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PREFACE 

During the summer and fall of 1992 and 1993, research with windrow composting 

for the biological remediation of oil contaminated soils was conducted. Contaminated 

soils were excavated and amended with nutrients and bulking agents, then placed in rows 

three feet deep and eight to ten feet wide on an impermeable surface. The source of 

contamination was lubricating oil leaks and spills from around natural gas pipeline 

compressor engines. The soils were treated in an empty warehouse at Transok's Crescent 

Natural Gas Processing Plant. Compost piles were aerated physically by turning with a 

backhoe with any additional water or nutrients being added at that time. The purpose of 

this research was to determine if this contaminated soil could be effectively bioremediated 

in field-scale batches of 100 cubic yards using only indigenous bacteria. Also to determine 

the techniques and conditions that would allow this process to be successfully applied to 

other sites and other types of hydrocarbon contaminants. 

I wish to express my sincere gratitude to Dr. William Clarkson, my thesis advisor, 

for his invaluable assistance and guidance during the entire duration of this research and 

testing. I am also grateful to the other committee members~ Dr. Jack Vitek for his 

counsel on developing my plan of study for this program and Dr. Bill McTernan for the 

direction he provided in developing this report. Special thanks also to my supervisor, Luis 

Rodriguez, and Fred Dennis and Mark Sproull at the Crescent Plant. Without their 

support and efforts this project would not have been possible. 
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CHAPTER! 

INTRODUCTION 

Statement ofProblem 

The nature of operations in the oil and gas industries continually generates 

hydrocarbon contaminated soils. These are hydrocarbons in the form of crude, lubricating 

oils, transmission fluids, hydraulic fluids, natural gas condensate, gasoline and other 

refined volatiles. Historically, the source ofthis contamination is from leaks or spills at 

transfer connections at tank batteries, production facilities, compressor engines, 

underground storage tanks, machinery/equipment storage areas, maintenance centers and 

as a result of pipeline leaks or ruptures. In the past these soils were excavated and spread 

on roads for dust control, left in place and covered with clean soil or gravel, or landfill or 

treated. The Resource Conservation and Recovery Act (RCRA), Comprehensive 

Environmental Response, Compensation, and Liability Act (CERCLA, i.e. Superfund) and 

the Clean Water Act now require remediation of these soils and have also severely 

restricted disposal options. The industry is discovering the only economical and practical 

method of remediating these large quantities of oil contaminated soils is through 

bioremediation processes. 

The basis for the research and experiments of this study is the bioremediation of 

soil contaminated with lubricating oil from around compressor engines on natural gas 

pipelines. Almost all these types of engines leak lubricating oil, at various connections, 

seals, and gaskets. Some companies commonly install these engines on concrete 

foundations without any gutters, troughs, rails or other measures to collect this oil along 

with any contaminated storm or engine wash-down water. The oil and contaminated 

water runs off the foundation into the surrounding soils. Typically, depending on the type 
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of engine and how long it has been at the site, the contaminated soils extend to a depth of 

18 to 24 inches and to 4 to 5 feet around the perimeter of the foundation. With an 

average size foundation being 8 feet by 20 feet this results in approximately 16 cubic yards 

of contaminated soils at each engine. Thousands of these engines operate on various 

pipelines, processing plants and refineries in Oklahoma. 

Compost Treatment Processes 

At most facilities with compressor engines, the best approach is the ex situ 

bioremediation of these soils. The remote, unmanned, nature of most of these sites makes 

maintenance and operation of a treatment area difficult. Moreover, the engine continues 

as a contamination source to an in situ treatment area, although to significantly lesser 

degree if controls are installed. Also a gravel cover is typically used around these engines 

to prevent erosion. An effective in situ process would require some type of aeration 

through tilling or other means which would displace the gravel cover. Because of the 

relatively small volume of soil around the engines, it can usually be excavated easily and 

transported to a treatment site or be treated ex situ at that site. Studies have shown the 

most cost effective means of treating soil is through a windrow-type composting processes 

(Jackson, Hammer, Hoffman, Gorman, 1993; Fyock, Nordum, Fogel, Findlay, 1991; 

Barnhart, Myers, 1989). 

Composting systems are generally divided into three categories: windrow, static 

pile, and in-vessel. All involve excavating the soils and placing them in a treatment area. 

In the windrow approach, sludge (or contaminated soils) and bulking agent mixture is 

composted in long rows (or windrows) that are aerated by convection air movement and 

diffusion. Windrows are turned periodically by mechanical means to expose organic 

matter to ambient oxygen. In the static pile (or forced-aeration) approach, piles of a 

sludge/bulking agent mixture are aerated using a forced-aeration system installed under 

the piles to maintain a minimum oxygen level throughout the compost mass. In-vessel 

composting takes place in partially or completely enclosed containers in which 



3 

environmental conditions can be controlled. Bench and pilot-scale treatment studies from 

the oil and gas industries with hydrocarbon contaminated soils have been using windrow 

composting systems exploiting indigenous bacteria species. This is because system 

operations and maintenance costs are low and effective results have been demonstrated 

(McMillen, Kerr, Gray, Findlay, 1992; Fyock, Nordum, Fogel, Findlay 1991). 

Project Objectives 

The objectives of the research and experiments conducted during this project were 

to determine: 

1) If soils contaminated with lubricating oil and other long-chain hydrocarbons 

could be effectively remediated, through windrow composting systems, on a 

full-scale basis using only indigenous bacteria. 

2) The environmental and operating conditions, and the types and populations of 

bacteria, that promoted effective degradation ofthese hydrocarbons. 

The majority of the studies and research conducted to date on this type of 

contaminant have involved laboratory beaker, bench-scale or pilot-scale testing. This 

project involved a full-scale, ongoing remediation project of soils contaminated with 

lubricating oil under field conditions. No inoculum preparations of exogenous or 

indigenous bacteria have been provided. These experiments provided substantive data on 

the effects of changes in environmental conditions (moisture, nutrients, oxygen, soil type, 

etc.), the ability to manipulate them and operate the system, and the difficulties 

encountered. The experiments include specific analysis on the types of bacteria which 

were most the aggressive degraders of the contaminant, response ofthe bacteria to 

changes in environmental conditions, and changes in population levels over the duration of 

the project. 



