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CHAPTER I 

INTRODUCTION 

A distributed system is a collection of computers located at different 

sites connected by a network. Processes communicate by exchanging 

messages. Each data item can either be stored at exactly one site or 

replicated and stored at different sites (Figure 1 }. Copies of the data that are 

stored at different sites are referred to as replicas. For simplicity, we assume 

that all data items are replicated at each site. 

Site 1 
~------------

Data1(1) .:~ 

Data1(2) 

Site 3 

Site 2 

-------- -r Data1(3) 'i 
! 

Data1 (4) 

Site 4 

Figure 1. Replicated Data 
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These replicas must be consistent. Several different types of different 

types of consistency are possible. 

1.1 Types of Consistency 

2 

Consistency protocols that require all copies of data objects to be 

consistent or identical at all times are called strong consistency protocols 

[Bernstein87]. Such a protocol is used when consistent information is 

essential. A common example is a database management system that 

maintains the balance of an account in a bank. Whenever a transaction is 

performed, changes in the account balance are immediately reflected at all 

sites. Thus, all updates are atomic. For many applications, atomic updates 

are unnecessary. 

In order to ensure that updates originating at a given site are observed 

at all other sites, weak consistency protocols can be used. Weak consistency 

protocols only guarantee that the updates will eventually reach all sites. 

Timestamped anti-entropy protocols are a particular class of weak consistency 

protocols[Demers88, Golding93a]. After an update occurs at any given site, 

that site selects a partner to enter into an anti-entropy session. During an anti­

entropy session, sites exchange information. In this way, the update 
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eventually reaches all other sites. The partner selection policy can greatly 

influence the performance and time required for an update to reach all sites. 

1.2 Outline of Work 

This thesis is to primarily investigate and compare the performance obtained 

using various partner selection policies. First, we propose new partner 

selection policies for propagating updates efficiently. Then, we evaluate these 

policies using a Monte Carlo simulator to solve the Markov model. Measures 

to be computed include distance traveled and communication latency. Finally, 

we derive a new measure of consistency. In particular, the following steps 

are carried out : 

1. In Chapter II, weak consistency protocols are described in greater detail. 

Different types of consistency guarantees can be made by the communication 

protocol. These include guarantees on the reliability, order and time of 

message delivery. We are primarily interested in weak consistency 

guarantees that ensure reliable and eventual delivery of messages. 

2. Secondly, different protocols can be used to communicate with a group of 

sites. These include Direct Mail, Rumor Mongery, and Anti-entropy. Our 

focus is on Anti-entropy Protocols. 

3. In Chapter Ill, we refine our focus and discuss Timestamped Anti-entropy 
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Protocols (TSAE). The effectiveness of any such protocol depends on the 

partner selection policy used. We propose several new policies. In particular, 

a partner selection policy for reducing the network traffic is proposed. For 

example, using intercontinental links should be avoided as much as possible 

because of their high cost. In this case, anti-entropy sessions can be 

completed with near neighbors and then finally with replicas across 

intercontinental links. 

4. In Chapter IV, a Monte Carlo simulation is used to simulate the propagation 

of update messages. The effect of different partner selection policies on 

system consistency is studied and analyzed. Existing partner selection 

policies and new selection policies are tested and compared. The total 

distance traveled by all update messages is found. The minimal distance 

traveled is computed using a spanning tree. 

5. Finally, we summarize our results. 



CHAPTER II 

WEAK CONSISTENCY PROTOCOLS 

There are many applications in which strong consistency is an 

unnecessary constraint. Multiple copies of data objects are not required to be 

consistent or identical at all times, but they are only required to eventually 

become consistent. This is called weak consistency [Golding93b]. Such an 

application is used when consistent information is not very critical or vital. A 

common example is Usenet News or weather report data. At any given time 

the news articles available at different sites may be different. However, all of 

the news will eventually become consistent, provided there are no updates. 

Wide area networks use weak consistency protocols to improve their 

scalability and fault tolerance. Weak consistency protocols will be used in the 

future for mobile computing. To meet availability demand, data replication is 

used. Replication is dynamic; servers are added or removed depending on the 

demand. The system is asynchronous and the servers are independent . 

Synchronous cooperation between different sites is not required. This is a 

unique feature that distinguishes a weak consistency protocol from a strong 

5 
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consistency protocol. Strong consistency protocols require synchronous 

cooperation. Consequently, they only work well with small numbers of 

replicas; that is, they do not scale well. Furthermore, they are not suited for 

interactive applications because of their poor response time[Golding93b]. 

2.1 Types of Consistency 

Levels of consistency in a replication protocol depend on consistency 

guarantees made by the communication protocol. Such guarantees include: 

a. Message Delivery 

b. Time of Delivery 

c. Message Ordering 

These consistency guarantees are explained in the following subsections. 

2.1.1 Message Delivery 

Delivery of messages can be done either reliably or with best efforl. 

When a message is delivered reliably, its arrival is guaranteed. When a 

message is delivered with best effort, the system will make an attempt to 

deliver the message, but the delivery of the message is not guaranteed. 
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2.1.2 Time of Delivery 

Delivery of messages can be done either synchronously or eventually. 

When a message is delivered synchronously, it is delivered within a finite 

amount of time. When a message is delivered eventually, it is done so within 

a finite, but unbounded time. 

2.1.3 Message Ordering 

Delivery of messages to processes can be done in any order, it can 

even be in an order totally different from the way in which they were actually 

received. Messages can be ordered in a total order, temporal order,causal 

order [Lamport 1978], FIFO, etc. 

2.2 Group Communication Protocols 

Since there are multiple copies of data objects stored at different sites, 

there must be a mechanism by which sites communicate. The sites 

communicate by using object managers. The object managers handle all 

accesses to the data objects. The managers can be tailored to meet specific 

demands. We assume that Group Communication Protocols are used. In a 
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Group Communication Protocol, the set of processes are grouped together. 

Suppose there are n sites. In [Demers88], three Group Communication 

Protocols are specified. The Group Communication Protocols are: 

a. Direct Mail 

b. Rumor Mongery 

c. Anti-entropy 

These protocols are discussed in greater detail in the following subsections. 

2.2.1 Direct Mail 

Each and every new update is immediately mailed from its entry site to 
all other sites using a single unreliable multicast datagram. Direct mail 
generates n messages per update; each message traverses all the 
network links between its source and destination. So, ... the traffic is 
proportional to the number of sites times the average distance between 
sites[Demers88]. 

This protocol is reasonably efficient, but not entirely reliable. Individual 

sites cannot always know well in advance about all other sites. A partial 

solution to this problem is manual intervention by system administrators. This 

solution works well for a small number of sites, but as the number of sites 

grow, this solution becomes intangible. Datagrams are used to send 

messages, and so packets or in this case mail messages may be lost. 
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Queues are used to keep the messages at the server so that the sender is not 

delayed. These queues are maintained by the mail server, on stable storage, 

to prevent it from being affected by disk crashes. Messages may be discarded 

when the queues overflow or their destinations are inaccessible for a long time 

and so direct mail is not reliable [Demers88). 

2.2.2 Rumor Mongery 

In this protocol, all sites are 'ignorant' initially, but when a site receives 

a new update it suddenly becomes active; that is, it treats the new update as 

a 'hot rumor'. As long as a site is holding a hot rumor, another site is 

periodically chosen at random. The site holding the hot rumor makes sure that 

the site that has just been chosen observes the update. A site backs off from 

sharing a hot rumor when too many sites have already seen it. Now the site 

retains the update without any further propagation. The so called 'hot rumor' 

is no longer hot. In effect, only the most recent updates are sent from one 

replica to another replica again using unreliable datagrams. This protocol also 

suffers from the fact that datagrams may be lost. If the rumor cycles are too 

fast, there is a chance that some updates will not reach all sites [Demers88). 
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2.2.3 Anti-entropy 

In this protocol updates originate at a single site or replica and are 

propagated to others. When a replica wishes to send a message, the 

message is timestamped with the current time which is derived from the 

current clock value at that site and the identity of the replica. Then, the replica 

writes the message to a log. The log is maintained on stable storage to survive 

temporary crashes or failures. Since the messages are timestamped, the term 

timestamped anti-entropy came into existence [Golding93a]. 

"From time to time, a replica will select another replica, and the 

two will exchange the contents of their message logs in an anti-entropy 

session" (Golding93a]. After the session is over, both replicas will have the 

same set of messages. There is no interruption when the two replicas are 

engaged in an anti-entropy session. 

For example in one real-time environment where anti-entropy 

sessions have been implemented, there are a number of servers running on 

the Xerox Corporate Internet. Initially all updates messages are mailed and 

then anti-entropy sessions are run in the background, in case messages do 

not reach all sites. For a domain stored at 300 sites, almost 90,000 mail 

messages are introduced. This leads to heavy network traffic. To offset this 

network load, anti-entropy sessions can be used as the only device to 

propagate the messages without significantly increasing the load. 



CHAPTER Ill 

TIMESTAMPED ANTI-ENTROPY 

3.1 Description 

"The timestamped anti-entropy protocol provides reliable and eventual 

delivery of messages" [Golding93a). Assume there exists a single process per 

site. The protocol is fault tolerant; that is, messages are delivered to all other 

operating process within the group, even if a process has failed. 

Assumptions made include the following: 

a. all sites are fully interconnected; 

b. sites and processes have access to stable storage which is not 

corrupted if the system crashes; 

c. sites have loosely synchronized clocks[Golding93a]; 

d. sites/processes fail by crashing; that is, they do not send invalid 

messages. 

11 
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There are transient failures and permanent failures. When a transient 

failure occurs, the site goes down for a short period of time and then comes 

back up and joins the protocol. When a permanent failure occurs, the site is 

permanently removed from service. Permanent failures are fail-stop; that is, 

sites suffering permanent failures do not send spurious or malicious 

messages, but simply stop. 

In order to make message exchange efficient, each replica maintains 

a summary timestamp vector. The summary timestamp vector is indexed by 

the identity of the replica and contains the largest timestamp the replica has 

received from the other replicas. 

When a replica enters into an anti-entropy session with its partner, it 

can compare its summary timestamp vector with that of its partner. Thus, it 

can determine which updates have not been exchanged. Once this is 

determined, the replicas exchange updates using a reliable stream 

communication protocol. Then each partner updates its summary timestamp 

vector. At this point, both replicas have the same summary timestamp 

vector. 

Consider a group of three replicas A, 8 and C. Replicas A and 8 decide 

to engage in an anti-entropy session. Their message logs before the anti­

entropy session are shown in Figure 2 and their summary timestamp vectors 

are shown in Figure 3. The two replicas engage in an anti-entropy session 

shown in Figure 4. The summary timestamp vectors after the anti-entropy 
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session are shown in Figure 5. 

The message logs can become very large when there are a large 

number of replicas engaging in anti-entropy sessions. So, how to safely purge 

the message logs is an important issue. Each and every replica needs 

information on the messages that other replicas have received in order to 

truncate their message log safely. For replicas to know about every other 

replica, each replica has to explicitly acknowledge every message. This can 

be avoided by maintaining an acknowledgement time vector. Each replica 

maintains an acknowledgement timestamp vector. This vector is usually the 

same as the summary timestamp vector. This acknowledgement timestamp 

vector is also exchanged by a replica with its partner during the anti-entropy 

session. Any message in the log whose timestamp is smaller than every 

timestamp in the acknowledgement timestamp vector has been received and 

acknowledged by every replica in the group, so it can be purged. 

The timestamped anti-entropy protocol can be used with best-effort 

multicast for efficient performance. The rationale for using best-effort multicast 

is that when a replica wishes to send an update message to all other replicas 

within the group, it can first send a multicast message. Chances are that 

some of the replicas will receive the update message and some will not 

because message delivery is not guaranteed with best-effort multicast. Now, 

replicas can enter into anti-entropy sessions with other replicas and propagate 

this update. Thus, all replicas will receive the update eventually. 



A 

B 2 
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I 
c i 2 

Figure 2. Message Logs for Replicas 

Replica A 

Figure 3. 

