ITERATIVE METHODS FOR SOLVING LARGE LINEAR
SYSTEMS IN THE MOMENT METHOD ANALYSIS
OF ELECTROMAGNETIC SCATTERING

By
JAMES MICHAEL STURM
Bachelor of Science
Oklahoma State University
1991

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1993

OKLAHOMA STATE UNIVERSITY

ITERATIVE METHODS FOR SOLVING LARGE LINEAR
SYSTEMS IN THE MOMENT METHOD ANALYSIS
OF ELECTROMAGNETIC SCATTERING

Thesis Approved:
P\ (il 2 (// L uu‘,f
// — Thesis Advisor
>¢@% = ‘B /-
O 7 1,1
}\r‘ { i /‘iﬂi -y »—{Q/ti,n_.
i/ iy /
: ((//‘/ / [
“Dean of thc Graduatc College

ACKNOWLEDGMENTS

I extend my sincere thanks and appreciation to my thesis advisor Dr. James C.
West in the Electrical Engineering department of Oklahoma State University for the
guidance and patience he has shown me in this endeavor. Along with Dr. West's help, I
received considerable support from his doctoral candidate, Ruimin Chen. Not only did
Ruimin supply the moment method source code for testing the iterative algorithms, he
copied his notes on the development of the magnetic field integral equation. Dr. John
Chandler of the Computer Science department at OSU assisted me in improving the
efficiency of my source code and in suggesting algorithms to test. This work was

supported by the Office of Naval Research under grant N00014-92-J-1206.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTIONouitiitiniiiniiiiiiiiee e et eeee e e aeas 1
II. ELECTROMAGNETIC ANALYSIS......coiiiriiiireeeeeereeiieene, 6
INOdUCHON.uiuiniiiiiit it eeeeaans 6
3-D Magnetic Field Integral Equation.........cccccoceereevriennunnnnnnnen. 6
MomentMethod.........c.couiiiiiiiiiiiiiii e 11
Application to Scattering Problem.........ccccccevviiiiiiiiiiiiiininnnnnn, 14
III. ITERATIVE METHODS......ooiireeeeeeeeceee e eeeicen e 17
INTOdUCHON. ...cuetiei it e ea e 17
Algorithm Theoryc.oiiuiiiiiiiiiiiiiicee e 17
NOAHON ...vteieinitiiiiiiete e et e e ceneeaenanas 19
Conjugate Gradient.........ccceevuiiiniiinniiiiiiieninencinnireennnee. 20
Biconjugate Gradient.......cccccveieniriniiiiiiiiiiiiiiieiieiinen. 22
Conjugate Gradient Squared...........ccoceveveiiiiiiinnenenennnnen.. 24
BICGSTAB. ...ttt eeereeeenenens 25
Jacobi and Gauss-Seidel...........cooeeeeiiiiiiiiiiiiiiiiiinnninnnn. 26
Successive Overrelaxation........ccccceeveiiicriininenenennnnen. 27
Iv. COMPUTER IMPLEMENTATION.......cccooiiiiiiiiiiiiiniiicnieieceeenes 29
INtroduCHON.evvininiiiiiii it e e 29
Algorithm Implementationcooviviiiiiiiiiiiiiiiiiiiiiiiieenans 31
Conjugate Gradient..........c.cccoiviviiiiniiiniiiiiiiiiiiiinnn, 31
Biconjugate Gradient.........cccoeveeeiienniiiniiiiniiiiniiiinnnennn, 32
Conjugate Gradient Squaredc.coceiiiiiiniiiiniinininn. 33
BICGSTAB. ..ottt ettt rereeaeaeenaaes 34
Jacobi and Gauss-Seidel........ccccoeveviiiiiiiiiiniiiiiniiiiinnnn 34
Successive Overrelaxation.........cc.oeeeiveiiiiiiiiiiiniiiniiennnen. 36
Storage and Computational Requirementsc..ccceeveieinenennn. 37
V. EXPERIMENTAL RESULTS.......ciiiiiiiiiiiiiiiiiiiiiieiiiieceneaeaeas 39
INtroduction.......cocvuiviiiiniiiiiiiiii e 39
Objective Testing Techniques..........cceeveiiueiiiiinenieniiinniiiinnnan. 40
RESUILS. ..o 41
Convergence Behavior.........cccooevvieiiiiiinniiniiiniiinnnennne. 41
Matrix Element Storage............cccoeieiiiiiiiiieiiiiiiiiiiienans 43
Matrix Element Recalculationcccoceiiininininineneninin. 46
Electromagnetic Parameter Changescccoceveeiinnn.. 48

iv

Chapter Page
Algorithm Parameter Changes...............coceiiiiiiiiinininan., 51
Machine Dependence.........cccuuiiiniiiieiiiiiieiiiiiiieieiennnnns 52
Efficiency Study....ccoeivvimiiiiiiiiiiiiiiiince e 53
VI. CONCLUSIONS ... iiiiiiiiaiiieeeetittittnrnenenenrereeaeeeeneatanararasnnes 56
BIBLIOGRAPHYouiiiiiii e e e 57
APPENDIXES ..ottt ittt e et et e e s n e 60
APPENDIX A BICONJUGATE GRADIENT METHOD...................... 61
APPENDIX B BICGSTAB METHODc.cccccvtiiiiiiiiiiiiiiiiennn. 65
APPENDIX C CONJUGATE GRADIENT METHOD............c.ccccuvi. 69
APPENDIX D CONJUGATE GRADIENT SQUARED METHOD 73
APPENDIX E GAUSS-SEIDELMETHOD.........c.cociiiiiiiiiiiiiiinan, 77
APPENDIX F JACOBIMETHOD......c.cccceviiiiiniiinininiiiniiiiiinans 80
APPENDIX G SUCCESSIVE OVERRELAXATION METHOD............. 83
APPENDIXH MOMENT METHOD SOURCECODEc..c.c.c....... 86
APPENDIX1 SYSTEM CLOCK POLLING ROUTINES.................... 92

Table

II.

III.

Iv.

VI.

VII.

LIST OF TABLES

Page
Algorithm Storage Requirements........cc...ccceceeiiinicriernnereneeieneiecrnnenss 37
Algorithm Computational Requirements per Iterationc..ccevveennenen. 38
Summary of EXPerimentsccoovieiniiiieiiiiiiiineiirnerreererncererneeneeees 39
Effect of Illumination Angle on Number of Iterations for N=320................ 49
Multiplications Required for Convergence for N=720.ccccccoevennen. 54
Comparison of Work to Experimental Execution Times for N=720............. 54
Comparison of Work to Experimental Execution Times for N=1620. 55

Figure

10.

11.

12.

13.

14.

LIST OF FIGURES

Page
Geometry for Sinusoidal Wave Surface............coooeoiiiniiiiiiiiiininieennn, 6
Sinusoidal Surface Region of Interest.coevvviiiiiniiiniiinininienennnn, 15
Moment Method Grid........ccoviviiiiiiiiiiiiiiiiiiii e, 15
Convergence Behavior for N=720.........c.cccveiiiiiiiiiiniiiniiiiinininiieannn, 42
Matrix Element Storage CPU Execution Times.cccooviiiiiniiniininninn, 43
Matrix Element Storage Real Execution Times.ccovvvvveneiieiieeninnenn. 44
Matrix Element Storage Percentage CPU Utilization.ccovveneenn. 45
Matrix Element Recalculation CPU Execution Times.......cc.cccoerveevunnne. 46
Matrix Element Recalculation Real Execution Times.ccocovvnininnnne, 47
Matrix Element Recalculation Percentage CPU Utilization............ccoucouu. 48
Effect of MM Grid Ratio on Convergence for N=320..........cccccceuvirnunene 50
Effect of Relaxation Factor on SOR Convergence for N=320.................... 51
MES CPU Execution Times, DEC-5000............cccoovuriinnurrerinnneennanns 52
MES CPU Execution Times, IBM 3090cccoiiiiiiiiiiiiiiiiiiiiiiiiienans 53

CHAPTER 1

INTRODUCTION

Since its development in World War II, radar has provided accurate detection and
ranging of aircraft and meteorological disturbances. Recent efforts have been to understand
radar backscatter from ocean waves at near grazing incidence for naval applications. For
radars aboard ships or low-flying aircraft, the ocean surface presents an unpredictably
complex shadowed surface [38]. Experimental characterization of the scattering process is
unreliable because the sea-surface statistics are not well known, and the instantaneous
surface profile at the time of the radar measurement cannot be determined. Instead, most
theoretical analyses of the scattering process have centered on numerically modeling the
interactions between the radar waves and the sea surface. Most promising are the
applications of the moment method (MM) [15] and the geometrical theory of diffraction
(GTD) [18] to this problem. Unfortunately, these techniques are computationally
extensive, limiting the size of the surface that can be modeled, and therefore limiting their
application to unrealistically small surfaces.

When adapting the MM to electrically large scatterers like the ocean, large systems
of linear equations must be solved [15]. Direct methods such as LU (Lower / Upper)
Decomposition or Gaussian elimination have been used extensively to solve such systems.
These algorithms are popular because they provide exact solutions (neglecting computer
round-off errors) after a finite number of multiplications. Unfortunately, direct methods
are inefficient in both computer storage requirements as well as number of floating point
operations. As the system size increases, these requirements can overwhelm even the
largest supercomputers.

Iterative numerical solutions to the matrix equation overcome many of the
inefficiencies of direct methods, producing approximate results with many fewer

multiplications and reduced memory storage. lerative methods repeatedly approximate the

solution to the linear system until a desired precision is achieved [41]. Unfortunately, most
iterative methods are not guaranteed to converge to the solution unless certain matrix
properties are met.

Iterative methods can be implemented in ways that require much less storage than
direct methods. Both Gaussian elimination and LU Decomposition modify the matrix in
the process of finding the solution. Such methods, therefore, require the storage of non-
zero matrix elements in memory or on disks and cannot easily handle matrices that exceed
the storage capacities of the computer. Iterative methods, on the other hand, do not alter
the matrix elements, allowing for configurations where the matrix is not stored at all.
Instead, matrix elements are regenerated as needed.

Iterative methods often require much less execution time than direct methods. Since
they treat all matrices uniformly, direct methods will produce the correct result every time,
but only at great expense computationally. Given a matrix equation of dimension N, direct
methods require O(N*) multiplications to reach an answer [20]. Iterative methods,
however, use such properties as diagonal dominance and sparseness to reduce the amount
of computations significantly. Most iterative methods converge successfully using O(N?)
multiplications {32].

Since the computer uses binary representation for decimal and real numbers, errors
can result from the computer's inability to store numbers of infinite precision. Both direct
and indirect methods are prone to these round-off errors. Since most direct methods
modify the matrix coefficients, every subsequent operation carries with it the errors of the
previous operation. Fortunately, these errors are negligible for well-conditioned or
moderately ill-conditioned problems [22]. Iterative methods have the advantage of using
more of the original data, since the coefficient matrix is not modified [16].

R. F. Harrington [15] provided the foundation for the moment method as applied to
electromagnetic problems. In 1980, Glisson and Wilton [10] outlined techniques of
applying the moment method to electromagnetic scattering from conducting strips, bent

rectangular plates, and bodies of revolution. In their treatment, the electric field integral
equation (EFIE) was employed to model the radiation. Rao et. al. [28] extended the
technique to surfaces of arbitrary shape. In their application of the EFIE and the moment
method, triangular surface patches were used to represent the current distribution. This
investigation successfully modeled scattering from surfaces such as square plates, bent
plates, circular disks, and spheres [28].

Sarkar et. al. [32] surveyed numerical methods for use with scattering and radiation
problems. They discussed both direct and iterative methods for solving the matrix
equations. Iterative methods mentioned included the Jacobi, Gauss-Seidel, successive
overrelaxation, steepest descent, and conjugate-gradient (CG) algorithms. This work
included a discussion of convergence and round-off errors inherent in each technique.
Recently, most scattering works that use iterative solution methods have concentrated on
the CG technique, primarily because it is guaranteed to converge after a finite number of
iterations. For example, Sarkar and Rao [30] used this technique in their analysis of
scattering from arbitrarily oriented wire antennas. Besides confirming the attractiveness of
the CG method, they advocated not storing an interaction matrix. Instead, they solved the
scattering equation by incorporating it directly into the CG method instead of first
generating a matrix equation using the moment method. Sultan and Mittra [34] analyzed
the field distribution inside inhomogeneous lossy dielectric objects using the CG method.
They also proposed not storing an interaction matrix but regenerating matrix elements as
needed by the iterative method. Peterson and Mittra [25] [26] applied CG to individual and
periodic structures as well as to large electromagnetic scatterers.

While CG has been most popular recently, there are several other iterative
techniques, both newly developed and previously well known, that may be useful for the
calculation of rough surface scattering. For example, standard techniques such as Jacobi
[7], Gauss-Seidel [7], and successive overrelaxation [41] usually require more iterations to

converge, but require fewer calculations per iteration and therefore may ultimately be more

efficient. Although these methods are not guaranteed to converge in the general case,
careful selection of the mathematical description of the scattering process yields systems
that always converge.

Recently, several new iterative techniques have been introduced. Hageman and
Young [14] recommended symmetric successive overrelaxation (SSOR) with Chebychev
or conjugate gradient acceleration. In 1976, Fletcher [6] presented a new variation of the
conjugate gradient method for indefinite systems called the method of biconjugate gradients
(BCG). Although BCG does not require the matrix to be positive definite, convergence is
not guaranteed for asymmetric matrices. Shortly thereafter, Young and Jea [40] introduced
conjugate-gradient acceleration of nonsymmetrizable iterative methods, giving birth to such
methods as ORTHODIR [40], ORTHOMIN [40], and ORTHORES [40]. These
algorithms speed convergence of basic iterative techniques for sparse matrices. In 1986,
Saad and Schultz [29] outlined the generalized minimal residuals (GMRES) method for
solving nonsymmetric linear systems. This method is theoretically equivalent to
ORTHODIR and the generalized conjugate residual (GCR) method developed by Elman
[5]. Saad and Schultz claim that GMRES requires less multiplications and storage space
than either of these methods. More recently, Sonneveld [33] introduced a variation of CG
named the conjugate gradient squared (CGS) method that, according to Sonneveld,
requires less work per digit of solution than many other algorithms. Finally, H. A. Van
Der Vorst [35] proposed a variant of the BCG method, termed BICGSTAB, that converges
in a more stable manner.

The goal of this thesis is to investigate the suitability of several iterative techniques
for solving the linear systems of equations generated when applying the moment method to
rough-surface-scattering problems. Chapter 2 investigates the electromagnetic analysis and
development of the moment method code required for the solution of the ocean scattering

problem. Chapter 3 discusses the theory of iterative methods that solve linear systems of

equations, while chapter 4 details the computer implementation of these algorithms.