CHAPTER II 

LITERATURE REVIEW 

Microbial Growth and Substrate 

Utilization Kinetics 

Thermodynamic Relationships 

Energy for microorganisms is obtained mainly through oxidation-reduction (redox) 

reactions and, to a lesser extent, photosynthesis. Microorganisms mediated redox 

reactions are carried out by catalysts which increase the velocity of the overall reaction. 

Catalysts, which are basically protein enzymes generated by the microbial cells, modify 

the reaction pathway so that the reaction may proceed with a lower activation energy 

(General Physics, 1990). Successful bioremediation of complex substrates involves having 

a sufficient microbial diversity to produce the proper enzymes for catalyzing the desired 

reactions. For all redox reactions a flow of electrons must occur between substances. 

Oxidation is the removal of electrons from the substance being oxidized and reduction is 

the addition of these electrons to a substance. The nature of the electron acceptor 

establishes the microbial metabolism mode and, therefore, the type of reaction. Redox 

reactions consist of the oxidation half reaction and the reduction half reaction. Successful 

bioremediation (mineralization of the contaminant) requires the addition of adequate 

quantities of nutrients and appropriate electron acceptors, including an energy source, in a 

controlled manner (Grady & Lim, 1980). 

The appropriate electron acceptor must be selected to obtain the desired redox 

reaction which is governed by the energy yielding conditions of the substrate. Microbial 

populations will exploit the type of redox reaction that will yield the greatest energy 
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(General Physics, 1990). The amount offree energy that a microorganism can obtain from 

the coupled redox reaction establishes the preferred electron acceptor. Those organisms 

which can bring about the transfer most rapidly and can capture released energy more 

efficiently in a given environment will tend to dominate because the rate of growth will be 

the greatest (Riser-Roberts, 1992). 

The Gibbs free energy is a part of the total energy that is available to perform 

useful work (McCarty, 1975) The amount of free energy that can be obtained by 

microorganisms from redox reactions is directly proportional to the electrical activity (pE) 

of the redox system (General Physics, 1990). The pE values of energy producing 

reactions of microbial significance indicate the mode of metabolism, or redox reaction that 

will occur. 

Typical electron acceptors for bacterial mediated reactions are oxygen, nitrate, 

sulfate and carbon dioxide. When oxygen is used as the electron acceptor, the energy 

released is a maximum, whereas when carbon dioxide is used, the energy released is a 

minimum (Sims, Sims & Matthews, 1989). In addition, nitrite formed during 

denitrification can be used as an electron acceptor. When it is, the energy release is 

greater than from oxygen usage (Leahy & Colwell, 1990). The presence of oxygen is 

inhibitory to those organisms which can mediate reductions of sulfate, nitrate and carbon 

dioxide. Nitrate is also inhibitory to the organisms using sulfate and carbon dioxide as 

electron acceptors if it is present in significant quantities (Buday, Gergely, Torok & 

Szoboszlay, 1989). These inhibitory effects are part of the selective pressures which 

determine microbial population composition in a particular environment. 

Stoichiometric Equations for Aerobic Growth 

Reactions for the development of stoichiometric equations for the breakdown of 

contaminant substrate have been established (McCarty, 1975). The total reaction must 

include the organic substance being oxidized, the electron acceptor being reduced, and the 

major nutrients for cell growth. These would include nitrogen and phosphorus. The 
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equations assess if adequate quantities of nutrients and appropriate electron acceptors 

exist for successful contaminant degradation. To obtain the nutrient requirement, it is 

necessary to establish that portion of energy necessary for cellular growth. A factor must 

be included for the distribution of energy between cell synthesis and other needs 

(McCarty, 1975). These factors are represented by: 

fe = fraction of organic compounds oxidized for energy 

fs = fraction associated with conversion to microbial cells 

fe = 1-fs 

The overall reaction can be given in general terms by: 

where: 

R = Rd - feRa - fsRc 

Rd = the half reaction for the electron donor 

Ra = the half reaction for the electron acceptor 

Rc = the half reaction that provides nutrient requirements for cell synthesis 

One of the oldest and most widely accepted empirical formulas to represent the 

organic composition of microbial cells is C~H702N. Phosphorus is also necessary nutrient 

but is only needed in trace amounts. The cell growth yield for Pseudomonas organisms 

(most common hydrocarbon degraders) is approximately 0.37 of new grams of cells 

produced for each gram of chemical oxygen demand (COD) removed (Gary & Lim, 

1980). This results in a fs value of0.44 and a fe value of0.56. In the following 

stoichiometry equation for microbial growth, the half reaction equation for the electron 

donor (Rd) is that typically of oils, the electron acceptor (Ra) is oxygen, and the cell 

synthesis (Rc) will be provided from nitrate as the nitrogen source. 

C8H 160 + 6.13 0 2 + 0.70 N03 = 0.70 C5H70 2N + 5.52 H20 + 4.04 C02 



Which means for each mole of C8H 160 (oil) removed under these growth 
conditions: 

* 6.13 moles of oxygen (02) are needed (1.53 grams 0 2 per gram oil). 

* 0.70 moles of nitrate (N03) are needed. 

* 0.70 moles ofmicrobial cells are formed. 

* 5.52 moles ofwater and 4.04 moles of carbon dioxide are formed. 

See Appendix A for detail of half reactions and equations for this problem. To 

approximate the heavier, longer-chained hydrocarbons typical oflubricating oil, this 

balanced normalized equation should be multiplied by three. 

Synergism 

Biological Factors Affecting Hydrocarbon 

Biodegradation 

One microbe type in a population may be unable to synthesize a particular enzyme 

response for a reaction, but will perform on the substrate when the activity of a second 

organism synthesizes the desired component. Frequently, microorganisms produce 

metabolites that may be self-inhibitory or inhibit the growth of other organisms (General 

Physics, 1990). Successful mineralization of a substrate is then dependent upon the 

activity of a second organism to remove compounds excreted as a result of growth from 

the first organism (Riser-Roberts, 1992). 

