
AN EFFICIENT QUORUM STRUCTURE FOR

DISTRIBUTED MUTUAL EXCLUSION

BY

SURAKIT TANAVUTIKAI

Bachelor of Business Administration

Institute of Technology

and Vocational Education

Bangkok, Thailand

1988

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirement for
the Degree of

MASTER OF SCIENCE
July, 1993

OKLAHOMA STATE UNIVERSITY

AN EFFICIENT QUORUM STRUCTURE FOR

DISTRIBUTED MUTUAL EXCLUSION

Thesis Approved:

Thesis Advisor d ck-. _ _1(2/)/

DJ an of the Graduate College

ii

ACKNOWLEDGMENTS

I would like to express my appreciation to my major

advisor, Dr. Huizhu Lu, for her encouragement, advice, and

guidance throughout my graduate program. I would also like

to thank my committee members, Dr. K. M. George and Dr. John

P. Chandler for their assistance.

Appreciation is also expressed to Dr. Mitchell L.

Neilsen for his expert guidance and much valued counsel

during the work of this thesis.

Most of all, I would like to express a special thank

you to my parents, Sornkeat and Pensri Tanavutikai, for their

endless support, encouragement, and countless sacrifices

throughout my academic career. I also want to thank the

other members of my family for their support.

Finally, I want to thank my friends and all the people

who make this thesis possible.

iii

TABLE OF CONTENTS

Chapter page

I. INTRODUCTION•...........•................ 1

Motivation ,. 3
Terminology•........•..................... 3
Outline of the thesis 4

I I . LITERATURE REVIEW 6

Majority consensus 6 vN algorithm for mutual exclusion 7
Coterie 10
Tree quorums 11

I I I . PROPOSED APPROACH• 15

Introduction 15
Finding generators 16
Forming quorums 21
Simulation details 23
Special case 26

IV. ANALYSIS AND RESULTS 28

Analysis 28
Results 3 2
Complexity 48

V. CONCLUSIONS 49

·Conclusions 49
Future work 50

REFERENCES • 51

APPENDI XES ... 54

APPENDIX A - INPUT QUORUMS FOR MAEKAWA'S ALGORITHM
AND THE PROPOSED METHOD USED IN
THE ANALYSIS SECTION 55

APPENDIX B - ANALYSIS AND SIMULATION PROGRAMS 61

i v

LIST OF TABLES

Table page

I. Expected size of quorums of the four methods 35

II. Comparison of the availabilities of the four
methods with N = 5•.................. 3 7

III. Comparison of the availabilities of the four
methods with N = 7 39

IV. Comparison of the availabilities of the four
methods with N = 9 41

v. Comparison of the availabilities of the four
methods with N = 11•........... 43

VI. Comparison of the availabilities of the four
methods with N = 13 45

VII. Comparison of the availabilities of the four
methods with N = 15•.........•. 47

v

LIST OF FIGURES

Figure page

1. Result quorums of N = 13 using
Maekawa' s algorithm 8

2. Result quorums of N = 8 using
Maekawa's algorithm 9

3. A given tree for generating tree quorums 12

4. Representing quorums by using binary digits 23

5. Recursive procedure for forming generators 24

6. Pseudocode for finding quorums 25

7. An example of the substitution method 27

8. Original tree 31

9. Divided subtree 31

10. Graph comparing the expected size of quorums of
the four methods•................. 34

11. Graph comparing the availabilities of the four
methods with N = 5 •••••••••••••••••••••••••••••••• 36

12. Graph comparing the availabilities of the four
methods with N = 7 •••••••••••••••••••••••••••••••• 38

13. Graph comparing the availabilities of the four
methods with N = 9 •••••••••••••••••••••••••••••••• 40

14. Graph comparing the availabilities of the four
methods with N = 1 1•..........•...... 42

15. Graph comparing the availabilities of the four
methods with N = 13 44

16. Graph comparing the availabilities of the four
methods with N = 15•....................... 46

v i

CHAPTER I

INTRODUCTION

A distributed system is a system that consists of a set

of computers connected by a communication network. Its

objective is to provide low cost availability and

consistency of resources. Many distributed systems use

replication to increase availability of the resources. As

the number of resources increases, it becomes more difficult

to provide consistency, especially when failures occur in

some parts of the system. In a distributed system with

replicated data, each node in the system may store identical

information. To ensure consistency between the copies, the

system must not allow two or more write operations to be

performed simultaneously; otherwise, the system may have

different copies of data. When updating data at a node, any

other nodes in the system should be able to notice those

changes. When a read operation is performed, the system has

to make sure that the read operation reads the latest

version of data. It is n e cessary to have mutual exclusion

mechanisms to control consistency of resources in

distributed systems. A mutual exclusion mechanism that has

low communi cation cost and works even when nodes and

communication lines have failed is preferred.

1

2

There are many methods available to achieve mutual

exclusion in distributed system. Thomas proposed a majority

consensus approach [Thomas 79]. Gifford presented weighted

voting [Gifford 79]. Weighted voting requires votes to be

assigned to each node. To achieve mutual exclusion, a set

of nodes that has at least a sum of votes equal to a read

(write) threshold must be obtained in order to perform a

read (write) operation. Such a set of nodes is called a

quorum. Maekawa proposed a vN algorithm for mutual

exclusion [Maekawa 85]. The algorithm uses a logical

structure based on finite projective planes to find quorums

for mutual exclusion. Garcia introduced the concept of

coterie [Garcia 85]. The paper gives definitions of

dominated and nondominated coteries. Nondominated coteries

are more tolerant to node and communication line failures.

Agrawal proposed an efficient and fault-tolerant solution

for distributed mutual exclusion [Agrawal 91]. The

algorithm selects nodes in a tree to form quorums. Neilsen

introduced composition as a method for constructing coteries

[Neilsen 92a]. Composition combines nonempty structures to

construct new larger structures. The result of combining

nondominated coteries is a new larger nondominated coterie.

This thesis discusses some of the previous works and a

new method to construct quorums for distributed mutual

exclusion. The new method uses a difference set algorithm

to construct gene rators. Then, it uses the generators to

form quorums. The constructed quorums ensure distributed

mutual exclusion.

3

Motivation

In many distributed systems it is necessary to have a

mutual exclusion mechanism that works even when nodes fail

or the communication lines are broken [Garcia 85]. For

instance, in a system that manages replicated data, it is

difficult to provide consistency of the replicated data.

Users may update data at different nodes (stations) at any

time. When failed nodes recover, the data at those nodes

may be obsolete. These situations can lead to inconsistency

between the replicated data. Thus, a mutual exclusion

mechanism that works when nodes or communication lines fail

is necessary. Quorum-based protocols have been proposed to

effectively tolerate node and communication line failures in

distributed systems . Sets of nodes (quorums) that have at

least one node in common with each other can guarantee

mutual exclusion. It is necessary to have algorithms to

construct quorums that can achieve mutual exclusion. The

constructed quorums should resist node and communication

line failures and require low communication cost.

Therefore, this thesis presents an algorithm to construct

such quorums.

Terminology

i. Mutual exclusion: If a process P1 is executing in its

critical section, then no other process can be

executing in i ts critical section.

ii. Node: a computer in a network (distributed systems).

4

iii. Quorum: a set of nodes.

iv. N: number of nodes in a distributed system.

v. E: number of nodes in a quorum.

vi. Generator: a set of nodes that can be used to

generate quorums. It is also a quorum.

vii. Perfect difference set: Given a number P, a perfect

difference set is a set of numbers such that

differences between two members of the set can be

used to represent every number from 1 to P-1 modulo

P. That is,every number from 1 to P-1 can be obtained

in one and only one way as the difference of two

members of the set [Blattner 68].

viii. Difference set: Given a number P, a difference set is

a set of numbers such that differences between two

members of the set can be used to represent every

number from 1 to P-1 modulo P. Every number from 1

to P-1 is not necessarily obtained in one and only

one way as the difference of two members of the set.

outline of the Thesis

In Chapter II, outlines of the various approaches

towards quorum structures for mutual exclusion are given.

I n Chapter I I I, the new method to construct quorums for

distributed mutual exclusion is proposed. The chapter

includes simulation details of the proposed method. The

speci a l case of r esults i s d i scussed as we ll. Chapter IV

discusses analysis and results of the proposed method. An

analytical comparison between the proposed method and the

5

previous method is given. Finally, in Chapter V, conclusions

and future work are outlined.

CHAPTER II

LITERATURE REVIEW

This section discusses the previous works of [Thomas

79], [Maekawa 85], [Garcia 85], and [Agrawal 91] on how to

define quorums and how to achieve mutual exclusion in

distributed systems in more detail.

Majority consensus

Thomas gives some advantages and disadvantages aspects

of having copies of data at a number of network nodes

(stations). The first advantage is increased data

accessibility. The second is less delay when accessing data

because the data is stored at a number of nodes. Thus, it

may not be necessary to ask for the data from other nodes.

Finally, the nodes in the network share an equal amount of

the processing load. There are some disadvantages, such as

higher cost for extra devices and problems of maintaining

consistency of the copies in the system. The majority

consensus algorithm uses r (N+l)/21 nodes, where N = number

of nodes in the system, to perform mutual exclusion. It

uses a timestamp to control data consistency. The system

updates or accesses data that have the latest timestamp.

Majority consensus is a simple and elegant method to achieve

mutual exclusion, but it imposes a high communication cost.

6

7

VN Algorithm for Mutual Exclusion

Maekawa proposed a mutual exclusion algorithm that uses

only cVN messages, where c is a constant between 3 to 5 and

N is the number of nodes in a distributed system. The

algorithm generates quorums based on finite projective

planes. Quorums which have n+l nodes are said to be of

order n. In every known example of a finite projective

plane, the order n is of the form pk, where p is a prime

number and k is a positive integer [Blattner 68]. The order

n of the form pk has n 2 +n+1 points.

Let E = n+1 be number of nodes in each quorum.

Let N = the number of nodes in a distributed system.

Suppose that N = 7, we can say that:

so,

Thus,

N = n 2 +n+1

7 = n 2 +n+1

n = 2

E = n+1 = 3

(substitute N by 7)

There are four properties used to define quorums in

Maekawa's algorithm:

i. For any quorums Qi and Qj, 1 ~ i,j ~Nandi ¢ j,

Qi n Qj ~ e.

ii. Qi, 1 ~ i ~ N, always contains i.

iii. All quorums are the same size.

iv. Quorums that contain i, 1 ~ i ~ N, contain all

j, 1 ~ j ~ N, j ~ i. For example, from Figure 1,

quorums that contain node 1 should contain

nodes 2, 3, ... , 13.

8

Property ii reduces the number of sending and receiving

messages. Properties iii and iv are included to have a

truly distributed algorithm [Maekawa 85]. Figure 1 is an

example of quorums for N = 13 (implies that E = 4).

For some number N, there may not exist a correspondence

order n (nodes in a quorum - 1) of the form pk. The

algorithm finds an n', where n' is the smallest number that

is larger than n, that has the form pk. Then, it uses n' to

form quorums that satisfy the four properties above. After

that, the algorithm cuts off quorum Qj, where j > N. Then,

it replaces nodes that are greater than N and appear in Qi,

where i ~ N, with nodes that are smaller than or equal to N.

Q~ = {1,2,3,4}

Qs = {1,5,6,7}

Qs = {1,8,9,10}

Q11 == {1,11,12,13}

Q2 == {2,5,8,10}

Q6 = {2,6,9,12}

Q7 = {2,7,10,13}

Q~o = {3,5,10,12}

Q3 = {3,6,8,13}

Q9 == {3,7,9,11}

Q~3 = {4,5,9,13}

Q4 == {4,6,10,11}

Q~2 = {4,7,8, 1 2}

Figure 1. Result quorums of N == 13 using
Maekawa's algorithm

9

For instance, let N = 8. It is impossible to have n = pk.

The algorithm found that n'= 3 is the smallest number that

is larger than n (calculating value of n by replacing value

of N in the equations above, giving n = 2.193). Using n'= 3

instead of n in the equation above implies that N = 13

(N=3 2 +3+1). The quorums of N = 13 are the same as quorums

in Figure 1. Then, the algorithm needs to cut the overhead

quorums Qj, where j > N. That means the algorithm cuts

quorums Q9 , Q~0 , Q11 , Ql.2 , and Ql.3 • After that, it replaces

nodes 9, 10, 11, 12, and 13 that appear in Q~ .. Q8 by nodes

4, 5, 6, 7, and 8 respectively. Figure 2 gives the result

quorums of N = 8.

Q~ = {1,2,3,4}

Qs = {1,5,6,7}

Qa = {1,8,4,5}

Q2 {2,5,8,6}

Q6 = {2,6,4,7}

Q7 = {2,7,5,8}

Q3 = {3,6,8}

Q4 = {4,6,5}

Figure 2. Result quorums of N = 8 using
Maekawa's algorithm

Note that, in Q3 node 13 is supposed to be replaced by

node 8, but node 8 is already an element of Q3 • Thus, it is

not necessary to add another node 8 to Q3 • Q4 is the same

situation as Q3 •

Maekawa's algorithm requires only O(~N) nodes in each

quorum for mutual exclusion. This number is optimal for

10

distributed algorithms [Maekawa 85]. It is much better than

those of [Thomas 79]. While N is of the form n 2 +n+1

(remember that n is the number of nodes in a quorum -1) and

n is of the form pk, the constructed quorums are symmetric.

This means that it is a truly distributed system. However,

if n is not of the form pk, the constructed quorums are not

balanced. Another disadvantage of the algorithm is that it

provides a small number of quorums (equal to N) for mutual

exclusion.

Coterie

Garcia-Molina and Barbara define properties of coteries

that are very useful in distributed mutual exclusion.

Let U be the set of nodes in a system. A set of

quorums c is a coterie under U if and only if:

i . G E C - G ::;: 0 and G C U .

ii. (Intersection property) if G, HE C, then G and

H must have at least one node in common.

iii. (Minimality) There are no G, H E c such that

G c H.

Property ii can guarantee mutual exclusion. Property

iii reduces the redundancy of quorums that provide soluti ons

to mutual exclusion problems. Following is an example of a

coterie.

Let u = {1,2,3}

c = {{1,2}, {1,3}, {2,3}}

11

cis a coterie under u. It consists of quorums {1,2},

{1,3}, and {2,3). c has all the three properties above.

There are two kinds of coteries: dominated and

nondominated coteries. Let c be a coterie under U. C is

dominated if and only if there exist a quorum G c U such

that

i. G is not a superset of any quorum in C.

ii. G has the intersection property. This means that

for all quorums H E c, G n H * 0.

A coterie C under U is dominated if there is another

coterie, D, under u that dominates c. If there is

no such coterie, then c is nondominated. Nondominated

coteries are more fault-tolerant to node and communication

line failures than the coteries they dominate.

