A LOAD SHARING POLICY FOR CPU-INTENSIVE
TASKS ON A NETWORK OF INDEPENDENT
WORKSTATIONS

By
ANIL FRANCIS THOMAS
Bachelor of Technology
Regional Engineering College
Calicut, India

1988

Submitted to the Faculty of the
Graduate College of the
Oklahoma, State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1993

OKLAHOMA STATE UNIVERSITY

A LOAD SHARING POLICY FOR CPU-INTENSIVE
TASKS ON A NETWORK OF INDEPENDENT
WORKSTATIONS

Thesis Approved:

Jnizhlf) Macheoo

ﬁ&m»@, g ¢
\

(1%

=1>LMW

Dean of the Graduate College

i

ACKNOWLEDGMENTS

I sincerely thank my graduate adviser Dr. Mitchell L. Neilsen for the guidance,
help and time he has given me for the completion of my thesis work. His perseverance
and hard work inspired me to venture into the advanced aspects of this work. I
would like to express my sincere thanks to Dr. David L. Nofziger for the guidance
and help he has given me during the entire period of my graduate study. Without
the encouragement and help he has given me, the completion of this work would
have been impossible. 1 also sincerely thank Dr. Blayne Mayfield for serving on my
committee. His suggestions have helped me to improve the quality of this work.

My special thanks goes to Mr. Dwayne T. Hunter for arranging the computing
facilities for me. I thank Dr. Marvin Stone and Dr. Dan Storm for making their
machines available to me.

My respectful thanks goes to my parents Prof. S. L. Thomas and Mrs. Thankamma
Thomas for all the love and support they have given me in my life. And, last but cer-
tainly not least, I thank all other members of my family for the love, encouragement

and confidence they have endorsed in me.

i

TABLE OF CONTENTS

Chapter Page
1. INTRODUCTION . . s s, 1
1.1 Thesis 2
1.2 Organization 3

2. LITERATURE REVIEW 5
3. PROBLEM STATEMENT i et 9
4. IMPLEMENTATION e e s 12
4.1 Environment. 12
4.2 Implementation 12
4.2.1 Outline 13

4.2.2 Server 15

4.2.3 Client 20

4.3 Load Metric 21
4.4 Fault Tolerance o 22
4.5 Random Numbers. 23

5 PERFORMANCE ANALYSIS 24
6. CONCLUSION s, 29
6.1 Summary e 29
6.2 TFuture Work 29

v

BIBLIOGRAPHY 31

APPENDIX A: USING THE SYSTEM 34
APPENDIX B: CLIENT CODE 37
APPENDIX C: MAKEFILE FOR CLIENT 63
APPENDIX D: HEADER FILE FOR SERVER 66
APPENf)IX E: SERVERCODE 75

Table

4.1 Workstations

LIST OF TABLES

...............................

vi

Figure
3.1
4.1
5.1
5.2
5.3
5.4
3.5

LIST OF FIGURES

Page
Input File 10
Prototype o 14
Speeds of the Machines 25
Speedup Achieved Lo L 25
Normalized Speedup 26
Network Load 27
Network Load Variation 28

vii

CHAPTER 1
INTRODUCTION

In a local area network (LAN) of high perfdrmance workstations, a large per-
centage of the CPU cycles are typically wasted. Most of the time, users execute
interactive processes that require very little CPU processing. In order to utilize this
wasted CPU power, various load distributing policies have been proposed over the

past several years. These policies can be classified as load sharing or load balancing

policies [SKS92].

¢ Load sharing policies attempt to maximize the rate at which a distributed
system performs work by ensuring that no node in the network is idle while
processes are waiting to be serviced at some other node in the network. Since
there can be waste due to delays involved in the determination of idle nodes,
an improvement to this scheme is to make anticipatory transfers to nodes with

low loads that are expected to become idle soon.

e Load balancing policies go a step further, and try to equalize the workload
among nodes. Even though load balancing can potentially reduce the mean
and standard deviation of task response times, the overhead due to the higher

transfer rate can outweigh the potential performance improvement.

Distributed operating systems, such as Sprite, V-Kernel and Stealth, provide a
policy for process migration to achieve improved performance. In the Sprite im-
plementation [DO87, DOY1], for example, processes can run on other nodes in the
network. A remote process running on a machine is preempted and returned to the
machine on which it was invoked, when the owner returns to the remote machine.

Even though this kind of preemptive load distribution policy enhances the system’s

performance, it has been shown that a large percentage of the wasted CPU power
can be retrieved by using a non-preemptive policy[AC88, PL88].

Moreover, previous research has shown that even while a workstation is being
used, the resource utilization is probably very low, wasting the available power. The
distributed operating system Stealth was designed to take advantage of this wasted
power. Stealth allows foreign processes to run at a lower priority along with local
processes. The foreign processes are allocated resources that are left after meeting
all local process requirements.

Even without the aid of a distributed operating system, a LAN of independent
workstations can retrieve the wasted CPU power by using a load sharing policy. Load
sharing is more appropriate than load balancing when the entire network cannot be
considered as a single system. A client-server paradigm is ideal in such a network,
because minimal resources are wasted on the additional processes and minimal global

information is maintained.

1.1 Thesis

Monte Carlo simulations carried out on single processor workstations are ideal can-
didates for parallel processing. Most of the computation is carried out on blocks
~ of data which are independent of any previous computation. Chemical Movement
through Layered Soils (CMLS) is one such simulation performed on a Sun worksta-
tion. The simulation was developed by faculty members in the Agronomy Department
at Oklahoma State University. It is an improved version of the work presented by
Nofziger [NH86]. The objective of this thesis is to design a system to distribute the
work onto different workstations connected by a network, and consequently speed up
the computation.

We develop a load distribution policy suitable for Monte Carlo simulations that

are executed on Sun workstations connected by a LAN. The scheme involves using a

client-server model. Servers run on individual machines, and accept requests for the
remote execution of jobs based on the local load. Also, servers communicate with
each other to facilitate the execution of local jobs. The decision to accept a remote
request is adjusted dynamically based on the overall system load.

The system developed is fault-tolerant. In particular, the system is capable of re-
covering from remote machine failures. Secondly, the system developed is fairly gen-
eral and can be adapted to the distributed computation of any other CPU-intensive
task. All of the network programming aspects are handled within the server code.
Finally, asynchronous communication between the various machines improves the

processor utilization of the machines and speeds up the computation.

1.2 Organization

The thesis is divided into the following chapters:

e Chapter 2: A discussion on previous work related to load distribution is pre-

sented.

e Chapter 3: A description of the Monte Carlo simulation on a single machine

and issues related to implementing a distributed simulation are presented.

o Chapter 4: A detailed discussion of the work and implementation details are

given.

e Chapter 5: Performance metrics used to evaluate the simulation and the results

obtained are explained.

e Chapter 6: A summary of the thesis and suggestions for future work are pre-

sented.

e Appendix A: A guide for using the system is presented.

Appendix B: The client code is given.
Appendix C: The Makefile for the client code is given.
Appendix D: The header file for the server.code is presented.

Appendix E: The server code is given.

CHAPTER 2
LITERATURE REVIEW

Availability of excess computing power in a cluster of high performance work-
stations has been previously studied in detail [ABM*92, LK89, Mut91]. Various
methods have been proposed for estimating the load on machines so that excess pro-
cessing power can be shared by users on other machines. Strategies used in utilizing
the excess power in various contexts are investigated here.

First, we summarize work on load distribution in distributed operating systems.
The workstations connected to the network are called nodes in the system. Perfor-
mance improvement is achieved by using a load balancing or load sharing policy.
Examples of such operating systems include Sprite, V-Kernel and Stealth [DOS8T,
D091, PC91, SKS92).

In order to achieve better performance, individual processes running on each of
the nodes are preemptively or non-preemptively transferred onto other nodes in the
system. This requires a global scheduler for the scheduling of the tasks on different

nodes in the system. The primary objectives of such a scheduler is to [TL88]:
e minimize performance degradation due to overhead imposed by the scheduler,
e scale well as the number of nodes increase, and

e be fault-tolerant.

Both centralized and distributed schedulers have been implemented with these
as the primary objectives. Centralized schedulers are found to scale better than
distributed schedulers. A centralized scheduler determines the subset of nodes willing
to handle remote jobs. As the number of nodes increases,this reduces the number

of messages exchanged and the time needed in negotiating a request. In the case

of the distributed scheduler, individual machines have schedulers that keep track of
the system state. Hence, as the number of nodes increases, the number of messages
exchanged increases, making it less efficient.

However, a centralized scheduler is less fault-tolerant. Fault tolerance can be
achieved in a centralized system by having multiple replicas of the scheduler in the
network. But this will increase the complexity of the system, since some form of error
detection and error recovery procedure will need to be invoked when the node running
the scheduler fails. A distributed scheduler does not require any recovery upon the
failure of a node. Thus, although the centralized scheduler may scale better, it is less
fault-tolerant than a distributed scheduler.

Goswami [GDI93] proposes a scheme which considerably reduces the overhead in
querying other machines to find their actual load. A prediction-based load sharing
heuristic is proposed. The heuristic predicts the requirements of a process in terms
of CPU time, memory and file I/O. Then, the process is assigned to a machine based
on these requirements. Such a scheme requires the study of previous requirement
patterns of processes. This is implemented in two stages. The first stage is performed
offiine and the second stage is performed online. By reducing the overhead of online
study, higher performance is obtained.

