
AN EMPIRICAL STUDY OF COMBSORT AND

WAYS TO IMPROVE IT

By

YUH-CIDNG SU

Bachelor of Business Administration
Tatung Institute ofTecbnology

Taipei, Taiw~ R O.C
1980

Master of Business Administration
Oklahoma City University
Oklahoma City, Oklahoma

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1993

OKLAHOMA STATE UNIVERSITY

ANEN.WlltlCALSTUDYOFCOMBSORTAND

WAYS TO Th1PROVE IT

Thesis Approved:

~/

Dean of the Graduate College

ii

PREFACE

This thesis studies Combsort and improves it. Like Shellsort, the average case of

Combsort is very hard to analyze mathematically. Nevertheless, we attempt to estimate

the average complexity of our improved versions of Combsort through the approximation

of their best cases plus the overhead of the final passes according to our empirical results.

We also compare this sorting method with Shellsort, Heapsort, and Quicksort to see

where it stands as a new entrant to the sorting family. We also try our best to improve all

these sorting methods investigated to avoid the danger of one program being more

optimized than the others. I deeply thank God that He is the source of all wisdom and He

is my motivation. "The plans of the heart belong to man, but the answer of the tongue is

from the Lord." [Proverbs 16: 1] Above all the people I know, my parents' patience and

support even up to this moment of my life, enable me to endure and persevere. Their

gracious love is beyond my comprehension.

A word of thanks to my thesis adviser, Dr. J.P. Chandler, whose expertise in the area

of my study and experiences accumulated from many devotional years of teaching and

advising all contributed to the completion of this thesis. I also like to thank the other

committee members Dr. Hedrick and Dr. Mayfield for their willingness to help which

made me feel I was not alone in my work on the many cold, dark nights.

ii i

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

IT • TUNING UP TilE CODE •

ill . COMPETITIONS • • •

Page

1

8

33

The Sibling- Shellsort . • • • • • • . • • . 33
The Elite- Quicksort • • . • . . • • . • • . • 37
The Elegance - Heapsort • . • • • • • • • • • • 49

N. SOME PROPERTIES OF CO:MBSORT AND ITS PERFORMANCE
ESTIMATION. • • • • . • . • • • • • . 59

V. SCOPE OF IMPLEMENfATIONS • . • . 77

VI. CONCLUSIONS AND FUTURE WORKS. • 85

A SELECTED BIBLIOGRAPHY • • • • • . . • . • • • • . • • 89

APPENDIX A- PROOFS THAT TIIE COMBINED TEST IN TilE INNERMOST
LOOP OF HEAPSORT CAN BE SIMPLIFIED TO A
SINGLE TEST, AND OF PROPERTY 4.1 • • • • . • • • 92

APPENDIX B - SELECTED C PROGRAM CODES FOR TillS PAPER • . . • 96

APPENDIX C- NEARLY WORST CASE CONSTRUCTION FOR COMBSORT • 116

APPENDIX D -AVERAGE AND ERRORS FOR PROGRAM 0 AND Q 119

IV

LIST OF TABLES

Table Page

I. Running Times for Program A and C • • . • • . • • • • • . 12

ll. The Best Shrink Factor- Coarse .

Til. The Best Shrink Factor- Fine

N. The Best Initial Gap Factors. • . . .

13

14

16

V. Moving Distance Frequency Test For Shellsu15 • . • • • • • • • 18

VI • Combsort versus Combsortll • • • • . • • • • • 20

Vll . Combsort1 1 versus Combsu • • • • • • • • • • • • 22

VITI • Optimal Cutoff Point for Insertion • • • • • • • • • • • . • 25

IX. Choosing the Proper Way to Reset Every Even Gap to Odd • 27

X. Optimal Shrinkfactor for Program E at Four Various Sizes • • • • 29

XI . No. of Comparisons for Program D and F • • • • • • • • • • 32

Xll . No. of Swaps for Program D and F

Xlli . Compare Program E with 3 Shellsort Implementations .

XIV • Compare Program E with 5 Quicksort Implementations

XV • Compare Heapsort versus Heapsu • • • . • • • • • .

XVI. Running Times for Four Algorithms (No Pointers) • •

32

• 37

• 48

55

• 56

XVll. Running Times for Five Programs (Pointers Allowed) • • • . • • • 57

XVITI. Compare Toward Large Sizes ofData for Combsort Families 63

XIX • Compare Combsu2 and Combsu2d . • • • • • • • • . 65

XX . Partial Fit Results for Figure 27 • •

XXI • Partial Fit Results for Figure 28 •

v

66

67

Table

XXII . Compare Shellsu, Shells, and Shellg

XXIII. Benchmark Test for All Qualifiers (No Pointers). •

XXIV. Benchmark Test for All Qualifiers (Pointers Allowed) . .

XXV . N•lgN Diagnostics for All Qualifiers . • . . •

XXVI. Nearly Worst Case Test Results for Combsortll

XXVI • N•tgN Probing Fit for Combsu2ni and Shellsu .

vi

Page

71

74

75

76

77

77

LIST OF FIGURES

Figure

1. Program A, by Lacey and Box •

2. Program B, by Lacey and Box . .

3. Program C • • •

4. Graph for Table II • •

5. Graph for Table ill .

6. Graph for Table IV • • • .

7. Graph for Table VI •
8. Program D (Combsu) • .

9. Graph for Table VII

10. Graph for Table VIll •

11. Program E (Combins). .

12. Graph for Table IX.

13. Graph for Table X . •

14. Program F (Combsu2) •

15. Program G, by T. N. Hibbard

16. Program H, by D. E. Knuth. .

17. Program I, by R. Sedgewick ill • • • • • • • • • • • • •

18. Graph for Table Xlll •
19. Program J (Qui_3_10)
20. Program K (Qui_ 4_20) •
21. Program L (Partial Code for Qui_5_20) •

vii

Page

4

5

11

13

14

16

20

22

23

25

26

28

29

31

34

35

36

37

40

46

47

Figure

22. Graph for Table XIV. . .

23. Program M (Heapsort) .

24. Program N (Heapsu)

25. Graph for Table XVI • .

26. Graph for Table XVII

27. Exponential Fit Graph for Combsu2 .

28. NlgN Fit Graph for Combsu2 •

29. Program 0 (Shellsu15) • • •

Page

49

50

53

56

57

66

67

70

30. Program P (Combsu2ins with Unique Path) • • • . • • • . • • 72

31. Program Q (Combsu2ni) • • • • . • • . . • . • . • . 80

32. One Term NlgN Diagnostic Graph for Combsu2ni • •

33. One Term NlgN Diagnostic Graph for Combsu2

34. One Term Nlg2N Diagnostic Graph for Combsu2

35. Line Chart for Table 27 • • • • • • • • • •

viii

81

82

82

83

CHAPTER I

INTRODUCTION

Sorting algorithms are so fundamental that they existed long before computers

were invented In the late 1950's, large high-speed computers were developed and one of

the jobs that they can achicvc much more cfficicntly than human beings can do is sorting.

those simple, intuitive ways of sorting which had been used manually were transformed

into sorting algorithms. An example is Insertion Sort which is a typical way that bridge

players sort the cards in their hands. However, all those simple methods seem not good

enough for sorting large amount of data. They all require O(N2) of steps to sort in the

average case. Thus more powerful methods were developed in tum. They all perform

significantly better than those elementary sorting methods. As the use of computers

become more popular, the need for a faster algorithm become even more apparent.

When a sorting job is implemented in a computer, people generally take advantage of the

high-speed RAM as much as possible, that is, put as much as possible of the data in the

main memory and perform sorting there. If all the data elements can be put in the RAM

at once, we call it internal sorting, otherwise it is named external sorting which needs to

consider the sequential nature of slower secondary storage like magnetic disk or tape. In

this study, besides the Combsort we are going to look into, three other popular internal

sorting algorithms - Quicksort, Heapsort, and Shellsort - will also be compared. All

these methods bear some similar characteristics. They are good, in-place or almost in­

place (Quicksort), and require no predetermined knowledge about the data. Their

performances are superior to those found in the elementary methods, especially toward

large sizes of data. In-place means that they require no extra storage. Quicksort requires

a small stack for its recursive function calls. That is what we mean by "almost" in-place.

And unlike some other special purpose sorting algorithms that require the user to know

about the distributions of data before sorting is activated, they will all work well with

random data.

2

Every program code in the text is written in Pascal due to its English-like syntax,

thus reducing the ambiguity in understanding the demonstrated algorithm. However, the

timing information is derived from the equivalent C program since C has a built-in

library function to do the job easily. Another difference between the two is that I have

tried to optimize the C code as much as possible toward every sorting method I compared

so that I can tell whether one algorithm is faster than another (at least in C), but in Pascal,

my purpose is to make the demonstration of algorithm as clear as possible. For example,

I will use a global array data[] in every Pascal code although I know it is not a good

programming practice in most cases, but I will not use "pointer" though I will show that

the use of pointer will significantly speed up some algorithms. Throughout the text, the

changes needed to speed up the codes are shown inside a set of double quotation marks

"". Since a Pascal statement ends with a semicolon ';', the reader should not be confused

with the punctuation immediately after the revised Pascal code. We Will try to improve

every sorting algorithm as much as possible and explain why and how we might achieve

our goal. This sometimes is a long process and needs several steps to make it clear.

Therefore, we may have several versions of codes concerning each algorithm. As soon as

we fmd we cannot improve one method anymore, we will name that program by its key

word with a suffix 'su' (speed-up). For example, a revised version ofHeapsort will be

named Heapsu. Sometimes there will be numbers after the 'su' suffix. If it is a '2', it is a

two-way method (sorting from both ends). There may be more than one fmal version of

an algorithm. We will use an alphabetic character (i.e. a, b) after the number to

differentiate them. However, we realize that 'speed' is not necessarily the dominant

factor to advocate an algorithm. The simplicity and ease of programming sometimes is

3

more important. In particular, we will apply Insertion Sort to speed up the Two-way

Combsort and call it Combsu2. We also make an effort in the end of the speed-up

process to remove the Insertion part with another version of Combsu2 called Combsu2ni

(ni stands for 'no insertion'). If this still is not clear to the reader, I shall apologize for the

ambiguity of this naming convention.

Combsort was introduced by Stephen Lacey and Richard Box [15] in 1991. It is

almost as simple as those elementary sorting methods, i.e., Insertion Sort, Selection Sort,

and Bubble Sort, yet it is supposed to be comparable in speed to Shellsort (both use

diminishing gap sizes), which, according to some authors, is the method of choice for

many sorting applications (say less than a few thousand elements). The sorting behavior

of Combsort resembles that of Shellsort in many ways - both use diminishing increment

sequences. The optimal shrink factor suggested by the authors of Combsort [15] is 1.3,

but the shrink factors of the popular implementations ofShellsort range from 2 to 3. The

fmal pass of Shell sort is Insertion Sort but the last few passes of Combsort use the

technique found in improving the original Bubble Sort by setting a dirty pass flag to

signal whether the sorting job is done. The Pascal code of Combsort is shown in

Program A. Program B is supposedly an improved version of Combsort called

Combsortll that resets gap 9 or 10 to 11 [15].

{ Assume there is a global array data[] }
{ lo, hi are lower and upper bounds of the array indices respectively }
procedure comb(lo,hi: integer);
var ij,top,gap,v: integer;
var flag: boolean;
begin

end;

gap:=hi-lo+ 1;
while (gap> I) or (flag=true) do
begin

end

gap:=trunc(gap/1.3);
if gap=() then gap:=l;
flag:=false;
top:=hi-gap;
for i:=lo to top do
begin

end

j:=i+gap;
if data[i]>data[jJ then
begin

flag:=true; v:=data[i]; data[i] :=data[j]; data[j] :=v
end

Figure I. Program A (Combsort), by Lacey & Box

4

procedure combll(lo,hi: integer);
var iJ,top,gap,v: integer;
var flag: boolean;
begin

end;

gap:=hi-lo+ 1;
while (gap> 1) or (flag=true) do
begin

end

gap:=trunc(gap/1.3);
case gap of

0: gap:=l ;
9: gap:=ll;
10: gap:=ll

end;
flag:=false;
top:=hi-gap~

for i:=lo to top do
begin

end

j :=i+gap;
if data[i]>data[j] then
begin

flag:=true; v:=data[i]; data[i]:=data[j]; data(j]:=v
end

Figure 2. Program B (Combsortl l), by Lacey & Box

Like Shellsort [14], the time complexity of the running time for Combsort is

difficult to analyze, thus the study of this paper will be done empirically with respect to

the following aspects:

• What's the difference in performance between Combsort and Shellsort with different

sizes of data?

5

• What might be the time complexity of Combsort for very large lists? (i.e. N2, N*lgN,

etc.)

• What are some ways to improve Combsort?

1. Can the program code be tWled up?

2. Is the Shrink Factor 1.3 the best?

3. What is the optimal initial gap size?

4. If Combsort 11, by resetting gap size 9 or 10 to 11, would improve the

performance, are there any other gap sizes which could be reset to achieve better

results?

6

5. Insertion Sort is known to be.a good sorting method for very small or nearly sorted

lists and it is used to improve Quicksort in practice by simply ignoring small

partitions where Quicksort does poorly and use Insertion Sort to finish it up [22].

What is the optimal cutoff point for Combsort if Insertion Sort can indeed help

Combsort toward the end of sorting process?

6. Are there any other alternatives which might work better than Insertion Sort to

conclude the sorting for Combsort?

• Compare the frnal version of Combsort with the most popular methods like

Quicksort, Heapsort, and Shellsort define its scope of implementations (fmd out

where Combsort is more appliqable than the rest). These comparisons will be made
'.•

L

on different versions of each sorting algorithm, including the best implementations I

could ftnd plus careful examination of the code and make my best effort to improve

them to avoid the danger that one program may be more "optimized" than the others.

There are two ways to do these comparisons. First, just let the programs run on the

same machine and record the time (benchmark tests). Second, analyze the program

codes and decide what are the dominant factors to run them (complexity analysis).

Generally speaking, the number of comparisons, the number of swaps and perhaps

the number of data movements are the three major time-consuming processes for

most sorting algorithms. Amol)g them, the comparisons count is the dominant factor

for all sorting algorithms we are going to look into. Although counting the

comparisons alone is good enough to get a big picture concerning the performance of

7

these sorting algorithms, we will also do a little benchmark test to check whether our

inference by the complexity analysis is reasonable. If not, figure out why!

The input data is derived from two sources:

1. The built-in pseudorandom number generator from Borland C++ that will

generate integers 0-32767 will be used to test smaller sizes of data (less than 5000)

while avoiding too many repetitions of keys (more than 1%). The timing information

for testing small lists is done on a single user PC (A Dell386sx at 16 Wfz) to allow

consistency of the environment; for larger sizes of data, the best way I could come up

with is using the UNIX system command "time" to record only the user time

subtracting the time used to generate the random numbers in a separate run ..

2. A user-derived pseudorandom number generator that has a very long cycle and

will not have any repetitions of keys on the maximum sizes of data (15 millions) we

will use to test on the UNIX machine (Sequent). The asymptotic analyses are mainly

based on the larger sizes of data we test here.

CHAPTER ll

11JNING UP THE CODE

Before we get into the analysis of the efficiency of the sorting algorithms we will

examine, let's describe some basic operations which contribute to almost all the time

required to perform these sorting methods. Since we are dealing with only internal

sorting in this paper, we assume an array contains all data elements to be sorted.

• Comparison - Check the order between two array elements or one array element and

a ftxed value. This is the dominant factor concerning the performance of sorting.

• Swap - If two elements are out of order after being compared, they need to

exchange their positions (transposition). Tb.is 'swap' is usually done in a three-step

operation. First, save the value of either one of the two elements to a temporary

variable; second, move the other element to the position of the element being saved;

third, store the variable containing the first element into the other element's

position.

• Move - The second step in the 'swap' operation described above.

• Save- The first (save) and the third (store) steps in a 'swap' operation performs

almost identical. We simply use the term 'save' to describe both.

• Pass - A sorting algorithm sorts a list by iterating many times through loops. Each

iteration on a loop is referred to as a pass. The overhead involved in going through

a pass is to initialize the loop.

From the definitions, we know that one 'swap' equals one 'move' plus two 'saves'. Some

algorithms (i.e. Shellsort, Insertion Sort) do not swap two out-of-order elements right

away, rather they defer this swap operation until it is clear that they are not going to be

8

compared in the same pass again. That way we can eliminate some 'save' operations and

take advantage of the efficiency of comparing against a fiXed value. These arguments

shall be clear when one look at the program codes for these sorting algorithms.

There are several things which will help improve the performance of Combsort

and/or make it look neater in Program C (Figure 3). C code equivalence of the Pascal

code (if they are significantly different) will be denoted in the parentheses throughout

this paper.

1. Remove the first line inside the for loop "j:=i+gap" and insert 'T' into the test

statement and increment j like i. Thus every "j:=i+gap" will be replaced by "j :=j+ 1"

except the first one, which will be replaced by ·~:=gap+ I".

9

2. If "1" is done, the test statement "i<top" can then be substituted with ']<=hi" and

the variable "top" and the line "top:=size-gap" can be discarded. Better even, we can &tart

comparison from the end to the beginning of the array as that of Insertion Sort because

comparing with a small number is a little faster than comparing with a large number (14].

3. The explicit type conversion using casting in the frrstline inside the do-while

loop is unnecessary in C since the implicit type conversion rule follows the same track at

least as efficiently as the explicit ones.

4. The dirty pass flag can be got rid of by doing one test outside the inner loop

which I referred to as "smart dirty pass flag." Notice the order of swap is important

because otherwise we can not prove that it should work. This same technique can be

applied to improve Bubblesort, too. A proof is included in the following.

Proof: One property ofBubblesort is that at each pass it will knock out one element

which will not be compared at subsequent passes. Since we sort the list from top to

bottom, the smallest element must reside in the first position (lo) of the list after the first

pass when the gap becomes 1 (like Bubblesort). It is obvious that at the end of each

following pass if any swap occurs (even when equal keys are present), the buffer variable

"v" is greater than the smallest element data[lo] for we set v to the larger element of the

last two elements being compared.

10

5. Since the outer loop test is only necessary for the last few passes when the gap

length diminishes to 1, we can utilize more flexible "goto" statements for this loop

control instead of a combination test "until gap=l and v=data[lo];." We are also able to

get rid of "if gap=O then gap:= I;" on ea.Ch pass of the outer loop. The use of "goto" here

seems to be desirable, for otherwise, we would virtually replace those two goto

statements with "repeat until gap=l and v=data[lo];" on every pass of outer loop. The

reader might be amused to consider how to implement a more efficient no-goto version

here than the one suggested in the comments ofProgram C.

The revised version of code is shown in Figure 3 (Program C).