Let U = {1,2,3,4}

Let C and D be coteries under U.

c = {{1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}}

D = {{1,2}, {1,3}, {1,4}, {2,3,4}}

Obviously, D dominates C; each quorum in D dominates c.

D resists more fault than C. For instance , if the system

separates into two groups: {1,2} and {3,4}, there is one

active group under D ({1,2}) but none under c.

Tree Quorums

Agrawal and El Abbadi combined the idea of logical

structures and coteries to develop an efficient and fault

tolerant solution to mutual exclusion problems, called tree

quorums. The tree quorum selects nodes in a binary tree to

12

form quorums. It starts selecting nodes from the root and

ending with any of the leaves. If a path from the root to a

leaf has an inaccessible leaf, then that path cannot form a

quorum. If a nonleaf node in a path is inaccessible, then

paths starting with children of the failing node and ending

with leaves are used instead. Agrawal showed that the

algorithm not only works with binary trees but also works

with trees in which each nonleaf node has degree d [Agrawal

91]. Neilsen showed that the algorithm can be applied to

any tree in which each nonleaf node has at least two

children [Neilsen 92a]. They also proved that the algorithm

produces a nondominated coterie. Following is an example of

how to select nodes from a given tree in Figure 3.

tree:

1
I \

I \
2 3

II\ II\ I \ I \
4 5 6 7 8 9

Figure 3. A given tree f or generating
tree quorums

The following assumption can be made from the given

If all nodes in the tree are accessibl e, quorums can be

built as {1,2,4}, {1,2,5}, {1,2,6}, {1,3,7}, {1,3,8 } ,

{ 1 1 3 1 9 } •

If node 1 is inaccessible, nodes 2 and 3 (children of

node 1) will be used instead. The constructed quorums are

{2,3,4,7), {2,3,4,8}, {2,3,4,9), {2,3,5,7}, {2,3,5,8},

{2,3,5,9}, {2,3,6,7}, {2,3,6,8}, and {2,3,6,9}.

If node 2 is inaccessible, the quorum in the path is

{1,4,5,6}.

If node 3 is inaccessible, {1,7,8,9} is the quorum in

the path.

If nodes 1 and 2 are inaccessible, the constructed

quorums are {3,4,5,6,7}, {3,4,5,6,8}, and {3,4,5,6,9}.

If nodes 1 and 3 are inaccessible, the constructed

quorums are {2,4,7,8,9}, {2,5,7,8,9}, and {2,6,7,8,9}.

Finally, if nodes 1, 2, and 3 have failed, then

{4,5,6,7,8,9} is a quorum.

The collection of quorums is a coterie.

13

Tree quorum algorithm provides several choices of

quorums to a node requesting mutual exclusion. This is a

good feature of the algorithm. When a node malfunctions,

any other nodes that occur in the same quorums with that

node still can achieve mutual exclusion because they may

appear in other quorums. For instance, in the coterie

above, if node 1 is inaccessible, all quorums that contain

node 1 cannot achieve mutual exclusion. Nodes 2,3,4,5,6,7,

8, and 9 can still achieve mutual exclusion. In the best

case the algorithm requires permissions from only [log Nl

nodes. In the worst case it requires f(N+1)/2l nodes (for

binary trees) [Agrawal 91]. The algorithm requires more

nodes to achieve mutual exclusion when nodes in the upper

l evels of the tree are inaccessible. For example, if node 1

is inaccessible, the algorithm requi res at least 4 nodes to

perform mutual exclusion. Nodes bear different

14

responsibility to control mutual exclusion. Some nodes

appear more and some nodes appear less in the quorums. Thus

when nodes that appear in more quorums are not working,

there are fewer working quorums left for mutual exclusion.

For example, if node 2 is inaccessible, there are only 9

quorums left. If node 4 is inaccessible, there are 14

quorums left to provide mutual exclusion.

CHAPTER III

PROPOSED APPROACH

Introduction

The proposed method is a new method to construct

quorums that can be effectively used in distributed mutual

exclusions. The construction of quorums includes two

procedures:

i. Findi ng generators by using a difference set

algorithm. The difference set algorithm is given

in the next section.

ii. Forming quorums by using the generators from

step i.

The proposed method uses the difference set algorithm

to find generators because the difference set a l gorithm

pr ovide s generators that can be use d to construct quorums.

The constructed quorums have at least one node in common

with each other which guarantees mutua l exclusion. The

difference set algorithm require s a small number of nodes to

form a generator. The number o f nodes needed to form a

generator are the same as the number of nodes needed to form

a quorum. Thus, quorums constructed f rom the gene rator

c onsist o f a s mall number o f nodes as well . This mean s t hat

each quorum requires low message cost to achieve mutual

exclusi on.

15

16

The proposed method requires a small number of nodes

(O(vN)) in each quorum and can still achieve mutual

exclusion. The proposed solution also provides a reasonable

level availability.

Finding Generators

The proposed method requires knowing the number of

nodes in a distributed system, N. It finds generators from

a given N by using a difference set algorithm. There are

three steps to find generators:

Step I. Finding the number of nodes in a quorum, E.

Step II. Finding all possible generators for a

given N.

Step III. Applying the difference set algorithm to all

possible generators from Step II to obtain

generators.

Step III requires knowledge of a perfect difference

set, a difference set, and their applications. But it is

important to understand how the perfect difference set and

the difference set work before the last step because

formulas in Step I also involve the perfect difference set

and the difference set.

Perfect Difference Set and Difference Set

This section explains how to obtain the perfect

difference set and the difference set. A method that is

used to find the perfect d i fference set is called the

perfect difference set algorithm. A method that is used to

17

find the difference set is called the difference set

algorithm. The difference sets are used as generators.

Perfect Difference Set. An easy way to explain how the

perfect difference set algorithm works is by giving an

example.

Let N = 7.

Let E = 3 (Step I in the following section explains how

to find E).

Let S = {1,2,4} (a set that contains E elements of

nodes in N).

To see that S is a perfect difference set, consider the

following differences; all arithmetic is modular.

1
2
4

2 (4 - 2)
3 (4 - 1)
1 (2 - 1)

------- end of the first half
6 ((1 - 2) mod 7)
4 ((1 - 4) mod 7)
5 ((2 - 4) mod 7)

======= end of the second half

The differences (2,3,1,6,4, and 5) are every number

from 1 to N-1. The set s is called a perfect difference set

because the result of the method, every number from 1 to N-

1, can be obtained in one and only one way as the difference

of two members of the sets [Blattner 68]. After applying

the perfect difference set algorithm, not all sets that

contain E elements of nodes in N can p roduce a number from 1

to N-1. For example , let N = 7, l e t E = 3, and let sets =

{1,2,3}. The differences are computed:

18

1
2
3

1 (3 - 2)
2 (3 - 1)
1 (2 - 1)

------- end of the first half
6 ((1 - 2) mod 7)
5 ((1 - 3) mod 7)
6 ((2 - 3) mod 7)

======= end of the second half

The result is the numbers 1, 2, 1, 6, 5, and 6 which do

not include every number form 1 to N-1. Thus, the set s =

{1,2,3} is not a perfect difference set.

Difference Set. The reason for introducing the

difference set algorithm is that a perfect difference set

does not exist for most values of N. Thus, generators

cannot be formed for those N. The difference set algorithm

relaxes a condition in the perfect difference set algorithm

in order to find difference sets for different values of N,

E, and S. After applying the difference set algorithm to

any set s that contains E elements of nodes in N, if a set s

results in every number from 1 to N-1, not necessarily

obtained in one and only one way, then the set S is a

difference set (generator). For example, let N = 5, let E =

3, and let sets= {1,2,3}.

1
2
3

1
2
1

4
3
4

=======

(3 - 2)
(3 - 1)
(2 - 1)
e nd o f t he f irst h a l f
((1- 2) mod 5)
((1 - 3) mod 5)
((2 - 3) mod 5)
end of the second half

The result is the numbers 1, 2, 1 4 3 and 4 wh' h
' ' ' I lC

include every number from 1 to N-1. Thus, the set s is a

difference set. Note that there is more than one way to

find the differences between two members in the set s that

19

includes every number from 1 to N-1. The difference set is

used as a generator. Thus the set {1,2,3} is a generator.

Step I

Given N nodes in a distributed system, the proposed

method finds a number of nodes, E, that are needed to form a

quorum. Referred back to the perfect difference set

section, the result of the perfect different set algorithm

is N-1 numbers. From a given N, after applying the

algorithm, the value of E can be computed. The algorithm

chooses two elements out of E elements to find the

difference between the two elements. All possibilities of

choosing two elements out of E elements is equal to

(~) . The differences are computed up to two of (~) times.

From the above information, the following formulas can be

derived:

Thus,

+ 1

N = E2 - E + 1

E 2 - E + 1 - N = 0

E = -=.1---=.+_V_~=----4......,(....:1,_--'-N'-J-)
2

Si nce E is pos itive,
,----

E = 1 + V 4N - 3
2

Since E is discrete the proposed method sets

E = r1 + V 4N- 31. E is rounded up in order to cover N
2

that does not produce any perfect difference set, but does

produce difference set. An example of calculation E from

the given N = 5 is given below.

E r 1 + J 4N - 3 l
2

E = I 1 + J 4(5) - 31
2

E r 1 + ru1
2

E = r 2. 561

E = 3.

From the example, N = 5 cannot be used to produce any

perfect difference set, but can be used to produce

difference sets which are generators.

Step II

20

After calculating the value of E in step I, the propose

method uses the given N and the calculated E values to find

all possible generators . Forming all possible generators is

the same as choosing E elements out of N nodes. For

example, if N is equal to 5, then E will be equal to 3 (from

Step I). The total number of possible generators lS

= 10

All pos sible g e nerators a re {1,2,3}, {1, 2 ,4}, {1 ,2,5},

{1,3,4}, {1,3,5},{1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, and

{3,4,5}.

21

Step III

In Step III, all the possible generators from Step II

is used to find generators. The difference set algorithm is

applied to the possible generators. Generators are those

possible generators such that any number from 1 to N-1 is

the difference of a pair of nodes in the possible generator.

Other possible generators are discarded.

Forming Quorums

To form quorums, the proposed method uses the

constructed generators from the previous section to form

quorums as follow:

Step I. Forming quorums by giving successors to nodes

in the constructed generators.

step II. Check for the intersection property between

the generator and existing quorums before

constructing quorums from the generators.

Step I

Assigning N-1 successor nodes to each node in a

generator. Each successor is constructed by adding

1,2, ... ,N-1 to the nodes in the generator using modular

arithmetic.

For example, let N = 5. Then E = 3 and the set {1,2,3}

is a generator. The constructed quorums are as fol l ow:

1 2

2 3

__ 3_ 4

3

4

5

4

5

1

5

1

2.

22

From the third row, 4 is from 3+1, 5 is from 3+2, 1 is

from 3+3-5, and 2 is from 3+4-5. The quorums are {1,2,3},

{2,3,4}, {3,4,5}, {4,5,1}, and {5,1,2}.

Step II

Before constructing quorums from another generator, the

proposed method checks if the new generator intersects all

of the currently constructed quorums. If it intersects all

the constructed quorums, then it forms a new group of

quorums as mentioned in Step I. The new group of quorums is

added to the existing quorums. If the new generator does

not intersect all of the existing quorums, then ignore it.

Step II is applied to all of the constructed generators.

An example of performing step II is given below. Let

set {1,2,4} be another generator of N = 5. The already

constructed quorums are {1,2,3}, {2,3,4}, {3,4,5}, {4,5,1},

and {5,1,2}. The generator {1,2,4} intersects all the

existing quorums. Thus, quorums are constructed from the

generator {1,2,4} as follow:

1 2 3 4 5

2 3 4 5 1

__ 4_ 5 1 2 3.

After thati the new constructed quorums are added to the

existing quorums. The result quorums are {1,2,3}, {2,3,4},

{3,4,5}, {4,5,1}, (5,1,2}, (1,2,4}, {2,3,5}, {3,4,1},

{4,5,2}, and {5,1,3}.

23

Simulation Details

The approach towards constructing quorums discussed in

the Finding generators and Forming quorums sections is

simulated on Sequent S81 - DYNIX/ptx. The code is written

in c. All the programs, including the analysis programs,

are in Appendix B.

The simulation uses bits of unsigned long integers to

represent nodes. For instance, if a quorum contains nodes

1, 2, and 5, the integer 19 will be assigned to an unsigned

long integer variable to represent the quorum. Figure 4

shows how this scheme works.

Values 4294967295 64 32 16 8 4 2 1

Binary digits 0 0 0 1 0 0 1 1

Bits 32 7 6 5 4 3 2 1

Figure 4. Representing quorums by using
binary digits

The simulation program uses bit N+1 to check the upper

bound of N. Thus, it can simulate value of N up to 31

nodes. Operations in the main procedure are as follow:

main procedure

Getting N

Finding E

Finding generators

Finding quorums.

Initially, t he simulation program bounds the value o f N

in between 3 and 31, inclusively. Then, it computes the

value of E , Step I. step II and Step III are performed

recursively through every possible generator. Result

generators are kept in a binary tree. The recursive

procedure for this part is shown in Figure 5.

An example of all possible generators of N = 3 runs

through the recursive procedure in the Figure 5 are {1,2},

{1,3}, and {2,3}. The difference set algorithm, function

PDS(), is applied to all the possible generators. If the

function PDS() returns TRUE, that means the possible

Find_generators(N,E)
{

24

G = 0; /*unsigned long integer that represents a quorum */
Depth = 1;
loop_begin = 1;
loop_end = E - 1;

Recursive_find_generators(N,E,Depth,loop_begin,loop_end,G);
}

Recursive_find_generators(N,E,Depth,loop_begin,loop_end,G)
{

}

if (Depth <= E)
{

}

for (I=loop_begin; I<= (N- loop_end); I++)
(

G = G + Power(BASE,(I-1));
if (Depth == E)
{

}

if (PDS(N,E,G))
{

if(Search(&generators_tree,G,N)==NOTFOUND)
Generators_tree(&generators_tree, G);

else
Recursive_find_generators

(N, E, Depth+1, I+l, loop_end- 1, G);

G = G- Power(BASE,(I-1));

else
return(DONE);

Figure 5. Recursive procedure for forming generators

25

generator is a generator (new generator). The function

Search() searches existing generators in the generators

tree. If the function Search() returns NOTFOUND, that means

the existing generators do not produce quorums that are

equal to the new generator. Then, the new generator is

inserted into the generator's tree by calling the function

Generators_tree().

The function Power() calculates integer value that has

binary digits representing nodes in a quorum. The BASE

variable is defined as integer 2. That means the function

Power() returns the integer that has the form power of 2.

After constructing all generators, the simulation

program starts to form quorums from the constructed

generators. Figure 6 shows the pseudocode for this part.