Experimental results are presented in Chapter S, and conclusions are given in Chapter 6.

CHAPTER 2
ELECTROMAGNETIC ANALYSIS
Introduction

This chapter discusses the electromagnetic problem and the formulation of the
moment method code that was used for testing the iterative methods. The purpose of the
investigation is to better model radar scattering from the ocean surface at near grazing
angles. The radar scattering can be found first by numerically applying the moment method
to the magnetic field integral equation (MFIE) [2] to determine the induced surface current,
and then by finding the reradiation of this current using Maxwell's equations. Since the
MEFIE achieves well-conditioned matrix equations best suited for iterative solution, it has

been favored over another integral equation, the electric field integral equation (EFIE) [27].
3-D Magnetic Field Integral Equation

The scattering from a perfectly conducting, 14 by 54, where A is the radar
wavelength, surface is modeled in this investigation. The surface has uniform sinusoidal

roughness in the x-direction, and is constant in the y-direction, as shown in Figure 1.

Figure 1. Geometry for Sinusoidal Wave Surface.

The electromagnetic plane of incidence is the x —z plane. For this geometry, unit vectors

for the rectangular coordinate system in the x, y, and z directions are &,, 4,, and a,,

respectively. The incident electric and magnetic fields are given by E, and H,,
respectively.

This surface profile is unrealistic. The actual ocean surface is described by a two-
dimensional roughness spectrum. Also, the small dimensions of the surface will introduce
edge-diffraction effects into the calculated backscatter. Finally, the ocean surface is not
actually a perfect electric conductor (PEC) at microwave frequencies. However, this
geometry is adequate for determining the suitability of each iterative technique for general

rough-surface scattering calculations.

The surface current density, Js, induced upon a PEC is proportional to the

magnitude of the magnetic field tangent to the surface, and is given by [2]
Js=4,x(H,+H))=4,xH, @.1)

where H, is the scattered magnetic field, H is the total magnetic field, and a_ is the unit

vector normal to the surface. The magnetic field integral equation (MFIE) describing the

current induced on a perfectly conducting surface by an incident field is [27] [2]
Js=2a_ xH, +-21—7r5n X iJs x V'G(R) ds’, 2.2)

where)[is the principle value integral around the singularity at R =0 [27], the integration

is over the entire surface of the scatterer, and G(R) is the three dimensional Green's

function given by [2]
GR)=— 2.3)
R)= i .
In (2.3), the propagation constant is
2r
k=—, 24
P (2.4)

and the scalar distance between the source and observation points is

R=R|=|r-r|={x-x)+(-y) +(@z-7), (2.5)
where the vector from the origin to the observation point is
r=ax+ay+a.z, (2.6)

and the vector from the origin to the source point is

r'=a,x'+ay +a,z. Q.7

X

In these equations, the primed coordinate system denotes the source, and the unprimed
coordinate system denotes the observation. The MFIE forces the magnetic field boundary
condition of (2.1) to be met at the scattering surface. Once the surface current density is
found by solving (2.2), the reradiated fields are determined using Maxwell's equations.
The three-dimensional vector MFIE can be rearranged into a set of scalar equations
suitable for solving using the moment method [4]. First, the current density for the surface

of Figure 1 is broken into tangential and normal components as
Js=aJ +aJ, (2.8)

where J is the component in the y direction, J, is the tangential component in the x-z

plane, and 4, is the unit vector tangent to the surface and perpendicular to a,. The unit

vectors are mutually orthogonal satisfying

a xa, =a,
a,xa =4, (2.9)
a xa,=a,

Taking the dot product of (2.2) and &, gives

a,-Jg=4,-24, xH, +-1—§, 4, xijs x V'G(R) ds’. (2.10)

Y 2r
Next, applying the identity
A-BxC=AxB-C 2.11)
to (2.10) yields
3, Jy=4,xa, 2H, +51;a, xa, I x V'G(R) ds' 2.12)

Evaluating the unit vector cross products and rearranging gives
a, - Jg +§-1;£ﬁt JsxV'G(R) ds’=-2a, -H;. (2.13)
Substituting for the surface current density in (2.8) and applying (2.11) again yields
J,+ -51;;{5‘ xaJ, -V'G(R) ds’=-2H,, (2.149)

where H, is the component of the incident magnetic field tangent to the surface.

Next, the tangential unit vector is broken into its orthogonal components as
a +/a (2.15)

where
| = , (2.16)

L e @17)

Substituting (2.15) into (2.14) yields
1 A A A ’ 4
I+ -2;{(1@‘ +14,)xd J -V'G(R) ds’ = —2H,, (2.18)
J, +51;f1,(1‘5, -1a,)-V'G(R) ds’ = -2H,. (2.19)

Taking the gradient of the Green's function,

1+ jkR - R
V'G(R m= 2.20
R)= = ¢ R (2.20)
and substituting into (2.19) gives
142,08, - 18) REDE o g o, 221)

Evaluating the dot product produces the scalar MFIE for the y component of the current,

l+JkR

+—f[(z), = (x = X)WV, —2=e ™ ds’ = ~H,. 2.22)

Taking the dot product of (2.2) with a, and following a similar procedure yields the

scalar MFIE for the tangential component of the current:

1+]kR _}-m ds’=H.

iy?

—J +—£[(z -0 - (x=-x",), (2.23)

where H, is the y component of the incident magnetic field. Since (2.22) and (2.23)

contain the unknown both outside and inside the integral, these are integral equations of the
second type [27], which are well suited for iterative solution since they lead to moment

method coefficient matrices that are diagonally dominant.

10

Moment Method

The moment method (MM) is used to convert integro-differential equations to a
form easily solvable by computers [15]. The discretization of the equation produces a
linear matrix equation that can be solved easily by either direct or indirect methods. The

inhomogeneous equation to be solved is represented by

L(f)=g, (2.24)

where L is a linear operator, f is the unknown function to be determined, and g is the

known driving function.
The moment method uses a finite set of independent basis functions to model the

unknown function f as

N
f=lof,, (2.25)

n=]

where f, are the basis functions and ¢, are unknown coefficients. Substituting (2.25)

into (2.24) gives

N
Y aL(f,)=3. (2.26)

The N unknown coefficients are determined by forming an inner product between
N appropriately selected weighting functions and both sides of (2.26). These inner

products are of the form

(w.a)=[[(w"-a) ds, 2.27)
s

where w is the weighting function and a represents either side of (2.26). The effect of

(2.27) is to evaluate (2.26) N times using independent properties of the functions. The set

11

of weighting functions should be linearly independent to ensure the equations are linearly
independent. Additional constraints on the weighting functions are given in [2].
The residual is defined as the difference between the actual driving function and the

approximate driving function obtained from the approximate solution, given by
R=g-g=g-Y aL(f,). (2.28)

Since only a finite number of basis functions are used to approximate the driving function,
the residual in (2.28) cannot be set equal to zero everywhere on the structure. Instead, the
moment method reduces a weighted average of the residual to zero over the entire structure
using the weighting functions as defined in (2.27).

Applying the weighting functions, w_, to (2.28) gives N weighted residuals given
by

N

R, =(wa.8)= Y, & (W, L(£,))- (2.29)

n=|

Setting the weighted residuals equal to zero yields the set of N linear equations and N

unknowns given by

N
Y, @, (W, L(f,)) =(W,.8); m=1..,N. (2.30)

n=|

The matrix form of (2.30) is

U M,) =181, (2.31)

where the matrix is

12

(W L(£)) (W, L(fy) -
Ul = (W L(f)) (W L(fy)) .|, (2.32)

the driving vector is
(wi.8)

(8.]=|(w.8) |, (2.33)

and the unknown coefficient vector is

al
[@,]=|a, | (2.34)
The solution of (2.31),
(@,]= [T[] (2.35)

by direct or iterative methods gives the unknown coefficients, ¢, , which complete the
approximate solution of the unknown function in (2.25).

Choosing appropriate basis and weighting functions can greatly simplify the
integrals in (2.32) and (2.33) and thereby decrease computational requirements. To
simplify the evaluation of the coefficient matrix integral, subdomain basis functions may be
used. These basis functions exist only over a finite portion of the scattering surface and
include pulse functions, triangular functions, piecewise linear functions, or sinusoidal
functions [15]. Dirac delta functions often are chosen for the weighting functions. This
technique, called point matching or collocation, simplifies the inner product in (2.27) to an
evaluation of a at discrete points [15]. Therefore, the inner product in (2.32) reduces to

evaluation of L(f,) at discrete points on the surface, and (2.33) reduces to an evaluation of

13

the driving function g at discrete points on the surface. A further simplification of (2.33)
can be made by using delta functions for both the basis and weighting functions [27].

Application to Scattering Problem

The matrix coefficients for the moment method treatment of the scattering problem

are given by

(W, L(f,))
1 1 NP
! wm{g f. +-&;ﬁ(z—z), - =3,

lmn

1+ jkR (2.36)
-—-—:’-——e

R ds'}ds'

In the moment method implementation used in this study, Dirac delta functions are used as

both the basis functions and weighting functions:
fa=w, =6 -x,,y-y,). (2.37)

Substituting (2.37) into (2.36) yields

| = , (2.38)

where

Ry =5y =20 + 0 =¥V + (2, - 2,)". (2.39)
The driving vector is determined from
8o =(War—Hy)=~H|_, . (2.40)

Both (2.38) and (2.40) assume square surface patches as discussed below.

14

The surface of interest of the simulated ocean surface in Figure 1 is a rectangular
strip one wavelength wide by five wavelengths long. A two-dimensional representation of

this configuration is shown in Figure 2, as seen from above the surface.

IA

v

3

< A >

Figure 2. Sinusoidal Surface Region of Interest.

This region is then divided into a grid of square surface patches as shown in Figure 3 for a

grid of degree 2.

Figure 3. Moment Method Grid.

The delta basis (and weighting) functions are centered in each grid cell. The degree of
coarseness of the grid, D, allows the user to improve the approximation of the current
distribution on the surface and, therefore, the scattering from the surface. The value of N,
the number of surface patches and therefore the matrix equation dimension, is determined

according to

N=5D (241)

15

Note that when using point matching, the electromagnetic boundary conditions are satisfied
only at the center of each patch. The solution of the matrix equation gives the current
density from which the radar cross section of the surface is calculated. A complete listing

of the MM source code appears for reference in Appendix H.

16

CHAPTER 3
ITERATIVE METHODS
Introduction

This chapter discusses the theory of iterative methods used to solve large systems
of linear equations. As discussed in Chapter 2, the moment method implementation of the

MEFIE produces a general, non-Hermitian, complex matrix equation of the form
AX=b, (3.1)

where A isthe N XN coefficient matrix, ¥ is the N X1 unknown solution, and b is the

N x1 known source vector. In this discussion, square N X N matrices and N X1 column-
vectors are denoted by upper- and lower-case italicized letters, respectively, with
overscores. Scalar quantities are denoted by italicized letters without overscores. A" is
the transpose of A, and A" is the conjugate-transpose of A. Similarly, 77 isthe 1xXN

row-vector transpose of F , and 7 is the 1X N row-vector conjugate-transpose of 7 .
Algorithm Theory

Iterative methods for solving linear systems successively approximate the solution
of (3.1) until a desired precision is achieved. A useful measure of the accuracy of the

approximate solution is the residual vector, 7,, given by

7, =b - AX%,, (3.2

where X, represents the approximate solution vector after k iterations of the algorithm. As

the magnitude of the residual vector decreases, the approximate solution vector approaches

the true solution vector. The scalar ratio of the residual magnitude to the approximate

17

solution magnitude gives an optimistic approximation for the number of significant digits in

the solution vector and is given by [34]

{ri.re) (3.3)

Y=
(%)

where (X,¥) represents the inner product of two N x1 vectors defined by

«T=

(7)== X =xy+...+x,y,. (34

Instead of explicitly recalculating the residual in (3.2), most iterative methods
update the previous residual successively each iteration. The advantage of using this
technique is to eliminate one matrix access and the N? complex multiplications required per
iteration for the residual calculation. Unfortunately, since errors in the residual are passed
to the next iteration, propagated residuals only approximate the true residual in (3.2). Asa
result, both the stopping criterion in (3.3) and the number of significant digits in the
solution vector magnitude differ slightly from the actual values. The effect of the
propagated residual errors on convergence behavior is not included in this investigation.

Since many iterative algorithms for solving systems of linear equations exist,
several characteristics were used to identify candidates for evaluation. First, the iterative
method must be able to solve the general matrix equation in (3.1) with minimal real
execution time. Additionally, the iterative method must not require extensive storage space
for matrices and vectors and must limit the number of matrix accesses. When the iterative
algorithm is configured to regenerate matrix elements as needed, frequent matrix accesses
can decrease the overall efficiency of the technique. Finally, the iterative method must
demonstrate stable convergence for arbitrary MFIE problems. Included in this
investigation are the conjugate gradient, biconjugate gradient, conjugate gradient squared,

BICGSTAB, Gauss-Seidel, Jacobi, and successive overrelaxation iterative methods.

18

Notation
Iterative methods based upon the conjugate gradient method are specific forms of a
general method for solving (3.1) that uses a scaled search direction to form the next

approximation to the solution vector. The goal of this method is to minimize a quadratic

function

f(®)=(x,Ax)-2(%,b), 3.5

which is equivalent to solving the system in (3.1) for symmetric and positive definite
matrices [16] [19]. The next approximation to the solution vector is obtained by selecting a
search direction, multiplying by a scalar, and adding it to the old approximation. Applying

the scaled search direction to (3.5) gives [19]
f(x+0ap)=(%+0ap,A(T+0ap))-2(X+0p,b), (3.6)

where P is the search direction and « is the scalar weight of the direction vector. The

result in (3.6) reduces to the general form for a quadratic equation [19],
f&@+0p)=f(X)+2a(p,AX - b)+a*(p,Ap). G.7)

The solution for the scalar a that minimizes (3.7) is given by [16] [19]

(3.8)

By successively choosing search directions and applying (3.8), better approximations to

the solution are found. This idea forms the basis of a general iterative method in the form

X =X, + D, (3.9

19

where X, is the new approximation to the solution, X, is the current solution, p; is an
appropriately chosen search direction, and ¢; is the scalar weight for the direction vector
given by (3.8). The technique for choosing direction vectors is the distinguishing feature
among iterative methods using this general form. Most CG methods are numerically

unstable and unsuitable for ill-conditioned problems [22].
Conjugate Gradient

The conjugate gradient (CG) method is based upon the method of conjugate
directions (CD), which uses a set of N A -orthonormal vectors for the search directions.