. In order to recover the unused power in distributed systems, various concurrent
programming languages are available. Examples of these include SR, Concurrent C
and Ada. The SR programming language [OACT92], for example, allows a program
to be split into subprograms. Each subprogram is executed on a wvirtual machine.
Virtual machines can be located on one or more physical machines.

In a network of independent workstations, several client-server computing models
were investigated for distributing the load from heavily loaded workstations to lightly
loaded ones [AC88, Hag86, LLM88, Mur92, WHH92). Since the nodes of the network

in this case are independent, load balancing schemes are not appropriate in this

context. Instead, load sharing schemes are used. Each node shares some of its
resources with other nodes as long as its users are not significantly affected.

Some proposed strategies involve allowing remote jobs to be executed on a machine
if the machine is completely idle or if its load is below a threshold value. In most of
these schemes, only an idle machine becomes a candidate for being a server. Also,
when the user returns to the machine, the remote jobs are either run at a lower
priority, transferred back to their originating machine, transferred to another idle
machine or simply terminated.

The Condor scheduling system [LLM88] , for example, is designed to take advan-
tage of idle workstations in the system. It identifies idle workstations in a system
and schedules background jobs on them. These background jobs would have actually
been waiting to be executed on another heavily loaded node. The scheduler assures
minimum interference to the local processes by a remote process scheduled on the
local machine. When an owner returns to the local machine, remote jobs running on
it are checkpointed and transfered to another machine. The system ensures that the
job will eventually complete and very little work will be performed more than once.

The Condor scheduling system chooses an approach in between the centralized
and distributed schedulers. Each node has a local scheduler. A central coordinator
running on one of the machines allocates capacity from idle workstations to the local
scheduler on workstations with background jobs waiting to be executed. |

The observation that even machines that are not idle will under-utilize the re-
sources has prompted some researchers to use some threshold values of load on the
machines to decide whether it becomes a candidate for processing remote jobs. In
one such scheme, the same threshold value is used to decide whether to accept jobs
from other machines or to off-load jobs onto other machines. An improvement to this
scheme is the use of two threshold values, a low and high mark [AC88]. If the load on

a machine is above the high mark, when a new local job request arrives, the machine

tries to execute the job on a remote machine. The low mark serves as a decision
parameter to accept remote jobs. When a request for the execution of a remote job
arrives at a machine, it checks its load against the low mark. If the load is less than
the low mark the job is accepted, otherwise it is rejected.

Almasi [AHM*93] gives a practical implementation of distributed computing in
a network of independent workstations. The system is implemented using remote
procedure calls (RPC). The performance improvement is not directly proportional
to the number of machines participating in the computation, since there will be a

considerable increase in the network load with an increase in number of machines.

CHAPTER 3
PROBLEM STATEMENT

Monte Carlo simulations carried out on sing,:le processor workstations are ideal
candidates for parallel processing. Most of the computation is carried out on blocks
of data which are independent of any previous computation. Chemical Movement
through Layered Soils (CMLS) is one such simulation performed on a Sun workstation.
The simulation was developed by faculty members in the Agronomy Department at
Oklahoma State University. It is an improved version of the work presented by
Nofziger [NH86]. The objective of this thesis is to design a system to distribute the
work onto different workstations connected by a network, and consequently speed up
the computation.

Input to the program is given through an input file. The input file has a general
information block, which applies to a group of system data blocks that follow. Certain
general information parameters need to be generated, based on this general informa-
tion, for that group of data. There can be multiple sets of general information and
system data group combinations, requiring the generation of the general information
parameters, before the computation of each system data group.

‘The general format of the input file is shown in Figure 3.1. In a typical file,
there will be 450 sets of the system data that needs to be computed based on one
general information block. The general information parameters are recomputed a
number of times, and each time the new set of parameters is applied to the system
blocks. The input file specifies the numbeIr of times each recomputation needs to be
done. Each such iteration is called a replication in this thesis. Typically, there will
be 500 replications. This means that the general information parameters should be
generated 500 times and each time the associated 450 system data blocks should be

processed.

10

In the single machine implementation, the general information parameters are
generated first. Then, the data associated with the general information is read in one
set at a time, and the necessary computations are performed. The output from each
set of input data is written to an output file. When all data associated with a general
information block has been processed, general information parameters are generated

for the next general information block, if specified, and so on.

1.
General Information - 1
System data - 1
................................... System data - 2 e Computation
... Repeated for
... ‘ 500 times.
5 System data - 450
General Information - 2
................................... System data - 1 e

Figure 3.1 Input File

The processing time of general information data and each system data block de-
pends on the speed of the machine on which it is executing. On the fastest machine
used here, the general information can be generated in approximately 600 millisec-
onds. Each system block computation takes 20 milliseconds. On the slowest machine
these values are 1600 milliseconds and 80 milliseconds, respectively.

In parallelizing this computation, two approaches are considered. The first method
is to compute the general information block on the base machine and to send the

generated parameters with each set of the system blocks to the remote machines.

11

However, this approach imposes heavy network traffic because the ratio of the com-
putation time to communication time is very low. Moreover, in another mode of
operation of the program, the general information parameters need to be regenerated
before the computation of each system block. This will require the transmission of
the general information parameters with each set of the system blocks. This will add
to the network load and deteriorate performance.

The second method is to send the general information data to the remote machine
so that the parameters can be generated there. The system blocks can be made
available at the remote location at the time of execution. In this way, once the
general information parameters are generated, one entire replication can be processed
at the remote machine. The ratio of the computation time to the communication
time is high, and consequently a high performance improvement can be expected.
Another advantage of this approach is that, due to the style of the single machine
implementation, the system blocks need not be transmitted to the remote machine.
Instead, the data file can be made available at the remote end before execution and
a pointer to the beginning of the first system block can be passed to the remote
machine.

The advantages of the second method prompted us to implement the distributed
computation using this method. The implementation details are given in the next

chapter.

CHAPTER 4
IMPLEMENTATION

The principal objectives in designing the model were

¢ Maximum speedup.

Reliable computation.

e Minimum network overhead.

Minimum changes to the existing program.

In order to obtain maximum speedup in solving the above problem, it is essential
to minimize the communication overhead. Also, delay due to server overload should

be avoided. The model presented here is designed with these motives in mind.

4.1 Environment

A local area network (LAN), consisting of 8 Sun' workstations running SunOS 4.x,
forms the platform for running the experiment. All machines on the network, have
there own disk drives, and two machines act as file servers. The workstations are
connected by an Ethernet with a capacity of 10Mb/sec. The versions of the operating
systems running on the machines are different. Table 4.1 gives the speciﬁcati'ons of

the machines used in the simulation.

4.2 Implementation

This section describes the implementation of each feature in the developed system.

Section 4.2.1 gives a brief outline of the overall system. The following sections describe

1 Sun and SunOS 4.x are the registered trademarks of Sun Microsystems, Inc.

12

13

in detail the implementation of each of the modules.

Model Operating System Name of Machine
Sparc 10 model 41 SunOS Release 4.1.3 Biosun
Sparc 10 model 41 SunOS Release 4.1.3 Soil
Sparc 10 model 21 SunOS Release 4.1.3 Wasun
Sparc 10 model 20 SunOS Release 4.1.3 Sand
IPX SunOS Release 4.1.3 Zoo
Sparc 2 SunOS Release 4.1.3 Hydsun
IPX SunOS Release 4.1.3 Neusun
IPC SunOS Release 4.1.2 Soilwater

Table 4.1 Workstations

4.2.1 Outline

The scheme uses the client-server paradigm [Ste90], with a server running on each
of the workstations in the network and the client running on any one workstation.
Network communication is handled using TCP /IP. Mutual exclusion and interprocess
communications are achieved using the IPC facilities.

Each server 1s blocked on their respective machines, waiting for either a client on
its own machine or a server from another machine to contact it for service. Clients
request service from the servers. A client can only contact the server on its own
machine. Services from other servers are requested and obtained by the local server.

When the client makes a call to the initialization procedure, it sets up a connection
with the server on its own machine and requests service. Then, the server contacts
other servers and finds out if any other server is willing to offer service. Each remote
server makes this decision based on the load on its machine. If a remote server agrees
to accept the request, the client informs the local server which executable code is to

be applied to the data. Then, the client passes data to its local server, one set at

14

a time. The local server passes data and the location of the executable code to the
remote servers. The output from the servers are collected by the local server and

written to the output file specified by the client.

Machine 2

Machine 4

- Concurrent
Server

Machine 3

== Parent
Server

Client
Child of
Server
LT e Temporary
s Communication

Figure 4.1 Prototype

The dissemination of the data and collection of the output is done asynchronously
so that maximum utilization of the servers is obtained. Also, the servers are concur-
rent. Hence, clients requesting service are not unduly blocked.

The system developed is fault-tolerant; in particular, the system can tolerate the

failure of remote servers due to machine failures.

15

4.2.2 Server

The servers are started up as background process on each of the participating ma-
chines. Upon initialization, the server reads from a database containing the names
and IP addresses of all known workstations participating in the distributed compu-
tation. The database is in the form of a text file. Each line in the database specifies
the name and address of a workstation separated by any number of space charac-
ters. A line starting with the # character is ignored. Hence, if a remote server is to
be eliminated from the computation, its entry can be commented out in the server
database in the client’s file system. Note that the server reads this database only
upon initialization and not for each client request. Hence, if a remote server is to be
eliminated from the set of participants, the local server must be restarted after the

database is modified.