Replica A 

~ 
LJ 

Replica B 

,--------, 
i I 

l 3 i 

~~ 
~ 

L:_j 

Summary Vectors for Replicas 

Replica B 

5-12 !I )> L2J 
5-11 

I i II f 

3-4 f---1 
I 2 I 
L___j 

Figure 4. Anti-entropy Session 

Figure 5. Summary Vector after Anti-entropy Session 
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3.2 Partner Selection Policies 

A replica can use any one of several partner selection policies to 

choose a replica from the group and enter into an anti-entropy session. 

Partner selection is extremely important. It can affect the time required for 

message delivery, the degree of consistency, and the amount of network 

traffic caused by the protocol. 

Golding classified partner selection policies into Random, Deterministic 

and Topological Policies[Golding93a). We extend this classification and divide 

the policies into the following five classes: 

a. Random Policies 

b. Deterministic Policies 

c. Topological Policies 

d. Hierarchical Policies 

e. Combination Policies 

The various Partner Selection Policies are explained in the following 

subsections. 
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3.2.1 Random Policies 

Each replica has a probability assigned to it. Each replica randomly 

selects a partner for an anti-entropy session [Golding93a]. 

3.2.1.a Uniform Policy. Each and every replica has an equal probability 

of being randomly selected. Once the partner replica is chosen, anti-entropy 

is carried out to exchange the database contents. This could lead to 

overloaded network links [Golding93a]. 

3.2.1.b Distance Biased Policy. Replicas that are closer have a higher 

probability of being selected. This policy discriminates against distant replicas. 

Demers et al. found that by distance biasing partner selection, network traffic 

on critical intercontinental links can be reduced[Demers88]. Selection policies 

can also consider the cost of communication or monetary costs of using a 

communication link. 

3.2.1.c Oldest Biased Policy. "Replicas are selected proportional to their 

age in the summary timestamp vector" [Golding93a]. The replicas that are 

older have a lower probability of being selected for engaging in anti-entropy 

sessions. Update messages to any replica is propagated to another replica 

that has been recently updated. 
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3.2.2 Deterministic Policies 

These policies use some fixed rule for a replica to select its partner. 

"State information such as a sequence counter could be used as well" 

[Golding93a]. 

3.2.2.a Oldest First Policv. Replicas that have not been updated for the 

longest time will be selected. This is determined by the oldest value in the 

summary timestamp vector. If there are ties, they can be broken by taking 

distance into consideration [Golding93b]. 

3.2.2.b Latin Squares Policv. Alon et al. proposed a technique in which 

a truncated Latin Square of size n-1 x n is used, where every row and column 

has every entry just once [Aion87]. Anti-entropy sessions are divided into 

rounds. This policy guarantees messages to be received by all replicas in 

O(log n) time. 

3.2.3 Topological Policies 

These policies assign the replicas to nodes in a graph such as a ring 
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or a mesh. Then the messages are propagated along the edges of the 

graph. 

3.2.3.a Ring Po/icv. Replicas are organized into a ring [Golding93a]. 

Messages are propagated along the edges of the ring. The performance when 

compared to other policies is poor because at least half of the ring structure 

has to be traversed for an update to reach all sites. 

3.2.3.b Binary Tree Policv. Replicas are assigned to nodes in a binary 

tree, and messages are propagated along the edges of the tree [Golding93a]. 

It takes O(log n) rounds for update message to reach all nodes in the tree. 

3.2.3.c Minimum Spanning Tree Policv. We propose the following new 

policy. Replicas are arranged to form the nodes of a graph. Anti-entropy 

sessions are denoted as edges in a minimal spanning tree. The length of an 

edge denotes the cost associated with using the edge. This cost may be 

delay, time, distance, etc. The minimal spanning tree is constructed by using 

PRIM's algorithm[Tremblay91]. Along with propagating the update messages, 

while engaging in anti-entropy sessions, the minimal cost is calculated. Cost 

is dependant on the parameter that is to be optimized. 
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3.2.3.d Mesh Policy. Replicas are organized into a two-dimensional 

rectangular mesh [Golding93a]. Since this is a two-dimensional mesh all 

sites/replicas are fully interconnected. There is more than one path from one 

replica to another. Based on the criteria that is to be optimized, links can be 

chosen appropriately. This policy is more fault tolerant because there are 

redundant paths between replicas. 

3.2.3.e Hypercube Policy. We propose the following new policy. 

Replicas are arranged to form the nodes of a hypercube. The nodes of a 

hypercube are adjacent to each other and hence the vertices can engage in 

anti-entropy sessions. A typical example is a hypercube with 6 sides and 8 

vertices. In 3 rounds all replicas receive an update. In general O(log n) 

rounds are needed to update all replicas. 

3.2.4 Hierarchical Policies 

We propose the following hierarchical policy. The set of sites/replicas 

are divided into a hierarchy. Approaching the hierarchy from the top down, 

the sites can be divided into different levels. Sites at level 1 are at the top of 

the hierarchy, and then sites at level 2 are next in the hierarchy and so on. 

The sites at level 1 are connected to the most expensive links. The heuristic 
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is to avoid using the most expensive links as much as possible, but at the 

same time updates must reach all sites. 

An update can occur at sites belonging to either level 1 or level 2. If an 

update occurs at a site belonging to level 1, sites belonging to level 1 are 

selected first for anti-entropy sessions. Once all sites at level 1 have received 

the update, sites at level 2 are chosen for the update to be propagated. Sites 

at level 2 can propagate the updates using relatively inexpensive links. If an 

update occurs at a level 2 site, it must first select a site at level 1 and then 

propagate the update to sites at level 2. Sites at level 1 use the protocol 

described above to send the updates to other sites. The idea here is that level 

1 sites have a higher priority over sites at level 2, and so, they must be 

chosen for the update to be sent over longer distances. This kind of partner 

selection scheme is extremely useful for reducing the load on intercontinental 

links. 

An example to illustrate the above selection scheme is to have 3 sites 

at level 1 say, one in U.S.A another in Europe, and a third one in Asia. 

Updates occurring at the site in U.S.A. belonging to level 1 selects another 

site at level 1, either from Europe or Asia. Then the site in U.S.A can 

propagate the update message to sites locally within the sites at level 2. The 

sites in Europe and Asia also update messages to sites locally within their 

sites at level 2. If the update occurred at a site in Houston belonging to level 

2 of the hierarchy, then this site sends its update message to a designated 
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level 1 site within U.S.A and that site sends the update message to the level 

1 sites in Europe and Asia. 

3.2.5 Combination Policies 

From the above mentioned policies, numerous combinations can be 

envisioned by combining two or more policies. For example, we propose a 

random policy combined with a distance biased policy. A random policy can 

be used to propagate replica updates initially. A threshold value can be set 

which when triggered can switch the policy to a distance biased policy. The 

threshold value can be implemented as a counter. So, for example, this policy 

starts by using the random policy for propagating the update message. A 

counter contained in the update, is decremented. The counter is decremented 

every time the random policy is used. Once the counter reaches zero, policies 

are switched and the distance biased policy takes over. 

This could give an improvement in performance, since randomly 

choosing sites could improve the probability that the furthest replicas get the 

updates quickly and then by distance biasing, the replicas that are closest in 

terms of distance can propagate the updates locally. In most cases replicas 

have a locality of reference and so it helps to use distance biasing. 



CHAPTER IV 

SIMULATION MODEL 

4.1 Description 

In order to study how quickly the updates occurring at any one site are 

propagated to all other sites, a Monte Carlo simulator is used [Golding93b]. 

The code for the Monte Carlo simulator is shown in the Appendix. 

The partner selection policy used to explain the simulation is the 

Random Policy. The number of replicas is fixed, say n . The system starts 

with an update occurring at any one of the n replicas. This update has to be 

propagated to all other n-1 replicas using anti-entropy sessions. 

Anti-entropy sessions are modelled using a Markov model. Anti-entropy 

sessions are considered to be a Poisson process with arrival rate Aa and 

permanent site failures are a Poisson process with rate A f. Let f be the total 

number of available replicas and m be the number of available replicas that 

have observed a message update. The term available means the replica has 

not failed. The number of successful anti-entropy sessions is a function of m 

22 
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and f It also depends on the particular partner selection policy. Iff replicas 

initiate anti-entropy sessions, each of these f replicas choose a partner based 

on the partner selection policy. The probability a replica that has observed 

an update contacts a replica that has not yet observed the update is given by 

(f- m)/(f- 1). The rate of useful anti-entropy is given by f((f- m)/(f -1 )) Aa 

[Golding93b]. For example, in Figure 7, the Markov model is at state <1 ,3>. 

Here m = 1 ( one replica has observed an update) and f = 3 ( three replicas 

are available). The probability that the replica that has observed the update 

selects a replica that has not observed the update, is given by the formula (f-

m)/(f- 1) = (3 - 1 )/(3 - 1) = 2/2, that is, there is a 100% probability of choosing 

a replica that has not received the update. The selection could be affected by 

the failure of the replica chosen or the failure of the replica initiating the anti­

entropy session. The rate of useful anti-entropy is given by , considering the 

above mentioned example, 3*(2/2)*Aa. This means that there is a higher 

probability of useful anti-entropy sessions compared with the failure rate Af. 

Referring to Figure 6 or 7, each state is labelled <m,f >. A random 

transition probability is computed for each outgoing link. The links labeled Af 

are failed links. A state transition is made by selecting a transition based on 

a random number. This process is repeated until the system enters a terminal 

state. At this point, total system time is computed and checked to see if 

propagation of the update has succeeded or failed. 
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Referring to Figure 6, the state transitions using a Markov model for 

3 replicas are shown. An update occurs at any one replica and so, 1 out of 

3 replicas have the update. This is represented by the initial state <1 ,3>. A 

transition from the initial state can be made either to state <2,3> or <0,2>. 

If the transition is a success, then the state transition is to the state <2,3>. If 

the link or replica itself fails, then the update is lost and 0 out of 2 operational 

replicas have received the update. This is represented by the state <0,2>. If 

all replicas have the update, then it reaches a final state where 3 out of 3 

replicas have received the update. This is called the Rigid Policy. 

Referring to Figure 7, even if some of the failed states are reached, the 

update is propagated providing there are other operational replicas that 

have received the update. If the replica holding the update fails, then none 

of them observe the update (represented by the state <0,2>}. At state <1 ,3> 

if the site that has been selected for an anti-entropy session fails then state 

<1 ,2> is reached. That is, the first replica can still propagate the update to the 

remaining operational site. Since one replica has failed,there are only two 

operational replicas. However, a final state can be reached even if some of 

the replicas have failed. If state <3,3> is reached, then all sites observe the 

update. This is called the Flexible Policy. 
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Since failure is permanent, the state transition graph is acyclic. The number 

of states is O(d). Thus, in an analytical solution, each state is associated with 

a differential equation. In general, analytical solutions are usually difficult to 

obtain, due to the large number of states. 

4.2 Results 

Success here is defined as an attempt for an update originating at any 

one site to be propagated to all operational sites. Figure 8 and Figure 9 show 

the probability of successful delivery for different numbers of replicas. 

Probability of success is calculated by dividing the number of successes by the 

total number of trials. Since the anti-entropy rate is mostly thousands of times 

higher than that of the permanent failure rate, the number of messages lost 

due to permanent failures is almost zero [Golding 93b]. 

Effects of temporary failure were evaluated in [Golding93b]. Temporary 

failures could be due to volatile storage, link failures,etc. Temporary failure is 

considered as a Poisson process with rate .At. Data is written to stable storage 

once every s time units. Probability that a failure occurs before a writeback 

is given by the following equation 

P = -2e·sAt + s2.Af - 2s.At + 2 
2s.Af 



From experimental values, for values s = 30 seconds and 1/.At = 15 days, 

the probability of writeback failure is negligible. So, the expected failure 

rate of once every 15 days and a writeback within every 30 seconds is 

more than adequate to handle such failures[Golding93b]. Consequently, 

the analysis does not consider temporary failures. 