A -orthonormal vectors, or conjugate vectors, satisfy
(p.,Ap;)=0 for (i # j) (3.10)
and
(p.Ap,)=1, (3.11)

for symmetric, positive definite matrices. The orthonormal set of search directions in CD
are found using the Gram-Schmidt technique [19]. No other restrictions are placed upon
the direction vectors. It can be shown [16] [19] that conjugate gradient iteration converges
to the exact solution (ignoring round-off errors) after N iterations.

Hestenes and Stiefel [16] presented CG as a special case of the CD method. The
set of generated direction vectors are mutually conjugate in CG just as in the CD method.
CG, however, places the additional restriction that the set of generated residual vectors are

mutually orthogonal as given by

(F.F)=0,i%j. (3.12)

20

Although CG was first considered to be a direct method similar to Gaussian elimination and
LU decomposition, today it is considered to be an iterative process that is guaranteed to

converge in a finite number of steps [19].

Conjugate Gradient Method [16]

ﬁi»l = X.Fn’ﬂ +ﬂiﬁi
end loop

The CG method of interest is the version for general nonsingular matrices [16,
equation 10:2]. In this case, the system of (3.1) is replaced with the equivalent system of

the form
A'Ax=A"b, (3.13)

where A”A is symmetric and positive definite. Although the matrix-matrix product A A is
not explicitly performed in the algorithm, the conversion to (3.13) introduces one additional
matrix-vector product per iteration not required in the symmetric, positive definite case.
The adaptation to the complex case is made by replacing the matrix transpose with the
conjugate transpose.

New residual vectors are calculated as the difference between the old residual and a

scalar multiple of Ap,. This calculation produces a propagated residual that is subject to

round-off errors. New direction vectors are found by adding the residual vector to a scalar

21

multiple of the previous direction vector. For the generalized algorithm, the direction
vectors are formed by adding A'F, to a scalar multiple of the previous direction vector. In

either case, it can be proved [16] that the direction vector p, represents the gradient of the

quadratic function (3.5) at X;. Therefore, the new solution vector is modified in the
direction of the gradient of the quadratic function. This feature gives the conjugate gradient

technique its name.

Bicon Gradi

Fletcher [6] introduced the method of biconjugate gradients (BCG), based upon

Lanzcos' algorithm for determining the eigenvalues of a nonsymmetric matrix [21].

Biconjugate Gradient Method [6] [35]

po=(FuuF)
B.=./p.)
P, =T, ﬂpq

xi = »'-I +aipl
if X, accurate enough, quit
F=F_,—a Vv,

A generalization of the symmetric CG algorithm, BCG was developed to solve symmetric
indefinite systems. For these systems, the symmetric CG method might break down due to

22

division by zero in the calculations of ¢; and ;. Van Der Vorst [35] included an algorithm
for BCG that is investigated here. BCG algorithm is equivalent to the symmetric CG
method except that inner products of the form (@b are replaced with (@, Ab) [6).

Like the CG method, BCG moves the solution a scalar distance along the direction
vector. The difference between the symmetric CG and BCG lies in the method of

determining these distances and directions. Whereas CG uses inner products involving

two vectors 7; and p; to find the new parameters, BCG uses four including a residual 7, ,
pseudo-residual 7, direction B, and pseudo-direction p; .

The residual vectors are the difference between the previous residual and a scalar
multiple of Ap,. Similarly, the pseudo-residual vectors are the difference between the
previous pseudo-residual vector and a scalar multiple of A '1:')-,.. Since this calculation
involves the coefficient matrix transpose, the performance of BCG may suffer due to
inefficient matrix element access. The direction and pseudo-directions are calculated from
the residuals and pseudo-residuals, respectively.

BCG gets its name from both the biorthogonality and biconjugacy conditions that
exist between the pairs of vectors in the algorithm [6]. The residual vectors are

biorthogonal, satisfying
(mi) =(Fous7) =0, (3.14)
and the direction vectors are biconjugate, satisfying
(Pess» AP) = (Prv» AP:) =0. (3.15)

In (3.14), each new residual vector is orthogonal to the set of previous pseudo-residual
vectors, and each new pseudo-residual vector is orthogonal to the set of previous residual
vectors [35]). Similarly in (3.15), each new pseudo-direction vector is A -orthogonal or

conjugate to the set of previous direction vectors, and each new direction vector is

23

conjugate to the set of previous pseudo-direction vectors. Although both of the residuals

converge to zero in a finite number of steps, only the residual modifies the solution [35].
Conj Gradient S]

In 1989 Sonneveld [33] published the conjugate gradient squared (CGS) method, a

variation of the CG algorithm.

Conjugate Gradients Squared Method [33]

F,=b - A%,; F, is chosen
4 =p,=0p,=1
while residual > tolerance loop
p.=(%.7.): B.=p,1p.,
u,=7,+pag,
P.=u,+B,(3,+B,p..)

f'ul = f- + au (Fn + End)
n=n+l1
end loop

A close relative of the BCG method, the CGS method uses a squared polynomial
relationship to avoid the explicit computation of the pseudo-residuals using the transposed
coefficient matrix [35] [33]. The development of the squared polynomial relationship is
beyond the scope of this paper.

The squared polynomial relationship not only simplifies the computational
requirements of CGS and does not require access to the transposed matrix, but in some
cases speeds the convergence of the residual to zero over the BCG method [33]. Like
BCG and CG, CGS is a finite iterative method in the absence of round-off errors [33]. In

24

spite of Sonneveld's claim that CGS theoretically requires half of the computational effort
as BCG, Van Der Vorst [35] claims that BCG might outperform CGS in certain cases.
Additionally, Van Der Vorst [35] notes situations where CGS exhibits nonuniform
convergence behavior that could produce erroneous results. When started near the
solution, the propagated residual in CGS may not approximate the true residual as given by
(3.2), thereby causing premature convergence [35]. When the true residual (3.2) was
calculated in place of the propagated residual, some of Van Der Vorst's experiments
showed that CGS did not converge or required many additional iterations to produce a
sufficiently accurate solution [35]. The exact reason for the erratic convergence behavior of

CGS is currently a topic of research [35].

BICGSTAB

Van Der Vorst's BICGSTAB [35] method promises to be more stable than CGS.

BICGSTAB Method [31]

X, is initial guess

AO
o, =1
, =0
23
T,

.'f_. X, + ap, +ws
if X, is accurate enough then quit
F=F-wf
end

25

This relative of the BCG method retains rapid convergence while overcoming some of the
convergence instabilities found in CGS when initializing the algorithm near the actual
solution. To accomplish this improvement, BICGSTAB improves the efficiency and
stability of the residual vector calculation in the CGS algorithm using a stable recurrence
relationship. BICGSTAB shares with CG, BCG, and CGS the property of convergence in
a finite number of iterations in the absence of round-off errors. Van Der Vorst also
presents evidence that BICGSTAB outperforms CGS and BCG in some cases in

convergence stability and efficiency [35].
Jacobi and Gauss-Seidel

The Jacobi and Gauss-Seidel methods [7] [19] are examples of simple iterative
solution techniques. In each Jacobi iteration, the jth equation is solved for the jth
unknown using the other N —1 components of the previous solution vector. At the end of
the iteration, the solution vector is updated with new approximate values. The Jacobi

method is guaranteed to converge for diagonally dominant systems.

Jacobi Method [19]

X, is initial guess
fori=123...
7,=u,=b-A%,

u, =17, - diag(A)%,,,
w()=u(j)/ A, j) forj=1,....n
X, =10,
if X, is accurate enough, quit
end loop

The Gauss-Seidel method [7] [19] is a slight modification of the Jacobi method.
Gauss-Seidel uses the individual updated solution terms immediately, while the Jacobi
method updates all terms before using the updated solution vector. While this is less

26

efficient computationally than the Gauss-Seidel method, the Jacobi method is more easily
adapted to parallel or vector computer architectures [19]. In these environments, many of
the linear equations can be solved simultaneously on different processors. Unfortunately,
since Gauss-Seidel relies on recent information, it must be performed in a serial fashion
and cannot be adapted to parallel or vector processors [19]. Like the Jacobi method,
Gauss-Seidel is guaranteed to be stable only for diagonally dominant systems.

Gauss - Seidel Method [19]

X, is initial guess
fori=1,2,3...
7,=b-A%,,

%, =b - (A%, - diag(A)%,,)
x.(j)=x,())/ A(j,j) forj=1,...,n
if X, is accurate enough, quit

end loop

SSiv 1

The successive overrelaxation method (SOR) [41] [19] is closely related to the GS

method, using an additional parameter called the relaxation factor.

Successive Overrelaxation Method {41] [19]

X, is initial guess
fori=1,2,3...
F,=b-A%X,,
femp, = b - (A%, - diag(A)%.,)
x,(j) = o(temp,(j)/ A(j,)+ (1= @)x,,(j) forj=1,....n
if X, is accurate enough, quit
end loop

27

The range of this factor is from 0 to 2, with a factor of 1 reducing SOR to Gauss-Seidel.
Relaxation factors less than 1 undercorrect the solution and relaxation factors greater than 1
overcorrect the solution. Choosing an optimal relaxation factor can dramatically speed
convergence of the SOR method over either the Jacobi or the GS methods [41].
Unfortunately, finding the proper relaxation factor can be a difficult task. Since it uses
updated values for the solution vector, SOR cannot be implemented efficiently on a parallel

or vector processors [19].

CHAPTER 4
COMPUTER IMPLEMENTATION
Introduction

This chapter discusses the implementation of the iterative algorithms using the
FORTRAN programming language. Three independent computer systems were used to
code the algorithms. The primary system used for code development was an IBM RS/6000
320H workstation with a AIX 3.2 FORTRAN compiler. The RS/6000 uses a reduced
instruction set computer (RISC) microprocessor to achieve higher floating-point operation
performance levels than possible with complex instruction set computer (CISC)
processors. A DEC 5000-240 RISC workstation and an IBM 3090-200S vector
processing mainframe computer were used to assure code portability and to allow testing
on different architectures. Several features are common in the implementation of each of
the iterative methods.

The implemented algorithms share the following common programming structure.

subroutine(arguments)
variable declarations;

initialize variables;

do iteration while precision is low
refine solution;
find new precision;

end do loop

return solution;
end

Not only does this structure facilitate the implementation of each algorithm, it ensures that

algorithms are compared according to their iterative refinement characteristics and not

29

according to structural biases. The main features of the structure include the variable
declaration and initialization, the iterative loop, and the return of the solution.
Each iterative method requires an initial guess for the solution vector. To find this

guess, the physical optics approximation [2] for the surface current,
Ji° =24 xH, (4.1)

was considered. Unfortunately, given a guess near the final solution, iterative methods
behave differently, with some converging more rapidly and others becoming unstable.
Specifically, Van Der Vorst notes that CGS can suffer from instability in certain cases
where the initial solution guess is near the final solution [35]. Given this problem, a guess
of zero provides a more equitable way of testing the algorithms.

The stopping criterion for the iterative algorithms involves the ratio between the
magnitude of the residual vector and the magnitude of the solution vector given in (3.3)
[34]. If the magnitude of the residual is less than 0.1% of the magnitude of the solution
vector, the iterative algorithm is stopped. This technique and criterion allows the surface
currents to be determined to within three significant figures, which is adequate for radar
cross-section calculations. The use of this stopping criterion introduces small variations in
the accuracy of the final solutions, depending upon the behavior with which the algorithms
converge. For instance, if an algorithm converges very quickly, its final ratio might fall far
below the threshold. A slowly converging algorithm, however, stops with a ratio just
under the threshold, and the relative error in the solution may greatly exceed the relative
convergence tolerance. Even though the stopping thresholds of the two algorithms are
identical, the first algorithm will produce more accurate results. The effects of nonuniform
convergence are not considered in the analysis of algorithm performance.

FORTRAN stores two dimensional arrays in column-major format. In this format,
all the matrix elements of the first column are stored sequentially in memory, followed by

the elements in the next columns. Unfortunately, multiplying a matrix by a column vector

30

on the right requires the algorithm to step through the matrix rows, resulting in inefficient
access when matrix elements have to be retrieved from the disk. To prevent this problem,

the matrix transpose was stored for all of the algorithms.
Algorithm Implementation

Presented below are the FORTRAN implementations of the iterative algorithms,
taken directly from the theoretical algorithms given in Chapter 3 unless noted. The
algorithms use the matrix transpose to take advantage of FORTRAN's column major
storage format. However, in BCG and CG both the matrix and its transpose must be
accessed, so there is no benefit in storing the transpose. Double precision variables are

used for all variables to minimize round-off errors.

Coni Gradi

Many implied modifications were implemented in the CG algorithm.

Implemented Conjugate Gradient

=0
F=b-AX
p=A4F; ms=(p,p)
loop while gam > eps
ap=Ap
den=(ap’,ap)
alpha=ms [den
X=X+ (alpha)p
r =7 - (alpha)ap
oldms = ms
dcr=AF
ms=(actr’ actr)
beta = ms [oldms
p=dctr+(beta)p
mr= 1’(?‘,?):»0: = W’(i".‘i)
gam=pmr [mx

end loop

31

Specifically, the original algorithm contains five references to the coefficient matrix per
iteration, although careful inspection reveals that only two of these are unique, the
calculation of Ap and A'F. In the implemented algorithm, matrix-vector products are
saved temporarily in vectors resulting in far fewer complex multiplications. For instance,
the vector @p was used to store the matrix-vector product Ap, and the @ctr vector stores
the product A°F. In addition, only the transposed coefficient matrix is stored so that the
matrix rows can be accessed sequentially from memory for the Ap calculation. Therefore,
the A'F calculations suffer due to inefficient access of the column elements in page

swapping configurations. The FORTRAN code appears in Appendix C.

Biconjugate Gradient

The implemented biconjugate gradient algorithm closely follows the Van Der Vorst
[35] theoretical algorithm discussed in Chapter 3.

Implemented Biconjugate Gradient Method

loop while gam < eps
oldrho =rho
rho =(Fq.F)
beta=rho [oldrho
P =F+(beta)p
Pq=TFq+(beta)pq
(Ru)= AP
sigma = (pq,7iu)
alpha=rho [sigma
X =Xx+(alpha)p
F =F -(alpha)nu
7q=7q-(alpha)A"pq
mr= .\I 7 F)mx = (%,%)
gam=mr[mx
end loop

32

Note that in this algorithm, a complex variable sigma has been introduced as a temporary
holder for the inner product (f) '\7). BCG accesses the matrix once and the matrix
transpose once in each iteration. Since one type of matrix access is not favored over the
other and only one matrix is stored, the overall efficiency of the implemented algorithm
suffers for page swapping configurations. The FORTRAN code is given in Appendix A.