7 

The synergism between specific microorganisms is so important that the coupled 

associations are more like a microbial web (community). The rate of degradation of 

hydrocarbons in mixed cultures is much faster than by the combined rates of each separate 

organism collectively. The increased rate of degradation is probably a result of combined 

metabolic attack at different sites on the organic contaminant, increasing overall 

degradation rates (Leahy & Colwell, 1990). 
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Co-Metabolism 

Co-metabolism is defined as "the degradation of a compound only in the presence 

of other organic material which serves as the primary energy source" (Sims, Sims & 

Matthews, 1989). Enzymes generated by an organism growing at the expense of one 

substrate can also transform a different substrate that is not associated with that 

organism's energy production or cell growth. Co-metabolism (or co-oxidation if the 

transformation involves an oxidation reaction) may be critical for the mineralization of 

many recalcitrant substances, especially for more recalcitrant longer-chained hydrocarbons 

and xenobiotics (Leahy & Colwell, 1990) 

Aerobes 

The most commonly isolated organisms in areas of aerobic degradation of 

hydrocarbon contamination are the heterotrophic bacteria ofthe genera Pseudomonas, 

Achromobacter, Arthrobacter, Micrococcus, Vibrio, Acinetobacter, Brevibacterium, 

Corynebacterium, Flavobacterium, Mycobacterium and Nocardia (Riser-Roberts, 1992). 

Pseudomonas species appear to be the most prevalent and most adaptable to the different 

hydrocarbon contaminants. Corynebacterium species may be major agents for 

decomposing heterocyclic compounds and hydrocarbons in contaminated aquatic 

environments (Buday, Gergely, Torok & Szoboszlay, 1989). Pseudomonas have been 

found to be capable ofbiodegrading/biotransforming the more recalcitrant alkanes (C 19 to 

C40) as would be found in sludges and lubricating oils (Prince & Sambasivam, 1993). 

Loss of oxygen as a metabolic electron acceptor induces a change in the activity 

and composition of the microbial population in soils. Facultative anaerobic organisms, 

which can use oxygen when it is present or can switch to alternative electron acceptors 

such as nitrate or sulfate, and obligate anaerobic organisms become the dominant 

populations. This is significant during composting because oxygen in the piles can be 



depleted and switching electron acceptors, especially to nitrate, allows microbial activity 

to be sustained until oxygen is restored. 

Anaerobes 

9 

Anaerobic degradation is performed mainly by bacteria utilizing either an anaerobic 

respiration or fermentation processes. The end products of anaerobic degradation of some 

hydrocarbons are reduced compounds, some of which are toxic to other microorganisms 

and plants. Petroleum can be degraded anaerobically when sulfates and nitrates are used 

as the electron acceptors. An alkane dehydrogenase is proposed to be the initial enzyme 

involved in the production of alkene as the first intermediate compound (Prince & 

Sambasivam, 1993). Alkanes shorter than C9 can be degraded anaerobically, whereas 

some alkanes with longer chains may only be transformed into napthalenes, pyrene and 

other polycyclic aromatic hydrocarbons (Leahy & Colwell, 1990). 

Catabolism of aromatic compounds can occur under anoxic conditions and in the 

presence of nitrate. Pseudomonas strain PN-1 can use benzoates but not phenol to grow 

under nitrate-reducing conditions (Riser-Roberts, 1992). Some facultative 

microorganisms retain low levels of oxygenase activity when grown in the presence of 

aromatic compounds, even under anaerobic conditions. A nitrate-respiring P. stutzeri is 

capable ofusing phenol as a substrate (Riser-Roberts, 1992). Microorganisms have been 

found to degrade xylenes and toluenes under denitrifying conditions, such as in lake 

sediments and sludge digesters. Sulfate-reducing microorganisms are strict anaerobes 

(Riser-Roberts, 1992). Reducible sulfur compounds (e.g. sulfate, thiosulfate) serve as 

terminal electron acceptors. These bacteria are most commonly found in aquatic 

environments but can also be found in soil and include Desulfovibrio, Desulfonema 

magnum and Desulfovibrio vulgaris. Sulfate-reducing bacteria alone have not been found 

to effectively degrade hydrocarbons (Atlas, 1991). 



Hydrocarbon Degrading Microbe Communities 

The fraction ofthe total heterotrophic community represented by hydrocarbon

utilizing bacteria and fungi is highly variable, with reported frequencies from 6% for soil 

fungi, 0.13% to 50% for soil bacteria, and 0.003% to 100% for marine bacteria (Buday, 

Gergely, Torok, Szoboszlay, 1989). The most consistent and reasonable estimates for 

soils appear to be I% in unpolluted environments and 1- 1 00/o in historic oil polluted 

ecosystems (Sims, Sims & Matthews, 1990). 

10 

Mixed populations of these organisms with overall broad enzymatic capabilities are 

required to degrade complex mixtures of hydrocarbons, such as crude oil in soil. Twenty

two genera of hydrocarbon-degrading bacteria have been isolated from soil environments 

(Atlas, 1991 ). Based on a number of published reports, the most important hydrocarbon

degrading bacteria in both marine and soil environments are those previously identified 

above in the section on "Aerobes" (Sims, Sims & Matthews, 1990). 

Nutrients 

Optimization of Soil Factors for the 

Biodegradation of Hydrocarbons 

Microbial metabolism and growth is dependent on adequate supplies and proper 

ratios of nitrogen and phosphorus and other micro-nutrients or trace elements (i.e. 

sodium, potassium, calcium, magnesium, iron, etc.). During bioremediation processes 

(e.g. composting), microorganisms consume carbon for growth and also especially 

nitrogen for protein synthesis. The carbon to nitrogen (C:N) ratio depends upon the rate 

and extent of degradation of the contaminant involved. Common C:N ratios used for oily 

sludges and waste oils in soils has been 10: 1 and 25:1 (Jackson, Haby, Hammer, Hoffinan, 

Gorman, 1993; Kane, 1991). The sole carbon source in most inorganic predominant soils 

will be the hydrocarbon contaminant or the total petroleum hydrocarbon level. If an 

inadequate supply of nitrogen exists, then the organisms must work through more growth 
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cycles to develop enough enzymes to break down the excess carbon (Clarkson, 1993). All 

the available mirobial energy is being used for the degradation of the substrate and not for 

new cell growth and production of enzymes. If nitrogen levels are too high, then excess 

nitrogen will be lost as ammonia. At high enough levels, ammonia can retard the 

breakdown process (Sims, Sims & Matthews, 1989). 

