' ain

(P+q/r=1)r

Figure 7 shows that the right hand side of Equation (101) is a weak function of k
while the left hand side is quite sensitive to the k. As the k values increase, the miscibility
region enlarges, and the spinodal and binodal moves up or down in the temperature-
composition phase diagram.

Similar phenomena are observed if the stability analysis for the GCLF EOS is
extended to three-dimensional diagram. The LHS surface is concave downward and slants
from the dilute polymer and low temperature side to dilute solvent and high temperature

side. At the limit of dilute solvent, the LHS term reduces to zero. The RHS is convex
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Figure 7. Stability Analysis in PS/Acetone system (P=20 bar, T=350K).
The RHS of Equation (102) is a Weak Function of k. The
LHS is Sensitive to the Value of k and Its Curve Moves Up
As k Increases. At k =0.00 No Phase Splitting Occurs
Because Equation (102) is Satisfied. At k=0.03 One
Portion of The Curve of the LHS is Larger Than the RHS,

Phase Separation Occurs.

49



50

downwards and slants from low temperature to high temperature, as shown in Figure 8.
For example, in the liquid-liquid equilibrium of the PS/cyclohexane system, for k equal to
zero, no phase splitting is observed. As the value of k increases, the LHS surface moves
up while the RHS surface is almost unchanged, the two surfaces across at high
temperature region which implies a lower critical solution temperature. As the k increases,
the LCST decreases in the temperature axis. At about 0.004 the LHS and RHS surfaces
intersect at both low and high temperature regions, thus both UCST and LCST are
observed. At ak of 0.0055, the hourglass diagram is observed. Figure 8 illustrates the

case when both LCST and UCST are present in one system.
Summary

Both models are able to predict LCST and UCST by adjusting the cross interaction
energy term, but small changes in adjustable parameters dramatically affect the prediction
of phase behavior.

Stronger interaction energies between unlike molecules ( higher z value or lower k
value ) will likely predict onty LCST. Note from Equations (56) and (90), as the z value
decreases or k value increases, the interaction energies between unlike molecules decrease.
As the cross interaction energies decrease, both LCST and UCST are observed in one
system. As the interaction energies between unlike molecules decrease further, LCST and
UCST curves merge and an hourglass phase diagram is predicted. No closed-loop phase
diagram is predicted based on the systems investigated.
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Figure 8. Stability Analysis Using GCLF Model on A Temperature-Composition Plane.
The Upper and Lower Surfaces Represent the RHS and LHS Surfaces,
Respectively. The LHS Surface Moves Up As the Value of k Increases.
In This Case the LHS Surface Intersects the RHS Surface At Lower and
Higher Temperature Regions, Which Implies LCST and UCST Exist In

One System.



CHAPTER V

EVALUATION OF THE SANCHEZ-LACOMBE
AND GCLF MODELS

Chapter 4 has already investigated the abilities of the Sanchez-Lacombe and the
GCLF equations of state in predicting phase separation in binary mixtures. The objective
of this chapter is to calculate the compositions in the coexisting phases using the two
equations of state. The pure component properties have already been investigated in
previous works (Sanchez-Lacombe, 1976a; High,1990; High and Danner, 1990a). The
comparison of the two models is somewhat difficult because of the lack of data for liquid-
liquid equilibria. Moreover, it is hard to find a system in which the molecular parameters
are -available for both the Sanchez-Lacombe and the GCLF equations of state. First, the
general thermodynamic algorithm is provided. Then, the predictions of upper and lower
critical solution temperatures in the low molecular weight system with the two models are
discussed. The abilities of describing the critical solution temperatures in polymer-solvent
systems are discussed, the evaluation of the two equations of state in polyisobutylene-
solvent, HDPE-solvent, poly(ethylene glycol)-water and polystyrene-solvent systems are
given. The capabilities of describing the pressure dependence and the molecular weight

dependence of the critical solution temperatures are also discussed.

General Thermodynamic Algorithm

The main interest in this research work is to extend the GCLF model to liquid-liquid

equilibria and compare with the Sanchez-Lacombe model and experimental data. In this
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section, the general algorithm for calculating the binodal curve, spinodal curve and critical

temperature is discussed.

Problem Formulation

By the phase rule, two degrees of freedom are allowed in a binary two-phase system.
Thus, the compositions in the phases are fixed if the pressure and temperature are
specified. By specifying the pressure and temperature, the composition can be found by
solving equations originating from the criterion for phase equilibrium. As already
described in Chapter 2, two criteria for phase equilibrium are given: Gibbs energy
minimization criterion and equality of fugacity (chemical potential) criterion. Considering
the characteristics of the equations of state, and hence the computational complexity, the
equality of chemical potential criterion is chosen for development of the phase equilibrium

algorithm. The relations can be expressed as:

1 (<) = pff (x{1), (112)
15 (x3) = p (x3). (113)

The indices 1 and 2 represent solvent and polymer, respectively. It is also required
that the sum of the concentrations be unity:
xl+xl=1, (114)
xfl+xfl =1 (115)
Equations (114) and (115) can be integrated into Equations (112) and (113).