The conjugate gradient squared method was implemented using the Sonneveld
theoretical algorithm discussed in Chapter 3. Very few changes were made in this

implementation.

Implemented Conjugate Gradient Squared Method

- A%
0
loop while gam > eps
oldrho =rho
rho = (F0',F)
beta=rho [oldrho
7 =7+ (beta)q
P = +(beta)(g + (beta)p)
V=Ap
sigma =(F0",7)
alpha =rho | sigma
q =u - (alpha)v
upg=u+q
F =F - (alpha)A (iipq)

X = X+ (alpha)(upq)
mr = (F F);mx = (¥, %)
gam=mr [mx
end loop

First, the vector i#pq is introduced to represent the summation of the vectors # and q.

Although relatively insignificant, this vector saves one repetition of this addition, as shown

33

above. Second, the FO in the inner products for the calculation of rho and sigma are

changed to the conjugate form. The FORTRAN code appears in Appendix D.

BI T

The most important change made to the BICGSTAB algorithm implementation was
the use of conjugate multiplications in the inner products to allow the method to be applied

to complex systems of equations. The FORTRAN code is given in Appendix B.

Implemented BICGSTAB Method

x=0
F=F0=b-AX
rho = alpha = omega =1
S=f=p=nu=0
loop while gam > eps
oldrho = rho
rho= (rO'.r)
beta = (rho)(alpha) [(oldrho)(omega)
p =T +beta(p —(omega)nu)
nu= Zb'
alpha=rho [(FO",iu)
§=7—(alpha)nu
=A5
num = (?,E);den = (l",t')
omega = num/ den
X =X +(alpha)p + (omega)s
F =5~ (omega)l
mr= (?',F);mx= (f‘.i)
gam=mr[mx
end loop

Jacobi and Gauss-Seidel

Implementation of the Jacobi method and the Gauss-Seidel methods are based
entirely upon the algorithms discussed in Chapter 3 with one notable exception.

Instead of using a separate matrix access to find the residual as defined by (3.2), the

residual is determined in the same step as the solution vector update. Although this saves
considerable computation in the residual calculation, the generated residuals do not reflect
all improvements made to the solution in the current iteration, and therefore are somewhat

larger than the final residuals calculated after the iteration is completed.

Implemented Jacobi Method Implemented Gauss- Seidel Method

x=0 =0
loop while gam > eps loop while gam > eps
F=b-AX F=b-A%
7 =b (A% - diag(A)%) % =b—(AX - diag(A)X)
u()=u(j)/ AG,Jj) forj=1,...,n x(H)=x()/A(.j) forj=1,...n

X=u

mr=\/(i"',7);m=\/(i",i) mr = 'r",F);mx=,KE',E)

gam=mr [mx gam=mr [mx
end loop end loop

In the Jacobi method, the updates to the solution vector are made at the end of the
iteration. Therefore, since the residual is calculated at the beginning of the iteration, it

represents the actual residual after the previous iteration.

Jacobi Residual Calculation

doi=1,n
rsum=sum=10
doj=1,n

rsum = rsum+ a(j,i)x(j)

end do
sum = rsum— a(i,i)x(i)
u(i) = (b(i)- sum)/ a(i,i)
r(i)=b(i)—rsum

end do

doi=1,n
x(@)=u(i)

end do

35

The net effect of this process is to increase by one the number of iterations required for
convergence to a desired precision. This additional work is insignificant compared with
recalculating the residual separately, which requires both an additional matrix access and
matrix-vector product per iteration. The pseudo-code representation shows the residual
calculation using the coefficient matrix transpose.

Unlike in the Jacobi method, the Gauss-Seidel updates to the solution vector are
made continually during the iteration. Therefore, as the residual elements are calculated,
better and better values of the solution are used in the calculation. The net effect of this
process is that the last elements of the residual vector are calculated from more updated
solutions. This can lead to an additional iteration being required. As with the Jacobi
method, these extra iterations do not significantly affect the execution time when compared
to the cost of another matrix access for every iteration. A pseudo-code representation of

this technique is shown below for the transpose coefficient matrix case.

Gauss - Seidel Residual Calculation

doi=Ln
rsum= sum=0
doj=1n

rsum=rsum+ a(j,i)x(j)

end do
sum=rsum—a(i,i)x(i)
x(i) = (b(i)- sum)/ a(i,i)
r(i) =b(i)— rsum

end do

The source code listings for both the Gauss-Seidel and Jacobi methods are found in

Appendices E and F, respectively.
s ive O laxati

Since the successive overrelaxation method (SOR) is a generalized version of the

Gauss-Seidel method, the same arguments given above apply to it as well. The

36

implementation is shown below. The only change to the GS algorithm is the relaxation

factor. The FORTRAN source code for SOR can be found in Appendix G.

Implemented Successive Overrelaxation Method

x=0
loop while gam > eps
F=b-Ax
temp =b —(AX - diag(A)¥)
x(j) = w(temp(j)/ A(j, /) + (1 - w)x(j) forj=1,...,n

mr= \’(F',?);mx = 1/(36'.?)
gam=mr [mx
end loop

Storage and Computational Requirements

Table I summarizes the storage requirements of the algorithms as given in the
literature and tabulated in the actual implementation for nonsparse systems. In some cases,
vectors were added to the implementation to save redundant multiplications. Note that for

this table, N represents the matrix dimension. Only double precision complex variables

are indicated.
Table I. Algorithm Storage Requirements.
Algorithm Minimum Algorithm Storage Actual Storage
(nonsparse systems) (nonsparse systems)

Biconjugate Gradient N2+7N+4 N2+7N+6
BICGSTAB N2+8N+5 N2+8N+8
Conjugate Gradient N2+4N+2 N2+6N+3
Conjugate Gradient Squared N2+8N+5 N2+9N+7
Gauss-Seidel N2+3N N2+3N+3
Jacobi N2+4N N2+4N+3
Successive Overrelaxation N2+3N N2+3N+3

37

Note that in every implementation double precision variables are used to minimize the
effects of round-off errors in the solution and residual vectors. Real and complex variables
use eight and sixteen bytes of storage, respectively.

To avoid redundant multiplications, some matrix-vector products are stored in
temporary vectors for use later in the execution of the algorithm. Table II shows the
computational requirements per iteration of the actual implementations of the algorithms.

Only complex multiplications are indicated in this table.

Table II. Algorithm Computational Requirements per Iteration.

Algonithm Name Actual Multaplications
Biconjugate Gradient 2N2+9N+2
BICGSTAB 2N2+12N+5
Conjugate Gradient 2N2+7N+2
Conjugate Gradient Squared 2N2+10N+2
Gauss-Seidel N2+3N+1
Jacobi N2+3N+1
Successive Overrelaxation N2+3N+1

38

CHAPTER 5
EXPERIMENTAL RESULTS
Introduction

The MFIE rough-surface-scattering code discussed in Chapter 2 serves as the basis
for three experiments designed to investigate the performance and convergence properties
of the iterative algorithms. The tests consider the effects of matrix element storage (MES),
matrix element recalculation (MER), parameter changes (angle of incidence and coarseness
of the grid used in the moment method representation of the surface), and machine
dependence on the execution times, number of iterations, and percentage CPU utilization.

Table III below summarizes the experiments performed.

Table ITI. Summary of Experiments.

Algorithm MES MER Angle Grid Ratio DEC 5000 IBM 3090
BCG X X X X X X
BICGSTAB X X X X X X
CG X X X X X X
CGS X X X X X X
GS X X X X X X
Jacobi X X X X X X
SOR X X

The first test measured how matrix storage configurations affect the execution times
for the iterative methods. In the "matrix element storage" (MES) configuration, the
computer physically stores the matrix elements in random access memory. For very large
matrices, the physical RAM capacity of the computer is exceeded, and the computer uses
page swapping to store the matrix elements. In the "matrix element recalculation” (MER)
configuration, the matrix elements are recalculated as they are needed by the algorithm.
Although this method is very inefficient computationally, very little physical memory is
required and the need for page swapping is eliminated.

39

Another experiment investigated the effects of changing the user parameters for the
moment method code. These parameters include the wavelength, the angle of incidence,
and the sinusoidal surface height. The goal of this experiment was to determine which
algorithms perform the best under varying conditions.

Although less influential on the convergence properties than matrix storage
techniques and parameter changes, the choice of computer system can affect the efficiency
of an algorithm. Scalar machines offer high speed execution in a sequential manner. On
the other hand, vector-processing machines are able to perform matrix and vector
operations more efficiently than scalar machines by taking advantage of simultaneous
operations. Iterative techniques that require sequential vector updates are less able to
efficiently use this feature.

To obtain results from both scalar and vector computer architectures, three
computer systems were used for the testing. The scalar IBM RS/6000 320H workstations
served as the primary testing facilities. Each workstation features 32 megabytes (MB) of
random access memory (RAM) and 100 MB of disk space reserved for paging. A second
UNIX workstation, the DEC 5000-240, served as a secondary scalar system for testing.
Although the DEC has 128 MB of RAM and 300 MB of paging space, the F77 2.1
FORTRAN compiler does not allow programs to use these memories to full capacity.
Finally, a few experiments were executed using the TSO operating system on the IBM
3090-200S vector computer with 128 MB of RAM and 128 MB of expanded memory.
Unfortunately, programs are limited to 16 MB of disk and memory usage, so only small

matrices were tested.
Objective Testing Techniques

An automated program was developed to obtain CPU execution times and real

execution times. Reliability was obtained through redundant testing and averaging of the

experimental results. The FORTRAN source code for the experiments is located in
Appendix H for reference.

The CPU execution time describes the amount of time, in seconds, that the
computer devoted to execution of the algorithm. Although it does not include any time that
the computer waited for paging data to and from the disk, it does include execution of the
additional overhead involved in paging. The CPU times were found using system calls for
the two UNIX machines and using the job control language (JCL) output on the IBM
3090. Unlike the CPU times, the real execution time represents the amount of actual time
spent executing a program and includes any time the computer waits for peripheral devices.
The real execution times were found by polling the system clock. Appendix I contains

source code for the polling routines.
Results

Figures 4 through 14 represent the experimental results of the investigation. Unless
noted otherwise, the incident wavelength was 1.0 m, the angle of incidence was 0.0
degrees (perpendicular to the surface), and the sinusoidal surface amplitude was 0.1 m. in
all tests. Additionally, all tests were implemented on the IBM RS/6000 unless otherwise
noted.

Convergence Behavior

In an effort to correct programming errors and identify unsuitable algorithms before
extensive testing, the convergence behaviors of the representative iterative methods were
investigated, and the results are plotted in Figure 4. This graph shows the ratio of the
magnitudes of the residual to the approximate solution after each iteration for matrices of
dimension 720. Represented by (3.3), this value describes the number of significant digits

in the approximate solution.

41

Convergence Analysis

1 F v T g T v T v T
——BICGSTAB
—&8-BCG
0.1 b
Y001 |
0.001 tF
10'4 N i . 1 . 1 .]
0 2 4 6 8 10

Iteration Number

Figure 4. Convergence Behavior for N=720.

All six algorithms uniformly converged to a relative convergence ¥y =107, with
BICGSTAB requiring only three iterations and Jacobi needing ten.

Note that the number of iterations required for convergence does not necessarily
predict the amount of required execution time. For instance, the CGS and BICGSTAB
algorithms required about half of the number of iterations as Gauss-Seidel, but experiments
show that Gauss-Seidel required less execution time. Each CGS and BICGSTAB iteration
required two matrix references and therefore are computationally equivalent to about two

Gauss-Seidel iterations.

42

Matrix Element Storage
The results of the MES configuration, where all matrix coefficients are stored in

memory or disk through paging, are plotted in Figures 5,6, and 7 and compared with the

"exact” LU Decomposition solution.

CPU Execution Times

150 ——— Y

120 | .
s N7 T
o —a&—Jacobi
E —e—LU Decomposition

60 .

30 4

0 ——

0 300 600 900 1200 1500 1800
Matrix Dimension

Figure 5. Matrix Element Storage CPU Execution Times.

As seen in Figure 5 , all the algorithms were able to solve a matrix equation of dimension
1620 in less than 130 CPU seconds. For this matrix dimension, the Gauss-Seidel and
BICGSTAB methods required less than 50 seconds of execution time. Next were the CGS
and Jacobi algorithms, needing 64 and 77 CPU seconds to converge, respectively. Since |
they require twice the number of iterations as CGS and BICGSTAB, the BCG and
Conjugate Gradient methods needed almost two minutes to converge. The CPU time for

LU decomposition is about 23 times longer than the worst iterative method and over 72

43

times longer than the best. Of course, the solutions given by LU decomposition are much
more accurate than those given by the iterative methods.

The most notable feature of Figure 5, however, is the dramatic increase in execution
time for matrix equations with 1125 or more unknowns. As the matrix equation increased
beyond this dimension, the entire matrix could not be stored in the computer's random
access memory and page swapping occurred. The excessive computational overhead

needed to keep track of page swapping shows up in the figure as increased execution times.

Real Execution Times

3000 — T —r 1 T LI T T T
—eo—BICGSTAB
—8—-BCG
—e—CG
—-CGS
2000 F —4—GS
—a—Jacobi
| —e—LU Decomposition

Time (s)

1000

0 300 600 900 1200 1500 1800
Matrix Dimension

Figure 6. Matrix Element Storage Real Execution Times.

Figure 6 shows that real execution times were much greater than the CPU times for
large matrix sizes. As before, the Gauss-Seidel, CGS, BICGSTAB, and Jacobi algorithms
required the least execution time. These four methods were able to solve the largest matrix
equation in less than twenty-five minutes. The other algorithms performed as expected
based on Figure 5. LU Decomposition required nearly one hour of real execution time,

about 3.3 times the Gauss-Seidel execution time and 1.8 times the conjugate gradient
execution time. Obviously for large matrices, page swapping greatly reduced the efficiency
of solution. The marked increase in the execution times for matrices of dimension 1125 or
more can be attributed to exceeding the 32 MB of RAM in the RS/6000 320H machines.
For smaller matrices, the differences between the CPU times and real times are
insignificant.

The effects of page swapping on execution times can be seen in Figure 7. This
diagram shows the percentage CPU utilization, which is the percentage of time the CPU

spends executing the program's instructions.

Percentage CPU Utilization

100 W
80 - -
gt
s
]
3_'_".: 60 - -
?0 —e—BICGSTAB
S ~8-BCG
: -
8 40 —eCG
& —%—0GS
——GS
20 | —a—~Jacobi -
~—LU Decomposition
0 i A i < " i L i 1 " i
600 900 1200 1500 1800

Matrix Dimension

Figure 7. Matrix Element Storage Percentage CPU Ultilization.