Phosphorus additions are not as critical as nitrogen because of it's micro-nutrient 

requirements which typically already exist in soil environments. However, a phosphorus 

to nitrogen ratio of0.2 has proven effective in this study and others (Kane, 1991). 

Overall, the microbial requirements for nutrients are approximately the same as the 

composition of the cells. One additional consideration is to add nitrogen in the form of 

ammonium nitrate. Nitrate can be utilized as an additional electron acceptor by facultative 

anaerobes if oxygen supplies are decreased (Riser-Roberts, 1992). 

Moisture 

The moisture content of soil, or soil water, is the transport medium by which 

nutrients and organic constituents are adsorbed onto the microbial cell and by which waste 

products are removed. The moisture content also affects oxygen uptake of the cells, 

amount and availability of soluble materials and the pH of the soils. The optimum 

moisture content for aerobic remediation in this study and others cited has been 50 to 60 

percent offield capacity, or approximately 6- 8 percent by weight of inorganic based 

soils. However, field capacity will no longer be applicable when soils are excavated and 

bulking agents are added. The percent by weight basis should be used or physical 

observation to ensure the soils are moist but have not free drainage or slurries which 

would be typical of a 50 percent field capacity measurement. These levels are important 

to optimize biodegradation rates but are difficult to maintain under field conditions. Too 

much moisture can result in toxic anaerobic conditions developing and too little has been 

found to severely limit degradation rates (Fyock, Nordum, Fogel & Findlay, 1991). 
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The greatest diversity and activity of microorganisms and the highest population 

densities are consistently observed in the sandy water-bearing strata, whereas the dense, 

dry-clay layer zones have the least microbial activity (Riser-Roberts, 1992). Generally, 

with decreasing water potentials, fewer organisms are able to grow and reproduce; 

bacterial activity is usually greatest at high water potentials (wet conditions). When soils 

become too dry, many microorganisms form spores, cysts, or other resistant forms, 

whereas many others are desiccated (Atlas, 1991). The porosity and composition of the 

soil are the significant factors in water holding and draining capacities. It should also be 

noted that treated muncipal or rural water supplies should not be used unless they are de

chlorinated. 

Temperature 

Microbial utilization of hydrocarbons occurs at temperatures ranging from 5° to 

70°C (General Physics, 1990). Although biodegradation occurs at a temperature of 50C, 

hydrocarbons degraded much more slowly at these lower temperatures. Most soil 

microorganisms are mesophiles and exhibit maximum growth in the range of20 to 35°C 

(Sims, Sims & Matthews, 1989). The majority of hydrocarbon utilizing bacteria are most 

active in this range (Riser-Roberts, 1992). 

Temperature also affects biodegradation rates by its effect on the physical nature 

and chemical composition of the oil. Particularly affected are the surface area available for 

microbial colonization and the nature of hydrocarbons remaining for metabolic attack after 

any volatilization (Leahy & Colwell, 1990). At low temperatures, the viscosity ofthe oil 

increases and solubility is decreased which causes the oil to adsorb tightly to the soil 

particles. This provides less surface area available for microbial utilization and delays the 

onset of biodegradation (Leahy & Colwell, 1990). The volatilization of any lighter, short

chain alkanes is also reduced. 
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Oxygen 

The biodegradation of most organic contaminants requires approximately two 

parts oxygen to completely metabolize one part of organic compound (Atlas, 1991). The 

complete oxidation of 1 mg of hydrocarbon to carbon dioxide and water requires 3 to 4 

mg of oxygen, which is comparable to 4.59 mg calculated strictly from stoichiometry of 

oil (approximated at three times for lubricating oil), as presented earlier (Riser-Roberts, 

1992). The optimum level for aerobic metabolism is greater than 0.2 mg/l of dissolved 

oxygen and a minimum air-filled pore space in the soils of 10% (Riser-Roberts, 1992). 

These oxygen levels in soil systems can be maintained by: the prevention of saturation 

with water, presence of sandy and loamy soils or a bulking agent (e.g. wood chips), 

moderate tilling, avoidance of compaction of soil, and limited addition of additional 

carbonaceous materials. This is for passive (e.g. windrow composting, landfarming, 

shallow in-situ) bioremediation type processes. 

Soil pH and Composition 

Soil pH also affects the activity of micro-organisms and the solubility of nutrients. 

The solubility of phosphorus is maximized at a pH value of6.5 (Sims, Sims & Matthews, 

1989). Typically, for aerobic degradation ofhydrocarbons, the optimum pH is near 

neutral (between 6.5 to 7.5). Hydrocarbon contaminated soil pH can be highly variable in 

petroleum refining or production areas. Soil systems from these areas may require 

management with some lime additions to maintain these levels above 6.0. The lime has 

not been found to have a detrimental effect on microbial metabolism (McMillen, Kerr, 

Gray & Findlay, 1992). A pH level of greater than 6. 0 has been found to minimize any 

hazardous metals transport in the soil (Fyock, Nordum, Fogel & Findlay, 1991). 

Soil composition influences infiltration rate and permeability, water holding 

capacity, and adsorption capacity for various waste components and oxygen diffusion. 

The predominance of clay and silt particles in finer textured soils results in a very small 
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pore size with a slow infiltration rate of water (low porosity) and a low diffusion rate of 

oxygen. Clay soils tend to retain a higher moisture content which can further restrict 

oxygen diffusion. Coarse soils of sand and gravel with large interconnecting pores allow 

sufficient oxygen diffusion and rapid water movement. However, if the soils are 

excessively drained, nutrients in the added material will move too rapidly to be sufficiently 

adsorbed on the soil. 

A bulking agent addition has been found critical for successful remediation of 

hydrocarbon contaminated soils in prepared bed and composting remediation processes 

regardless of soil types but especially for cohesive clay-based soils. The bulking agent 

increases or maintains porosity of the soil for adequate diffusion of oxygen and 

distribution of nutrients, heat and waste gases. These agents have included wood chips, 

straw, and saw dust A typical soil to bulking agent ratio (per volume) used is 4:1 with an 

overall porosity rate of approximately 40 percent (Moore, 1992; Newton 1990). 