4.2.1 Comparison and Analysis 

29 

A simulation is carried out to study the rate of message updates using 

the Random Selection Policy. Assumptions made are: 

a. all sites are fully interconnected; 

b. an update is defined as an attempt to propagate an update occurring 

at any one site to all other sites. An update can result in success or 

failure. Success means the update has been observed by all 

operational machines. Failure means that the update has been 

completely lost. The simulation was run for 100 updates. It was 

observed experimentally that for 1 00 updates steady state values 

were obtained; 

c. in Figure 8, a 20% replica failure rate is assumed and in Figure 9, 

a 5% failure rate is assumed; 
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d. during anti-entropy sessions, failures do not occur; a site can only fail 

before or after an anti-entropy session; 

e. results were noted for 5, 10, 20, 50, 80 and 100 replicas; 

f. no temporary failures are considered; 

g. distances are approximated by pinging sites on the Internet; if times 

between sites were unavailable, they were approximated using the 

Pythagorean Theorem; 

h. even if only one machine does not receive the update, the update 

fails. This explains the disparity between the expected number of 

machines that are operational and the probability of success; 

i. multiple updates are not considered. 

Updates start at any one site as shown in the Markov model. A state 

change takes place if the next site or replica observes the update denoted by 

Aa or a failure by Af. 

A good random number generator was used. It returns a value between 

0.0 and 1.0. For a 20% failure rate, Af = 0.20 and Aa = 0.80. Any value 

between 0.0 and 0.8 indicates successful update of the replica by engaging 

in an anti-entropy session with that site. This is denoted by Aa in the Markov 

model. If the random number generator returns a value between 0.8 and 1.0, 

it indicates a failure to update the next replica. This is represented by Af in the 

Markov model. Finally, transitions labelled k.Af represent failures of replicas 
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which have not received the update. Using the above example, with k = 3, 

k . ..tf = 0.60; thus, any value between 1.0 and 1.6 indicates that a replica which 

has not received the update has failed. Note that in this case, the number 

returned by the random number generator is scaled by a factor of 1.6 before 

being used to determine which transition to select. 

In simulating the Rigid Policy, if the random number generator returns 

a value that falls in the failure interval, then the update does not reach the 

other replicas. Thus, the update is unsuccessful and is lost . This is 

represented in the Markov model in Figure 6. The probability of success 

versus the number of replicas ranging from 5, 10, 20, 50, 80 and 100 are 

plotted in Figure 8. The probability of success depreciates as the number of 

replicas increase. It is clear that with a small number of replicas the time to 

update is very short. Hence, there is a higher probability of success. As the 

number of replicas increases, the probability of success decreases. The 

expected number of machines that are still up and running at the end of the 

trials is the same as the probability of success. 

In the Flexible Policy, shown in Figure 8, even if some of the sites fail, 

updates to other replicas can still take place. This is represented using the 

Markov model for 3 replicas shown in Figure 7. The graph includes the 

probability of success and the expected number of machines that are 

operational at the end of the trial. The expected number of machines is 

plotted as a percentage of the total number of machines. 
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In Figure 9, the probability of success is 95%; that is, it is the best 

possible case based on our assumption of a 5% failure rate. Some of the 

replicas lose the update due to machine failure. The expected number of 

machines that are operational is quite large, which clearly contributes to the 

successful delivery of message updates to the replicas. For example, for 5 

replicas, 95% of the machines are expected to be up and running after the 

update has reached all sites. This means that on the average 4.75 out of 5 

replicas receive the update. 

Success means that all operational sites receive the update. Referring 

to Figure 9, the probability of success is quite high within our assumption limit 

of 5% failure rate. Increasing the number of replicas does not affect the 

probability of success because the updates might have been propagated by 

replicas to other operational sites. Increasing the number of replicas improves 

the chance of the update being propagated by operational sites. It is true that 

many sites might fail, but the time to failure rate is quite high and so it does 

not affect the probability of success. The expected number of sites that are 

operational is low because only the worst case failure is considered; that is, 

all failures are permanent. In reality, the expected number of sites that are 

operational might be quite high because many failures are 

transient[Golding93b ]. 

Referring to Figure 10, for the Distance Biased Policy, the probability 

of success improves as the number of replicas increase until a steady value 
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is reached. The expected number of machines drops steadily. The time taken 

for updates to reach all sites is quite small. This time taken is further reduced 

by the Minimum Spanning Tree Policy shown in Figure 18. 

Referring to Figure 11, the Ring Policy gives one of the worst 

performances. The update message is retarded heavily by the ring structure. 

Any replica can only choose another replica which is adjacent in the ring. 

Even if only two replicas fail, the update may be lost. This contributes to the 

poor performance as shown by the graph. One half of the ring structure must 

be traversed to update all replicas. On the average at least half of the ring 

must be traversed for the update to reach all replicas. The time taken for the 

updates to propagate is extremely small because it is affected by the 

probability of success. Only if the various sites receive the update, is the time 

taken accumulated. This explains the very small time taken in Figure 18. 

Referring to Figure 12, since replicas are arranged to form the nodes 

of a binary tree, updates are propagated along the edges of the graph. For 

fewer replicas, good performance is observed. As the number of replicas 

increase, the probability of success declines. Always, if a parent node fails, 

the update is not propagated further down the tree to the children. If one of 

the children fail then the other child node is chosen for anti-entropy sessions. 

Now, only if the other child also fails does the update not get propagated any 

further. In the end, many replicas are operational,but may not receive the 

update. 
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Referring to Figure 13, the Minimum Spanning Tree Policy is like the 

Distance Biased Policy, but with the added feature that the minimal path is 

always chosen for selecting a partner. This policy shows a reduction in time 

taken to update all operational sites (see Figure 18). 

The Hierarchical Policy gives performance similar to the Distance 

Biased Policy in terms of updating various sites, but the time taken is slightly 

higher because long distance Intercontinental sites are chosen initially. 

The Combination Policy (see Figure 15), has characteristics of the 

Random Policy. This is because the Random Policy is executed until the 

counter value reaches zero. The counter is initialized to n/2 , where n is the 

number of sites. 

Referring to Figure 16, a sharp dip in the graph is noticed for the 

probability of success. Here the assumption is that a site chooses a partner 

site in the same row of the two dimensional grid. So, in the same dimension 

the update is propagated in a linear fashion. There may be failures and so 

the update may not be propagated to many operational sites. But if there are 

a large number of replicas, then the update can be propagated to sites in the 

second dimension. Hence, the graph shows a steady performance as the 

number of sites are increased. The expected number of machines that are 

operational drops as there could be many sites failing. 

The Hypercube Policy is hard to model. Here the assumption made is 

that sites have to fit the nodes in a hypercube. So, the simulation was run for 
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2, 4 and 8 replicas. The probability of success is extremely high. This policy 

shows the best performance as the number of replicas increase. Each site 

has more than one choice of propagating an update to another operational 

site. This way, even if one of the partner sites chosen for engaging in an anti­

entropy session fails, there exists alternate paths for the update to be 

propagated to operational sites. 

Referring to Figure 20, the time taken for the few number of replicas 

are comparable. Time taken is calculated for all attempts to propagate an 

update (this includes failures and successes). The Ring Policy also shows 

good performance for few replicas. The Random Policy takes a longer time 

because of the criteria used in selecting partner replicas. Depending on the 

random number generator, the replicas may choose expensive links and result 

in a marked increase in time taken to update the various replicas. 

Figure 19, shows the expected number of machines that are operational 

after an update has been propagated to all operational sites. As expected, the 

Ring Policy gives poor performance. The Binary Tree Policy gives a slightly 

better performance than the Ring Policy. The Mesh Policy shows better 

performance compared to the Ring and Binary Tree Policy for fewer sites. As 

the number of sites increase, it gives a steady performance. The Hypercube 

Policy has the maximum number of operational sites. 
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TABLE I 

COMPARISON OF VARIOUS PARTNER SELECTION POLICIES 

I 
Number Probability of 

Policy receiving success Time Taken 
update 

Random Average Constant Average 

Distance Biased High High Low 

Ring Lowest Lowest Lowest 

Minspan. Tree High High Least 

Hierarchical High High Highest 

Combination Average Constant High 

Mesh Low Average Low 

Hypercube High Highest Low 

4.2.2 Measures 

4.2.2.a Consistency. The notion of consistency is based on the fact that 

any update originating at any single site is received eventually by all other 

sites using anti-entropy sessions. In the absence of further updates, the 

probability that the information has not converged decreases exponentially with 

time. After updating all replicas, the number of operational replicas is a good 

indicator of the level of consistency achieved. 
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4.2.2.b Total Distance. For a distance biased policy, the total distance 

is calculated. This is a good measure to optimize when communication links 

are expensive. The total distance traversed can be minimized while achieving 

good propagation times using a minimal spanning tree policy. 

4.2.2.c Communication Latency. This measure is tied in with the total 

distance. Distance from link to link between nodes affects the communication 

latency. Communication latency is the time required for the update to be 

propagated to all operational sites. If long distance links are used while 

updating,the time to update may become longer and consequently an increase 

in communication latency results. 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

Anti-entropy protocols enforce weak consistency. Consequently, they 

require asynchronous communication between replicas. Furthermore, they can 

be used in combination with multicast protocols and can be run in the 

background. 

In this thesis, partner selection policies for timestamped anti-entropy 

protocols have been thoroughly investigated. Different partner selection policies 

were compared using a Monte Carlo simulation. New partner selection policies 

were proposed and analyzed, including the following: 

a. Minimum spanning tree policy 

b. Hypercube policy 

c. Hierarchical policy 

d. Combination policy 
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Policies were analyzed by computing the number of machines that are 

still up and running after an update has been propagated. This is an indication 

of how the replicas are updated. The probability that an update reaches all 

machines is found. Some of the new measures that were proposed are: 

a. Consistency 

b. Total distance 

c. Communication latency 

Policies have been devised to establish anti-entropy sessions and 

propagate the messages to all sites and at the same time reduce the cost 

incurred. Cost could be measured in distance traveled or monetary cost. Cost 

in terms of total distance has been calculated. 

From the results of the simulation, the Distance Biased Policy gives a 

steady performance. If global knowledge of the distributed environment can 

be obtained, the Minimum Spanning Tree Policy is appropriate. It has a high 

probability of success and simultaneously chooses the least expensive links 

for engaging in anti-entropy sessions. The Hypercube Policy has the highest 

probability of success provided the sites can be organized to fit the hypercube 

structure. The Combination Policy gives similar performance as the Random 

Policy. The Hierarchical Policy has the same characteristics as the Distance 

Biased Policy, but takes more time. 
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I* Program for Simulating 20% and 5% failure rates */ 
I* Global Declarations */ 
#include <stdio.h> 
#include <stdlib.h> I* Header Include files */ 
#include <string.h> 
#include <math.h> 
#include <time.h> 
#include <sys/types.h> 
#define Lambda 1 I* Flag returned if successful */ 
#define Rho 2 I* Flag returned if initiating site fails */ 
#define Sigma 3 I* Flag returned if selected site fails */ 
#define Trials 100 
#define STRSIZE 100 
#define MAXSIZE 100 I* Constants*/ 
#define MSHSIZE 5 
#define PAIRSIZE 2 
typedef struct site SITES; 
typedef struct node NODE; 
typedef struct queue QUEUE; 

struct site{ 
float distance[MAXSIZE]; 
float time[MAXSIZE]; 
int traversed[MAXSIZE]; 

}; 

struct node { 
int elem; 
NODE *next; 
}; 

struct queue { 
NODE *f,*r; 
int n; 
}; 

I* Structure that contains the */ 
I* distances between sites */ 

I* Node structure has an element */ 

I* Queue structure points to node type*/ 

I* Nodes/Sites Structures *I 
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SITES nodes[MAXSIZE],tmp[MAXSIZE]; 
int Aray[MAXSIZE],Stck[MAXSIZE]; 
int MSH[MSHSIZE][MSHSIZE]; 
float rand_efficiency = 0.0; 
double seed = 1.0; 

I* Array of unique nodes&Stack*/ 
I* Mesh 2 -dimensional array */ 

int top_of_stack= O,godown = 0; 

/*Calculate the expected #of m/cs*/ 
I* Seed value*/ 

I* Pointers to top of stack *I 



#include "global.h" 
I* Program to engage in anti-entropy sessions using */ 
I* Rigid and Flexible Policy*/ 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 
int id; 
void random_flex_policy(); 
void uniform_rigid_police(); 

if(argc != 2){ 
perror(" Correct format-> executable <filename>!\n"); 
exit(1); 
} 