{ the changes needed for a no-goto version is indicated in the comments }
{ starting with an action word - add, delete, or eliminate and ending with "here" }
procedure combl(lo,hi: integer);
label loop, out; { delete this line here }
var i, j, gap, v: integer;
begin

gap:=tnmc((hi-lo+ 1)/1.3);
{ add "repeat" here }
loop: j:=hi; {eliminate "loop:" here}

for i:=j-gap downto lo do
begin

end;

if data[i]>datafj] then
begin { watch the order of swap }

v:=data[i]; data[i]:=data(j]; data[j]:=v
end;
j:=j-1

if gap>1 then gap:=trunc(gap/1.3)
else ifv<>data(lo] then v:=data[lo] {smart flag}
else goto out; { delete this line here }
goto loop; { delete this line here }
{ add: "until gap=l and v=data{lo]" here}

out: end; { eliminate "out:" here }

Figure 3. Program C

Program C (Figure 3) is a tuned-up version ofProgram A (Figure 1), which means

gaining speed without the cost of losing the simplicity of the code. Furthermore, if we

11

add one test statement "if(gap=9) or (gap=10) then gap:=ll;" right before the for-loop,

the code will be an improved version ofCombsortll . Obviously, these improvements

will not reduce the complexity ofCombsort or Combsort11; they will however, speed it

up some due to the elimination of unnecessary statements like "top:=size-gap .. ,

"flag:=true", "flag:=false", etc .. These represent some good speed-ups independent ofthe

languages being used When a more flexible (lower level) language like C is used, the

improvement can be as much as 100% in speed, because the use of a faster operation

12

(incrementationj++) in place of a slower one (additionj=i+gap), the use of pointers (we

will explain this later), and putting the most frequently used variables (such as i, j) into

machine registers. See the counter part of the C program code in Appendix B and Table I

in the following for its timing results. (The smaller sizes don't have noticeable differences

because they are too fast to be recorded precisely.)

TABLE I

AVERAGE RUNNING TIMES FOR
PROGRAMS A AND C

(IN SECONDS)

Prog. \Size 500 1000 2000 3000 4000 5000 10000

Prog. A 0.0549 0.1648 0.4395 0.6044 0.9340 1.15385 2.5824

Prog. C 0.0549 0.1099 0.2198 0.3846 0.4396 0.6044 1.3187

It can be seen in Table TI that the best Shrink Factor is 1.3 through our empirical

results; Figure 4 is its graph representation. We test on sizes of 500, 1000, 2000, 3000.

From Table IT, the Shrink Factor 1.3 is a clear winner. Then we test on a finer scale:

from 1.24 to 1.35 for twelve different Shrink Factors at those four different sizes. The

winner lies between 1.27 and 1.32 inclusively. The performance differences in this range

are also very small- see Table ill and Figure 5. It is safe to say that a Shrink Factor close

to 1.3 should be good enough.

TABLE II

PERFORMANCE MEASURE FOR PROGRAM C AT
VARIOUS SHRINK FACTORS -COARSER VIEW

(NO. OF COMPARISONS)

SF\Size
1.1
1.2
1.3
1.4
1.5

1400000

~ 1200000
c:
0
·~ 1000000
~
Q,

E 800000

8
'15 600000 ...
G) 1 400000
:II

z 200000

500 1000 2000
18283 43308 100374
11146 26304 61712
9420 23109 51779

13413 28014 93997
19238 74657 295088

The Best Shrink F actor # 1

1.1 1.2 1.3 1.4 1.5

Shrink Factor

Figure. 4 Bar Chart for Table II

3000
162404
97639
81854

199191
932726

El3000

• 2000

~ 1000

• 500

13

TABLE ill

PERFORMANCE MEASURE FOR PROGRAM CAT
VARIOUS SHRINK FACTORS- FINER VIEW

(NO. OF COMPARISONS)

SF\Size
1.24
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35

180000
Cl)

~ 160000

·~ 140000
a. 120000
E 100000

8 80000 -~ 60000
ID
.a 40000

~ 20000 z

500 1000 2000
10224 23810 54947
10077 23206 52369
9650 23054 51062
9614 23181 51522
9773 21696 50759
9420 23109 51779
9278 22914 51399
9520 22621 47402
8869 22605 50580
9852 32592 51758

10157 22883 55125

The B est Shrink Factor # 2

V ~ ~ ~ ~ M ~ N M ~ ~
N N N ~ ~ ~ ~ ~ ~ ~ ~

Shrink Factor

Figure 5. Bar Chart for Table ill

3000
87800
85143
84063
84460
82720
81854
83359
83671
86345
80615
90174

EJ 3000

• 2000

a 1000

• sao

14

15

The initial gap N/1.3 is too large because for a random list the average distance an

element will move after sorting is about size/3. Therefore, size/3 as the initial gap might

be a good estimate and this presumption will be verified later. Simply replace the first

line in PrOgram ill with "gap:=(hi-lo+2) div 3;", and we are done with resetting the initial

gap size. Note that we use "hi-lo+ 2" instead of "hi-lo+ 1" so that a test statement "if

gap=O then gap:=l;" can be saved for size=2. Though the optimal initial gap size is hard

to decide, it doesn~ make much difference in between size/2 and size/3.5. The

improvement is marginal over the original one. See Table IV and Figure 6. There the X­

axis is the Initial Gap Factor (IGF) and si.ze/IGF equals the initial gap size.

TABLE N

PERFORMANCE MEASURE FOR PROGRAM C
AT VARIOUS INITIAL GAP FACTORS

(NO. OF COMPARISONS)

INP\Size
1.3
1.7

2
2.5

3
3.5

4

180000

~ 160000

g 140000
·c
[120000

g 100000

~ 80000
0
... 60000
CD

.D 40000 E
i 20000

0

500 1000 2000
9420 23109 51779
9255 24295 51945
9551 21370 50509

10461 20506 49974
9264 21490 45957
8420 20999 52356

11329 30141 45669

The Best Initial Gap Factor

Initial Gap Factor

Figme 6 Bar Chart for Table IV

3000
81854
80609
75452
81833
78508
73427
81391

r.:::l3000 b.::J

• 2000

Ea 1000

. 500

16

17

A desirable way of making an efficient increment sequence for Shellsort is to

minimize the occurrence of one increment being a perfect divisor of another (non­

relatively prime) because one famous theorem about Shellsort is: "If a k-<>rdered list ish­

sorted, it renlains k-ordered." [14] Although this theorem does not apply to Combsort

exactly (Property 4.la, Chapter IV), it still bas some impact on Combsort (Property 4.2,

Chapter IV). Combsort11 resets the gap sizes 10 and 9 to 11 and gains a little on the

average (not always)- See Table V. It is hard to believe at the first glance that

Combsort11 would be a better performer than the original Combsort, because after 11,

the gap sequence is 8-6-4-3-2-1 which breaks the rule of "relatively prime" found in

Shellsort. Now the possible sequences after gap<30 are the following:

Sequence #1.

Sequence #2.

Sequence #3.

Sequence #4.

Sequence #5.

Sequence #6.

Sequence #7.

29-22-16-12- 9 -6-4-3-2-1

28-21-16-

27-20-15-

26-20-

25-19-14-

24-18-13-

23-17-13-

11 -8-6-4-3-2-1

10 -7-5-3-2-1

10

Notice that all these sequences bear non-relative-primeness in some way. But how much

does it matter? The idea of getting a relatively prime gap sequence is to avoid redundant

comparisons. The major departw"e of Combsort from Shellsort, as we mentioned earlier,

is that the innermost loop of Shellsort is replaced by a simple comparison. Therefore, the

redundant comparisons for Combsort could only happen in the direction of sorting while

Shellsort inserts each item backwards in a loop and may encounter redundant

comparisons in both directions. For example, if we want to sort a list "1-3-2" into

ascending order, and the gap sequence for both Combsort and Shellsort is "2-1", the first

pass is to compare 1 and 2, and no swaps occur. If the sorting direction is from left to

right, Combsort would not have a redtmdant comparison at gap=1 but Sbellsort would

18

have compared 1 and 2 again after swapping 2 and 3. If sorting from right to left, both

would have a redundant comparison (1 and 2) after swapping 2 and 3. Another notable

difference is that Combsort uses a much smaller Shrink Factor than Shellsort does (1.3

va. 2 to 3) aDd, according to some of my test results, the number of transpositions for

Combsort is about 20% less than that of Shellsort. I also did some tests on Shellsort, and

my empirical results shows that the number of elements travel more than seven gaps far

in one pass is negligibly small - see Table V.

TABlE V

MOVING DISTANCE FREQUENCY 1ESTS FOR
ONE SHELLSORT (SHELLSU15)

(OCCURRENCES)

Size 1500 15000 150000 1500000
move=O 9806 141798 1856260 22931916
move= I 8842 125422 1641921 20355701
move=2 1475 20615 267300 3265928
move=3 774 11141 144371 1814454
move=4 393 5921 79667 1005222
move=5 227 3267 41774 526345
move=6 122 1537 20193 254789
move=? 49 669 9129 114363
move=8 17 281 3807 45630
move=9 9 107 1390 16269
move=10 0 36 450 5127
move=11 0 14 106 1487
move>11 0 2 37 449

It is reasonable to think, since Combsort has a smaller number of transpositions,

that most elements should travel less than seven (say five or six) gaps in one pass.

19

Accordingly, the only times that the relative-primeness would have some good impact are

when a gap is half of any of the previous gaps or is one-third of any of the previous gaps.

I call the former kind of situation "immediately non-prime" (INP) and the latter "next to

INP" (NINP). In relation to Table V, a redundant comparison in the INP situation iB that

when move= I and in the NINP case when move=2. If the behavior of moving frequency

for Combsort is similar to that of Shellsort (future work), the INP should have about six

times more frequent occurrence than the N1NP (see Table V). For those sequences stated

above, the immediate-non-primeness (or INP) they inherited arc:

For 9: 12-6-3, 4-2

For 10: 14-7 (sometimes), 10-5

For 11: 8-4-2, 6-3

Two things concerning INP are: INP counts and the magnitude of the size when an INP

occurs. It is straightforward to see that the greater the lNP counts the worse the

performance will be. The reason why the latter would affect the performance is also easy

to explain. Every time an INP happens on a certain gap, it could cost that gap size of

inversions if later on it needs to be taken care of by a smaller gap. This inference can

explain why resetting 10 at Sequence #5 to 11 could gain good speed since it could avoid

the 1NP of 14-7 but little or no improvement at Sequence #6 or #7 since it would

introduce an additional INP count Sequence #6 in particular is the worst case scenario

for Combsort1l because we will also get three NINPs (24-8, 18-6, and 6-2) in addition to

one INP. Our test results support these arguments. However, resetting 9 to 11 for

Sequence # 1 shouldn't be a good idea since it will create the INP of 22-11 and does not

reduce the INP counts. Nevertheless our empirical results contradict this inference. See

Table VI and Figure 7 in the following. Note the five sets of data we chose represents

Sequences #1, #2, #5, #6, and #7 respectively around 3000. Sequences #3 and #4 won't

introduce any changes for Combsortll from Combsort.

TABLE VI

PERFORMANCE MEASURE FOR COMBSORT AND
COMBSORTllATVARJOUSGAPSEQUENCES

(NO. OF COMPARISONS)

Size (Seq.) 2800 (#1) 2730 (#2) 3100 (#5) 3050 (#6) 3000 (#7)
Comb 74400 72065 83296 76468 78508
Combll 68793 67891 77402 77681 74904

The Improvement of Combsortl 1

(ID 90000
s 80000
(I)

'i3 70000
c.. 60000
E 50000
8 40000

~ 30000
~ 20000
~ 10000
z 0

C) C) C) C) C)
Q M Q Ll'J Q
CD !"- ..- Q Q
N N M M M

Size

. comb

Ea comb11

Figure 7 Bar Chart for Table VI

20

21

Why has resetting 9 or 10 to 11 almost always improved the performance of

Combsort regardless of the argument we just made? If we look at the lists when the gap

size reduces to 1, we will find very few inversions left, but they might still need quite a

few passes to Complete because they degrade to Bubblesort which might fiX only one

inversion at each pass (see Chapter IV for the worst case discussion). Resetting 9 to 11

will delay the degradation process by exchanging gap 9 with two gaps 11 and 8. In other

words, we spend one more pass before it degrades to Bubblesort, and that's where the

performance gain comes from. Although resetting 10 to 11 will also delay the

degradation process by one pass, the performance gain will be offset by the increasing

INP COWlts and the magnitude ofiNP as the previous argmnents stated So a better way

of resetting gap size is that after the gap size reduces to 9, simply decrement the gap size

by one on each pass. The empirical results are indicated in Table vn and Figure 9. An

improved version ofCombsort (Combsu) is in Figme 8.

procedure combsu(lo,hi: integer);
label loop, out;
var ij,gap,v: integer;
begin

gap:=(hi-lo+2) div 3; { +2 is necessary for size=2 to work }
loop: j:=hi; , { OT. we will need one additional if here }

for i:=j-gap downto lo do
begin

end;

if data[i)>data{j] then
begin

end;
j:=j-1

v:=data(i]; data(i]:=data[j]; data(j]:=v

if gap>lO then gap:=trunc(gap/1.3)
else if gap> 1 then gap:=gap-1
else if v<>data[hi] then v:=data[hi] {smart flag }
else goto out;
goto loop;

out: end;

Figure 8. Program D (Combsu)

TABLE Vll

PERFORMANCE MEASURE FOR PROGRAM B
AND D AT VARIOUS SEQUENCES

(NO. OF COMPARISONS)

Prog.\Size 2800 (#1) 2730 (#2) 2650 (#3) 2600 (#4) 3100 (#5) 3050 (#6) 3000 (#7)
Combll 68793 67891 63265 63890 77402 77681 74904
Combsu 68238 66258 64055 63106 76160 74935 74602

22

~ 8COOO
g 70000

·~:::

(j soooo
0..
E 50000
8 40000
0 30000
Iii 20000
~10000
::3 0 z

Combsort11 vs. Combsu

0
0
CD
N

0
Ln
(g
N

0
0
(g
N

Size

0
0 ,....
M

0
0
0
M

• comb11

li!i comb7

Figure 9. Bar Chart for Table VTI

23

Though the improvement in comparisons of Combsu over Combsortl l is only

marginal, it introduces some good speed-ups (about 200/o) by reducing the overhead and

makes the program look neater. Some more speed-up can be achieved by introducing

Insertion Sort toward the end of Combsort when it becomes as inefficient as Bubblesort.

This improvement is significant although it almost doubles the size of code. The

performance gain is about 15% to 20%. See Table VIII. The motivations to use

Insertion Sort are threefold:

1. Insertion Sort is good at almost sorted lists where Combsort does poorly and

degrades to Bubblesort when the gap size is one.

2. There is no way to eliminate all INPs discussed above when the gap size is less

than 10 withoutjeopardizingthe degradation process ofthe Shrink Factor becoming one.

For instance, we can reset6 to 5 on 15-11-8-6-4-3-2 and produce the sequence 15-11-8-5-

3-2 which eliminates all INPs. Nevertheless, by doing that we will speed up the

degradation process of the Shrink Factor by one pass.

24

3. When Insertion Sort is used, the dirty pass flag can be completely got rid of, the

test and reset statement "if gap=O gap:=l" or "if gap>O " is no longer needed, and the

need of two "goto" statements (for efficiency) to replace the compound test outside the

loop is nonexistent One important thing about applying the Insertion Sort is when to use

it; that is, what is the best cutoff point for Combsu to use Insertion Sort. The results in

Table Vlli and Figme 10 show that a cutoff point around 6 is generally a good performer.

The nwnber of moves becomes more significant when the cutoff point for Insertion Sort

is larger. Program E (Figure 11) is the resulting code. Note that the Insertion Sort we use

there has exploited Property 4.5 (in Chapter IV) to get rid of the need for a sentinel key.

TABLE VIll

PERFORMANCE MEASURE FOR COMBSU AT
VARIOUS CUfOFF POINTS FOR INSERTION

(NO. OF CO:MP ARISONS)

Cut \Size 500 1000 2000
0 8807 20583 47152
4 7186 17038 38602
5 6919 16880 38594
6 6907 16835 38287
7 6993 16694 38224
8 6961 16713 39176

Cutoff Point For tnsertion

en
5 160000
·~ 140000
[120000
E 100000
8 80000
i5 60000
Cii 40000
.c 20000
~ 0 z +-,.._-.......-'1:1"

.0
E
8

co

Cut Point

~3000 E:.:.l

. 2000

Iii 1000

. 500

Figure 10. Bat Chart for Table VIII

25

3000
74602
63002
62620
62563
62299
62281

procedme combins(lo,hi: integer);
var ij,gap,v: integer;

procedme insertion(lo,hi: integer);
var ij,v: integer;
begin

end;
begin

end;

ifhi-lo>6 thcnj:=lo+6 { 6 is the cut off gap size}
elsej:=hi;
fori:=j-1 downto lo
do begin { send the sentinel here }

if data{i]>data{j] then
begin v:=data[i]; data[i]::=data{j]; data[j]:=v end;
j:=i

end;
for i:=lo+ 2 to hi do
begin

end

j:=i; v:=data[i];
while data[j-1]>v do
begin

data[j]:=data[j-1];
j:=j-1

end;
data[j]:=v

gap:=(hi-lo) div 3;
while gap>6 do
begin

j:=hi;
for i:=bi-gap do'Wllto lo do
begin

if data[i)>data[j] then
begin v:=data[i]; data[i]::=data{j]; data{j]:=v end;
j:=j-1 ;

end;
gap:=trunc(gap/1.3);

end;
insertion(lo)li)

Figure 11. Program E (Combins7)

26

After applying Insertion Sort to our Combsort, we need to re-plot all the optimal

values discussed so far- Shrink Factor, Initial Gap Size, and the resetting of certain gap

27

sizes to reduce the JNPs. However, everything remains the same after some experiments

similar to what we have done to 1hi.s point h is easy to explain why the first two factors

do not change since they are more or less independent of the Insertion phase - they do not

interfere with the work which Insertion Sort iB going to do. But what about the last

factor? Of course we don't need to reset 9 or 10 to 11 as Combsortll did or change the

gap sequence like Combsu since we have cut it off by the Insertion Sort at a gap size of

6. Yet we can still think about reducing the INPs at some larger gap sizes. It would be

trivial to reset a couple of gap sizes, because the algorithmic improvement of resetting

gap sizes would be only marginal, but the overhead involved and the complication of the

programming code would lessen its significance. Nonetheless, I tried to eliminate the

INPs by incrementing or decrementing every even number gap size, hoping there would

be some performance gain. The programming is easy: simply add one line of code

"gap:=gap+(gap+ 1) mod 2;" or "gap:=gap-(gap+ 1) mod 2;" after "gap:=trunc(gap/1.3);".

The incrementing version performs poorer but the decrementing one performs a little

better (about 3%) than the original one. Sec Table IX and Figure 12.