The server on the client machine can also act as a remote server and service the
client’s request. This will be usefu! when the load on the local server is low. This
is specified by giving the name and IP address of the local server in the database of

SErvers.

The servers on each machine block and wait for a service request from a local
client or a remote server. When a service request arrives, the server forks off a child
process to handle the request. Then, the server blocks and waits for another request
to arrive. This is called a concurrent server and it reduces the delay in serving a new

request [Ste90].

The child process (also called a slave) checks to see whether the request is from a
remote server or a local client. There are two types of remote requests. The first is a
request for service. The second is a check by a remote server currently being serviced
by the machine. This check is to ensure that the machine is still alive. This step is

used as part of the fault tolerance feature of the system.

16

Server processing local request

A server can receive a request from a local client. When such a request arrives, the
server determines which remote servers are willing to process the client’s request. A
remote server agrees to accept a request based on its local load. If the local server
cannot find any remote servers willing to accept the request, it informs the client and
the program terminates. If any of the remote servers expresses interest in servicing
the request, then the local server informs the client to send data for processing.
When data is sent for processing to different servers, the results cannot be expected
back in the same amount of time from all machines. The processing time of a job
on a machine will depend on its speed and load. In order to maximize utilization of
the servers, it i1s essential that no remote server has to wait for another slower remote
server to finish processing. Hence, the communication between the local server and

the remote servers should be asynchronous.

Asynchronous communication is achieved by having a child process created to
communicate with each remote server. These child processes read the output from
the remote server and write to an output file. When multiple processes are involved in
writing to a single file, it is essential to enforce mutual exclusion between the processes
to prevent race conditions. This is achieved by using the inter-process communication
(IPC) facilities available on most UNIX? systems. A semaphore is used by the child
processes to synchronize their writing to the output file.

Once the server has informed the client to send data, it will create a semaphore,
which will be used later by the child processes. Then, the client sends the server the
name of the executable code and the output filename. The server creates the output
file and informs the current remote server about the location of the executable code.

The executable code is maintained by a common file server. Any data files required

2 UNIX is the registered trademark of UNIX System Laboratories, Inc.

17

while executing the code are made available through the file server. The need to have
a common file server can be avoided by copying the executable code and the data
files to the individual machines.

Once the executable code is known to the server, the client passes a data block to
the server. The server sends the data block to the remote machine which has agreed
to service the request. Next, the server forks off a child process to read the output
from the remote server. Then, the server checks if the client has any more data to be
processed. If so, it tries to locate another server and sends the executable code name
and data to it. If the server cannot locate another machine prepared to accept the
request, it will wait until one of the remote servers currently processing the request
to become free. The server knows that a remote machine has become free when one
of its child processes exits after reading the output from the remote machine. Then,
the server queries that remote machine for its willingness to process more data. If
the remote machine accepts the request, data is sent to it.

In the single machine version of CMLS, the set of random numbers generated by
the end of a replication is needed in processing the next replication. However, in the
distributed version, the set of random numbers generated by the end of a replication
on a particular machine is used before processing the next replication on that machine.
Thus, the set of random numbers at the end of a replication is sent back to the local
server. If the same remote server agrees to process another replication, then the same
random numbers are sent to it.

Once a remote server starts processing the data, only the child process has further
contact with it. Hence, it is necessary to have a means for transferring the random
numbers from the child to the parent server. To achieve this, before forking off the
child process, the parent process creates a pipe that it will use to read the random
numbers from the child process.

When the remote server finishes computing, it sends the random numbers to the

18

child process on the local machine. The child process writes its process id and the
random numbers into the pipe. Then, it tries to decrement the semaphore by doing
a down operation on it. If it succeeds, it will write the output into the output file. If
some other process is currently writing into the file, the child process will be blocked.
Once a process finishes writing to the file, it releases the semaphore by doing an up
operation. This will wake up any process currently blocked on the semaphore.

Once the child process completes reading the output, it will do a normal exit. The
parent process is set to receive the signal when the child exits. This signal invokes a
signal handler. The signal handler checks the pipe to see whether there is anything
to read. This measure is required since the child process could have been terminated
by the parent, in case of remote machine failure. Section 4.4 explains this situation.
The signal handler returns if there is nothing to read from the pipe. Otherwise,
the signal handler reads the pipe to get the process id of the child that just exited
and the random numbers. The child process id is used to determine which remote
machine has completed processing. The set of random numbers are stored in a data
structure associated with the remote machine. Then, the signal handler marks the
remote machine as idle and returns. Finally, the parent process queries this remote
machine and any other machine not currently in use, to service new requests.

This sequence is repeated until all data is processed. When all child processes
exit, the parent removes the semaphore from the IPC table and closes the output file.
Then, a message is sent to the client regarding the completion of the computation.

Once the parent server iis set up, the creation and removal of child processes are

dynamic, and based on the availability of remote machines.

Server processing remote request

A request to a remote server can be of two types. The first type is a request for

service. The second type is a check by another server currently being serviced by the

19

machine. This check is used to ensure that the machine is still alive. This step is
used as part of the fault tolerance feature of the system. When the server receives
this request it simply discards it. The local server knows that the remote server is
alive because it was able to set up a connection with it. Hence, there is no need to
reply to the fault tolerance check.

When the request type is a service request, the server first checks the load on
the machine. If the load is below a threshold value, the server will accept the re-
quest. Otherwise, if the load is above this value, the server rejects the request. The
determination of the load and threshold value is discussed in Section 4.3.

If the decision is to accept the request, then the requesting server will send the
executable code name and the set of random numbers to the server. Then, the data
on which the computation is to be performed is passed to the server. If the executable
code is invoked using the ezec utility of UNIX, the invoking process will be overlaid
by the new code; that is, the server will be destroyed. In order to avoid this, the
server first forks off a child process and this process will execute the code.

Even though the data read from the requesting server is available in the child
process, when the ezec call is made, the new process will destroy this data. In order to
make the data available to the new process, the inter-process communication facility
shared memoryis used. Before reading the data from the requesting server, the parent
server creates a shared memory segment. Then, the data is written directly into this
memory. When the child process executes the ezec call, the new process will acquire
this shared memory and use it for processing the data.

The size of the shared memory in this implementation is 4.5 Kbytes. The first
4 Kbytes are used to pass the data and the next 0.5 Kbytes are used for passing the
random numbers.

The output from the computation is stored in a temporary file so that the parent

server can transmit it back to the requesting server. The name of the temporary file

20

is created by the parent using its process id so that it will be unique. It is passed to
the slave process as an argument. The new process writes its output to the temporary
file. Once the computation is over, it writes the final set of random numbers into the
second part of the shared memory and exits. While the slave process is computing, the
parent process is blocked waiting for the slave process to complete. When the slave
process exits, the parent process transmits the random numbers to the requesting
server. At the receiving side, the child process reads the random numbers and passes
them to the parent. Then, the transmitting server reads the output file and passes
the contents to the requesting server. Once all data has been transmitted, the parent

server removes the shared memory and the temporary output file. Then, it exits.

4.2.3 Client

The client initiates a distributed computing request by making an initialization call.
This call sets up a connection with the server on its own machine. Then, the local
server contacts other remote servers to find out whether at least one remote server
is wi]l'ing to participate in the computation. If no servers are willing to serve, the
client exits. If there is at least one server willing to participate, the client will inform
the server of the executable code and the name of the output file. Then, the client
will start passing the server one data block at a time, which the server distributes
to the remote servers. Once all data blocks are transferred, the client waits for the
servers to complete. Upon completion, the output of the computation is available in
the output file specified while invoking the client.

Another parameter used while invoking the client is the number of remote repli-
cations to be performed per invocation of a remote request. This parameter is passed
with the data block to the remote server. The remote server uses this parameter to
see how many replications need to be performed. This parameter is useful when the

number of remote machines increases. Even though the size of the output that needs

21

to be transmitted is not different by making one remote invocation with n replications
or with n remote invocations, this measure will eliminate n-1 calls across the network
to the remote machine. However, since the remote machine will check its load only
when accepting a service request, if too many replications are made at the same time,
the load balancing may not be properly handled.

After initialization the client, just passes the data to the server. It doesn’t know how

fast the server will get the work done. The server takes care of all networking aspects.

4.3 Load Metric

When an external request reaches a server, it decides whether to honor the request
based on the local load. The load on the machine is determined using the load average
metric provided by the uptime command of UNIX. Uptime gives the exponentially
smoothed average number of jobs in the run queue over the previous 1, 5, and 15
minutes. The value given by the uptime command, at the 5 minute level, is used as
the metric for accepting a service request. This value is checked against a threshold
value to see whether the load is below the threshold value. If the load is below the
threshold value, then the request is accepted. Otherwise, it is rejected.

If the load on all of the machines participating in the computation is high, then
the threshold value on each of the machines can be adjusted higher. This step will
help the local server in finding a suitable remote server. For this reason, the threshold
value of a machine is determined based on the global load. The server on the client
machine computes the global load from the loads on the individual machines involved
in the computation. This global load value is passed to each of the servers so that
each can set a threshold value for itself. Effectively, the global load value helps in

balancing the loads on the machines involved in the computation.

