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CHAPTER I 

INTRODUCTION 

A distributed system is a system that consists of a set 

of computers connected by a communication network. Its 

objective is to provide low cost availability and 

consistency of resources. Many distributed systems use 

replication to increase availability of the resources. As 

the number of resources increases, it becomes more difficult 

to provide consistency, especially when failures occur in 

some parts of the system. In a distributed system with 

replicated data, each node in the system may store identical 

information. To ensure consistency between the copies, the 

system must not allow two or more write operations to be 

performed simultaneously; otherwise, the system may have 

different copies of data. When updating data at a node, any 

other nodes in the system should be able to notice those 

changes. When a read operation is performed, the system has 

to make sure that the read operation reads the latest 

version of data. It is n e cessary to have mutual exclusion 

mechanisms to control consistency of resources in 

distributed systems. A mutual exclusion mechanism that has 

low communi cation cost and works even when nodes and 

communication lines have failed is preferred. 

1 
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There are many methods available to achieve mutual 

exclusion in distributed system. Thomas proposed a majority 

consensus approach [Thomas 79]. Gifford presented weighted 

voting [Gifford 79]. Weighted voting requires votes to be 

assigned to each node. To achieve mutual exclusion, a set 

of nodes that has at least a sum of votes equal to a read 

(write) threshold must be obtained in order to perform a 

read (write) operation. Such a set of nodes is called a 

quorum. Maekawa proposed a vN algorithm for mutual 

exclusion [Maekawa 85]. The algorithm uses a logical 

structure based on finite projective planes to find quorums 

for mutual exclusion. Garcia introduced the concept of 

coterie [Garcia 85]. The paper gives definitions of 

dominated and nondominated coteries. Nondominated coteries 

are more tolerant to node and communication line failures. 

Agrawal proposed an efficient and fault-tolerant solution 

for distributed mutual exclusion [Agrawal 91]. The 

algorithm selects nodes in a tree to form quorums. Neilsen 

introduced composition as a method for constructing coteries 

[Neilsen 92a]. Composition combines nonempty structures to 

construct new larger structures. The result of combining 

nondominated coteries is a new larger nondominated coterie. 

This thesis discusses some of the previous works and a 

new method to construct quorums for distributed mutual 

exclusion. The new method uses a difference set algorithm 

to construct gene rators. Then, it uses the generators to 

form quorums. The constructed quorums ensure distributed 

mutual exclusion. 



3 

Motivation 

In many distributed systems it is necessary to have a 

mutual exclusion mechanism that works even when nodes fail 

or the communication lines are broken [Garcia 85]. For 

instance, in a system that manages replicated data, it is 

difficult to provide consistency of the replicated data. 

Users may update data at different nodes (stations) at any 

time. When failed nodes recover, the data at those nodes 

may be obsolete. These situations can lead to inconsistency 

between the replicated data. Thus, a mutual exclusion 

mechanism that works when nodes or communication lines fail 

is necessary. Quorum-based protocols have been proposed to 

effectively tolerate node and communication line failures in 

distributed systems . Sets of nodes (quorums) that have at 

least one node in common with each other can guarantee 

mutual exclusion. It is necessary to have algorithms to 

construct quorums that can achieve mutual exclusion. The 

constructed quorums should resist node and communication 

line failures and require low communication cost. 

Therefore, this thesis presents an algorithm to construct 

such quorums. 

Terminology 

i. Mutual exclusion: If a process P1 is executing in its 

critical section, then no other process can be 

executing in i ts critical section. 

ii. Node: a computer in a network (distributed systems). 



4 

iii. Quorum: a set of nodes. 

iv. N: number of nodes in a distributed system. 

v. E: number of nodes in a quorum. 

vi. Generator: a set of nodes that can be used to 

generate quorums. It is also a quorum. 

vii. Perfect difference set: Given a number P, a perfect 

difference set is a set of numbers such that 

differences between two members of the set can be 

used to represent every number from 1 to P-1 modulo 

P. That is,every number from 1 to P-1 can be obtained 

in one and only one way as the difference of two 

members of the set [Blattner 68]. 

viii. Difference set: Given a number P, a difference set is 

a set of numbers such that differences between two 

members of the set can be used to represent every 

number from 1 to P-1 modulo P. Every number from 1 

to P-1 is not necessarily obtained in one and only 

one way as the difference of two members of the set. 

outline of the Thesis 

In Chapter II, outlines of the various approaches 

towards quorum structures for mutual exclusion are given. 

I n Chapter I I I, the new method to construct quorums for 

distributed mutual exclusion is proposed. The chapter 

includes simulation details of the proposed method. The 

speci a l case of r esults i s d i scussed as we ll. Chapter IV 

discusses analysis and results of the proposed method. An 

analytical comparison between the proposed method and the 
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previous method is given. Finally, in Chapter V, conclusions 

and future work are outlined. 



CHAPTER II 

LITERATURE REVIEW 

This section discusses the previous works of [Thomas 

79], [Maekawa 85], [Garcia 85], and [Agrawal 91] on how to 

define quorums and how to achieve mutual exclusion in 

distributed systems in more detail. 

Majority consensus 

Thomas gives some advantages and disadvantages aspects 

of having copies of data at a number of network nodes 

(stations). The first advantage is increased data 

accessibility. The second is less delay when accessing data 

because the data is stored at a number of nodes. Thus, it 

may not be necessary to ask for the data from other nodes. 

Finally, the nodes in the network share an equal amount of 

the processing load. There are some disadvantages, such as 

higher cost for extra devices and problems of maintaining 

consistency of the copies in the system. The majority 

consensus algorithm uses r (N+l)/21 nodes, where N = number 

of nodes in the system, to perform mutual exclusion. It 

uses a timestamp to control data consistency. The system 

updates or accesses data that have the latest timestamp. 

Majority consensus is a simple and elegant method to achieve 

mutual exclusion, but it imposes a high communication cost. 

6 
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VN Algorithm for Mutual Exclusion 

Maekawa proposed a mutual exclusion algorithm that uses 

only cVN messages, where c is a constant between 3 to 5 and 

N is the number of nodes in a distributed system. The 

algorithm generates quorums based on finite projective 

planes. Quorums which have n+l nodes are said to be of 

order n. In every known example of a finite projective 

plane, the order n is of the form pk, where p is a prime 

number and k is a positive integer [Blattner 68]. The order 

n of the form pk has n 2 +n+1 points. 

Let E = n+1 be number of nodes in each quorum. 

Let N = the number of nodes in a distributed system. 

Suppose that N = 7, we can say that: 

so, 

Thus, 

N = n 2 +n+1 

7 = n 2 +n+1 

n = 2 

E = n+1 = 3 

(substitute N by 7) 

There are four properties used to define quorums in 

Maekawa's algorithm: 

i. For any quorums Qi and Qj, 1 ~ i,j ~Nandi ¢ j, 

Qi n Qj ~ e. 

ii. Qi, 1 ~ i ~ N, always contains i. 

iii. All quorums are the same size. 

iv. Quorums that contain i, 1 ~ i ~ N, contain all 

j, 1 ~ j ~ N, j ~ i. For example, from Figure 1, 

quorums that contain node 1 should contain 

nodes 2, 3, ... , 13. 
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Property ii reduces the number of sending and receiving 

messages. Properties iii and iv are included to have a 

truly distributed algorithm [Maekawa 85]. Figure 1 is an 

example of quorums for N = 13 (implies that E = 4). 

For some number N, there may not exist a correspondence 

order n (nodes in a quorum - 1) of the form pk. The 

algorithm finds an n', where n' is the smallest number that 

is larger than n, that has the form pk. Then, it uses n' to 

form quorums that satisfy the four properties above. After 

that, the algorithm cuts off quorum Qj, where j > N. Then, 

it replaces nodes that are greater than N and appear in Qi, 

where i ~ N, with nodes that are smaller than or equal to N. 

Q~ = {1,2,3,4} 

Qs = {1,5,6,7} 

Qs = {1,8,9,10} 

Q11 == {1,11,12,13} 

Q2 == {2,5,8,10} 

Q6 = {2,6,9,12} 

Q7 = {2,7,10,13} 

Q~o = {3,5,10,12} 

Q3 = {3,6,8,13} 

Q9 == {3,7,9,11} 

Q~3 = {4,5,9,13} 

Q4 == {4,6,10,11} 

Q~2 = {4,7,8, 1 2} 

Figure 1. Result quorums of N == 13 using 
Maekawa's algorithm 
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For instance, let N = 8. It is impossible to have n = pk. 

The algorithm found that n'= 3 is the smallest number that 

is larger than n (calculating value of n by replacing value 

of N in the equations above, giving n = 2.193). Using n'= 3 

instead of n in the equation above implies that N = 13 

(N=3 2 +3+1). The quorums of N = 13 are the same as quorums 

in Figure 1. Then, the algorithm needs to cut the overhead 

quorums Qj, where j > N. That means the algorithm cuts 

quorums Q9 , Q~0 , Q11 , Ql.2 , and Ql.3 • After that, it replaces 

nodes 9, 10, 11, 12, and 13 that appear in Q~ .. Q8 by nodes 

4, 5, 6, 7, and 8 respectively. Figure 2 gives the result 

quorums of N = 8. 

Q~ = {1,2,3,4} 

Qs = {1,5,6,7} 

Qa = {1,8,4,5} 

Q2 {2,5,8,6} 

Q6 = {2,6,4,7} 

Q7 = {2,7,5,8} 

Q3 = {3,6,8} 

Q4 = {4,6,5} 

Figure 2. Result quorums of N = 8 using 
Maekawa's algorithm 

Note that, in Q3 node 13 is supposed to be replaced by 

node 8, but node 8 is already an element of Q3 • Thus, it is 

not necessary to add another node 8 to Q3 • Q4 is the same 

situation as Q3 • 



Maekawa's algorithm requires only O(~N) nodes in each 

quorum for mutual exclusion. This number is optimal for 

10 

distributed algorithms [Maekawa 85]. It is much better than 

those of [Thomas 79]. While N is of the form n 2 +n+1 

(remember that n is the number of nodes in a quorum -1) and 

n is of the form pk, the constructed quorums are symmetric. 

This means that it is a truly distributed system. However, 

if n is not of the form pk, the constructed quorums are not 

balanced. Another disadvantage of the algorithm is that it 

provides a small number of quorums (equal to N) for mutual 

exclusion. 

Coterie 

Garcia-Molina and Barbara define properties of coteries 

that are very useful in distributed mutual exclusion. 

Let U be the set of nodes in a system. A set of 

quorums c is a coterie under U if and only if: 

i . G E C - G ::;: 0 and G C U . 

ii. (Intersection property) if G, HE C, then G and 

H must have at least one node in common. 

iii. (Minimality) There are no G, H E c such that 

G c H. 

Property ii can guarantee mutual exclusion. Property 

iii reduces the redundancy of quorums that provide soluti ons 

to mutual exclusion problems. Following is an example of a 

coterie. 

Let u = {1,2,3} 

c = {{1,2}, {1,3}, {2,3}} 
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cis a coterie under u. It consists of quorums {1,2}, 

{1,3}, and {2,3). c has all the three properties above. 

There are two kinds of coteries: dominated and 

nondominated coteries. Let c be a coterie under U. C is 

dominated if and only if there exist a quorum G c U such 

that 

i. G is not a superset of any quorum in C. 

ii. G has the intersection property. This means that 

for all quorums H E c, G n H * 0. 

A coterie C under U is dominated if there is another 

coterie, D, under u that dominates c. If there is 

no such coterie, then c is nondominated. Nondominated 

coteries are more fault-tolerant to node and communication 

line failures than the coteries they dominate. 

Let U = {1,2,3,4} 

Let C and D be coteries under U. 

c = {{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}} 

D = {{1,2}, {1,3}, {1,4}, {2,3,4}} 

Obviously, D dominates C; each quorum in D dominates c. 

D resists more fault than C. For instance , if the system 

separates into two groups: {1,2} and {3,4}, there is one 

active group under D ({1,2}) but none under c. 

Tree Quorums 

Agrawal and El Abbadi combined the idea of logical 

structures and coteries to develop an efficient and fault

tolerant solution to mutual exclusion problems, called tree 

quorums. The tree quorum selects nodes in a binary tree to 
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form quorums. It starts selecting nodes from the root and 

ending with any of the leaves. If a path from the root to a 

leaf has an inaccessible leaf, then that path cannot form a 

quorum. If a nonleaf node in a path is inaccessible, then 

paths starting with children of the failing node and ending 

with leaves are used instead. Agrawal showed that the 

algorithm not only works with binary trees but also works 

with trees in which each nonleaf node has degree d [Agrawal 

91]. Neilsen showed that the algorithm can be applied to 

any tree in which each nonleaf node has at least two 

children [Neilsen 92a]. They also proved that the algorithm 

produces a nondominated coterie. Following is an example of 

how to select nodes from a given tree in Figure 3. 

tree: 

1 
I \ 

I \ 
2 3 

II\ II\ I \ I \ 
4 5 6 7 8 9 

Figure 3. A given tree f or generating 
tree quorums 

The following assumption can be made from the given 

If all nodes in the tree are accessibl e, quorums can be 

built as {1,2,4}, {1,2,5}, {1,2,6}, {1,3,7}, {1,3,8 } , 

{ 1 1 3 1 9 } • 

If node 1 is inaccessible, nodes 2 and 3 (children of 

node 1) will be used instead. The constructed quorums are 

{2,3,4,7), {2,3,4,8}, {2,3,4,9), {2,3,5,7}, {2,3,5,8}, 



{2,3,5,9}, {2,3,6,7}, {2,3,6,8}, and {2,3,6,9}. 

If node 2 is inaccessible, the quorum in the path is 

{1,4,5,6}. 