Typically, a trial and error method will be needed to find a ratio for specific soil types to 

maintain proper oxygen, moisture and porosity rates. 

Effectiveness and Use of Indigenous 

and Exogenous Bacterial Strains 

The microbial community in soil usually includes a significant hydrocarbon utilizing 

component, which readily increases in response to hydrocarbon contamination. These 

indigenous microbial populations are also highly adapted to a particular soil environment. 

Exogenous or seeded microorganisms cannot compete successfully and survive; for this 

reason, soils are not widely considered to be amenable to improvements in rates of 

biodegradation through seeding alone (Buday, Gergely, Torok & Szoboszlay, 1989). 

Other potential problems associated with the inoculation or seeding of soils with 

exogenous organisms include: the presence of inhibitory substances, predation, 

preferential metabolism of competing organic substrates, and insufficient movement of the 

seed organisms within the soil. 
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The addition of selected pure cultures ofbacteria to soil has been found to increase 

the degradation of certain pesticides (e.g. DDT & parathion) (Atlas, 1991). The best 

results from seeding experiments, however, have been reported in studies in which the 

environment is controlled to some extent, such as in fermentors and chemostats (Riser

Roberts, 1992). The advantages ofthese systems are clear: competition with other 

microflora is reduced or nonexistent, and system parameters can be optimized to highest 

rates ofbiodegradation. The disadvantages are economic costs and impracticability to 

field applications. 

Production and Effect 

of Biosurfactants 

Hydrocarbons in soil systems are often difficult to remove because they will adsorb 

to surfaces of inorganic and especially organic soil particles. Biosurfactants are produced 

by microorganisms during growth on substrates that are insoluble in water, including 

petroleum hydrocarbons. These surfactants can enhance biodegradation of the 

contaminant by raising the solubility ofthis substrate, thereby making more readily 

available for degradation and facilitating transport of the substrate across the cell 

membrane (Falatko & Novak, 1992). This also explains a common phenomenon that 

occurs during the initial stages ofbioremediation: an apparent increase in contaminant 

levels. The action of the surfactant enzymes releases the contaminants from the soil 

particles to which they have a high attraction, making them available for degradation, but 

also more easily detected by laboratory analysis (Jackson, Haby, Hammer, Hoffman & 

Gorman, 1993). 

Long chain hydrocarbons C25-C40 (lubricating oils and sludges) have a high 

attraction for adsorption to soil particles resulting in a lower availability for biodegradation 

(General Physics, 1990). Naturally produced biosurfactants are typically lipids with 

properties resulting from polar and apolar groups on a single molecule. Biosurfactants 

have been credited with facilitating cellular uptake and use of generally insoluble 
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substrates, especially longer chain hydrocarbons (Buday, Gergely, Torok & Szoboszlay, 

1989). When associated with the cell, they promote transport across the membrane and, 

as extracellular compounds, they solubilize the substrate. The effectiveness of synthetic 

surfactants in enhancing biodegradation of hydrocarbons has been shown to be variable 

and dependent on the chemical formation of the surfactant (Falatko & Novak, 1992). 

Although considerably less toxic than they have been in the past, synthetic surfactants 

have been shown to inhibit microbial processes (Riser-Roberts, 1992). 



CHAPTER III 

COMPO STING PROCESS TREAT ABILITY 

STUDIES AND REGULATORY 

CONSIDERATIONS 

Kane Laboratory Study (Kane, 1991) 

A treatability study involving laboratory experiments and bench-scale studies was 

performed on contaminated soils from a heavy equipment storage area. These soils 

consisted of motor, hydraulic, gear and transmission oil contaminants with total petroleum 

hydrocarbon (TPH) levels of76,000 milligram per kilogram (mg/kg) from composite 

samples. The contaminants were extracted (washed) from the soils using distilled water. 

Microbial populations were cultured in lab reactors from sewage sludge using glucose as 

the substrate. The contaminant extract was slowly substituted for the glucose until the 

microbes were acclimated. A total of seven different reactors were set up in the lab in 

which predetermined and varying amounts of contaminant extract and acclimated seed 

were combined as well as nutrients and buffer solutions. One additional "blank" reactor 

was set up with acclimated inoculum, nutrients, and buffer but with no extract. The only 

variable in the reactors was the different levels of extract (substrate). The reactor vessels 

were four-liter Pyrex flasks fitted with aeration equipment, consisting of an air compressor 

delivering air through diffuser stones providing the oxygen needs of the culture and for 

mixing the reactor. An inorganic nutrient solution was added to provide a biochemical 

oxygen demand (BOD), nitrogen, phosphorus (BOD:N:P) ratio of 100:5:1. Other trace 

elements such as magnesium, potassium, selenium, chromium and molybdenum were also 

added. 
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Respirometer equipment was installed on the reactors to measure the amount of 

oxygen consumed by the process, and the oxygen supply was carefully regulated and 

computer monitored. The temperature of the reactors was maintained at 25° C. Initial 

test runs were analyzed to compare BOD levels of batches with contaminant extract and 

to those without These first runs indicated no appreciable differences in BOD between 

live and blank runs. Two assumptions were made: that the actual BOD5 of the extract 

was much lower than previously measured, and/or nutrients from the acclimating reactors 

were being transferred into the test reactors. Only after washing the acclimated "seed" 

bacteria were appreciable differences in BOD levels observed. The test runs were 120 

hours, and batches without extract had generally consumed less than 50 mg/1 BOD while 

live batches (with extract) had BOD consumption that increased to over 400 mg/1. The 

seven reactors were set up with the extract, nutrients and buffer solution and seed 

bacteria. A buffer solution was used to maintain a pH between 6.5 to 7.5. As stated, the 

only variable was the amount of contaminant extract added to the reactors. A gas 

chromatography (GC) hydrocarbon analysis was taken at the beginning and end of the 120 

hour tests. Chemical oxygen demand (COD) analysis was also taken at the beginning and 

end of this process and BOD readings were taken continually by the respirometer 

equipment. 