Find_Quorums()
{

Outside_recursive_inorder(&generators_tree);
}
Outside_recursive_inorder(&generators_tree);
{

Outside_recursive_inorder(&left_subtree);
Inside_recursive_inorder(generator, &generators_tree);
Outside_recursive_ inorder(&right_subtree);

}
Inside_recursive_inorder(generator,&generators_tree);
{

}

Inside_recursive_inorder(&left_subtree);
Build_quorums(generator, &quorums_ tree);
Inside_recursive_inorder(&right_subtree);

Build_quorums(generator, quorums_tree)
{

If the generator intersects all exist i ng quorums in the
quorums tree, then the generator is used to form
quorums and add the new generated quorums to the
quorums tree, or else ignore it.

Figure 6. Pseudocode for finding quorums

The idea of the pseudocode in Figure 6 is the same as

doing nested for loops but with the generator's tree in

inorder manner. The Build_quorum() performs the same as

step I and Step II in the Forming quorum section.

Special Case

26

After running the simulation program, it appeared that

for some values of N such as 20, 29, and 30, the proposed

method does not provide any quorums. The results after

applying the difference set algorithm to those N are not

every number from 1 to N-1. This means that generators for

those N do not exist. Thus, quorums cannot be formed.

To solve this problem, a substitution method similar to

those of Maekawa is introduced. First, let N be the number

that cannot be used to generate quorums. Next, the

replacing method finds an N', where N' is the smallest

number that is larger than N, that can be used to generate

quorums. Then, the proposed method is applied to construct

quorums for N'. Finally, the substitution method is used to

replace nodes in the constructed quorums that are greater

than N with nodes that are smaller than or equal to N. The

resulting quorums after substitution have at least one node

in common with each other. Thus, the resulting quorums can

still achieve mutual exclusion. An example of the

substitution method with N = 29 is given in Figure 7.

27

===================~

N = 31 E = 6
====================
====================
GENERATOR(S) :
1 2 5 11 13 18
END.

QUORUMS . .

1 2 5 11 13 18 2 3 6 12 14 19 3 4 7 13 15 20
4 5 8 14 16 21 5 6 9 15 17 22 6 7 10 16 18 23
7 8 11 17 19 24 8 9 12 18 20 25 9 10 13 19 21 26

10 11 14 20 22 27 11 12 15 21 23 28 12 13 16 22 24 29

13 14 17 23 25 30 14 15 18 24 26 31 1 15 16 19 25 27
2 16 17 20 26 28 3 17 18 21 27 29 4 18 19 22 28 30
5 19 20 23 29 31 1 6 20 21 24 30 2 7 21 22 25 31
1 3 8 22 23 26 2 4 9 23 24 27 3 5 10 24 25 28
4 6 11 25 26 29 5 7 12 26 27 30 6 8 13 27 28 31
1 7 9 14 28 29 2 8 10 15 29 30 3 9 11 16 30 31
1 4 10 12 17 31

END.
============~=======

The substitution methpd modifies quorums of N = 31
by replacing nodes 30 and 31~ith nodes 28 and 29,
respectively. The result ~s as follows:
====================
N = 29 E = 6
====================
================~===

GENERATOR(S) . .
1 2 5 11 13 18
END.

QUORUMS :

1 2 5 11 13 18 2 3 6 12 14 19 3 4 7 13 15 20
4 5 8 14 16 21 5 6 9 15 17 22 6 7 10 16 18 23
7 8 11 17 19 24 8 9 12 18 20 25 9 10 13 19 21 26

10 11 14 20 22 27 11 12 15 21 23 28 12 13 16 22 24 29
13 14 17 23 25 28 14 15 18 24 26 29 1 15 16 19 25 27

2 16 17 20 26 28 3 17 18 21 27 29 4 18 19 22 28
5 19 20 23 29 1 6 20 21 24 28 2 7 21 22 25 29
1 3 8 22 23 26 2 4 9 23 24 27 3 5 10 24 25 28
4 6 11 25 26 29 5 7 12 26 27 28 6 8 13 27 28 29
1 7 9 14 28 29 2 8 10 15 29 28 3 9 11 16 28 29
1 4 10 12 17 29

END.
====================

Figure 7. An example of the substitution method

CHAPTER IV

ANALYSIS AND RESULTS

Analysis

There are two important aspects of analyzing quorum

structures:

l. Message cost

ii. Availability

In distributed systems, quorums should have a low

number of nodes. The fewer number of nodes required to form

a quorum, the lower number of messages required to obtain

mutual exclusion. Availability of forming quorums

(reliability) is another important aspect. Availability is

used to measure performance of algorithms that are used to

construct quorums. Algorithms that provide higher

availability are preferred.

In this thesis, the analysis of the message cost and

the availability of forming quorums are based on [Maekawa

85], [Agrawal 91], and [Neilsen 92c] papers. The thesis

analyzes and compares the two important aspects of the

majority consensus, the tree quorums, Maekawa's algorithm,

and the proposed method.

28

29

Message Cost

The number of nodes required to achieve mutual

exclusion in the majority consensus are r (N+1)/2 l. In the

tree quorums, the number of nodes required to form a quorum

are highly dependent on nodes in the upper levels of a tree.

A formula for calculating the average number of nodes

required to form a quorum given in Agrawal's paper is used.

The formula is as follows:

c1+l. = f (cl + 1) + (1 - f) (2c1) ,

where C1 is the average number of nodes required to form

quorum in a tree of level 1,

f is the fraction of quorums that include the root of

level 1+1, and

C0 is equal to one.

Maekawa's algorithm requires O(vN) nodes. The proposed

method also requires O(~N) nodes.

Availability

The thesis measures availability by assigning equal

probability of node operations to each node in the system.

This is done in order to compare clearly the results among

each algorithm. The assigned probabilities start·from 0.05

to 0.95.

Availability of the majority consensus is measured as

follows:

Let K = lN/2j

Let P = Probability that nodes are operational

30

Availability = Probability (K+1 nodes are operational)

+

+

Probability (N nodes are operational)

= (K:1) pCK+i)(1-P)(N-(K+i)) + ••• + (~) pli(1-P)CN-N)

Availability of the tree quorums, Maekawa's algorithm,

and the proposed method are measured by using methods in the

Neilsen's paper. The following are the methods used.

The probability that only the nodes in a quorum Q

are operational 1 is defined by:

Pr (Q , U) = ll (P d TI (1-P 1) (1)
i tQ i t (O-Q)

where P1 is the steady-state probability that node i is

operational, U is all nodes in a system. The availability

of coterie C is defined by

Avail(C) = 'E Pr(Q,U) (2)
oE ACCl

where A(C) is the corresponding acceptance set. The

acceptance set is the set of all subsets of U that contain a

quorum of c.

The constructed quorums o f Maekawa's algorithm and the

proposed method are also coteries. Thus,the definitions (1)

31

and (2) above can be applied to measure the availability of

the two algorithms.

The availability of the tree quorums is measured a

little different. A tree that is used to form quorums is

divided into subtrees each of which has tree nodes.

Supposed that the tree consists of five nodes then it can be

divided into subtrees, as shown in Figure 8 and Figure 9.

1
I \

2 3
I \

4 5.

Figure 8. Original tree

1

I \
A 3

and 2
I \

4 5.

C1 C2

Figure 9. Divided subtrees

Note that A is a new node that represents the subtree

C2. This me thod is from the composition by Neilsen,

[Neilsen 92a], [Neilsen 92b], and [Neilsen 92c].

To compute the availability of the tree, first, use

tree quorum algorithm to construct quorums from each

subtree. Then, use the definitions (1) and (2) above to

compute the availability of each subtree. The probability

of the new node(s), A, is the probabi l i ty of subtr ee(s) it

represents .

Let the probability of each node in the tree equal to

0.9. Quorums of the subtree C2 are { {2,4},{2,5},{4,5} }.

N of C2 is {2,4,5}.

A(C2) = ({2,4},{2,5},{4,5},{2,4,5})

Pr({2,4}) = (0.9) (0.9) (0.1) = 0.0810

Pr({2,5}) = (0.9) (0 . 1) (0.9) = 0.0810

Pr({4,5}) = (0.1) (0.9) (0.9) = 0.0810

Pr({2,4,5}) = (0.9) (0.9) (0.9) = 0.7290

:. Avail (C2) = 0.0810+0.0810+0.0810+0.7290

= 0.9720.

since node A represents the subtree C2, then, the

probability of node A is equal to Avail(C2) = 0.9720.

Quorums of the subtree C1 are { {1,A},{1,3},{A,3} }.

N of C1 is {1,A,3}.

A(C1) = ({l,A},{l,3},{A,3},{1,A,3})

Pr ({ 1 ,A}) = (0.9)(0.972)(0.1) = 0.0875

Pr({1,3}) = (0.9)(0.028)(0.9) = 0.0227

Pr ({A, 3}) = (0.1)(0.972)(0.9) = 0.0875

Pr({1,A,3}) = (0.9)(0.972)(0.9) = 0.7873

:. Avail (Cl) = 0.0875+0.0227+0.0875+0.7873

= 0.9850.

Results

32

Results of the simulation are separated into two

aspects, the same as the analysis section. The results are

shown by gra phs in Figure 10 to Figur e 16. Table I to Table

VII show the source data that are used to plot graphs in

Figure 10 to Figure 16, respectively.

33

Results of Message Cost

Figure 10 and Table I show the comparisons of numbers

of nodes needed to form a quorum in the majority consensus,

the tree quorums, Maekawa's algorithm, and the proposed

method. The numbers used in the tree quorums are the

average numbers as mentioned in the analysis section.

The graph in Figure 10 shows that the proposed method

uses fewer nodes to form a quorum than majority consensus.

Comparing to the tree quorums, if less than seventy-five

percent of the root of each level in a tree were used to

form quorums, the average quorum size of the tree quorums

would be larger than the quorum size of the proposed method.

Results of Availability

Figure 11 to Figure 16 and Table II to Table VII show

the comparisons of the availabilities of majority consensus,

the tree quorums, Maekawa's algorithm, and the proposed

method with differences N.

The results indicate that, if quorums of the proposed

method are constructed from more than one generator

(N=5,9,15), its availability becomes similar to the

availability of the majority consensus when the probability

is greater than 0.75, better than the availability of the

tree quorums when the probability is greater than 0.65, and

better than Maekawa's algorithm when the probability is

greater than 0.5.

Expected messages cost
of the four methods

70~---,

--1
I

Ill 60-f······················· ~ 50 ··· ·· ··························· ····························· · ··················;'········· ·········

:J '

I ,

rr
~ 40
0

m
N
• iii 30
1J
m
u 20
m
Q_
X
w 10

0

I

I ,
I

··-························-··· ·····················-···············'····························--··

I

I
I

I ,

I
I

I

.. ... ~ ,

I
I

I

I
I

I

......... ~~;-~·- · -- -- · ·· ··-- · .. ·····

' ' ,
. ~;;y· ··· ·

--····························· ·················· ::::::::::::~7''~:::::::~
... --=== ~ ----------!----=-:--------=---·===== -0 3 7 15 31 63

Number of nodes in the system

---Majority consensus -+-Tree quorums(f=1) -+ - Tree quorums(f=.7)
--·::8:--· Maekawa's algorithm -E3- Proposed method

Figure 10. Graph comparing the expected size of
quorum of the four methods

127

w
.f>.

TABLE I

EXPECTED SIZE OF QUORUMS OF THE FOUR METHODS

--------------------+--------+--------+--------
Methods N = 3 N = 7 N = 15

--------------------+--------+--------+--------
Majority consensus

Tree quorums{f=1)

Tree quorums(f=.7)

Maekawa's algorithm

Proposed method

2

2

2

2

:::::rmr::2:r::r:rmr:

4

3

3

3

8

4

5

5

--------------------+--------+--------+--------

TABLE I (Continued)

--------------------+--------+--------+--------
Methods N = 31 N = 63 N = 127

--------------------+--------+--------+--------
Majority consensus

Tree quorums(f=1)

Tree quorums(f=.7)

Maekawa's algorithm

Proposed method

16

5

7

6

32

6

10

9

64

7

14

12

::({{{12:{(:{(

--------------------+--------+--------+--------

35

0.9

0 .8
(/)

E o.7
:J
L
0
:J 0 .6 rr

4-

0 0.5
>-

-+-·-:0 0.4
0

~ 0.3
<(

0. 2

0.1

0
0

jAvailability for N = 51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability that nodes are operational

-- ~alorlly consensU5 --1-- Tree qoon.ms ··K·· f.laekawa's algoriiiYn -8- Proposed method

Figure 11. Graph comparing the availabilities of
the four methods with N = 5

0.9

w
0\

TABLE II

COMPARISON OF THE AVAILABILITIES OF THE
FOUR METHODS WITH N = 5

------------+-----------+-----------+-----------+-----------
PROBABILITY MAJORITY

CONSENSUS
TREE

QUORUMS
MAEKAWA'S
ALGORITHM

PROPOSED
METHOD

------------+-----------+-----------+-----------+-----------
0.05 0 . 0002 0.0032 0.0052

0.10 0.0086 0.0150 0.0215

0.15 0.0266 0.0380 0.0494

0.20 0.0579 0.0733 0.0886

0.25 0.1035 0.1211 0.1387

0.30 0.1631 0.1807 0.1984

0.35 0.2352 0.2507 0.2662

0.40 0.3174 0.3290 0.3405

0.45 0.4069 0.4130 0.4191

0.50 0 . 5000 0.5000 0.5000

0.55 0.5931 0.5870 0.5809

0.60 0.6826 0.6710 0.6595

0.65 0.7648 0.7493 0.7338

0.70 0.8369 0.8193 0.8016

0.75 0.8965 0.8789 0.8613

0.80 0.9421 0.9267 0.9114

0.85 0.9734 0.9620 0.9506

0.90 0.9914 0.9850 0.9785

0.95 0.9988 0.9968 0.9948

------------+-----------+-----------+-----------+-----------

37

!Availability for N = 7 j

0.9
_.,....