If node 3 is inaccessible, {1,7,8,9} is the quorum in 

the path. 

If nodes 1 and 2 are inaccessible, the constructed 

quorums are {3,4,5,6,7}, {3,4,5,6,8}, and {3,4,5,6,9}. 

If nodes 1 and 3 are inaccessible, the constructed 

quorums are {2,4,7,8,9}, {2,5,7,8,9}, and {2,6,7,8,9}. 

Finally, if nodes 1, 2, and 3 have failed, then 

{4,5,6,7,8,9} is a quorum. 

The collection of quorums is a coterie. 

13 

Tree quorum algorithm provides several choices of 

quorums to a node requesting mutual exclusion. This is a 

good feature of the algorithm. When a node malfunctions, 

any other nodes that occur in the same quorums with that 

node still can achieve mutual exclusion because they may 

appear in other quorums. For instance, in the coterie 

above, if node 1 is inaccessible, all quorums that contain 

node 1 cannot achieve mutual exclusion. Nodes 2,3,4,5,6,7, 

8, and 9 can still achieve mutual exclusion. In the best 

case the algorithm requires permissions from only [log Nl 

nodes. In the worst case it requires f(N+1)/2l nodes (for 

binary trees) [Agrawal 91]. The algorithm requires more 

nodes to achieve mutual exclusion when nodes in the upper 

l evels of the tree are inaccessible. For example, if node 1 

is inaccessible, the algorithm requi res at least 4 nodes to 

perform mutual exclusion. Nodes bear different 
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responsibility to control mutual exclusion. Some nodes 

appear more and some nodes appear less in the quorums. Thus 

when nodes that appear in more quorums are not working, 

there are fewer working quorums left for mutual exclusion. 

For example, if node 2 is inaccessible, there are only 9 

quorums left. If node 4 is inaccessible, there are 14 

quorums left to provide mutual exclusion. 



CHAPTER III 

PROPOSED APPROACH 

Introduction 

The proposed method is a new method to construct 

quorums that can be effectively used in distributed mutual 

exclusions. The construction of quorums includes two 

procedures: 

i. Findi ng generators by using a difference set 

algorithm. The difference set algorithm is given 

in the next section. 

ii. Forming quorums by using the generators from 

step i. 

The proposed method uses the difference set algorithm 

to find generators because the difference set a l gorithm 

pr ovide s generators that can be use d to construct quorums. 

The constructed quorums have at least one node in common 

with each other which guarantees mutua l exclusion. The 

difference set algorithm require s a small number of nodes to 

form a generator. The number o f nodes needed to form a 

generator are the same as the number of nodes needed to form 

a quorum. Thus, quorums constructed f rom the gene rator 

c onsist o f a s mall number o f nodes as well . This mean s t hat 

each quorum requires low message cost to achieve mutual 

exclusi on. 

15 
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The proposed method requires a small number of nodes 

(O(vN)) in each quorum and can still achieve mutual 

exclusion. The proposed solution also provides a reasonable 

level availability. 

Finding Generators 

The proposed method requires knowing the number of 

nodes in a distributed system, N. It finds generators from 

a given N by using a difference set algorithm. There are 

three steps to find generators: 

Step I. Finding the number of nodes in a quorum, E. 

Step II. Finding all possible generators for a 

given N. 

Step III. Applying the difference set algorithm to all 

possible generators from Step II to obtain 

generators. 

Step III requires knowledge of a perfect difference 

set, a difference set, and their applications. But it is 

important to understand how the perfect difference set and 

the difference set work before the last step because 

formulas in Step I also involve the perfect difference set 

and the difference set. 

Perfect Difference Set and Difference Set 

This section explains how to obtain the perfect 

difference set and the difference set. A method that is 

used to find the perfect d i fference set is called the 

perfect difference set algorithm. A method that is used to 
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find the difference set is called the difference set 

algorithm. The difference sets are used as generators. 

Perfect Difference Set. An easy way to explain how the 

perfect difference set algorithm works is by giving an 

example. 

Let N = 7. 

Let E = 3 (Step I in the following section explains how 

to find E). 

Let S = {1,2,4} (a set that contains E elements of 

nodes in N). 

To see that S is a perfect difference set, consider the 

following differences; all arithmetic is modular. 

1 
2 
4 

-------
2 (4 - 2) 
3 (4 - 1) 
1 ( 2 - 1) 

------- end of the first half 
6 ((1 - 2) mod 7) 
4 ((1 - 4) mod 7) 
5 ( ( 2 - 4) mod 7) 

======= end of the second half 

The differences (2,3,1,6,4, and 5) are every number 

from 1 to N-1. The set s is called a perfect difference set 

because the result of the method, every number from 1 to N-

1, can be obtained in one and only one way as the difference 

of two members of the sets [Blattner 68]. After applying 

the perfect difference set algorithm, not all sets that 

contain E elements of nodes in N can p roduce a number from 1 

to N-1. For example , let N = 7, l e t E = 3, and let sets = 

{1,2,3}. The differences are computed: 



18 

1 
2 
3 

-------
1 (3 - 2) 
2 (3 - 1) 
1 (2 - 1) 

------- end of the first half 
6 ( ( 1 - 2) mod 7) 
5 ((1 - 3) mod 7) 
6 ( ( 2 - 3) mod 7) 

======= end of the second half 

The result is the numbers 1, 2, 1, 6, 5, and 6 which do 

not include every number form 1 to N-1. Thus, the set s = 

{1,2,3} is not a perfect difference set. 

Difference Set. The reason for introducing the 

difference set algorithm is that a perfect difference set 

does not exist for most values of N. Thus, generators 

cannot be formed for those N. The difference set algorithm 

relaxes a condition in the perfect difference set algorithm 

in order to find difference sets for different values of N, 

E, and S. After applying the difference set algorithm to 

any set s that contains E elements of nodes in N, if a set s 

results in every number from 1 to N-1, not necessarily 

obtained in one and only one way, then the set S is a 

difference set (generator). For example, let N = 5, let E = 

3, and let sets= {1,2,3}. 

1 
2 
3 

1 
2 
1 

4 
3 
4 

======= 

(3 - 2) 
(3 - 1) 
(2 - 1) 
e nd o f t he f irst h a l f 
((1- 2) mod 5) 
((1 - 3) mod 5) 
((2 - 3) mod 5) 
end of the second half 



The result is the numbers 1, 2, 1 4 3 and 4 wh' h 
' ' ' I lC 

include every number from 1 to N-1. Thus, the set s is a 

difference set. Note that there is more than one way to 

find the differences between two members in the set s that 
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includes every number from 1 to N-1. The difference set is 

used as a generator. Thus the set {1,2,3} is a generator. 

Step I 

Given N nodes in a distributed system, the proposed 

method finds a number of nodes, E, that are needed to form a 

quorum. Referred back to the perfect difference set 

section, the result of the perfect different set algorithm 

is N-1 numbers. From a given N, after applying the 

algorithm, the value of E can be computed. The algorithm 

chooses two elements out of E elements to find the 

difference between the two elements. All possibilities of 

choosing two elements out of E elements is equal to 

(~) . The differences are computed up to two of ( ~) times. 

From the above information, the following formulas can be 

derived: 

Thus, 

+ 1 

N = E2 - E + 1 

E 2 - E + 1 - N = 0 

E = -=.1---=.+_V_~=----4......,(....:1,_--'-N'-J-) 
2 

Si nce E is pos itive, 
,----

E = 1 + V 4N - 3 
2 



Since E is discrete the proposed method sets 

E = r1 + V 4N- 31. E is rounded up in order to cover N 
2 

that does not produce any perfect difference set, but does 

produce difference set. An example of calculation E from 

the given N = 5 is given below. 

E r 1 + J 4N - 3 l 
2 

E = I 1 + J 4(5) - 31 
2 

E r 1 + ru1 
2 

E = r 2. 561 

E = 3. 

From the example, N = 5 cannot be used to produce any 

perfect difference set, but can be used to produce 

difference sets which are generators. 

Step II 
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After calculating the value of E in step I, the propose 

method uses the given N and the calculated E values to find 

all possible generators . Forming all possible generators is 

the same as choosing E elements out of N nodes. For 

example, if N is equal to 5, then E will be equal to 3 (from 

Step I ). The total number of possible generators lS 

= 10 

All pos sible g e nerators a re {1,2,3}, {1, 2 ,4}, {1 ,2,5}, 

{1,3,4}, {1,3,5},{1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, and 

{3,4,5}. 
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Step III 

In Step III, all the possible generators from Step II 

is used to find generators. The difference set algorithm is 

applied to the possible generators. Generators are those 

possible generators such that any number from 1 to N-1 is 

the difference of a pair of nodes in the possible generator. 

Other possible generators are discarded. 

Forming Quorums 

To form quorums, the proposed method uses the 

constructed generators from the previous section to form 

quorums as follow: 

Step I. Forming quorums by giving successors to nodes 

in the constructed generators. 

step II. Check for the intersection property between 

the generator and existing quorums before 

constructing quorums from the generators. 

Step I 

Assigning N-1 successor nodes to each node in a 

generator. Each successor is constructed by adding 

1,2, ... ,N-1 to the nodes in the generator using modular 

arithmetic. 

For example, let N = 5. Then E = 3 and the set {1,2,3} 

is a generator. The constructed quorums are as fol l ow: 

1 2 

2 3 

__ 3_ 4 

3 

4 

5 

4 

5 

1 

5 

1 

2. 
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From the third row, 4 is from 3+1, 5 is from 3+2, 1 is 

from 3+3-5, and 2 is from 3+4-5. The quorums are {1,2,3}, 

{2,3,4}, {3,4,5}, {4,5,1}, and {5,1,2}. 

Step II 

Before constructing quorums from another generator, the 

proposed method checks if the new generator intersects all 

of the currently constructed quorums. If it intersects all 

the constructed quorums, then it forms a new group of 

quorums as mentioned in Step I. The new group of quorums is 

added to the existing quorums. If the new generator does 

not intersect all of the existing quorums, then ignore it. 

Step II is applied to all of the constructed generators. 

An example of performing step II is given below. Let 

set {1,2,4} be another generator of N = 5. The already 

constructed quorums are {1,2,3}, {2,3,4}, {3,4,5}, {4,5,1}, 

and {5,1,2}. The generator {1,2,4} intersects all the 

existing quorums. Thus, quorums are constructed from the 

generator {1,2,4} as follow: 

1 2 3 4 5 

2 3 4 5 1 

__ 4_ 5 1 2 3. 

After thati the new constructed quorums are added to the 

existing quorums. The result quorums are {1,2,3}, {2,3,4}, 

{3,4,5}, {4,5,1}, (5,1,2}, (1,2,4}, {2,3,5}, {3,4,1}, 

{4,5,2}, and {5,1,3}. 
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Simulation Details 

The approach towards constructing quorums discussed in 

the Finding generators and Forming quorums sections is 

simulated on Sequent S81 - DYNIX/ptx. The code is written 

in c. All the programs, including the analysis programs, 

are in Appendix B. 

The simulation uses bits of unsigned long integers to 

represent nodes. For instance, if a quorum contains nodes 

1, 2, and 5, the integer 19 will be assigned to an unsigned 

long integer variable to represent the quorum. Figure 4 

shows how this scheme works. 

Values 4294967295 64 32 16 8 4 2 1 

Binary digits 0 0 0 1 0 0 1 1 

Bits 32 7 6 5 4 3 2 1 

Figure 4. Representing quorums by using 
binary digits 

The simulation program uses bit N+1 to check the upper 

bound of N. Thus, it can simulate value of N up to 31 

nodes. Operations in the main procedure are as follow: 

main procedure 

Getting N 

Finding E 

Finding generators 

Finding quorums. 

Initially, t he simulation program bounds the value o f N 

in between 3 and 31, inclusively. Then, it computes the 



value of E , Step I. step II and Step III are performed 

recursively through every possible generator. Result 

generators are kept in a binary tree. The recursive 

procedure for this part is shown in Figure 5. 

An example of all possible generators of N = 3 runs 

through the recursive procedure in the Figure 5 are {1,2}, 

{1,3}, and {2,3}. The difference set algorithm, function 

PDS(), is applied to all the possible generators. If the 

function PDS() returns TRUE, that means the possible 

Find_generators(N,E) 
{ 
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G = 0; /*unsigned long integer that represents a quorum */ 
Depth = 1; 
loop_begin = 1; 
loop_end = E - 1; 

Recursive_find_generators(N,E,Depth,loop_begin,loop_end,G); 
} 

Recursive_find_generators(N,E,Depth,loop_begin,loop_end,G) 
{ 

} 

if (Depth <= E) 
{ 

} 

for (I=loop_begin; I<= (N- loop_end); I++) 
( 

G = G + Power(BASE,(I-1)); 
if (Depth == E) 
{ 

} 

if (PDS(N,E,G)) 
{ 

if(Search(&generators_tree,G,N)==NOTFOUND) 
Generators_tree(&generators_tree, G); 

else 
Recursive_find_generators 

(N, E, Depth+1, I+l, loop_end- 1, G); 

G = G- Power(BASE,(I-1)); 

else 
return(DONE); 

Figure 5. Recursive procedure for forming generators 
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generator is a generator (new generator). The function 

Search() searches existing generators in the generators 

tree. If the function Search() returns NOTFOUND, that means 

the existing generators do not produce quorums that are 

equal to the new generator. Then, the new generator is 

inserted into the generator's tree by calling the function 

Generators_tree(). 

The function Power() calculates integer value that has 

binary digits representing nodes in a quorum. The BASE 

variable is defined as integer 2. That means the function 

Power() returns the integer that has the form power of 2. 

After constructing all generators, the simulation 

program starts to form quorums from the constructed 

generators. Figure 6 shows the pseudocode for this part. 