I* Interactive options for choosing */ 
for( ; ; ){ 

} 

if(get_option(&id) == 1) I* get the required option*/ 
switch(id){ 

} 

case 0: printf(" Done simulation and quitting maan ! \n"); 
exit(1 ); 

case 1: uniform_rigid_police(argv); /* Rigid Policy*/ 
break; 

case 2: random_flex_policy(argv); l* Flexible Policy */ 
break; 

} 

. I* Function to simulate the random flexible policy */ 
void random_flex_policy(argv) 
char *argv(]; 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_flex_policy(); 

null struct(); 
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init_struct(); 
read_in_data(argv,&nofsites); 
init_vals(nofsites); 
printf(" Nofsites = %d\n",nofsites); 

tind_total_ dist(nofsites,&total_dist); 

/* Initialise the structures *I 
/* Read in the value */ 

printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_flex_policy(nofsites); 
} 

/* Driver routine for flexible random selection */ 
void driver _flex_policy( nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
int i,success = 0; 
void init_aray(); 

for( i = 0; i < Trials; i++){ 
init_aray(nofreplicas); 
time_taken = 0.0; 
if(uniform_flex_policy(nofreplicas,&time_taken)){ 

success++; 
actual_time += time_taken; 
} 

} 
printf{"Random efficiency= %.31\n",rand_efficiency/(float)Trials); 
printf("Probability of success using random flexible technique= %.31\n\n", 
(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to select machines randomly even if some machines fail*/ 
uniform_flex_policy(nofreplicas,time_taken) 
float *time_taken; 
int nofreplicas; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed= O,tot_opsites; 
int remaining_sites,flag,x,F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
void seed_random(); 
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init_FAray(F _Aray); 
tot_opsites = nofreplicas; 
sites*/ 

/* Initialise the Failed sites Array *I 
I* Initialise the total number of operational 

Push(prev); I* Push site '0' onto the stack(site originating the update) */ 

while( !stop){ 
seed_random(); 

/* Pick any site from remaining sites */ 
x = spec_rnum(1 ,nofreplicas-1 ); 

/* If next site is not in stack & not Failed */ 
if( check_in_stack(x) == 0){ 

if( check_in_Aray(F _Aray,x) == 0){ 
remaining_sites = tot_opsites- nofactivereplicas; 
/* Find transition *I 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ /* Site itself failed */ 

tot_ opsites--; 
if(nofactivereplicas == 1 ){ 
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failed= 1; /* The update is lost */ 

} 

nofactivereplicas--; 
stop= 1; 
} 

else { 
if(prev == top_of_stack-1) 
/*Get a new parent site from Stack */ 

F _Aray[nextfail] = Pop(); 
else F _Aray[nextfail] = prev; 
if(top_of_stack >0) 

prev = Stck[top_of_stack-1); 
nextfail++; 
nofactivereplicas--; 
} 

else if(flag == Sigma){ /* The partner site failed *I 
tot_opsites--; 
F _Aray[nextfail] = x; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else if( flag == Lambda){ /* Success */ 
nofactivereplicas++; 
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*time_taken += nodes[prev].distance[x]; 
Push{x); I* push current site onto to stack */ 

} 
} 

prev = x; 
/* Completely successful , all m/c's receive the update */ 

if( nofactivereplicas == nofreplicas) 
stop= 1; 

/* All the operational mlc's receive the update *I 
else if( nofactivereplicas == tot_opsites) 

stop= 1; 
} 

} /* Calculate expected number of machines operational *I 
rand_efficiency = rand_efficiency + (float)nofactivereplicasl(float)nofreplicas; 
if( done && !failed){ 

return(1 ); 
} 

else return{O); 
} 

/* Function to find which transtion to make *I 
call_transition_find(remaining_sites,flag) 
int remaining_sites,*flag; 
{ 
int loc_flag; 
double new_scale; 
double r_num{),val; 

new_scale = 1.0+(remaining_sites * .20); 
val = r_num()*new_scale; 
loc_flag = prob_range(val,new_scale); 
if(loc_flag == Lambda) 

*flag = Lambda; 
else if(loc_flag == Rho) 

*flag= Rho; 
else if(loc_flag == Sigma) 

*flag= Sigma; 
} 



/* Function to check if the randomly picked probability 
/* lies within the assumed interval of 80 %, if 90% then change scale *I 
/* appropriately *I 
prob_range{x,new_scale) 
double x,new scale; 
{ 
if{ 0.0 <= X && X <= 0.80) 

return(Lambda); 
else if( 0.80 < x && x <= 1.0) 

return(Rho); 
else if(1.0 < x && x <= new_scale) 

return(Sigma); 
} 

/*Function to seed the random number generator *I 
void seed_random() 
{ 
int i; 
double r_num(); 

for( i = 0; i < MAXSIZE; i++) 
r_num(); 

} 

/* Function to convert a random number generated within a 
specific range i.e between a high and a low value specified *I 

spec_rnum(tow,high) 
int low,high; 
{ 
double r_num(); 
int k; 

k = low+ (high + 1 - low)*r_num(); 

return(k); 
} 

/* Function to get a random number *I 
double r_num() 
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{ 
/* a,m,q,r =constants */ 
/* lo,hi,test = variables */ 
/* seed = seed value *I 

double a= 16807.0, m = 2147483647.0,q = 127773.0,r = 2836.0; 
double lo,hi,test,floor(); 

hi = floor(seed/q); 
lo = seed - q*hi; 
test = a*lo - r*hi; 
if(test > 0.0) seed = test; 
else seed= test+ m; 
return ( seed/m); 
} 

/* Function to Push an element onto the stack*/ 
Push{elem) 
int elem; 
{ 
Stck[top_of_stack]= elem; 
top_of_stack++; 
} 

/* Function to Pop an element off the stack *I 
Pop{) 
{ 
if(top_of_stack != 0){ 

top_of_stack--; 
return{Stck[top_of_stack)); 
} 

else { 
perror("Error\n"); 
exit(O); 
} 

} 

/* Function to intialise the Failed aray and the Stack*/ 
init_FAray(F) 
int F[J; 
{ 
int i; 
for(i = 0; i < MAXSIZE; i++){ 
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F[i] = -1; 
Stck[i] = -1 ; 
} 

top_of_stack = 0; 
} 

/* Function to check if the given site is in the Failed array*/ 
check_in_Aray(F _Aray,x) 
int F _Aray[J,x; 
{ 
inti= 0; 

while(F _Aray[i] != -1 ){ 
if(F _Aray[i] == x) 

return(1 ); 
else i++: 
} 

return(O); 
} 

/* Function to check if the given site is in the Stack */ 
check_in_stack(x) 
int x; 
{ 
inti= 0; 

while(i < top_of_stack ){ 
if(Stck[i] == x) 

return(1 ); 
else i++: 
} 

return(O); 
} 

/* Function to intialise the distances among the sites of the network 
this function also helps calculate the total distance */ 
find_total_dist(nofsites,total_dist) 
int nofsites; 
float *total_dist; 
{ 
int i,j; 
for( i = 0; i < nofsites; i++) 

for( j = i+ 1; j < nofsites; j++){ 

62 



if( nodes[i].distance[j] != -1.0) 
*total_dist = *total_dist + nodes[i].distanceUJ; 

} 
} 

/* Function to put an unique element into an array */ 
put_into _Aray( elem) 
int elem; 
{ 

inti= 0; 

while(Aray[i] != -1 ){ 
if(elem != Aray[i]) 

i++; 
else if( elem == Aray[i]) 

return(O); 
} 

Aray[i] = elem; 
return(1 ); 
} 

/* Function to initialise the contents of the Aray */ 
void init_aray(nofsites) 
int nofsites; 
{ 
inti; 

for(i = O; i <= nofsites;i++) 
Aray[i] = -1 ; 

} 

/* Function to intialise the structure */ 
void null_struct() 
{ 
memset(&nodes,NULL,sizeof(SITES)); 
memset(&tmp,NULL,sizeof(SITES)); 
} 
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/* Function to initialise the structure with -1 values •; 
void init_struct() 
{ 
int i,j; 

for( i = 0; i < MAXSIZE; i++) 

} 

for( j = 0; j < MAXSIZE; j++){ 
nodes[i].distanceOJ = -1.0; 
nodes[i].time[j] = -1.0; 
nodes[i].traversed[j] = 0; 
tmp[i].traversed[j] = 0; 
} 

/* Function to read in the data •; 
read_i n_ data( argv, nofsites) 
char *argv[]; 
int *nofsites; 
{ 
int i = O,j = 0; 
float val = 0.0; 
FILE *fp; 

if((fp = fopen(argv[1 ],"r")) == NULL){ 

} 

perror(" Error in opening of input file !\n"); 
exit(1 ); 

fscanf(fp,"%d\n",nofsites); 
if(*nofsites == 0) 

perror(" Cannot continue , please check input file !\n"); 

while(!feof(fp)){ 
fscanf(fp,"%d %d %f\n",&i,&j,&val); 
nodes[i].distance[j] = nodes[j].distance[i] =val; 
tmp[i].distanceOJ = tmpOJ.distance[iJ = val; 
} 

nodes[O].distance[OJ = -1.0; 
tmp[O].distance[O] = -1.0; 
fclose(fp); 
} 
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/* Function that uses pythagoras' theorem to find out distances for 
unknown sites */ 

void init_vals(nofsites) 
int nofsites; 
{ 
int i,j; 
float res; 

for( i = 1; i < nofsites; i++) 
for( j = i+1; j < nofsites; j++) 

if( nodes[i].distanceU] == -1.0){ 
if( nodes[O].distance[j] > nodes[O].distance[i]) 
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res = pow(nodes[O].distance[j],2) - pow(nodes[O].distance[i],2); 
else { 

res = pow(nodes[O].distance[i],2) + pow(nodes[O].distance[j],2); 
} 

tmp[i].distance[jJ = tmp[j].distance[i] = nodes[i].distance[j) = 
nodes[j].distance[i] = sqrt(res); 

} 
} 

/* Function to copy back the values to the structure */ 
void copy_back(nofsites) 
int nofsites; 
{ 
int i,j; 

/* Initialise the structure with the values *I 
for( i = 0; i < nofsites; i++) 

} 

for( j = 0; j < nofsites; j++ ){ 
nodes[i].distance[j] = tmp[i).distance[j]; 
nodes[i].traversed[j] = 0; 
} 

/* Function to simulate the uniform rigid policy */ 
void uniform_rigid_police(argv) 
char *argv[); 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 



void init_struct(); 
void init_vals(); 
void driver_uni_pol(); 

null_struct(); 
init_struct(); 
read _in_ data( argv, &nofsites); 
in it_ vals(nofsites); 
printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_uni_pol(nofsites); 
} 

/* Driver routine for rigid random selection */ 
void driver_uni_pol(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
int i,success = 0; 
void init_aray(); 

for( i = 0; i < Trials; i++){ 
init_aray(nofreplicas); 
time_taken = 0.0; 
if(uniform_rigid_pol(nofreplicas,&time_taken)){ 

} 

success++; 
actual_time += time_taken; 
} 

printf("Random efficiency = %.3f\n" ,rand_efficiency/(float)Trials); 
printf("Probability of success using random rigid technique = %.3f\n\n", 
(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(ftoat)Trials); 
rand_efficiency = 0.0; 
} 

r Function to simulate the rigid policy*/ 
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uniform_rigid_pol(nofreplicas,time_taken) 
int nofreplicas,*time_taken; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,x,F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
double any_no; 
void seed_random(); 

init_FAray(F _Aray); 
tot_opsites = nofreplicas; 

Push(prev); /* Push site '0' onto the stack(site originating the update) */ 

while( !stop){ 
seed_random(); 
x = spec_rnum(1 ,nofreplicas-1); 
if( check_in_stack(x) == 0){ 

} 

remaining_sites = tot_opsites- nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_opsites--; 
failed = 1; 
nofactive replicas--; 
stop= 1; 
} 

else if(flag == Sigma){ 
tot_opsites--; 
failed = 1; 
stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 
*time_taken += nodes[prev].distance[x]; 
Push(x); 
prev = x; 