-·--·---·· ··················· ·· ······· ········-,r.-.,.:
/

0.8
Ill

E o.7
:::1
L
0
:::1 0.6 rr

4-

0 0.5
>-

-+-

:.0 0.4
0

~ 0.3
<:(

0.2

0.1

I ~-- I 0 BIB .. ~ I I I 1 I I I I I I I I I I I I t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Probability that nodes are operational

-- ·Molarity consensl.IS -+- Tree qoonrns ··:K· Mael<owa's algorithm -8- Proposed method

Figure 12. Graph comparing t he availabilities of
the four methods with N = 7

0.9

w
00

TABLE III

COMPARISON OF THE AVAILABILITIES OF THE
FOUR METHODS WITH N = 7

39

------------+-----------+-----------+-----------+-----------
PROBABILITY MAJORITY

CONSENSUS
TREE

QUORUMS
MAEKAWA'S
ALGORITHM

PROPOSED
METHOD

------------+-----------+-----------+-----------+-----------
0.05 0.0002 0.0008 0.0009

0.10 0.0027 0.0062 0.0068

···:·:·:-:·:····:::;:;:::::::::::::::~:~::>~;~(~~({:::

lfJl~?~~~i~lli
:-:.:.:.;.:-:-:-:-:-:-:· ··

0.15 0.0121 0.0208 0.0223

0.20 0.0333 0.0480 0.0506

0.25 0.0706 0.0903 0.0936

0.30 0.1260 0.1483 0.1520

0.35 0.1998 0.2210 0.2246

0.40 0.2898 0.3064 0.3092

0.45 0.3917 0.4008 0.4023

0.50 0.5000 0.5000 0.5000

0.55 0.6083 0.5992 0.5997

0.60 0.7102 0.6936 0.6909

0.65 0.8002 0.7790 0.7754

0.70 0.8740 0 . 8517 0.8480

0.75 0.9294 0.9097 0.9064

0.80 0.9667 0.9519 0.9495

0.85 0.9879 0.9792 0.9 7 77

0.90 0.9973 0.9938 0.9932

0.95 0.9998 0.9992 0 . 9991

------------+-----------+-----------+-----------+-----------

0.9

0.8

Ill

E o.7
:::J
L
0
:::J 0.6 rr
~

0 0 .5
>.. -~ 0.4
0

~ 0.3
<l:

0.2

0.1

(AVailability -TOr N = -Jj
z ····

.........,..:..-/ .. ~)K:: .. .
x-···

····································· ·················· ··········· ······························;/jr{···:_;i/.::::

....... _>i,.

.... _:.i:·----···----·····--··--···--······--························-- ·····--·······-- ······ --······

' (/ ···········;!···

...... "$.
-_.::::~,

..... _--z.··

~ .. ··
~ . ,. ~· ,&.6 :a·····
, • .·

:-·:

I ~- I 0 Eli!llifl r 11 1 111 1 111111 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability that nodes are operational

-- f.Aolorlly consensus -+-- Tree quorlJ1l5 .. z .. Maekawo'5 algorithm -8- Proposed method

Figure 13. Graph comparing the availabilities of
the four methods with N = 9

,:::..
0

TABLE IV

COMPARISON OF THE AVAILABILITIES OF THE
FOUR METHODS WITH N = 9

41

------------+-----------+-----------+-----------+-----------
PROBABILITY

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 . 55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MAJORITY
CONSENSUS

0.0000

0.0009

0.0056

0.0196

0.0489

0.0988

0.1717

0.2666

0.3786

0.5000

0.6214

0.7334

0.8283

0.9012

0.9511

0.9804

0.9944

0.9991

1.0000

TREE
QUORUMS

0.0005

0.0046

0.0164

0.0400

0.0788

0.1346

0.2076

0.2955

0.3948

0.5000

0.6052

0.7045

0.7925

0.8654

0.9212

0.9600

0.9836

0.9954

0.9995

MAEKAWA'S
ALGORITHM

0.0003

0.0026

0.0096

0.0240

0.0487

0.0859

0.1371

0.2024

0.2812

0.3711

0.4689

0.5703

0.6703

0.7635

0.8450

0.9106

0.9578

0.9861

0.9981

PROPOSED
METHOD

jA vailability for N = 1 1 I

0.9

0.8
(I)

E o.7
:J
L
0
:J 0.6
rr

---- - - · · · ···· · ·· · · · ·· ·· · · ·· ·· · ·· ·· ····· ·· ··- ·· ·- · ···· · · · · ··· ····· · ·· · ·· ··· · · · · · ·· · ··· · ·){~.: . .
~/ .·

.......
0 0.5
>..

:5 0.4
0

~ 0.3
<i

0.2

0.1

0 f II!! 1!1!1 -a~-· '$" I I I I I I I I I I I I I I 1 1 J

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability that nodes are operational

--· t.folorlty COM !IMUS -+-· Tree quorl-tl\$ ··R ·· Moekawo's olgorltiYn -B- Proposed method

Figure 14. Graph comparing the availabilities of
the four methods with N = 11 ~

l\)

TABLE V

COMPARISON OF THE AVAILABILITIES OF THE
FOUR METHODS WITH N = 11

43

------------+-----------+-----------+-----------+-----------
PROBABILITY

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 . 65

0.70

0.75

0.80

0.85

0.90

0.95

MAJORITY
CONSENSUS

0 . 0000

0.0002

0.0027

0.0117

0.0343

0.0782

0.1487

0.2465

0.3669

0.5000

0.6331

0.7535

0.8513

0.9218

0.9657

0.988 3

0.9973

0.9997

1 . 0000

TREE
QUORUMS

0.0004

0.0036

0.0131

0.0334

0.0687

0.1221

0.1947

0.2849

0.3888

0.5000

0.6112

0 . 7151

0.8053

0.8779

0.9313

0.9666

0. 9 86 9

0.9964

0.9996

MAEKAWA'S
ALGORITHM

0.0003

0 . 0028

0.0107

0.0277

0.0574

0.1025

0.1647

0.2436

0.3371

0.4409

0.5496

0.6565

0.7551

0.8395

0.9063

0.9532

0.981 7

0.9953

0.9996

PROPOSED
METHOD

------------+-----------+-----------+-----------+-----------

0.9

0.8
(I]

E o.7
::J
L
0
::J 0.6
IT

'+-
0 0.5
>--:n 0.4
0

~ 0.3
~

0.2

0.1

lA vailability for N = 1 3 j

~
/

·······················-·····-········-······ ··· .. ,/. ..

... :;<~i;~
. -·----······ ································ ···-.-

.................... /t:~-'1
II ,,

I I

" " '

, 1,/

0 1 1!11! 1!1!1 IIIII ~--- ' I I I I I I I I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability that nodes are operational

--· '-lolorlty consensl..l!l -+-·Tree quorl.JT\!1 .. E .. Moekowo's olgorlttm -8-- Proposed method

Figure 15. Graph comparing the availabilities of
the four methods with N = 13 .t>o

.t>o

TABLE VI

COMPARISON OF THE AVAILABILITIES OF THE
FOUR METHODS WITH N = 13

45

------------+-----------+-----------+-----------+-----------
PROBABILITY

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MAJORITY
CONSENSUS

0.0000

0.0001

0.0013

0.0070

0.0243

0.0624

0.1295

0.2288

0.3563

0.5000

0.6437

0.7712

0.8705

0.9376

0.9757

0.9930

0.9987

0 .9999

1.0000

TREE
QUORUMS

0.0002

0.0022

0.0094

0.0264

0.0583

0.1094

0.1817

0.2743

0.3828

0.5000

0.6172

0 . 7257

0.8183

0.8906

0.9417

0.9736

0.9906

0.9978

0.9998

MAEKAWA'S
ALGORITHM

0.0001

0.0013

0.0065

0.0199

0.0467

0.0917

0.1580

0.2459

0.3525

0.4714

0.5937

0.7094

0.8096

0.8882

0.9431

0.9762

0.9925

0.9986

0.9999

PROPOSED
METHOD

mno. 4?1~@Ld.
:·:·:·:·>:·>:·:.:::::.:.:.:-:·:·:·:::.:::.:·:·:·:-:·:·:·.·:::::·

::::::::::::::::::::::::;:;:;:::::::::;:;:::::;

------------+-----------+-----------+-----------+-----------

jA vailability for N = 1 Sj

0.9 ··· ······················

0.8
(I)

E o.7
:J
L
0
:J 0.6
rr

"'"" 0 0.5
>--
~ 0.4
lJ

·~ 0.3
<(

0.2

0.1

o 1 811 1!1!1 a -~~::~-' I I I I I 1 1 1 1 1 I I I I I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability that nodes are operational

--· l.lalorlly consensus -+ -· Tree quon.ms ··R · Maekawa's algorlflm -8- Proposed method

Figure 16. Graph comparing the availabilities of
the four methods with N = 1 5 ~

0'1

TABLE VII

COMPARISON OF THE AVAILABILITIES OF THE
FOUR METHODS WITH N = 15

------------+-----------+-----------+-----------+-----------
PROBABILITY

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MAJORITY
CONSENSUS

0.0000

0.0000

0.0006

0 . 0042

0.0173

0.0500

0.1132

0.2131

0.3465

0.5000

0.6535

0.7869

0.8868

0.9500

0.9827

0.9958

0.9994

1.0000

1. 0000

TREE
QUORUMS

0.0001

0.0013

0.0066

0.0206

0.0493

0.0978

0.1694

0.2639

0.3768

0.5000

0.6232

0.7361

0.8306

0.9023

0.9508

0.9794

0.9935

0.9987

0.9999

MAEKAWA'S
ALGORITHM

0.0000

0.0006

0.0032

0.0107

0.0269

0.0564

0.1036

0.1716

0.2609

0.3689

0.4896

0.6138

0.7311

0.8317

0.9085

0.9592

0.9866

0.9974

0.9999

PROPOSED
METHOD

47

48

If quorums of the proposed method are constructed from

a generator (N=7,11,13), its availability is similar to the

tree quorums and Maekawa's algorithm when the probability is

greater than 0.75.

In Maekawa's algorithm, if there exists pk of order n,

then the availabilities of Maekawa 1 s algorithm and the

proposed method are the same (N=7,13).

Complexity

Time complexity of the proposed method includes two

parts. The first part is the complexity for finding

generators. The second part is the complexity for forming

quorums. The complexity for finding generators is o (N Iii) ,

. . .[ii .
where N 1s the number of nodes 1n the system. The N 1s

(~) calculated from applying the difference set algorithm L

times, E = O(vN). The complexity for forming quorums is

O(n2), where n is the number of generators. n 2 is

calculated from doing a nested loop in the generator's tree.

Thus, the compl exity of the proposed method is O(NJN+ n 2).

CHAPTER V

CONCLUSIONS

Conclusions

A new method of constructing quorums in distributed

systems has been proposed. The proposed method uses the

difference set algorithm to construct generators. Then, it

uses the constructed generators to form quorums. The

resulting quorums have the property that each quorum has at

least one node in common with all other quorums. This

property can be used to guarantee mutual exclusion in a

distributed system.

The proposed method requires fewer nodes to form a

quorum than majority consensus and tree quorums when a

fraction of quorums that include root, f, is less than 0.75.

When the proposed method constructs quorums from more than

one generator, the proposed method is more flexible and

reliable than Maekawa's algorithm in that it provides more

choice of quorums to perform mutual exclusion and gives

higher availability of forming quorums.

Regardless of constructing quorums from one or more

generators, the proposed method gives a balanced load to all

nodes in the s yste m, in most cases.

49

50

Future Work

The proposed method applies the difference set

algorithm to all of the possible generators of a given N in

order to find generators. The time complexity for finding

generators is O(N~). It would be useful to have a more

effici ent algori thm to compute the possible generators for a

given N.

REFERENCES

[Agrawal 89]
Agrawal, Divyakant, and El Abbadi, Amr, "An Efficient
Solution to the Distributed Mutual Exclusion Problem,"
Proceedings of the 8th ACM Symposium on Principles of
Distributed Computing, 1989, pp. 193-200.

[Agrawal 90]
Agrawal, Divyakant, and El Abbadi, Amr, "Exploiting
Logical Structures in Replicated Databases,"
Information Processing Letters, Vol. 33, January 1990,
pp.255-260.

[Agrawal 91]
Agrawal, Divyakant, and El Abbadi, Amr, "An Eff icient
and Fault-Tolerant Solution for the Distributed Mutual
Exclusion," ACM Transactions on Computer Systems, Vol.
9, No. 1, February 1991, pp. 1-20.

[Barbara 86]
Barbara, Daniel, and Garcia-Molina, Hector, "The
Vulnerability of Vote Assignments," ACM Transactions on
Computer Systems, Vol. 4 , No. 3, August 1986, pp.
187-213.

[Bhargava 87]
Bhargava, Bharat K., Concurrency Control and
Reliability in Distributed systems, Van Nostrand
Reinhold Company Inc., 1987.

[Blattner 68]
Blattner, John W., Projective Plane Geometry,
Holden- Day, Inc., 1968, pp. 12-46 .

[Cheung 90]
Cheung, Shun Yan, Arnmar, Mosta fa H., and Ahamad
Mustaque , "The Grid Protocol: A High Perfor mance Sche me
for Maintaining Replicated Data," IEEE 6th
International Conf erence on Data Engi neering, 1990,
pp.438-445.

[Garcia 85]
Garci a-Mo l ina , Hector, and Barbara, Daniel , "How to
Assign Vote s i n a Distribu t e d Sys t e m," Jou r nal o f t he
ACM, Vol. 3 2 , No. 4 , October 1985, pp.841-860.

51

[Gifford 79]
Gifford, David K., "Weighted Voting for Replicated
Data," Proceedings of the 7th ACM Symposium on
Operating Systems Principles, 1979, pp.150-162.

[Kumar 91]
Kumar, Akhil, "Hierarchical Quorum Consensus : A New
Algorithm for Managing Replicated Data," IEEE
Transactions on Computers, Vol. 40, No. 9, September
1991, pp. 996-1004.

[Lamport 78a]
Lamport, Leslie, "The Implementation of Reliable
Distributed Multiprocess systems," Computer Networks,
Vol. 2, 1978, pp. 95-114.

[Lamport 78b]

52

Lamport, Leslie, "Time, Clocks, and the Ordering of
Events in a Distributed System," Communications of the
ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

[Maekawa 85]
Maekawa, Mamoru, "A v'N Algorithm for Mutual Exclusion
in Decentralized Systems," ACM Transactions on Computer
Systems, Vol. 3, No. 2, May 1985, pp. 145-159.

[Hullender 89]
Hullender, Sape J., Distributed Systems, Addison-Wesley
Publishing Company, 1989.

[Neilsen 92a]
Neilsen, Mitchell L., and Mizuno, Masaaki, "Coterie
Join Algorithm," IEEE Transaction on Parallel and
Distributed Systems, Sept 1992, pp. 582-590.

[Neilsen 92b]
Neilsen, Mitchell L., Mizuno, Masaaki, and Raynal,
Michel, "A General Method to Define Quorums," IEEE 12th
International Conference on Distributed Computing
Systems, Yokohama, Japan 1992, pp. 657-664.

[Neilsen 92c]
Neilsen, Mitchell L., and Mizuno, Masaaki,
"Availability analysis of composite coteries," IEEE
11th International Phoenix Converence on Compute rs and
Communications, 1992, pp. 759-765.

[Ricart 81]
Ricart, Glenn, and Agrawala, A. K., "An Optimal
Algorithm for Mutual Exclusion in Computer Networks,"
Communication of the ACM, Vol. 24, No. 1, January 1981,
pp. 9 - 17.