TABLE IX

PERFORMANCE MEASURE FOR PROGRAM E AND
ITS INCREMENT AND DECREMENT VERSION

BY RESETTING EVEN GAPS TO ODD

Prog.\Size
Combins7
even+ I
even.-1

(NO. OF COMPARISONS)

500
6907
7208
6885

1000
16835
17321
15791

2000
38287
40519
37389

3000
62563
63953
60078

Reset Even Gaps t o Odd

70000
en 60000

'15 5 50000
jl·~ 40000
E c.. 30000 z E 20000

8,0000
0 ~=-ll.t

0
0
0

Size

0
0
0
N

• combins7

B even+1

• even-1

Figure 12. Bar Chart for Table IX

28

Here comes the prompt again! "Do we need to re-plot those optimal values again

since we decremented the even gaps?" The answer is a resounding)res". Actually, we

already had a clue that we might want to increase the Shrink Factor a little bit when

decrementing each even gap, which bas an effect of slightly increasing the Shrink Factor

and performs better. After a series of tests like we did previously, I found the optimal

Shrink Factor to lie around 1.4 which is a significant improvement (about 12%); the best

cutoff point for the Insertion Sort is 3 which bas marginal effect (1%); and the IGF

remains pretty much the same. See Table X and Figme 13. A program for this

implementation is too trivial to be included here since we only need to change 1.3 to 1.4

and 6 to 3 in addition to the one added line (reset even to odd) mentioned earlier for

Program E.

TABLE X

PERFORMANCE MEASURE FOR PROGRAM EAT
TWO SHRlNK FACTORS - 1.3 AND 1.4

SF\Size
1.3
1.4

CD 70000 c
g 60000
·;
"50000 c.
E 40000
Q

u 30000
0
... 20000 m
-;,oooo
i 0

(NO. OF COMPARISONS)

500
6885
6192

1000
15791
14329

Optimeal Shrin k Factor 1 ...

500 1000 2000 3000

Size

2000
37389
32787

3000
60078
53392

• cm_su1.3

§ crn_su1.4

Figure 13. Bar Chart for Table X

29

Although Lacey & Box (lS] referred to Com.bsort as a variation ofBubblesort by

allowing distant comparisons along the list, algorithmically speaking it is a lot more like

Shell sort. No doubt their idea of Combsort must have originated from Bubblesort. In

filet, what is common for Combsort and Bubblesort is that they do not defer the

transposition like Shellsort once an out-of-order is located. One improved version of

30

Bubblesort is called Cocktail Shaker Sort in 'Which alternate passes go in opposite

directions, so that any element that needs to traverse a long way to its final position

toward either end of the list has a chance to reach its final destiny faster. That sparked

my last attempt to improve Combsort for the time being. After a series of tests on

different configurations at the same set of data we used before, I found that the optimal

IGF remains at 3, the Shrink Factor increases to 1.44, and the cut-off point for Insertion

Sort decreases to 3. These changes really make sense since the Two-way Combsort did a

better job in sorting; it allows a little bigger jump on the gaps used and wouldn't need the

Insertion Sort until the last moment when it degenerates into the notorious Bubblesort

Program VI is my implementation for it A sentinel for the insertion part can be adjusted

according to the cutoff point used

procedure combins2(lo,hi: integer);
label: out;
var ij,gap,v: integer;

begin
gap.=(hi-lo) div 3;
i:=lo;
repeat

for j=lo+gap to hi do
begin

end;

if data[i)>data[j] then
begin

v:=data[i]; data[i]:=data{j]; data[j]:=v
end
i:=i+1

if(gap<=3) then goto out;
gap:=trunc(gap/1.44);
gap:=gap-(gap+ 1) mod 2;
j:=hi;
for i:=hi-gap downto lo do
begin

if data{i)>data[j] then
begin

end;
j.--j-1 .

v :=data[i]; data(i]:=data{j]; data(j]:=v

end;
gap:=tnmc(gap/1.44);
gap:=gap-(gap+ 1) mod 2

Wltil gap<2;
out: insertion(lo,hi)
end;

Figure 14. Program F (Two-way Combsort)

31

According to my sampling, this revision did help reduce the number of comparisons

except for the smallest data we tested at 500 - see Table XI. The improvement seems to

increase as the size of data gets larger. We will verify that in Chapter IV. However, the

nmnber of transpositions (swaps) also increased for this Two-way Combsort (as it is

called from now on) - see Table XI.

TABLE XI

PERFORMANCE MEASURE FOR PROGRAM D AND
PROORAM FAT FOUR VARIOUS SIZES

Prog.\Size
Com.bsu
Combsu2

(NO. OF COMPARISONS)

500
6192
6294

1000
14329
14291

TABLE XII

2000
32787
325n

PERFORMANCE MEASURE FOR PROORAM D AND
PROGRAM FAT FOUR V ARlO US SIZES

(NO. OF SWAPS)

Prog.\Size 500 1000 2000

3000
53392
52726

3000
Combsu
Combsu2

2405
2734

5398
5989

12204
13740

19884
22202

32

These tests are by no means complete, especially toward large size of lists, but they

all agree with our inferences. We'll come back in Chapter IV and see a more complete

test for Combsort at sizes up to 15 million.

CHAPTER ill

COMPETITIONS

In this chapter, we are going to look into some popular methods of internal sorting

and compare them with the refmed version of Combsort and see where we stand in

performance as a new entrant to the sorting family. A word of caution before our

comparison analysis is that different methods will bear different overheads other than the

comparisons count, although it still dominates. Thus we will do some benchmark tests at

the end of this chapter and verify whether our results need to be adjusted accordingly.

The Sibling - Shellsort

Shellsort is an improved version of Insertion Sort which allows exchanges of

elements that are not adjacent. The significant factor in Shellsort is the selection of a

good increment sequence. Two popular sequences presented here are Hibbard's

(Program G) and Knuth's sequences (Program Vlll). The first line of code in these two

programs, the "repeat until loop" (for loop), is to determine a good starting gap. The rest

of the code is very similar to Comb sort. The only significant difference is that the

innermost loop in Shellsort is replaced by a single comparison (if statement) and a

possible "swap" in Combsort. There are other increment sequences which would lead to

a more efficient sort. But it is difficult to beat the following program by more than 20%.

And the conjecture for the complexity of Shellsort for a large size of data is either

N*(log2NY or Nk where 1 <k<2. For example, two conjectures about the sequence

Knuth suggested are N5/4 and N*(log2W in the average case [21]. The worst cases for

both sequences are the same (N3/2) and can be proved Robert Sedgewick has improved

33

Shellsort by several good increment sequences which lower both the upper bound and

apparently the average asymptotic complexity, but none of these improvements he

34

suggested produce an O(N* log2 N) complexity like that of Quicksort (average case) or

Heapsort. The authors of Combsort claimed that Combsort has (N*log2 N) complexity.

If that is true, Combsort will run faster than any version of Shellsort available now, for a

fairly large N. We will investigate this in Chapter IV. The best known sequence which
o o o I

Sedgewick found was in the form of (9*41..9*241} u (41..3*241). I simply used a

calculator and initialized it up to the maximum size I am going to test in this paper, in the

beginning of the program in Program IX Notice that the counterpart C program in

Appendix TI wraps around the innermost loop with an if statement, so that the

unconditional save can be avoided [2} and the first "j>=h" is also eliminated.

procedure shellh(lo,hi: integer);
var ij,gap,v : integer;
begin

end;

gap:=1;
repeat gap:=2*gap until gap>(hi-lo)/4;
gap:=gap-1 ;
repeat

gap:=gap div 2;
for i:=gap+ 1 to hi do
begin

v:=data[i]; j:=i;
while j>gap and data(j-gap]>v do
begin

data[j]:=data(j-gap]; j:=j -gap
end;
data[j]:=v

end
until gap=l ;

Figure 15. Program G by T. N. Hibbard

procedure shellk(lo,hi: integer);
var ij,gap,v: integer;
begin

end;

gap:=l;
repeat gap:=3*gap+ 1 until gap> hi;
repeat

gap:=gap div 3;
for i:=gap+ 1 to hi do
begin

end
until gap=l;

v:=data[i]; j:=i;
while j>gap and data[j-gap]>v do
begin

data[j]:=data[j-gap]; j:=j-gap;
end;
data[j]:=v

Figure 16. Program H by D. E. Knuth

35

procedure shells(lo,hi: integer);
var ij,k,gap,v: integer;
var ary: array[l..21] of integer;
begin

end;

ary[1]:=1; ary[2]:=5; ary[3]:=19; ary£4]:=41; ary[5]:=109; ary£6]:=209;
ary[7]:=505; ary[8]:=929; ary£9]:=2161; ary[l0]:=3905; ary£11]:=8749;
ary£12):=16001; ary(13):=36449; ary£14]:=64769; ary(I5):=146305;
ary£16]:=260609; ary£17]:=587521; ary[18]:=1045505; ary£19]:=2354689;
ary£20}:=4188161; ary£21):=9427969;
k:=20; gap:=(hi-Jo) div 3 • 2;
while ary[k)>gap do k:=k-1;
repeat

gap:=ary[k]; k:=k-1;
for i:=gap+ 1 to hi do
begin

v :=data[i]; j:=i-gap;
while (j>=Jo) and (data[j]>v) do
begin

data[j+gap 1 :=data(j];

end;
data(j+gap):=v

end
Wltil gap=l

Figure 17. Program I by R. Sedgewick

In Table XIII and Figure 18, we compare the result from Table X (Combins) with these

36

three versions of Shellsort since we have yet to find out whether the Two-way Combsu is

practical. This version of Combsort seems to fall only behind Sedgewick's sequence and

takes second place by the comparisons count.

TABLE XIll - -

PERFORMANCE MEAstJRE FOR COMBINS AND SOME
FAMOUSSHm1SORT~ATIONS

Prog\~ize
cm_su1.4
sh.ellh
shellk
shells

(NO. OF CO!viP ARISONs)

500 1()00
6192 14329
6289 14901
5917 14388

- !)100 1384?

2000
32787
34643
33180
31524

CD ...
·;

Figure 18. 3-D Bar Chart for Table Xlll

The Elite - Quicksort

". --- -- · ·--

3000
;3392
56531
54998
50395

. --

Since 1960 when C. A R Hoare invented Quic~ it has become the most

popular general-purpose sorting algorithm. In many cases, it is imbedded in the library

routines of computer languages, i.e. C language. Through the years, research efforts on

37

38

sorting algorithms have been put more on Quicksort than on any of the oilier sorting

methods. To its credit Quicksort is the fastest general purpose, internal sorting algorithm

so far (in the average case), and it is not difficult to implement. Its behavior is subject to

mathematical analysis and precise performance statements can be made without much

argument The basic algorithm for Quicksort is "divide-and-conquer". It works by

dividing a list into two parts, then sorting the parts independently, iterating the divido­

and-ronquer process until the list is sorted Ideally, we like to see two equal-length

partitions every time so that the list will take r lo82N l passes to finish all partitions.

However, if we always divide a 1iBt into two very unequal parts, one part with only one

element, the number of passes Quicksort will take is N. If this kind of partitions persist

throughout all passes, it is the worst case for Quicksort. The efficiency of this sorting

method heavily relies on how we do our partitions. For a random list, since the elements

are equally fuly distnbuted, the possibility of the worst case happening is very unlikely

no matter which element we choose as the pivot for partition. The easiest pick for the

pivot is from either end of the list because we always know their array indices; but for

already sorted or nearly sorted lists, which do happen in practice frequently, these

partition methods end up with their bad or worst cases (calling itself for N times and only

knocking off one element for each call). To cope with this disturbing feature of the last

implementations, we can pick the middle element as its pivot and the previous worst or

bad cases would tum around to be the best or good cases. However, concatenating two

sorted sublists of equal or nearly equal lengths into a large list is likely to make this

middle--pick implementation perform poorly. Accordingly, the undesirable featmes of

Quicksort are that its worst case takes O(N2) operations, and it is tricky to program

correctly, especially when one attempts to improve an implementation. The performance

measure by comparisons-count for Quicksort is usually underestimated since it has a very

short innermost loop and the comparison is done against a fixed value. But the overhead

of the recursive function call involved seems to balance it out some if one doesn't make

39

an effort to remove the recursion, which is usually done in practice. 1be probability of

the worst case behavior occurring in Quicksort can be reduced significantly by applying

some developed techniques, i.e. Median-of~ Three (proposed by Singleton [14]), choosing

the median of the three elements from the top, the bottom, and the middle of the list as

the pivot element; the cost is to lengthen its code. Program X is this popular

implementation of Quicksort wring ~f-Three as the pivot for partition, and

ending each partition when the partition size is less than 10; then apply Insertion Sort to

the whole list after Quicksort is done. The Insertion Sort is omitted here since it is the

same as the one used for Combsort earlier. This Median-of-Three approach helps

Quicksort in two ways: it reduces the worst case probability (more detailed discussions

later) and makes the program run faster by about 5% [21]. The Insertion Sort help

Quicksort save many fimction calls to small partitions and slightly reduces the number of

comparisons if it is properly implemented The reduction in the running time is about

20% [21].

procedure quicksort(lo)li: integer);
var ij,mid,v,t: integer;
label start;
begin

if hi-lo>9 then
begin

mid:=lo+(hi-lo) div 2;
if data[lo]>data[mid] then
begin t:=data[lo]; data(lo]:=data{mid]; data[mid]:=t end;
if data[lo]>data[hi] then
begin t:=data(lo]; data[lo]:=data{hl]; data{hi):=t end;
if data(mid]>data{bi] then
begin t:=data[mid); data[mid]:=data{hi]; data{hi]:=t end;
v:=data(mid];
i:=lo; j :=hi;
goto start;
repeat

t:=data(i]; data(i]:=data(j]; data[j] :=t;
start: repeat i:=i+ 1 until data[i]>---v;

end;
end

repeat j :=j-1 l.Dltil v>=data(j]
until i>j;
quicksort(loj);
quicksort(i,hi)

Figure 19. Program J Quicksort with Median-of-Three
and Cutoff Point for the Insertion Sort at 10

As mentioned earlier, there have been quite a few research efforts put into the

improvement of Quicksort. In the beginning, most of these efforts focused on how to

40

make a "quicker" sort. Many ideas have been suggested and tried, but there is no

convincing improvement except for the above implementation because the algorithm is

so well balanced that 1hc effect of speeding up one part can be more than offset by the

side effect in another part of the program. For example, some people (17] tried to usc

mean instead of median from a small sample as the pivot for partition. Yet this depends

heavily on the distribution of the data, which means the worst case (or bad cases) arc

41

much more likely to happen than the median method if it is not uniformly distributed Of

course, we can always take more items to gain better approximation of the median at the

cost of some overhead regarding the selection of the median from a bigger sample and of

lengthening the code. For example, median~f-five should be a better guess of the

median than that of median~f-three, but the selection of the former takes 6 comparisons

rather than 3, and these comparisons are done between two array elements rather than

one against a fixed value. Thus further choosing more samples to estimate the median is

probably not a good idea. After all, most people would probably not be willing to go for

the lengthy program like median-of-five which gains little in average performance. After

devoting some good amount of time in improving Quicksort, Robert Sedgewick (21]

sighed, "It is tempting to 1Iy to improve Quicksort: a faster sorting algorithm is computer

science's 'better mousetrap.' That is why later on, after realizing the difficulties in

speeding it up, most of these research efforts have focused on how to reduce the

probability of the worst case scenario happening. Again, none of these improvements

seem to have won enough converts to affect the above implementation being taken to be

an optimized version of Quicksort Besides taking the median from a small sample,

Hoare (10) suggested calling on a random number generator to get the pivot element for

partition. That may be a safe choice to avoid the worst case in practical problems [21],

though for a random list, this approach will neither reduce the worst case probability nor

the number of comparisons over choosing any fixed partition element. Compared with

the Median-of-Three approach which eliminates about tn [14] of the number of

comparisons, the random approach appears to be significantly slower. Therefore, it never

gained any popularity, because few people would be willing to sacrifice such a loss in

performance in order to avoid the very unlikely bad cases that they thought might never

happen to them. However, the existence of the bad cases if not the worst case is still

quite real for the Median-of-Three implementation. One good example would be

cacatenating a list in ascending order to a descending one at about equal length (i.e. 10-8-

42

6-4-2-1-3-5-7-9). That is to say, the bad cases for the last implementation do happen in

practice. In fact, it is possible to completely get rid of the worst case and derive a version

of Quicksort with an O(N•lgN) complexity. Because theoretically, we can revise

Quicksort algorithm to find a median in linear time {about (2+2ln2)N comparisons) [21],

and use a true median (no guessing) for each one of the lgN partitions and derive a

version of Quicksort with about (2+2ln2)NlgN comparisons. However, it is not practical

to use this approach because of its extremely complex algorithm and this true-median

Quicksort will not beat Heapsort or other O(NlgN) sorting methods. Therefore, I propose

a small revision to the last partition scheme which I call "Median-of-Four". Here is my

plan:

1. Take four elements from the beginning, the end, one third from the beginning, and

one third from the end of the list.

2. After four compare-exchanges, we have the smallest one in the beginning and the

largest one in the end of the list.

3. Start om partition-exchange process for Quicksort from the second one and the

second last one.

The advantages of the above algorithm over Median-of-Three are:

1. The probability of the worst case is reduced in "most" (explained later) cases; 3 out

of 4 rather 1han 2 out of 3 must be among the extreme values of the keys. A general

term for calculating the worst case probability is 2•C:~JC: where N is the size

of population, m is the size of sample, and k is the number of elements required to

be among the extreme values of keys. The leading term (constant 2) is for both the

largest and smallest possible choices. For example, picking a key from a random

list ror use in partitioning <m=I, t:=t), the worst case probability is 2• C~~/C~ =

2/N (the worst key could be either the smallest or the largest). Now for Median-of­

Three (m=3, k=2) the worst case probability is 2•G;~/CN = 2•(N-2) /(N•(N-

t)•(N-2)1(2• 3)) = 12/(N•(N-1)). The worst case probability for our method

Median-of-Four (if we agree in most cases 3 out of 4 must be among the extreme

values ofkeys) evaluates to 2•C:;~/CN =48/(N*(N-1)•(N-2)) which even beats

that of Median-of-Five at 2*C;~/CN =120/(N•(N-l)*(N-2)).

43

2. The worst case performs twice as fast; it will knock out two clements on each pass

rather than one.

3. The average number of comparisons will be reduced by about 6% (see Table XXIll)

for relatively large sizes because this approach yields a better estimate of the

median. It is as though we apply median-of-five (four plus the average of the

medians) at only one additional comparison rather than 3 more comparisons. Thus

it will beat the complicated programming effort required for Median-of-Five.