/* Completely successful , all m/c's receive the update *I 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
/* All the operational m/c's receive the update */ 

else if( nofactivereplicas == tot_opsites) 
stop= 1; 

} 
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} 
rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed) 

return(1 ); 
else return(O); 
} 

I* Function to get the options required */ 
get_option(id) 
int *id; 
{ 
print_ options(); 
scanf("%d" ,id); 
if(*id > 12) 

*id = 0; 
return(1 ); 
} 

/* Function to print the Input Options *I 
print_ options() 
{ 
pri ntf("\n"); 
printf("%-53s\n","Press option 1 for simulating Random Rigid policy"); 
printf("%-53s\n","Press option 2 for simulating Random Flexible policy"); 
printf("%-28s\n","Press option 0 for quitting"); 
} 



APPENDIX B 

PROGRAM FOR SIMULATING VARIOUS PARTNER 

SELECTION POLICIES 
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#include "global.h" 
I* Program to engage in anti-entropy sessions using */ 
I* Various Partner Selection Policies */ 
main(argc,argv) 
int argc; 
char *argv[J; 
{ 
int id; 
void random_flex_policy(); 
void distance_bias(); 
void ring_policy(); 
void binary_tree(); 
void minspan(); 
void mesh(); 
void hypercube(); 
void hierarchy(); 
void combo(); 

if(argc != 2){ 
perror(" Correct format ->executable <filename>!\n"); 
exit(1 ); 
} 

for( ; ; ){ 
if(get_option(&id) == 1) /* get the required option */ 

switch(id){ 
case 0: printf(" Done simulation and quitting maan ! \n"); 

exit(1); 
case 1: random_flex_policy(argv); 

break; 
case 2: distance_bias(argv); 

break; 
case 6: ring_policy(argv); 

break; 
case 7: binary_tree(argv); 

break; 
case 8: minspan(argv); 

break; 
case 9: mesh(argv); 

break; 
case 10: hypercube(argv); 

break; 
case 11: hierarchy(argv); 
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} 
} 

break; 
case 12: combo(argv); 

break; 
} 

/* Function to simulate the random flexible policy *I 
void random_flex_policy{argv) 
char *argv[J; 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_flex_policy(); 

null_struct(); 
init_struct(); 
read_in_data(argv,&nofsites); 
i nit_ vals( nofsites); 
printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_ flex _policy( nofsites); 
} 

/* Driver routine for flexible random selection */ 
void driver_flex_policy(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
int i,success = 0; 
void init_aray(); 

for( i = O; i <Trials; i++){ 
i nit_aray( nofreplicas); 
time taken = 0.0; 
if(uniform_flex_policy(nofreplicas,&time_taken)){ 

success++; 
actual_time += time_taken; 
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} 
} 

printf("Random efficiency = %.3f\n",rand_efficiency/(float)Trials); 
printf("Probability of success using random flexible technique = %.3f\n\n", 
(float )success/(float)T rials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to select machines randomly even if some machines fail */ 
uniform_flex__policy(nofreplicas,time_taken) 
float *time_taken; 
int nofreplicas; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,x,F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
double any_no; 
void seed_random(); 

init_FAray(F _Aray); 
tot_opsites = nofreplicas; 

Push(prev); /* Push site '0' onto the stack(site originating the update) */ 
while( !stop){ 

seed_random(); 
x = spec_rnum(1 ,nofreplicas-1 ); 
if( check_in_stack(x) == 0){ 

if( check_in_Aray(F _Aray,x) == 0){ 
remaining_sites = tot_opsites- nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_opsites--; 
if(nofactivereplicas == 1 ){ 

failed= 1; 
nofactive replicas--; 
stop= 1; 
} 

else { 
if(prev == top_of_stack-1} 

F _Aray[nextfail] = Pop(); 
else F _Aray[nextfail] = prev; 
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} 
} 

} 

if(top_of_stack >0) 
prev = Stck[top_of_stack-1 J; 

nextfail++: 
nofactive replicas--; 
} 

else if(flag == Sigma){ 
tot_ opsites--; 
F _Aray[nextfail] = x; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 

} 

*time_taken += nodes[prev).distance[x]; 
Push(x); 
prev = x; 

/* Completely successful , all m/c's receive the update */ 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
/* All the operational m/c's receive the update *I 

else if( nofactivereplicas == tot_opsites) 
stop= 1; 

} 
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rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed){ 

return(1 ); 
} 

else return(O); 
} 

/* Function to find which transtion to make */ 
call_transition_find(remaining_sites,flag) 
int remaining_sites,*flag; 
{ 
int loc_flag; 
double new_scale; 
double r_num(),val; 



new_scale = 1.0+(remaining_sites * .05); 
val = r_num()*new_scale; 
loc_flag = prob_range(val,new_scale); 
if(loc_flag ==Lambda) 

*flag = Lambda; 
else if(loc_flag == Rho) 

*flag= Rho; 
else if(loc_flag == Sigma) 

*flag= Sigma; 
} 

/* Function to check if the randomly picked probability 
lies within the assumed interval */ 

prob_range(x,new_scale) 
double x,new_scale; 
{ 
if( 0.0 <=X && X <= 0.95) 

return(Lambda); 
else if( 0.95 < x && x <= 1.0) 

return(Rho}; 
else if(1.0 < x && x <= new_scale) 

return(Sigma); 
} 

/*Function to seed the random number generator */ 
void seed_random() 
{ 
inti; 
double r_num(); 

for( i = 0; i < MAXSIZE; i++) 
r_num(); 

} 

/* Function to convert a random number generated within a 
specific range i.e between a high and a low value specified *I 

spec_rnum(low,high) 
int low,high; 
{ 
double r_num(); 
int k; 
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k = low+ (high + 1 - low)*r_num(); 

return(k); 
} 

/* Function to get a random number*/ 
double r_num() 
{ 
/* a,m,q,r = constants */ 
/* lo,hi,test =variables */ 
/* seed = seed value *I 

double a= 16807.0, m = 2147483647.0,q = 127773.0,r = 2836.0; 
double lo,hi,test,floor(); 

hi = floor(seed/q); 
lo = seed - q*hi; 
test = a*lo - r*hi; 
if(test > 0.0) seed = test; 
else seed= test+ m; 
return(seed/m); 
} 

/* Function to Push an element onto the stack*/ 
Push(elem) 
int elem; 
{ 
Stck[top_of_stack]= elem; 
top_of_stack++; 
godown++; 
} 

/* Function to Pop an element off the stack*/ 
Pop() 
{ 
if(top_of_stack != 0){ 

top_of_stack--; 
godown--; 
return(Stck[top_of_stack]); 
} 

else { 
perror("Error\n"); 

75 



} 

exit(O); 
} 

I* Function to intialise the Failed aray and the Stack*/ 
init_FAray(F) 
int F[]; 
{ 
inti; 
for(i = 0; i < MAXSIZE; i++){ 

F[i] = -1; 
Stck[i] = -1 ; 
} 

top_of_stack = 0; 
godown = O; 
} 

/* Function to check if the given site is in the Failed array *I 
check_in_Aray(F _Aray,x) 
int F _Aray[J,x; 
{ 
inti= 0; 

while(F _Aray[i] != -1 ){ 
if(F _Aray[i] == x) 

return(1 ); 
else i++; 
} 

return(O); 
} 

/* Function to check if the given site is in the Stack*/ 
check_in_stack(x) 
int x; 
{ 
int i = 0; 

while(i < top_of_stack ){ 
if(Stck[i] == x) 

return(1 ); 
else i++; 
} 
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return(O); 
} 

/* Function to intialise the distances among the sites of the network 
this function also helps calculate the total distance */ 
find_total_dist(nofsites,total_dist) 
int nofsites; 
float *total_dist; 
{ 
int i,j; 
for( i = 0; i < nofsites; i++) 

for( j = i+1; j < nofsites; j++){ 
if( nodes[iJ.distanceUJ != -1.0) 

*total_dist = *total_dist + nodes[i].distance[j]; 
} 

} 

/* Function to initialise the contents of the Aray */ 
void init_aray(nofsites) 
int nofsites; 
{ 
int i; 

for{i = 0; i <= nofsites;i++) 
Aray(i] = -1 ; 

} 

/* Function to intialise the structure */ 
void null_struct() 
{ 
memset(&nodes,NULL,sizeof(SITES)); 
memset( &tmp,NULL,sizeof(SITES) ); 
} 

/* Function to initialise the structure with -1 values *I 
void init_struct() 
{ 
int i,j; 

for( i = 0; i < MAXSIZE; i++) 
for( j = 0; j < MAXSIZE; j++){ 

nodes[i].distanceO] = -1.0; 
nodes(i].timeUJ = -1.0; 
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} 

nodes[i].traversedUJ = 0; 
tmp[i].traversedU] = 0; 
} 

/* Function to read in the data */ 
read_in_data(argv,nofsites) 
char *argv[]; 
int *nofsites; 
{ 
int i = O,j = 0; 
float val = 0.0; 
FILE *fp; 

if((fp = fopen(argv[1],"r")) ==NULL){ 

} 

perror(" Error in opening of input file !\n"); 
exit(1 ); 

fscanf(fp, "o/od\n" ,nofsites); 
if(*nofsites == 0) 

perror(" Cannot continue , please check input file !\n"); 

while(!feof(fp)){ 
fscanf(fp,"%d %d %f\n" ,&i,&j,&val); 
nodes(i].distanceU) = nodes(j].distance[i] = val; 
tmp[i].distance(j] = tmp(j].distance[i] = val; 
} 

nodes[O].distance[O] = -1.0; 
tmp[O].distance[O] = -1.0; 
fclose{fp); 
} 

/* Function that uses pythogoras' theorem to find out distances for 
unknown sites*/ 

void in it_ vals( nofsites) 
int nofsites; 
{ 
int i,j; 
float res; 

for( i = 1 ; i < nofsites; i++) 
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for( j = i+ 1; j < nofsites; i++) 
if( nodes[i].distanceUJ == -1.0){ 

if( nodes[O].distanceUJ > nodes[O].distance[i]) 
res= pow(nodes[O].distanceUJ,2) - pow(nodes[O].distance[i],2); 

else { 
res= pow(nodes(O].distance[i],2) + pow(nodes[O].distanceU],2); 
} 

tmp[i].distance[j] = tmpUJ.distance[i] = nodes[i].distanceUJ = 
nodes[j].distance[iJ = sqrt(res); 

} 
} 

/* Function to copy back the values to the structure*/ 
void copy_back(nofsites) 
int nofsites; 
{ 
int i,j; 

for( i = 0; i < nofsites; i++) 

} 

for( j = 0; j < nofsites; j++){ 
nodes[iJ.distanceU] = tmp[i].distance[j]; 
nodes[i].traversedUJ = 0; 
} 

/* Function to simulate the distance biased policy*/ 
void distance_bias(argv) 
char *argv[]; 
{ 

int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_distance_policy(); 

null_struct(); 
init_struct(); 
read_i n _data( argv ,&nofsites); 
in it_ vals(nofsites); 
printf(" Nofsites = %d\n",nofsites); 



find_total_dist(nofsites,&total_dist): 
printf("\nTotal time for the network= %.3fms\n\n",total dist); 
driver_distance_policy(nofsites); -
} 

/* Driver routine for distance biased policy * 1 
void driver_distance_policy(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
int i,success = 0; 
void init_aray(); 
void copy_back(); 

for( i = 0; i < Trials; i++){ 
init_aray(nofreplicas); 
time_taken = 0.0; 
if(i!=O) 

copy_back(nofreplicas); 
if(run_dist_pol(nofreplicas,&time_taken)){ 

success++: 
actual_time += time_taken; 
} 

} 
printf(" Random efficiency = %.3f\n", rand_ efficiency/(float) Trials}; 
printf("Probability of success using distance-bias technique = 
%.3f\n\n",(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = 
%.3fms\n\n",actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to run the distance biasing */ 
run_dist_pol(nofreplicas,time_taken) 
float *time_taken; 
int nofreplicas; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,next_replica,F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
float min; 

init_FAray(F _Aray); 
tot_opsites = nofreplicas; 