By taking a ratio of CPU execution time to real execution time for the algorithms, the
percentage utilization was found. All the iterative techniques showed the steep decrease in

percentage CPU utilization that would be expected from page swapping. CPU utilization

45

approached only a few percent as the computer had to wait for data to be retrieved from
disk. Interestingly, LU Decomposition did not suffer as severe a drop in CPU utilization
as the iterative methods. This discrepancy is attributed to the difference in matrix access in
direct solution methods. Since LU Decomposition modifies the matrix elements in the
solution process, a direct comparison of its utilization to that of iterative methods cannot be

made.
Matrix El Recalculati

The MER configuration, where the matrix coefficients are recalculated when they
are needed by the iterative algorithm and not stored, demonstrates that computationally

inefficient techniques that avoid page swapping may outperform MES for large matrices.

CPU Execution Times
800 v v T 1 T v T T v T T T T
—e—BICGSTAB
—a—-BCG
——CG
600 - —»~CGS .

—tp=GGS
~—a—Jacobi

Time (s)

Matrix Dimension

Figure 8. Matrix Element Recalculation CPU Execution Times.

Figures 8,9, and 10 show the results of these experiments. As seen in Figure 8, the CPU
execution times of MER were much greater than the respective MES CPU times. Whereas
all the MES algorithms solved the largest matrix equation in under two and one-half CPU
minutes, the quickest MER algorithm needed almost twice that time. As before, Gauss-
Seidel completed execution first, followed by BICGSTAB, CGS, and Jacobi. The other
algorithms were slower with the BCG and Conjugate Gradient methods taking between
nine and eleven minutes to complete. Each of these algorithms required more iterations and
therefore more matrix elements to be recalculated than the other iterative schemes.

Even though the MER algorithms required much more CPU execution time, great

savings are achieved in real execution times for large matrices.

Real Execution Times

800 M T M M 1 T T T
—e—BICGSTAB
—a~-BCG
——CG

600 |- —3—OGS =
—+—GS

[——a—Jacobi

Time (s)
3

200

0 300 600 900 1200 1500 1800
Matrix Dimension

Figure 9. Matrix Element Recalculation Real Execution Times.

In Figure 9, the real execution times for all iterative techniques were much less than the

corresponding MES real execution times. The MES configurations required more than

47

three times the amount of real execution time to reach completion. Figure 9 also shows that
the real execution times for the MER algorithms differed only slightly from the MER CPU
execution times. Since the real and CPU execution times are very close, the percentage
CPU utilization for the algorithms approach 100 percent, as seen in Figure 10. Figures 8

through 10 show the improvement that can be gained by not storing the matrix elements in

RAM.
Percentage CPU Utilization

100 i e ———)

80 -
=
2
S
g 60 4
% | —e—BICGSTAB
g —8-BCG
= 40 - -
& ——CG

——CGS
20 -
—#—Jacobi
0 N i 1 " " | " " 1 " 2
600 900 1200 1500 1800
Matrix Dimension
Figure 10. Matrix Element Recalculation Percentage CPU Utilization.
Electromagnetic Parameter Changes

The experimental results given above for the matrix element storage configurations
are meaningless unless the algorithms perform well under different circumstances. Since it
is possible that the electromagnetic parameters tested for the MES and MER configurations

might be special cases, the effect of these changes was investigated next. The two primary

48

parameters that the user can specify are the angle of incidence and the height of the
sinusoidal surface.

Due to limitations in the MFIE representation of the scattering process, the accuracy
of the solution to the scattering matrix equation decreases as the incident angle approaches
grazing. Itis in these areas where edge effects are more prominent, and therefore the
system is more difficult to model. As seen in Table IV, the angle of incidence does not
significantly affect the number of iterations the algorithms required to converge. In the

table, bold numerals indicate a transition in the number of required iterations.

Table IV. Effect of Illumination Angle on Number of Iterations for N=320.

GS Jacobi
10

®
o
O
o

Incident Angle BICGSTAB B C

0-9
10
11-12
13
14
15
16
17-18
19
20-21
22-29
30-33
34
35-40
41-42
43-47
48-58
59-60
61-68
69-74
75-81
82-88
89-90

W W WARLRRLPMLEEWWWWWWWWE B L LD &L
ANOANA OGN GNADAUNSA Q1000000 90 a3
NN NNNNNNNNNO N~ N00 0000 00 00 00600~
wuhbb&hhawwwuuhbhunmahhba
[« W= W= W W W W - NV RV WY NNV RNV R RV NNV W NV N e

OSSOV 1020000 ®O0 00

Most iterative algorithms require fewer iterations to solve the matrix equations when the

incident angle is between 30 and 33 degrees. When the incident angle is zero as in the

49

other experiments, the Jacobi method requires more iterations (10) than at any other angle.
This indicates that in general Jacobi might perform better than these tests show.

The ratio of the sinusoidal surface amplitude to the incident wavelength also affects
the convergence behavior of the iterative methods. As this ratio increases, the degree of
roughness increases and the moment method grid is less able to accurately model the
surface radiation, yielding a MM interaction matrix that is less well-conditioned. This
hypothesis is confirmed from the experimental results shown in Figure 11, which shows

the effect of change in this ratio on the number of iterations required for convergence.

Iterations Required for Convergence
50 T T T T T T T T

—&—BICGSTAB
—&8—BCG

Figure 11. Effect of MM Grid Ratio on Convergence for N=320.

As the ratio approached the upper limit of the range tested, both the Gauss-Seidel method
and the Jacobi method did not converge. Conversely, variants of CG converged under all

surface amplitude to incident wavelength ratios.

Algorithm Parameter Changes

Missing from the experimental discussion to this point is the successive
overrelaxation (SOR) method. A relative of the Gauss-Seidel method, SOR is the only
iterative method that includes a relaxation parameter for refining the convergence. The
relaxation factor, which can vary from 0 to 2, significantly affects the convergence of the
SOR in certain circumstances. If a value of one is used, the SOR algorithm reduces to the
Gauss-Seidel method [41]. To determine the optimal relaxation factor, it was varied
between 0.1 and 1.6 for four different surface amplitude ratios. The results are shown in

Figure 12.

Iterations Required for Convergence

100 T T T T T T T T T T T T M T T
—e—Ratio = 0.0 JJ

80 - —8—Ratio = 0.1
—e&—Ratio = 0.2
~—¢—Ratio = 0.3

60

40 |

20

0
0

Relaxation Factor

Figure 12. Effect of Relaxation Factor on SOR Convergence for N=320.

From the figure, the optimal relaxation factor for realistic sinusoidal surface heights was
determined to be 1. Only for surface height ratios of 0.4 and above did the relaxation factor

deviate significantly from unity. Since ratios higher than 0.3 are unlikely to produce

51

accurate results in the moment method analysis due to MM grid limitations, the SOR can be
assumed to converge no differently than Gauss-Seidel for practical scattering problems. It

is for this reason that SOR was excluded from the experimental discussions until now.
Machine Dependence

The next experiments confirmed that the results shown above are valid across
different computer architectures. Although primarily a function of the performance of the
hardware, execution performance on different computers is important to assure validity of

the experimental data. Figure 13 shows the CPU execution times for the iterative

algorithms for the DEC 5000 for matrix dimensions ranging from 80 to 320.

CPU Execution Times
3 T T 1 v T T
—e—BICGSTAB
—8-BCG i
25 —CG
F —3—0GS 1
2+ -GS -
- ~—#—Jacobi
E 1.5 F .
[=
1F -
05 + .
L J
0 . i n | L 1 A
0 100 200 300 400

Matrix Dimension

Figure 13. MES CPU Execution Times, DEC-5000.

The times include the matrix fill times. Since the DEC-5000 is a scalar RISC machine
similar to the RS/6000, no significant difference was expected in the relative performance

52

of the iterative methods. These results confirm this hypothesis. For a matrix dimension of
320, CGS required an additional iteration, so its execution performance decreased slightly.
The CPU execution times for the iterative methods using the IBM 3090 vector-

processing computer are shown in Figure 14.

CPU Execution Times
2 T T T v =T
—o—BICGSTAB
—a-BCG
——CG
L5 I -GS 7
—+—GS
= —a&—Jacobi
2t]
&
]
05 .
r 1
O " 1 N i N 1 i
0 100 200 300 400

Matrix Dimension

Figure 14. MES CPU Execution Times, IBM 3090.

For this computer system, a slight change in the relative performance levels of the methods
is noted. The performance of the Jacobi method slightly exceeds that of the CGS method.
Since the IBM 3090 possesses vector-processing capabilities, it can take advantage of

parallelism inherent in the Jacobi method and thereby improve its performance level.
Efficiency Study

This section explains the preceding experimental results in terms of the iterative

algorithm theory. These experiments demonstrate the relative efficiency of the solution

53

methods but do not clearly show which algorithms require less computational work per
significant digit of accuracy in the solution vector magnitude. To form this comparison, it
is necessary to determine the total number of multiplications required for convergence and
divide by the number of significant digits. Table V compares the iterative methods based
on this technique using the number of iterations required for convergence for each

algorithm as shown in the Figure 4.

Table V. Multiplications Required for Convergence for N=720.

Algorithm Outside Loop Inside Loop Iterations Total Per Digit (x10°)

GS 0 521281 6 3127686 1.043
BICGSTAB 518400 1044725 3 3652575 1.218
CGS 518400 1044003 4 4694412 1.565
Jacobi 0 521281 10 5212810 1.738
BCG 518400 1043283 6 6778098 2.259
CG 1037520 1041843 7 8330421 2.777

The iterative methods in this table are sorted according to efficiency, with the most efficient
algorithms placed first. By providing a secondary source of comparison, this table
confirms the order of efficiency of the algorithms found by execution time only.

Table VI and Table VI nomalize the MES and MER CPU execution times relative

to that for the GS algorithm.

Table V1. Comparison of Work to Experimental Execution Times for N=720.

Algorithm MES Time MER Time MES Ratio MER Ratio Expected
GS 1.08 50.04 1.043 1.043 -
BICGSTAB 1.28 59.06 1.236 1.230 1.218
CGS 1.65 72.87 1.593 1.518 1.565
Jacobi 1.81 81.65 1.747 1.701 1.738
BCG 7.46 105.51 7.201 2.198 2.259
CG 9.92 132.18 9.576 2.754 2.777

The MER experiments nearly matched the predicted values, but the MES experiments
deviated significantly.

In Table VI, the MES ratio for CG and BCG greatly exceeded the ratio predicted by
the number of multiplications required alone. Both of these methods require the access to
the matrix and the matrix transpose in each iteration. Since FORTRAN uses column major
storage for matrices, accessing the rows of the transpose matrix involves selecting sixteen
byte complex matrix elements separated by 16N bytes, where N is the matrix dimension.
For larger matrices, this access involves retrieval from disk through page swapping. Other
programming languages would suffer identical problems if only the matrix and not the

matrix transpose is stored for page swapping configurations.

Table VII. Comparison of Work to Experimental Execution Times for N=1620.

Algorithm MES Time MER Time MES Ratio MER Ratio __ Expected
GS 1106.60 254.80 1.043 1.043 -
BICGSTAB 1172.20 294.60 1.104 1.205 1.218
CGS 1145.00 371.00 1.079 1.518 1.565
Jacobi 1248.00 460.80 1.176 1.885 1.738
BCG 2090.00 536.80 1.969 2.196 2.259
CG 2045.00 685.60 1.927 2.805 2.777

Table VII shows that the advantage in execution time for GS diminishes for large
matrices. The MES ratios in this case only roughly follow the trends given in Table V.
Since page swapping overhead occupies much of the CPU execution time, the MES ratios

and execution times have little meaning for matrices exceeding the RAM storage capacity of

the computer system.

55

CHAPTER 6
CONCLUSIONS

Experimental results confirm the usefulness of iterative methods for solving the
large linear systems in moment method calculations of electromagnetic scattering. All the
iterative methods are more efficient in terms of computational time and storage space
requirements than direct methods of solution for large problems and low-accuracy
solutions. In addition, most of the iterative methods converge on these problems for wide
ranges of parameter changes and matrix dimensions. Experiments also demonstrate the
advantage of using a matrix element recalculation configuration for the iterative methods,
for extremely large scattering problems. Without exception, iterative methods using the
MER configuration outperform the respective matrix storage configuration for large
problems where the matrix storage requirements exceed physical memory.

Of the algorithms tested, the BICGSTAB method possesses the most attractive
combination of execution speed and convergence stability for use with the MM analysis of
electromagnetic scattering. For well-conditioned systems, the Gauss-Seidel method
effectively solves the matrix equation in less CPU time than any other method.
Unfortunately, it cannot solve the equations where the MM grid is too coarse and therefore
cannot be trusted for general problems. CGS provides quick and stable convergence to the
solution for the experiments performed, but the literature indicates that it suffers stability

problems for certain cases [35].

56

(1]

(2]

[3]

(4]

(5]

[6]

(7

(8]

[9]

[10]

[11]

[12]

(13]

BIBLIOGRAPHY

Axline, R. M,, and Adrian K. Fung, "Numerical computation of scattering from a
perfectly conducting random surface," IEEE Transactions on Antennas and
Propagation, vol. AP-26, no. 3, pp. 482-488, May 1978.

Balanis, Constantine A., Advanced Engineering Electromagnetics. New York:
John Wiley and Sons, 1989, pp. 707-717.

Chen, M. F,, and A. K. Fung, "A numerical study of the regions of validity of the
Kirchhoff and small-perturbation rough surface scattering models," Radio Science,
vol. 23, no. 2, pp. 163-170, March-April 1988.

Chen, Ruimin, notes for the development of the scalar Magnetic Field Integral
Equation, April 1993.

Elman, H. C,, Iterative Methods for Large Sparse Nonsymmetric Systems of
Linear Equations. Ph.D. thesis, Computer Science Department, Yale University,
New Haven, CT, 1978.

Fletcher, R., "Conjugate gradient methods for indefinite systems,"” Numerical
Analysis: Proceedings of the Dundee Conference on Numerical Analysis. G.A.
Watson, ed., New York: Springer-Verlag, no. 506,1976, pp. 73-89.

Forsythe, George E., "Solving linear algebraic equations can be interesting," Bull.
of Am. Math. Society, pp. 299-329, 1953.

Forsythe, George E. and Wolfgang R. Wasow, Finite-difference Methods for
Partial Differential Equations. New York: John Wiley and Sons, 1960.