The time versus BOD data for all seven loaded reactors indicated that BOD 

increased proportionally to the amount of extract available. The BOD at 120 hours 

ranged from 875 mg/1 with 340 ml of initial extract to 325 mg/1 with 25 ml of extract The 

greater the volume of extract the higher the initial chemical oxygen demand (COD) and 

greater increase of oxygen consumption over the test period of 120 hours. The initial GC 

analysis of the reactor solutions indicated hydrocarbon spikes. No hydrocarbon spikes 

were evident on samples after the test run indicating that the hydrocarbons were degraded. 
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Jet Fuel Contamination Project (Moore, 1992) 

A static-pile bioremediation composting approach was used to treat soils from an 

underground jet fuel storage facility. This project involved 3,500 cubic yards of 

contaminated soil with total petroleum hydrocarbon (TPH) levels of 3,500 to 7,500 

mg/kg. No introduced strains ofbacteria were used in this process. A bulking agent of 

wood chips was added to the soils at a ratio of 4 parts soil to I part wood chips. Several 

types ofbulking agents were tried, including gravel, wood chips and peat moss. Through 

trial and error, the wood chips were found to be most effective. Two cells were 

constructed that were 150 feet long by 65 feet wide, and 6 to 7 feet high each. A PVC 

liner was used with a collection sump downgradient of the cells to collect water and 

nutrients for recycling. A 1.5 foot lift of soil was placed on the bottom of the cells, then 

2-inch perforated PVC pipes were placed on this at I 0-foot centers. This was covered 

with gravel and connected to a 4-inch manifold with a vacuum blower to draw air through 

the system. Another 4-foot lift of soil was placed on top of the aeration system, followed 

by nutrient supply piping and a final 1. 5 foot lift of soil mix. The entire cell was covered 

by PVC liner. 

Nutrients consisting of nitrogen and phosphorous were mixed with water and 

connected to pumps to keep the moisture levels between 50 to 85 percent of field 

capacity. The carbon to nutrient ratio was not provided in the report on this project. 

Pressure in the aeration system ran at negative I. 5 psi. The aeration system calculations 

showed that 300 cubic feet of air was moving through each biocell per minute or the 

equivalent oftwo changes of air in the cell pore spaces per hour. Each cell was divided 

into six zones to monitor effectiveness of the treatment and ensure even distribution of 

nutrients throughout the cell. The system was run from October through mid-December, 

during which time the average TPH fell from 3,500 mg/kg to 2,500 mg/kg. In mid-March 

the unit was reactivated and by the end of May average levels had been reduced to 1,000 

mglkg. By the middle of August the average TPH in each cell was below 35 mg/kg. 
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Because this was below the state regulatory level of 50 mglkg, the soils were returned to 

the excavation pit with no further treatment. 

Port Stanley Pilot Study 

(Barnhart & Myers, 1989) 

In Port Stanley, Ontario an oil gasification site was used from the 1920's to the 

1950's. The waste oil tar was stored in two open pits on-site and subsequently filled with 

dredge material resulting in the spreading of the oil tar over surface soils. A pilot-scale, 

on-site remediation of approximately 4,800 cubic meters of oil tar contaminated soil 

commenced in August and ran four months. The contaminants consisted ofbenzene, 

toluene, xylene (BTX), oil and grease, and polycyclic aromatic hydrocarbons (PAHs). A 

500-foot by 200-foot biotreatment pad was constructed using compacted clay and 

compacted clay-faced berms. The excavated soil was prepared for bacterial application 

(additions to indigenous strains) by the addition of nutrients. This included nitrate 

nitrogen, phosphorous, potassium, ammonia nitrogen, and calcium. The nutrients were 

dissolved in water and sprayed onto the soil. The ratio of the nutrients, or nutrient load, 

was not provided in reports on this study. A bacterial suspension was prepared including 

nutrients sufficient for their rapid growth. Bacteria were applied approximately four days 

a week throughout the treatment period. This application consisted of 1,200 total gallons 

bacterial suspension, which consisted of approximately one-third cell mass. The 

suspension was applied through a high pressure distribution system to the soil. 

The soil was tilled on a daily basis to a depth of 24 inches. The depth of the soil 

rose from 25 inches when it was first leveled in the facility to 33 inches as a result of the 

tilling operation. No bulking agent was added as the daily tilling probably sufficed to keep 

the soil adequately porous and aerated. The sampling regime of this project was relatively 

intense and consisted of an initial sampling round and four subsequent rounds performed 

at two week intervals. Twenty zones were established in the treatment area in which the 

samples were taken for nutrient, moisture and contaminant levels. No mention was made 
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in the report on this project of moisture levels although moisture was obtained through 

nutrient and bacterial applications, and it is assumed to be relatively high. The pH levels 

fluctuated between 6.0 and 7.5 with the average being 7.0. The initial BTEX levels were 

13.2 ppm and were reduced to 3.6 ppm at the end ofthe four-month treatment period and 

were assumed to be volatilized during the treatment. Oil and grease levels were initially 

1,538 mg/kg and were reduced to 990 mg/kg, and overall PAHs were initially 335 ppm 

and were reduced to 45.5 ppm due to biodegradation. 

Chevron's Petroleum Sludge Composting Project 

(Fyock, Nordum, Fogel & Findlay, 1991) 

This pilot-scale windrow composting project sought to determine if indigenous 

bacteria could biodegrade petroleum production pit sludges. A laboratory treatability 

investigation was first carried out to provide information for the process design. Soil from 

the dike or berm surrounding the pit was tested for its ability to provide a bacterial 

inoculum for the process. The soil was found to contain high levels, 107 colony forming 

units per gram (CFU/g) from initial plate counts on an unknown growth medium, of 

acclimated bacteria capable of growing on sludge vapors as their sole source of carbon. 

Because of these high levels, the soil was used directly as the inoculum. The bulking 

agent selected for the process was locally available saw mill waste. Air permeability, 

moisture transfer, and plate count tests were conducted on mixtures of the sludge and 

bulking agent to determine optimum quantities of sludge to bulking agent needed to 

support growth of the bacteria. 

The bulking agent was laid in rows, and the sludge applied at the rate of20, 30 or 

40 percent by volume. The sludge, a small amount of soil inoculum, about 500 mg/kg 

fertilizer, and water were then thoroughly mixed into the bulking agent using an auger 

mixer. The compost was aerated by mechanical/physical mixing once or twice a week. 