22

4.4 Fault Tolerance

Computations involving remote machines are prone to machine failures. When several
machines are involved in a computation, it is important to make sure that none of the
machines fail during the computation. If a remote machine fails, the server on the
client machine will wait forever, expecting the remote machine to return the results at
any time. In order to make sure that the remote machines are alive, a fault tolerance
scheme is incorporated into the developed system.

The server on the client machine sends heart beat messages to remote machines
involved in the computation. These messages let the server know whether the remote
machines are alive or not. If a remote machine fails, there are two steps the server
can take. The normal step is to exit, letting the client know that a remote machine
has failed. The second step is to send the data to another machine and get the
results computed there. This second option can be installed by defining the keyword
FAULT RECOVERY when compiling the server code.

When the second option is adopted, the server writes a temporary file when data 1s
sent to a remote machine. The name of the temporary file is the same as the name of
the remote machine. If a remote machine fails the server terminates the child process
created for reading the output from that server. Also, it updates the data structure
that holds the information on current remote servers. Then, the data written in the
temporary file is sent to another server for recomputation and a new child process is
created for reading the output from the new remote server. Since writing temporary
files involves additional overhead, the performance will be slightly degraded. Hence,

in a reliable network this option does not need to be turned on.

23

4.5 Random Numbers

The seed to the random number generator is specified in the input file. In the dis-
tributed version, since a different seed is needed on each machine, the server on the
client machine generates a seed for each machine. Since the set of random numbers
used In one replication is required in the next replication, the server on the client
machine manages the collection and redistribution of the random numbers to the
appropriate machine.

The random number handling is the only feature that is specific to the CMLS
project. Other than this feature, the server code is fairly general and can be adapted

to distribute the computation of any CPU-intensive task.

CHAPTER 5
PERFORMANCE ANALYSIS

The metrics used for the performance analysis include:

e The speedup achieved by distributing the load to other machines.

o The variation in network load with increasing granularity in the data transmit-

ted.

o The effect of the number of servers involved in the computation on the network

load and speedup.

The system was tested with varying numbers of machines using the same input

file. The speeds of the machines used were different.

1.0 1
0.8 -
Relative
Speed
0.6 -

0.4 "J

0.2

Biosun Zoo

Soil Sand Hydsun Soilwater

Figure 5.1 Speeds of the Machines

24

25

Figure 5.1 shows the comparison between the speeds of the machines. All of the
machines are calibrated against the speed of the fastest machine. Machine biosun
was used as a base for comparing the speeds of other machines. The calibration was
done by measuring the time taken to execute the program on that machine alone.
Time was measured using the UNIX time command.

Since the speeds of the machines used in the study are not uniform, the available
power is not an integral multiple of the machines used. When studying the speedup

achieved by adding each remote machine to the base machine, this factor has to be

considered.
6.0
--X-- Ideal
5.14
] 4.88 X

5.0 —H—— Achieved x--""
4.0

Speedup

Achieved
3.0 -
2.0 -
1.0 A

T " T T T T T T T
Biosun Wgsun Zoo Neusun

Soil Sand Hydsun Soilwater
Figure 5.2 Speedup Achieved

In this study the machine biosun was used as the base machine to start the client.
The speedup achieved by adding each remote machine to the previous machines is

given in Figure 5.2. This figure shows that the speedup achieved is not proportional

26

to the available computing power.

Figure 5.3 estimates the speedup that would have been achieved if the speeds of all
machines were the same. This normalized speedup chart is obtained by extrapolating

the results obtained from the experiment.

80 7
7.0 T

6.74
6.0

Normalized 50 -

Speedup

3.0

20 -

1.0

Number of Machines.
Figure 5.3 Normalized Speedup

As the number of machines increases the speedup achieved will not be linear. This
is partly due to the increase in network load and partly due to the overhead of the
sequential parts of the program. On the base machine, a single process reads the
input file. Also, the output from the machines are collected from different machines
and written into the same file. These parts of the program form a bottleneck to the
amount of performance gain that can be achieved.

Figure 5.4 shows the network load as the number of machines increases. This graph

1s obtained from the number of packets sent across the network as the computation

27

was in progress. A packet size of 1500 bytes is assumed in computing the network
load. This measurement is the worst case approximation of the actual network load

imposed by the distributed computation.

Mb/sec

1.2 A

1.0 A

0.8
Network

Load
0.6 -

0.4 1

02 -

T T T T T T T L

Biosun +Wqsun +Zoo +Neusun

+Soil +Sand +Hydsun +Soilwater

Figure 5.4 Network Load

In this simulation the relative speedup is not significantly affected by the number
of machines involved. One reason is that the number of machines used is not large
enough to reflect this change. Another reason is that the ratio of the computation
time to the communication time is fairly high.

An additional option given to the simulation is to have a variable number of
replications computed on the remote machine in one invocation. This feature will
help in reducing the network load. Figure 5.5 shows the variation in the network load
with different number of replications computed at the remote locations. All eight

machines were used in computing this result.

28

Mb/sec
1.2 1

Network

Load
0.6 -

04 A

02

T L T T T

2 4 6 8 10

Number of replications per remote invocation.
Figure 5.5 Network Load Variation

From the graphs given here it is evident that the system developed is highly
efficient in utilizing the available CPU power. Also, since the ratio of the computation
time to the communication time is high, the performance can be expected to improve

comparably with the addition of more machines.

CHAPTER 6
CONCLUSION

6.1 Summary

A client-server paradigm for the efficient distribution of work on a network of inde-
pendently owned workstations is presented here. This system utilizes the available
CPU power with high efficiency. This is achieved by having asynchronous commu-
nication between the local server and the remote servers. The system developed is
fault-tolerant and can recover from remote machine failure. The loads imposed on
the different machines involved in the computation are balanced by means of a global
load parameter. Individual machines adjust their threshold values based on the global
load. This measure ensures that unnecessary network traffic due to unsuccessful ser-

vice requests are avoided.

6.2 Future Work

Load balancing is achieved in the current implementation by checking the load on the
machine and comparing it with a threshold value. The computation of the threshold
value is based on the global load. However, in a network of machines with varying
speeds, this measure alone is inadequate for measuring the current load. The load
on a machine is defined as the exponentially smoothed average number of jobs in
the run queue over the paét 5 minutes. However, during the experiment it was
observed that it is the fastest machine that decides not to accept more jobs, instead
of the slower machines. Since the faster machines can process jobs better than slower
machines, even while being loaded, the load average may not be an adequate measure
for deciding whether to accept more work. This aspect could be investigated further.

CPU intensive tasks, such as a Monte Carlo simulations, which run for several

29

30

hours on a machine should be protected from failure after a significant amount of
the computation has been performed. In a distributed implementation, this means
that the client which started the computation becomes a single point of failure. In
order to avoid the single point of failure, an effective method would be to start up a
backup client in parallel on another machine. However, necessary check pointing and
synchronization would need to be performed to make this system perform correctly.

As the number of machines involved in the computation increases significantly, on
the order of 50, the scheme using heavy weight child processes to achieve asynchronous
communication becomes inefficient. Alternate schemes could be investigated. One
alternative is to have a single process poll all communication ports to determine
which one is ready. Child processes could be forked off to read from ready ports.
Furthermore, on Sun workstations with light weight process support, threads could

be used as an alternative to heavy weight processes [Bur93a, Bur93b].

[ABM*92]

[AC88]

[AHM*93]

[Bur93a]

[Bur93b]

[DO8T]

[DOY1]

BIBLIOGRAPHY

M. J. Atallah, C. L. Black, D.C. Marinescu, H. J. Siegel, and T. L. Casa-
vant. Models and algorithms for coscheduling compute-intensive tasks on
a network of workstations. Journal of Parallel and Distributed Computing,

16:319-327, 1992.

R. Alonso and L. L. Cova. Sharing jobs among independently owned pro-
cessors. In Proc. of 8th International Conference on Dist. Comp. Systems,

pages 282-288. IEEE Computer Society, 1988.

G. S. Almasi, D. Hale, T. McLuckie, J. Bell, and A Gordon. Parallel
distributed seismic migration. Concurrency: Practice and Ezperience,

5:105-131, 1993.

Sean Burke. Parallel processing on your network, Part 1. Sun Fzpert,

pages 65-69, May 1993.

Sean Burke. Parallel processing on your network, Part II. Sun Ezpert,

pages 62-65, July 1993.

F. Douglis and J. Qusterhout. Process migration in the Sprite operating
system. Proc. of the 7th International Conference of Dist. Comp. Systems,
pages 18-25, 1987.

F. Douglis and J. Ousterhout. Transparent process migration: Design
alternatives and the Sprite implementation. Software - Practice and Fz-

perience, 21(8):757-785, 1991.

31

(GDI93]

[Hag86]

[LK89]

[LLM88]

[Mur92]

[Mut91]

[NHS6]

32

K. K. Goswami, M. Devarakonda, and R. K. Iyer. Prediction based dy-
namic load sharing heuristics. I[EEE Trans. on Parallel and Distributed

Systems, 4:638-648, 1993.

R. Hagmann. Process server: Sharing processing power in a workstation
environment. In Proc. of 7th International Conference on Dist. Comp.

Systems, pages 18-25. IEEE Computer Society, 1986.

L.Klienrock and W. Korfhage. Collecting unused processing capacity: An
analysis of transient distributed systems. In Proc. of 9th IEEE Distributed

Computing Conference, pages 482-489. IEEE, 1989.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - a hunter of idle
workstations. In Proc. of 8th International Conference on Dist. Comp.