For certain peculiar distnbutions of data, however, the above advantages except #2

may not be so obvious. One may even argue that the possibility of a worst case scenario

is even twice as much as that of the Median-of-Three because 2 out of 4 being among the

extreme values of keys might suffice to cause the occurrence of the worst case on certain

distributions of data. This is a legitimate concern because 2*C;~/G = 2*12/(N*(N-

1)) =2• (2*~~/~). Notice that the probability of two out of four clements being

picked to be among the two largest keys equates the probability of two out of three being

picked to be among the two extreme values (largest or smallest) of keys. However, the

phrase 'among the two extreme values' is not precise. A more accurate argument should

be: 2 out 4 must be among either the two extreme "large" values or the two extreme

"sm.all" values of keys . .Adding the conjunctive verb 'either or' to the statement will cut

down its probability some. For example, picking four elements from a list 1-2-10-11-20-

21-30-31-40-41-99-100 will fall into its worst pick scenario for our Median-of-Four

method as long as 99 and 100 are present in our four-element picks, but it is not

necessarily true if our picks simply include 1 and 2. In fact, besides picking (1, 2, 99,

100), there are only two other pickB (1, 2, 10, 11) and (1, 2, 11, 20) that will form the

worst cases. Therefore, the worst case probability of Median-of-Four for this twelve-item

list at this pass is only about 0.4% (VCu) more than that ofMedian-of-Three.

Moreover, this slim chance must happen consi.stently at the fom (not only three)

sampling points throughout all passes. On the other band, picking four elements from a

list 1-2-52-53-61-62-71-72-81-82-99-100 will become its worst pick scenario if 1 and 2

are included in the picks, but it is not necessarily true if 99 and 100 are present in this

four-element picks. It would be very difficult in practice to find a situation where the

likelihood of the worst case of my approach should be almost twice as great as that of

Median-of-Three.

One more thing we can try to improve the last implementation of Quicksort ls

Insertion Sort really the best of all for a very short list? Or is there room to improve

Insertion Sort at all? There is no known method which will beat Insertion Sort for a very

short list (say less than 10); Selection Sort comes closest to it. There are a couple of

ways to improve Insertion Sort: List Insertion, Two-way Insertion, etc. Yet none of these

improvements are suitable for a very small list size like the cutoff point (<20) for

Quicksort. It is true that using a sentinel key will eliminate the boundary check for the

innermost loop and speed things up some. Yet sometimes it might be difficult to choose

a sentinel key. In the implementation of serving as a finish-up sorting method the

sentinel key can be easily obtained by nmning one pass of the Exchange Sort

(Bubblesort) for the cutoff size at one end of the list. For example, if the cutoff point is

10, we know the size of the largest possible partition is 10. Because the smallest element

in the list must fall among the leftmost partition, we can be assured that by running one

pass ofBubblesort from the lOth element to the 1st element, the smallest element must

be in the first position of the array. Here I propose an easy way to set the sentinel and to

help sort at the same time. We must imbed it in the Quicksort and let it nm at the end of

45

every partition. Since it will help sort, resulting in twice as large a cutoff point (20) at

about the same number of comparisons. Program K demonstrates 1he unique way of

setting the sentinel for the Insertion phase for Median-of-Four partition method as we

proposed. See that this new partition method requires virtually one additional compare­

exchange statement compared to Median-<>f-Three, yet it will harvest as much as 5%

(Table XIV) performance gain and reduce the worst case likelihood to a negligible level.

Also note that the test statement for the innermost loop of the Insertion Sort has been

tuned so that "data[j-1]>v" can be changed to "data[j]>v" due to the larger cutoff point

(see Program K). The reason for this is simple. Compared with the popular version of

Insertion Sort, we replaced the statement "da:tafi]:=data[j-1];" with "datafi+1):=data[j];"

inside the inner loop in which they make no difference in running time. However,

outside the inner loop, we replaced "j:=i;" and "datafi]:=v;" with "j:=i-1;" and

"data(j+ l]:=v;" where some overheads are involved The loss in "j:=i-1;" is offset by the

gain in the first "if data[j]>v". If one element does not go through the loop, then we will

waste a little bit with this 'tuned-up' at the end of the loop ("data[j+ l]:=v;" instead of

"data[j]:=v;"). If an element goes through once and exits the loop, then we neither gain

nor lose anything (savings in "data(j]>v "trade off with loss in "data[j+l]:=v;"). If an

element goes through the loop more than once, then we will gain as many more passes

through the loop as we save by replacing 'data(j-l)>V with 'data[j]>V. I 1hink this small

tune-up ought to be the way to program Insertion Sort. Except for very small size (say

less than 10) or a nearly sorted list, we should always gain from this revision to Insertion

Sort. Program XII is a partial code for Median-of-Five Quicksort implementation;

compare with Program XI and see the complications it introduces.

{ Median-of-Four partition method - advocated by Su }
procedure quicksort(lo,hi: integer);
var ij,v,t: integer;
label start;
begin

ifhi-lo>l9 then
begin

i:=lo+(hi-lo) div 3;
j:=i+(i-lo);
if data[lo)>data[j] then
begin t:=data[lo]; data[lo]:=data[j]; data{j]:=t end;
if data[i]>data[hi] then
begin t:=data[i]; data(i]:=data[hi]; data{hi]:=t end;
if da.ta[lo]>data[i] then
begin t:=data[lo]; data[lo]:=data[i]; data[i]:=t end;
if data[j]>data[hi] then
begin t:=data[j]; data[j]:=data[hi]; data{hi]:=t end;
v:=data[i)/2+(data[j]+ lY2; {to avoid overflow}
i:=lo; j:=hi;
goto start;
repeat

t:=data[i]; data[i]:=data[j]; data[j] :=t;
start: repeat i:=i+ 1 until data[i]>=v;

end

repeat j:=j-1 until v>=data[j]
until i>j;
quicksort(loj);
quicksort(i,hi)

else begin
j:=bi;
repeat

{ folding compare starts }

i:=lo;
repeat

if data[i]>data[j] then
begin

v:=data[i]; data(i]:=data[j]; data[j]:=v
end;
i:=i+ 1; j :=j-1

until i>j
untillo>j;
for i:=lo+2 to hi do { Insertion starts }
begin

j:=i-1; v:=data[i];
while datafj)>v do {small tuned up here }
begin

data[j+ 1):=data[j];

46

end

j:=j-1
end;
data[j+ 1] :=v

end

Figure 20. Program K - Quicksu (Median-of-Four Partition)
with Folding Compare to Set Sentinel

{ Median-of-Five partition - about 3% slower than Prog. XI }
procedure quicksort(lo,hi: integer);
var ij,v,t,m: integer;
label start;
begin

ifhi-lo> 19 then
begin

i:=lo+(hi-lo) div 4;
m=i+(i-lo); j:=hi-{i-lo);
if data[lo }>data[j] then
begin t=data[lo]; data[lo]:=data(j]; data[j]:=t end;
if data{iJ>data{hi] then
begin t:=data[i]; data[i]:=data[bi]; data[hi]:=t end;
if data[lo]>data{i] then
begin t:=data{lo]; data[lo]:=data[i]; data[i]:=t end;
if data[jJ>data{hi] then
begin t:=data[j]; data(j]:=data[bi]; data[hi]:=t end;
if data{i]>data{m] then
begin t:=data{i]; data(i]:=data[m]; data(m]=t; end
else if data[m]>data[j] then
begin t:=data(j]; data(j]:=data[m]; data[m]=t; end;
if data(lo]>data[m) then
begin t=data(lo]; data{lo]:=data[m]; data[m]=t; end
else if data[m]>data[hi) then
begin t:=data[m]; data[m]:=data[bi]; data[bi]=t; end;
v :=data[m];
i:=lo; j:=hi;
goto start;

{same as Program XI from now on }

Figure 21. Program L- Median-of-Five partition (partial code)

47

Table XIV and Figure 22 are the results of our comparisons counts. The fastest

version of Combsort only barely catches original Quicksort (taking the middle key as the

pivot) at size 500 and will be out of competition when the size gets larger. The Median­

of-Three with a cut-off point for the Insertion at 10 (Quick3_10) is a significant

improvement over the original Quicksort and is on a par with the same partition method

but using our Insertion strategy (Quick3_20). This shows that our Insertion Strategy does

not yield a smaller comparisons count, but will save some overhead in function calls and

perform slightly faster. Median-of-Five (QuickS _20) is poorer for small sizes because of

its overhead but bas a little edge over the above two only at the largest size we tested.

The last one {Quicksu) seems to be the best. It takes the four sampling elements from 1he

beginning, the end, one third from the beginning, and one third from the end of each list,

ma1cing the bad cases unlikely to happen and reducing the number of comparisons by 2%,

and this degree of improvement seems to go up as the size gets larger. We shall see this

later. We will also have a benchmark test at the end of this chapter.

TABLE XIV

PERFORMANCE MEASURE FOR COMBINS AND
VARIOUS VERSIONS OF QUICKSORT

(NO. OF COMPARISONS)

Prog.\Size 500 1000 2000 3000
Combsul.4 6192 14329 32787 53392
Quick 6151 13563 29990 47760
Quiclc3_10 4677 10780 24503 37128
Quick3_20 4623 10709 24476 37105
Quick5_20 4727 10701 23429 366%
Quick su 4687 10530 23351 36528

CJ)
r:
0
CJ)

·~ .,
a.
E
8

60000
50000
-10000
30000
20000
10000

0

ID
N ·-.,

Figure 22. 3-D Bar Chart for Table XIV

The Elegance - Heapsort

Heapsort is another method which has N*lgN complexity like Quicksort and it is a

49

guaranteed N*lgN in the worst case, not just on the average. Yet its innermost loop is

quite a bit longer than that of Quicksort and this crude version ofHeapsort is considered

to be twice as slow as Quicksort on the average by many people [14] [21]. Note that it is

desirable to use a bottom-up method to construct the heap (linear-time) because most of

the heaps processed are small (about half of them are of size one and need no

comparisons). The program code for this crude version ofHeapsort is shown in the

following:

{ Heapsort (crude version) sorts elements in the global array "data" with indices }
{ between lo and hi (both inclusive) using bottom-up method to construct the heap. }
procedure downheap(k,h _idx: integer);
label 0;
var iJ,v: integer;
begin

v:=data[k];
while k<=h_ idx div 2 do
begin

end;

j:=k+k;
if j<h- idx then if data[jJ<datalj+ 11 then j :=j+ 1;
ifv>=data(j] then goto 0;
data[k]:==data[j]; k:=j

0: data[k]:=v
end;

procedure heapsort(lo,hi: integer);
var k,t,h_idx: integer;

begin

end;

for k:=hi div 2 downto 1 do do~);
h_idx:=hi;
repeat

t:=data[lJ; data[1]:=data[h-idx]; data[h-idx]:=t;
h_idx:=h_idx-1; downheap(1,h_idx)

until h idx<= 1

Figure 23. Program M- Heapsort

Comparing the innermost loop ofHeapsort with that of Quicksort, it is not hard to

50

convince one that Heapsort actually runs twice as slow as Quicksort. However, as R W.

Floyd suggested, during the sorting heap phase most of the keys tend to be quite small, so

it is possible to move one comparison out of the main loop and virtually cut the number

of comparisons in half[l4]. The following code (Program N) is an implementation

taking advantage of that property with two major enhancements I found to speed it up. I

present a full implementation here because the main procedure calls another procedure

51

(compare2) in addition to the one that does the sorting, and it uses one extra space to

achieve efficiency (we will explain this later). All other programs we have presented so

far simply call its sorting procedure and do not need an extra space. The improvements

from. Heapsort to Heapsu (Figure 24 vs. Figure 23) are many:

1. Use "repeat-until" rather than a "while" loop and save 1.5N of)<h_idx' test

statements in procedure downheap(), because we call this procedure N/2 times for

constructing the heap and N times for sorting from the heap. We must make sure

that the smallest size we will ever get is 4, so that its parent node da.ta[j div 2] in the

heap exists G>=2, for we don't use dataf)] for our sort-heap phase) throughout the

entire sorting phase. That's why our loop control statement is 11While h_idx>4" and

we need a call to "compare2(2,3)" after the call to heapsort() to complete the

sorting.

2. "if j <h_idx and data(j] <data[j+ 1 r is simplified to "if data[j]<data[j+ 1)" inside the

loop. The reason is that as long as the last item is not the largest, it doesn't matter

whether it is compared or not concerning sorting from a heap. A proof of this is

included in Appendix A Thus the call to com.pare20 prior to the one to heapsu() is

to eliminate the possibility of the last item being the largest.

3. Use only one variable and save one statement: "j:=j•2;" (j<<=l; recommended in C)

substitutes "j:=k+k;" and "k:=j;".

4. The use of a bit shift operation in C is more efficient than multiplying or dividing by

two.

S. Utilizing a register variable j when possible (in C for example) gives a noticeable

speed-up since j is referred to about 7*N•Iog2 N times within this loop.

6. The extra space saves about 2•N 'save' (t=data[l] and data[h_idx]:=t) operations.

Co~ the 'sort from 1he heap' loop in procedure heapsort() between Fiaure 24

and that ofFigurc 23, one will notice that we don't need the temporary variable 't'

for swapping the first and last element in the heap because we just put the largest

52

element in the heap (data[1]) into the extra space (data[h_idx+ 1], h_idx=size

initially) we reserved after the end of the heap construction, so only three rather

than five statements are in the loop. What this extra space bas achieved is that it

enables us to replace a 'swap' operation 'With a 'move• operation. The sorted segment

runs from 2 to N+ 1 in the array rather than 1 toN.

program heapsu;
{ A heapsort program implementation with R. W. Floyd's idea to move }
{one compare test out of the inner loop enhanced with some ofSu's ideas}

const

type

var

max= 15000;

list= anay[l..max] of integer;

data: list;
i: integer;

{Heapsort sorts elements in the global array "data" with indices between}
{ lo and hi (both inclusive) wing bottom-up method to construct the heap.}

procedure compare2(ij: integer);
var v: integer;
begin

end;

if data[i]>data[j] then
begin

v:=data[i]; data[i]:=data[j]; data[j]:=v
end

procedure downheap(i,v ,h _idx: integer);
var j: integer;
begin

end;

j:=t;
repeat

if data[j]<datafi+ 1] then j:=j+ 1;
data[j div 2]:=data[j];
j:=j • 2

until j>=h _ idx;
j:=j div 2;
if v>da.ta(j] then
begin

j:=j div 2;
while (v>data[j div 2]) and (j>=i) do
begin

end
end;
data(j]:=v

data[j]:=data[j div 2]; j:=j div 2

53

procedure heapsort(lo,hi: integer);
var h _idx: integer;

begin

end;

{constru.cting theheap }
for h_idx:={hi-1) div 2 downto lo do downheap(h_ictxt2,data[h_idx],hi);
h_idx:=hi+ 1; { extra space at top of the list }
while h _idx>4 do { sorting from the heap }
begin

end;

data[h_idx]:=data[l]; h_idx:=h_idx-1;
downheap(2,data(h_idx],h_idx-1)

data[h _idx]:=data[l]; h-idx:=h _idx-1

begin { Random is a user defined pseudorandom number generator }
for i:=l to max do data[i]:=Random(3()()()());

end

if max>2 then
begin

connpare2(1~); heapso~1~);cotnpare2(2,3)
end
else { for si.ze<=2 }
begin

end;

if max=2 then compare2(2,3)
else data{2]:=data[l] { size=l }

Figure 24. Program N - Heapsu

Table XV shows that Heapsu should have gained about 400/o in comparisons count.

Comparing the result with Quicksort (fable XIV), it surpasses all versions of Quicksort

in that category.

54

Prog.\Size
Heap
Heapsu
%gained

TABLE XV

PERFORMANCE MEASURE FOR TilE
TWO VERSIONS OF HEAPSORT

(NO. OF COMPARISONS)

500
7443
4703

36.81%

1000
16843
10427

38.()90/o

2000
37698
22842

39.41%

3000
60234
36105

40.06%

55

Since we are comparing four different algorithms, we should do some benchmark

tests to see what other overheads might have affected the performance of each algorithm.

In practice, the mnning time is the most important factor for people to choose one

method over another. But because it is platform-dependent (both hardware and software)

and case sensitive, a seemingly irrelevant change in the code may affect the speed

without the programmer's knowing it; thus it is dangerous to rely too much on the timing

information to evaluate the efficiency of an algorithm. AB an example, the programs I

tested would run a little faster if the line "randomize();" is present in the programs than if

it is not The following benchmark: tests arc obtained from my Dell 386sx 16 :Mhz PC

n•nning at 8 Mhz (to magnify the differences) using Borland C++. I have tried my best to

optimize the performance for each individual algorithm. We have two sets of tests. The

first one includes 1he winner of each algorithm using anay indices. The second set uses

pointers and includes the Quicksort with the middle element for the partition pivot, sec

Table XVI & XVII, Figures 25 & 26. The C programs for set 2 are included in Appendix

B.

TABLE XVI

AVERAGE RUNNING TIMES (1N SECONDS)
FOR TIIE V ARlO US ~lliODS

(NO POINTERS)

Prog.\Size 1000 2000 5000
Combsu
Shells
Heapsu
Quicksu

4

t 3

m
e

0.275
0.22
0.22
0.11

0.549
0.549
0.495
0.275

::;:)
0)

..c
E
8

1.704
1.594
1.315
0.77

CD ...
·;;

Figure 25. 3-D Chart for Table XVI

56

10000
3.736
3.516
2.805
1.705

TABLE XVII

AVERAGE RUNNING TIMES (IN SECONDS)
FOR VARIOUS SORTING ME1HODS

(POINTERS ALLOWED)

Prog.\Size 1000 2000 5000
Heapsu
Shells
Combsu
Quick
Quicksu

t

m
e

3

2.5

2

1.5

1

0.22
0.165

0.11
0.165
0.055

0.495 1.315
0.44 1.155

0.275 0.855
0.275 0.77
0.165 0.439

Figure 26. 3-D Bar Chart for Table XVII

51

10000
2.805
2.585
1.868
1.54
0.99

The result from Table XVI and Figure 25 should be no surprise at all. The rankings

for all of them remain intact from our comparison counts analysis; Quicksort seems to

lead the pack even more but Heapsort seems to be caught up some by those behind it.

58

This difference only reflects what we have observed concerning the overhead involved in

addition to the comparisons counts. However, when pointer references are used,

Combsu2 passes Shells and Heapsu which becomes the loser, trailing the original

Quicksort, but does not reduce the gap from Quicksu. It takes a moment of thinking to

justifY our observation. When the pointer, inC for example, is used instead of the array,

it offers one advantage: direct references rather than indirect references. Do not confuse

this with the terms used in assembly. What we mean by these two terms will be

explained in the following. Consider that every time we use data(i] inC, we mean

*(data+i). We call this an 'indirect' reference because we refer to an address required the

addition of two terms. As an alternative, we can make a pointer variable j=data+i, then

refer to *j. We call this a 'direct' reference because we need to refer to only one term.

Accordingly, both Quicksort and Combsort take full advantage of this and run a lot faster

than the non-pointer versions. Shellsort takes some advantage of it and runs a little faster

than the non-pointer versions. In contrast, Heapsort cannot take advantage of this at all

since it gains no speed for these pointer-versions over the array versions. Clearly,

Heapsort requires the array indices to be calculated in multiplication or division, but we

cannot do such operations in pointers. It also requires the index to start from 1, but we

cannot make a pointer point to 1, either. If we insist on using pointers for Heapsort, we

still need to add an extra integer index to the pointer and manipulate the index all the

time. We will explain this pointer operation in more details in Chapter VI.