Water was added at intervals to maintain the desired 40 percent moisture content (of field 

capacity). Composite samples were taken once a week and nutrients added to maintain 50 



mg/kg nitrogen and 20 mg/kg phosphate in the compost. Temperature was taken daily 

and the compost cooled by mixing when the temperature exceeded 13 5° F. 
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The number of sludge-degrading bacteria in two samples of starting compost were 

10 x 106 to 20 x 106 CFU/g. These were good base line levels for initiating the treatment 

process and correlated to the initial soils levels prior to mixing of 107. After about 2 and 5 

days of composting, the numbers increased to 180 x 106 and 240 x 106, respectively. The 

initial petroleum hydrocarbon fingerprint analysis consisted of a distinctive pattern of 

linear alkanes (C9 to C32). During composting, the extent of degradation was estimated by 

analyzing for total petroleum hydrocarbons (TPH) using a modification of the EPA 

Method 418.1 which uses an infrared spectrophotometer with a freon extraction process. 

The TPH in the compost containing 20 percent sludge decreased from about 100, 000 

mg/kg (10%) to 27,000 mglkg (2.7%) in the first 10 days ofcomposting. The TPH then 

decreased gradually during the next 30 days to less than 10,000 mglkg. A portion ofthe 

residual TPH may be biomass and partially oxidized hydrocarbons due to the analytical 

method selected. Operation and maintenance costs for a 330 cubic yard treatment cell are 

anticipated to be $30 per cubic yard of sludge. 

Exxon's Petroleum Sludge Composting Project 

(McMillen, Kerr, Gray & Findlay, 1992) 

A bench-scale composting project sought to determine if petroleum production pit 

sludges could be effectively biodegraded with local indigenous bacteria. These sludges 

contain mostly heavy crude oils as well as some workover fluids and produced water. The 

goal was to reduce the total hydrocarbon content to less than 1 percent or 10,000 mg/kg 

(a regulatory limit in several states for production waste). The sludge was analyzed and 

found to contain 10.8 percent (108,000 mg/kg) total petroleum hydrocarbons (TPH) and 

showed a distinct pattern oflinear alkanes, but virtually no compounds lighter than C10. 

This indicates that few volatiles were present. Also, little biodegradation of the crude oil 
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had seemingly occurred while stored in the pit, since straight -chained alkanes are usually 

the most readily biodegraded hydrocarbons. 

Wood chips were added as a bulking agent and barn yard manure was added as a 

nutrient source. Native site soil and the impoundment berm soil were analyzed for the 

presence of hydrocarbon-degrading bacteria to determine if either were suitable sources of 

inoculum for the compost mixture. The native soil was found to contain the highest 

bacteria levels with 7 x 106 CFU/g of degraders and was therefore used as the inoculum. 

The sludge was mixed with varying ratios of wood chips and manure to determine the 

optimal mixture for composting. The following mixture was found to incorporate the 

maximum amount of sludge while maintaining good air permeability and moisture 

retention: (volume ratios) sludge 6.5; bulking agent, 24; water, 6; manure, 4; and native 

soil, 0. 5. The resulting compost had TPH levels of 5. 9 percent, and had a moisture 

content of39 percent and a pH of7.0. 

Fertilizer was added initially to give 300 mg/kg nitrogen (as urea), 217 mglkg 

phosphate and several other trace elements. Nitrogen and phosphorous were monitored 

during composting and adjusted as necessary to maintain these levels. The compost 

mixture was aerated by mixing in a stainless steel bowl three times a week which also 

served to keep the temperature within mesophilic conditions. Active composting was 

maintained for approximately four weeks. The number of specific hydrocarbon degrading 

bacteria increased from 0.05 x 106 CFU/g of compost initially to 1 x106 on day three of 

com posting, and 27 x 106 on day ten. 

The TPH decreased from 5.9 percent to a final concentration of0.47 percent, or 

approximately 92 percent biodegraded. Gas chromatography analysis indicated that the 

normal alkanes C10 through C30+ were not detected. 



Enogex's Lubricating Oil Composting Project 

(Jackson, Haby, Hammer, Hoffman 
& Gorman, 1993). 
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This bench-scale composting project assessed if lubricating oil contaminated soils 

could be effectively bioremediated with indigenous bacteria. These oil-saturated soils 

originated from around pipeline compressor engines which leaked lubricating oils for many 

years. Three treatment cells were constructed with 40 gallons of contaminated soil each. 

No bulking agents were added to the soils. The moisture was to be maintained at 50 

percent of field capacity in each cell. No nutrients were added to Cell I (control cell), 

only moisture, Cell 2 was fertilized with a C:N ratio of 12, and Cell3 was fertilized to 

maintain a C:N ratio of25. The soils were aerated by thoroughly tilling twice a week. 

During the second month of the composting, the soil began to agglomerate and it 

became difficult to maintain the soils consistency and adequate porosity. The soil was 

then tilled every day from this point. Also, half the soil was removed from Cell 1 and 

mixed with an equal part of sand. Another cell was then added with the other half of soil 

and sand mixture. Moisture content was also reduced to approximately 40 percent (of 

field capacity) to improve oxygen transfer capacities, and ammonium nitrate was added as 

an additional nitrogen source. Nitrate was added because the conversion of urea nitrogen 

to nitrate was inhibited by the limited amount of oxygen present in the soil. The nitrate 

also provided an alternative electron acceptor for the oxidation of the hydrocarbons. 