Systems, pages 104-111. IEEE Computer Society, 1988.

P. M. Murray. Leveraged computing: A task distribution protocol. In
Proc. of the 12th International Conference on Dist. Comp. Systems, pages
563-570, 1992.

Matt W. Mutka. An examination of strategies for estimating capacity to
share among private worstations. In Proc. of the 1991 SIGSMALL/PC

Symposium on Small Systems, pages 53-61. ACM Press, 1991.

D. L. Nofziger and A. G. Hornsby. A microcomputer-based manage-
ment tool for chemical movement in soil. Applied Agricultural Research,

1(1):50-56, 1986.

33

[OACT92] R. A. Olsson, G. R. Andrews, M. H. Coffin, and G. M. Townsend. A

[PCY1]

[PLS]

[SKS92]

[Ste90]

[TL88]

[WHH92]

language for parallel and distributed programming. Technical Report TR

92-09, Department of Computer Science - Univ. of Arizona, 1992.

P.Krueger and R. Chawala. The stealth distributed scheduler. In Proc. of
11th International Conference on Dist. Comp. Systems, pages 336-343.
IEEE Computer Society, 1991.

P.Krueger and M. Linvy. A comparison of preemptive and non-preemptive
load distributing. In Proc. of 8th International Conference on Dist. Comp.
Systems, pages 123-130. IEEE Computer Society, 1988.

N. G. Shivaratri, P. Krueger, and M. Singhal. Load distributing for locally
distributed systems. Computer, 25(12):33-44, 1992.

W. R. Stevens. UNIX Network Programming. Englewood Cliffs, N. J. :
Prentice Hall, 1990.

M. M. Theimer and K. A. Lantz. Finding idle machines in a workstation-
based distributed system. In Proc. of 8th International Conference on

Dist. Comp. Systems, pages 112-122. IEEE Computer Society, 1988.

C. A. Waldspurger, T. Hogg, and B. A. Huberman. Spawn: A distributed
computational economy. IFFE Transactions on Software Engineering,

18:103-117, 1992.

APPENDIX A

USING THE SYSTEM

34

35

First, the server processes are started on the machines which participate in the
computation. The server program includes the files server.c and h_serv.h. This pro-
gram is compiled using

cC -0 server server.c
For installing the fault-recovery feature, the keyword FAULT RECOVERY should be
defined. This is done from the command line by

cc -o server -DFAULT_RECOVERY server.c
For debugging purposes the random numbers passed between the machines can be
displayed by defining the keyword RANDOM.

Once the server code is compiled it can be started up on a machine as a background
process by

server &

During initialization, the server needs the data file SERVERS.DB to determine
which workstations are participating in the distributed computation.

The client code is compiled using the Makefile given in Appendix C. If the keyword
DISTRIB_.OTHERS is defined, the client program will be compiled for distributed
computation. Otherwise, the code will be compiled to run on a single machine.

When the program is compiled to run on a single machine it is invoked with

cmls92b inputfilename screen._output

When the program is compiled for distributed computation, two executables are
created and used. The first executable code (cmis92m) acts as the client requesting
service from the server. The second executable code (cmlis92rem) is used by the
remote machine for processing the data (slave).

The source code for both executable files is the same. However, if the keyword
REMOTE is defined then the executable code for the slave is created. Otherwise, the
code for the local client is created.

Before invoking the client, the slave code and the data files should be made avail-

36

able to the remote machine. This can be done either by using a common file server or
by manually copying the slave code and the data files to the remote machines. The
input file and the parameter file are the data files needed by the remote machine.
The local client is invoked using
cmls92m inputfilename replications
The argument replications specifies the number of replications to be performed per
remote invocation.
When the slave code is loaded from a common file server, the following precautions

need to be observed.

e The path for the slave code and the data files should be the same for all ma-
chines. If the path for the executable code is not same for all machines, then

the remote server will not be able to locate the code.

e The servers on the individual machines should not be started up from the same
directory. While the remote computation is in progress some temporary files are
created. If all servers are started up in the same directory, then the temporary

files will be corrupted.

If the slave code and the data files are manually copied onto the remote machine,
then it can be copied into the directory in which the server is started up from.

If a server exits due to an error, then the machine on which the server was running
should be checked to see if the shared memory segment and the semaphore have been
removed from the IPC table. This can be done using the command

ipcs

If there are shared memory segments or semaphores in the table, they can be
removed using the command

ipcrm

This step needs to be performed only in case of an error.

APPENDIX B

CLIENT CODE

et
e

38

The client program is given in this section. The Makefile given in Appendix C is

used to compile the client program.

The steps performed by the client are:

e Set-up a connection to the local server and request for service.
e Read the result of the local server’s inquiry to other machines.

o If there are no remote servers willing to accept the request, then terminate.

Otherwise, inform the server the slave code and the output file name.
e Pack each data block into a character array and pass it to the local server.
o If all data blocks are transferred, wait for the server to complete processing.

e When the server completes processing, exit with a message of successful com-

pletion.

The source code is given below in C code.

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <time.h>

#define TRUE 1
#define FALSE 0O
#define BUFSIZE 512

#ifndef REMOTE
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <sys/stream.h>
#include <sys/param.h>
#include <unistd.h>

#define

#define
#define

#define
#define
char
char
int

int
char
#else

PORT_NUM 12872

SERVER 'S’
CLIENT 'C’

HOST_NAME_LEN 35
ADDR_LEN 35
outfilename[81];
fopen_mode[5] ;
num_of_remote_sims;
screen_output = 0;
myself [MAXHOSTNAMELEN] ;

// Remote (Slave process)
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

/*Random number generator variables */
extern INT RAN1_IFF, RAN1_TX1, RAN1_IX2, RAN1_IX3;
extern float RANi1_R[98];

int
int
char

#endif

#define
#define

#define
#define

#define
#define
#define
#define
#define
#define
#define

extern

SHMKEY ; // Key for shared memory passed from parent
shmid; // Shared memory id
*shmsg; // Pointer to shared memory
PERMS 0600
MAX_STREAM_SIZE 4096
DATA_OVER "DATA_OVER" // input file over sysmbol
DATA_AVAILABLE "DATA_AVAILABLE" // input data not over symbol
STR_L_LEN 21
NAME_LEN 65
SYMB_LEN i1
ARRAY_LEN 10
CHEM_NAME_LEN 40
LINE 80
DAYS_PER_YEAR 367

"C" void gethostname(char*, int);

39

typedef struct crop_info {
char name[STR_L_LEN];
char coef_file[NAME_LEN];
float coef[DAYS_PER_YEAR];
int earliest_plant_day;
int latest_plant_day;
} CROP_INFO;

typedef struct infiltration {
int source;
char parm_file[NAME_LEN];
char daily_weather_file[NAME_LEN];
char daily_rain_file[NAME_LEN];
int estimator;
} INFIL_INFO;

typedef struct evap {
int source;
char parm_file[NAME_LEN];
char daily_weather_file[NAME_LEN];
char daily_et_file[NAME_LEN];
float paril;
float par2;
char pan_file[NAME_LEN];
int estimator;
} ET_INFO;

typedef struct simulation {
char input_file[NAME_LEN];
char output_file[NAME_LEN];
int begin_day;
int begin_year;
int end_day;
int end_year;
int num_sims;
int soil_chem_combinations;
} SIM_INFO;

typedef struct total_water {
float et;
float pet;
float rain;
float infil;
float irrig;
float runoff;

} H20;

typedef struct day_depth_amount {
int day;
float depth;
float amount;
} DAY_DEPTH_AMT;

typedef struct out_selections {
DAY_DEPTH_AMT at_depth[ARRAY_LEN];

int no_depth;
DAY_DEPTH_AMT at_time[ARRAY_LEN];
int no_time;

int amount;

int infilET;

char depth_units;

H20 water;

} OUT_SEL;

typedef struct periodic_info {
int begin_day;
int end_day;
int period;
float amount;
} PERIODIC_INFO;

typedef struct demand_info {
float critical_depletion;
float efficiency;
float amount;
int begin_day;
int end_day;
} DEMAND_INFO;

typedef union periodic_demand {
PERIODIC_INFO peri;
DEMAND_INFOQ demd;
char file[NAME_LEN];
} PERIODIC_DEMAND;

typedef struct irri_info {

int type;
PERIODIC_DEMAND datum;
char amount_units;

} IRRI_INFO;

42

typedef struct soil_prop {
float depth;
float oc;
float bd;
float fc;
float pwp;
float sat;
float koc;
float half_life;
float kd;
} SOIL_PROP;

typedef struct soil_info {

char name [NAME_LEN] ;
float Curve_Io;

float root_depth;
SOIL_PROP prop[LMAX+3];
int no_horizons;

} SOIL_INFO;

typedef struct appl_info {
int earliest_day;
int latest_day;
int day;
int year;
int date_type;
float depth;
float amount;
} APP_INFO;

typedef struct sys_info {

char index[STR_L_LEN];
SOIL_INFO so0il;

char chem_name [CHEM_NAME_LEN] ;
APP_INFO appl;

char depth_units;

int resampling;

} SYS_INFO;

typedef struct weather {
int num_days;
int first_year;
char station_id[NAME_LEN];
char station_name[NAME_LEN];
float latitude;
char hemisphere;

43

float longitude;

char 1lon_side;

float elevation;

char elev_units[STR_L_LEN];
char temp_units;

char infil_units;