80 



Push(prev); r Push site '0' onto the stack(site originating the update) */ 

while( !stop){ 
min = 9999.0; 
if(find_min_site(nofreplicas,&min,&next_replica,prev)){ 

if( check_in_stack(next_replica) == 0){ 
if( check_in_Aray(F _Aray,next_replica) == 0){ 

remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_opsites--; 
if( nofactivereplicas == 1 ){ 

failed= 1; 
nofactive replicas--; 
stop= 1; 
} 

else { 

} 

if(prev == top_of_stack-1) 
F _Aray[nextfail] = Pop(); 

else F _Aray[nextfaiiJ = prev; 
if( top_of_stack >0) 

prev = Stck[top_of_stack-1]; 
nextfail++; 
nofactivereplicas--; 
} 

else if(flag == Sigma){ 
tot_opsites--; 
F _Aray[nextfail] = next_replica; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 

*time_taken += nodes[prev].distance[next_replica]; 

nodes(prev].traversed[next_replica]=nodes[next_replica].traversed[prev]=1; 
Push( next_replica); 
prev = next_replica; 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
else if( nofactivereplicas == tot_opsites) 
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stop= 1; 
} 

} 
else nodes[prev].distance[next_replica] = 

nodes[next_replica].distance[prev] = 0.0; 
} 
else 

nodes[prev].traversed[next_replica]=nodes[next_replica].traversed[prev]=1; 
} 
else stop = 1 ; 

} 
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rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed) 

return(1 ); 
else return(O); 
} 

/* Function to find the minimum distance from the given start node */ 
find_min_site(nofsites,min,next_replica,start) 
int nofsites,*next_replica,start; 
float *min; 
{ 
int j,flag = 0; 

for( j = O; j < nofsites; j++){ 
if( (nodes[start].distance[j] != 0.0) && (nodes[start].distanceUJ != -1.0) && 

(nodes[start].traversedUJ != 1 )}{ 

} 

if( !flag){ 
*min = nodes[start].distance[j]; 
*next_replica = j; 
flag= 1; 
} 

else if( nodes[start].distance[j] < *min){ 
*min = nodes[start].distance[j]; 
*next_replica = j; 
} 

} 

if(*min == 9999.0) 
return(O); 



else return(1 ); 
} 

/* Function to find the maximum distance from the given start node*/ 
find_max_site(nofsites,max,next_replica,start) 
i nt notsites, *next_replica,start; 
float *max; 
{ 
int i , j,flag = 0; 

for( j = 0; j < nofsites; j++ ){ 
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if( (nodes[start].distance[j] != 0.0) && (nodes[start].distanceUJ != -1.0) && 
(nodes[start].traversedUJ != 1 )){ 

if( !flag){ 
*max = nodes[start].distance[j]; 
*next_replica = j; 
flag= 1; 
} 

else if( nodes[start].distance[j] > *max){ 
*max = nodes[i].distanceUJ; 
*next_replica = j; 

} 
} 

if(*max == 0.0) 
return(O); 

else return(1 ); 
} 

} 

/* Function to simulate the Ring Topology */ 
void ring_policy(argv) 
char * argv[]; 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void drive_ring(); 

null_struct(); 
init_struct(); 



read_in_data(argv,&nofsites); 
in it_ vals(nofsites); 

printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network = %.3fms\n\n",total_dist); 
drive_ring(nofsites); 
} 

/* Driver routine that simulates the Ring policy * 1 
void drive_ring(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
int i,success = 0; 
void init_aray(); 

for( i = 0; i <Trials; i++){ 
time_taken = 0.0; 
init_aray(nofreplicas); 
if(run_ring_pol(nofreplicas,&time_taken}){ 

success++; 
actual_time += time_taken; 
} 

} 
printf("Random efficiency = %.3f\n" ,rand_efficiency/(float)Trials); 
printf("Probability of success using Ring technique = %.3f\n\n", 
(float}success/(float)Trials); 
printf("Time taken for updates to reach all sites = 
%.3fms\n\n",actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to run the Ring Policy *I 
run_ring_pol(nofreplicas,time_taken) 
int nofreplicas; 
float *time_taken; 
{ 
int i=O,nofactivereplicas = 1; 
int stop = O,x,failed = O,done = 1; 
int firsthalf,prev,flag,tot_opsites,remaining_sites; 
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tot_opsites = nofreplicas; 
firsthalf = nofreplicas/2; 
prev = 0; 

/* Do for first half of the ring structure *I 
while( !stop){ 

i++; 
if( i <= firsthalf){ 

remaining_sites = tot_opsites- nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

} 

tot_ opsites--; 
nofactivereplicas--; 
failed= 1; 
stop= 1; 
} 

else if( flag == Sigma){ 
tot_ opsites--; 
failed= 1; 
stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 
*time_taken += nodes[prev].distance[i]; 
prev = i; 
} 

else stop= 1; 
} 

stop= prev = 0; 
i = 1; 

/* Do for second half of the ring structure *I 
while( !stop){ 

i++; 
x = nofreplicas - i; 
if( x > firsthalf){ 

remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_ opsites--; 
nofactive replicas--; 
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} 

} 

failed= 1; 
stop= 1; 
} 

else if( flag == Sigma){ 
tot_opsites--; 
failed= 1; 
stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 
*time_taken += nodes[prev].distance[x]; 
prev = x; 
} 

else stop = 1; 
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rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed) 

return(1 ); 
else return(O); 
} 

/* Function to initialise the Mesh 2-dimensional array */ 
void init_msh() 
{ 
int i,j; 

for(i = 0; i < MSHSIZE;i++) 
forO= 0; j < MSHSIZE;j++) 

MSH[i][j] = -1 ; 
} 

/* Function to insert the sites into the Mesh grid */ 
in_vals_MSH(nofreplicas) 
int nofreplicas; 
{ 
int i = O,j = O,k = O,stop = 0; 

while(lstop){ 
if((k < MSHSIZE) && 0 < nofreplicas)) 

MSH[i][k] = j; 



} 

if( j == nofreplicas) 
stop= 1; 

else if((k == MSHSIZE) && (j < nofreplicas)){ 
i++; 
k = -1; 
j--; 
} 

j++; k++; 
} 

/* Function to simulate Mesh policy */ 
void mesh(argv) 
char * argv[J; 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_mesh(); 

null_struct(); 
init_struct(); 
read_in_data(argv,&nofsites); 
in it_ vals( nofsites); 
printf(" Nofsites = %d\n",nofsites}; 

find _total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_mesh(nofsites); 
} 

/* Driver function to call the Mesh routine *I 
void driver_mesh(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
int i,success = 0; 
void init_aray(); 
void init_msh(); 

init_msh(); 
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in_vals_MSH(nofreplicas); 

for( i = 0; i <Trials; i++){ 
time_taken = 0.0; 
init_aray(nofreplicas); 
if(run_mesh(nofreplicas,&time_taken)){ 

success++; 
actual_time += time_taken; 
} 

} 
printf("Random efficiency = %.3f\n" ,rand_efficiency/(float)Trials); 
printf("Probability of success using Mesh technique = %.3f\n\n", 
(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function that runs the Mesh policy*/ 
run_mesh(nofreplicas,time_taken) 
int nofreplicas; 
float *time_taken; 
{ 
int nofactivereplicas = 1 ,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,stop = O,stop1 = O,i,j; 

tot_opsites = nofreplicas; 
for( i = 0; (i < MSHSIZE) && lstop; i++){ 

stop1 = 0; 
for( j = 0; (j < MSHSIZE) && !stop; j++){ 

if( (i != 0) && ( j != 0)){ 
remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if{ flag== Rho){ 

tot_ opsites--; 
if(nofactivereplicas == 1 ){ 

failed= 1; 
nofactivereplicas--; 
stop = stop1 = 1; 
} 

else { 
nofactivereplicas--; 
stop1 = 1; 
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} 

} 

} 

if( nofreplicas < MS HSIZE* (i+ 1) ){ 
failed= 1; 
stop= 1; 
} 

} 

else if(flag == Sigma){ 
tot_opsites--; 
stop1 = 1; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
else if( j == 0) 

failed = stop = 1 ; 
else if( nofreplicas == MSHSIZE*(i+1)) 

stop= 1; 
else if( nofreplicas < MSHSIZE*(i+ 1 )){ 

failed = 1; 
stop= 1; 
} 

} 
else if( flag == Lambda){ 

nofactivereplicas++; 
itU == o) 

} 

*time_taken += nodes[MSH[i-1 ][j]].distance[MSH[i][j]]; 
else *time_taken += nodes[MSH[iJU-1 ]].distance[MSH[iJU]]; 
if( i+ 1 == MSHSIZE) 

*time_taken += nodes[MSH[O][O]].distance[MSH[i][j]]; 
if( nofactivereplicas == nofreplicas) 

stop = stop1 = 1; 
else if( nofactivereplicas == tot_opsites) 

stop = stop1 = 1 ;; 
} 
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rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if{ done && !failed) 

return(1 ); 
else return(O); 
} 



I* Function to simulate the Binary Tree policy */ 
void binary_tree(argv) 
char *argvO; 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_bin(); 

null_struct(); 
init_struct(}; 
read_in_data(argv,&nofsites); 
in it_ vals(notsites); 
printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3tms\n\n",total_dist); 
driver_bin(nofsites); 
} 

I* Driver function to call the Binary Tree routine *I 
void driver_bin(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time=O.O; 
int i,success = 0; 
void init_aray(); 

for( i = 0; i < Trials; i++){ 
time_taken = 0.0; 
init_aray(nofreplicas); 
if(run_binary_tree(nofreplicas,&time_taken)){ 

success++; 
actual_time += time_taken; 
} 

} 
printf("Random efficiency= %.31\n",rand_efficiency/(float)Trials); 
printf("Probability of success using Binary Tree technique= %.31\n\n", 
(float)success/(tloat)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
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actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

I* Function that runs the Binary Tree policy */ 
run_binary_tree(nofreplicas,time_taken) 
int nofreplicas; 
float *time_taken; 
{ 
QUEUE Q; 
NODE *node,*make_node(),*DQ(); 
int succ1 ,succ2, new_succ,parent; 
int nofsites = 0, failed = O,done = 1; 
int flag,stop = O,stop1 = O,tot_opsites,nofactivereplicas=1 ,remaining_sites; 

init_Q(&Q); 
node = make_node(O}; /* Initialise the Queues */ 
Enque(&Q,node); 
tot_opsites = nofreplicas; 
while(!stop){ 

node = DQ(&Q); 
parent= extract_val_from_node(node); /* Get successors for parent*/ 
succ1 = 2*parent+ 1; 
succ2 = 2*parent+2; 
if(succ1 < nofreplicas){ 

remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_opsites--; 
nofactivereplicas--; 
stop= 1; 
failed= 1; 
} 

else if{ flag == Sigma){ 
tot_opsites--; 
new_succ = 2*succ1 +2; 
if(new_succ < nofreplicas){ 

} 

node= make_node(new_succ); 
Enque(&Q,node); 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 
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} 

node= make_node(succ1 ); 
Enque(&Q,node); 
*time_taken += nodes(parent].distance[succ1 ]; 

} 

if(succ2 < nofreplicas && !stop){ 
remaining_sites = tot_opsites- nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_opsites--; 
nofactivereplicas--; 
stop= 1; 
failed= 1; 
} 

else if( flag == Sigma){ 
tot_opsites--; 
new_succ = 2*succ2+2; 
if(new_succ < nofreplicas){ 

} 

node = make_node(new_succ); 
Enque(&Q,node); 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 

} 

node= make_node(succ2); 
Enque(&Q,node); 
*time_taken += nodes[parent].distance[succ2]; 
} 

if( ls_empty_q(Q)) 
stop= 1; 

} 
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rand_ efficiency = rand_ efficiency + (float )nofactive replicas/ (float) nofreplicas; 
kiii_Q(&Q); 
if( done && !failed) 

return(1 ); 
else return(O); 
} 



/* Function to kill the nodes of the queue */ 
kiii_Q(tmp_Q) 
QUEUE *tmp_Q; 
{ 
NODE *ptr,*tmp; 

ptr = tmp_Q->f; 
while(ptr!= NULL){ 

tmp = ptr; 