[Thomas 79]
Thomas, Robert H., "A Majority Consensus Approach to
Concurrency Control for Multiple Copy Databases," ACM
Transactions on Database Systems, Vol. 4, No. 2, June
1979, pp. 180-209.

53

APPENDIXES

54

APPENDIX A

INPUT QUORUMS FOR MAEKAWA'S ALGORITHM

AND THE PROPOSED METHOD USED IN

THE ANALYSIS SECTION

55

INPUT DATA FOR MAEKAWA'S ALGORITHM

==========
N = 5
==========
QUORUMS:
1 2 3
1 4 5
2 4 0
2 5 0
3 5 4
END.
==========

==========
N = 7
============
QUORUMS:
1 2 3
1 4 5
1 6 7
2 4 6
2 5 7
3 4 7
3 5 6
END.
==========

==========
N ::::; 9
==========
QUORUMS:
1 2 3 4
1 5 6 7
1 8 9 6
2 5 8 7
2 6 9 8
2 7 6 9
3 6 8 9
3 7 9 0
4 6 0 7
END.
==========

==========
N = 11
==========
QUORUMS:
1 2 3 4
1 5 6 7
1 8 9 10
1 11 10 0

56

2 5 8 11
2 6 9 10
2 7 10 11
3 5 10 0
3 6 8 11
3 7 9 11
4 6 10 11
END.
==========

==========
N = 13
===========
QUORUMS:
1 2 3 4
1 5 6 7
1 8 9 10
1 11 12 13
2 5 8 11
2 6 9 12
2 7 10 13
3 5 10 12
3 6 8 13
3 7 9 11
4 5 9 13
4 6 10 11
4 7 8 12
END.
==========

==========
N = 15
==========
QUORUMS:
1 2 3 4 5
1 6 7 8 9
1 10 11 12
1 14 15 10
2 6 10 14
2 7 11 15
2 8 12 10
2 9 13 11

13
11

12
13
14
15

3 6 11 0 14
3 7 10 0 15
3 8 13 15 12
3 9 12 14 13
4 6 12 15 0
4 7 13 14 0
5 7 12 11 0

57

INPUT DATA FOR THE PROPOSED METHOD

====================
N = 5 E = 3
====================
GENERATOR(S)
1 2 3
1 2 4
END.

QUORUMS:
1 2 3
1 2 5
1 2 4
1 3 5

END.

2 3

2 3

====================

====================
N = 7 E = 3
====================
GENERATOR(S)
1 2 4
END.

4

5

QUORUMS:
1 2 4
1 5 6

END.

2 3 5
2 6 7

====================

====================
N = 9 E = 4
====================
GENERATOR(S)
1 2 3 5
1 2 4 5
1 2 4 6
END.

QUORUMS:

1 2 3 5 2 3
5 6 7 9 1 6
1 2 4 9
1 2 4 5 2 3
5 6 8 9 1 6
1 3 4 9
1 2 4 6 2 3
1 5 6 8 2 6
1 3 5 9

END .
====================

4
7

5
7

5
7

3 4 5

1 3 4

3 4 6
1 3 7

6 3
8 2

6 3
9 1

7 3
9 1

58

1 4 5

2 4 5

4 5 7

4 5 7 4 5 6 8
7 8 9 1 3 8 9

4 6 7 4 5 7 8
2 7 8 2 3 8 9

4 6 8 4 5 7 9
3 7 8 2 4 8 9

====================
N = 11 E = 4
====================
GENERATOR(S)
1 2 3 6
END.

QUORUMS:
1 2 3 6
5 6 7 10
3 9 10 11

END.

2
6
1

====================

====================
N = 13 E = 4
====================
GENERATOR(S)
1 2 5 7
END.

QUORUMS:
1 2 5 7
5 6 9 11
2 9 10 13
1 4 6 13

END.

2
6
1

====================

====================
N = 15 E = 5
====================
GENERATOR(S)
1 2 8 10 13
1 2 4 7 8
1 2 4 7 11
1 2 4 8 13
1 2 4 11 13
END.

QUORUMS:

1 2 8 10 13
1 4 5 11 13
1 4 7 8 14
2 4 7 10 11
5 7 10 13 14
1 2 4 7 8
4 5 7 10 11
7 8 10 1 3 14
1 2 1 0 11 13
1 4 5 13 14
1 2 4 7 11
4 5 7 10 14

3
7
4

3
7
3

2
2
2
3
6
2
5
8
2
2
2
5

4 7 3 4 5
8 11 1 7 8

10 11 1 2 5

6 8 3 4 7
10 12 7 8 11
10 11 2 4 11

3 9 11 14 3
5 6 12 1 4 3
5 . 8 9 15 1
5 8 11 12 4
8 11 14 15 1
3 5 8 9 3
6 8 11 12 6
9 11 1 4 1 5 1
3 11 12 14 3
5 6 14 1 5 1
3 5 8 12 3
6 8 11 15 1

8
9

11

9
13
12

4 10
6 7
3 6
6 9
7 9
4 6
7 9
9 10
4 12
3 6
4 6
6 7

4 5 6 9
2 8 9 10

4 5 8 10
1 8 9 12
3 5 12 13

12 15
13 15

9 10
12 13
12 15

9 10
12 13
12 15
13 1 5

7 15
9 13
9 12

59

60

2 7 8 10 13 3 8 9 11 14 4 9 10 12 15
1 5 10 11 13 2 6 11 12 14 3 7 12 13 15
1 4 8 13 14 2 5 9 14 15 1 3 6 10 15
1 2 4 8 13 2 3 5 9 14 3 4 6 10 15
1 4 5 7 11 2 5 6 8 12 3 6 7 9 13
4 7 8 10 14 5 8 9 11 15 1 6 9 10 12
2 7 10 11 13 3 8 11 12 14 4 9 12 13 15
1 5 10 13 14 2 6 11 14 15 1 3 7 12 15
1 2 4 11 13 2 3 5 12 14 3 4 6 13 15
1 4 5 7 14 2 5 6 8 15 1 3 6 7 9
2 4 7 8 10 3 5 8 9 11 4 6 9 10 12
5 7 10 11 13 6 8 11 12 14 7 9 12 13 15
1 8 10 13 14 2 9 11 14 15 1 3 10 12 15

END.
====================

APPENDIX B

ANALYSIS AND SIMULATION PROGRAMS

61

62

ANALYSIS PROGRAM FOR THE MAJORITY CONSENSUS ALGORITHM

/***
The file makefile is used to compile all the programs

that are used to calculate availability in the majority
consensus algorithm. The compiled file is "run". Note
that -lm is for the include math.h. To run the program
enter "run N Pr", where N (nodes in a system) is an integer
number and Pr (probability that nodes are operational) is a
float number.
***/

run: main.o avail.o get_N_Pr.o N_pick_K.o power_f.o
cc main.o avail.o get_N_Pr.o N_pick_K.o power_f.o \

-lm -o run
ma1n.o: general.h main.c

cc -g
avail.o:

cc -g
get_N_Pr.o:

cc -g
N_pick_K.o:

cc -g
power_f.o:

cc -g

-c main.c
general.h avail.c

-c avail. c
general.h get_ N_Pr.c

-c get_N_Pr.c
general.h N_pick_K.c

-c N_pick_K.c
general.h power_f.c

-c power_f.c

/***
The file general.h is used to define variables that

will be used throughout the availability analysis of
majority consensus simulation program. The general.h is an
include file that is included in every other program of the
analysis majority consensus.
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define MAX_N 31
#define MIN_N 3
#define PRINT_AVAIL 7

/***
The procedure main() is the main driver of the

availability analysis of the majority consensus. It calls
procedures Get_N_Pr() and Availability().
***/

#include "ge n e ral.h"

main (argc, argv)

int argc;

char *argv[);
{
int N, K;
double Pr;

!*** Get input N and Pr. (probability) ***/
Get_N_Pr(argc, argv, &N, &Pr);

!*** Take lower bound of K ***/
K=(N/2);
Availability(N, K, Pr);

63

!***
The procedure Get_N_Pr() is called by the procedure

main(). It is used to get the value of Nand value of
probability that will be used in the procedure
Availability().
***/

#include "general.h''

Get_N_Pr(argc, argv, N, Pr)
int argc;
char * (*argv);
int *N;
double *Pr;
{
int i;

if (argc < 3)
{

printf("\n*****Missing value of Nor Pr*****\n'');
pr intf ("Enter run N Pr ") ;
printf(11 (N is an integer, Pr is a float

(probability))\n\n");
exit(o);

}
i = 0;
while (argv[l][i])
{

if ((argv[l][i] < 'O') I J (argv[l][i) > '9'))
{
printf("\n*****%s is not an

integer*****\n",argv[l]);
printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
e xit(O);

i++;
}

*N = atoi(argv[1]);

if (((*N) > MAX_N) I I ((*N) < MIN_N))
{

printf ("\n%d is out of range (%d .. %d) \n " , (*N) ,
MIN_N I MAX_N):

printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

/*** Checking Pr's value ***/

*Pr = atof(argv[2]);

if ((*Pr > 1.0) I I (*Pr == 1.0) I I (*Pr == 0.0))
{

printf("\n*****Pr should not be> or= 1.0 ");
printf("and should not be= 0.0 *****\n");
printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

}

64

/***
The procedure Availability() is called by the

procedure main(). It is used to calculate the availability
of the majority consensus algorithm.
***/

#include "general.h"

Availability(N,
int N, K;
double Pr;
{
double
double
double
int

Avail, Tot_avail;
_p_Kplus1, _ 1minusp_K;
Prob;
I;

printf ("N = %d\n", N) ;
printf("K = %d\n",K);
printf("Pr = %1.2f\n",Pr);

I = O;
Prob = O;
Avail = 0.0;
Tot_avail = o.o;
for (I= 1; (N-(K+I)) >= 0 I++)
{

}

N_pick_K(N, (K+I), &Prob);
_p_Kplus1 = 0.0;
Power_float(Pr,(K+I), &_p_Kplus1);
_1minusp_K = o.o;
Power_float((1.0-Pr),(N-(K+I)), &_1minusp_K);
Avail = Prob * _p_Kplus1 * _1minusp_K;
Tot_avail = Tot_avail + Avail;
printf("(%d pick %d) * ",N, (K+I));
printf("(%1.2f power of %d) * ", Pr, (K+I));
printf("(%1.2f power of %d)= %1.10f \n'', (1-Pr),

(N-(K+I)), Avail);
}
printf("Availability = %1.10f\n",Tot_avail);

65

I***
The procedure N_pick_K() is called by the procedure

Availability(). It is used to calculate all possible
choices of choosing K out of N.
***I

#include "general.h"

N_pick_K(N, K, Prob)
int N, K;
double *Prob;
{
int i, D;

*Prob = 1;
if ((N-K) > K)
{

D = K;
for (i = N; i > (N-K); i--)
{

(*Prob) = (*Prob) * i;
if (D > 1)
{

(*Prob) = {*Prob) I D;
D--;

}
for (i = D; i > 1; i--)

(*Prob) = (*Prob) I i;
}
else
{

D = (N-K);
for (i = N; i > K; i--)
{

(*Prob) = (*Prob) * i ;
if (D > 1)
{

(*Prob) = (*Prob) I D;

D--;

}
for (i = D; i > 1; i--)

(*Prob) = (*Prob) 1 i;

66

/***
The procedure Power_float() is called by the procedure

Availability(). It is used to calculate the power of a
given base variable. The power value is a float number.
***/

#include "general.h"

Power_float(base, exp, P)
double base;
int exp;
double *P;
{
int i;

}
}

if (exp <= O)
*P = 1.0;

else
{

*P = base;
for (i=2; i <= exp; i++)
{

(*P) = (*P) * base;

67

OUTPUTS OF THE PROGRAM WITH N = 5 I Pr = 0.9 AND 0.95

N = 5
K = 2
Pr = 0.90
(5 pick 3) * (0.90 power of 3) * (0.10 power of 2) =

0.0729000000
(5 pick 4) * (0.90 power of 4) * (0.10 power of 1) =

0.3280500000
(5 pick 5) * (0.90 power of 5) * (0.10 power of 0) =

0.5904900000
Availability = 0.9914400000

N = 5
K = 2
Pr = 0.95
(5 pick 3) * (0.95 power of 3) * (0.05 power of 2)

0.0214343750
(5 pick 4) * (0.95 power of 4) * (0.05 power of 1) =

0.2036265625
(5 pick 5) * (0.95 power of 5) * (0.05 power of 0)

0.7737809375
Availability = 0.9988418750

68

ANALYSIS PROGRAM FOR THE TREE QUORUM ALGORITHM

/***
The file makefile i s used to compile all the programs

used in calculating availability of the tree quorums
algorithm. The compiled file is "run". Note that -lm is
used for the include math.h. To run the program enter "run
N Pr", where N (nodes in a system) is an integer number and
Pr (probability that nodes are operational) is a float
number.
***/

run: main.o avail.o get_N_Pr.o p_all.o
cc main.o avail.o get_N_Pr.o p_all.o -lm -o run

main.o: general.h main.c
cc -g -c main.c

avail.o: general.h avail.c
cc -g -c avail.c

get_N_Pr.o: general.h get_N_Pr.c
cc -g -c get_N_Pr.c

p_all.o: general.h p_all.c
cc -g -c p_all.c

/***
The file general.h is used to define variables that

will be used throughout the availability analysis of the
tree quorums algorithm. The general.h i s an include file
that is included in every other program of the analysis tree
quorums.
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define MAX_N 31
#define ·MIN_N 3
#define THREE 3
#define BASE 2
"#define PRINT_AVAIL 7

!***
· The procedure main() is the main driver that is used to
cal culate availabil i ty of the tree quorums algorithm. It
calls procedures Get_N_Pr() and Availability().
***/

#inc lude "ge nera l.h"

main (argc, argv)

int argc;
char *argv[];
{
int N;
double Pr;

/*** Get input N, and Pr (probability) ***/
Get_N_Pr(argc, argv, &N, &Pr);

}

printf ("N = %d\n" , N) ;
printf("Pr = %f\n",Pr);

Availability(N, Pr);

69

/***
The procedure Get_N_Pr() id called by the procedure

main(). It is used to get the value of Nand value of
probability that will be used in the procedure
Availability().
***/

#include "general.h"

Get_N_Pr(argc, argv, N, Pr)
int argc;
char * (*argv);
int *N;
double *Pr;
{
int i;-

if (argc < 3)
{

printf("\n*****Missing value of Nor Pr*****\n'');
printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability)) \n\n") ;
exit(O);

i = 0;
while (argv[l][i])
{

if ((argv [1] [i] < ' 0 1) I I (argv [1] [i] > 1 9 '))
{

printf("\n*****%s is not an
integer*****\n",argv[1]);

printf ("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

}

70

i++;
}

*N = atoi(argv[1]);

if (((*N) > MAX_N) I I ((*N) < MIN_N) I I (((*N)%2) -- 0))
{

printf("\n%d is out of range (%d .. %d) ",(*N),
MIN_N, MAX_N) ;

printf(" or %dis an even nurnber\n",*N);
printf ("Enter run N Pr ") ;
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