Fung, A. K., and M. F. Chen, "Numerical simulation of scattering from simple
and composite random surfaces," J. Opt. Soc. Am. A, vol. 2, no. 12, pp. 2274-
2284, December 1985.

Glisson, Allen W. and Donald R.Wilton, "Simple and efficient numerical methods
for problems of electromagnetic radiation and scattering from surfaces," IEEE
Transactions on Antennas and Propagation, vol. AP-28, no. 5, pp. 593-603,
September 1980.

Golub, Gene H. and Dianne P. O'Leary, "Some history of the conjugate gradient
and Lanczos algorithms: 1948-1976," SIAM Review, vol. 31, no. 1, pp. 50-

102, March 1989.

Golub, Gene H. and Charles F. Van Loan, Matrix Computations, 2nd. ed.,
Baltimore, Md: John Hopkins University Press, ¢1989.

Gregory, Robert T. and David L. Karney, A Collection of Matrices for Testing
Computational Algorithms. New York: Wiley-Interscience, 1969.

57

(14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Hageman, Louis A. and David M. Young, Applied Iterative Methods, New York:
Academic Press, 1981.

Harrington, R. F., Field Computation by the Moment Method. New York:
Macmillan, 1968.

Hestenes, Magnus R. and Eduard Stiefel, "Methods of conjugate gradients for
solving linear systems," Journal of Research of the National Bureau of Standards,
vol. 49, no. 6, pp. 409-436, December 1952.

Joubert, Wayne D. and Thomas A. Manteuffel, "Iterative methods for non-
symmetric linear systems," Iterative Methods for Large Linear Systems. Boston:
Academic Press, Inc., 1990, pp. 149-171.

Keller, J. B., "Geometrical Theory of Diffraction,” J. Opt. Soc. Amer., vol. 52,
no. 2, pp. 116-130, February 1962.

Kincaid, David R. and E. Ward Cheney, Numerical Analysis: Mathematics of
Scientific Computing. Pacific Grove, California: Brooks/Cole Publishing
Company, 1991, pp. 117-134, 152-153, 161-171, 181-201.

Kronsjo, Lydia, Algorithms: Their Complexity and Efficiency. New York: John
Wiley and Sons, 1987, pp. 88-148.

Lanczos, C., "An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators," J. Res., Nat. Bur. Standards, vol. 45,
1950, pp. 255-282.

Miller, Webb and David Spooner, "Software for Roundoff Analysis, IL,"
ACM Transactions on Mathematical Software, vol. 4, no. 4, pp. 369-387,
December 1978.

Ney, Michael M., "Method of moments as applied to electromagnetic problems,"
IEEE Transactions on Microwave Theory and Techniques, vol. MTT-33, no. 10,
pp- 972-980, October 1985.

Pearson,L. Wilson, "A technique for organizing large moment calculations for use
with iterative solution methods,” IEEE Transactions on Antennas and Propagation,
vol. AP-33, no. 9, pp. 1031-1033, September 1985.

Peterson, Andrew F. and Raj Mittra, "Iterative-based computational methods for
electromagnetic scattering from individual or periodic structures,” IEEE Journal of
Oceanic Engineering, vol. OE-12, no. 2, pp. 458-465, April 1987.

Peterson, Andrew F. and Raj Mittra, "Method of conjugate gradients for the
numerical solution of large-body electromagnetic scattering problems," Journal of
the Optical Society of America A. vol. 2, no. 6, pp. 971-977, June 1985.

Poggio, A. J. and E.K. Miller, "Integral equation solutions of three-dimensional

scattering problems,” Computer Techniques for Electromagnetics, R. Mittra, ed.,
New York: Pergamon Press, 1973, pp. 159-261.

58

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

(39]

(40]

(41]

Rao, Sgdasiva M., Donald R. Wilton, and Allen W. Glisson, " Electromagnetic
scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and
Propagation, vol. AP-30, no. 3, pp. 409-418, May 1982.

Saad, Youcef and Martin H. Schultz, "GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems," SIAM J.Sci. Stat. Comput.,
vol. 7, no. 3, pp. 856-869, July 1986.

Sarkar, Tapan K. and Sadasiva M. Rao, "The application of the conjugate gradient
method for the solution of electromagnetic scattering from arbitrarily oriented wire
antennas," IEEE Transactions on Antennas and Propagation, vol. AP-32, no. 4,
pp- 398-403, April 1984.

Sarkar, Tapan K. and Ercument Arvas, "On a class of finite step iterative methods
(conjugate directions) for the solution of an operator equation arising in
electromagnetics," IEEE Transactions on Antennas and Propagation, vol. AP-
33, no. 10, pp. 1058-1066, October 1985.

Sarkar, Tapan K., Kenneth R. Siarkiewicz, and Roy F. Stratton, "Survey of
numerical methods for solution of large systems of linear equations for
electromagnetic field problems," IEEE Transactions on Antennas and Propagation,
vol. AP-29, no. 6, pp. 847-856, November 1981.

Sonneveld, Peter, "CGS, a fast Lanczos-type solver for nonsymmetric linear
systems," SIAM J. Sci. Stat. Comput., vol. 10, no. 1, pp. 36-52, January 1989.

Sultan, Michel F. and Raj Mittra, "An iterative moment method for analyzing the
electromagnetic field distribution inside inhomogeneous lossy dielectric objects,"
IEEE Transaction on Microwave Theory and Techniques, vol. MTT-33, no. 2,
pp. 163-168, February 1985.

Van Der Vorst, H. A, "BI-CGSTAB: a fast and smoothly converging variant of
BI-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat.
Comput., vol. 13, no. 2, pp. 631-644, March 1992.

Varga, Richard S., Matrix Iterative Analysis. Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1962.

Vuik, C. and H. A. Van Der Vorst, "A comparison of some GMRES-like
methods," Linear Algebra and Its Applications, vol. 160, pp. 131-162, 1992.

L. B. Wetzel, "Models for Electromagnetic Scattering from the Sea at Extremely
Low Grazing Angles," Naval Research Laboratory Report 6098, December 31,
1987.

Wilkinson, James H., The Algebraic Eigenvalue Problem. Oxford: Clarendon
Press, 1965.

Young, David M. and Kang C. Jea, "Generalized conjugate-gradient acceleration
of nonsymmetrizable iterative methods," Linear Algebra and Its Applications,
vol. 34, pp. 159-194, 1980.

Young, David M., Iterative Solution of Large Linear Systems. New York:
Academic Press, Inc., 1971.

59

APPENDIXES

APPENDIX A
BICONJUGATE GRADIENT METHOD

61

Source Code

Unpreconditioned Biconjugate gradient iterative method taken from
"Bi-CGSTAB: A Fast Variant of BI-CG", H.A. Van Der Vorst
SIAM J. SCI. Stat. Comput., Vol 13, No 2, pp 631-644, Mar 1992

Van Der Vorst credited the algorithm to

Fletcher, R., *“Conjugate Gradient Methods for Indefinite Systems®",
Numerical Analysis Dundee 1975, G.A. Watson ed., New York: Springer,
Lecture Notes in Mathematics, No. 506, 1976, pp. 73-89.

Note: Matrix "a" contains the transposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing right hand side of ax=b
(will contain solution upon exit)

n integer number of unknowns

np integer physical dimension of *"a" matrix

eps real*s stopping condition for iterations

Local Variables:

OO0 0000000000000000000000000000000000000

p complex*16 direction vector

joled complex*16 second p vector

b4 complex*16 solution vector

r complex*16 residual vector (r=b-ax)

rq complex*16 second residual vector

nu complex*16 holds matrix-vector product Ap
alpha complex*16 bcg parameter

beta complex*16 bcg parameter

rho complex*16 bcg parameter

oldrhe complex*16 bcg parameter

sum complex*16 temporary matrix-vector product
i,3 integer loop counters

k integer iteration counter

mr real*s magnitude of residual vector
mx real*8 magnitude of solution vector
gam real*s ratio of mr to mx

eps real*8 stopping criterion for gam

subroutine bcg(a,b,n,np,eps,nit)

implicit none

real*8 mr,mx,gam, eps

integer i,3.k

integer n,np,nit,max

parameter (max=50)

complex*16 a(np,np),b{(np),x(1620),r(1620),p(1620)
complex*16 rq(1620),pq(1620),nu(1620)

complex*16 sum,rho,oldrho,sigma,alpha,beta

c initial guess for solution (x) vector
do i=1,n
x(i)=0.0
end do

c initial residual (r) and p vectors
do i=1,n
p(i)=0.0
pq(i}=0.0
sum=0.0
do j=1,n

62

a

Q000

sum=sum+a (j, i) *x(3)
end do
r(i)=b(i)-sum
rq(i)=r(i)
end do

initialize iteration variables
k=0

rho=1.0

gam=1.0

main iteration loop

repeat while the stopping criterion is not met
(see below for details)

do 10 while ((gam.gt.eps).and. (k.1lt.max))

calculate rho and beta

oldrho=rho

rho=0.0

do i=1,n
rho=rho+rq(i)*r(i)

end do

beta=rho/oldrho

calculate new p and pq
do i=1,n
pl(i)=r(i)+beta*p(i)
pali)=rq(i)+beta*pg(i)
end do

calculate sigma and alpha
sigma=0.0
do i=1,n
sum=0.0
do j=1,n
sum=sum+a (j, 1) *p(3)
end do
nu(i)=sum
sigma=sigma+pg (i) *sum
end do
alpha=rho/sigma

calculate new residuals
do i=1,n
sum=0.0
do j=1,n
sum=sum+a (i, j) *pa(j)
end do
r(i)=r(i)-alpha*nu(i)
rq(i)=rq(i)-alpha*sum
end do

calculate new solution
do i=1l,n

x(i)=x(i)+alpha*p(i)
end do

increment iteration counter
k=k+1

Determine whether stopping criterion has been met
using the following algorithm:

mr = Sqrt(<r,r*>)

63

(¢}

10

mx = Sgrt (<x,x*>)
gam = mr / mx
stop iterations iff gam <= eps

clear magnitudes of solution and residual
mr=0.0
nx=0.0

determine new magnitudes
do j=1,n
mr=mr+r(j)*conjg(r(j))
mx=mx+x{j) *conjg(x(j))
end do

mr=sqrt (mr)
mx=sqrt {mx)
gam=mr/mx

continue

replace b vector with the solution
do i=1,n

b{i)=x(i)
end do

nit=k
end

APPENDIX B
BICGSTAB METHOD

65

Source Code

0O0000a000000000000000000

Algorithm taken from *BI-CGSTAB: A Fast and Smoothly Converging
Variant of BI-CG for the Solution of Nonsymmetric Linear Systems®,
by H.A. Van Der Vorst, SIAM J. Sci. Stat. Comput., Veol. 13, No. 2,
pp. 631-644, March 1992

Note: Matrix ®"a”" contains the transposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing right hand side of ax=b
n integer number of unknowns

np integer physical dimension of *a* matrix

eps real*8 stopping condition for iterations

Local Variables:

r complex*16 residual vector

X complex*16 solution vector

r0 complex*16 initial residual vector

sum complex*16 used in matrix-vector products
mr real*8 magnitude of residual

mx real*8 magnitude of solution

gam real*8 ratio of mr to mx

subroutine bicgstab(a,b,n,np,eps,nit)

implicit none

real*8 mr,mx,gam, eps

integer i,3j.,k,n,np,max,nit

parameter (max=50)

complex*16 a(np,np).b(np),x(1620),r(1620)

complex*16 sum,s(1620),t(1620),p(1620),nu(1620),r0(1620)
complex*16 num,den, rho,oldrho,alpha, omega,beta

initial guess for the solution (x) vector
do i=1,n

x(1)=0.0
end do

initial residual (r) vector
do i=1,l‘l

r(i)=0.0

do j=1,n

sum=sum+a(j, 1) *x(J)

end do

r{i)=b(i)-sum

r0(i)=r(i)
end do

initialize iteration variables
gam=1.0
rho=1.0
alpha=1.0
omega=1.0
k=0
do i=1l,n
s(i)=0.0
t(i)=0.0
p(i)=0.0
nu(i)=0.0
end do

(¢}

Q

main iteration loop

repeat while the stopping criterion is not met

(see below for details)

do 10 while ((gam.gt.eps).and.{k.lt.max))
k=k+1

calculate new rho
use conjugated r0 vector (modification for complex)
oldrho=rho
rho=0.0
do i=1,n
rho=rho+conjg(r0(i)) *r({i)
end do

calculate beta
beta=rho/oldrho*alpha/omega

calculate new p

do i=1,n
p(i)=r(i)+beta*(p(i)-omega*nu(i))

end do

calculate new nu
do i=1l,n
sum=0.0
do j=1,n
sum=sum+a (j, i) *p(j)
end do
nu{i)=sum
end do

calculate new alpha
use conjugated r0 vector {(modified for complex)
sum=0.0
do i=1,n
sum=sum+conjg(r0(i)) *nu(i)
end do
alpha=rho/sum

calculate new s

do i=1,n
s(i)=r(i)-alpha*nu{i)

end do

calculate new t
do i=1,n
sum=0.0
do j=1,n
sum=sum+a(j,i)*s(3j)
end do
t(i)=sum
end do

calculate new omega

conjugate first vector in inner products (t)

(modify for complex)

num=0.0

den=0.0

do i=1,n
num=num+conjg(t(i))*s(i)
den=den+conjg (t (i))*t (i)

end do

omega=num/den

67

oOao0o0o00a0o0

10

update solution vector

do i=1,n
x(i)=x(i)+alpha*p(i)+omega*s (i)

end do

update the residual vector

do i=1,n
r(i)=s(i)-omega*t (i)

end do

Determine whether stopping criterion has been met
using the following algorithm:

mr = Sqrt{<r,r*>)

mx = Sqrt(<x,x*>)

gam = mr / mx

stop iterations iff gam <= eps

clear magnitudes of solution and residual
mr=0.0
mx=0.0

determine new magnitudes
do j=1,n
mr=mr+r(j)*conjg(r(j))
mx=mx+X (j) *conjg(x(j))
end do

mr=sqrt (mr)
mx=sqrt (mx)
gam=mr/mx

continue
replace b vector with the solution
do i=1,n

b(i)=x(i)
end do

nit=k
end

68

APPENDIX C
CONJUGATE GRADIENT METHOD

69

Source Code

O0a0a000000a00000000000000000000000000~0

Conjugate-Gradient Iteration algorithm taken from
Methods of Conjugate Gradients for Solving Linear Systems,

Hestenes and Stiefel,

Journal of Research of the National Bureau

of Standards, Vol. 49, No. 6, December 1952, pp.409-436.

This subroutine uses Hestenes and Stiefel algorithm (10:2) for
solving the linear system Ax=k where A is a general nonsingular matrix.