Find_Quorums() 
{ 

Outside_recursive_inorder(&generators_tree); 
} 
Outside_recursive_inorder(&generators_tree); 
{ 

Outside_recursive_inorder(&left_subtree); 
Inside_recursive_inorder(generator, &generators_tree); 
Outside_recursive_ inorder(&right_subtree); 

} 
Inside_recursive_inorder(generator,&generators_tree); 
{ 

} 

Inside_recursive_inorder(&left_subtree); 
Build_quorums(generator, &quorums_ tree); 
Inside_recursive_inorder(&right_subtree); 

Build_quorums(generator, quorums_tree) 
{ 

If the generator intersects all exist i ng quorums in the 
quorums tree, then the generator is used to form 
quorums and add the new generated quorums to the 
quorums tree, or else ignore it. 

Figure 6. Pseudocode for finding quorums 



The idea of the pseudocode in Figure 6 is the same as 

doing nested for loops but with the generator's tree in 

inorder manner. The Build_quorum() performs the same as 

step I and Step II in the Forming quorum section. 

Special Case 
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After running the simulation program, it appeared that 

for some values of N such as 20, 29, and 30, the proposed 

method does not provide any quorums. The results after 

applying the difference set algorithm to those N are not 

every number from 1 to N-1. This means that generators for 

those N do not exist. Thus, quorums cannot be formed. 

To solve this problem, a substitution method similar to 

those of Maekawa is introduced. First, let N be the number 

that cannot be used to generate quorums. Next, the 

replacing method finds an N', where N' is the smallest 

number that is larger than N, that can be used to generate 

quorums. Then, the proposed method is applied to construct 

quorums for N'. Finally, the substitution method is used to 

replace nodes in the constructed quorums that are greater 

than N with nodes that are smaller than or equal to N. The 

resulting quorums after substitution have at least one node 

in common with each other. Thus, the resulting quorums can 

still achieve mutual exclusion. An example of the 

substitution method with N = 29 is given in Figure 7. 
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===================~ 

N = 31 E = 6 
==================== 
==================== 
GENERATOR(S) : 
1 2 5 11 13 18 
END. 
--------------------
QUORUMS . . 

1 2 5 11 13 18 2 3 6 12 14 19 3 4 7 13 15 20 
4 5 8 14 16 21 5 6 9 15 17 22 6 7 10 16 18 23 
7 8 11 17 19 24 8 9 12 18 20 25 9 10 13 19 21 26 

10 11 14 20 22 27 11 12 15 21 23 28 12 13 16 22 24 29 

13 14 17 23 25 30 14 15 18 24 26 31 1 15 16 19 25 27 
2 16 17 20 26 28 3 17 18 21 27 29 4 18 19 22 28 30 
5 19 20 23 29 31 1 6 20 21 24 30 2 7 21 22 25 31 
1 3 8 22 23 26 2 4 9 23 24 27 3 5 10 24 25 28 
4 6 11 25 26 29 5 7 12 26 27 30 6 8 13 27 28 31 
1 7 9 14 28 29 2 8 10 15 29 30 3 9 11 16 30 31 
1 4 10 12 17 31 

END. 
============~======= 

The substitution methpd modifies quorums of N = 31 
by replacing nodes 30 and 31~ith nodes 28 and 29, 
respectively. The result ~s as follows: 
==================== 
N = 29 E = 6 
==================== 
================~=== 

GENERATOR(S) . . 
1 2 5 11 13 18 
END. 

--------------------
QUORUMS : 

1 2 5 11 13 18 2 3 6 12 14 19 3 4 7 13 15 20 
4 5 8 14 16 21 5 6 9 15 17 22 6 7 10 16 18 23 
7 8 11 17 19 24 8 9 12 18 20 25 9 10 13 19 21 26 

10 11 14 20 22 27 11 12 15 21 23 28 12 13 16 22 24 29 
13 14 17 23 25 28 14 15 18 24 26 29 1 15 16 19 25 27 

2 16 17 20 26 28 3 17 18 21 27 29 4 18 19 22 28 
5 19 20 23 29 1 6 20 21 24 28 2 7 21 22 25 29 
1 3 8 22 23 26 2 4 9 23 24 27 3 5 10 24 25 28 
4 6 11 25 26 29 5 7 12 26 27 28 6 8 13 27 28 29 
1 7 9 14 28 29 2 8 10 15 29 28 3 9 11 16 28 29 
1 4 10 12 17 29 

END. 
==================== 

Figure 7. An example of the substitution method 



CHAPTER IV 

ANALYSIS AND RESULTS 

Analysis 

There are two important aspects of analyzing quorum 

structures: 

l. Message cost 

ii. Availability 

In distributed systems, quorums should have a low 

number of nodes. The fewer number of nodes required to form 

a quorum, the lower number of messages required to obtain 

mutual exclusion. Availability of forming quorums 

(reliability) is another important aspect. Availability is 

used to measure performance of algorithms that are used to 

construct quorums. Algorithms that provide higher 

availability are preferred. 

In this thesis, the analysis of the message cost and 

the availability of forming quorums are based on [Maekawa 

85], [Agrawal 91], and [Neilsen 92c] papers. The thesis 

analyzes and compares the two important aspects of the 

majority consensus, the tree quorums, Maekawa's algorithm, 

and the proposed method. 

28 
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Message Cost 

The number of nodes required to achieve mutual 

exclusion in the majority consensus are r (N+1)/2 l. In the 

tree quorums, the number of nodes required to form a quorum 

are highly dependent on nodes in the upper levels of a tree. 

A formula for calculating the average number of nodes 

required to form a quorum given in Agrawal's paper is used. 

The formula is as follows: 

c1+l. = f ( cl + 1) + ( 1 - f) ( 2c1) , 

where C1 is the average number of nodes required to form 

quorum in a tree of level 1, 

f is the fraction of quorums that include the root of 

level 1+1, and 

C0 is equal to one. 

Maekawa's algorithm requires O(vN) nodes. The proposed 

method also requires O(~N) nodes. 

Availability 

The thesis measures availability by assigning equal 

probability of node operations to each node in the system. 

This is done in order to compare clearly the results among 

each algorithm. The assigned probabilities start·from 0.05 

to 0.95. 

Availability of the majority consensus is measured as 

follows: 

Let K = lN/2j 

Let P = Probability that nodes are operational 
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Availability = Probability (K+1 nodes are operational) 

+ 

+ 

Probability (N nodes are operational) 

= ( K:1) pCK+i)(1-P)(N-(K+i )) + ••• + ( ~) pli(1-P)CN-N) 

Availability of the tree quorums, Maekawa's algorithm, 

and the proposed method are measured by using methods in the 

Neilsen's paper. The following are the methods used. 

The probability that only the nodes in a quorum Q 

are operational 1 is defined by: 

Pr ( Q , U ) = ll ( P d TI ( 1-P 1 ) ( 1 ) 
i tQ i t ( O-Q) 

where P1 is the steady-state probability that node i is 

operational, U is all nodes in a system. The availability 

of coterie C is defined by 

Avail(C) = 'E Pr(Q,U) ( 2 ) 
oE ACCl 

where A(C) is the corresponding acceptance set. The 

acceptance set is the set of all subsets of U that contain a 

quorum of c. 

The constructed quorums o f Maekawa's algorithm and the 

proposed method are also coteries. Thus,the definitions (1) 
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and (2) above can be applied to measure the availability of 

the two algorithms. 

The availability of the tree quorums is measured a 

little different. A tree that is used to form quorums is 

divided into subtrees each of which has tree nodes. 

Supposed that the tree consists of five nodes then it can be 

divided into subtrees, as shown in Figure 8 and Figure 9. 

1 
I \ 

2 3 
I \ 

4 5. 

Figure 8. Original tree 

1 

I \ 
A 3 

and 2 
I \ 

4 5. 

C1 C2 

Figure 9. Divided subtrees 

Note that A is a new node that represents the subtree 

C2. This me thod is from the composition by Neilsen, 

[Neilsen 92a], [Neilsen 92b], and [Neilsen 92c]. 

To compute the availability of the tree, first, use 

tree quorum algorithm to construct quorums from each 

subtree. Then, use the definitions (1) and (2) above to 

compute the availability of each subtree. The probability 

of the new node(s), A, is the probabi l i ty of subtr ee(s) it 

represents . 



Let the probability of each node in the tree equal to 

0.9. Quorums of the subtree C2 are { {2,4},{2,5},{4,5} }. 

N of C2 is {2,4,5}. 

A(C2) = ({2,4},{2,5},{4,5},{2,4,5}) 

Pr({2,4}) = (0.9) (0.9) (0.1) = 0.0810 

Pr({2,5}) = (0.9) (0 . 1) (0.9) = 0.0810 

Pr({4,5}) = (0.1) (0.9) (0.9) = 0.0810 

Pr({2,4,5}) = (0.9) (0.9) (0.9) = 0.7290 

:. Avail ( C2) = 0.0810+0.0810+0.0810+0.7290 

= 0.9720. 

since node A represents the subtree C2, then, the 

probability of node A is equal to Avail(C2) = 0.9720. 

Quorums of the subtree C1 are { {1,A},{1,3},{A,3} }. 

N of C1 is {1,A,3}. 

A(C1) = ({l,A},{l,3},{A,3},{1,A,3}) 

Pr ( { 1 ,A}) = (0.9)(0.972)(0.1) = 0.0875 

Pr({1,3}) = (0.9)(0.028)(0.9) = 0.0227 

Pr ( {A, 3}) = (0.1)(0.972)(0.9) = 0.0875 

Pr({1,A,3}) = (0.9)(0.972)(0.9) = 0.7873 

:. Avail ( Cl) = 0.0875+0.0227+0.0875+0.7873 

= 0.9850. 

Results 
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Results of the simulation are separated into two 

aspects, the same as the analysis section. The results are 

shown by gra phs in Figure 10 to Figur e 16. Table I to Table 

VII show the source data that are used to plot graphs in 

Figure 10 to Figure 16, respectively. 
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Results of Message Cost 

Figure 10 and Table I show the comparisons of numbers 

of nodes needed to form a quorum in the majority consensus, 

the tree quorums, Maekawa's algorithm, and the proposed 

method. The numbers used in the tree quorums are the 

average numbers as mentioned in the analysis section. 

The graph in Figure 10 shows that the proposed method 

uses fewer nodes to form a quorum than majority consensus. 

Comparing to the tree quorums, if less than seventy-five 

percent of the root of each level in a tree were used to 

form quorums, the average quorum size of the tree quorums 

would be larger than the quorum size of the proposed method. 

Results of Availability 

Figure 11 to Figure 16 and Table II to Table VII show 

the comparisons of the availabilities of majority consensus, 

the tree quorums, Maekawa's algorithm, and the proposed 

method with differences N. 

The results indicate that, if quorums of the proposed 

method are constructed from more than one generator 

(N=5,9,15), its availability becomes similar to the 

availability of the majority consensus when the probability 

is greater than 0.75, better than the availability of the 

tree quorums when the probability is greater than 0.65, and 

better than Maekawa's algorithm when the probability is 

greater than 0.5. 
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TABLE I 

EXPECTED SIZE OF QUORUMS OF THE FOUR METHODS 

--------------------+--------+--------+--------
Methods N = 3 N = 7 N = 15 

--------------------+--------+--------+--------
Majority consensus 

Tree quorums{f=1) 

Tree quorums(f=.7) 

Maekawa's algorithm 

Proposed method 

2 

2 

2 

2 

:::::rmr::2:r::r:rmr: 

4 

3 

3 

3 

8 

4 

5 

5 

--------------------+--------+--------+--------

TABLE I (Continued) 

--------------------+--------+--------+--------
Methods N = 31 N = 63 N = 127 

--------------------+--------+--------+--------
Majority consensus 

Tree quorums(f=1) 

Tree quorums(f=.7) 

Maekawa's algorithm 

Proposed method 

16 

5 

7 

6 

32 

6 

10 

9 

64 

7 

14 

12 

::({{{12:{(:{( 

--------------------+--------+--------+--------
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TABLE II 

COMPARISON OF THE AVAILABILITIES OF THE 
FOUR METHODS WITH N = 5 

------------+-----------+-----------+-----------+-----------
PROBABILITY MAJORITY 

CONSENSUS 
TREE 

QUORUMS 
MAEKAWA'S 
ALGORITHM 

PROPOSED 
METHOD 

------------+-----------+-----------+-----------+-----------
0.05 0 . 0002 0.0032 0.0052 

0.10 0.0086 0.0150 0.0215 

0.15 0.0266 0.0380 0.0494 

0.20 0.0579 0.0733 0.0886 

0.25 0.1035 0.1211 0.1387 

0.30 0.1631 0.1807 0.1984 

0.35 0.2352 0.2507 0.2662 

0.40 0.3174 0.3290 0.3405 

0.45 0.4069 0.4130 0.4191 

0.50 0 . 5000 0.5000 0.5000 

0.55 0.5931 0.5870 0.5809 

0.60 0.6826 0.6710 0.6595 

0.65 0.7648 0.7493 0.7338 

0.70 0.8369 0.8193 0.8016 

0.75 0.8965 0.8789 0.8613 

0.80 0.9421 0.9267 0.9114 

0.85 0.9734 0.9620 0.9506 

0.90 0.9914 0.9850 0.9785 

0.95 0.9988 0.9968 0.9948 

------------+-----------+-----------+-----------+-----------
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TABLE III 

COMPARISON OF THE AVAILABILITIES OF THE 
FOUR METHODS WITH N = 7 
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------------+-----------+-----------+-----------+-----------
PROBABILITY MAJORITY 

CONSENSUS 
TREE 

QUORUMS 
MAEKAWA'S 
ALGORITHM 

PROPOSED 
METHOD 

------------+-----------+-----------+-----------+-----------
0.05 0.0002 0.0008 0.0009 

0.10 0.0027 0.0062 0.0068 

···:·:·:-:·:····:::;:;:::::::::::::::~:~::>~;~(~~({::: 

lfJl~?~~~i~lli 
:-:.:.:.;.:-:-:-:-:-:-:· ·· .. .. ... 