Equations (112) and (113) can be expressed as functions of the solvent concentrations in

the two phases (x{, x{T). Therefore, there are two equations and two unknowns.

Computation Scheme

One option of the computer algorithm developed in the research is the search for the

regions of miscibility and partial miscibility. One routine is included in the computer
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program to search the temperature region at specified pressure to locate where
homogeneous regions and where phase splitting occurs. To use the computer program for
the searching work, one has to specify the pressure of the system, the molecular weight of
the polymer, the pure component parameters, the adjustable parameters ( z or k ) and the
temperature range for searching. The pure component parameters are specified in the
input data files and other quantities are entered from the screen.

When phase separation occurs at a certain temperature and pressure, the two
components are distributed into two phases differing in concentration. Our objective is to
search for the compositions in the two phases so that the component chemical potentials
are equal. Figure 9 illustrates the computing scheme. In this figure curves of u; and p,
are constructed as functions of the composition of the solvent. The interval (b,c) is
thermodynamically unstable because du/dx; and du,/dx, are both negative. The
rectangular construction (uvxy) represents the solution of the concentrations of
component 1 in the two equilibrating phases. Component 1 is distributed in such way that
its chemical potentials in the two phases are equal. A locus of the two composition points
(x,, X;) at different temperatures forms the binodal curve.

It is noted that the points where (dp;/dx;) and (dp,/dx,) are zero at exactly the
same values of concentrations. According to Gibbs-Duhem equation, in a binary mixture,
the following equation should be satisfied:

x1(Aur / o) +x2(Apz / &) =0 (116)

It is obvious that when (dp1;/9x,) is zero, (d5/0x,) also goes to zero. An adequate
theory should satisfy this condition.

A nonlinear equation solver routine called "DNEQNF" in the IMSL Math/Lib was
used to solve the Equations (112) and (113). The "DNEQNF" routine is based on a
modification of Levenberg-Marquardt method. As can be seen in the Figure 9, a,b,c,d are

defined by the values of extrema in 1 or j5. X, must be in (a,b) and x] in (c,d). In order
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Figure 9. Chemical Potentials( u, and p, ) As Functions of Composition x, In a
Binary System Undergoing Phase Splitting. The Rectangular
Construction (uvxy) Represent the Solution of the Concentrations
of Component 1 In the Coexisting Phases. (Modified from Sanchez
and Lacombe, 1976b)
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to avoid the trivial solution, this constraint is employed in the calculation. Values of x,
and x4 are used as initial guess for component 1 in the computing scheme.

It is observed that the magnitude of chemical potential of the polymer is significantly
larger than that of the solvent. Scaling is introduced to make chemical potentials for the
solvent and polymer have the same magnitude. The chemical potential for each segment,
as suggested by Hsu and Prausnitz (1970), is used throughout the calculation. The
chemical potentials in Equations (112) and (113) are divided by the length of the
molecules (r; and r,) before calling the IMSL routines to solve the nonlinear equations.

The calculation of the spinodal curve is much easier. The stability conditions, (97)

and (102), can be rearranged leading to the following functions:

fu= _ﬁ{zm_[mx-(ﬂ-:@z_)xn]ﬁu fv,zp-ﬁ}

0793 | ¢792 ¢ 9
) 20 ¢ 2
2 1
HE | — |+ =] | — (117)
(&) () (%) (%)
_ %9143 .1‘12 -1_8; Q__I;;z_ +_XI‘___:]_a~V
o [ 92{”2 o

ln( ) o4 HR-BE o
The functions above are the derivatives of chemical potentials. The curves of the
functions are convex downward. In the two-phase region, each function will have a
minimum that is less than zero and there are two concentrations that lead the functions to
be zero. Our aim is to find the solutions of the two concentrations that form the spinodal
curves. The bisection method is used in the computer program.
Recall that the definition of the critical point is that the densities in coexisting phases

becomes identical at certain temperature and pressure. Thermodynamically, the second
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and third derivatives of Gibbs energy is zero at the critical point, the spinodal curve and
binodal curve coincide at the critical point. Calculation of the second and third derivatives
of Gibbs energy requires significant computer time. An alternative way can be used which
finds the temperature that leads to the equality of the concentrations obtained in the
spinodal calculation. The searching of the critical temperature starts from the two-phase
region. The program takes a small temperature step (0.01 K) to approach the critical
temperature, and it calculates the concentrations of spinodal points at each temperature
step. If the difference between the two concentrations is less than some convergence
criterion (! x{ — x{!| <0.0001), the program determines that the temperature is the critical
temperature, otherwise the calculation continues by taking one more temperature step in
the direction approaching the critical temperature. If one temperature step causes the
change from two-phase region to one-phase region, the average of the temperatures of the
last two iterations is taken as the critical temperature.