} 

ptr = ptr->next; 
kill(tmp); 
} 

/* Function to initialize the Queue */ 
init_Q(Q) 
QUEUE *Q; 
{ 
Q->n = O; 
0->f = Q->r =NULL; 
} 

/* Function to initialize the Queue *I 
NODE *make_node(elem) 
int elem; 
{ 
NODE *tmp; 

tmp = (NODE *)malloc(sizeof(NODE)); 
tmp->elem = elem; 
tmp->next = NULL; 
return(tmp); 
} 

/* Function to insert an element into the queue */ 
Enque(Q,node) 
QUEUE *Q; 
NODE *node; 
{ 
if(Q->f == NULL){ 

0->f = Q->r = node; 
(Q->n)++; 
} 
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else { 

} 

0->r->next = node; 
0->r = Q->r->next; 
(Q->n)++; 
} 

r Function to remove an item from the Queue *I 
NODE *DQ(Q) 
QUEUE *Q; 
{ 
NODE *tmp; 

if(Q->f != NULL){ 

} 

tmp = Q->f; 
0->f = 0->f->next; 
(0->n)--; 
if(Q->n == 0) 

Q->f =NULL; 
return(tmp); 
} 

/* Function to check if the Queue is empty or not*/ 
ls_empty_q(O) 
QUEUE 0; 
{ 
return(O.t == NULL); 
} 

/* Function to extract the element in the node */ 
extract_ val_ from _node(node) 
NODE *node; 
{ 
return(node->elem); 
} 

/* Function to simulate the hypercube policy *I 
void hypercube(argv) 
char * argvD; 
{ 
int i,j,nofsites=O; 
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float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_hypercube(); 

null_struct(); 
init_struct(); 
read_in_data(argv,&nofsites); 
init_vals(nofsites); 
printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_hypercube(nofsites); 
} 

/* Driver function to call the Hypercube routine *I 
void driver_hypercube{nofreplicas) 
int nofreplicas; 
{ 
float time _taken ,actual_ time; 
int i,success = 0; 
void init_aray(); 

for( i = 0; i < Trials; i++){ 
init_aray(nofreplicas); 
time_taken = 0.0; 
if(i!=O) 

copy _back(nofreplicas); 
if(run_hypercube_pol(nofreplicas,&time_taken)){ 

success++; 
actual_time += time_taken; 
} 

} 
printf("Random efficiency= %.3f\n",rand_efficiency/(float)Trials); 
printf("Probability of success using Hypercube technique= %.3f\n\n", 
(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 
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/* Function to run the Hypercube policy *I 
run_hypercube_pol(nofreplicas,time_taken) 
float *time_taken; 
int nofreplicas; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,next_replica,F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
int subset; 

init_FAray(F _Aray); 
tot_opsites = nofreplicas; 
subset= nofreplicas/2; 

Push(prev); /* Push site '0' onto the stack(site originating the update) */ 
while( !stop){ 

if( find_ succ(prev ,&next_replica, nofreplicas ,subset)){ 
if( check_in_stack(next_replica) == 0){ 

if( check_in_Aray(F _Aray,next_replica) == 0){ 
remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find( remaining_ sites,& flag); 
if( flag == Rho){ 

tot_ opsites--; 
if( nofactivereplicas == 1 ){ 

failed= 1; 
nofactivereplicas--; 
stop= 1; 
} 

else { 

} 

if(prev == top_of_stack-1) 
F _Aray[nextfail] = Pop(); 

else rearrange_stck(F _Aray,&nextfail,prev); 
if( top_of_stack > 0) 

prev = Stck[top_ of_stack-1]; 
nextfail++; 
nofactivereplicas--; 
} 

else if(flag == Sigma){ 
tot_ opsites--; 
F _Aray[nextfail] = next_replica; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
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} 
else if( flag== Lambda){ 

nofactivereplicas++; 
*time_taken += nodes[prev].distance[next_replica]; 

nodes[prev]. traversed[ next_replica]=nodes[ next_replica]. trave rsed[prev]= 1 ; 
Push ( next_replica); 

} 

prev = next_replica; 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
else if( nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else nodes[prev].distance[next_replica] = 
nodes[next_replica].distance[prev] = 0.0; 

} 
else 

nodes[prev].traversed[next_replica]=nodes[next_replica].traversed[prev]=1; 
} 

} 

else if( (top_of_stack > 0) && (godown >= 0)) 
prev = Stck[godown--]; 

else stop= 1; 
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rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed) 

return(1 ); 
else return(O); 
} 

/* Function to find the successor of site from the edges of the hypercube */ 
find_ succ(prev ,succ, nofreplicas ,subset) 
int prev, *succ,nofreplicas,subset; 
{ 
if( (prev == 0) && (subset== 4)){ 

if( (nodes[prev].distance[prev+ 1] != 0.0) && 
(nodes[prev].traversed[prev+ 1 ]!=1 )){ 

*succ = prev + 1; 
return(1 ); 
} 

else if( (nodes[prev].distance[prev+subset-1] != 0.0) && 
(nodes[prev].traversed[prev+subset-1 ]!=1 )}{ 



*succ = prev + subset - 1 ; 
return(1 ); 
} 

else if( (nodes[prev).distance[prev+subset] != 0.0) && 
(nodes[prev].traversed[prev+subset]!=1 )){ 

*succ = prev + subset; 
return(1 ); 
} 

} 
else if( (prev == 0) && (subset != 4)){ 

if( (nodes[prev].distance[prev+ 1] I= 0.0) && 
(nodes[prev].traversed[prev+ 1 ]!=1 )){ 

*succ = prev + 1 ; 
return(1 ); 
} 

else if( (nodes[prev].distance[subset+ 1] I= 0.0) && 
(nodes[prev].traversed[subset+ 1 ]!=1 )){ 

*succ = subset + 1; 
return(1 ); 
} 

} 
else if( prev == subset== 4){ 

if( (nodes[prev].distance[prev%subset] != 0.0) && 
(nodes[prev].traversed[prev%subset]!=1 )){ 

*succ = prev +subset; 
return(1 ); 
} 

else if( (nodes[prev].distance[prev+ 1] != 0.0) && 
(nodes[prev].traversed[prev+ 1 ]!=1 )){ 

*succ = prev + 1; 
return(1 ); 
} 

else if( (nodes[prev].distance[prev+subset-1] != 0.0) && 
(nodes[prev].traversed[prev+subset-1 ]!=1 )){ 

* succ = prev + subset - 1 ; 
return(1 ); 
} 

} 
else if( (prev 1=0) && (subset== 4)){ 

if( (prev > subset) && (nodes[prev].distance[prev-subset] != 0.0) && 
( nodes[prev]. traversed[prev-subset] != 1) ){ 

*succ = prev- subset; 
return(1 ); 
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} 
else if( (prev < subset) && (nodes[prev].distance[prev+subset] != 0.0) 

&& (nodes[prev].traversed[prev+subset]!=1 )){ 
*succ = prev +subset; 
return(1 ); 
} 

else if( ((prev+1)%subset==4) && 
(nodes[prev].distance[(prev+ 1 )%subset] != 0.0) && 
(nodes[prev].traversed[(prev+ 1 )%subset]!=1 )){ 

*succ = (prev + 1 )%subset; 
return(1 ); 
} 

else if( ((prev+ 1 )%subset==0) && 
(nodes[prev].distance[(prev+ 1 )%subset] != 0.0) && 
( nodes[prev]. traversed[ (prev+ 1 )%subset]!= 1) ){ 

*succ = (prev + 1 )%subset; 
return(1 ); 
} 

else if( (nodes[prev].distance[prev-1] != 0.0) && 
( nodes[prev]. traversed[prev-1] != 1) ){ 

*succ = prev- 1; 
return(1 ); 
} 

else if( (nodes[prev].distance[prev+ 1] != 0.0) && 
(nodes[prev].traversed[prev+ 1 ]!=1 )){ 

*succ = prev + 1 ; 
return(1 ); 
} 

} 
else if( prev !=0){ 

if( (nodes[prev].distance[prev-1] I= 0.0) && 
(nodes[prev].traversed[prev-1 ]!=1 )){ 

*succ = prev - 1; 
return(1 ); 
} 

else if( (nodes[prev].distance[(prev+ 1 )%nofreplicas] != 0.0) && 
(nodes[prev].traversed[(prev+ 1 )%nofreplicas]!=1 )){ 

*succ = (prev + 1 )%nofreplicas; 
retum(1 ); 
} 

} 



return(O); 
} 

/* Function to pick an element from the aray */ 
pick_elem(} 
{ 
int i = 0; 

while(Aray[i] != -1 ){ 
i++; 
} 

return(spec_rnum(1 ,i-1 )); 
} 

/* Function to rearrange the contents of the stack */ 
rearrange _stck(F _Aray, nextfail,prev) 
int F _Aray[],*nextfail,prev; 
{ 
int tmp[MAXSIZE],i = O,j = 0; 

for( i = O;i < MAXSIZE;i++) /* Copy current stack to temp location* I 
tmp[i] = -1; 

while( i < top_of_stack){ 
if( Stck[i] != prev) 

tmpU++] = Stck[i]; 
i++; 
} 

godown = top_of_stack = j; 

for( i = 0; i < MAXSIZE; i++) 
Stck[i] = -1 ; 

for( i = O;i < top_of_stack; i++) 
Stck[i] = tmp[i]; 

F _Aray[*nextfail++] = prev; 
} 
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I* Function to check if an element is in the Aray *I 
ln_aray(elem) 
int elem; 
{ 
inti= 0; 

while(Aray[i] I= -1 ){ 
if(elem != Aray[i]) 

i++; 
else if( elem == Aray[i]) 

return(1 ); 
} 

return(O); 
} 

I* Function to simulate the Hierarchical policy*/ 
void hierarchy(argv) 
char * argv[]; 
{ 

int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void driver_hierarchy(); 

null_struct(); 
init_struct(); 
read_in_data(argv,&nofsites); 
i nit_ vals{ nofsites); 
printf(" Nofsites = %d\n" ,nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_hierarchy(nofsites); 
} 

/* Driver routine for Hierarchical policy*/ 
void driver _hierarchy( nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time = 0.0; 
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int i,success = 0; 
void init_aray(}; 
void copy _back(); 

for( i = 0; i < Trials; i++){ 
init_aray(nofreplicas); 
time_taken = 0.0; 
if(i!=O) 

copy _back{nofreplicas); 
if( run_hierarchical( nofreplicas,&time _taken)){ 

success++; 
actual_time += time_taken; 
} 

} 
printf("Random efficiency= %.3f\n",rand_efficiency/(float)Trials); 
printf("Probability of success using Hierarchical technique= %.3f\n\n", 
(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = 
%.3fms\n\n" ,actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to run the Hierarchical policy*/ 
run_hierarchical(nofreplicas,time_taken) 
float *time_taken; 
int nofreplicas; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,flag1 =O,next_replica; 
int F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
float min,max; 

init_FAray(F _Aray); 
tot_opsites = nofreplicas; 

Push(prev); /* Push site '0' onto the stack(site originating the update) */ 
while(!stop){ 

if( lflag1 ){ 
max= 0.0; 
if{find_max_site(nofreplicas,&max ,&next_replica,prev)); 
flag1=0; 
} 

else{ 
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min = 9999.0; 
if(fi nd_mi n_site( nofreplicas,&min, &next_replica,prev)); 
else stop = 1 ; 
} 

if( check_in_stack(next_replica} == 0){ 
if( check_in_Aray(F _Aray ,next_replica) == 0){ 

remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find( remaining_ sites,& flag); 
if( flag == Rho){ 

tot_ opsites--; 
if( nofactivereplicas == 1 ){ 

failed= 1; 
nofactivereplicas--; 
stop= 1; 
} 

else { 

} 

if(prev == top_of_stack-1) 
F _Aray[nextfail] = Pop(); 

else F _Aray[nextfail] = prev; 
if( top_of_stack >0) 

prev = Stck[top_of_stack-1); 
nextfai I++; 
nofactivereplicas--; 
} 

else if(flag == Sigma){ 
tot_ opsites--; 
F _Aray[nextfail] = next_replica; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 