} WTH_INFO;

typedef struct check_info {
int need_check;
char file[NAME_LEN];
} CHECK_INFO;

typedef struct prop_infor {

float oc;
float bd;
float fc;
float pwp;
float sat;

} PROP_INFOR;

typedef struct file_info {
char file[NAME_LEN];

int no_header;

} FILE_INFO;

typedef struct resample_soil {
SOIL_PROP property[LMAX];

int horizons;

} RESAMPLE_SOIL;

383tk ok ok ks sk o ok koo o ok ok ok ok ok e ok ook ok ok ok ok sk ks ok ok i ok ok stk o kot s ook ook skl ok o kst ok Kk sk ok

* memee- Function Prototypes -~---- *

sk ok ok oK ek ko sk ok o o o s sk ook sk o ok ok sk ok sk 3 ook o ok Kok sk ke Kok o ok o o ok o ok ook ok ok ok o o kK Kok R K KRk ok

#ifndef REMOTE

int call_simulate(SIM_INFO*, SYS_INFO*, INFIL_INFO*, ET_INFO*, IRRI_INFO*,

OUT_SEL*, long, CROP_INFO*, int, char*, FILE*, FILE x);

char *convert_to_byte_stream(SIM_INFO*, SYS_INFO*, INFIL_INFO*, ET_INFO*,
IRRI_INFO*, OUT_SEL*, long, CROP_INFO*, int,
char*, char *);

int initialize_sock(int *);

void read_stream(int, char *, int);

void write_stream(int, char *, int);

char *pack_string(char *, char *, int);

char *pack_long(char #*, long);

#else
void get_shared_mem();

void

44

set_random_numbers_back();

void wunpack_msg(char *, SIM_INFO*, SYS_INFO*, INFIL_INFO*, ET_INFO=*,

void
char
char
char
char

#endif

IRRI_INFO*, OUT_SEL#*, long *, CROP_INFO#*, int *, char*,
int *, int *);

unpack_msg_execute(FILE *);
*xunpack_string(char *, char *, int);
s»unpack_int(char *, int *);
»unpack_float(char *, float *);
*unpack_long(char *, long *);

char *pack_int(char #, int);
char *pack_float(char ¥, float);

int

simulate(SIM_INFO*, SYS_INFD*, INFIL_INFO*, ET_INFO%*, IRRI_INFO*,
OUT_SEL*, long, CROP_INFO*, int, char*, FILE*, FILE*, int);

#ifndef REMOTE
/s sk ikt ek ok ek ok o ok sk sk o sk s s sk o sk ok s s ok s o s o s o sk o ok sk ok ok sk ok sk okl s ok s o sk ok s ok o e sk Kok ok K ok o koK

LT S I

This routine becomes the main if the keyword 'REMOTE’ is not
defined at compilation. Hence, this routine is the main routine for
the client which requests service.

Belongs to: Client Code.

LR R I R

k3 3k 3 ke ok e ke o e o 3k ek Sk 3k o e sk 3k ok Sk 3k sk ok o ok 3k Sk o ok e 3 e sk ek o ok o ok ok ok e sk ok skook e 3 ke ok ke ke sk ok ok o ok skok sk skesk f

void main(int argc, char *argv[])

{
FILE *ifp;
FILE *out;

0UT_SEL
CROP_INFO
INFIL_INFO
ET_INFO
SIM_INFO
IRRI_INFO
SYS_INFO
CHECK_INFO
FILE_INFO
char

char

char

long int
int

int

/* file pointer to input file */
/* file pointer to output file */

output;

crop;

infil;

et;

sim;

irri;

sys;

check;

base [MAX_OUTFILE];
fir_str[STR_L_LEN];
low_fir_str[STR_L_LEN];
row[LINE];

offset;

find = FALSE;
block = 1;

45

#ifndef DISTRIB_OTHERS

// Single machine processing.
if (arge < 3){
printf ("\n%sis¥%s\n\n\n","usage: ",argv(0], " inputfile",
" screen_output");
exit(1);
}

screen_output = atoi(argv[2]);
#else

// Distributed computing.
if (arge < 3){
printf ("\nUsage: %s inputfile Replications\n\n",
argv(0]);
printf("Replications - # of replications at the remote m/c per \
remote call.\n\n");
exit(1);
}
num_of _remote_sims = atoi(argv[2]);
if (num_of _remote_sims <= 0){
printf ("\nNumber of remote replications should be >0\n\n");
exit(1);
}
#endif

1. Read input file and get the general information parameters.
/* call the simulation routine */
2. call_simulate(&sim,&sys,&infil,&et,&irri,&output,offset,&crop,
block, fir_ str, ifp, out);

3. If there is another general information block, go to step 1.

4. Close the input and output files.

b
Kk ok ks ok ok ok sk ok ko ok R KK o ok o o o ok Ko o ok sk o ok sk ok o ko ok ok ks ok o oK ok ok sk ok o ko o ok K ok s o ok ko
=== call_simulate ----- *
* If a keyword ’'DISTRIB_OTHERS’ is defined, this routine will connectx*
* with the local server and distribute the computation across the network*
* If this keyword is not defined, then it will repeatedly call the simu- *
* late routine to do the computation locally. *

46

* Belongs to: Client Code. *
kst ok ok ok ok ok sk ok o o o ok ok ook o ok ok e o o ke ko ok s o o K Kk o K ook s ok o ok o o ok sk sk sk ok ok e o ok Kok /
int call_simulate(SIM_INFO *sim, SYS_INFO #*sys, INFIL_INFO *infil,
ET_INFO =*et, IRRI_INFO *irrig, OUT_SEL *output,
long offset, CROP_INFO *crop, int block,
char *fir_str, FILE = *in, FILE *out)
{
int sock;
int sim_number = 0;
int num_sims;
int NumRemSims ; // Number of remote replications in one call
int status;

char msg_to_send[MAX_STREAM_SIZE], *msg, *1lst;
char buff [BUFSIZE];

if ((et->source == GENERATED) && (infil->source == GENERATED))
{
num_sims = sim->pum_sims;
}

else

{
num_sims

}

]
[

printf("\nSimulation will be performed for J%d times\n",num_sims);
#ifdef DISTRIB_OTHERS
// if keyword DISTRIB_OTHERS is defined, distribute across the network.
initialize_sock(&sock);

memset (buff, (char)0, sizeof(buff));
sprintf (buff, "}s", DATA_AVAILABLE);

memset (msg_to_send, (char)0, sizeof(msg_to_send));

lst = convert_to_byte_stream(sim,sys,infil,et,irrig,output,offset,
crop, block,fir_str, msg_to_send);

NumRemSims = num_of_remote_sims;
if((num_sims - sim_number) < NumRemSims)
NumRemSims = num_sims - sim_number;

for(sim_number = 0; sim_number < num_sims; sim_number +=
num_of_remote_sims){

1/

//

#telse

47

if((num_sims - sim_number) < NumRemSims)
NumRemSims = num_sims - sim_number;

pack_int(lst, NumRemSims);
pack_int (msg, sim_number);

msg
msg

printf("\nSimulation # = %d RemoteSims =)d", sim_number+i,

inform availability of data
write_stream(sock, buff, BUFSIZE);

write data to the server
write_stream(sock, msg_to_send, MAX_STREAM_SIZE);

)

memset{buff, (char)0, sizeof(buff));
sprintf (buff, "Ys", DATA_OVER);
write_stream(sock, buff, BUFSIZE);

printf("\nClient: Waiting for the server to complete computation.\n");
read_stream(sock, buff, BUFSIZE);

sscanf (buff, "%d ", &status);

printf("\n¥%s\n\n" ,buff);

if(tstatus)

return FALSE;

close(sock);

// Single machine computing

#endif

for (sim_number = 0; sim_number < num_sims; sim_number++) {

printf ("\nSimulation = }d\n", sim_number+1);
simulate(sim, sys, infil, et, irrig, output, offset, crop,
block, fir_str, in, out, sim_number);

}

return TRUE;

#ifdef DISTRIB_OTHERS
5Kk e sk ok ok o ok sk s ok ok o K K 3ok o o ok K R R Ko K o o o o ok o sk Kok ok sk ok ok ok ok o sk s ok sk sk kR ks s ek sk ok ok

*
*

------ convert_to_byte_stream ------ *
This routine packs the parameters (arguments to the simulate rou- =*

* tine) into a character array.

* Tremote machine.