/*** Checking Pr's value ***/

*Pr = atof(argv[2]);

if ((*Pr > 1.0) I I (*Pr == 1.0) I I (*Pr == 0.0))
{

printf("\n*****Pr should not be> or= 1.0 ");
printf("and should not be= 0.0 *****\n");
printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

}

/***
The procedure Availability() is called by the

procedure main(). It is used to calculate the availability
of the tree quorums algorithm. It is a recursive procedure
that calculates availability of each level of a tree.
***/

#include "general.h"

doubl e Recu_avail();

Availability(N, Pr)
int N;
double Pr;
{
double
int

Pr_left, Pr_right;
Root;

Root = 1;
Pr_ left = Pr ;
Pr_right = Pr;
Recu_avail(N, Root, Pr, Pr_left, Pr_right);

71

/***
The procedure Recu_avail is the recursive part of the

procedure Availability().
***/

double
int
double
{

Recu_avail(N, Root, Pr, Pr_left, Pr_right)
N, Root;
Pr, Pr_left, Pr_right;

double Avail, Tot_avail;
double Pr_l, Pr_r;
unsigned long int P;
int i, I;

Pr_l = Pr_left;
Pr r = Pr_right;
if ((Root*4) < N)
{

Pr_l = Recu_avail(N, Root*2, Pr, Pr_left, Pr_right);
if ((Root*4+2) < N)
Pr_r = Recu_avail(N, Root*2+1, Pr, Pr_left,

Pr_right);
}
Tot_avail 0.0;
I = 0;
p = 1;
for (i=l; i<THREE; i++)
{

p = p + 2;
Avail = 1.0;

/*** {a,b}, {a.c} ***/

printf("Pr({%d %d}) = ",Root, Root*2+I};
Print_avail_all(P, Pr, Pr_l, Pr_r, &Avail);
Tot_avail = Tot_avail + Avail;
I++;

)

P = 6; /*** {b,c) ***/
Avail = 1.0;
printf("Pr({%d %d}) = ",Root*2, Root*2+1);
Print_avail_all(P, Pr, Pr_l, Pr_r, &Avail);
Tot_avail = Tot_avail + Avail;

P = 7; /*** {a,b,c} ***/
Avail = 1.0;
printf("Pr({ %d %d %d)) = ",Root, Root*2, Root*2+1);
Print_avail_all(P, Pr, Pr_l, Pr_r, &Avail);
Tot_avail = Tot_avail + Avail;

printf (11Availability = %1.20f\n",Tot_ avail);

return(Tot_ avail);

72

!***
The procedure Print_avail_all() is called by the

procedure Availability(). It is used to print availability
of each subtree.
***!

#include 11 general.h"

Print_avail_all(P, Pr, Pr_l, Pr_r, Avail)
unsigned long int P;
double Pr, Pr_l, Pr_r;
double *Avail;
{
double Pr_temp;
int i;

Pr_temp = Pr;
for (i=1; i <= THREE; i++)
{

}

if ((P%2) == 1)
(

(*Avail) = (*Avail) * Pr_temp;
printf("(%f)",Pr_temp);

}
else
(

}

(*Avail) = (*Avail) * (1.0- Pr_temp);
printf("(%f)",(1.0-Pr_temp));

Pr = Pr_l;
Pr_l = Pr_r;
Pr_temp = Pr;

P= P >> 1;

printf(" = %f \n",(*Avail));

OUTPUTS OF THE PROGRAM WITH N = 5, Pr = 0.9 AND 0.95

N = 5
Pr = 0.900000
Pr({2 4}) = (0.900000}(0.900000)(0.100000) = 0.081000
Pr({2 5}) = (0.900000}(0.100000)(0.900000) = 0.081000
Pr({4 5}) = (0.100000)(0.900000)(0.900000) = 0.081000
Pr({2 4 5}) = (0.900000)(0.900000)(0.900000) = 0.729000
Availability = 0.97200000000000009000
Pr({1 2}) = (0.900000)(0.972000}(0.100000) = 0.087480
Pr({1 3}) = (0.900000)(0.028000)(0.900000) = 0.022680
Pr({2 3}) = (0.100000)(0.972000)(0.900000) = 0.087480
Pr({1 2 3}) = (0.900000)(0.972000)(0.900000) = 0.787320
Availability = 0.98496000000000006000

N = 5
Pr = 0.950000
Pr({2 4}) = (0.950000)(0.950000)(0.050000) = 0.045125
Pr({2 5}) = (0.950000)(0.050000)(0.950000) = 0.045125
Pr({4 5}) = (0.050000)(0.950000)(0.950000) = 0.045125
Pr((2 4 5}) = (0.950000)(0.950000)(0.950000) = 0.857375
Availability = 0.99275000000000002000
Pr((1 2}) = (0.950000)(0.992750)(0.050000) = 0.047156
Pr({1 3}) = (0.950000)(0.007250)(0.950000) = 0.006543
Pr({2 3}) = (0.050000)(0.992750)(0.950000) = 0.047156
Pr({l 2 3}) = (0.950000)(0.992750)(0.950000) = 0.895957
Availability = 0.99681125000000004000

73

ANALYSIS PROGRAM FOR MAEKAWA'S ALGORITHM AND
THE PROPOSED METHOD

74

/***
The file makefile is used to compile all the programs

that are used in availability analysis of the Maekawa's
algorithm and the proposed method. The complied file is
"run". Note that -lm is used for the include math.h. To
run the program enter "run N Pr", where N (nodes in a
system) is an integer number and Pr (probability that nodes
are operational) is a float number.
***/

run: main.o avail.o change_N.o convert_Q.o find_E.o \
get_N_Pr.o p_all.o p_avail.o power.o

cc main.o avail.o change_N.o convert_Q.o find_E.o \
get_N_Pr.o p_all.o p_avail.o power.o -lm -o run

main.o: general.h main.c
cc -g -c main.c

avail.o : general.h avail.c
cc -g -c avail.c

change_N.o: general.h change_N.c
cc -g -c change_ N.c

convert_Q.o: general.h convert_Q.c
cc -g -c convert_Q.c

find_E.o: general.h find_E.c
cc -g -c find_ E.c

get_N_Pr.o: general.h get_N_Pr.c
cc -g -c get_N_Pr.c

p_all.o: general.h p_all.c
cc -g -c p_all.c

p_avail.o: general.h p_avail.c
cc -g -c p_avail.c

power.o: general.h power.c
cc -g -c power.c

/***
The file general.h is used to define variables that

will be used throughout the availability analysis of
Maekawa's algorithm and the proposed method. It is an
include file that includes in every other program of the
analysis Maekawa's algor ithm and the proposed method.
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ma th.h>

#define MAX_N 31
#define MIN_N 3
#define INPUT 4

#define
#define
#define
#define
#define
#define
#define

OUTPUT
BASE
ONE
TWO
THREE
FOUR
PRINT_AVAIL

10
2
1.0
2.0
3.0
4.0
5

75

/***
The procedure main() is the main driver that is used to

calculate availability of Maekawa's algorithm and the
proposed method.
***/

#include "general.h"

FILE *I, *0;

main (argc, argv)
int argc;
char *argv [] ;
{
int
double
char
char

N, E;
Pr;
Input [INPUT] ;
Output[OUTPUT];

/*** get input N and probability Pr ***/
Get_ N_Pr(argc, argv, &N, &Pr);

/*** find number of nodes in a quorum from the
input N ***/
Find_E(N, &E);

/*** change integer N to a string in order to use the
string to open an input file ***/
strcat(Input,"");
Change_ N_ to_ string(N, Input);
if ((I = fopen (Input, "r")) == NULL)
{ printf("Cannot open input file\n"); exit(O);
if ((0 = fopen ("CONV", "w")) = = NULL)
{ printf("Cannot open input file\n"); exit(O); }

' !*** represent quorums wi th unsigned long integers ***/
Convert _Q(I , o, E);

fclose (O);
fclose(I);

syst em(11 sort -n CONV > Conv");
sys t em (" r m CONV") ;

if((I = fopen("Conv","r")) ==NULL)
{ printf("Cannot open input fi l e\n"); exit(O); }

strcat(Output,"o");
strcat(Output,Input);
if((O = fopen(Output,"w")) ==NULL)
{ printf("Cannot open output file\n"); exit(O); }

fprintf(O,"N
fprintf(O,"E
fprintf(O,"Pr

= %d\n",N);
%d\n" ,E);
%1.2f\n",Pr);

!*** calculate availability ***/
Availability(N, E, Pr, I, O);

system("rm Conv");
fclose(I);
fclose(O);

76

!***
The procedure Get_N_Pr() is called by the procedure

main(). It is used to get the value of Nand the
probability Pr that are used in the procedures main() and
Availability().
***/

#include "general.h"

Get_N_Pr(argc, argv, N, Pr)
int argc;
char *(*argv);
int *N;
double *Pr;
(
int i;

if (argc < 3)
{

printf("\n*****Missing value of Nor Pr*****\n");
printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

i = 0;
whi le (a rgv[l][i])
{

if ((argv [1] [i] < ' o ') I I (argv [1 J [i J > ' 9 '))
(
printf("\n*****%s is not an

integer*****\n",argv[l]);
pri ntf ("Enter r un N Pr ");
printf ("(N i s a n integer , Pr is a floa t

(probability))\n\n");
exit(O);

}

}
i++;

*N = atoi(argv[l]);

if (((*N) > MAX_N) I I ((*N) < MIN_N))
{

printf ("\n%d is out of range (%d .. %d) . \n", (*N) ,
MIN_N, MAX_N);

printf("Enter run N Pr ");
printf("(N is an integer, Pr is a float

(probability))\n\n");
exit(O);

}

/*** Checking Pr's value ***/

*Pr = atof(argv[2]);

if ((*Pr > 1.0) I I (*Pr == 1.0) I I (*Pr == o.o))
{

printf("\n*****Pr should not be > or= 1.0 ");
printf("and should not be= 0.0 *****\n");
printf("Enter run N Pr ");
printf(11 (N is an integer, Pr is a float

(probability))\n\n11);

exit(O);
}

}

77

/***
The procedure Find_E() is called by the procedure

main(). It is used to find E, number of nodes needed to
form a quorum, from a given N.
***/

#include "general.h11

Find_E(N, E)
int N;
int *E;
{
double N_double, E_ double;
float E_float;

!*** convert integer to double ***/
N_double = N;

!*** equation and conversion***/
E_double = c eil ((ONE + sqrt ((FOUR * N_ double)

-THREE)) /TWO);
/*** convert double to float ***/

E_float = (float)E_double;

/*** convert float to integer ***/
*E = (int)E_float;

78

!***
The procedure Change_N_to_string() is called by the

procedure main(). It is used to change integer value to
string.
***/

#include "general.h"

Change_N_to_string(N,
int N;

Input)

char *Input;
{
int
char
int

Inp;
ternp_input[INPUT];
i, j, count;

count = O;
strcpy(ternp_input,"");
while (N > O)
{

}

Inp = N%10;
N = N/10;
switch (Inp) {

}

case 0: strcat(temp_input,"O"); break;
case 1: strcat(temp_input,"1 11); break;
case 2: strcat(temp_input,"2'); break;
case 3: strcat(temp_input,"3); break;
case 4: strcat(temp_input,"4); break;
case 5: strcat(temp_input,"5); break;
case 6: strcat(ternp_input,"6); break;
case 7: strcat(temp_input,"7); break;
case 8: strcat(ternp_input,"8'); break;
case 9: strcat(temp_ input,"9"); break;

count++;

j = 0;
for (i = (count-1) ; i >= 0 ;i--)
{

}

Input[j] = temp_ input[i];
j++;

Input[j] = '\0';

79

/***
The procedure Convert_Q() is called by the procedure

main(). It is used to convert each node in a quorum to an
unsigned ling integer number.
***/

#include "general.h"

Convert_Q(I, o, E)
FILE *I, *0;
int E;
{
unsigned
unsigned
int

long int
long int
i;

Q;
Q_in;

fscanf(I,"%u",&Q_in);
while (!feof(I))
{

}

Q = 0;
Q = Q + Power(BASE,(Q_in-1));
for (i = 1; i < E; i++)
{

fscanf(I,"%u",&Q_in);
Q = Q + Power(BASE,(Q_in-1));

}
fprintf(O,"%u\n",Q);
fscanf(I,"%u",&Q_i n);

/***
The procedure Availability() is called by the procedure

main(). It is used to calculate availability of Maekawa's
algorithm and the proposed method.
***/

#include "ge neral.h"

Availability(N,
int N, E;
double Pr;
FILE *I, *0;

E, Pr, I, O)

{
unsigned
unsigned
double
int

long int Q;
long int P, Ac, Ac_start;
Avail, Tot_avail;
i, j;

P = Power(BASE,N) - 1;
Tot_ avail = 0.0;
Ac_start = 1;
fscanf(I,"%u",&Q);

if (!feof(I))
{

Ac_start = Q;
for (Ac = Ac_start; Ac <= P; Ac++)
{

while (!feof(I))
{

80

if ((Q & (-Ac))
{

0) /*** a super set ***/

}

}

Avail = 1.0;

if (N <= PRINT_AVAIL)
Print_avail_all(N, Ac, Pr, &Avail, O);

else
Print_avail(N, Ac, Pr, &Avail, O);

Tot_avail = Tot_avail + Avail;
fseek(I,0,2);

fscanf(I,"%u",&Q);
}
fseek(I,O,O);

fprintf(O,"Availability = %1.10f\n",Tot_avail);

/***
The function Power() is used to calculate the power of

a given base variable.
***/

#include "general.h"

unsigned long int Power(base, exp)
int base;
int exp;
{
unsigned long int P;
int i;

if (exp < 0)
return(O);

p = 1 ;
for (i =l; i <= exp; i++)
{

P = P * base;
}
return(P);

81

/***
The procedure Print_avail_all() is called by the

procedure Availability(). It is used to print full format
of the result availabilities.
***/

#include "general.h"

Print_avail_all(N, Ac, Pr, Avail, O)
int N;
unsigned long int Ac;
double Pr;
double *Avail;
FILE *0;
{
unsigned long int Ac_temp;
int i, j;

Ac_temp = Ac;
fprintf(O,"Pr({ ");
for (i=1; i <= N; i++)
{

}

if ((Ac_temp%2) == 1)
fprintf(O,"%d ",i);