Note: Matrix "a® contains the transposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing right hand side of ax=b
n integer number of unknowns

np integer physical dimension of *a® matrix

eps real*8 stopping condition for iterations

Local Variables:

p complex*16 direction vector (Hestenes and Stiefel)
ap complex*16 matrix-vector product a*p

actr complex*16 matrix-vector product a(conj.transpose)*r
X complex*16 solution vector

r complex*16 residual vector {(r=b-ax)

alpha complex*16 conjugate gradient parameter

beta complex*16 conjugate gradient parameter

i,3 integer loop counters

13 integer iteration counter

mr real*8 magnitude of residual vector

mx real*8 magnitude of solution vector

gam real*s ratio of mr to mx

oldms real*8 previous magnitude squared of (a*)*r

ms real*8 current magnitude squared of (a*)*r

den real*8 temporary variable (denominator of expression)
eps real*8 stopping criterion for gam

subroutine cg(a,b,n,np,eps,nit)

implicit none

integer np

complex*16 a,b,x,r,p,ap,actr

dimension a(np,np).b(np),x(1620),r(1620),p (1620}
dimension ap(1620),actr(1620)

complex*16 alpha,beta, sum

integer i,j,k,n,nit,max

parameter (max=50)

real*8 mr,mx,gam,oldms,ms,den, eps

initial guess for solution vector
do i=1l,n

x(i)=0.0
end do

initial residual (r) vector
do i=1l,n

sum=0.0

do j=1,n

sum=sum+a(j, i) *x(j)

end do

r{i)=b(i)-sum
end do

70

0

find the initial direction (p) vector and
the initial magnitude of a conj. transpose * r squared (ms)
ms=0.0
do i=1,n

sum=0.0

do j=1,n

sum=sum+conjg{a(i,j)) *r(3j)

end do

p(i)=sum

ms=ms+sum*conjg (sum)
end do

initialize iteration variables
k=0
gam=1.0

main iteration loop
do 10 while ((gam.gt.eps).and. (k.lt.max))

multiply a * p to get the denominator of alpha expression
and save result in ap so that it can be used in finding the new
residual vector later
den=0.0
do i=1,n

sum=0.0

do j=1,n

sum=sum+a (j, i) *p(3)

end do

ap(i)=sum

den=den+sum*conjg (sum)
end do

since the (a*)*r was already calculated for the current residual,
ms can be used to find alpha (n"2 multiplications saved)
alpha=ms/den

since the a*p was already calculated for the current direction,
ap can be used to find the new residual (n"2 multiplications saved)

determine new solution and residual vectors
do i=1,n
x(i)=x(i)+alpha*p(i)
r(i)=r(i)-alpha*ap(i)
end do

update the ms vector using the new residual
actr holds (a*)*r result for later use in the p vector calculation

determine numerator and denominator for beta
oldms=ms
ms=0.0
do i=1,n
sum=0.0
do j=1,n
sum=sum+conjg(a(i,j))*r(3j)
end do
actr(i)=sum
ms=ms+sum*conjg (sum)
end do

determine beta
beta=ms/oldms

71

aOaa0ao0o0aqao0an

10

determine new direction vector (p)
do i=1,n

p(i)=actr(i)+beta*p(i)
end do

increment iteration counter
k=k+1

Determine whether stopping criterion has been met
using the following algorithm:

mr = Sqrt(<r,r*>)

mx = Sgrt (<x,x*>)

gam = mr / mx

stop iterations iff gam <= eps

clear magnitudes of solution and residual
mr=0.0
mx=0.0

determine new magnitudes
do j=1,n
mr=mr+r(j)*conjg(r(j))
mx=mx+X (j)*conjg{x(j))
end do

mr=sqrt (mr)
mx=sqrt (mx)
gam=mr/mx

continue
replace b vector with the solution
do i=1,n

b(i)=x(1)

end do

nit=k
end

72

APPENDIX D
CONJUGATE GRADIENT SQUARED METHOD

73

Source Code

Conjugate Gradient Squared iteration algorithm taken from

“CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear Systems®,
Peter Sonneveld, SIAM J. Sci. Stat. Comput., Vol. 10, No. 1,
pp.36-52, January 1989.

Note: Matrix "a" contains the transposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing right hand side of ax=b
(will contain solution upon exit)

n integer number of unknowns

np integer physical dimension of *“a®" matrix

eps real*8 stopping condition for iterations

Local Variables:

p complex*16

q complex*16

u complex*16

v complex*16 matrix-vector product a*p

num complex*16 temporary variable (numerator)
upq complex*16 vector sum u + g

rho complex*16

oldrho complex*16
sigma complex*16
alpha complex*16

0000000000000 0000000000000000000

beta complex*16

mr real*8 magnitude of residual
mx real*8 magnitude of solution
gam real*8 ratio of mr to mx

subroutine cgs(a,b,n,np,eps,nit)

implicit none

integer i,j,k,n,nit,np, max

parameter {(max=50)

complex*16 alpha,beta,sigma,rho,oldrho

complex*16 a(np,np),b(np),x(1620),r(1620),p(1620),q(1620),u(1620)
complex*16 sum,num,r0(1620),v(1620),upq(1620)

real*8 mr,mx,gam, eps

c initial guess for the solution vector
do i=1,n
x(i)=0.0
end do

c initial residual vector
num=0.0
do i=1,n
sum=0.0
do j=1,n
sum=sum+a (j, i) *x(3)
end do
r(i)=b(i)-sum
r0(i)=r(i)
q(i)=0.0
p(i)=0.0
end do

c initialize variables

74

Q

gam=1,0
k=0
rho=1

main iteration loop
repeat loop while the ratio of the magnitude of the residual to
the magnitude of the solution is greater than eps

do 10 while ((gam.gt.eps).and. (k.lt.max))
k=k+1

calculate new rho

oldrho=rho

rho=0.0

do i=1,n
rho=rho+conjg(r0(i))*r(i)

end do

calculate new beta
beta=rho/oldrho

calculate new u vector
do i=1,n

u(i)=r(i)+beta*q(i)
end do

calculate new p vector

do i=1,n
p(i)=u(i)+beta*(g(i)+beta*p(i))

end do

calculate matrix-vector product a*p
do i=1,n

sum=0.0

do j=1,n

sum=sum+a (j, i) *p(Jj)

end do

v{i)=sum
end do

calculate sigma

sigma=0.0

do i=1,n
sigma=sigma+conjg(r0(i))*v(i)

end do

calculate alpha
alpha=rho/sigma

calculate new g

do i=1,n
q(i)=u(i)-alpha*v(i)

end do

calculate u + g
do i=1l,n

upg (i) =u(i)+q(i)
end do

calculate new residual vector
do i=1l,n
sum=0.0
do j=1,n
sum=sum+a(j, i) *upg(j)

75

aoao0o0a0aan0n

10

end do
r(i)=r(i)-alpha*sum
end do

calculate new solution vector

do i=1,n
x(i)=x(i)+alpha*upq(i)

end do

Determine whether stopping criterion has been met
using the following algorithm:

mr Sqrt (<r, r*>)

mx sSgrt (<x, x*>)

gam = mr / mx

stop iterations iff gam <= eps

clear magnitudes of solution and residual
mr=0.0
mx=0.0

determine new magnitudes
do j=1,n
mr=mr+r (j)*conjg(r(j))
mx=mx+X (j) *conjg(x(3j))
end do

mr=sqrt (mr)
mx=sqrt (mx)
gam=mr/mx

continue
replace b vector with the solution
do i=1,n

b(i)=x(i)

end do

nit=k
end

76

APPENDIX E
GAUSS-SEIDEL METHOD

77

Source Code

Gauss-Seidel Iteration algorithm taken from the textbook,
David Kincaid and Ward Cheney. *Numerical Analysis®.

(Pacific Grove, California: Brooks/Cole Publishing Co., 1991),
p.190.

Note: Matrix ®"a* contains the transposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing

n integer number of unknowns

np integer physical dimension of "a* matrix

eps real*s stopping condition (explained in code)

Local Variables:

0O000000000000000000000000000

x complex*16 vector containing iterative solutions
s complex*16 used in matrix conditioning

r complex*16 residual vector

sum complex*16 totals in matrix multiplication

temp complex*1l6 temporary variable

rsum complex*16 totals for residulal vect. calculation
i,3 integer indicies

k integer iteration number

mr real*8 magnitude of residual

mx real*8 magnitude of iterative solution

gam real*8 ratio of mr to mx (compare to stopping value)

subroutine gs(a,b,n,np,eps,nit})

implicit none

integer np

complex*16 a,b,x,r,sum,temp, rsum
dimension a(np,np),b(np),x(1620),r(1620)
integer i,j,k,n,nit,max

parameter (max=50)

real*8 mr,mx,gam, eps

c initial guess for x
do i=1,n
x{i})=0.0
end do
c initialize variables
k=0
gam=1.0
c main iteration loop
c repeat while the stopping criterion is not met
c (see below for details)
do 10 while ((gam.gt.eps).and. (k.lt.max))
k=k+1
c multiply coefficient matrix by x vector
c using column-major storage to improve execution speed
do i=1,n
c clear the residual sum and product sum
rsum=0.0
sum=0.0

78

ao0oa0a0a00an

10

since the matrix is stored in column-major format,
we must step through the rows for each column in the do loop
do j=1,n

temp=a(j, i) *x(j)

Residual vector sum requires all terms
rsum=rsum+temp

end do

Solution vector sum only includes off-diagonal terms
Placement here avoids "if" in inner loop -- better optimization
sum=rsum-a{i,i)*x(i)

calculate new solution and residual values for this row
MFIE diagonal is 0.5 so 1l/a(i,i) = 2.0
x{i)=2.0*(b (i) -sum)

r(i)=b(i)-rsum

end do

Determine whether stopping criterion has been met
using the following algorithm:

mr = Sgrt(<r,r*s)

mx = Sqgrt(<x,x*>)

gam = mr / mx

stop iterations iff gam <= eps

clear magnitudes of solution and residual
mr=0.0
mx=0.0

determine new magnitudes
do j=1,n
mr=mr+xr{j)*conig(r(j))
mx=mx+x (j)*conjg(x(j)})
end do

mr=sqrt (mr)
mx=8qrt (mx)
gam=mr/mx

continue
replace b vector with the solution
do i=1,n

b(i)=x(i)

end do

nit=k
end

79

APPENDIX F
JACOBI METHOD

80

Source Code

Jacobi Iteration algorithm taken from the textbook,

David Kincaid and Ward Cheney. °Numerical Analysis®.

(Pacific Grove, California: Brooks/Cole Publishing Co., 1991),
p.186.

Note: Matrix *"a® contains the transposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing

n integer number of unknowns

np integer physical dimension of "a®" matrix

eps real*s stopping condition (explained in code)

Local Variables:

Oo0000000000000000000000000000

r complex*16 residual vector

u complex*16 updated solution vector

x complex*16 solution vector

d complex*16 diagonal element for matrix preconditioning
sum complex*16 used for matrix-vector products
rsum complex*16 used for residual calculation
temp complex*16 temporary variable

i,3 integer loop counters

k integer iteration counter

mr real*8 magnitude of residual vector
mx real*8 magnitude of solution vector
gam real*8 ratio of mr to mx

subroutine jac(a,b,n,np,eps,nit)

implicit none

integer np

complex*16 a,b,x,r,sum,u,rsum, temp

dimension a(np,np),b(np),x(1620),r(1620),u(1620)
integer i,j,k,n,nit,max

parameter (max=50)

real*8 mr,mx,gam, eps

c initial guess for solution vector
do i=1,n
x(i)=0.0
end do
c initialize variables
k=0.0
gam=1.0
c main iteration loop
c repeat while the stopping criterion is not met
c (see below for details)
do 10 while((gam.gt.eps).and. (k.lt.max))
k=k+1
c multiply coefficient matrix by solution vector
c using column-major storage to improve execution speed
do i=1,n

clear the matrix-vector product sum and residual sum
sum=0.0

81

e}

0000000

10

rsum=0.0

since the matrix is stored in column-major format,
we must step through the rows for each column in the do loop
do j=1,n
temp=a(j,i)*x(j)
rsum=rsum+temp
end do

Solution vector sum includes only off-diagonal terms
Placing it here avoids *if" inside inner loop
sum=rsum-a(i,i)*x (i)

jacobi does not immediately update the solution vector *x*
instead, it stores the update in *"u*

MFIE diagonal is 0.5 so 1/a{i,i) = 2.0
u(i)=2.0*(b(i)-sum)

r(i)=b(i)-rsum

end do

form the new solution vector
do i=1l,n

x{i)=u(i)
end do

mr=0.0

Determine whether stopping criterion has been met
using the following algorithm:

mr Sqrt (<r, r*>)

mx Sqrt (<x,x*>)

gam = mr / mx

stop iterations iff gam <= eps

"

i

clear magnitudes of solution and residual
mr=0.0
mx=0.0

determine new magnitudes
do j=1,n
mr=mr+r(j)*conjg{r(j})
mx=mx+x (j) *conjg(x{(3))
end do

mr=sqrt (mr)
mx=sqrt (mx)
gam=mr/mx

continue
replace b vector with the solution
do i=1l,n

b(i)=x{i)

end do

nit=k
end

82

APPENDIX G
SUCCESSIVE OVERRELAXATION METHOD

83

Source Code

Symmetric Overrelaxation technique based upon the
Gauss-Seidel Iteration algorithm taken from the textbook,
David Kincaid and Ward Cheney. "Numerical Analysis".

(Pacific Grove, California: Brooks/Cole Publishing Co., 1991),
p.190.