0.15 0.0121 0.0208 0.0223 

0.20 0.0333 0.0480 0.0506 

0.25 0.0706 0.0903 0.0936 

0.30 0.1260 0.1483 0.1520 

0.35 0.1998 0.2210 0.2246 

0.40 0.2898 0.3064 0.3092 

0.45 0.3917 0.4008 0.4023 

0.50 0.5000 0.5000 0.5000 

0.55 0.6083 0.5992 0.5997 

0.60 0.7102 0.6936 0.6909 

0.65 0.8002 0.7790 0.7754 

0.70 0.8740 0 . 8517 0.8480 

0.75 0.9294 0.9097 0.9064 

0.80 0.9667 0.9519 0.9495 

0.85 0.9879 0.9792 0.9 7 77 

0.90 0.9973 0.9938 0.9932 

0.95 0.9998 0.9992 0 . 9991 

------------+-----------+-----------+-----------+-----------
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TABLE IV 

COMPARISON OF THE AVAILABILITIES OF THE 
FOUR METHODS WITH N = 9 
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------------+-----------+-----------+-----------+-----------
PROBABILITY 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0 . 55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

MAJORITY 
CONSENSUS 

0.0000 

0.0009 

0.0056 

0.0196 

0.0489 

0.0988 

0.1717 

0.2666 

0.3786 

0.5000 

0.6214 

0.7334 

0.8283 

0.9012 

0.9511 

0.9804 

0.9944 

0.9991 

1.0000 

TREE 
QUORUMS 

0.0005 

0.0046 

0.0164 

0.0400 

0.0788 

0.1346 

0.2076 

0.2955 

0.3948 

0.5000 

0.6052 

0.7045 

0.7925 

0.8654 

0.9212 

0.9600 

0.9836 

0.9954 

0.9995 

MAEKAWA'S 
ALGORITHM 

0.0003 

0.0026 

0.0096 

0.0240 

0.0487 

0.0859 

0.1371 

0.2024 

0.2812 

0.3711 

0.4689 

0.5703 

0.6703 

0.7635 

0.8450 

0.9106 

0.9578 

0.9861 

0.9981 

PROPOSED 
METHOD 
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TABLE V 

COMPARISON OF THE AVAILABILITIES OF THE 
FOUR METHODS WITH N = 11 
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------------+-----------+-----------+-----------+-----------
PROBABILITY 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0 . 65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

MAJORITY 
CONSENSUS 

0 . 0000 

0.0002 

0.0027 

0.0117 

0.0343 

0.0782 

0.1487 

0.2465 

0.3669 

0.5000 

0.6331 

0.7535 

0.8513 

0.9218 

0.9657 

0.988 3 

0.9973 

0.9997 

1 . 0000 

TREE 
QUORUMS 

0.0004 

0.0036 

0.0131 

0.0334 

0.0687 

0.1221 

0.1947 

0.2849 

0.3888 

0.5000 

0.6112 

0 . 7151 

0.8053 

0.8779 

0.9313 

0.9666 

0. 9 86 9 

0.9964 

0.9996 

MAEKAWA'S 
ALGORITHM 

0.0003 

0 . 0028 

0.0107 

0.0277 

0.0574 

0.1025 

0.1647 

0.2436 

0.3371 

0.4409 

0.5496 

0.6565 

0.7551 

0.8395 

0.9063 

0.9532 

0.981 7 

0.9953 

0.9996 

PROPOSED 
METHOD 

------------+-----------+-----------+-----------+-----------
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TABLE VI 

COMPARISON OF THE AVAILABILITIES OF THE 
FOUR METHODS WITH N = 13 
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------------+-----------+-----------+-----------+-----------
PROBABILITY 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

MAJORITY 
CONSENSUS 

0.0000 

0.0001 

0.0013 

0.0070 

0.0243 

0.0624 

0.1295 

0.2288 

0.3563 

0.5000 

0.6437 

0.7712 

0.8705 

0.9376 

0.9757 

0.9930 

0.9987 

0 .9999 

1.0000 

TREE 
QUORUMS 

0.0002 

0.0022 

0.0094 

0.0264 

0.0583 

0.1094 

0.1817 

0.2743 

0.3828 

0.5000 

0.6172 

0 . 7257 

0.8183 

0.8906 

0.9417 

0.9736 

0.9906 

0.9978 

0.9998 

MAEKAWA'S 
ALGORITHM 

0.0001 

0.0013 

0.0065 

0.0199 

0.0467 

0.0917 

0.1580 

0.2459 

0.3525 

0.4714 

0.5937 

0.7094 

0.8096 

0.8882 

0.9431 

0.9762 

0.9925 

0.9986 

0.9999 

PROPOSED 
METHOD 
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TABLE VII 

COMPARISON OF THE AVAILABILITIES OF THE 
FOUR METHODS WITH N = 15 

------------+-----------+-----------+-----------+-----------
PROBABILITY 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

MAJORITY 
CONSENSUS 

0.0000 

0.0000 

0.0006 

0 . 0042 

0.0173 

0.0500 

0.1132 

0.2131 

0.3465 

0.5000 

0.6535 

0.7869 

0.8868 

0.9500 

0.9827 

0.9958 

0.9994 

1.0000 

1. 0000 

TREE 
QUORUMS 

0.0001 

0.0013 

0.0066 

0.0206 

0.0493 

0.0978 

0.1694 

0.2639 

0.3768 

0.5000 

0.6232 

0.7361 

0.8306 

0.9023 

0.9508 

0.9794 

0.9935 

0.9987 

0.9999 

MAEKAWA'S 
ALGORITHM 

0.0000 

0.0006 

0.0032 

0.0107 

0.0269 

0.0564 

0.1036 

0.1716 

0.2609 

0.3689 

0.4896 

0.6138 

0.7311 

0.8317 

0.9085 

0.9592 

0.9866 

0.9974 

0.9999 

PROPOSED 
METHOD 
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If quorums of the proposed method are constructed from 

a generator (N=7,11,13), its availability is similar to the 

tree quorums and Maekawa's algorithm when the probability is 

greater than 0.75. 

In Maekawa's algorithm, if there exists pk of order n, 

then the availabilities of Maekawa 1 s algorithm and the 

proposed method are the same (N=7,13). 

Complexity 

Time complexity of the proposed method includes two 

parts. The first part is the complexity for finding 

generators. The second part is the complexity for forming 

quorums. The complexity for finding generators is o ( N Iii ) , 

. . .[ii . 
where N 1s the number of nodes 1n the system. The N 1s 

( ~) calculated from applying the difference set algorithm L 

times, E = O(vN). The complexity for forming quorums is 

O(n2 ), where n is the number of generators. n 2 is 

calculated from doing a nested loop in the generator's tree. 

Thus, the compl exity of the proposed method is O(NJN+ n 2 ). 



CHAPTER V 

CONCLUSIONS 

Conclusions 

A new method of constructing quorums in distributed 

systems has been proposed. The proposed method uses the 

difference set algorithm to construct generators. Then, it 

uses the constructed generators to form quorums. The 

resulting quorums have the property that each quorum has at 

least one node in common with all other quorums. This 

property can be used to guarantee mutual exclusion in a 

distributed system. 

The proposed method requires fewer nodes to form a 

quorum than majority consensus and tree quorums when a 

fraction of quorums that include root, f, is less than 0.75. 

When the proposed method constructs quorums from more than 

one generator, the proposed method is more flexible and 

reliable than Maekawa's algorithm in that it provides more 

choice of quorums to perform mutual exclusion and gives 

higher availability of forming quorums. 

Regardless of constructing quorums from one or more 

generators, the proposed method gives a balanced load to all 

nodes in the s yste m, in most cases. 

49 
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Future Work 

The proposed method applies the difference set 

algorithm to all of the possible generators of a given N in 

order to find generators. The time complexity for finding 

generators is O(N~ ). It would be useful to have a more 

effici ent algori thm to compute the possible generators for a 

given N. 
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APPENDIX A 

INPUT QUORUMS FOR MAEKAWA'S ALGORITHM 

AND THE PROPOSED METHOD USED IN 

THE ANALYSIS SECTION 
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INPUT DATA FOR MAEKAWA'S ALGORITHM 

========== 
N = 5 
========== 
QUORUMS: 
1 2 3 
1 4 5 
2 4 0 
2 5 0 
3 5 4 
END. 
========== 

========== 
N = 7 
============ 
QUORUMS: 
1 2 3 
1 4 5 
1 6 7 
2 4 6 
2 5 7 
3 4 7 
3 5 6 
END. 
========== 

========== 
N ::::; 9 
========== 
QUORUMS: 
1 2 3 4 
1 5 6 7 
1 8 9 6 
2 5 8 7 
2 6 9 8 
2 7 6 9 
3 6 8 9 
3 7 9 0 
4 6 0 7 
END. 
========== 

========== 
N = 11 
========== 
QUORUMS: 
1 2 3 4 
1 5 6 7 
1 8 9 10 
1 11 10 0 
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2 5 8 11 
2 6 9 10 
2 7 10 11 
3 5 10 0 
3 6 8 11 
3 7 9 11 
4 6 10 11 
END. 
========== 

========== 
N = 13 
=========== 
QUORUMS: 
1 2 3 4 
1 5 6 7 
1 8 9 10 
1 11 12 13 
2 5 8 11 
2 6 9 12 
2 7 10 13 
3 5 10 12 
3 6 8 13 
3 7 9 11 
4 5 9 13 
4 6 10 11 
4 7 8 12 
END. 
========== 

========== 
N = 15 
========== 
QUORUMS: 
1 2 3 4 5 
1 6 7 8 9 
1 10 11 12 
1 14 15 10 
2 6 10 14 
2 7 11 15 
2 8 12 10 
2 9 13 11 

13 
11 

12 
13 
14 
15 

3 6 11 0 14 
3 7 10 0 15 
3 8 13 15 12 
3 9 12 14 13 
4 6 12 15 0 
4 7 13 14 0 
5 7 12 11 0 
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INPUT DATA FOR THE PROPOSED METHOD 

==================== 
N = 5 E = 3 
==================== 
GENERATOR(S) 
1 2 3 
1 2 4 
END. 

QUORUMS: 
1 2 3 
1 2 5 
1 2 4 
1 3 5 

END. 

2 3 

2 3 

==================== 

==================== 
N = 7 E = 3 
==================== 
GENERATOR(S) 
1 2 4 
END. 

4 

5 

QUORUMS: 
1 2 4 
1 5 6 

END. 

2 3 5 
2 6 7 

==================== 

==================== 
N = 9 E = 4 
==================== 
GENERATOR(S) 
1 2 3 5 
1 2 4 5 
1 2 4 6 
END. 
--------------------
QUORUMS: 

1 2 3 5 2 3 
5 6 7 9 1 6 
1 2 4 9 
1 2 4 5 2 3 
5 6 8 9 1 6 
1 3 4 9 
1 2 4 6 2 3 
1 5 6 8 2 6 
1 3 5 9 

END . 
==================== 

4 
7 

5 
7 

5 
7 

3 4 5 

1 3 4 

3 4 6 
1 3 7 

6 3 
8 2 

6 3 
9 1 

7 3 
9 1 

58 

1 4 5 

2 4 5 

4 5 7 

4 5 7 4 5 6 8 
7 8 9 1 3 8 9 

4 6 7 4 5 7 8 
2 7 8 2 3 8 9 

4 6 8 4 5 7 9 
3 7 8 2 4 8 9 



==================== 
N = 11 E = 4 
==================== 
GENERATOR(S) 
1 2 3 6 
END. 

QUORUMS: 
1 2 3 6 
5 6 7 10 
3 9 10 11 

END. 

2 
6 
1 

==================== 

==================== 
N = 13 E = 4 
==================== 
GENERATOR(S) 
1 2 5 7 
END. 

QUORUMS: 
1 2 5 7 
5 6 9 11 
2 9 10 13 
1 4 6 13 

END. 