The binary interaction energies were determined by minimizng the deviations
between the calculated and experimental critical solution temperatures. For the systems
with only a LCST or a UCST, the adjustable parameters were determined by the
experimental critical temperature. The optimization of the parameters was done via the
golden section method. The objective function can be expressed as:

S () = (Texp — Tear)? (119)
where { refers to the adjustable parameters, z or k.

For the system where both a LCST and a UCST exist, the adjustable parameters
were determined by forcing the deviations of the LCST and UCST to be minimum.

Though the tabulated parameters were given only in three or four significant digits,
all calculations were carried out with double precision. Care should be taken with the
convergence criteria in the intermediate computation. It is safe to set the convergence

criteria in the intermediate calculation to be 10-12,
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The computer programs were verified by reproducing the phase diagrams in the
previous works. The computer program using the Sanchez-Lacombe model was used to
reproduce the temperature-composition phase diagrams in Sanchez and Lacombe's paper
(Lacombe and Sanchez, 1976b), which included a vapor-liquid phase diagram (n-butane/
n-heptane system) and two liquid-liquid phase diagrams (aniline/cyclohexane and
propane/stearic acid systems). The computer program for the GCLF model was verified
by reproducing the diagrams of solvent activity coefficients versus composition in the
polystyrene\cyclohexane and poly(ethylene glycol)\water systems in vapor-liquid
equilibrium (High, 1990).

Some Observation from the Application of
Sanchez-Lacombe EOS

The Sanchez-Lacombe equation of state is a simple model. The Sanchez-Lacombe
model has some problems representing the binodal curve because of some thermodynamic
discrepancies in the expression of chemical potential and the stability condition.

Note that in Figure 9, the points where (d1/9x;) and (d}L,/dx) are zero are exactly
at the same values of concentrations according to the Gibbs-Duhem equation. In the
application of Sanchez-Lacombe EOS, the concentrations satisfying the conditions that
(9i4/9x,) and (9u,/dx;) equal zero are not equal. The equation of state can represent the
binodal curves in low molecular weight systems, but the discrepancy causes problems in
finding binodal curves near the critical region. The convergence criterion has to be set
larger in order to find a solution.

The Sanchez-Lacombe model usually fails to represent binodal curves in polymer-
solvent systems with high molecular weight polymers. In a polymer-solvent system, the
chain length of a polymer is much larger than that of a solvent ( r, > r;), the temperature-
composition phase diagram becomes very distorted. When r, becomes very large the

miscibility and the critical point occurs when the solution is very dilute in polymer (¢, =0
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) (Sanchez and Lacombe, 1978). In the case of a mixture with very high molecular weight
polymer, a diagram of chemical potentials versus composition like Figure 9 cannot always
be obtained. Figure 10 is an example of the PIB/n-pentane system, where chemical
potentials are plotted against concentration. As the molecular weight of PIB increases,
the maximum of the curve of polymer chemical potential goes to the dilute polymer
region, and the minimum of the curve of solvent chemical potential disappears. A
rectangle like that in Figure 9 cannot be constructed; therefore, equal chemical potentials

in the two phases cannot be found and thus the binodal curve cannot be obtained.
Low Molecular Weight Systems

Figure 11 is a comparison of the predictions for the liquid-liquid equilibrium of
methanol/cyclohexane system using the Sanchez-Lacombe EOS (abbreviated as S-L EOS
in all diagrams) and the GCLF EOS. The binary interaction energies used in the two
models are determined by matching the theoretical UCST to the experimental UCST of
319 K. All the binary interaction energies used in low molecular weight systems are
determined by fitting the theoretical critical temperatures to the experimental ones. The
Sanchez-Lacombe EOS predicts a much narrower binodal curve than the experimental
curve. The GCLF EOS predicts a broader UCST curve and tends to predict a higher
concentration of methanol than the experiments. Figure 12 compares the UCST binodal
curves of methanol/n-heptane system. It shows the Sanchez-Lacombe EOS predicts a
much narrower binodal curve and the curve shifts to a lower concentration of methanol.
The GCLF equation of state gives a poor representation in the n-heptane-rich phase.
There are substantial discrepancies between the theoretical curves predicted with the two
models and the éxperimental data.

Figure 13 and 14 are comparisons for the systems of acetic acid/decane and acetic
acid/dodecane, respectively. The Sanchez-Lacombe model predicts much narrower

binodal curves in these systems, and the theoretical binodal curve shifts to the side of
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Figure 10. Diagram of Chemical Potential Versus Concentration in the PIB/
n-Pentane System. In the Mixture with PIB of Mw of 1.0E4, A
Rectangle like that in Figure 9 can be constructed. As the Mw
of PIB increases, the Minimum of the Curve of Solvent Chemical
Potential Vanishes, There is No Selutien for the Compositions
in the Coexisting Phases.
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