Note: Matrix "a" contains the untransposed coefficient matrix

Passed Variables:

a complex*16 matrix (zmn) (npxnp)

b complex*16 vector containing right hand side of ax=b
(will contain solution upon exit)

n integer number of unknowns

np integer physical dimension of "a* matrix

eps real*s stopping condition (explained in code)

Local Variables:

O00000 0000000000000 0000000000

X complex*16 vector containing iterative solutions

r complex*16 residual vector

sum complex*16 totals in matrix multiplication

temp complex*16 temporary variable

rsum complex*16 totals for residulal vect. calculation

i,] integer indicies

k integer iteration number

mr real*8 magnitude of residual

mx real*8 magnitude of iterative solution

gam real*8 ratio of mr to mx (compare to stopping value)

subroutine sor(a,b,n,np,eps,nit,w)
complex*16 a,b,x,r,sum,temp, rsum
dimension a(np,np),b(np),x(1620),r(1620)
integer i,j,k,n,nit,max

parameter (max=50)

real*8 mr,mx,gam,eps

real*B8 w
c initial guess for solution vector
do i=1,n
x(i)=0.0
end do
c initialize variables
k=0
gam=1.0
c main iteration loop
c repeat while the stopping criterion is not met
c (see below for details)
do 10 while ((gam.gt.eps).and. (k.lt.max))
k=k+1
c multiply coefficient matrix by solution vector
c using column-major storage to improve execution speed
do i=1,n
c clear the residual sum and product sum
rsum=0.0
sum=0.0

000000

10

since the matrix is stored in column-major format,
we must step through the rows for each column in the do loop

do j=1,n

temp=a(j,i)*x(j)

Residual vector sum requires all terms
rsum=rsum+temp

end do

Solution vector sum only includes off-diagonal terms
sum=rsum-a (i, i) *x (i)

calculate new solution and residual values for this row
MFIE diagonal is 0.5 so l/a(i,i) = 2.0
x{1)=2.0*(w*(b{i)-sum))+{1.0-w)*x (i)

r{i)=b(i)-rsum

end do

Determine whether stopping criterion has been met
using the following algorithm:

mr Sqrt (<r, r*>)

mx Sqrt {<x,x*>)

gam = mr / mx

stop iterations iff gam <= eps

n

clear magnitudes of solution and residual
mr=0.0
mx=0.0

determine new magnitudes
do j=1.,n
mr=mr+r{j)*conjg(r{3j))
mx=mx+x (3) *conjg(x(j))
end do

mr=sqgrt (mr)
mx=sqrt (mx)
gam=mr/mx

cont inue

replace b vector with the solution
do i=1,n
b(i)=x(1i)
end do
nit=k
end

85

APPENDIX H
MOMENT METHOD SOURCE CODE

86

aO000A00000000000000000000

bR AR AR AL LLLLL LA LR EE SRS R Rl s o R R Y N Y R AR R R]

Iterative Solution to the Moment Method Equations: Testing Program
Moment Method Code: Rumin Chen, 1992-1993
Testing and Iterative Solution: Mike Sturm, 1993

LA AR AR AR RR AR R RS R RS R R R R R R R R R R R R R R R R R R R N Y 1

LA R A S S Sl AS R SRR R RSS2 E XX RS X X

Moment Method Comments (Rumin Chen)

LA AR R AR RS SRRl RS2 s X2 X2 R X 22

This code is a Moment Method program used to calculate a conducting
sinusoid surface scattering problem by using Magnetic Field Integral
Equation.

The code is implemented based on the pulse interpolation basis
function on square patchs. The unknown current is defined

on the center of the patch.

The chief data structures are listed as below

area vector for the area of square patch

el vector for some information of the patch
1-- length of the patch on 1 direction
2-- y component of the unit vector on 1 direction
3-- z component of the unit vector on 1 direction

k incident wave number

n number of unknown or total number of patches

v vector for right source of the moment matrix equation
when the equation is solved, it holds the solved current

wl incident wave length

X vector for x coordinate of triangular vertex

y vector for y coordinate of triangular vertex

z vector for z coordinate of triangular vertex

zmn N by N matrix of moment matrix equation

A A ARE R AR AR A ARRR R RRR R AR R E R AR AN A AR RN R TR AR Fh kAR RN

Testing and Iterative Solution Comments (Mike Sturm)
tt*kitit*i*t*t*****tt'*t***tttiiiﬁ***ttt*ttt*'t'iitt

In order to get an objective measure of the execution time for the
iterative algorithms, it was necessary to add the following variables

to Chen's program.

The added variables pertain to two methods for precise timing

of the execution time. The AIX Fortran call "mclock® returns user
plus system time for the executing process, in one-hundredths of a
second. Using "C*, I wrote another subroutine called *rtime®, which
returns the number of sec. after midnight, Greenwich Mean Time (GMT).
By calling these two functions before and after the matrix fill and
jterative solution, an accurate estimate of execution time was found.

start integer starting time of algorithm (mclock)

end integer ending time of algorithm (mclock)

loop integer counter for mulitple testing of execution times
loopcount integer number of tests for each matrix size

nit integer number of iterations req‘'d for solution

rtime integer =c* subroutine: sec. past 0:00:00 GMT (system)
rstart integer real time for start of algorithm (rtime)

rend integer real time for end of algorithm (rtime)

mclock integer system plus user time for process

eps real*8 stopping criterion for iterative algorithm
tfill real*8 (mclock) time for matrix fill

titer real*s (mclock) time for iterative solution

rfill real*8 (rtime) time for matrix fill

riter real*8 (rtime) time for iterative solution

87

O 000

a0

(8]

2]

(e}

tfav real*s (mclock) average of fill times

tiav real*8 (mclock) average of iterative solution times
rfav real*8 (rtime) average of fill times
riav real*8 (rtime) average of iterative solution times

program iter

implicit none

complex*16 phase,angr, rcsx, rcsy
complex*16 zmn{1620,1620),v(1620)
integer start,end, loop, loopcount,nit
integer rtime,rstart,rend,mclock
integer n,i,j,nl

real*8 x(1620),y(1620),2(1620)
real*8 area(1620),el1(1620,4)

real*8 k,wl,r,pi,angi,al, zx,rcs
real*8 eps,tfill,titer,rfill,riter,tfav,tiav,rfav,riav
parameter (eps=1.0e-3)

parameter (loopcount=5)

hdk kA RAR R KRR A TR NI Nk kkkdkkddkw

Set Up Variables and Output Files

(AR SRS SRR R R R ER LSRR SRS

Moment Method Variables
pi=acos{-1.)

wl=1.0

k=2.0*pi/wl

The execution times are stored in a sequential file
open(5,file='timecg.dat',status="'unknown')

Display the machine name (for error tracking)
call system('hostname’)

Vary the number of sections (nl) and test for each size

LR 2R 2 22

Main Loop

EA SR E RS LS

do nl=4,14

Clear the average time variables
tiav=0.0
tfav=0.0
riav=0.0
rfav=0.0

Output the current status to the screen (for error tracking)
write(*,*)
write(*,*) ‘Beginning nl = ‘,nl

Output the current users to the screen

This was useful to determine if the machine's real execution
times were skewed due to other user processes.

call system(‘'who')

write(*,6*)

ddde el ok koo kR

Experimental Loop

IZZ 22222222222 R 21

Multiple experimental loops (for averaging execution time)
do loop=1, loopcount

88

100

Output status to screen (progress checking)
call system('date’)

Set up the data needed for matrix fill
(Rumin Chen Subroutine)
call dat(x,y,z,area,v,nl,n,el,wl,angi,al, zx)

Time the matrix fill
rstart=rtime()
start=mclock ()

Matrix fill (Rumin Chen Code)

do 100 i=1,n

do 100 j=1,n

if(i.eq.j) then

zmn (i, j)=.5

else

r=sqrt ((x(3)-x(1)) **2+(y (F) -y (1)) **2+(2(F) -2z (i))**2)

phase=(0.,1.)*k*r

zmn(j,i)=1./4./pi* (1. +phase)
*((y(i)-y(3))*el(i,2)-(z(i)-2(J))*el(i,1))*exp(-phase)
*area(j)/r**3

endif

continue

end=mclock ()
rend=rtime()

Calculate the execution times
tfill=real (end-start)/100.

Correct for ®"negative® times which occur when execution
begins before midnight GMT and ends after midnight GMT
if (rend.ge.rstart) then

rfill=real (rend-rstart)
else

rfill=real (24*3600-rstart+rend)
endif

Update the average times (sum)
tfav=tfav+tfill
rfav=rfav+rfill

Time the iteration time
rstart=rtime()
start=mclock()

Iterative Algorithm
call cg(zmn,v,n,1620,eps,nit)

end=mclock ()
rend=rtime ()

calculate the execution times
titer=real (end-start)/100.

correct for "negative® times which occur when execution
begins before midnight GMT and ends after midnight GMT
if (rend.ge.rstart) then

riter=real (rend-rstart)
else

riter=real (24*3600-rstart+rend)

89

endif

c Update the average times (sum)
tiav=tiav+titer
riav=riav+riter

***x** Determine the radar cross section

The following code by Rumin Chen determines the radar cross
section of the surface. Its primary use for the iterative testing
is verification of the iterative solution.

o000

angr=0.
rcsx=0.
rcsy=0.

do 200 i=1,n
phase=(0,1.)*k*((y(i)-2.5)*sin(angr)+z (i) *cos (angr))
rcsx=0.
rcsy=rcsy+v(i)*area (i) *exp(phase)

200 cont inue

c radar cross section calculation
rcs=(abs(rcsx)) **2+(abs(rcsy)) **2
rcs=4.*pi*rcs*(1./2./wl/wl)**2

end do

c calculate the average execution times for the experiments
tfav=tfav/real (loopcount)
tiav=tiav/real (loopcount)
rfav=rfav/real (loopcount)
riav=riav/real (loopcount)

c output to file
300 format (2i6,£15.8,4£12.2)
write(5,300) n,nit,rcs,tfav,tiav,rfav,riav

end do

close(5)
end

Data Generation Subroutine
Rumin Chen

This subroutine is used to generate the data information which are
used for moment method on a rectangular sinusoidal surface.
The patches in this code are square elements.

aOo0o0aa0a0n

subroutine dat(x,y,z,area,v,nl,nodes,el,wl, angi,al,zx)

implicit none

complex*16 phase

complex*16 v(1620)

real*8 x(1620),y(1620),2(1620)

real*8 area(1620),el(1620,4)

real*8 wl,angi,al,zx,pi,k,dx,dy,z1,22,yl,y2,xc,yc
integer m,nl,nodes,n2,i,j

m=1

pi=acos(-1.)
k=2.*pi/wl

O a0 aa

10

n2=5*nl

Angle of Incidence: Varied for testing purposes
angi=0.0

angi=angi*pi/180.
dx=1./nl
dy=1./nl

al=0.

Sinusoidal Surface Height: Varied for testing purposes

zx=0.1

do 10 i=1,nl

do 10 j=1,n2
x(m)=(i-1.)*dx+dx/2.
y(m)=(j-1.)*dy+dy/2.
z(m)=zx*sin(pi*y (m)/5.*10.+pi/2.)
yl=(j-1.)*dy

y2=j*dy
zl=zx*sin(pi*yl/5.*10.+pi/2.)
z2=2X*sin(pi*y2/5.*10.+pi/2.)

el is used to store the unit vector of 1

1 - dy

2-- dz

3-- length of the dl

el(m,3)=sqrt((z2-z1)**2+dy*dy)

el(m,1l)=dy/el (m, 3)

el{m,2)=(22-2z1)/el(m,3)

area(m)=el (m, 3) *dy

al=al+area(m)

phase=(0,1.)*k*((y(m)-2.5)*sin(angi)+z(m) *cos (angi))

Xc=pi*x(m)

yc=pi*y(m)/5.

v(m)=-(cos(angi)*el(m,1)-sin({angi)*el(m,2))
*exp (phase) * (1.+cos(pi*(x(m)-0.5)/0.5))*
(1.+cos(pi*(y(m)-2.5)/2.5))/4.

m=m+1

continue

nodes=nl*n2

return
end

91

APPENDIX I
SYSTEM CLOCK POLLING ROUTINES

Rume Source Code

#include <time.h>
#include <stddef.h>
int rtime_ ()
{
struct tm *gm;
time_t t;
int s,m,h;

t=time (NULL) ;
gm=gmtime (&t) ;

s=(*gm) .tm_sec;
m=(*gm) .tm_min;
h=(*gm) . tm_hour;
return{s+m*60+h*3600) ;

Mclock Source Code

#include <time.h>
clock_t mclock_(void)
{

return(clock());
}

93

™
VITA

James Michael Sturm
Candidate for the Degree of

Master of Science

Thesis: ITERATIVE METHODS FOR SOLVING LARGE LINEAR SYSTEMS
IN THE MOMENT METHOD ANALYSIS OF ELECTROMAGNETIC
SCATTERING

Major Field: Electrical Engineering
Biographical:

Personal Data: Born in Austin, Texas, February 15, 1969, the son of
Dr. Gene Paul and Mrs. Phyllis Ann Sturm

Education: Graduated from Bartlesville High School, Bartlesville,
Oklahoma, in May 1987; received Bachelor of Science Degree in
Electrical Engineering with a Computer Engineering Option from
Oklahoma State University in December, 1991; completed the
requirements for the Master of Science degree at Oklahoma State
University in December, 1993.

Professional Experience: Research Assistant, Department of Electrical
Engineering, Oklahoma State University, January 1992 to December
1993. IIT Research Institute Undergraduate Research Fellow at
National Institute for Petroleum and Energy Research in
Bartlesville, Oklahoma, summers of 1988, 1989, 1991.

	Image1.tif
	Image2.tif
	Image3.tif
	Image4.tif
	Image5.tif
	Image6.tif
	Image7.tif
	Image8.tif
	Image9.tif
	Image10.tif
	Image11.tif
	Image12.tif
	Image13.tif
	Image14.tif
	Image15.tif
	Image16.tif
	Image17.tif
	Image18.tif
	Image19.tif
	Image20.tif
	Image21.tif
	Image22.tif
	Image23.tif
	Image24.tif
	Image25.tif
	Image26.tif
	Image27.tif
	Image28.tif
	Image29.tif
	Image30.tif
	Image31.tif
	Image32.tif
	Image33.tif
	Image34.tif
	Image35.tif
	Image36.tif
	Image37.tif
	Image38.tif
	Image39.tif
	Image40.tif
	Image41.tif
	Image42.tif
	Image43.tif
	Image44.tif
	Image45.tif
	Image46.tif
	Image47.tif
	Image48.tif
	Image49.tif
	Image50.tif
	Image51.tif
	Image52.tif
	Image53.tif
	Image54.tif
	Image55.tif
	Image56.tif
	Image57.tif
	Image58.tif
	Image59.tif
	Image60.tif
	Image61.tif
	Image62.tif
	Image63.tif
	Image64.tif
	Image65.tif
	Image66.tif
	Image67.tif
	Image68.tif
	Image69.tif
	Image70.tif
	Image71.tif
	Image72.tif
	Image73.tif
	Image74.tif
	Image75.tif
	Image76.tif
	Image77.tif
	Image78.tif
	Image79.tif
	Image80.tif
	Image81.tif
	Image82.tif
	Image83.tif
	Image84.tif
	Image85.tif
	Image86.tif
	Image87.tif
	Image88.tif
	Image89.tif
	Image90.tif
	Image91.tif
	Image92.tif
	Image93.tif
	Image94.tif
	Image95.tif
	Image96.tif
	Image97.tif
	Image98.tif
	Image99.tif
	Image100.tif
	Image101.tif