2 
6 
1 

==================== 

==================== 
N = 15 E = 5 
==================== 
GENERATOR(S) 
1 2 8 10 13 
1 2 4 7 8 
1 2 4 7 11 
1 2 4 8 13 
1 2 4 11 13 
END. 
--------------------
QUORUMS: 

1 2 8 10 13 
1 4 5 11 13 
1 4 7 8 14 
2 4 7 10 11 
5 7 10 13 14 
1 2 4 7 8 
4 5 7 10 11 
7 8 10 1 3 14 
1 2 1 0 11 13 
1 4 5 13 14 
1 2 4 7 11 
4 5 7 10 14 

3 
7 
4 

3 
7 
3 

2 
2 
2 
3 
6 
2 
5 
8 
2 
2 
2 
5 

4 7 3 4 5 
8 11 1 7 8 

10 11 1 2 5 

6 8 3 4 7 
10 12 7 8 11 
10 11 2 4 11 

3 9 11 14 3 
5 6 12 1 4 3 
5 . 8 9 15 1 
5 8 11 12 4 
8 11 14 15 1 
3 5 8 9 3 
6 8 11 12 6 
9 11 1 4 1 5 1 
3 11 12 14 3 
5 6 14 1 5 1 
3 5 8 12 3 
6 8 11 15 1 

8 
9 

11 

9 
13 
12 

4 10 
6 7 
3 6 
6 9 
7 9 
4 6 
7 9 
9 10 
4 12 
3 6 
4 6 
6 7 

4 5 6 9 
2 8 9 10 

4 5 8 10 
1 8 9 12 
3 5 12 13 

12 15 
13 15 

9 10 
12 13 
12 15 

9 10 
12 13 
12 15 
13 1 5 

7 15 
9 13 
9 12 
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2 7 8 10 13 3 8 9 11 14 4 9 10 12 15 
1 5 10 11 13 2 6 11 12 14 3 7 12 13 15 
1 4 8 13 14 2 5 9 14 15 1 3 6 10 15 
1 2 4 8 13 2 3 5 9 14 3 4 6 10 15 
1 4 5 7 11 2 5 6 8 12 3 6 7 9 13 
4 7 8 10 14 5 8 9 11 15 1 6 9 10 12 
2 7 10 11 13 3 8 11 12 14 4 9 12 13 15 
1 5 10 13 14 2 6 11 14 15 1 3 7 12 15 
1 2 4 11 13 2 3 5 12 14 3 4 6 13 15 
1 4 5 7 14 2 5 6 8 15 1 3 6 7 9 
2 4 7 8 10 3 5 8 9 11 4 6 9 10 12 
5 7 10 11 13 6 8 11 12 14 7 9 12 13 15 
1 8 10 13 14 2 9 11 14 15 1 3 10 12 15 

END. 
==================== 
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ANALYSIS AND SIMULATION PROGRAMS 
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ANALYSIS PROGRAM FOR THE MAJORITY CONSENSUS ALGORITHM 

/*********************************************************** 
The file makefile is used to compile all the programs 

that are used to calculate availability in the majority 
consensus algorithm. The compiled file is "run". Note 
that -lm is for the include math.h. To run the program 
enter "run N Pr", where N (nodes in a system) is an integer 
number and Pr (probability that nodes are operational) is a 
float number. 
***********************************************************/ 

run: main.o avail.o get_N_Pr.o N_pick_K.o power_f.o 
cc main.o avail.o get_N_Pr.o N_pick_K.o power_f.o \ 

-lm -o run 
ma1n.o: general.h main.c 

cc -g 
avail.o: 

cc -g 
get_N_Pr.o: 

cc -g 
N_pick_K.o: 

cc -g 
power_f.o: 

cc -g 

-c main.c 
general.h avail.c 

-c avail. c 
general.h get_ N_Pr.c 

-c get_N_Pr.c 
general.h N_pick_K.c 

-c N_pick_K.c 
general.h power_f.c 

-c power_f.c 

/*********************************************************** 
The file general.h is used to define variables that 

will be used throughout the availability analysis of 
majority consensus simulation program. The general.h is an 
include file that is included in every other program of the 
analysis majority consensus. 
***********************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 

#define MAX_N 31 
#define MIN_N 3 
#define PRINT_AVAIL 7 

/*********************************************************** 
The procedure main() is the main driver of the 

availability analysis of the majority consensus. It calls 
procedures Get_N_Pr() and Availability(). 
***********************************************************/ 

#include "ge n e ral.h" 

main (argc, argv) 



int argc; 

char *argv[); 
{ 
int N, K; 
double Pr; 

!*** Get input N and Pr. (probability) ***/ 
Get_N_Pr(argc, argv, &N, &Pr); 

!*** Take lower bound of K ***/ 
K=(N/2); 
Availability(N, K, Pr); 
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!*********************************************************** 
The procedure Get_N_Pr() is called by the procedure 

main(). It is used to get the value of Nand value of 
probability that will be used in the procedure 
Availability(). 
***********************************************************/ 

#include "general.h'' 

Get_N_Pr(argc, argv, N, Pr) 
int argc; 
char * ( *argv); 
int *N; 
double *Pr; 
{ 
int i; 

if (argc < 3) 
{ 

printf("\n*****Missing value of Nor Pr*****\n''); 
pr intf ( "Enter run N Pr " ) ; 
printf( 11 (N is an integer, Pr is a float 

(probability))\n\n"); 
exit( o); 

} 
i = 0; 
while (argv[l][i]) 
{ 

if ((argv[l][i] < 'O') I J (argv[l][i ) > '9')) 
{ 
printf("\n*****%s is not an 

integer*****\n",argv[l]); 
printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability) )\n\n"); 
e xit(O); 

i++; 
} 



*N = atoi(argv[1]); 

if (((*N) > MAX_N) I I ((*N) < MIN_N)) 
{ 

printf ( "\n%d is out of range (%d .. %d) \n " , ( *N) , 
MIN_N I MAX_N): 

printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

/*** Checking Pr's value ***/ 

*Pr = atof(argv[2]); 

if ((*Pr > 1.0) I I (*Pr == 1.0) I I (*Pr == 0.0)) 
{ 

printf("\n*****Pr should not be> or= 1.0 "); 
printf("and should not be= 0.0 *****\n"); 
printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

} 
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/*********************************************************** 
The procedure Availability() is called by the 

procedure main(). It is used to calculate the availability 
of the majority consensus algorithm. 
***********************************************************/ 

#include "general.h" 

Availability(N, 
int N, K; 
double Pr; 
{ 
double 
double 
double 
int 

Avail, Tot_avail; 
_p_Kplus1, _ 1minusp_K; 
Prob; 
I; 

printf ( "N = %d\n", N) ; 
printf("K = %d\n",K); 
printf("Pr = %1.2f\n",Pr); 

I = O; 
Prob = O; 
Avail = 0.0; 
Tot_avail = o.o; 
for (I= 1; (N-(K+I)) >= 0 I++) 
{ 



} 

N_pick_K(N, (K+I), &Prob); 
_p_Kplus1 = 0.0; 
Power_float(Pr,(K+I), &_p_Kplus1); 
_1minusp_K = o.o; 
Power_float((1.0-Pr),(N-(K+I)), &_1minusp_K); 
Avail = Prob * _p_Kplus1 * _1minusp_K; 
Tot_avail = Tot_avail + Avail; 
printf("(%d pick %d) * ",N, (K+I)); 
printf("(%1.2f power of %d) * ", Pr, (K+I)); 
printf("(%1.2f power of %d)= %1.10f \n'', (1-Pr), 

(N-(K+I)), Avail); 
} 
printf("Availability = %1.10f\n",Tot_avail); 
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I*********************************************************** 
The procedure N_pick_K() is called by the procedure 

Availability(). It is used to calculate all possible 
choices of choosing K out of N. 
***********************************************************I 

#include "general.h" 

N_pick_K(N, K, Prob) 
int N, K; 
double *Prob; 
{ 
int i, D; 

*Prob = 1; 
if ( (N-K) > K) 
{ 

D = K; 
for (i = N; i > (N-K); i--) 
{ 

(*Prob) = (*Prob) * i; 
if ( D > 1) 
{ 

(*Prob) = {*Prob) I D; 
D--; 

} 
for (i = D; i > 1; i--) 

(*Prob) = (*Prob) I i; 
} 
else 
{ 

D = (N-K); 
for (i = N; i > K; i--) 
{ 

( *Prob ) = (*Prob ) * i ; 
if (D > 1) 
{ 

(*Prob) = (*Prob) I D; 



D--; 

} 
for (i = D; i > 1; i--) 

(*Prob) = (*Prob) 1 i; 
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/*********************************************************** 
The procedure Power_float() is called by the procedure 

Availability(). It is used to calculate the power of a 
given base variable. The power value is a float number. 
***********************************************************/ 

#include "general.h" 

Power_float(base, exp, P) 
double base; 
int exp; 
double *P; 
{ 
int i; 

} 
} 

if (exp <= O) 
*P = 1.0; 

else 
{ 

*P = base; 
for (i=2; i <= exp; i++) 
{ 

(*P) = (*P) * base; 
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OUTPUTS OF THE PROGRAM WITH N = 5 I Pr = 0.9 AND 0.95 

N = 5 
K = 2 
Pr = 0.90 
(5 pick 3) * (0.90 power of 3) * (0.10 power of 2) = 

0.0729000000 
(5 pick 4) * (0.90 power of 4) * (0.10 power of 1) = 

0.3280500000 
( 5 pick 5) * (0.90 power of 5) * (0.10 power of 0) = 

0.5904900000 
Availability = 0.9914400000 

N = 5 
K = 2 
Pr = 0.95 
(5 pick 3) * (0.95 power of 3) * (0.05 power of 2) 

0.0214343750 
(5 pick 4) * (0.95 power of 4) * (0.05 power of 1) = 

0.2036265625 
(5 pick 5) * (0.95 power of 5) * (0.05 power of 0 ) 

0.7737809375 
Availability = 0.9988418750 
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ANALYSIS PROGRAM FOR THE TREE QUORUM ALGORITHM 

/*********************************************************** 
The file makefile i s used to compile all the programs 

used in calculating availability of the tree quorums 
algorithm. The compiled file is "run". Note that -lm is 
used for the include math.h. To run the program enter "run 
N Pr", where N (nodes in a system) is an integer number and 
Pr (probability that nodes are operational) is a float 
number. 
***********************************************************/ 

run: main.o avail.o get_N_Pr.o p_all.o 
cc main.o avail.o get_N_Pr.o p_all.o -lm -o run 

main.o: general.h main.c 
cc -g -c main.c 

avail.o: general.h avail.c 
cc -g -c avail.c 

get_N_Pr.o: general.h get_N_Pr.c 
cc -g -c get_N_Pr.c 

p_all.o: general.h p_all.c 
cc -g -c p_all.c 

/*********************************************************** 
The file general.h is used to define variables that 

will be used throughout the availability analysis of the 
tree quorums algorithm. The general.h i s an include file 
that is included in every other program of the analysis tree 
quorums. 
***********************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 

#define MAX_N 31 
#define ·MIN_N 3 
#define THREE 3 
#define BASE 2 
"#define PRINT_AVAIL 7 

!*********************************************************** 
· The procedure main() is the main driver that is used to 
cal culate availabil i ty of the tree quorums algorithm. It 
calls procedures Get_N_Pr() and Availability(). 
***********************************************************/ 

#inc lude "ge nera l.h" 

main (argc, argv) 



int argc; 
char *argv[]; 
{ 
int N; 
double Pr; 

/*** Get input N, and Pr (probability) ***/ 
Get_N_Pr(argc, argv, &N, &Pr); 

} 

printf ( "N = %d\n" , N) ; 
printf("Pr = %f\n",Pr); 

Availability(N, Pr); 
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/*********************************************************** 
The procedure Get_N_Pr() id called by the procedure 

main(). It is used to get the value of Nand value of 
probability that will be used in the procedure 
Availability(). 
***********************************************************/ 

#include "general.h" 

Get_N_Pr(argc, argv, N, Pr) 
int argc; 
char * ( *argv); 
int *N; 
double *Pr; 
{ 
int i;-

if (argc < 3) 
{ 

printf("\n*****Missing value of Nor Pr*****\n''); 
printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability) ) \n\n") ; 
exit(O); 

i = 0; 
while (argv[l][i]) 
{ 

if ( ( argv [ 1 ] [ i ] < ' 0 1 ) I I ( argv [ 1 ] [ i ] > 1 9 ' ) ) 
{ 

printf("\n*****%s is not an 
integer*****\n",argv[1]); 

printf ("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

} 
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i++; 
} 

*N = atoi(argv[1]); 

if (((*N) > MAX_N) I I ((*N) < MIN_N) I I (((*N)%2) -- 0)) 
{ 

printf("\n%d is out of range (%d .. %d) ",(*N), 
MIN_N, MAX_N ) ; 

printf(" or %dis an even nurnber\n",*N); 
printf ("Enter run N Pr ") ; 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

/*** Checking Pr's value ***/ 

*Pr = atof(argv[2]); 

if ((*Pr > 1.0) I I (*Pr == 1.0) I I (*Pr == 0.0)) 
{ 

printf("\n*****Pr should not be> or= 1.0 "); 
printf("and should not be= 0.0 *****\n"); 
printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

} 

/*********************************************************** 
The procedure Availability() is called by the 

procedure main(). It is used to calculate the availability 
of the tree quorums algorithm. It is a recursive procedure 
that calculates availability of each level of a tree. 
***********************************************************/ 

#include "general.h" 

doubl e Recu_avail(); 

Availability(N, Pr) 
int N; 
double Pr; 
{ 
double 
int 

Pr_left, Pr_right; 
Root; 

Root = 1; 
Pr_ left = Pr ; 
Pr_right = Pr; 
Recu_avail(N, Root, Pr, Pr_left, Pr_right); 
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/*********************************************************** 
The procedure Recu_avail is the recursive part of the 

procedure Availability(). 
***********************************************************/ 

double 
int 
double 
{ 

Recu_avail(N, Root, Pr, Pr_left, Pr_right) 
N, Root; 
Pr, Pr_left, Pr_right; 

double Avail, Tot_avail; 
double Pr_l, Pr_r; 
unsigned long int P; 
int i, I; 

Pr_l = Pr_left; 
Pr r = Pr_right; 
if ((Root*4) < N) 
{ 

Pr_l = Recu_avail(N, Root*2, Pr, Pr_left, Pr_right); 
if ((Root*4+2) < N) 
Pr_r = Recu_avail(N, Root*2+1, Pr, Pr_left, 

Pr_right); 
} 
Tot_avail 0.0; 
I = 0; 
p = 1; 
for (i=l; i<THREE; i++) 
{ 

p = p + 2; 
Avail = 1.0; 

/*** {a,b}, {a.c} ***/ 

printf("Pr({%d %d}) = ",Root, Root*2+I}; 
Print_avail_all(P, Pr, Pr_l, Pr_r, &Avail); 
Tot_avail = Tot_avail + Avail; 
I++; 

) 

P = 6; /*** {b,c) ***/ 
Avail = 1.0; 
printf("Pr({%d %d}) = ",Root*2, Root*2+1); 
Print_avail_all(P, Pr, Pr_l, Pr_r, &Avail); 
Tot_avail = Tot_avail + Avail; 

P = 7; /*** {a,b,c} ***/ 
Avail = 1.0; 
printf("Pr({ %d %d %d)) = ",Root, Root*2, Root*2+1); 
Print_avail_all(P, Pr, Pr_l, Pr_r, &Avail); 
Tot_avail = Tot_avail + Avail; 

printf ( 11Availability = %1.20f\n",Tot_ avail); 

return(Tot_ avail); 



72 

!*********************************************************** 
The procedure Print_avail_all() is called by the 

procedure Availability(). It is used to print availability 
of each subtree. 
***********************************************************! 