Ac_temp = Ac_temp >> 1;

fprintf(O,"}) = ");
Ac_temp = Ac;
for (i=1; i <= N; i++)
{

}

if ((Ac_temp%2) == 1)
{

}

(*Avail) = (*Avail) * Pr;
fprintf(0,"(%1.2f)",Pr);

else
{

}

(*Avail) = (*Avail) * (1.0- Pr);
fprintf(0,"(%1.2f)",(1.0-Pr));

Ac_temp = Ac_temp >> 1;

fprintf(O," = %1.10f \n",(*Avail));

/***
The procedure Print_avail() is called by the procedure

Availability(). It is used to print short format of the
result availabilitie s.
***/

#include "general.h"

Print_avail(N, Ac, Pr, Avail)

int N;
unsigned long int Ac;
double Pr;
double *Avail;
{
int i I j;

}

for (i=1; i <= N; i++)
{

}

if ((Ac%2) == 1)
(*Avail) = (*Avail) * Pr;

else
(*Avail) = (*Avail) * (1.0- Pr);

Ac = Ac >> 1;

82

83

OUTPUTS OF THE PROGRAM WITH N = 5, Pr = 0.9 AND 0.95
(THE PROPOSED METHOD)

N = 5 E = 3 Pr = 0.90
Pr({ 1 2 3 }) = (0.90)(0.90)(0.90)(0.10)(0.10) 0.0072900
Pr({ 1 2 4 }) = (0.90)(0.90)(0.10)(0.90)(0.10) = 0.0072900
Pr({ 1 3 4 }) = (0.90)(0.10)(0.90)(0.90)(0.10) = 0.0072900
Pr({ 2 3 4)) = (0.10)(0.90)(0.90)(0.90)(0.10) = 0.0072900
Pr({ 1 2 3 4 }) = (0.90)(0.90)(0.90)(0.90)(0.10) = 0.0656100
Pr({ 1 2 5 }) = (0.90)(0.90)(0.10)(0.10)(0.90) = 0.0072900
Pr({ 1 3 5 }) = (0.90)(0.10)(0.90)(0.10)(0.90) = 0.0072900
Pr({ 2 3 5)) = (0.10)(0.90)(0.90)(0.10)(0.90) = 0.0072900
Pr({ 1 2 3 5 }) = (0.90)(0.90)(0.90)(0.10)(0.90) = 0.0656100
Pr({ 1 4 5 }) = (0.90)(0.10)(0.10)(0.90)(0.90) = 0.0072900
Pr({ 2 4 5 }) = (0.10)(0.90)(0.10)(0.90)(0.90) = 0.0072900
Pr ({ 1 2 4 5 }) = (0.90)(0.90)(0.10)(0.90)(0.90) = 0.0656100
Pr({ 3 4 5 }) = (0.10)(0.10)(0.90)(0.90)(0.90) = 0.0072900
Pr ({ 1 3 4 5 }) = (0.90)(0.10)(0.90)(0.90)(0.90) = 0.0656100
Pr({ 2 3 4 5 }) = (0.10)(0.90)(0.90)(0.90)(0.90) 0.0656100
Pr({ 1 2 3 4 5 }) = (0.90)(0.90)(0.90)(0.90)(0.90) =
0.5904900
Availability = 0.9914400000

N = 5 E = 3 Pr = 0.95
Pr({ 1 2 3 }) = (0.95)(0.95)(0.95)(0.05)(0.05) = 0.0021434
Pr({ 1 2 4 }) (0.95)(0.95)(0.05)(0.95)(0.05) = 0.0021434
Pr({ 1 3 4)) = (0.95)(0.05)(0.95)(0.95)(0.05) 0.0021434
Pr({ 2 3 4 }) (0.05)(0.95)(0.95)(0.95)(0.05) = 0.0021434
Pr({ 1 2 3 4 }) = (0.95)(0.95)(0.95)(0.95)(0.05) = 0.0407253
Pr({ 1 2 5 }) = (0.95)(0.95)(0.05)(0.05)(0.95) = 0.0021434
Pr({ 1 3 5 }) = (0.95)(0.05)(0.95)(0.05)(0.95) = 0.0021434
Pr({ 2 3 5 }) = (0.05)(0.95)(0.95)(0.05)(0 . 95) = 0.0021434
Pr({ 1 2 3 5 }) = (0.95)(0.95)(0.95)(0.05)(0.95) = 0.0407253
Pr({ 1 4 5 }) = (0. 95) (0. 05) (0. 05) (0. 95) (0. 95) = 0.0021434
Pr({ 2 4 5 }) = (0.05)(0.95)(0.05)(0.95)(0.95) = 0.0021434
Pr({ 1 2 4 5 }) = (0.95)(0 .95)(0.05)(0.95)(0.95) = 0.0407253
Pr({ 3 4 5 }) = (0.05)(0.05)(0.95)(0.95)(0.95) = 0.0021434
Pr({ 1 3 4 5 }) = (0.95) (0 . 05) (0.95) (0.95) (0.95) = 0.0407253
Pr({ 2 3 4 5 }) = (0.05)(0.95)(0.95)(0.95)(0.95) = 0.0407253
Pr({ 1 2 3 4 5 }) = (0.95)(0.95)(0.95)(0.95)(0.95) =
0.7737809
Availability 0.9988418750

84

SIMULATION PROGRAM FOR THE PROPOSED METHOD

!***
The file makefile is used to compile all the programs

that are necessary for the simulation program. The complied
file is "run". Note that -lm is for the include rnath.h. To
run the simulati on enter "run N", where N (nodes in a
system) is an integer number.
***/

run: main.o clr_int.o find_E.o find_G.o \
find_Q.o free_mem.o g_tree.o get_N.o \
initialize.o pds.o power.o search.o shift_L.o

cc main.o clr_int.o find_E.o find_G.o find_Q.o \
free_mem.o g_tree.o get_N.o initialize.o \
pds.o power.o search.o shift_L.o -lm -o run

main.o: general.h main.c
cc -g -c main.c

clr_int.o: general.h clr_int.c
cc -g -c clr_int.c

find_E.o: general.h find_E.c
cc -g -c find_E.c

find_G.o: general.h find_G.c
cc -g -c find_G.c

find_Q.o: general.h find_Q.c
cc -g -c find_Q.c

free_mem.o: general.h free_mem.c
cc -g -c free_mem.c

g_tree.o: general.h g_ tree.c
cc -g -c g_tree.c

get_N.o: general.h get_N.c
cc -g -c get_N.c

initialize.o: general.h initialize.c
cc -g -c initialize.c

pds.o: general.h pds.c
cc - g -c pds.c

power.o: general.h power.c
cc -g

search.o:
cc -g

shift_L.o:
cc -g

-c power.c
general.h search.c

-c search.c
general.h shift_L.c

-c shift_ L.c

/***
The file general.h i s used to define variables and

structures that will be used throughout the simulation
program. The general.h is an include file that is included
i n ev e ry other progra m o f the s i mul ation.
***/

#include
#include

<stdio.h>
<stdlib.h>

#include
#include

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

<string.h>
<math.h>

MAX_N
MIN_N
BASE
ONE
TWO
THREE
FOUR
DONE
FOUND
NOT FOUND
GENERATE
NOTGENERATE
NEW_LINE
PRINT_Q

31
3
2
1.000000

· 2.000000
3.000000
4.000000
1
1
0
1
0
4
31

typedef struct Generators{
struct Generators *lptr;
unsigned long int gene;
struct Generators *rptr;

}Generators;

typedef struct {
Generators *Header;

}GENE;

GENE Gene_tree, Quorum_tree;

85

/***
The procedure main() is the main driver for the

simulation program. It start from calling procedures
Get_N(), Find_E(), Initialize_tree(), Find_generators(),
Find_Quorums(), and, finally, Free_mem().
***/

#include "general.h"

main
int
char
{
int
int

(argc, argv)
argc;

*argv[];

N I E;
i;

!*** Get input N (number of node in a distributed
system ***/
Get_N(argc, argv, &N);
printf("N = %d\n",N);

/*** Find number of nodes in a quorum from the
input N ***/
Find_E(N, &E);

printf("E = %d\n" ,E);

/*** Initialize header of a generator tree ***/
Initialize_tree(&Gene_tree);

/*** Find all possible generators and keep them in
a binary tree ***/
Find_generators(N, E);

86

/*** Find all quorums from the constructed generators ***/
Find_Quorums(N, E, &Gene_tree, &Quorum_tree);

/*** Free memory after finish the simulation processes ***/
Free_mem(&Gene_tree);

}

!***
The procedure Get_N() is called by the procedure

main(). It is used to bound the value of N. The value of N
can be between 3 and 31.
***/

#include "general.h11

Get_N(argc, argv, N)
int argc;
char * (*argv);
int *N;
{
int i;

if (argc < 2)
{

printf(11 \nMissing value of N.\n 11);

printf("Enter run N (N is an integer).\n");
exit(O);

i = 0;
while (argv(l][i])
{

if ((argv[l][i] < '0')
{

I I (argv[l][i] > '9'))

printf(11 \n%s is not an integer. \n" ,argv[l]);
printf("Enter run N (N is an integer).\n");
exit(0);

}
i++;

*N = atoi(argv[l]);

if (((*N) > MAX_N) I I ((*N) < MIN_N))
{

}
}

printf("\n%d is out of range (%d .. %d).\n",(*N),
MIN_N I MAX_N);

printf("Enter run N (N is an integer).\n");
e:x:it(O);

87

/***
The procedure Find_E() is called by t he procedure

main(). It is used to compute value of E from a given N.
E is returned to the calling function.
***/

#include "general.h"

Find_E(N, E)
int N;
int *E;
{
double N_double, E_double;
float E_float;

/*** convert integer to double ***/
N_double = N;

/*** equation and conversion***/
E_double = ceil((ONE + sqrt((FOUR * N_double)

-THREE)) /TWO);

/*** convert double to float ***/
E_float = (float)E_double;

/*** convert float to integer ***/
*E = (int)E_float;

}

/***
The procedure Initialize_tree() is called by the

procedures main() and Find_quorums(). It is used to
initialize heads of the generator's tree and quorum's tree.
***/

#include "general.h"

Initialize_tree(T)
GENE *T;
{

(*T).Header = NULL;
}

88

/***
The procedure Find_generators() is called by the

procedure main(). It is used to find generators from all
the possible quorums. The generators are kept in a binary
tree. This procedure is a recursive procedure.
***/

#include "general.h"

Find_generators(N, E)
int N, E;
{
unsigned long int G;
int Depth, Loop_begin, Loop_end;

Depth = 1;
Loop_begin = 1;
Loop_end = E - 1;
G = 0;
Recu_find_gene(N, E, Depth, Loop_begin, Loop_end, G);

/***
The Recu_find_gene is the recursive part of the

procedure Find_generators().
***/

Recu_find_gene(N, E, Depth, Loop_begin, Loop_ end, G)
int N, E;
i nt Depth, Loop_ begin, Loop_end;
unsigned long int G;
{
int I, P;

if (Depth <= E)
{

for (I= Loop_begi n; I<= (N- Loop_ end); I++)
{

G = G + Power(BASE,(I-1));
if (Depth == E)
{

}

P = PDS(N, E, G);
if (P == GENERATE)
{

}

if (Search(&Ge ne_ t r ee , G, N) == NOTFOUND)
{

Generators_tree(&Gene_tree, G);
}

else
Re cu_f ind_ gen e (N, E , De pt h +l , !+1 ,

Loop_end-1, G) ;
G = G- Power(BASE,(I-1));

}

}
}
else

return (DONE) ;

89

/***
The function Power() is used to calculate power of a

given base variable.
***/

#include "general.h"

unsigned long int Power(base, exp)
int base;
int exp;
{
unsigned long int P;
int i;

p = 1;
for (i=l; i <= exp; i++)
{

P = P * base;
}
return(P);

!***
The function PDS() is called by the procedure

Find_generators(). It performs perfect difference set to
all possible quorums. If a possible quorum is a perfect
difference set, then the PDS() return GENERATE (the quorum
is a generator).
***/

#include "general.h"

PDS(N, E, G)
int N, E;
unsigned long int G;
{
int Nodes_ in_ Q[MAX_N];
int Result_pds[MAX_N];
unsigned long int G_temp;
int i 1 j I k;
i nt dif, count;

Clear_ int_ary(Nodes_in_Q);
Clear_int _ a ry(Res ult_pds);
count = o;
G_temp = G;
for (i=l; i <= N; i++)

{

}

if ((G_temp%2) == 1)
Nodes_in_Q[++count] = i;

if (count == E)
i = N+1;

G_ternp = G_ternp >> 1;

for (i=E; i > 1; i--)
{

}

k = i-1;
for (j=k; j > o; j--)
{

}

dif = Nodes_in_Q[i] - Nodes_in_Q[j];
Result_pds[dif] = 1;
Result_pds[N-dif] = 1;

for (i=1; i < N; i++)
{

if (Result_pds[i] != 1)
return(NOTGENERATE);

}
return(GENERATE);

90

/***
The procedure Clear_int_ary() is called by the

procedure PDS(). It is used to initialize array of integer.
***/

#include "general.h"

Clear_int_ary(INT)
int INT[MAX_N];
{
int i;

for (i=O; i < MAX_N; i++)
INT[i] = 0;

/***
The function Se arch() is ca l led by the procedure

Find_ge nerators(). It is used to s e arch for a duplicate key
(generator) in the generator's tree. It also is a recursive
procedure.
***/

#include "general.h"

Search(T , G, N)
GENE *T;
unsigned long int G;

{
int i;
int RET;

}

RET = NOTFOUND;
for (i=l; i<N; i++)
{

G = Shift_left(G, N);
RET= Recu_search(&((*T).Header), G);
if (RET -- FOUND)

i = N;
}
return(RET);

91

/***
The function Recu_search() is the recursive part of

the function Search().
***/

Recu_search(sub_root, G)
Generators **sub_root;
unsigned long int G;
{

}

if (*sub_root != NULL)
{

}

if ((**sub_root).gene --G)
{

return(FOUND);
}
else if ((**sub_root).gene >G)
{

return(Recu_search(&((**sub_root).lptr), G));
}
else if ((**sub_root).gene <G)
{

return(Recu_search(&((**sub_root).rptr), G));

else
return(NOTFOUND);

/***
The function Shift_left() is used to shift bits in

unsigned long integers one position to the left.
***/

#include "general.h"

unsigned long int Shift_left(G, N)
unsigned long int G;
int N;

(
unsigned long int bound_G;

bound_G = Power(BASE,N) - 1;
G = G << 1;
if (G > bound_G)
{

G = G Power(BASE,N);
G = G + Power(BASE,O);

}
return(G);

92

/***
The procedure Generators_tree is called by the

procedure Find_generator(). It is a recursive procedure
that is used to add a generator to the generator's tree.
***/