CHAPTER IV

SOME PROPERTIES OF COMBSORT AND ITS

PERFORMANCE ESTIMATION

Before we get into this chapter, let's define some terms which will be used later.

1. k -ordered: ff we extract all elements at distances of multiples of k in a li~ we will

form a sorted list, no matter which element we start with. A list of that kind is called k­

ordered list.

2. Combsort and Shellsort (transitive verbs): when we use these two terms, followed by

'at gap=k', we mean that we sort a list according to what Combsort or Shellsort will do in

a particular pass at gap=k (1<=k<N).

Combsort is so similar to Shellsort that we should mention the differences between

the two. Property 4.1 & Corollary 4.1a are some examples.

Property 4.1: ff a list is Combsorted at gap k, it may not be k-ordered throughout the

list.

Proof: ff a list with five elements 8-6-3-1-2 is Combsorted at gap 2, it becomes 3-1-2-6-

8. 3 and 2 are still out of order at gap 2.

This is different from Shellsort because after a list is Shellsorted at gap k., it is a k­

ordered list.

Corollary 4.1 a: If a list is Comb sorted at gap k, and then it is Combsorted at gap h, still it

may not be k ordered.

Proof. A list with six elements 3-5-6-2-4-1 is Combsorted at gap 2, then it is Combsorted

at gap 1. The resulting list is 2-3-1-4-5-6. 2 and 1 are not ordered at gap 2.

59

60

This corollary does not hold for Shellsorting. A well-known property of Shellsort is:

if a list is k -ordered, and then is h-sorted, it remains k -ordered The above properties can

make one tell Combsort from Shellsort. The next two properties of Combsort will give

us some clues why it might be a good alternative to Shellsort.

Property 4.2: If a list is k-ordered, then is Combsorted at gap~ it remains k-ordered.

Proof: Surprisingly, the proof of this is easier than the one found in Shellsort, though it is

lengthy. See Appendix A

Lefs visualize this property by an example. If we let a 5-ordered list 3-7-9-4-1-5-8-

10-6-2 be Combsorted at gap 1-9 respectively. The resulting lists all remain 5-<>rdered

and are shown in the following:

start: 3 7 9 4 1 5 8 10 6 2

gap=1 : 3 7 4 1 5 8 9 6 2 10

gap=2: 3 4 1 s 8 7 6 2 9 10

gap=3: 3 1 5 4 7 6 2 10 9 8

gap=4: 1 5 8 4 3 2 9 10 6 7

gap=S: 3 7 9 4 1 5 8 10 6 2

gap=6: 3 7 6 2 1 5 8 10 9 4

gap=?: 3 6 2 4 1 5 8 10 7 9

gap=8: 3 2 9 4 1 5 8 10 6 7

gap=9 2 7 9 4 1 5 8 10 6 3

This property of Comb sort indicates that Combsort will take advantage of the sortedness

of a list, like Shellsort. In 1984, Hong-lee Yu (30) experimented with a new variation of

Shellsort which exactly is Combsort with a Shrink Factor of2.0 and using Hibbard's

sequence with a cutoff point at 1 for Insertion Sort in our terms. The result was a major

disappointment; it fell short of all versions of Shellsort he compared even when the size

of list was about a moderate 100 or more. However, he noticed the following property.

Property 4.3: Every pass of Combsort where gap>1 takes only O(N) comparisons.

Proof: Since we start from 1 toN-gap, each with a single comparison, we will end up

with exactly 'N-gap' number of comparisons for the pass. See also Property 4. 7.

61

If we can expect that the degree of sortedness is so high before gap=1 that the

Insertion phase will only take O(N) comparisons, then we will have a version of

Combsort with the complexity of O(N*lgN) which will beat any version of Shellsort

which requires O(NYIX) or O(N*log2N) asymptotically. However, a Shrink Factor of2.0

is much too large according to om test results.

Property 4.4: For a list of size N, if we Combsort the list by decrementing the gap from

N-1 to 1, the list will be sorted

Proof: Pratt [19] found a unique way of doing Shellsorting where the innermost loop is

replaced by a single comparison which is similar to that ofCombsort. Ifby taking all

increments h=2P*3Q as the gap sequence for Pratt's Shellsort to work., and from Property

4.2 we know that adding more Combsort passes will not mess up the k.--<miered

characteristics. Because Pratt's sequence is a subset of {N-1, N-2, ... 1}, the list will be

sorted using more passes in addition to Pratt's sequence. The number of comparisons of

this version ofCombsort is N*(N-1)/2 1.ike Bubblesort with many fewer transpositions.

The program code is one of the simplest in sorting.

Property 4.5: When a list is Combsorted at gap k in ascending (descending) order, the

largest (smallest) element can be found among the last (first) k elements in the list.

Proof: If Xi is the largest element in the list and the list is Comb sorted at gap k, it will go

as far as it could until i+k>sizc. Now if Xi is not among the last k. elements, then

i+k<=sizc which is a contradiction Reversing the direction of sorting follows the same

argument accordingly. We have used this property and the next Corollacy to substitute

the sentinel for Insertion Sort in Chapter Ill. AB an example, if we Combsort a list 5-3-6-

2-4-1 at gap=2, the resulting list is 5-2-4-l-6-3. The largest element 6 can be found

among the last 2 elements (6 and 3).

62

Corollary 4.5a: For the Two-way Combsort with a Shrink Factor less than 2, except for

the first pass, any other pass Combsorts the list at gap k from one end, and the largest and

the smallest elements are among the last k and the first k elements respectively.

Proof: If we Combsort a list from one end at gap ~ we know that k: elements on the other

end will have one of the extreme elements, from Property 4.5. If the gap size for the last

pass is h, where k:<h<2*k, we know the other extreme element on this end was among the

h elements of this end before we started this pass. Since h<2*k, we know after the first k

comparisons we shall cover all h elements and bring the extreme one to the first h

elements. Following the previous example, if we continue to Combsort that list at gap= I

from right to left, the resulting list is 1-S-2-4-3-6. This is agreeable to our argument.

Perhaps the most significant property is Property 4.6 which could be a stepping

stone to the fitted asymptote for Combsort. Lefs be optimistic for a moment! What is

the best case for Combsort? Clearly, before we get into gap 1, if the list is sorted already,

then the last pass is just to go through the list and make sure the list is sorted That is our

best case scenario which will be the stepping stone for om average behavior analysis.

Property 4.6: The best case in comparisons for Combsort is about N*log8N-(N-l)l(s-l),

where N is the size of the list and sis the Shrink Factor.

Proof: Let J be the number of passes for Combsort and j be the ordinal nwnbers of J,

l<=j<=J, and hj be the gap size at pass j, then J=llog5NJ, hj=N/gj and the nwnber of

comparisons for pass j is N-hj=N*(l-1/sJ). The total number of comparisons for all passes

is!:'- N*(J-1/gj) = N*~'- 1 - !:'- 1/gj) = N*(J- L'· (1/s • t/si-1)) ~ ~~ ~ ~

= N*(J-l/s*(l-l/s1)1(1-l/s) = N*(J-l/s*(l-llsl)l(s-1)/s)

= N*(J-1/(s-1}+(1/sl)l(s-1)) := N*log8N-(N-1)/(s-1).

(because J=lloggNJ, slogsN=N)

For example, if we let s=2 (too big, we know), 1he result can be simplified to

N*log2N~N+ l=N*(log2N-l}+ 1. IfN=2048, the result is 20481.

Property 4.7: The worst case for Combsort/Combsortll is O(N2).

63

Proof: See next Chapter.

As we have stated earlier, the samples we tested were too small to represent their

complexities. Now lets take a glimpse at larger sizes. In Table xvm, we can see that

the Shrink Factor 1.4 is no longer optimal for Combsu; 1.32 is optimal instead Yet the

optimal Shrink Factor remains about the same for the two-way version- 1.43 vs. 1.44.

That means our propaganda for the Two-way Combsort is valid In fact, the 1.44 version

still ran a wee bit faster than the 1.43 version due to the passes it saved, according to

some timing tests on the machine I used

Prog.\Size
comb11
com bins
combsul.4
combsu1.32
combsu21.43

TABLE XVlli

PERFORMANCE MEASURE FOR 1HE VARIOUS
VERSIONS OF CO:MBSORT WE TESTED

TOWARD VERY LARGE SIZES
(NO. OF COMPARISONS)

150 1500 15000 150000 1500000
2071 34052 505069 6400088 77500086
1519 27093 401264 5466929 66461371
1364 23812 351036 5250646 l.31E+08
1332 25387 379996 5009725 62619923
1375 23501 330424 4306174 53984809

15000000
9.25E+08
7.97E+08
3.18E+09

7.6E+08
6.30E+08

Table XVIII also reveals that the number of comparisons for Combsu has decreased

about 6% from original Combsort with a cutoff point at 6 for the Insertion Sort

(combins). This 6% is about lgl.32/lgl.3. That is to say, we do not add more work to

the last pass ofCombsu than to the last pass ofCombins. Nevertheless, lgl.43/lgl.32

represents about 29% increase where Combsu2 only improves about 14% from Combsu

64

at the last three sizes. This shows us that we do put more work to the last pass of

Combsu2 than to the last pass of Combsu; but the savings from the fewer passes (O(N)

for each pass) of the bigger Shrink Factor (1.43 vs. 1.32) outweighs the extra work that

the last pass of Combsu2 requires. Anyway, all these versions except Combsu at 1.4

seemed to perform consistently well over various data sizes we tested We could try to

do the complexity studies on one and get the pictures for all. From Property 4.6 we can

get a pretty accmate estimate on the number of comparisons for any version of Combsort

before the Insertion Phase if the cutoff point for the Insertion is 0. Now the cutoff point

for Combsu2 is 3, so we save about 3N from the best case; and the Shrink Factor is 1.43,

so we will have flog1.4JN l=t.94~*log2N passes, each pass requires 'N-gaJrl' number

of comparisons. The gaps through all passes being a geometric series at a factor of 1.43

from N can be swnmed up to '(N-1)1(1.43-1)'. Therefore, we can be assured that its

complexity before the Insertion is about 1.94*N*log2N-(N-1}1(1.43-l)-3*N. If the

Insertion phase will take O(N) complexity, we can get a complexity at

'1.94*N*log2N+O(N)' which should be a good starting point for the averag~e

complexity analysis. We will leave a more detailed analysis for future works. Table XIX

is the performance in comparisons count for the previous version of Combsu2. Another

version ofCombsu2 which will be discussed later is also included.

TABlE XIX

PERFORMANCE MEASURE FOR THE 1WO
VERSIONS OF TWQ-WAY CO:MBSORT

(NO. OF COMPARISONS)

Size
150
300
450
600
750
900

1500
3000
4500
6000
7500
9000

15000
30000
45000
60000
75000
90000

150000
300000
450000
600000
750000
900000

1500000
4000000

15000000

Combsu2
SF=1.43

1375
3283
5477
7620

10127
12630
23501
52505
84225

116966
150549
185885
330424
720628

1139503
1561337
2013173
2448843
4306174
9256621

14376770
19684930
24889850
30473709
53984809

152743968
629665022

Combsu2d
SF=1.45

1374
3335
5449
7809

10088
12654
23132
52233
83246

116205
151301
184472
332305
713915

1136537
1547692
1992330
2421730
4281711
9167972

14248039
19368330
24739313
30295575
52477143

151617368
623785820

Figure 27 is 1he trend for the Two-way Combsort using 1he least squares method to

calculate a straight line that best fits our data when plotted on a log-log graph. The fit

formula can be derived as 5.86~1. 12964; but its goodness of fit is not convincing.

65

Table XX includes the last six points being projected and their residuals (actual minus

fit) as well as their relative residuals (in percentage).

-tD

:!)

25

~ ~ .,
~ 15

8 10 -en
5

Y=1.1296C<+2.56483

--Trerd

llCiH

Or------+------~----~------~----4

0 5 10 15

lg~

Figure 27. Exponential Fit for Combsu2 (Two-way Combsort)

Size
Actual
Fit
Residual
Rei. Res.

TABlE XX

PARTIAL FIT RESULTS FOR FIGURE 27
(NO. OF COMPARISONS)

600000 750000 900000 1500000 4000000 1 5000000
19684930 24889850 30473709 53984809 1.53E+08 6.3E+08
19784002 25455851 312n638 55698472 1.69E+08 7.51E+08

-99071 .757 -566001 -803930 -1713663 -1 .6E+07 -1.2E+08
-1 -2 -3 -3 -9 -16

66

Now lefs do the same fit at N*lgN. The result is a much better fit. See Figure 28 and

Table XXI. This fit formula is calculated to 1.993423*Nlg(N)-5.49875*N.

45
40
35

~ 30
~ 25
~ 20
8 15

10

Y=1 .993423X-5.49875

--Trend

Actual 5
0~--~~---+----~====~==~

0 5 10 15 20 25

lg(N)

Figure 28. N*lg(N) Fit for Combsu2 (Two-way Combsort)

TABLE XXI

PARTIAL m RESULTS FOR FlGURE 28
(NO. OF CO:MP ARISONS)

Size 600000 750000 900000 1500000 4000000 15000000
Actual 19684930 24889850 30473709 53984809 1.53E+08 6.3E+08
Fit 19658526 25054461 30537259 53099057 1.53E+08 6.3E+08
Residual 26404 -164612 -63550 885752 -1 36589 -655654
Rei. Res.(%) 0 -1 0 2 0 0

67

68

It is amazing to see that a simple method like Com.bsort, after some thoughtful

refinements, should outperform a well-developed method like Shellsort. Although

Sedgewick.'s method is a close competitor, its strange sequence makes it more

complicated to program and less appealing. Nevertheless, before we claim victories for

Combsort, lefs stand behind Shellsort and learn from our opponent - Combsort. Besides

the innermost loop, there is one subtle difference between the two: Sbellsort takes a

unique path for its diminishng sequence while Combsort utilizes multiple sequences

according to the size of data and a Shrink Factor. Why not try some Shrink Factors for

Shellsort and see how it is doing? To my surprise, it was so easy to beat all known

Sbellsort's sequences at some noticeable margin except Sedgewick's by a Shrink Factor

ranging from 1. 7 to 2.3 excluding those being very close to 2.0 which exactly was what

the original Shellsort used as a Shrink Factor. "Why such a simple idea hasn't been

discovered for such a long time (although later on, I realized Gonnet [8] had suggested a

Shrink Factor of2.2 for Shellsort not long ago)," I pondered. Then I reasoned, "because

they were too preoccupied by the original version of Shellsort, they simply tried to avoid

the redundant comparisons by introducing the relative primeness to its sequence; and the

easiest way to achieve this goal is simply miss one to the common factor 2 (Hibbard's) or

3 (Knuth's)." Actually, while maintaining the properties of being relatively prime, we can

miss a little more (say 100/o, 20%, etc.) to the common factor of2. This turns out to be a

better way of making the gap sequence for Shellsort My empirical result shows that 2.2

indeed is not bad except it has some bad cases which could be 15% slower than some

other Shrink Factors while in other cases it performs quite well. One example of the bad

cases for 2.2 is: 200-90-40-18-8-3-1 as its gap sequence where 40, 18, and 8 have 200,

90, and 40 in their ways 5 gap-length away. In other words, it violates the golden rule of

Shellsort where relative primeness is the most important factor to observe. Accordingly,

some redundant comparisons are inevitable in such a case. In fact, I found that any

Shrink Factor taking the form of(2•n+tYn, n E {2,3,4,5} or (2•n-1Yn, ne {4,5, ... 9}, was

69

excellent in its good cases. The first group seems to have fewer comparisons but more

transpositions, and the overall performance is just a little better than those of the second

group. In particular, both n=2 (SF=2.5) or n=4 (SF=2.25) hardly had any bad cases. The

former does the best job at sizes<200,000 but gradually yield to the performance of n=3,

n=4, or n=5. The latter seems to be an overall champion especially toward very large

lists. In fact, Sedgewick's sophisticated sequence is in line with our approach by

alternating between about 2.25 and 1. 78 except for very small gaps. No wonder it is

effective! After numerous tests, I concluded that a combination of n=2 and n=4 would be

the best policy. Furthermore, the sequences ending up with 4-1 perform just a little better

than those of3-1, 2-1, or 5-l (resetting 2 to 1). Therefore, the unique sequence approach

which Hibbard first suggested followed by Knuth and Sedgewick to improve the original

Shellsort was actually not a bad idea at all I propose the following Shellsort program

(Shellsu) which is the best among all I have tested And coding this program is easy- see

Program 0. A comparison with Sedgewick's sequence (Shells) and Gonnefs SF 2.2

(Shellg} is also included in Table XXll.

{ a Shellsort sequence using 2.5 & 2.25 as its Shrink Factors }
{ 1,4,11,28,71,178,401,903,2032,4573,10290,23153,52095, }
procedure shellsu(lo,hi: integer);
label out;
var ij,gap,v: integer;
begin

out:

gap:=178; { ifgap<=178, SF=2.5}
i:=(hi-lo) div 4;
while (i>gap) do gap:=gap*2+gap div 4+ 1;
repeat

for i:=gap+ 1 to hi do
begin

end;

v.=data[i]; j:=i;
while data[j-gap]>v do
begin

data[j]:=da.ta[j-gap]; j:=j-gap;
if j<=gap then goto out

end;
data{j]:=v

if(gap>200) then gap:=gap*4 div 9 {no floating point cal. }
else gap:=gap*2 div 5;

until gap=O

Figure 29. Program 0 (Shellsu)

70

TABLE XXII

PERFORMANCE MEASURE FOR V ARJOUS
VERSIONS OF SHEllSORT WE TESTED

(NO. OF COMPARISONS)

Data Size Shells Sbellg Sbellsu
150 1304 1385 1298
300 3373 3368 3104
450 5329 5400 5091
600 7454 7396 7219
750 9668 9906 9625
900 12065 12296 11955

1500 22176 22507 21777
3000 50721 50390 49131
4500 80960 79089 78744
6000 112028 110623 109685
7500 146271 147569 141613
9000 177369 181865 175369

15000 319931 320084 310993
30000 700975 191956 680821
45000 1096030 1110792 1074445
60000 151 1528 1518825 1476409
75000 1932948 1977032 1889952
90000 2365586 2441920 2312121

150000 4153947 4123815 4070271
300000 8920114 11546618 8721866
450000 13907834 13989369 13577030
600000 18963992 18788515 18618873
750000 24172838 23824145 23718173
900000 29516989 29204217 28901484

1500000 51194031 51430313 50363190
4000000 148316266 146104807 145379527

15000000 613729850 612867414 601180634

71

"Iron sharpens iron, so one man sharpens another." (Proverbs 27: 17) Since we let

SbeUsort learn from Combsort by applying a Shrink Factor type of gap sequence, we

may alBo improve Combsort by utilizing the unique path gap sequences as people do in

Shellsort. After many days of trying, I found the way we did to avoid the common factor

72

of2 by decrementing each even gap by 1 is no longer necessary since we are looking into

a unique path with very few INPs in it. The best Shrink Factor is 1.45 for this version of

Combsort.