#include 11 general.h" 

Print_avail_all(P, Pr, Pr_l, Pr_r, Avail) 
unsigned long int P; 
double Pr, Pr_l, Pr_r; 
double *Avail; 
{ 
double Pr_temp; 
int i; 

Pr_temp = Pr; 
for (i=1; i <= THREE; i++) 
{ 

} 

if ((P%2) == 1) 
( 

(*Avail) = (*Avail) * Pr_temp; 
printf("(%f)",Pr_temp); 

} 
else 
( 

} 

(*Avail) = (*Avail) * (1.0- Pr_temp); 
printf("(%f)",(1.0-Pr_temp)); 

Pr = Pr_l; 
Pr_l = Pr_r; 
Pr_temp = Pr; 

P= P >> 1; 

printf(" = %f \n",(*Avail)); 



OUTPUTS OF THE PROGRAM WITH N = 5, Pr = 0.9 AND 0.95 

N = 5 
Pr = 0.900000 
Pr({2 4}) = (0.900000}(0.900000)(0.100000) = 0.081000 
Pr({2 5}) = (0.900000}(0.100000)(0.900000) = 0.081000 
Pr({4 5}) = (0.100000)(0.900000)(0.900000) = 0.081000 
Pr({2 4 5}) = (0.900000)(0.900000)(0.900000) = 0.729000 
Availability = 0.97200000000000009000 
Pr({1 2}) = (0.900000)(0.972000}(0.100000) = 0.087480 
Pr({1 3}) = (0.900000)(0.028000)(0.900000) = 0.022680 
Pr({2 3}) = (0.100000)(0.972000)(0.900000) = 0.087480 
Pr({1 2 3}) = (0.900000)(0.972000)(0.900000) = 0.787320 
Availability = 0.98496000000000006000 

N = 5 
Pr = 0.950000 
Pr({2 4}) = (0.950000)(0.950000)(0.050000) = 0.045125 
Pr({2 5}) = (0.950000)(0.050000)(0.950000) = 0.045125 
Pr({4 5}) = (0.050000)(0.950000)(0.950000) = 0.045125 
Pr((2 4 5}) = (0.950000)(0.950000)(0.950000) = 0.857375 
Availability = 0.99275000000000002000 
Pr((1 2}) = (0.950000)(0.992750)(0.050000) = 0.047156 
Pr({1 3}) = (0.950000)(0.007250)(0.950000) = 0.006543 
Pr({2 3}) = (0.050000)(0.992750)(0.950000) = 0.047156 
Pr({l 2 3}) = (0.950000)(0.992750)(0.950000) = 0.895957 
Availability = 0.99681125000000004000 
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ANALYSIS PROGRAM FOR MAEKAWA'S ALGORITHM AND 
THE PROPOSED METHOD 
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/*********************************************************** 
The file makefile is used to compile all the programs 

that are used in availability analysis of the Maekawa's 
algorithm and the proposed method. The complied file is 
"run". Note that -lm is used for the include math.h. To 
run the program enter "run N Pr", where N (nodes in a 
system) is an integer number and Pr (probability that nodes 
are operational) is a float number. 
***********************************************************/ 

run: main.o avail.o change_N.o convert_Q.o find_E.o \ 
get_N_Pr.o p_all.o p_avail.o power.o 

cc main.o avail.o change_N.o convert_Q.o find_E.o \ 
get_N_Pr.o p_all.o p_avail.o power.o -lm -o run 

main.o: general.h main.c 
cc -g -c main.c 

avail.o : general.h avail.c 
cc -g -c avail.c 

change_N.o: general.h change_N.c 
cc -g -c change_ N.c 

convert_Q.o: general.h convert_Q.c 
cc -g -c convert_Q.c 

find_E.o: general.h find_E.c 
cc -g -c find_ E.c 

get_N_Pr.o: general.h get_N_Pr.c 
cc -g -c get_N_Pr.c 

p_all.o: general.h p_all.c 
cc -g -c p_all.c 

p_avail.o: general.h p_avail.c 
cc -g -c p_avail.c 

power.o: general.h power.c 
cc -g -c power.c 

/*********************************************************** 
The file general.h is used to define variables that 

will be used throughout the availability analysis of 
Maekawa's algorithm and the proposed method. It is an 
include file that includes in every other program of the 
analysis Maekawa's algor ithm and the proposed method. 
***********************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ma th.h> 

#define MAX_N 31 
#define MIN_N 3 
#define INPUT 4 



#define 
#define 
#define 
#define 
#define 
#define 
#define 

OUTPUT 
BASE 
ONE 
TWO 
THREE 
FOUR 
PRINT_AVAIL 

10 
2 
1.0 
2.0 
3.0 
4.0 
5 
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/*********************************************************** 
The procedure main() is the main driver that is used to 

calculate availability of Maekawa's algorithm and the 
proposed method. 
***********************************************************/ 

#include "general.h" 

FILE *I, *0; 

main (argc, argv) 
int argc; 
char *argv [ ] ; 
{ 
int 
double 
char 
char 

N, E; 
Pr; 
Input [INPUT] ; 
Output[OUTPUT]; 

/*** get input N and probability Pr ***/ 
Get_ N_Pr(argc, argv, &N, &Pr); 

/*** find number of nodes in a quorum from the 
input N ***/ 
Find_E(N, &E); 

/*** change integer N to a string in order to use the 
string to open an input file ***/ 
strcat(Input,""); 
Change_ N_ to_ string(N, Input); 
if ( (I = fopen (Input, "r")) == NULL) 
{ printf("Cannot open input file\n"); exit(O); 
if ( ( 0 = fopen ( "CONV", "w") ) = = NULL) 
{ printf("Cannot open input file\n"); exit(O); } 

' !*** represent quorums wi th unsigned long integers ***/ 
Convert _Q( I , o, E); 

fclose (O); 
fclose(I); 

syst em( 11 sort -n CONV > Conv"); 
sys t em ( " r m CONV" ) ; 

if((I = fopen("Conv","r")) ==NULL) 
{ printf("Cannot open input fi l e\n"); exit(O); } 



strcat(Output,"o"); 
strcat(Output,Input); 
if((O = fopen(Output,"w")) ==NULL) 
{ printf("Cannot open output file\n"); exit(O); } 

fprintf(O,"N 
fprintf(O,"E 
fprintf(O,"Pr 

= %d\n",N); 
%d\n" ,E); 
%1.2f\n",Pr); 

!*** calculate availability ***/ 
Availability(N, E, Pr, I, O); 

system( "rm Conv"); 
fclose(I); 
fclose(O); 
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!*********************************************************** 
The procedure Get_N_Pr() is called by the procedure 

main(). It is used to get the value of Nand the 
probability Pr that are used in the procedures main() and 
Availability(). 
***********************************************************/ 

#include "general.h" 

Get_N_Pr(argc, argv, N, Pr) 
int argc; 
char *(*argv); 
int *N; 
double *Pr; 
( 
int i; 

if (argc < 3) 
{ 

printf("\n*****Missing value of Nor Pr*****\n"); 
printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

i = 0; 
whi le (a rgv[ l ][i]) 
{ 

if ( ( argv [ 1 ] [ i ] < ' o ' ) I I ( argv [ 1 J [ i J > ' 9 ' ) ) 
( 
printf("\n*****%s is not an 

integer*****\n",argv[l]); 
pri ntf ("Enter r un N Pr "); 
printf ("(N i s a n integer , Pr is a floa t 

(probability))\n\n"); 
exit(O); 



} 

} 
i++; 

*N = atoi(argv[l]); 

if (((*N) > MAX_N) I I ((*N) < MIN_N)) 
{ 

printf ( "\n%d is out of range (%d .. %d) . \n", ( *N) , 
MIN_N, MAX_N); 

printf("Enter run N Pr "); 
printf("(N is an integer, Pr is a float 

(probability))\n\n"); 
exit(O); 

} 

/*** Checking Pr's value ***/ 

*Pr = atof(argv[2]); 

if ((*Pr > 1.0) I I (*Pr == 1.0) I I (*Pr == o.o)) 
{ 

printf("\n*****Pr should not be > or= 1.0 "); 
printf("and should not be= 0.0 *****\n"); 
printf("Enter run N Pr "); 
printf( 11 (N is an integer, Pr is a float 

(probability))\n\n11 ); 

exit(O); 
} 

} 
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/*********************************************************** 
The procedure Find_E() is called by the procedure 

main(). It is used to find E, number of nodes needed to 
form a quorum, from a given N. 
***********************************************************/ 

#include "general.h11 

Find_E(N, E) 
int N; 
int *E; 
{ 
double N_double, E_ double; 
float E_float; 

!*** convert integer to double ***/ 
N_double = N; 

!*** equation and conversion***/ 
E_double = c eil ((ONE + sqrt ((FOUR * N_ double) 

-THREE)) /TWO); 
/*** convert double to float ***/ 

E_float = (float)E_double; 



/*** convert float to integer ***/ 
*E = (int)E_float; 
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!*********************************************************** 
The procedure Change_N_to_string() is called by the 

procedure main(). It is used to change integer value to 
string. 
***********************************************************/ 

#include "general.h" 

Change_N_to_string(N, 
int N; 

Input) 

char *Input; 
{ 
int 
char 
int 

Inp; 
ternp_input[INPUT]; 
i, j, count; 

count = O; 
strcpy(ternp_input,""); 
while (N > O) 
{ 

} 

Inp = N%10; 
N = N/10; 
switch (Inp) { 

} 

case 0: strcat(temp_input,"O"); break; 
case 1: strcat(temp_input,"1 11 ); break; 
case 2: strcat(temp_input,"2' ); break; 
case 3: strcat(temp_input,"3 ); break; 
case 4: strcat(temp_input,"4 ); break; 
case 5: strcat(temp_input,"5 ); break; 
case 6: strcat(ternp_input,"6 ); break; 
case 7: strcat(temp_input,"7 ); break; 
case 8: strcat(ternp_input,"8'); break; 
case 9: strcat(temp_ input,"9"); break; 

count++; 

j = 0; 
for (i = (count-1) ; i >= 0 ;i--) 
{ 

} 

Input[j] = temp_ input[i]; 
j++; 

Input[j] = '\0'; 
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/*********************************************************** 
The procedure Convert_Q() is called by the procedure 

main(). It is used to convert each node in a quorum to an 
unsigned ling integer number. 
***********************************************************/ 

#include "general.h" 

Convert_Q(I, o, E) 
FILE *I, *0; 
int E; 
{ 
unsigned 
unsigned 
int 

long int 
long int 
i; 

Q; 
Q_in; 

fscanf(I,"%u",&Q_in); 
while (!feof(I)) 
{ 

} 

Q = 0; 
Q = Q + Power(BASE,(Q_in-1)); 
for (i = 1; i < E; i++) 
{ 

fscanf(I,"%u",&Q_in); 
Q = Q + Power(BASE,(Q_in-1)); 

} 
fprintf(O,"%u\n",Q); 
fscanf(I,"%u",&Q_i n); 

/*********************************************************** 
The procedure Availability() is called by the procedure 

main(). It is used to calculate availability of Maekawa's 
algorithm and the proposed method. 
***********************************************************/ 

#include "ge neral.h" 

Availability(N, 
int N, E; 
double Pr; 
FILE *I, *0; 

E, Pr, I, O) 

{ 
unsigned 
unsigned 
double 
int 

long int Q; 
long int P, Ac, Ac_start; 
Avail, Tot_avail; 
i, j; 

P = Power(BASE,N) - 1; 
Tot_ avail = 0.0; 
Ac_start = 1; 
fscanf(I,"%u",&Q); 



if ( !feof(I)) 
{ 

Ac_start = Q; 
for (Ac = Ac_start; Ac <= P; Ac++) 
{ 

while (!feof(I)) 
{ 
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if ( ( Q & ( -Ac)) 
{ 

0) /*** a super set ***/ 

} 

} 

Avail = 1.0; 

if (N <= PRINT_AVAIL) 
Print_avail_all(N, Ac, Pr, &Avail, O); 

else 
Print_avail(N, Ac, Pr, &Avail, O); 

Tot_avail = Tot_avail + Avail; 
fseek(I,0,2); 

fscanf(I,"%u",&Q); 
} 
fseek(I,O,O); 

fprintf(O,"Availability = %1.10f\n",Tot_avail); 

/*********************************************************** 
The function Power() is used to calculate the power of 

a given base variable. 
***********************************************************/ 

#include "general.h" 

unsigned long int Power(base, exp) 
int base; 
int exp; 
{ 
unsigned long int P; 
int i; 

if (exp < 0) 
return(O); 

p = 1 ; 
for ( i =l; i <= exp; i++) 
{ 

P = P * base; 
} 
return(P); 
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/*********************************************************** 
The procedure Print_avail_all() is called by the 

procedure Availability(). It is used to print full format 
of the result availabilities. 
***********************************************************/ 

#include "general.h" 

Print_avail_all(N, Ac, Pr, Avail, O) 
int N; 
unsigned long int Ac; 
double Pr; 
double *Avail; 
FILE *0; 
{ 
unsigned long int Ac_temp; 
int i, j; 

Ac_temp = Ac; 
fprintf(O,"Pr({ "); 
for (i=1; i <= N; i++) 
{ 

} 

if ((Ac_temp%2) == 1) 
fprintf(O,"%d ",i); 