*time_taken += nodes[prev].distance[next_replica]; 

nodes[prev]. traversed[ next_ replica )=nodes[ next_replica]. traversed[prev ]= 1 ; 
Push( next_replica); 
prev = next_replica; 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
else if( nofactivereplicas == tot_opsites) 
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stop= 1; 
} 

} 
else nodes[prev].distance[next_replica] = 

nodes[next_replica].distance[prev] = 0.0; 
} 
else 
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nodes[prev ]. traversed[ next_replica]=nodes[next_replica]. trave rsed[prev]= 1 ; 
} 

rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed) 

return(1 ); 
else return(O); 
} 

I* Function to simulate the Minimal Spanning Tree policy */ 
I* using PRIM's algorithm */ 
void minspan(argv) 
char * argv[]; 
{ 
int i,j,nofsites=O,success = 0; 
float total_dist = 0.0; 
float time_taken,actual_time; 
void null_struct(); 
void init_struct(); 
void init_vals(); 
void init_aray(); 
void copy _back(); 

null_struct(); 
init_struct(); 
read_in_data(argv,&nofsites); 
in it_ vals(nofsites); 
printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 

for( i = O; i < Trials; i++){ 
init_aray(nofsites); 
time_taken = 0.0; 
if(i!=O) 



copy_back(nofsites); 
if(run_minspan(nofsites,&time_taken)){ 

success++; 

} 

actual_time += time_taken; 
} 

printf("Random efficiency= %.31\n",rand_efficiency/(float)Trials); 
printf("Probability of success using Minimal Spanning Tree policy = 
%.31\n\n", (float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to run the Minimal spanning tree algorithm *I 
run_minspan(nofreplicas,time_taken) 
int nofreplicas; 
float *time_taken; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
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int remaining_sites,flag,next_replica,F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
float min; 

init_FAray(F _Aray); 
tot_opsites = nofreplicas; 

Push(prev); /* Push site '0' onto the stack(site originating the update) *I 
while( !stop){ 

if(call_go_thru(nofreplicas,&min,&next_replica,&prev)){ 
if( check_in_stack(next_replica) == 0){ 

if( check_in_Aray(F _Aray,next_replica) == 0){ 
remaining_sites = tot_opsites - nofactivereplicas; 
call_transition_find(remaining_sites,&flag); 
if( flag == Rho){ 

tot_opsites--; 
if( nofactivereplicas == 1 ){ 

failed = 1; 
nofactivereplicas--; 
stop= 1; 
} 

else { 
if(prev == top_of_stack-1) 

F _Aray[nextfail] = Pop(); 



} 

else F _Aray[nextfail] = prev; 
if( top_of_stack >0) 

prev = Stck[top_of_stack-1]; 
nextfail++; 
nofactivereplicas--; 
} 

else if(flag == Sigma){ 
tot_ opsites--; 
F _Aray[nextfail] = next_replica; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicas++; 
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*time_taken += min; 
nodes[prev].traversed[next_replica]=nodes[next_replica].traversed[prev)=1; 

Push(next_replica); 

} 

prev = next_replica; 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
else if( nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else nodes[prev).distance[next_replica] = 
nodes[next_replica].distance[prev] = 0.0; 

} 
else 

nodes[prev].traversed[next_replica]=nodes[next_replica].traversed[prev]=1; 
} 
else stop = 1 ; 

} 

rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed){ 

return(1 ); 
} 

else return(O); 
} 
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/* Function to go through the Stack and find the minimum edge incident to 
the graph*/ 
call_go_thru(nofreplicas,min,next_replica,prev) 
int nofrepticas,*next_reptica,*prev; 
float *min; 
{ 
int 
edge1 [PAl RSIZE] ,edge2[PAI RSIZE],resutt_edge[PAI RSIZE],tmp_edge[P AIR 
SIZE]; 
int i = 0, j , nextreplica1 ,nextreplica2,prev1 ,prev2,tmp_prev; 
float min1 ,min2,min3,tmp_min; 
void init_edgelist(); 

init_edgelist(edge1 ,edge2,result_edge,tmp_edge); 

while( i < top_of_stack){ 
if( Stck[i+ 1] != -1 ){ 

min1 = min2 = min3 = 9999.0; 
if( find_min_site(nofreplicas,&min1 ,&nextreplica1 ,Stck[i])){ 

edge1 [0] = Stck[i]; 
edge1[1] = nextreplica1; 
} 

if( find_min_site(nofreplicas,&min2,&nextreplica2,Stck[i+ 1])){ 
edge1[0] = Stck[i+1]; 
edge1 [1] == nextreplica2; 
} 

compare_edge(edge1 ,min1 ,edge2,min2,result_edge,&min3); 
if( tmp_edge[O] I= -1) 

compare_edge(tmp_edge,tmp_min,result_edge,min3,tmp_edge,&tmp_min); 
else { 

} 
i++; 
} 

if( i > 2){ 

tmp_edge[O] = result_edge[O]; 
tmp_edge[1] = result_edge[1]; 
tmp_min = min3; 
} 

*prev = tmp_edge[O]; 
*next_replica = tmp_edge[1]; 
*min= tmp_min; 
return(1 ); 



} 
else if( i == 2){ 

*next_replica = result_edge[O]; 
*next_replica = result_edge[1]; 
*min= min3; 
return(1 ); 
} 

else if( i == 1 ){ 
if( find_min_site(nofreplicas,&min1,&nextreplica1,Stck[i-1 ])){ 

*prev = Stck[i-1 ]; 
*next_replica = nextreplica1; 
*min= min1; 
return(1 ); 
} 

else return(O); 
} 

else if(i == 0) 
return(O); 

} 

/* Function to initialise the edgelists */ 
void i nit_edgelist( edge 1 ,edge2, result_ edge ,tmp _edge) 
int edge1 [],edge2Q,result_edgeQ,tmp_edge[]; 
{ 
inti; 

for( i = 0; i < PAIRSIZE; i++) 
edge1 [i] = edge2[i] = result_edge[i] = tmp_edge[i] :::;; -1; 

} 
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/* Function to compare two edge lists and place the result into result edge 
list along with min value*/ 
compare_edge(edge1 ,min1 ,edge2,min2,result_edge,min3) 
int edge1 [),edge2Q,result_edge[]; 
float min1 ,min2,*min3; 
{ 
if( (edge1[0] == -1) && (edge2[0] != -1)){ 

result_edge[O] = edge2[0]; 
result_edge[1] = edge2[1 ]; 
*min3 = min2; 
} 

else if( (edge1[0] != -1) && (edge2[0] == -1)){ 
result_edge[O] = edge1 [0); 



result_edge[1) = edge1 [1 ); 
*min3 = min1; 
} 

else if( (edge1[0) != -1) && (edge2[0] != -1)){ 

} 

if( min1 <= min2){ 
result_edge[O] = edge1 [0); 
result_edge[1] = edge1 [1]; 
*min3 = min1; 
} 

else { 

} 

result_edge[O) = edge2[0]; 
result_edge[1] = edge2[1 ]; 
*min3 = min2; 
} 

I* Function to simulate the Combination policy */ 
void combo(argv) 
char * argv[]; 
{ 
int i,j,nofsites=O; 
float total_dist = 0.0; 
void null_struct(}; 
void init_struct(); 
void init_vals(); 
void driver_combo_pol(); 

null_struct(); 
init_struct(); 
read_in_data(argv,&nofsites); 
init_vals(nofsites); 
printf(" Nofsites = %d\n",nofsites); 

find_total_dist(nofsites,&total_dist); 
printf("\nTotal time for the network= %.3fms\n\n",total_dist); 
driver_combo_pol(nofsites); 
} 
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/* Driver routine for Combination policy */ 
void driver_combo_pol(nofreplicas) 
int nofreplicas; 
{ 
float time_taken,actual_time=O.O; 
int i,success = 0; 
void init_aray(); 
void copy _back(); 

for( i = 0; i < Trials; i++){ 
in it_ aray( nofrepli cas); 
time_taken = 0.0; 
if(i!= 0) 

copy_back{nofreplicas); 
if(run_combine_policy(nofreplicas,&time_taken)){ 

success++; 

} 

actual_time += time_taken; 
} 

printf("Random efficiency = %.3f\n",rand_efficiency/(float)Trials); 
printf("Probability of success using Combination technique = %.3f\n\n", 
(float)success/(float)Trials); 
printf("Time taken for updates to reach all sites = %.3fms\n\n", 
actual_time/(float)Trials); 
rand_efficiency = 0.0; 
} 

/* Function to run the combination policy by calling */ 
/* Uniform flexible policy and Distance biased policy */ 
run_combine_policy(nofreplicas,time_taken) 
float *time_taken; 
int nofreplicas; 
{ 
int nofactivereplicas = 1, stop= O,done = 1, failed = O,tot_opsites; 
int remaining_sites,flag,counter,next_replica; 
int F _Aray[MAXSIZE],nextfaii=O,prev = 0; 
float min; 
void seed_random(}; 

counter= spec_rnum(1 ,nofreplicas); 
init_FAray(F _Aray); 
tot_opsites = nofreplicas; 
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Push(prev); /* Push site '0' onto the stack(site originating the update) */ 
while(lstop){ 

if(counter != 0){ 
counter--; 
seed_random(); 
next_replica = spec_rnum(1 ,nofreplicas-1 ); 
} 

else{ 
min = 9999.0; 
if(find_min_site( nofreplicas,&min ,&next_replica,prev)); 
else stop = 1 ; 
} 

if( check_in_stack(next_replica) == 0){ 
if( check_in_Aray(F _Aray,next_replica) == 0){ 

remaining_sites = tot_opsites- nofactivereplicas; 
call_transition _find( remaining_ sites,& flag); 
if( flag == Rho){ 

tot_ opsites--; 
if( nofactivereplicas == 1 ){ 

failed= 1; 
nofactive replicas--; 
stop= 1; 
} 

else { 

} 

if(prev == top_of_stack-1) 
F _Aray[nextfail] = Pop(); 

else F _Aray[nextfail] = prev; 
if( top_of_stack >0) 

prev = Stck[top _of_ stack -1 J; 
nextfail++; 
nofactivereplicas--; 
} 

else if(flag == Sigma){ 
tot_opsites--; 
F _Aray[nextfail] = next_replica; 
nextfail++; 
if(nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else if( flag == Lambda){ 
nofactivereplicaS++; 

*time_taken += nodes[prev].distance[next_replica]; 
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nodes[prev]. traversed[next_replica ]=nodes[ next_replica]. traversed[prev]= 1 ; 
Push(next_replica); 

} 

prev = next_replica; 
if( nofactivereplicas == nofreplicas) 

stop= 1; 
else if( nofactivereplicas == tot_opsites) 

stop= 1; 
} 

else nodes[prev].distance[next_replica] = 
nodes[next_replica].distance[prev] = 0.0; 

} 
else 

nodes[prev]. traversed[ next_replica]=nodes[next_replica]. traversed[prev ]= 1 ; 
} 

rand_efficiency = rand_efficiency + (float)nofactivereplicas/(float)nofreplicas; 
if( done && !failed) 

return(1 ); 
else return(O); 
} 

/* Function to get the options required */ 
get_option(id) 
int *id; 
{ 
print_ options(); 
scanf("%d" ,id); 
if(*id > 12) 

*id = 0; 
return(1 ); 
} 

/* Function to print the Input Options */ 
print_ options() 
{ 
printf("\n"); 
printf("%-53s\n","Press option 1 for simulating Random policy"); 
printf("%-53s\n","Press option 2 for simulating Distance biased policy"); 
printf("%-53s\n","Press option 6 for simulating Ring policy"); 
printf("%-53s\n","Press option 7 for simulating Binary Tree policy"); 



printf("%-53s\n","Press option 8 for simulating Minimal Spanning Tree 
policy"); 
printf("%-53s\n" ,"Press option 9 for simulating Mesh policy"); 
printf{"%-53s\n","Press option 10 for simulating Hypercube policy"); 
printf("%-53s\n","Press option 11 for simulating Hierarchical policy"); 
printf("%-53s\n", "Press option 12 for simulating Combination policy"); 
printf("%-28s\n" ,"Press option 0 for quitting"); 
} 
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