{a sequence of 4-5-7-ll-17-26-38-56-82-119-173-251-364 ... }
procedure combins2(1o,hi: integer);
label: loop, out;
var ij,gap,v: integer;

begin
i:=(hi-lo) div 3;
gap:=26;
while i>gap do gap:=trunc(gap*l.4 5)+ 1;

loop: i:=lo;
for j=lo+gap to hi do
begin

end;

if data[i]>data{j] then
begin

v.=data[i]; data(i]:=data[j]; data{j]:=v
end
i:=i+l

gap:=trunc(gap/ 1.45);
if gap<5 then
begin

end;
j :=hi;

gap:=gap+ 1; { 4->5, 3->4~ 2->3 }
if gap=3 then goto out

for i:=hi-gap downto lo do
begin

if data[i]>data{j] then
begin

end;
j:=j-1

v:=data[i]; data[i]:=data(j]; data{j]:=v

end;
gap:=tnmc(gap/1 .45);
if gap<5 then
begin

end;

gap:=gap+ 1; { 4->5, 3->4, 2->3 }
if gap=3 then goto out

goto loop;
out: iosertion(lo,hi)
end;

Figure 30. Program P (Combsu2ins w/ Unique Path)

73

The savings in comparisons cmmt from this version of Combsort (Combsu2d) over

the previous version (Combsu2) is a minor one- see Table XIX. Adding the overhead of

setting the unique path makes this improvement negligible.

Table XXIll is a benchmark test for the Two-way Combsort, Shellsu, Shells,

Qui_ 3 _1 0 (Quicksort with Median-of-the-three and cutoff at 10 for Insertion Sort),

Quicksu, Heap, and Heapsu Note that Heapsu nms faster than Quick _3 _1 0 at smaller

sizes but is outperformed at larger sizes. That is because of the trick we did to Heapsort

by adding one extra space to save 2N 'saves'. 1bat effect remains a constant factor toN

while the number of moves grow in proportion to N*lg(N).

TABlE xx:m

AVERAGE RUNNING TIMES FROM TilE BEST VERSIONS
OF VARIOUS SORTING'METIIODS WE TESTED

(NO POINTER MANIPUlATIONS)
(IN SECONDS)

Prog./Size 15000 150000 1500000 15000000
combsu2 1.1 16.7 212.2 2567.0
shellsu 1.0 14.9 190.1 2356.5
shells 1.3 18.4 233.8 2865.6
quick_3_10 0.9 13.8 166.1 1606.2
quicksu 0.8 10.6 151.9 1521.5
heap 1.6 21.0 265.7 3192.2
heapsu 0.9 13.3 168.7 2078.3

74

All these timing values are slightly overestimated because they all include the

overheads of keeping counters for comparisons and transpositions. Moreover, they didn't

make use of pointers to speed up the progra.tDB - for Quicksort and Combsort especially.

If they did, Combsu2d would have caught Heapsu and become the runner-up of this pack

since Heapsort will not take advantage of pointer manipulations as we have discussed in

Chapter ID - see Table XXIV.

TABLE XXIV

AVERAGE RUNNING TIMES FROM 1HE BEST VERSIONS
OF VARIOUS SORTING METIIODS WE 1ESTED

(POINTER MANIPULATIONS)
(IN SECONDS)

Prog./Size 15000 150000 1 5()()()()() 15000000
Combsu2 0.8 12.4 163.9 1916.7
Shellsu 0.9 13.7 175.7 2158.6
Quicksu 0.6 8.3 98.4 1143.8
Heapsu 0.9 13.3 168.7 2078.3

Since we have improved all four Sorting Algorithms significantly, let's also take a

look at what we have reaped. Table XXV records the comparison counts and their

relative positions in proportion to N*lg(N).

75

Size
NlgN
Heap

comp.INlgN
Heapsu

comp./NlgN
Quick

comp.INlgN
Qui3_10

comp.!NlgN
Quicksu

comp.INlgN
Shellsu

comp.!NlgN
Comb11

comp./NlgN
Comb2d
com~./NlgN

TABLE XXV

AN OVER VIEW OF OUR IMPROVEMENTS
THE ORIGINAL AND THE IMPROVED

ALSO N•LG(N) DIAGNOSTICS
(NO. OF CO:MP ARISONS)

(NO. OF N•LG(N))

150 1500 15000 150000 1500000
1084 15826 208090 2579190 30774797
1708 27146 370272 4701098 57019438
1.58 1.72 1.78 1.82 1.85

1147 16555 215180 2651230 31513434
1.06 1.05 1.03 1.03 1.02

1633 23161 285474 3586822 41573618
1.51 1.46 1.37 1.39 1.35

1184 17856 231272 2939692 35034723
1.09 1.13 1.11 1.14 1.14
1097 17215 227530 2766166 33325584
1.01 1.09 1.09 1.07 1.08

1298 21777 310993 4070271 50363190
1.20 1.38 1.49 1.58 1.64

2071 34052 505069 6400088 77500086
1.91 2.15 2.43 2.48 2.52

1374 23132 332305 4281711 52477143
1.27 1.46 1.60 1.66 1.71

76

1 5 ()()()()()()
357576887
669417154

1.87
366972662

1.03
483622739

1.35
411848883

1.15
389345426

1.09
601180634

1.68
925000111

2.59
623785820

1.74

CHAPTER V

SCOPE OF IMPLEMENTATIONS

While I was rejoicing at the big improvement for Combsort, I also marveled at the

huge chunk of code that I have added to it. I asked myself, "Who in the world is going to

use this monster!" Compared to the fastest version of Shellsort I developed, I don't see

why one would rather use the messy code like Two-way Combsort with Insertion as its

finishing up partner. Therefore, as far as the scope of implementations is concerned, I

would have said, "The real strength of this sorting algorithm is its balance between ease

of programming and its level of performance." had I had not found a nearly worst case

scenario taking a form of quadratic function (see Table XXVI) like those elementary

sorting methods. We know the worst case for most versions of Shellsort is much better

Data size
Comparisons

TABLE XXVI

PERFORMANCE :MEASURE IN NEARLY
WORST CASE FOR COMBSORTll

(NO. OF CO:MP ARISONS)

100 200 400 800
2779 13514 62168 284235

11

1600
1304321

78

Table XXVI is the result of Combsortll for sorting a trouble-making list. Here is

how I construct a trouble maker for Combsort. Combsort only fixes the inversions in the

data one gap at a time, and each element has only one chance to jmnp backwards on each

pass. Thus there are not many passes (about 2.5•Iog2N) before the gap becomes 1.

Assume that we are sorting a list into ascending order. Now a relatively small item

situated in a position near the end of the list Coincidentally, for the first few passes it

does not have a chance to move, wbich means all the elements in front of it with a

multiple of gaps in distance from it are smaller than this element At a later stage of

sorting, because the gaps are relatively small, although it will probably be carried

backward one gap on each following pass, it still is some distance away from its sorted

position before gap= I. When the gap becomes 1, it will take as many passes as the

number of inversions this element possesses. For example, with a list of 100 integers { 1-

100) we could construct a bad case for Combsort by putting 16 in position 100. Since

Combsort uses a gap sequence of76-58-44-33-25-19-14-1 1-8-6-4-3-2-1-1 ... , we could fill

up the positions in 24 (gap=76), 42 (gap=58), 56, 12 (gap=44), 67, 34, 1 (gap=33), 75,

50, 25 {gap=25) with numbers smaller than 16. Then for each position we have filled up

with these small numbers, we need to consider combinations of those gaps

(76,58,44,33,and 25) which may interfere with our plan to avoid having 16 swapped with

any of them. Therefore, we also need to fill up positions 31 (44+25), 23 (44+33), 17

(58+25), 9 (58+33), and 6 (44+25+25) with numbers smaller than 16. Therefore, after

we fill up those 15 positions with integers of 1 to 15 in any order, we could fill up the rest

of the unoccupied positions(84 in total) with 17 to 100 in any order. If we try to sort this

list with Combsort, the last item 16 will not change its position in the first five passes.

From then on until gap becomes 1 it will move backward every time for a distance of

each specific gap in each pass (19,14,11,8,6,4,3~). It then will reach position 33 which

is 17 positions away from its final destiny and will require 17 additional passes to get

there. For a random list of this size, the average nwnber of passes for gap= I is two. We

call this a "black sheep effect" - one bad member makes the whole group suffer. The C

program code for constructing such a hostile list is in Appendix C.

79

To prevent such a "black sheep" effect, one can use the Insertion Sort or use our

Two-way Combsort. There is no need for both to exist just for preventing that one "black

sheep." It is preferable to use the "Two-way" method to the addition of Insertion Sort

because the fonner does not add any more complication to the code, simply repetitions of

code. Not only is it easier to program, it will perform faster. In fact, it is going to

perform just about 8% slower than Combsu2d (having 1he Insertion Sort) after one small

refinement (otherwise, the margin will be about 15%) by introducing a bmmdary check to

save many wmecessary comparisons when gap becomes 1 - see Program Q.

procedure combsu2ni(lo,hi: integer);
label: loop, out;
var ij,idx,gap,v: integer; { idx is for boundary check }

begin
i:={hi-lo+2) div 3; {initial gap }

loop: i:=lo;
for j=lo+gap to hi do
begin

end;

if data[i}>datalj] then
begin

v:=data[i]; data[i]:=datafj]; data[j]:=v; idx:=i
end
i:=i+l

if gap>10 then gap:=trunc(gap/1.42) {for most passes }
else if gap> 1 then gap:=gap-1 { change the course of SF }
else if lo<idx then
begin hi:=idx; idx:=hi end { new high index }
else goto out { break out of the loop}
j :=hi;
for i:=hi-gap downto lo do
begin

end;

if data[i}>datalj] then
begin

end;
j:=j-1

v:=data{i]; data[i]:=data(j]; data{j]:=v; idx=j

if gap>10 then gap:=trunc(gap/1.42)
else if gap> 1 then gap:=gap-1
else if hi>idx then
begin lo:=idx; idx:=lo end { new low index }
else goto out
goto loop;

out: end;

Figure 31. Program Q (Combsu2ni)

80

Notice that the optimal Shrink Factor for the above Program is 1.42. Interestingly

enough, after examining the fit result from my test data (average of 10 sets), it represents

81

a flatter curve than that of any other versions of Combsort or Shellsort in relation to the

one term ''N•Ig(N);" it is about 2.0*N*lg(N). See the following two charts and compare

with Table XXV. Here we used the least squares method again but only fit the second

half of the actual data A comparison table (average and standard deviation) with Shellsu

is included in Appendix D.

Tren d For Combsu2ni

2.5

• z 2 - iliiliAI.- • • • 0'1 --~ 1.5 ••
Q)

Actual ..
./ • " 1 g,

E • Fit 8 0.5 •
0

0 5 10 15 20 25

Lg(N)

Figure 32. N*lg(N) Diagnostic Fit Chart for Combsu2ni

One may still concern the fact that the data are rising a little at large N. Perhaps the

complexity is worse than NlgN. Let's use the same method of plotting but with Nlg2N

diagnostics. The result is not very good at all, see Figure 34. Finally, we compare the

trend of Combsu2ni with those of Quicksort and Heapsort (with known NlgN

complexity). We also let Shellsu participate in this NlgN probing chart. In contrast, our

result is acceptable, see Table XXVII and Figure 35.

Trend for Corrbsu2

z 2
C'l ·-· • ·--~ 1.5

•• 11) 1 • Actual

" c. E 0.5 Ft
0
CJ 0

0 5 10 15 20 25

lg(N)

Figure 33. N*lg(N) Diagnostic Fit Chart for Combsu2

z 0 .4
C"' 0.35
~ 0.3
C"' 0.25

~ 0 .2
. 0.15

Cl..
E 0.1

... _
•

Trend tor Combsu2 ni

• •
•• ••

• Actual

---Fit

8 0 .05
0+-----+-----,_----~-----r----~

0 5 10 15 20 25

lg(N}

Figure 34. N*Ig2(N) Diagnostic Fit Chart for Combsu2

82

TABLE XXVll

N*LG(N) PROBING m CHART FOR COMBSU2NI
AND SHELLSU15 IN CONTRAST TO

HEAPSORT AND QUICKSORT
(COMP ARISONS/N*LG(N))

Prog./Size 150 1500 15000 150000 1500000
Combsu2ni 1.71 1.92 1.93 1.98 2.01
Shellsu 1.20 1.38 1.49 1.58 1.64
Heap 1.58 1.72 1.78 1.82 1.85
Quick 1.51 1.46 1.37 1.39 1.35

2.5

z 2 ---------~------~-~----~----~­~ ~~~----+-----~--~~--~
~1.5~
!!! L-----~

15000000
2.03
1.68
1.87
1.35

g_ 1
e • Cbmb2ni
0
(j 0.5 ____.~Heap

0 • Quick
C\.1 r-
c:o Cl
CD Ll"l
C\.1 ~
C\! Cl

----i'.r- Shellsu

r- r·

lg(N)

Figure 35. Line Chart for Table XXVII

83

Although I did encmmter once a bad case for one version of my Combsort and

subsequently found the way to construct a bad list for Combsort, I also rigorously tested

Combsortll with random data: 2000 lists for very small sizes, 50 for very large sizes, and

200 for the rest, hoping to find some very bad cases but could not find a single one. I

perceive that the incidence of the bad cases is small. When the Two-way Combsort is

84

used as in Program Q, it is logical to think that the probability of bad cases is negligibly

low. So the bottom line of my suggestions about the scope of implementations

concerning Combsort is this: Use Combsu (Program D) when one is in a hurry to write a

sorting routine, but revise it later (Program Q) before it is heavily used. The performance

of Program Q is about as fast as the best version of Shellsort we found.

CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

Although our thesis topic is Combsort, there are quite a few insights for making

other sorting methods run faster. Perhaps the most notable one is that we proved that we

could simplify the innermost loop ofHeapsort. A very useful partition scheme "Median­

of-Four" for Quicksort not only reduces the worst case probability but also gains some

speed in the average case. We found some good ways to get good increment sequences

for Shellsort that beat most other known sequences easily by some noticeable margin.

We even improved Insertion Sort by finding an easy way to set the sentinel and help sort

at the same time. We discovered that we could get rid of the dirty pass flag for

Bubblesort when we tried to improve Combsort.

We improved the running speed of Combsort by as much as 130%. We were able to

construct a nearly worst case scenario for Combsort and Combsortll which took O(N2)

to sort. We also proposed Two-way Combsort to cope with this kind ofbad cases. The

Two-way Combsort we have developed is an efficient, general-purpose internal sorting

algorithm. There are several properties found and proved for Combsort. For data with

any partial order, it will do better according to the authors of Combsort [15] and some of

my test results. We also have shown a version ofShellsort which performs better than

any other versions of its kind Because of the relatively large Shrink Factor it uses (2.25

to 2.5), it may even beat Quicksort for a list with a high degree of sortedness. Heapsort is

more or less indifferent to the distribution of the data. Quicksort is notorious in its worst

case behavior. Therefore, we should think a little more positively for the efficiencies of

Combsort and Shellsort in practice. As they both use a gap sequence, parallelism will

85

come more naturally. It might be a whole new ball game for them to compete with

Quicksort in parallelism.

86

When using pointers inC, we have shown that some algorithms (Combsort and

Quicksort) have significant speed-ups, but other algorithms like Heapsort do not run any

faster. Is this a language-dependent feature or a portable feature? We know that down at

a lower level like assembly code, there is no such thing as "pointers". But what was the

pointer that did the magic work for our programs in C? It takes some moments of

thinking to answer that question. Let's review some characteristics of pointers in C.

1. The relationship between pointers and arrays is so strong that no operations peformed

by the array indices cannot be achieved by the pointer manipulations.

2. Pointer increment is scaled by the objects this pointer points to. For example, if we

increment a pointer point to a long integer, the pointer will advance by the size of a

long integer (probably 4 bytes or 8 bytes).

3. An array name is a pointer expression.

4. A reference to an array is converted by the compiler to a pointer to the beginning of

the array.

The fundamental difference between the array and the pointer is that a pointer is a

variable but an array name is a constant. The only arithmetic operation allowed for

pointers are:

• Adding or substracting a pointer and an integer.

• Substracting or comparing two pointers.

From characteristic #4 above, we can see that a reference to an array element a[i] for

example, is actually done by a pointer pointing to the beginning of the array, then add 'i'

to that pointer. Looking at the innermost loops of Quicksort and Combsu, we increment

or decrement the array indices to get the next pair of elements for comparing. It is

fruitful to use pointers in those cases because we can save as many '+' operations as these

a[i] are referenced and perform incrementation or decrementation directly on the

87

pointers. The operation performed on the variable in the innermost loop of Shellsort is

an addition or substraction of the magnitude of the gap (gap>= I). We gain nothing for

using pointers in this case because we will still need to add or substract the gap after we

reference to the address pointed to by the pointer. However, the two variables in the

middle loop of Shellsort can be done with incrementation or decrementation (see

Program 0 in Appendix B) and that's where the modest savings come from (not the inner

loop). The operations on the variables of both the inner and outer loop ofHeapsort

involve illegal operations (mutiplication and division) for the pointers. Therefore we are

bound to use another variable for these operations if we insist on using pointers, and

perform exactly in the same fashion as how the array indices work. Evidently there will

be no gain but pain (poor clarity) for this type of pointer implementation. In short, we

can utilize the pointer instead of the array to speed up if the only operations on the array

indices are incrementation and/or decrementation. That's the reason why the pointer

version of Combsu will run as fast as Heapsu and lag behind Quicksu by only about 60%

on random lists. Further, both pointers and array indices can be put into the machine

registers (by declaration); otherwise, they will be treated as automatic variables and put

in RAM. We are not clear how exactly pointers are implemented in C in terms of

assembly or machine language level. One thing is for sure, the array implementation in

C is quite different from the array in the assembly implementation, because there is no

such thing as pointers in assembly and a reference to a C array is converted to a pointer

by the compiler before using it. Therefore, the advantage of using pointers is probably

language-dependent. If a program is coded properly in assembly or compiled by an

'optimized' compiler, the non-pointer versions in this paper will probably approach the

pointer versions. In these two cases, array indices probably will be held in index registers

at all times; our non-optimized array references probably result in indices being stored in

RAM, causing extra memory references and loss of speed. To verifY this argument we

compared some of our results with Knuth's [14] rusults. His .NflX (an assembly language)

88

running time ofHeapsort is 2.15 times of that ofQui_3_10. Our non-pointer versions of

these two programs give a ratio of 1.99 (an acceptable difference due to different

machines used) while the pointer version reveals a ratio of2.64 (probably more

difference than one would expect due to different machines used).