* Belongs to:
Rmm——————— e T T TR PR L L LE L L Lt bk kbl

Client Code.

char *convert_to_byte_stream(
*sim, SYS_INFO

{
int
char

SIM_INFO
ET_INFO
long
char

i;

xat, IRRI_INFO
offset, CROP_INFO

xfir_str, char

#msg, str[NAME_LEN];

msg = msg_to_send;

// pack SIM_INFO

48

This character array is then send to the*

*k
*
sodok K okkok ok Kok kKoK [

*sys, INFIL_INFO *infil,

*irrig, OUT_SEL

*crop, int
*msg_to_send)

msg = pack_string(msg, sim->input_file, NAME_LEN) ;

msg

msg = pack_int(msg, sim->begin_day);

msg = pack_int(msg,

msg = pack_int(msg, sim-
msg = pack_int(msg, sim-
msg = pack_int(msg, sim-

msg = pack_int(msg,

// pack SIM_INFO

>end_day) ;
>end_year);
>num_sims) ;

sim->begin_year);

= pack_string(msg, sim->output_file, NAME_LEN);

sim->soil _chem_combinations);

msg = pack_string(msg, sys->index, STR_L_LEN) ;

msg = pack_string(msg, sys->soil.name, NAME_LEN);
msg = pack_float(msg, sys->soil.curve_no);
msg = pack_float(msg, sys->soil.root_depth);

for(i = 0; i < LMAX+3; i++) {

msg
msg
nsg
msg
msg
msg
msg
msg
msg
¥

msg

= pack_float(msg,
= pack_float(msg,
= pack_float(msg,
= pack_float(msg,
= pack_float(msg,
= pack_float(msg,
= pack_float(msg,
= pack_float (msg,
= pack_float(msg,

sys->soil.
sys->soil.
sys->soil.
sys->soil.
sys->soil.
sys->soil.
sys->soil.
sys->soil.
sys->soil.

prop[i]
propl[i]
propli]
prop[i]
proplil
proplil
prop[i]
propl[il
prop[i]

pack_int(msg, sys->soil.no_horizons);

.depth);
.oc);

.bd) ;

.fe);

-pvp);
.sat);
.koc);
.half_life);
kd);

msg = pack_string(msg, sys->chem_name, CHEM_NAME_LEN);

msg
nsg

pack_int(msg, sys->appl.earliest_day);
pack_int(msg, sys->appl.latest_day);

*output,
block,

49

msg = pack_int(msg, sys->appl.day);

msg = pack_int(msg, sys->appl.year);

msg = pack_int(msg, sys->appl.date_type);
msg = pack_float(msg, sys->appl.depth);
msg = pack_float(msg, sys->appl.amount) ;

(*msg) = sys->depth_units; msg++;
msg = pack_int(msg, sys->resampling);

// pack INFIL_INFO
msg = pack_int(msg, infil->source);
msg = pack_string(msg, infil->parm_£file, NAME_LEN);
msg = pack_string(msg, infil->daily_weather_file, NAME_LEN);
msg = pack_string(msg, infil->daily_rain_file, NAME_LEN) ;
msg = pack_int(msg, infil->estimator);

// pack ET_INFO
msg = pack_int(msg, et->source);
msg = pack_string(msg, et->parm_file, NAME_LEN);
msg = pack_string(msg, et->daily_weather_file, NAME_LEN);
msg = pack_string(msg, et->daily_et_file, NAME_LEN) ;
msg = pack_float(msg, et->pari);
msg = pack_float(msg, et->par2);
msg = pack_string(msg, et->pan_file, NAME_LERN) ;
msg = pack_int(msg, et->estimator);

// pack IRRI_INFO
msg = pack_int(msg, irrig->type);
msg = pack_int(msg, irrig->datum.peri.begin_day);
msg = pack_int(msg, irrig->datum.peri.end_day);
msg = pack_int(msg, irrig->datum.peri.period);
msg = pack_float(msg, irrig->datum.peri.amount);
msg = pack_float(msg, irrig->datum.demd.critical_depletion);
msg = pack_float(msg, irrig->datum.demd.efficiency);
msg = pack_float(msg, irrig->datum.demd.amount);
msg = pack_int(msg, irrig->datum.demd.begin_day);
msg = pack_int(msg, irrig->datum.demd.end_day);
msg = pack_string(msg, irrig->datum.file, NAME_LEN);
(*msg) = irrig->amount_units; msg++;

// pack OUT_SEL
for(i = 0; i < ARRAY_LEN; i++) {
msg = pack_int(msg, output->at_depth[i].day);
msg = pack_float(msg, output->at_depth[i].depth);
msg = pack_float(msg, output->at_depth[i].amount);
¥
msg = pack_int(msg, output->no_depth);

50

for(i = 0; i < ARRAY_LEN; i++) {

msg = pack_int(msg, output->at_timel[i].day);

msg = pack_float(msg, output->at_time[i].depth);
msg = pack_float(msg, output->at_time[i].amount);
}

msg = pack_int(msg, output->no_time);

msg = pack_int(msg, output->amount);

msg = pack_int(msg, output->infilET);

(*msg) = output->depth_units; msg++;

msg = pack_float(msg, output->water.et);
msg = pack_float(msg, output->water.pet);
msg = pack_float(msg, output->water.rain);
msg = pack_float(msg, output->water.infil);
msg = pack_float(msg, output->water.irrig);
msg = pack_float(msg, output->water.runoff);

msg = pack_long(msg, offset);

// pack CROP_INFO
msg = pack_string(msg, crop->name, STR_L_LEN);
msg = pack_string(msg, crop->coef_file, NAME_LEN);
for(i = 0; i < DAYS_PER_YEAR; i++)
msg = pack_float(msg, crop->coef[il);

msg = pack_int(msg, crop->earliest_plant_day);
msg = pack_int(msg, crop->latest_plant_day);
msg = pack_int(msg, block);

msg = pack_string(msg, fir_str, STR_L_LEN);
msg = pack_int(msg, no_header);

msg = pack_int(msg, change_weather);

return msg;

X
[Ak ook ko o sk sk Rk oKk o KR Rk ok oK o ook sk ok ok stk ok ok ko sk ok ok o ok ok ek
x mm===- pack_string ------ *
* This routine packs a string into the character array. *
* Belongs to: Client Code. *

3K 35K o o o ok o ko s o ok ok e sk sk sk ks sk ok ok ke skok sk sk ok ok sk sk ok sl o sk ok sk ok s sk sk e ok skesk ok ok sk ok ok ok etk sk ok o ok ok f
char * pack_string(char *msg, char *str, int strlen)

{

int i;

ol

for(i = 0; i < strlen; i++) {
(*msg) = (*str);

msg++;
Str++;
return msg;
/e o ke s ok ok ok skok koK ok R s ok ok sk ok o o kot ok e ook ek sk ok s skoko sk ko ok ok o ok ik stk e ok ok ok sk ok ok ok ok ok ok ok o
* memee pack_long ------ *
* This routine packs a long value into the character array. *
* Belongs to: Client Code. *

3K ok oK ok R AR o K oK K o ok R oK oK K oK A K o Ko KoK o o Kok oK o 3o K o R K o Ko K R Ko KRR oK ke ok o ok ok |
char * pack_long(char *msg, long num)

int i;

long tmp;

char *ptr;

tmp = num;

ptr = (char *)&tmp;

for(i = 0; i < sizeof(long); i++) {
(*msg) = (*ptr);

msg++;
Ptr++;
return msg;

[koo s R oK o ok AR KRR KK KK o ok o sk ko o sk koo oo ok K Kok ok ok ok sk ke o ko ook ko ok o
x memeaee initialize_sock ------ *
* This routine will set up the initial connection with the local *
* server, and requests for service. *
* Belongs to: Client Code. *

**/
int initialize_sock(int *sd)

{

int sock;

int flag = FALSE;

char *addr;

struct sockaddr_in sock_cli;

struct hostent *hp;

struct in_addr *ptr, in_a;

char buff[BUFSIZE];

char own_server [MAXHOSTNAMELEN] ;

gethostname(own_server, 32);

hp = gethostbyname(cwn_server);

printf ("\nOwn_server = s ", own_server);

ptr = &in_a;

memcpy (ptr, hp->h_addr, sizeof(struct in_addr));
addr = inet_ntoa(in_a);

printf("\nMyself = Ys", addr);

strcpy(myself, addr);

AF_INET;
PORT_NUM;

sock_cli.sin_family
sock_cli.sin_port

memcpy(&sock_cli.sin_addr, hp->h_addr, hp->h_length);

if((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("Client: Error in creating socket ");
exit(1);
}

if (connect(sock, (struct sockaddr *)&sock_cli, sizeof(sock_cli)) < 0){
sprintf (buff,"Connecting to own server - Js'", own_server);
perror (buff);
close(sock);
exit(1);
}

*sd = sock;

memset {(buff, (char) 0, BUFSIZE);
sprintf(buff, "}c", CLIENT);
write_stream(sock, buff, BUFSIZE);

read_stream(sock, buff, BUFSIZE);

sscanf (buff, "}d", &flag);
printf("\nClient: Reply from server-> %d\n", flag);
if(flag <= 0) {
printf("\nServer Cannot Distribute \n");
close(sock) ;
exit(1);
}

memset(buff, (char) 0, BUFSIZE);
sprintf(buff, “cmls92rem %d %s %s", old_seed, outfilename, fopen_mode);
write_stream(sock, buff, BUFSIZE);

52

53

return flag;

}
[R KKK R ARk Rk Rk KR R KoK KKK KKK KKKk
* mme——- read_stream ------ *
* This routine is used to read from a file discriptor, opened as a *
* stream end point.(socket, file etc) *
* Belongs to: Client Code. *

sk ok sk sk ok ok ok s ok sk ko ok sk ot sk Kk ok o ok o s s ok ok ok ok ok ok ok 3 o s ok o ok s o sk sk ok ok ok o sk sk ok ok ok ok ok koK ok ok ok ok ok ok ok sk ok ok

void read_stream(int stream, char ¥buffer, int numbytes)

{
int nread = 0;
char *str;

memset {(buffer, (char)0, numbytes);

str = buffer;
while((nread += read(stream, str, (numbytes - nread))) < numbytes)

str = buffer + nread;

[KR o ko o ko ok s ok ok ko ok ko sk ok Rk o ko ok ok sk ok ok kiR Sk ok sk kiR ok sk ok ok ok ek
* o =memes write_stream ------ *
* This routine is used to write from a file discripter, opened as a *

* stream end point.(socket, file etc) *

* Belongs to: Client Code. *
3K 3 3k o o o o e o 3 o o kK sk ok o Rk KK ok o KoK o ek ok ok ok ok o o e ko ok oK o ok sk ok o ok sk sk ok ki o sk o ok s s ok o ok [/
void write_stream(int stream, char *buffer, int numbytes)

int nwrite = 0;

char *str;

str = buffer;
while((nwrite += write(stream, str, (numbytes - nwrite))) < numbytes)
str = buffer + nwrite;

}

#endif
#endif

#ifdef REMOTE
KA KSR ook K 3K o sk ko ok o o koK ko ko ok sk ok ks ke sk sk ook sk ok ok
------ main ------ *
If the keyword ’REMOTE’ is defined at compilation, this routine *
becomes the main routine. Hence, this routine is the main routine, for *
the remote slave code. *
Belongs to: Remote Slave Code *

.