Ac_temp = Ac_temp >> 1; 

fprintf(O,"}) = "); 
Ac_temp = Ac; 
for (i=1; i <= N; i++) 
{ 

} 

if ((Ac_temp%2) == 1) 
{ 

} 

(*Avail) = (*Avail) * Pr; 
fprintf(0,"(%1.2f)",Pr); 

else 
{ 

} 

(*Avail) = (*Avail) * (1.0- Pr); 
fprintf(0,"(%1.2f)",(1.0-Pr)); 

Ac_temp = Ac_temp >> 1; 

fprintf(O," = %1.10f \n",(*Avail)); 

/*********************************************************** 
The procedure Print_avail() is called by the procedure 

Availability(). It is used to print short format of the 
result availabilitie s. 
***********************************************************/ 

#include "general.h" 

Print_avail(N, Ac, Pr, Avail) 



int N; 
unsigned long int Ac; 
double Pr; 
double *Avail; 
{ 
int i I j; 

} 

for (i=1; i <= N; i++) 
{ 

} 

if ((Ac%2) == 1) 
(*Avail) = (*Avail) * Pr; 

else 
(*Avail) = (*Avail) * (1.0- Pr); 

Ac = Ac >> 1; 
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OUTPUTS OF THE PROGRAM WITH N = 5, Pr = 0.9 AND 0.95 
(THE PROPOSED METHOD) 

N = 5 E = 3 Pr = 0.90 
Pr( { 1 2 3 } ) = (0.90)(0.90)(0.90)(0.10)(0.10) 0.0072900 
Pr( { 1 2 4 } ) = (0.90)(0.90)(0.10)(0.90)(0.10) = 0.0072900 
Pr( { 1 3 4 }) = (0.90)(0.10)(0.90)(0.90)(0.10) = 0.0072900 
Pr({ 2 3 4 ) ) = (0.10)(0.90)(0.90)(0.90)(0.10) = 0.0072900 
Pr( { 1 2 3 4 } ) = (0.90)(0.90)(0.90)(0.90)(0.10) = 0.0656100 
Pr( { 1 2 5 } ) = (0.90)(0.90)(0.10)(0.10)(0.90) = 0.0072900 
Pr( { 1 3 5 } ) = (0.90)(0.10)(0.90)(0.10)(0.90) = 0.0072900 
Pr( { 2 3 5 ) ) = (0.10)(0.90)(0.90)(0.10)(0.90) = 0.0072900 
Pr( { 1 2 3 5 } ) = (0.90)(0.90)(0.90)(0.10)(0.90) = 0.0656100 
Pr( { 1 4 5 } ) = (0.90)(0.10)(0.10)(0.90)(0.90) = 0.0072900 
Pr( { 2 4 5 } ) = (0.10)(0.90)(0.10)(0.90)(0.90) = 0.0072900 
Pr ( { 1 2 4 5 } ) = (0.90)(0.90)(0.10)(0.90)(0.90) = 0.0656100 
Pr( { 3 4 5 } ) = (0.10)(0.10)(0.90)(0.90)(0.90) = 0.0072900 
Pr ( { 1 3 4 5 } ) = (0.90)(0.10)(0.90)(0.90)(0.90) = 0.0656100 
Pr( { 2 3 4 5 } ) = (0.10)(0.90)(0.90)(0.90)(0.90) 0.0656100 
Pr( { 1 2 3 4 5 } ) = (0.90)(0.90)(0.90)(0.90)(0.90) = 
0.5904900 
Availability = 0.9914400000 

N = 5 E = 3 Pr = 0.95 
Pr( { 1 2 3 } ) = (0.95)(0.95)(0.95)(0.05)(0.05) = 0.0021434 
Pr( { 1 2 4 } ) (0.95)(0.95)(0.05)(0.95)(0.05) = 0.0021434 
Pr( { 1 3 4 ) ) = (0.95)(0.05)(0.95)(0.95)(0.05) 0.0021434 
Pr( { 2 3 4 } ) (0.05)(0.95)(0.95)(0.95)(0.05) = 0.0021434 
Pr( { 1 2 3 4 } ) = (0.95)(0.95)(0.95)(0.95)(0.05) = 0.0407253 
Pr( { 1 2 5 } ) = (0.95)(0.95)(0.05)(0.05)(0.95) = 0.0021434 
Pr( { 1 3 5 } ) = (0.95)(0.05)(0.95)(0.05)(0.95) = 0.0021434 
Pr( { 2 3 5 } ) = (0.05)(0.95)(0.95)(0.05)(0 . 95) = 0.0021434 
Pr({ 1 2 3 5 } ) = (0.95)(0.95)(0.95)(0.05)(0.95) = 0.0407253 
Pr( { 1 4 5 } ) = ( 0. 95) ( 0. 05) ( 0. 05) ( 0. 95) ( 0. 95) = 0.0021434 
Pr( { 2 4 5 } ) = (0.05)(0.95)(0.05)(0.95)(0.95) = 0.0021434 
Pr( { 1 2 4 5 } ) = (0.95 )(0 .95 )(0.05 )(0.95)(0.95) = 0.0407253 
Pr( { 3 4 5 }) = (0.05)(0.05)(0.95)(0.95)(0.95) = 0.0021434 
Pr( { 1 3 4 5 } ) = (0.95) (0 . 05) (0.95) (0.95) (0.95) = 0.0407253 
Pr( { 2 3 4 5 } ) = (0.05)(0.95)(0.95)(0.95)(0.95) = 0.0407253 
Pr( { 1 2 3 4 5 } ) = (0.95)(0.95)(0.95)(0.95)(0.95) = 
0.7737809 
Availability 0.9988418750 
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SIMULATION PROGRAM FOR THE PROPOSED METHOD 

!*********************************************************** 
The file makefile is used to compile all the programs 

that are necessary for the simulation program. The complied 
file is "run". Note that -lm is for the include rnath.h. To 
run the simulati on enter "run N", where N (nodes in a 
system) is an integer number. 
***********************************************************/ 

run: main.o clr_int.o find_E.o find_G.o \ 
find_Q.o free_mem.o g_tree.o get_N.o \ 
initialize.o pds.o power.o search.o shift_L.o 

cc main.o clr_int.o find_E.o find_G.o find_Q.o \ 
free_mem.o g_tree.o get_N.o initialize.o \ 
pds.o power.o search.o shift_L.o -lm -o run 

main.o: general.h main.c 
cc -g -c main.c 

clr_int.o: general.h clr_int.c 
cc -g -c clr_int.c 

find_E.o: general.h find_E.c 
cc -g -c find_E.c 

find_G.o: general.h find_G.c 
cc -g -c find_G.c 

find_Q.o: general.h find_Q.c 
cc -g -c find_Q.c 

free_mem.o: general.h free_mem.c 
cc -g -c free_mem.c 

g_tree.o: general.h g_ tree.c 
cc -g -c g_tree.c 

get_N.o: general.h get_N.c 
cc -g -c get_N.c 

initialize.o: general.h initialize.c 
cc -g -c initialize.c 

pds.o: general.h pds.c 
cc - g -c pds.c 

power.o: general.h power.c 
cc -g 

search.o: 
cc -g 

shift_L.o: 
cc -g 

-c power.c 
general.h search.c 

-c search.c 
general.h shift_L.c 

-c shift_ L.c 

/*********************************************************** 
The file general.h i s used to define variables and 

structures that will be used throughout the simulation 
program. The general.h is an include file that is included 
i n ev e ry other progra m o f the s i mul ation. 
***********************************************************/ 

#include 
#include 

<stdio.h> 
<stdlib.h> 



#include 
#include 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

<string.h> 
<math.h> 

MAX_N 
MIN_N 
BASE 
ONE 
TWO 
THREE 
FOUR 
DONE 
FOUND 
NOT FOUND 
GENERATE 
NOTGENERATE 
NEW_LINE 
PRINT_Q 

31 
3 
2 
1.000000 

· 2.000000 
3.000000 
4.000000 
1 
1 
0 
1 
0 
4 
31 

typedef struct Generators{ 
struct Generators *lptr; 
unsigned long int gene; 
struct Generators *rptr; 

}Generators; 

typedef struct { 
Generators *Header; 

}GENE; 

GENE Gene_tree, Quorum_tree; 
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/*********************************************************** 
The procedure main() is the main driver for the 

simulation program. It start from calling procedures 
Get_N(), Find_E(), Initialize_tree(), Find_generators(), 
Find_Quorums(), and, finally, Free_mem(). 
***********************************************************/ 

#include "general.h" 

main 
int 
char 
{ 
int 
int 

(argc, argv) 
argc; 

*argv[]; 

N I E; 
i; 

!*** Get input N (number of node in a distributed 
system ***/ 
Get_N(argc, argv, &N); 
printf("N = %d\n",N); 

/*** Find number of nodes in a quorum from the 
input N ***/ 
Find_E(N, &E); 



printf( "E = %d\n" ,E); 

/*** Initialize header of a generator tree ***/ 
Initialize_tree(&Gene_tree); 

/*** Find all possible generators and keep them in 
a binary tree ***/ 
Find_generators(N, E); 
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/*** Find all quorums from the constructed generators ***/ 
Find_Quorums(N, E, &Gene_tree, &Quorum_tree); 

/*** Free memory after finish the simulation processes ***/ 
Free_mem(&Gene_tree); 

} 

!*********************************************************** 
The procedure Get_N() is called by the procedure 

main(). It is used to bound the value of N. The value of N 
can be between 3 and 31. 
***********************************************************/ 

#include "general.h11 

Get_N(argc, argv, N) 
int argc; 
char * ( *argv); 
int *N; 
{ 
int i; 

if (argc < 2) 
{ 

printf( 11 \nMissing value of N.\n 11 ); 

printf("Enter run N (N is an integer).\n"); 
exit(O); 

i = 0; 
while (argv(l][i]) 
{ 

if ((argv[l][i] < '0') 
{ 

I I (argv[l][i] > '9')) 

printf( 11 \n%s is not an integer. \n" ,argv[l]); 
printf("Enter run N (N is an integer).\n"); 
exit( 0); 

} 
i++; 

*N = atoi( argv[l]); 

if (((*N) > MAX_N) I I ((*N) < MIN_N)) 
{ 



} 
} 

printf("\n%d is out of range (%d .. %d).\n",(*N), 
MIN_N I MAX_N); 

printf("Enter run N (N is an integer).\n"); 
e:x:it(O); 
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/*********************************************************** 
The procedure Find_E() is called by t he procedure 

main(). It is used to compute value of E from a given N. 
E is returned to the calling function. 
***********************************************************/ 

#include "general.h" 

Find_E(N, E) 
int N; 
int *E; 
{ 
double N_double, E_double; 
float E_float; 

/*** convert integer to double ***/ 
N_double = N; 

/*** equation and conversion***/ 
E_double = ceil((ONE + sqrt((FOUR * N_double) 

-THREE)) /TWO); 

/*** convert double to float ***/ 
E_float = (float)E_double; 

/*** convert float to integer ***/ 
*E = (int)E_float; 

} 

/*********************************************************** 
The procedure Initialize_tree() is called by the 

procedures main() and Find_quorums(). It is used to 
initialize heads of the generator's tree and quorum's tree. 
***********************************************************/ 

#include "general.h" 

Initialize_tree(T) 
GENE *T; 
{ 

(*T).Header = NULL; 
} 
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/*********************************************************** 
The procedure Find_generators() is called by the 

procedure main(). It is used to find generators from all 
the possible quorums. The generators are kept in a binary 
tree. This procedure is a recursive procedure. 
***********************************************************/ 

#include "general.h" 

Find_generators(N, E) 
int N, E; 
{ 
unsigned long int G; 
int Depth, Loop_begin, Loop_end; 

Depth = 1; 
Loop_begin = 1; 
Loop_end = E - 1; 
G = 0; 
Recu_find_gene(N, E, Depth, Loop_begin, Loop_end, G); 

/*********************************************************** 
The Recu_find_gene is the recursive part of the 

procedure Find_generators(). 
***********************************************************/ 

Recu_find_gene(N, E, Depth, Loop_begin, Loop_ end, G) 
int N, E; 
i nt Depth, Loop_ begin, Loop_end; 
unsigned long int G; 
{ 
int I, P; 

if (Depth <= E) 
{ 

for (I= Loop_begi n; I<= (N- Loop_ end); I++ ) 
{ 

G = G + Power(BASE,(I-1)); 
if (Depth == E) 
{ 

} 

P = PDS(N, E, G); 
if (P == GENERATE) 
{ 

} 

if (Search(&Ge ne_ t r ee , G, N) == NOTFOUND) 
{ 

Generators_tree(&Gene_tree, G); 
} 

else 
Re cu_f ind_ gen e (N, E , De pt h +l , !+1 , 

Loop_end-1, G) ; 
G = G- Power(BASE,(I-1)); 



} 

} 
} 
else 

return (DONE) ; 
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/*********************************************************** 
The function Power() is used to calculate power of a 

given base variable. 
***********************************************************/ 

#include "general.h" 

unsigned long int Power(base, exp) 
int base; 
int exp; 
{ 
unsigned long int P; 
int i; 

p = 1; 
for (i=l; i <= exp; i++) 
{ 

P = P * base; 
} 
return(P); 

!*********************************************************** 
The function PDS() is called by the procedure 

Find_generators(). It performs perfect difference set to 
all possible quorums. If a possible quorum is a perfect 
difference set, then the PDS() return GENERATE (the quorum 
is a generator). 
***********************************************************/ 

#include "general.h" 

PDS(N, E, G) 
int N, E; 
unsigned long int G; 
{ 
int Nodes_ in_ Q[MAX_N]; 
int Result_pds[MAX_N]; 
unsigned long int G_temp; 
int i 1 j I k; 
i nt dif, count; 