There are several suggestions for future research on the sorting methods we have

investigated.

1. Can we construct a bad case list for Combsu2ni?

2. What is the minimal number of passes (the best sequence) for Combsort to sort a

list without the need to call Insertion Sort or utilizing some form of dirty pass flag to

signal whether the sorting is done?

3. Can we fmd good fits for Combsu2ni or Shellsu on their asymptotic averages?

4. Table V shows the moving distance frequency for one version ofShellsort. Could

we take advantage of the fact that most elements in the list will not go very far and

design an even more efficient Shellsort? What about Combsort?

5. We did a lot of code twiddling to make the programs run faster besides those

algorithmic improvements. What result would we get if we use some "optimized"

compilers? It would be an interesting aspect to probe how optimized our compiler

is by testing our tuned-up versions of programs.

A SELECTED BIDLIOGRAPHY

[1} A. Abo, J. Hopcroft and J. D. Ullman. Data Structures and Algorithms. Addison­
Wesley, Reading, MA (1983).

[2] Bauer, L. B. "An Empirical Study of Shellsort." Unpublished M. S. Thesis,
Oklahoma State University, 1980.

[3] Boothroyd, J. "Shellsort: Algorithm 201." Communications ofthe ACM, 6 (1963),
445.

[4] Brown, MR. "Implementation and analysis of binomial queue algorithms," SIAM
Journal of Computing, 7, 3, (August, 1978).

[5] C. R. Cook and D. J. Kim, "Best Sorting Algorithm for Nearly Sorted Lists."
Communications ofthe ACM, 23 11 (1980), 620-624.

[6] Hannu Erkio, "The Worst Case Permutation for Median-of-Three Quicksort," The
Computer Journal, 27 3 (1984), 276-277.

[7] J. Esakow and T. Weiss, Data Structures- An Advanced Approach Using C.
Prentice Hall, Englewood Cliffs, NJ (1989).

[8] G. Gonnet, Handbook of Algorithms and Data Structures. Addison-Wesley,
Reading, MA (1984).

[9] P. Helman and R. Veroff, Walls and Mirrors- Intermediate Problem Solving and
Data Structures. Benjamin-cummings, Menlo Park, CA (1988).

[10] C. A. R. Hoare, Algorithm 64: Quicksort. Communications of the ACM, 4, 7, 321
(July 1961).

[11] E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science
Press, Rockville, MD (1977).

[12] Hibbar~ Thomas N. "An Empirical Study of the Minimal Storage Sorting."
Communications of the AC~ 3 (1960), 206-213 .

89

[13] J. lncerpi and R. Sedgewick, Improved Upper Bounds on Shellsort, Journal of
Computer and System Sciences, 31 (2) 210 224, (1985).

[14] Knuth, D. E. The Art of Computer Progranuning, Volume 3: Sorting and
Searching. Addison-Wesley, Reading, MA (1973).

[15] S. Lacey and R. Box, "A Fast, Easy Sort." Byte, Apri11991, 315-320.

[16] K. Melhorn, Data Structures and Algorithms 1: Sorting and Searching. Springer.
New York (1984).

[17] DaliaMotzkin, "Meansort," Communications ofthe ACM, 26 4 (1983), 250-251;
"More about Meansort," Communications of the ACM, 27 7 (1984), 719-722.

[18] J. Ian Munro and Venkatesh Raman, "Sorting with Minimwn Data Movement,"
Journal of Algorithms, 13, 374-393 (1992).

[19] V. Pratt, Shellsort and Sorting Networks. Garland Publishing, New York (1979).
(Originally presented as the author's Ph. D. thesis, Stanford University, 1971).

90

[20] R. Sedgewick, "A New Upper Bound for Shellsort", Journal of Algorithms 2 (1986)
159-173.

[21] R. Sedgewick, Algorithms. Addison-Wesley, Reading, MA (1988).

[22] R. Sedgewick, "Implementing Quicksort Programs," Communications of the ACM
21 10 (1978) 847-856.

(23] D. L. Shell, "A High-Speed Sorting Procedure". Communications of the ACM 2 (7)
30-32, (1959).

[24] B. Singh and T. L. Naps, Introduction to Data Structures. West Publishing Co, St
Paul, 11N (1985).

[25] H F. Smith, Data Structures- Form and Function. Harcourt Brace Jovanovich,
New York (1987).

[26] D. Stubbs and N. Webre, Data Structures with Abstract Data Types and Pascal.
Brooks/Cole, Monterey, CA (1989).

[27] R. L. Wainwright, "A Class of Sorting Algorithms Based on Quicksort,"
Communications of the ACM 28 4 (1985), 396-402.

[28] M.A. Weiss, "Empirical Study of the Expected Running Time ofShellsort." The
Computer Journal34 1 88-91 (1991)

[29] M A. Weiss and R. Sedgewick, Journal of Algorithms 11 242-251 (1990).

91

[30] H L. Yu "Investigations of Shellsort." Unpublished M. S. Thesis, Oklahoma State
University, 1984.

APPENDIX A

PROOFS THAT THE COMBINED TEST IN THE INNERMOST

LOOP OF HEAPSORT CAN BE SIMPLIFIED TO

A SINGLE TEST, AND OF PROPERTY 4.1

92

Proof: The test for "j<h _ idx" (h _ idx is the heap size) can be got rid of in the inner loop

of procedure downheap() in Program M. The same procedure in Program N is its

revision.

The reason we need to make sure thatj<size (heap size) is that we don't want "if

93

data[j]<data[j+ 1]", otherwise. Now if the heap size at any moment is an odd number, we

really don't need to checkj<h_idx because after "j:=j*2", j is an even number and is less

than the heap size (for the loop control statement is "j<=size/2"). Now assume that our

'data size' is an even number (1000 as an example).

1. Our first pick is correct; we start building the heap bottom-up fromj:=(size-1)/2

(499 for our example) instead ofj:=size/2 (500); thus we always keep j smaller than size.

Inside the loop we letj:=j*2 (j=998 now), thenj<=size-2 (998) andj+ l<=size-1 (999).

Since size is an even number, only the last item (j= lOOO) may not be in the heap after the

heap construction phase, and since we have managed to avoid the situation where the last

item is the hugest one (we let data[IOOO]<=data[l] with a call to compare2(1,size) before

constructing the heap), the largest item must be on top of the heap after the heap is built,

and it is the first pick of our sorting phase.

2. Our second pick is correct; we insert the last item (data[lOOOJ) back into the heap

from the top (j=l) and form an odd-size heap since the heap size decreases by one

(h_idx=999) and becomes an odd number. Therefore, the second pick is also correct.

3. Our second insertion (insert data[999]) will form a heap; the second insertion

must form a heap (heap size=998) if the item (data[999]) being inserted is not in the path

of the last item (j=998) in the heap. (In other words, we don't want the situation where

coincidentally, the item being inserted (data[999]) is the largest one in the heap and is

inserted into the last position (j=998).) Even ifthis item is inserted into the last position,

we know from the previous discussion that it is all right as long as the last item is not the

largest in the heap. We happened to have that since the previous step was from an odd­

size heap (j=999, data[j] was not left out of the heap).

94

4. The rest of the picks and insertions are correct; accordingly, we alternate the heap

size even and odd (step 1 and 2) throughout the sorting phase and get the sorting job

done.

5. It works for an odd-size heap to begin with; just relax the fust step of the above

and an identical proof holds when the list size is an odd number.

Property 4.2 If a list is k-ordered, and then Combsorted with gap~ it remains k­

ordered

Proof Let Xi be any element in the list, assume h+ 1 <=i<=size-k-h. Being k-ordered,

Xj<=Xi+k• we need to prove that after one pass of Combsort with gap h, Xi<=Xi+k is

still valid. When the list is Combsorted with gap h, the element in slot 'i' can only be one

of the three elements CXi-h• Xj, Xi+W• and one of the three CXi+k-h• Xi+k• Xi+k+h) will

reside in slot 'i+k'. There are nine possible combinations in a 3x3 permutation. We can

quickly eJimjnate three combinations- CXi-h• Xi-h+0, (Xi, Xj+k), and (Xi+h• Xi+h+k)­

by the definition of being k-ordered. There are six cases left to be considered:

Case 1: (Xi-h• Xi+0- Since Xi-h<=Xi-h+k (k-ordered) and Xi-h+k<=Xi+k (otherwise

they must have been swapped after being Combsorted with gap h), Xi-h<=Xi+k is true.

Case 2: (Xi-h· Xi+k+W- Since Xi-h<=Xi+h (otherwise they must have been swapped

after being Combsorted with gap h) and Xi+h<=Xi+h+k (k-ordered), Xi-h<=Xi+k+h is

true.

Case 3: (Xi, Xi+k-h)- Since Xi<=Xi+k (k-ordered) and Xi+k<=Xi+k-h (that's why they

have been swapped at gap h), Xj<=Xi+k-h is true.

Case 4: (Xj, Xi+k+h)- Since Xj<=Xi+h (otherwise they must have been swapped after

being Combsorted with gap h) and Xi+h<=Xi+h+k (k-ordered), Xj<=Xi+k+h is true.

95

Case 5: CXi+h, Xi+k-h)- Since Xi+h<=Xi (that's why they have been swapped at gap h)

and Xi+k<=Xi+k-h (that's why they have been swapped at gap h); we know that

Xj<=Xi+k (k-ordered), so Xi+h<=Xi+k-h is true.

Case 6: CXi+h' Xi+k)- Since Xi+h<=Xi (that's why they have been swapped at gap h)

and Xj<=Xi+k (k-ordered), Xi+h<=Xi+k-h is true.

We have exhausted all cases for a general assumption of i (h+ 1 <=i<=size-k-h). For a

special'i' (say i<=h or i>size-k-h), we just need to select partial cases from our proof in

the above, and the proof will still be valid.

APPENDIX B

SELECTED C PROGRAM CODES FOR TillS PAPER

96

I* Corresponds to Program A (Figure 1) in the text*/
I* Asswne a global array dataO and global variable "size" *I
void comb()
{
int switches, i, j, top, gap;
int hold;

}

gap=size;
do{

gap=(intX(float)gap/SHRINKF ACTOR);
if(gap 0) gap=1;
switches=O; II dirty pass flag
top = size - gap+ 1;
for (i=O;i<top;i++)
{

}

j=i+gap;
I* swap •1
if (data[i]>datafj]) {

hold=data[i];
data[i]=data[j];
datafj]=hold;
++switches;

}

} while (switches II (gap>1));

97

;• Corresponds to Program B (Figure 2) in the text •;
void comb 11 ()
{
int switches, i, j, top, gap;
int hold;

}

gap=size;
do{

gap=(intX (float)gap/SHRINKF ACTOR);
switch(gap)
{

}

case 0: gap=l; //bubble sort
break;

case 9:
case 10: gap=ll;

break;
default: break;

switches=O; II dirty pass flag
top = size - gap;
for (i=O;i<top;i++)
{

}

j=i+gap;
I* swap */
if (data[i]>data[j]) {

hold=data{ i];
data[i]=data[j];
datafj]=hold;
++switches;

}

} while (switches \1 (gap>l));

98

I* Corresponds to Program C (Figure 3) in the text*/
#defme SHRINKFACTOR 1.3 /* optimal Shrink Factor */

I* use pointer and get rid of the dirty pass flag*/
I* in calling procedure, to call this procedure might look like:*/
I* comb_sort(data, data+size-1); (data[] need not to be global) */
void comb_ sort(lo, hi)
int *lo, *hi; /*pointer to the first and last items of array */
{
register int *i, *j; !* if pointer can be put in registers*/
int hold, gap;

}

gap=(hi-lo+ 1)/SHRINKFACTOR; /*better initial gap*/
do { ·

for (j=hi,i=j-gap;i>=lo;-i,-j)
{

}

if (*i>*j) { /* watch the order of swap *I
hold=*i; /* ifj first, we might *I
*i=*j; I* waste a pass when*/
*j=hold; /*only the fJISt two swap *I

}

if (gap> 1) gap/=SHRINKF ACTOR; I* for most passes *I
else /* gap=l, don't change the gap size *I
if (hold!=*hi) hold=*hi; /* smart dirty pass flag *I
else break; /*break out of the loop*/

} while (1); /* infmite loop until a "break" or "goto" *I

99

I* Corresponds to Program D (Figure 8) in the text *I
#define SHRINKFACTOR 1.3 /* optimal Shrink Factor *I

void comb _sort(lo, hi)
int *lo, *hi; I* pointer to the fust and last items of array *I
{
register int *i, *j; I* if pointer can be put in registers *I
int hold, gap;

}

gap=(bi-lo+2)/3; /*better initial gap, +2 for size<3 */
do {

for (j=hi,i=j-gap;i>=lo;-i,-j)
{

}

if (*i>*j) { I* watch the order of swap *I
hold=*i; I* if j first, we might • I
*i=*j; I* waste a pass when *I
j=hold; I only the fust two swap *I

}

if(gap>9) gapi=SHRINKFACTOR; I* for most passes *I
else I* change the course of Shrink Factor by *I

if (gap> 1) -gap; I* simply decrementing the gap */
else /* gap=l, oon't change the gap size *I

if (hold!=*hi) hold=*hi; I* smart dirty pass flag *I
else break; I* break out of the loop *I

} while (1); I* infinite loop until a ''break" or "goto" *I

100

I* Corresponds to Program E (Figure 11) in the text*/
#defme SHRlNKFACTOR 1.3 /*optimal Shrink Factor*/

void comb_ insert(lo, hi)
int *lo, *hi;/* pointer to the ftrst and last items of array */
{
void insertion(int •, int *);
register int *i, *j; /* if pointer can be put in registers */
int hold, gap;

}

gap=(hi-lo+2)/3; /*better initial gap, +2 for size<3 •;
do {

for (j=hi,i=j-gap;i>=lo;-i,-j)
{

}

if(*i>*j) {
hold=*i;
*i=*j;
*j=hold;

}

gap/=SHRINKF ACTOR;
} while (gap>6); /* 6 is cut of point for Insertion Sort */
insertion(lo, hi);

void insertion(lo, hi)
int *lo, *hi;
{
register int *i, *j;
int v;

}

I* guaranteed sentinel • I
for (j=hi, i=j-1; j>lo; i-, j-) {

}

if(*i>*j) {
v=*j;
*j=*i;
*i=v;

}

for (i=lo+ 1; i<=hi; i++) {
v=*i;

}

j=i;
while (*(j-l)>v) {

j=(j-1);
j-;

}
*j=v;

101

I* Correspond to Program F (Figure 14) in the text*/
#defme SHRINKFACTOR 1.44 /*optimal Shrink Factor */

void comb _insert2(lo, hi)
int *lo, *hi; /* pointer to the first and last items of array */
{
void insertion(int *, int *);
register int *i, *j; I* if pointer can be put in registers */
int hold, gap;

}

gap=(hi-lo+2)/3; /*better initial gap, +2 for size<3 */
do {

for (i=lo, j=i+gap;j<=hi; ++i, ++j)
{

}

if(*i>*j) {
hold=*i;
*i=*j;
*j=hold;

}

if (gap<=3) break;
gap/=SHRINKF ACTOR;
(gap+=(gap&l))-; /* decrements even gap*/
for (j=hi,i=j-gap;i>=lo;-i,-j)
{

}

if(*i>*j) {
hold=*i;
*i=*j;
*j=hold;

gap/=SHRINKF ACTOR;
(gap+=(gap&l))--; /*decrements even gap */

} while (gap>3); /* 3 is cut of point for Insertion Sort */
insertion(lo, hi);

102

I* Corresponds to Program G (Figure 15) in the text *I
void shellh(size)
int size;
{
int ij,h;
int v;

for (h=1· h<=size/8· h<<=1)· '))

}

h-·
' do{

for (i=h; i<size; i++) {
j=i;

}
h>>=l;

} while (h>O);

v=data[i];
while (j>=h && data[j-h]>v) {

datam=datau -h 1;
j-=h;

}
data[j]=v;

I* Correspond to Program H (Figure 16) in the text *I
void shellk(size)
int size;
{
int i, j, h;
int hold;

for (h=t· h<=size/9· h=3*h+ 1)· ' ')

}

do {
for (i=h; i<size; i++)
{

}
h/=3;

j=i;
hold=data[j];
while (j>=h && data[j-h]>hold) {

data[j]=data[j-h];
j -=h;

}
data[j]=hold;

} while (h>O);

103

I* Correspond to Program I (Figure 17) in the text */
I* the array start with 0 for the size= I , otherwise, cannot set the init. gap*/
/* Baur's idea to avoid unconditional save is implemented here */
WISigned ary[21]= { 1 ,5, 19,41,109,209,505,929,2161,3905,8749,16001,
36449,64769,146305,260609,587521,1045505,2354689,4188161,9427969};
void shells(size)
int size;
{
register int i,j;
int k, h, hold;

}

for (k=20,h=size/3*2+ 1; ary[k]>h; k-); /* + 1 for small*/
I* the optimal initial gap is about 113 size to 2/3 size • I
do {

h=ary[k-];
for (i=h; i<size; i++) {

j=i-h;
hold=data[i];

}
} while (h> 1);

if (data[j]>hold) {
data[i]=data[j];

}

while (j>=h && data0-h]>hold) {
data[j]=dataO -h];
j-=h;

}
dataO]=hold;

104

I* Corresponds to NO Program in the text but is compared in the charts and tables *I
/*Quicksort with median element as pivot- so that sentinel can be eHminated *I

105

I* This program does not appear in the text, but is used to compare for its running time*/
void quick_sort(low_ptr, high_ptr)
int *low _ptr, *high _ptr;
{
int *pivot_ptr;
extern int *partition(int *, int *);

}

if(high_ptr>low_ptr) {

}

pivot_ptr = partition(low_ptr, high_ptr);
quick_ sort(low _ptr, pivot_ptr-1);
quick_sort{pivot_ptr, high_ptr);

int *partition(low_ptr, high_ptr)
register int *low _ptr, *high _ptr;
{
register int pivot=*(low _ptr+(high _ptr-low _ptr)/2), temp;
I* upon termination, left<pivot<right */

}

while (low _ptr<=high _ptr) {

}

while (*low _ptr<pivot) low _ptr++;
while (*high _ptr>pivot) high _ptr-;
if (low _ptr<=high_ptr) {

}

temp=*low _ptr;
*low _ptr=*high _ptr;
*high _ptr=temp;
low_ptr++; high_ptr-;

return low _ptr;

1• Corresponds to Program J (Figure 19) in the text •;
void quick_sort(lo, hi)
int *lo, *hi;
{
register •i, •j, pivot;
int temp, *m;

start:

}

if (hi-lo>9) {
m=lo+(hi-lo)/2;

}

if (*lo>*hi) { pivot=*lo; *lo=*hi; *hi=pivot; }
pivot=*m;
if (*lo>pivot) { *m=*lo; *lo=pivot; pivot=*m; }
else if (pivot>"'hi) { *m=*hi; *hi =pivot; pivot=*m; }
i=lo+ 1; j=hi-1; go to start;
while (i<=j) {