94

**/

void main(int argc, char *argv(])

{
FILE *fp_out;

if ((fp_out = fopen(argv[2], "wt")) == NULL) {
fprintf(stderr,"\nREMOTE: Error opening output file - %s\n\n",argv[2]);

exit(1);
}

printf ("\nNOW THE REMOTE PROGRAM...................oovnnn "y;
SHMKEY = atoi(argv[1]);

get_shared_mem();

unpack_msg_execute(fp_out);

set_random_numbers_back();

printf ("\nREMOTE: EXECUTION OVER\n");

fclose(fp_out);

}
[3Kk ok sk sk o ook Kok ok ok ok kst K ok okl ok ok ok kool sk ok ok ko ki ok kol ok o sk sk ok ko ok sk ok ko ok ok ok
x« mmm=—- get_shared_mem ------ *
* This routine gets the shared memory segment, created by the remote *
* gerver. *
* Belongs to: Remote Slave Code *

Sk ok o Kok AR ok o ok R ek sk oK oK K KKK KK KK KK K o KoK KKK KR o KRR K Aok [
void get_shared_mem()

{

if ((shmid = shmget (SHMKEY, MAX_STREAM_SIZE+BUFSIZE, 0)) < 0) {
fprintf(stderr, "\nREMOTE:Error goetting shared memory\n\n");
exit(1);
}

if((shmsg = (char *) shmat(shmid, (char *) 0, 0)) == (char *) -1) {
fprintf(stderr, "\nREMOTE: cannot attach shared memory\n\n");

exit(1);
I,
1
T HHRAAKAAAARAKAIAAAAAAA AR AAARA AR A KA AR A ok ok ok
¥ mmmeee set_random_numbers_back ------ *
* The random numbers at the end of the computation is set back in thex

* shared memory segment, by this routine. N

55

* Belongs to: Remote Slave Code *

**/

void set_random_numbers_back()

{
int j;
char *msg;

msg = shmsg+MAX_STREAM_SIZE+sizeof (float);
/* sizeof float is left for the parent to fill in the

Load value */

pack_int (msg, RAN1_IFF);

msg =

msg = pack_int(msg, RAN1_IX1);
msg = pack_int(msg, RAN1_IX2);
msg = pack_int(msg, RAN1_IX3);
msg = pack_int(msg, seed);

. #ifdef RANDOM

printf(”\n%d %d %d %d %d\n",RAN1_IFF, RAN1_IX1, RAN1_IX2, RAN1_IX3,seed);
#endif
for(j=0;3j<98;j++){
msg = pack_float(msg, RAN1_R[j1);
#ifdef RANDOM
printf(" %.4f", RAN1i_R[j1);
if((j+1)%7==0) printf("\n");

#endif
}

return;

}
4 sk sk ks sk sk ok ok sk ok ok ok ke sk ok ok ok ok ok ki ok ok skl sk o ok ok sk sk o s sk sk ok st ok ok ok sk ok ok ok ok ook ok sk ok Kok ok koK Kok ok
* eeesae unpack_msg_execute —------ *
* The character array send to the remote slave is unpacked and the *
* routine simulate is called to carry out the computation. *
* Belongs to: Remote Slave Code *

o ok ok o ok o stk o sk ke o o ok oo e s oo o s o s ok ok ok ke o ok s ok ok oK e o S ok ok Kk ok s ook ke sk sk ok ok ok ok ke ok ok sk e ok ok ok
void unpack_msg_execute(FILE *fp_out)

{

SIM_INFO sim; SYS_INFO sys; INFIL_INFO infil;
ET_INFO et; IRRI_INFO irrig; OUT_SEL output;
long offset; CROP_INFO crop;

char fir_str[STR_L_LEN], #*msg;

FILE *fp_in;

int i, block, sim_number, num_of_sims;

msg = shmsg;

56

unpack_msg(msg, &sim, &sys, &infil, &et, &irrig, &output, &offset, &crop,
&block, fir_str, &sim_number, &num_of_sims);

if ((fp_in = fopen(sim.input_file, "rt")) == NULL) {
fprintf(stderr, "\nError opening input file ¥s\n\n", sim.input_file);
exit(1);

}

for(i = 0; i< num_of_sims; i++) {
printf("\nSimulation Number = }d\n", sim_number+1+i);
simulate(&sim, &sys, &infil, &et, &irrig, &output, offset, &crop,
block, fir_str, fp_in, fp_out, sim_number+i);

}
fclose(fp_in);
Treturn;
i
[3o ok koK sk o o o ok ok s o ook ok ok o ok sk ok ok o sk sk ok sk sk ok kol ok ok ok ok o ok sk sk ok ok ok sk ok Kk kok ok kR sk ok K
* m=——== unpack_msg ------= *
* The character array send to the remote slave is unpacked using this*
* routine. *
* Belongs to: Remote Slave Code *
0 o 3 o oK o o o KK oK o o K A o K Ko ook S K kSR K o o ko o ko o o ks sk e sk ok sk o ok sk ok o ok sk ko f
void unpack_msg(char *start, SIM_INFO *sim, SYS_INFO *sys,
INFIL_INFO =*infil, ET_INFO =*et, IRRI_INFO *irrig,
O0UT_SEL *output, long *offset, CROP_INFO *crop,
int *block, char xfir_str,
int *sim_number, int *num_of_sims)
{
int i = 0;
int loc_num;
char *msg;
int j = 0;
int ri;

float tmp_f1;
msg = start;

// unpack SIM_INFO
msg = unpack_string(msg, sim->input_file, NAME_LEN);
msg = unpack_string(msg, sim->output_file, NAME_LEN);
msg = unpack_int(msg, &(sim->begin_day));
msg = unpack_int(msg, &(sim->begin_year));
msg = unpack_int(msg, &(sim->end_day));
msg = unpack_int(msg, &(sim->end_year));

msg =
msg =

msg =
msg =
msg =
msg =
for(i

unpack_int(msg, &(sim->num_sims));
unpack_int(msg, &(sim->soil_chem_combinations));

// unpack SIM_INFO (
unpack_string(msg, sys->index, STR_L_LEN);
unpack_string(msg, sys->soil.name, NAME_LEN);
unpack_float(msg, &(sys->soil.curve_no));
unpack_float(msg, &(sys->soil.root_depth));
= 0; i < LMAX+3; i++) {

msg = unpack_float(msg, &(sys->soil.prop[il.depth));
msg = unpack_float(msg, &(sys->soil.propl[il.oc));
msg = unpack_float(msg, &(sys->soil.propli].bd));
msg = unpack_float(msg, &(sys->soil.prop[i].fc));

msg

= unpack_float(msg, &(sys->soil.prop[i].pwp));

msg = unpack_float(msg, &(sys->soil.prop(i].sat));
msg = unpack_float(msg, &(sys->soil.prop[i].koc));
msg = unpack_float(msg, &(sys->soil.prop[i].half_life));
msg = unpack_float(msg, &(sys->soil.prop[i].kd));

¥
msg =
msg =
msg =
msg =
msg =
msg =
msg =
msg =
msg =

unpack_int(msg, &(sys->soil.no_horizons));
unpack_string(msg, sys->chem_name, CHEM_NAME_LEN);
unpack_int (msg, &(sys->appl.earliest_day));
unpack_int(msg, &(sys->appl.latest_day));
unpack_int (msg, &(sys->appl.day));

unpack_int(msg, &(sys->appl.year));

unpack_int (msg, &(sys->appl.date_type));
unpack_float(msg, &(sys->appl.depth));
unpack_float(msg, &(sys->appl.amount));

sys->depth_units = *(msg); msg++;

H

msg

msg =
msg =
msg =
msg
msg =

msg =
msg =
msg =
msg =
msg =
msg =
msg =

unpack_int (msg, &(sys->resampling));

// unpack INFIL_INFO
unpack_int(msg, &(infil->source));
unpack_string(msg, infil->parm_file, NAME_LEN);
unpack_string(msg, infil->daily_weather_file, NAME_LEN);

= unpack_string(msg, infil->daily_rain_file, NAME_LEN);

unpack_int(msg, &(infil->estimator));

// unpack ET_INFO
unpack_int(msg, &(et->source));
unpack_string(msg, et->parm_file, NAME_LEN);
unpack_string(msg, et->daily_weather_file, NAME_LEN);
unpack_string(msg, et->daily_et_file, NAME_LEN);
unpack_float(msg, &(et->parl));
unpack_float(ms<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>