Clear_ int_ary(Nodes_in_Q); 
Clear_int _ a ry(Res ult_pds); 
count = o; 
G_temp = G; 
for (i=l; i <= N; i++) 



{ 

} 

if ((G_temp%2) == 1) 
Nodes_in_Q[++count] = i; 

if (count == E) 
i = N+1; 

G_ternp = G_ternp >> 1; 

for (i=E; i > 1; i--) 
{ 

} 

k = i-1; 
for (j=k; j > o; j--) 
{ 

} 

dif = Nodes_in_Q[i] - Nodes_in_Q[j]; 
Result_pds[dif] = 1; 
Result_pds[N-dif] = 1; 

for (i=1; i < N; i++) 
{ 

if (Result_pds[i] != 1) 
return(NOTGENERATE); 

} 
return(GENERATE); 
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/*********************************************************** 
The procedure Clear_int_ary() is called by the 

procedure PDS(). It is used to initialize array of integer. 
***********************************************************/ 

#include "general.h" 

Clear_int_ary(INT) 
int INT[MAX_N]; 
{ 
int i; 

for (i=O; i < MAX_N; i++) 
INT[i] = 0; 

/*********************************************************** 
The function Se arch() is ca l led by the procedure 

Find_ge nerators(). It is used to s e arch for a duplicate key 
(generator) in the generator's tree. It also is a recursive 
procedure. 
***********************************************************/ 

#include "general.h" 

Search( T , G, N) 
GENE *T; 
unsigned long int G; 



{ 
int i; 
int RET; 

} 

RET = NOTFOUND; 
for (i=l; i<N; i++) 
{ 

G = Shift_left(G, N); 
RET= Recu_search(&((*T).Header), G); 
if (RET -- FOUND) 

i = N; 
} 
return(RET); 
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/*********************************************************** 
The function Recu_search() is the recursive part of 

the function Search(). 
***********************************************************/ 

Recu_search(sub_root, G) 
Generators **sub_root; 
unsigned long int G; 
{ 

} 

if (*sub_root != NULL) 
{ 

} 

if ((**sub_root).gene --G) 
{ 

return(FOUND); 
} 
else if ((**sub_root).gene >G) 
{ 

return(Recu_search(&((**sub_root).lptr), G)); 
} 
else if ((**sub_root).gene <G) 
{ 

return(Recu_search(&((**sub_root).rptr), G)); 

else 
return(NOTFOUND); 

/*********************************************************** 
The function Shift_left() is used to shift bits in 

unsigned long integers one position to the left. 
***********************************************************/ 

#include "general.h" 

unsigned long int Shift_left(G, N) 
unsigned long int G; 
int N; 



( 
unsigned long int bound_G; 

bound_G = Power(BASE,N) - 1; 
G = G << 1; 
if (G > bound_G) 
{ 

G = G Power(BASE,N); 
G = G + Power(BASE,O); 

} 
return(G); 
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/*********************************************************** 
The procedure Generators_tree is called by the 

procedure Find_generator(). It is a recursive procedure 
that is used to add a generator to the generator's tree. 
***********************************************************/ 

#include "general.h" 

Generators_tree(T, G) 
GENE *T; 
unsigned long int G; 
{ 

Recu_g_tree(&((*T).Header), G); 
} 

!*********************************************************** 
The procedure Recu_g_tree() is the recursive part of 

the procedure Generators_tree(). I t finds an appropriate 
place to add a generator in the generator's t ree. 
***********************************************************/ 

Recu_g_tree(sub_root, G) 
Generators **sub_root; 
unsigned long int G; 
{ 
Generators *newnode; 

if ((*sub_root) ==NULL) 
{ 

!*** get new node ***/ 
if ((newnode = (Generators*)rnalloc(sizeof(Generators))) 

-- NULL) 
{ 

printf("Address of new node error\n"); 
return(DONE); 

(*newnode).gene = 
(*newnode).lptr 
(*newnode).rptr 

G; 
NULL; 
NULL; 



/*** copy address of new node to its parent ***/ 
*sub_root = newnode; 
return(DONE); 

} 

/*** check duplicate key ***/ 
if ((**sub_root).gene ==G) 
{ 

printf("Found duplicated key \n"); 
return(DONE); 

/*** insert new key to the left of the tree ***/ 
if ((**sub_root).gene >G) 
{ 

Recu_g_tree(&( (**sub_root) .lptr), G); 
return(DONE); 

/*** insert the key to the right of the tree ***/ 
if ((**sub_root).gene <G) 
{ 

Recu_g_tree(&((**sub_root).rptr), G); 
return(DONE); 
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/*********************************************************** 
The procedure Find_ quorums is called by the procedure 

main(). It is used to construct quorums from generators in 
the generator's tree. The set of generators that can be 
used to construct quorums, satisfy the intersection 
property, are kept in quorum's tree and will be printed out 
as the output of the simulation program. 
***********************************************************/ 

#include "general.h" 

FILE *0; 

Find_ Quorums(N, E, GT, QT) 
int N, E; 
GENE *GT, *QT; 
{ 

if ( ( o = fopen ("output", "w") ) == NULL) 
{ printf("Cannot open output file\n"); exit(O); 
fprintf(O,"====================\nN = %d E = %d\n", 

N I E) i 
fprintf(O,"====================\n"); 
if ( ( *GT) . Header == NULL) 
{ 

fclose(O); 
return(DONE); 



} 

outside_recu_inorder(&((*GT).Header), &(*GT), 
& ( *QT) I N) ; 

fclose(O); 

94 

/*********************************************************** 
The procedure Outside_recu_inorder() is called by the 

procedure Find_Quorums(). It is a recursive procedure that 
calls another recursive procedure, Recu_find_Q_inorder(). 
The main reason is to perform nested loop to the generator's 
tree to find set of generators that can be used to form 
quorums which have the intersection property. Then, the 
procedure prints the set of generators, kept in the quorum's 
tree. It also prints the constructed quorums out of the set 
of generators. 
***********************************************************/ 

Outside_recu_inorder(sub_out, GT, QT, N) 
Generators **sub_out; 
GENE *GT; 
GENE *QT; 
int N; 
{ 
Generators *newnode; 
unsigned long int G; 
int S; 

if (*sub_out != NULL) 
{ 

if ((**sub_out).lptr !=NULL) 
outside_recu_inorder(&((**sub_out).lptr), 

&(*GT), &(*QT), N); 

/*** Initialize header of a quorum tree ***/ 
Initialize_ tree(&(*QT)); 

/*** get new node ***/ 
if ((newnode = (Generators*)malloc(sizeof(Generators))) 

== NULL) 
{ printf("Address of new node error\n"); 

return(DONE); } 

: \n II ) ; 

(*newnode).gene = (**sub_out).gene; 
(*newnode).lptr =NULL; 
(*newnode).rptr =NULL; 
(*QT).Header = newnode ; 

Recu_find_Q_inorder(&((*GT).Header), &(*QT), N); 

fprintf(O,"====================\nGENERATOR(S) 

Print_ Generators(&(*QT), N); 
if (N <= PRINT_Q) 
{ 
fprintf(0, 11END.\n-------------------

\nQUORUMS ( S) : \n 11 ) ; 



} 
} 

Print_Quorums(&(*QT), N); 
} 
Free_mem(&(*QT)); 
fprintf(O,"END.\n====================\n"); 

if ((**sub_out).rptr !=NULL) 
outside_recu_inorder(&((**sub_out).rptr), 

&(*GT), &(*QT), N); 
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/*********************************************************** 
The procedure Recur_find_Q_inorder() is called by the 

procedure Outside_recu_inorder(). It is the inside nested 
loop. 
***********************************************************/ 

Recu_find_Q_inorder(sub_in, QT, N) 
Generators **sub_in; 
GENE *QT; 
int N; 
( 
Generators *Q; 

} 

if (*sub_in!= NULL) 
( 

} 

if ((**sub_in).lptr !=NULL) 
Recu_find_Q_inorder(&((**sub_in).lptr), 

&(*QT), N); 
Q = (*QT).Header; 
if ((*Q).gene != (**sub_in).gene) 

Build_quorums((**sub_in).gene, &(*QT), N); 

if ((**sub_in).rptr !=NULL) 
Recu_find_Q_inorder(&((**sub_ in).rptr), 

&(*QT), N); 

/*************************************** ******************** 
The procedure Build_quorums() is called by the 

Recu_find_Q_inorder~ It is used to find generators that can 
be used to f orm quorums (the gene rators that i ntersect all 
the existing quorums). If it f ound s uch a g e ne rator, then 
it keeps the generator in the quorum's tree. 
***********************************************************/ 

Build_quorums(In_G, QT, N) 
unsigned long int In_G; 
GENE *QT ; 
int N; 
{ 
Generators *Q, *newnode, *current; 



unsigned long int In_Q; 
int I; 

/*** get new node ***/ 

} 

if ((newnode = (Generators*)malloc(sizeof(Generators))) 
-- NULL) 

{ printf("Address of new node error\n"); 
return(DONE); } 

(*newnode).gene = In_G; 
(*newnode).lptr =NULL; 
(*newnode).rptr =NULL; 

Q = (*QT).Header; 
do { 

In_Q = (*Q).gene; 
for (I=l; I <= N; I++) 
{ 

} 

if ((In_Q & In_G) -- 0) 
{ 

} 

free(newnode); 
return(DONE); 

In_Q = Shift_left(In_Q, N); 

current = Q; 
Q = (*Q) .rptr; 

} while (Q !=NULL); 

(*current).rptr = newnode; 
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!*********************************************************** 
The procedure Print_Generators() is called by the 

procedure outside_recu_inorder(). It is used to print the 
set of generators, kept in the quorums tree, that are used 
to form quorums that have the intersection property. 
***********************************************************/ 

Print_Generators(QT, N) 
GENE *QT; 
int N; 
{ 
Generators *Q; 
unsigned long int P; 
int i; 

Q = (*QT).Header; 
while(Q != NULL) 
{ 

P = (*Q).gene; 
for (i=l; i <= N; i++) 
{ 

if ( ( P%2) == 1) 
fprint f (0, 11 %d ",i); 



} 
} 

p = p >> 1; 
} 
fprintf(O,"\n"); 
Q = ( *Q) . rptr; 
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/*********************************************************** 
The procedure Print_Quorums is called by the procedure 

outside_recu_inorder(). It is used to print quorums from 
the set of generators, in the quorum's tree. 
***********************************************************/ 

Print_Quorums(QT, N) 
GENE *QT; 
int N; 
{ 
Generators *Q; 
unsigned long int Pl, P2; 
int i, j; 
int newline; 

newline = O; 
Q = (*QT).Header; 
while(Q != NULL) 
{ 

P 1 = ( *Q) . gene ; 
for (i=l; i <= N; i++) 
{ 

P2 = Pl; 
for (j=l; j <= N; j++) 
{ 

} 

if ((P2%2) -- 1) 
fprintf(0,"%3d",j); 

P2 = P2 >> 1; 

newline++; 
if (newline == NEW_LINE) 
{ 

} 
else 

fprintf(O,"\n"); 
newline = O; 

fprintf(O," "); 
Pl = Shift_left(Pl, N); 

} 
fprintf(O,"\n"); 
newline = O; 
Q = ( * Q ) . rptr ; 
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/*********************************************************** 
The procedure Free_mem() is called by the procedure 

main() and the procedure Outside_recu_inorder(). It is a 
recursive procedure that is used to free memory from the 
generator's tree and quorum's tree. 
***********************************************************/ 

#include "general.h11 

Free_mem(T) 
GENE *T; 
{ 

} 

if ((*T).Header ==NULL) 
return(DONE); 

else 
Recu_free_mem(&(*T).Header); 

/*********************************************************** 
The procedure Recu_free_men is the recursive part of 

the procedure Free_mem(). 
***********************************************************/ 

Recu_free_mem(sub_root) 
Generators **sub_root; 
{ 

if ((**sub_root).lptr !=NULL) 
Recu_free_mem(&((**sub_root).lptr)); 

if ((**sub_root).rptr !=NULL) 
Recu_free_mem(&((**sub_root).rptr)); 

/*** return node to memory manager ***/ 
free(*sub_root); 

return(DONE); 



OUTPUTS OF THE SIMULATION PROGRAM WITH N = 5, 7, AND 9 

==================== 
N = 5 E = 3 
==================== 
GENERATOR(S) 
1 2 3 
1 2 4 
END. 

QUORUMS 
1 2 3 
1 2 5 
1 2 4 
1 3 5 

END. 

2 3 

2 3 

=========~========== 

==================== 
N = 7 E = 3 
======~=======~===== 

GENERATOR(S) 
1 2 4 
END. 

QUORUMS 

4 

5 

1 2 4 
1 5 6 

END. 

2 3 5 
2 6 7 

==================== 

==================== 
N = 9 E = 4 
==================== 
GENERATOR(S) 
1 2 3 5 
1 2 4 5 
1 2 4 6 
END. 
--------------------
QUORUMS 

1 2 3 5 2 3 
5 6 7 9 1 6 
1 2 4 9 
1 2 4 5 2 3 
5 6 8 9 1 6 
1 3 4 9 
1 2 4 6 2 3 
1 5 6 8 2 6 
1 3 5 9 

END. 
==================== 

4 
7 

5 
7 

5 
7 

3 4 5 

1 3 4 

3 4 6 
1 3 7 

6 3 
8 2 

6 3 
9 1 

7 3 
9 1 

4 
7 

4 
2 

4 
3 

1 4 5 

2 4 5 

4 5 7 

5 7 4 5 6 8 
8 9 1 3 8 9 

6 7 4 5 7 8 
7 8 2 3 8 9 

6 8 4 5 7 9 
7 8 2 4 8 9 
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