}

temp="'i;
*i=*j;
*j=temp;
i++;j-;
while (*i<pivot) i++;
while (*j>pivot) j-;

quick_ sort(lo, j);
quick_sort(i, hi);

106

/* Corresponds to Program K (Figure 20) in the text*/
void quick_sort(lo, hi)
int *lo, *hi;
{
register int *i, •j, pivot;
int temp;

start:

}

if (hi-l8>lo) {

}
else {

}

temp=(hi-lo)/3;
i=lo+temp; j=hi-temp;
if (*lo>*j) { pivot=*lo; *lo=*j; *j=pivot;}
if (*i>*hi) { pivot=*i; *i=*hi; *hi=pivot; }
if (*lo>*i) { pivot=*lo; *lo=*i; *i=pivot; }
if (*j>*hi) { pivot=*j; *j=*hi; *hi=pivot; }
pivot=(*i>> 1 }+((*j+ 1)>> 1);
i=lo+ 1; j=hi-1;
goto start;
while (i<=j) {

}

temp=*i;
*i=*j;
*j=temp;
i++;j-;
while (*i<pivot) i++;
while (*j>pivot) j-;

quick_sort(lo, j);
quick_sort(i, hi);

j=hi;
do {

for (i=lo; i<j; i++,j-)
if (*i>*j) { pivot=*i; *i=*j; *j=pivot; }

} while (lo<j);
for (i=lo+ 2; i<=hi; i++) {

j=i; v=*i;
while (*(j-l)>v) { *j=*(j-1); j-;}
*j=v;

}

107

I* Corresponds to Program L (Figure 21) in the text*/
void quick_sort(lo, hi)
int *lo, *hi;
{
int temp;
register int *i, *j, pivot;
int *m;

}

if (hi-18>lo) {
temp=(hi-lo)/4;
i=lo+temp; j=hi-temp; m=i+temp;
if (*lo>*hi) { pivot=*lo; *lo=*hi; *hi=pivot; }
if (*i>*j) { pivot=*i; *i=*j; *j=pivot; }
if (*i>*m) { pivot=*i; *i=*m; *m=pivot; }
else if(*m>*j) { pivot=*j; *j=*m; •m=pivot;}
else pivot=*m;
if (*lo>pivot) { *m=*1o; *1o=pivot; pivot=*m; }
else if (pivot>*hi) { *m=*hi; *hi=pivot; pivot=*m; }
i=lo+ 1; j=hi-1; goto start;

SAME AS ABOVE PROGRAM FROM NOW ON

108

I* Corresponds to Program M (Figure 23) in the text * I
I* heapsort from p.152-156 of Algorithms 2nd. Ed. by Robert Sedgewick - assume
size>=3 •;
void heapsort(size)
int size;
{
int k;
int t;
void downheap(int);

h_idx=size;

}

for (k=h_idx/2;k>=l;k-) downheap(k);
do {

t=data[1]; data(1]=data[h _idx];
data[h-idx-]=t;
downheap(1);

} while (h_idx>l);

void downheap(k)
int k;
{
int j, v;

v=data(k];

}

while (k<=h_idx/2) {
j=k+k;
if(j<h_idx && data[j]<data[j+ 1]) j++;
if (v>=data[j]) break;
data[k]=data[j]; k=j;

}
data[k]=v;

109

1• Corresponds to Program N (Figure 24) in the text •1
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
int size;
int *data;
void main(int argc, char *argv0)
{
extern void heapsort();
extern void compare2(int, int);
clock t start, end;

}

if(argc !=2) { puts(11require one and only one argument!"); exit(l);}
size=atoi(argv[1]);
data = new int[size+ 2];
randomize();
for(inti=l;i<=size;i++) { *(data+i)=rand();}
start=clock();
if(size>2) { compare2(l,size); heapsort(); compare2(2,3); }
else { data[++size]=data[l]; if(size=2) compare2(2,3); }
end=clock();
delete data;
printf{11\n%f\n", (end-start)/CLK _ TCK);

I* assume for size >2 *I
void heapsort()
{
void downheap(int, int, int);
register int h _ idx=size-1> > 1;

}

for (;h_idx>=l;h_idx-) { downheap(h_idx<<l,data[h_idx],size);}
h_idx--++size; II for extra space
while (h_idx>4) { //require cutoff point at h_idx>4

data[h-idx-]=data[1];
downheap(2,data[h _idx],h _idx-l);

}
data[h _idx-]=data[I];

void downheap(int i,int v,int h_idx)
{
register int j=i;

do {
if (data[j]<data[j+ 1]) j++;
data[j>> 1]=data[j];
j<<=l;

} while (j<h_idx);
j>>=l ;
if (v>data[j]) {

110

}

j>>=l;
while (v>data[j>> 1] && j>=i) { datafj]=data[j>> 1]; j>>=l; }

}
data[j]=v;

void compare2(int i, intj)
{

if (data[i]>data[j]) { int t=data[i]; data[i]=data[j]; data[j]=t; }
}

111

I* Corresponds to Program 0 (Figure 29) in the text*/
void shell(lo, hi)
int *lo, *hi;
{
register int *i, •j;
int v, h, *bound;

}

h=178;
v=(hi-lo+3)/4;
while (v>h) h=(h<<l)+(h>>2)+ 1;
do{

bound=lo+h;
for (i=loj=bound; j<=hi; i++ j++) {

}

if(*i>*j) {

}

v=*j; •j=*i;
if (i<bound II *(i-h)<=v) *i=v;
else {

}

do {
*i=•(i-h);
i-=h;

} while (i>=bound && *(i-h)>v);
*i=v;
i=j-h;

if (h>225) h=(h<<2)/9;
else {

}
} while (1);

if (h- 1) break;
h=(h<<l)/5;

112

/* Corresponds to Program P (Figure 30) in the text*/
void comb(lo, hi)
int *lo, *hi;
{
void insertion(int •, int *);
int gap, hold;
register int *i, •j;

}

gap=26; hold=size/3;
while (gap<hold) (gap*=SHRINKFACTOR)++;
do{

for (i=loj=lo+gap;j<=hi;i++ J++)
{

}

if(*i>*j) {
hold=*i;
*i=*j;
*j=hold;

}

gap/=SHRINKF ACTOR;
if(gap<5) {

gap++;
if (gap==3) break;

}
for (j=hi,i=j-gap;i>=lo;i-J-)
{

}

if(*i>*j) {
hold=*i;
•i=*j;
*j=hold;

}

gap/=SHRINKF ACTOR;
if(gap<5) {

gap++;
if (gap==3) break;

}
} while (l);
if (hi>lo) insertion(lo,hi);

113

I* Corresponds to Program Q (Figure 33) in the text *I
I* no resetting even to odd(SF=l.42), better fit for N*Lg(N) (1 item) *I
I* use idx to check the unsorted part for gap= I , SF=1.443 *I
I* get rid of insertion and dirty pass flag, SF=1.43 *I
I* from comb_ su2, but change 13-9-7-5-4-3-2 or 11-7-5-4-3-2, SF=1.443 *I
#define SHRINKF ACTOR 1.42;
void comb(int *lo, int *hi)
{
void insertion(int • , int *);
int gap, hold;
register int *i, *j, *idx;

gap=(hi-lo+2)13; II make sure size=2 works
do{

for (i=loj=lo+gap;j<=hi;i++ j++)
{

}

if(*i>*j) {
hold=*i;
*i=*j;
*j=hold;
idx=i;

}

if (gap> 1 0) gap/=SHRINKF ACTOR;
else {

}

if(gap>l) gap-;
else {

}

if (lo<idx) { hi=idx; idx=hi; }
else break;

for (j=hi,i=j-gap;i>=Io;i-j-)
{

}

if(*i>*j) {
hold=*i;
*i=*j;
*j=hold;
idx=j;

}

if (gap> 10) gap/=SHRINKF ACTOR;
else {

if (gap> 1) gap-;
else {

}

if (idx<hi) { lo=idx; idx=lo; } /* might waste a pass */
else break;

114

115

}
} while (1);

}

APPENDIX C

NEARLY WORST CASE CONSTRUCTION FOR COMBSORT

116

I* Major tasks performed by this procedure- T# will be referenced */
I* Tl. Decides the cut _point __gap _size for the black sheep starts to move *I
I* T2. Calls chkcls() to ensure the black sheep will not move before CPGS *I
I* T3. Places the rest of list in reverse order into each empty position *I

void anticomb(size)
int size; I* size of data *I
{
extern void chkclr(int, int, int);
intj, pos;
int cut_point__gap_size; /*when should the black sheep move *I

}

pos=2; I* Tl *I
j=sizellO;
while (j>O) { pos+=2;ji=IO;}
cut _point _gap_ size=sizelpos;

pos=size-1; I* change ofpos could help optimize the worst case *I
d=l; I* The first data value is 1 *I

chkclr(size,pos,cut_point_gap_size); I* T2 *I

list[pos]=d++; I* place the black sheep at pos *I
for (j=size-lj>=OJ-) I* T3 *I

if (list[j]==O) list[j]=d++; I* Change to in order speed up little *I

I* Major tasks performed by this procedure - T# will be referenced *I
I* Tl. Checks and fills the empty positions in front with small numbers *I
I* that are smaller than the black sheep will be *I
I* T2. Recursively calles itself after filling each empty position to *I
I* assure that there will be no interference to overtake the black *I
I* sheep before the cut_point_gap_si.Ze *I

void chkclr(size,pos,g) I* size: size of data, g: current gap size *I
int size, pos, g; I* pos: position to check for clearance *I
{
intj, gap;

gap=sizeiSHRINKFACTOR; /* do it according to what Combsort would do *I
while (gap>g) { I* because Combsort uses diminishing gap sizes *I

if (pos>=gap) j=pos-gap; I* Tl *I
elsej=pos;
while (j>=gap)j-=gap; /*decides the starting position to check *I
while (j<pos) { I* doing in other direction will not work *I

if (list[j]=O) list[j]=d++; I* fllls the small number if empty *I

117

}
}

chkclr(sizej,gap); /* T2 •1
j+=gap;

}
gap/=SHRINKFACTOR; /*same as Combsort */

118

APPENDIX D

AVERAGE AT V ARlOUS SIZES AND STANDARD ERRORS

FOR PROGRAM 0 AND PROGRM Q

119

120

Compare! Combsu2ni I Shellsu
Size Average Stdev Average Stdev

4 5.1 0.99 5.9 1.447
6 12.7 1.77 12.7 2.050
8 23.9 1.91 20.5 3.371

10 31.6 1.90 29.8 3.270
15 70.4 2.07 55.6 4.893
30 270.8 1.40 149.3 14.186
60 636.0 1.76 396.3 19.394
90 1064.4 17.76 658.6 23.356

150 1858.9 34.44 1298.1 31.125
300 4377.3 73.62 3104.2 54.865
450 7098.0 82.26 5091.2 108.243
600 10068.8 98.19 7219.3 78.341
750 13732.4 238.95 9624.8 170.382
900 16136.0 228.32 11954.8 195.985

1500 30461.9 597.57 21776.6 194.274
3000 67665.8 575.71 49130.6 252.535
4500 106979.2 788.04 78744.2 564.170
6000 147917.8 978.90 1096&4.7 606.621
7500 185705.3 2320.72 141612.9 864.660
9000 231960.2 604.52 175368.7 476.571

15000 402111.9 4291.11 310992.6 954.500
30000 867518.2 9773.39 680821.0 1576.385
45000 1354186.7 14451.72 1074444.6 3210.411
60000 1858278.3 17159.71 1476409.2 1955.129
75000 2433401.9 20469.57 1889951.7 4284.169
90000 2915081.3 29701.21 2312121.4 3143.516

150000 5112774.4 44353.33 4070271.1 4752.074
300000 11016525.2 253727.60 8721865.6 9841.806
450000 16887703.1 89997.36 13577030.4 11384.870
600000 22925621.8 131973.30 18618873.0 21068.360
750000 32807208.4 753596.00 23718172.5 23998.290
900000 35803641.9 172998.80 28901483.9 29416.670

1500000 61976199.2 697842.90 50363189.8 40982.830
4000000 176853509.8 1499164.00 145379526.6 52833.320

15000000 727616368.8 3811196.00 601180633.8 307314.700

VITA ~-

Yuh-Ching Su

Candidate for the Degree of

Master of Science

Thesis: AN EMPIRICAL STIJDY OF COMBSORT AND WAYS TO IMPROVE IT

Major Field: Computer Science

Biographical:

Personal Data: Born in Taiwan, RO.C., June 19, 1956, The son of
Mr. and Mrs. Ying-yuan Su.

Education: Received Bachelor degree in Business Administration from Tatung
Institute of Technology, Taiwan, R.O.C. in May, 1980; Received Master of
Business Administration degree from Oklahoma City University in May,1986;
Completed requirements for the Master of Science degree at Oklahoma State
University in July, 1993.

Professional Experience: Teaching Assistant, Oklahoma State University,
Department of Computing and Information Sciences, Stillwater, Oklahoma,
June, 1988 to August, 1988.
Network Administrator, Oklahoma State University, College of Arts and
Sciences Extension, Stillwater, Oklahoma, June 1988 to January, 1991.

	Thesis-1993-S938e_Page_001
	Thesis-1993-S938e_Page_002
	Thesis-1993-S938e_Page_003
	Thesis-1993-S938e_Page_004
	Thesis-1993-S938e_Page_005
	Thesis-1993-S938e_Page_006
	Thesis-1993-S938e_Page_007
	Thesis-1993-S938e_Page_008
	Thesis-1993-S938e_Page_009
	Thesis-1993-S938e_Page_010
	Thesis-1993-S938e_Page_011
	Thesis-1993-S938e_Page_012
	Thesis-1993-S938e_Page_013
	Thesis-1993-S938e_Page_014
	Thesis-1993-S938e_Page_015
	Thesis-1993-S938e_Page_016
	Thesis-1993-S938e_Page_017
	Thesis-1993-S938e_Page_018
	Thesis-1993-S938e_Page_019
	Thesis-1993-S938e_Page_020
	Thesis-1993-S938e_Page_021
	Thesis-1993-S938e_Page_022
	Thesis-1993-S938e_Page_023
	Thesis-1993-S938e_Page_024
	Thesis-1993-S938e_Page_025
	Thesis-1993-S938e_Page_026
	Thesis-1993-S938e_Page_027
	Thesis-1993-S938e_Page_028
	Thesis-1993-S938e_Page_029
	Thesis-1993-S938e_Page_030
	Thesis-1993-S938e_Page_031
	Thesis-1993-S938e_Page_032
	Thesis-1993-S938e_Page_033
	Thesis-1993-S938e_Page_034
	Thesis-1993-S938e_Page_035
	Thesis-1993-S938e_Page_036
	Thesis-1993-S938e_Page_037
	Thesis-1993-S938e_Page_038
	Thesis-1993-S938e_Page_039
	Thesis-1993-S938e_Page_040
	Thesis-1993-S938e_Page_041
	Thesis-1993-S938e_Page_042
	Thesis-1993-S938e_Page_043
	Thesis-1993-S938e_Page_044
	Thesis-1993-S938e_Page_045
	Thesis-1993-S938e_Page_046
	Thesis-1993-S938e_Page_047
	Thesis-1993-S938e_Page_048
	Thesis-1993-S938e_Page_049
	Thesis-1993-S938e_Page_050
	Thesis-1993-S938e_Page_051
	Thesis-1993-S938e_Page_052
	Thesis-1993-S938e_Page_053
	Thesis-1993-S938e_Page_054
	Thesis-1993-S938e_Page_055
	Thesis-1993-S938e_Page_056
	Thesis-1993-S938e_Page_057
	Thesis-1993-S938e_Page_058
	Thesis-1993-S938e_Page_059
	Thesis-1993-S938e_Page_060
	Thesis-1993-S938e_Page_061
	Thesis-1993-S938e_Page_062
	Thesis-1993-S938e_Page_063
	Thesis-1993-S938e_Page_064
	Thesis-1993-S938e_Page_065
	Thesis-1993-S938e_Page_066
	Thesis-1993-S938e_Page_067
	Thesis-1993-S938e_Page_068
	Thesis-1993-S938e_Page_069
	Thesis-1993-S938e_Page_070
	Thesis-1993-S938e_Page_071
	Thesis-1993-S938e_Page_072
	Thesis-1993-S938e_Page_073
	Thesis-1993-S938e_Page_074
	Thesis-1993-S938e_Page_075
	Thesis-1993-S938e_Page_076
	Thesis-1993-S938e_Page_077
	Thesis-1993-S938e_Page_078
	Thesis-1993-S938e_Page_079
	Thesis-1993-S938e_Page_080
	Thesis-1993-S938e_Page_081
	Thesis-1993-S938e_Page_082
	Thesis-1993-S938e_Page_083
	Thesis-1993-S938e_Page_084
	Thesis-1993-S938e_Page_085
	Thesis-1993-S938e_Page_086
	Thesis-1993-S938e_Page_087
	Thesis-1993-S938e_Page_088
	Thesis-1993-S938e_Page_089
	Thesis-1993-S938e_Page_090
	Thesis-1993-S938e_Page_091
	Thesis-1993-S938e_Page_092
	Thesis-1993-S938e_Page_093
	Thesis-1993-S938e_Page_094
	Thesis-1993-S938e_Page_095
	Thesis-1993-S938e_Page_096
	Thesis-1993-S938e_Page_097
	Thesis-1993-S938e_Page_098
	Thesis-1993-S938e_Page_099
	Thesis-1993-S938e_Page_100
	Thesis-1993-S938e_Page_101
	Thesis-1993-S938e_Page_102
	Thesis-1993-S938e_Page_103
	Thesis-1993-S938e_Page_104
	Thesis-1993-S938e_Page_105
	Thesis-1993-S938e_Page_106
	Thesis-1993-S938e_Page_107
	Thesis-1993-S938e_Page_108
	Thesis-1993-S938e_Page_109
	Thesis-1993-S938e_Page_110
	Thesis-1993-S938e_Page_111
	Thesis-1993-S938e_Page_112
	Thesis-1993-S938e_Page_113
	Thesis-1993-S938e_Page_114
	Thesis-1993-S938e_Page_115
	Thesis-1993-S938e_Page_116
	Thesis-1993-S938e_Page_117
	Thesis-1993-S938e_Page_118
	Thesis-1993-S938e_Page_119
	Thesis-1993-S938e_Page_120
	Thesis-1993-S938e_Page_121
	Thesis-1993-S938e_Page_122
	Thesis-1993-S938e_Page_123
	Thesis-1993-S938e_Page_124
	Thesis-1993-S938e_Page_125
	Thesis-1993-S938e_Page_126
	Thesis-1993-S938e_Page_127
	Thesis-1993-S938e_Page_128
	Thesis-1993-S938e_Page_129