#include "general.h"

Generators_tree(T, G)
GENE *T;
unsigned long int G;
{

Recu_g_tree(&((*T).Header), G);
}

!***
The procedure Recu_g_tree() is the recursive part of

the procedure Generators_tree(). I t finds an appropriate
place to add a generator in the generator's t ree.
***/

Recu_g_tree(sub_root, G)
Generators **sub_root;
unsigned long int G;
{
Generators *newnode;

if ((*sub_root) ==NULL)
{

!*** get new node ***/
if ((newnode = (Generators*)rnalloc(sizeof(Generators)))

-- NULL)
{

printf("Address of new node error\n");
return(DONE);

(*newnode).gene =
(*newnode).lptr
(*newnode).rptr

G;
NULL;
NULL;

/*** copy address of new node to its parent ***/
*sub_root = newnode;
return(DONE);

}

/*** check duplicate key ***/
if ((**sub_root).gene ==G)
{

printf("Found duplicated key \n");
return(DONE);

/*** insert new key to the left of the tree ***/
if ((**sub_root).gene >G)
{

Recu_g_tree(&((**sub_root) .lptr), G);
return(DONE);

/*** insert the key to the right of the tree ***/
if ((**sub_root).gene <G)
{

Recu_g_tree(&((**sub_root).rptr), G);
return(DONE);

93

/***
The procedure Find_ quorums is called by the procedure

main(). It is used to construct quorums from generators in
the generator's tree. The set of generators that can be
used to construct quorums, satisfy the intersection
property, are kept in quorum's tree and will be printed out
as the output of the simulation program.
***/

#include "general.h"

FILE *0;

Find_ Quorums(N, E, GT, QT)
int N, E;
GENE *GT, *QT;
{

if ((o = fopen ("output", "w")) == NULL)
{ printf("Cannot open output file\n"); exit(O);
fprintf(O,"====================\nN = %d E = %d\n",

N I E) i
fprintf(O,"====================\n");
if ((*GT) . Header == NULL)
{

fclose(O);
return(DONE);

}

outside_recu_inorder(&((*GT).Header), &(*GT),
& (*QT) I N) ;

fclose(O);

94

/***
The procedure Outside_recu_inorder() is called by the

procedure Find_Quorums(). It is a recursive procedure that
calls another recursive procedure, Recu_find_Q_inorder().
The main reason is to perform nested loop to the generator's
tree to find set of generators that can be used to form
quorums which have the intersection property. Then, the
procedure prints the set of generators, kept in the quorum's
tree. It also prints the constructed quorums out of the set
of generators.
***/

Outside_recu_inorder(sub_out, GT, QT, N)
Generators **sub_out;
GENE *GT;
GENE *QT;
int N;
{
Generators *newnode;
unsigned long int G;
int S;

if (*sub_out != NULL)
{

if ((**sub_out).lptr !=NULL)
outside_recu_inorder(&((**sub_out).lptr),

&(*GT), &(*QT), N);

/*** Initialize header of a quorum tree ***/
Initialize_ tree(&(*QT));

/*** get new node ***/
if ((newnode = (Generators*)malloc(sizeof(Generators)))

== NULL)
{ printf("Address of new node error\n");

return(DONE); }

: \n II) ;

(*newnode).gene = (**sub_out).gene;
(*newnode).lptr =NULL;
(*newnode).rptr =NULL;
(*QT).Header = newnode ;

Recu_find_Q_inorder(&((*GT).Header), &(*QT), N);

fprintf(O,"====================\nGENERATOR(S)

Print_ Generators(&(*QT), N);
if (N <= PRINT_Q)
{
fprintf(0, 11END.\n-------------------

\nQUORUMS (S) : \n 11) ;

}
}

Print_Quorums(&(*QT), N);
}
Free_mem(&(*QT));
fprintf(O,"END.\n====================\n");

if ((**sub_out).rptr !=NULL)
outside_recu_inorder(&((**sub_out).rptr),

&(*GT), &(*QT), N);

95

/***
The procedure Recur_find_Q_inorder() is called by the

procedure Outside_recu_inorder(). It is the inside nested
loop.
***/

Recu_find_Q_inorder(sub_in, QT, N)
Generators **sub_in;
GENE *QT;
int N;
(
Generators *Q;

}

if (*sub_in!= NULL)
(

}

if ((**sub_in).lptr !=NULL)
Recu_find_Q_inorder(&((**sub_in).lptr),

&(*QT), N);
Q = (*QT).Header;
if ((*Q).gene != (**sub_in).gene)

Build_quorums((**sub_in).gene, &(*QT), N);

if ((**sub_in).rptr !=NULL)
Recu_find_Q_inorder(&((**sub_ in).rptr),

&(*QT), N);

/*************************************** ********************
The procedure Build_quorums() is called by the

Recu_find_Q_inorder~ It is used to find generators that can
be used to f orm quorums (the gene rators that i ntersect all
the existing quorums). If it f ound s uch a g e ne rator, then
it keeps the generator in the quorum's tree.
***/

Build_quorums(In_G, QT, N)
unsigned long int In_G;
GENE *QT ;
int N;
{
Generators *Q, *newnode, *current;

unsigned long int In_Q;
int I;

/*** get new node ***/

}

if ((newnode = (Generators*)malloc(sizeof(Generators)))
-- NULL)

{ printf("Address of new node error\n");
return(DONE); }

(*newnode).gene = In_G;
(*newnode).lptr =NULL;
(*newnode).rptr =NULL;

Q = (*QT).Header;
do {

In_Q = (*Q).gene;
for (I=l; I <= N; I++)
{

}

if ((In_Q & In_G) -- 0)
{

}

free(newnode);
return(DONE);

In_Q = Shift_left(In_Q, N);

current = Q;
Q = (*Q) .rptr;

} while (Q !=NULL);

(*current).rptr = newnode;

~6

!***
The procedure Print_Generators() is called by the

procedure outside_recu_inorder(). It is used to print the
set of generators, kept in the quorums tree, that are used
to form quorums that have the intersection property.
***/

Print_Generators(QT, N)
GENE *QT;
int N;
{
Generators *Q;
unsigned long int P;
int i;

Q = (*QT).Header;
while(Q != NULL)
{

P = (*Q).gene;
for (i=l; i <= N; i++)
{

if ((P%2) == 1)
fprint f (0, 11 %d ",i);

}
}

p = p >> 1;
}
fprintf(O,"\n");
Q = (*Q) . rptr;

97

/***
The procedure Print_Quorums is called by the procedure

outside_recu_inorder(). It is used to print quorums from
the set of generators, in the quorum's tree.
***/

Print_Quorums(QT, N)
GENE *QT;
int N;
{
Generators *Q;
unsigned long int Pl, P2;
int i, j;
int newline;

newline = O;
Q = (*QT).Header;
while(Q != NULL)
{

P 1 = (*Q) . gene ;
for (i=l; i <= N; i++)
{

P2 = Pl;
for (j=l; j <= N; j++)
{

}

if ((P2%2) -- 1)
fprintf(0,"%3d",j);

P2 = P2 >> 1;

newline++;
if (newline == NEW_LINE)
{

}
else

fprintf(O,"\n");
newline = O;

fprintf(O," ");
Pl = Shift_left(Pl, N);

}
fprintf(O,"\n");
newline = O;
Q = (* Q) . rptr ;

98

/***
The procedure Free_mem() is called by the procedure

main() and the procedure Outside_recu_inorder(). It is a
recursive procedure that is used to free memory from the
generator's tree and quorum's tree.
***/

#include "general.h11

Free_mem(T)
GENE *T;
{

}

if ((*T).Header ==NULL)
return(DONE);

else
Recu_free_mem(&(*T).Header);

/***
The procedure Recu_free_men is the recursive part of

the procedure Free_mem().
***/

Recu_free_mem(sub_root)
Generators **sub_root;
{

if ((**sub_root).lptr !=NULL)
Recu_free_mem(&((**sub_root).lptr));

if ((**sub_root).rptr !=NULL)
Recu_free_mem(&((**sub_root).rptr));

/*** return node to memory manager ***/
free(*sub_root);

return(DONE);

OUTPUTS OF THE SIMULATION PROGRAM WITH N = 5, 7, AND 9

====================
N = 5 E = 3
====================
GENERATOR(S)
1 2 3
1 2 4
END.

QUORUMS
1 2 3
1 2 5
1 2 4
1 3 5

END.

2 3

2 3

=========~==========

====================
N = 7 E = 3
======~=======~=====

GENERATOR(S)
1 2 4
END.

QUORUMS

4

5

1 2 4
1 5 6

END.

2 3 5
2 6 7

====================

====================
N = 9 E = 4
====================
GENERATOR(S)
1 2 3 5
1 2 4 5
1 2 4 6
END.

QUORUMS

1 2 3 5 2 3
5 6 7 9 1 6
1 2 4 9
1 2 4 5 2 3
5 6 8 9 1 6
1 3 4 9
1 2 4 6 2 3
1 5 6 8 2 6
1 3 5 9

END.
====================

4
7

5
7

5
7

3 4 5

1 3 4

3 4 6
1 3 7

6 3
8 2

6 3
9 1

7 3
9 1

4
7

4
2

4
3

1 4 5

2 4 5

4 5 7

5 7 4 5 6 8
8 9 1 3 8 9

6 7 4 5 7 8
7 8 2 3 8 9

6 8 4 5 7 9
7 8 2 4 8 9

99

~

VITA ~

SURAKIT TANAVUTIKAI

Candidate for the degree of

Master of Science

Thesis: AN EFFICIENT QUORUM STRUCTURE FOR
DISTRIBUTED MUTUAL EXCLUSION

Major Field: Computer Science

Biographical:

Personal Date: Born at Ayutthaya, Thailand, on
July 27, 1965, the son of Somkeat and Pensri
Tanavutikai.

Education: Graduated from the Bangkok Commercial
campus in March 1986; received Bachelor of
Business Administration Degree with a major in
Information Systems from Institute of Technology
and Vocational Education in March 1988; completed
requirements for the Master of Science degree at
Oklahoma State University in July 1993.

Professional Experience: Programmer, Private Electric
Authority of Thailand, June, 1988, to February
1989.

	Thesis-1993-T161e_Page_001
	Thesis-1993-T161e_Page_002
	Thesis-1993-T161e_Page_003
	Thesis-1993-T161e_Page_004
	Thesis-1993-T161e_Page_005
	Thesis-1993-T161e_Page_006
	Thesis-1993-T161e_Page_007
	Thesis-1993-T161e_Page_008
	Thesis-1993-T161e_Page_009
	Thesis-1993-T161e_Page_010
	Thesis-1993-T161e_Page_011
	Thesis-1993-T161e_Page_012
	Thesis-1993-T161e_Page_013
	Thesis-1993-T161e_Page_014
	Thesis-1993-T161e_Page_015
	Thesis-1993-T161e_Page_016
	Thesis-1993-T161e_Page_017
	Thesis-1993-T161e_Page_018
	Thesis-1993-T161e_Page_019
	Thesis-1993-T161e_Page_020
	Thesis-1993-T161e_Page_021
	Thesis-1993-T161e_Page_022
	Thesis-1993-T161e_Page_023
	Thesis-1993-T161e_Page_024
	Thesis-1993-T161e_Page_025
	Thesis-1993-T161e_Page_026
	Thesis-1993-T161e_Page_027
	Thesis-1993-T161e_Page_028
	Thesis-1993-T161e_Page_029
	Thesis-1993-T161e_Page_030
	Thesis-1993-T161e_Page_031
	Thesis-1993-T161e_Page_032
	Thesis-1993-T161e_Page_033
	Thesis-1993-T161e_Page_034
	Thesis-1993-T161e_Page_035
	Thesis-1993-T161e_Page_036
	Thesis-1993-T161e_Page_037
	Thesis-1993-T161e_Page_038
	Thesis-1993-T161e_Page_039
	Thesis-1993-T161e_Page_040
	Thesis-1993-T161e_Page_041
	Thesis-1993-T161e_Page_042
	Thesis-1993-T161e_Page_043
	Thesis-1993-T161e_Page_044
	Thesis-1993-T161e_Page_045
	Thesis-1993-T161e_Page_046
	Thesis-1993-T161e_Page_047
	Thesis-1993-T161e_Page_048
	Thesis-1993-T161e_Page_049
	Thesis-1993-T161e_Page_050
	Thesis-1993-T161e_Page_051
	Thesis-1993-T161e_Page_052
	Thesis-1993-T161e_Page_053
	Thesis-1993-T161e_Page_054
	Thesis-1993-T161e_Page_055
	Thesis-1993-T161e_Page_056
	Thesis-1993-T161e_Page_057
	Thesis-1993-T161e_Page_058
	Thesis-1993-T161e_Page_059
	Thesis-1993-T161e_Page_060
	Thesis-1993-T161e_Page_061
	Thesis-1993-T161e_Page_062
	Thesis-1993-T161e_Page_063
	Thesis-1993-T161e_Page_064
	Thesis-1993-T161e_Page_065
	Thesis-1993-T161e_Page_066
	Thesis-1993-T161e_Page_067
	Thesis-1993-T161e_Page_068
	Thesis-1993-T161e_Page_069
	Thesis-1993-T161e_Page_070
	Thesis-1993-T161e_Page_071
	Thesis-1993-T161e_Page_072
	Thesis-1993-T161e_Page_073
	Thesis-1993-T161e_Page_074
	Thesis-1993-T161e_Page_075
	Thesis-1993-T161e_Page_076
	Thesis-1993-T161e_Page_077
	Thesis-1993-T161e_Page_078
	Thesis-1993-T161e_Page_079
	Thesis-1993-T161e_Page_080
	Thesis-1993-T161e_Page_081
	Thesis-1993-T161e_Page_082
	Thesis-1993-T161e_Page_083
	Thesis-1993-T161e_Page_084
	Thesis-1993-T161e_Page_085
	Thesis-1993-T161e_Page_086
	Thesis-1993-T161e_Page_087
	Thesis-1993-T161e_Page_088
	Thesis-1993-T161e_Page_089
	Thesis-1993-T161e_Page_090
	Thesis-1993-T161e_Page_091
	Thesis-1993-T161e_Page_092
	Thesis-1993-T161e_Page_093
	Thesis-1993-T161e_Page_094
	Thesis-1993-T161e_Page_095
	Thesis-1993-T161e_Page_096
	Thesis-1993-T161e_Page_097
	Thesis-1993-T161e_Page_098
	Thesis-1993-T161e_Page_099
	Thesis-1993-T161e_Page_100
	Thesis-1993-T161e_Page_101
	Thesis-1993-T161e_Page_102
	Thesis-1993-T161e_Page_103
	Thesis-1993-T161e_Page_104
	Thesis-1993-T161e_Page_105
	Thesis-1993-T161e_Page_106