The initial analysis of the contaminated soils indicated total petroleum 

hydrocarbons of approximately 80,000 mg/kg and plate counts of 2 x 104 CFU/g. Four 

distinct bacterial colonies were initially identified in the soil, Pseudomonas putida, 

Pseudomonas jlourescens, Salmonella typhi and Al1terobacter cancerogenous with 

Pseudomonas species being the known hydrocarbon degrader. The TPH concentration 

was measured by EPA method 418.1. At the end of 120 days, the TPH in Cells 1, 2, and 

3 had been reduced to 45 to 60 percent of the initial levels and the TPH in Cell4 to 25 

percent of initial concentrations. The average C:N ratio for Cell 2 after fertilizer was 



added was 15. The average C: N ratio for Cell 3 was 20 and the average C: N for Cell 4 

was 25. 
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The highest levels of bacterial populations measured in the cells were: Cell 1: 4.8 

x 108, Ce112: 9.2 x 107, Cell3: 1.5 x 108 and Cell4: 4.5 x 107 Through the first 100 

days of operation, three to four types of bacteria were detected in each cell. After this 

period, the number of types increased in several samples with five, six and seven different 

types of bacteria identified. As indicated above, cells with greater C:N ratios did not 

result in higher plate counts. On the contrary, Cell 1 in which no nutrients were added had 

the highest counts. There was also a temporary rise in TPH levels in all cells 60 days into 

the experiment. This may be due to the action of surfactant-type enzymes released by the 

petroleum degrading bacteria in the soil. These type of enzymes released the contaminants 

from the soil particles to which they had a high attraction, making them available for 

degradation, but also more easily detected by laboratory analysis. 

Regulatory Considerations 

Under the Resource Conservation and Recovery Act (RCRA) treatability exclusion 

rule, bench and pilot tests to determine hazardous-waste treatability using bioremediation 

approaches are exempt from RCRA listing, generating, and transporting regulations. The 

rule allows for the generation or collection of samples and standards for treatability 

studies for 1 kilogram of acute hazardous waste and I ,000 kilograms of non-acute 

hazardous waste, although the regional administrator or authorized state may grant 

requests for additional volumes of soils, water and other contaminated debris. The 

applicant must obtain a demonstration permit, which allows the applicant to build and 

operate the treatment site for 1 year and is renewed annually thereafter. 

The majority of crude and lubricating oil contaminated sites are not RCRA 

regulated sites. The contamination is either non-hazardous by RCRA definitions or is an 

exempt waste under the oil exploration and production exclusion. However, these sites 

may be hazardous, and thus regulated, if there are sufficient levels of heavy metals or 
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halogenated compounds present; as may be expected in engine lubricating oils or as a 

results of cross-contamination with cleaning solvents. RCRA hazardous wastes must 

follow proper disposal guidelines through incineration or hazardous waste land filling if the 

contaminant is not banned from landfilling. Treatment of the hazardous waste must be 

permitted and administered under state and federal approved guidelines. 

Justification or mandates for remediation of oil contaminated soils, and 

consideration for design of the treatment area, are also provided through the regulation of 

contaminated storm water. On September, 9, 1992, the EPA issued final rules establishing 

a permitting regimen for storm water discharges that are classified as "associated with 

industrial activity" pursuant to 40 Code ofFederal Regulations 122.26(b)(14) under the 

Clean Water Act. Any of the industry types listed, or any other industry that has had a 

reportable quantity spill in the past, or has the potential to contaminate storm water, must 

apply for a permit and include controls to reduce these pollutants. A reportable quantity 

spill for oil is defined as any amount that results in a sheen on the surface water. 

Target contaminant levels for remediation of oil contaminated soils is typically 

10,000 mg/kg ofTPH. This is the action level several states have established for oil and 

gas production sites and related facilities for remediation of surface pits, impoundment 

dikes and other sources of contaminated soils. Amounts less than 10,000 mglkg can be 

left in place or landfilled while amounts greater must be treated as a hazardous or special 

industrial waste depending on composition. Other states and regulated activities have 

action levels as low as 1,000, 500 or 50 mg/kg ofTPH. 



CHAPTER IV 

EXPERIMENTS 

Nature and Type of Contaminant 

and Soil 

Soil contaminated by lubricating oil was excavated from around natural gas 

pipeline compressor engines for treatment. These soils may have also been contaminated 

with ethylene glycol which is used as a coolant. During the course of these experiments, 

three batches of contaminated soil were treated. The soil in the first batch was analyzed 

for hazardous constituents under RCRA toxic characteristic leachate procedure (TCLP). 

These tests included analysis for heavy metals, volatiles and semivolatiles. The results 

indicated that all of these constituents were less than the detection limits except for barium 

of0.14 mg/kg. The pH was not tested but based on the known nature ofthe contaminant 

and inorganic content ofthe soil, it was presumed close to neutral. All of the batches 

were tested initially and throughout the experiment for total petroleum hydrocarbons 

(TPH) as the indicator parameter for the contaminant. All of the soils were excavated 

from around compressor engines in a common area; all had been exposed to the same type 

of lubricating oils. The target remediation level was 50 mg/kg TPH. 

TPH Analysis 

TPH was analyzed using EPA Method 8015 for non-volatiles. This method uses a 

gas chromatography analysis with methane or hexane extraction to chart hydrocarbon 

signatures or spikes by molecular weight. Typically methane extraction is used for non

volatiles in which the contaminant is solubilized and extracted from a wet sample (not 

dried prior to extraction). The first signatures from the chromatography run will be the 
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lighter volatiles followed by the heavier non-volatiles or extractables. The gas 

chromatography can be run for volatiles only, or with the use of other extraction and 

column injection techniques, run longer for the non-volatiles. The non-volatile 8015 

method, which will detect hydrocarbons from C10 to C50, was specified for these tests. 
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The lubricating oil contaminant in these soils will be detected in this range. Any volatile 

hydrocarbons less than C10, which existed in the soil or were a result of the biodegradation 

of the longer hydrocarbons, were not monitored because they typically would be 

volatilized during aeration of the soils. 

Another TPH analysis method used in the past is EPA Method 418.1. This 

method uses an infrared spectrophotometer with a freon extraction process. The problem 

with this method is that it can only be expected to detect 50% of the volatile range of 

hydrocarbons (according to EPA's preamble to the testing protocol) and, more 

importantly for this research, it does not accurately discriminate between organic carbon 

(biomass, humus, etc.) and heavier hydrocarbons. As a result, Method 418.1 typically 

overstates the levels of hydrocarbon contamination. Remediation projects and other 

studies conducted within the last two years have begun to use the 8015 or similar analysis 

methodology. 

Moisture/Nutrient Analysis 

Moisture of the soil was determined according to the Standard Methods for the 

Examination of Water and Wastewater, 16th Edition, Method 209A Volatile solids were 

determined according to Method 209G; ammonia nitrogen according to Method 417C 

which includes nitrogen in the sorbed and aqueous phases and phosphate phosphorus and 

nitrate nitrogen according to Method 429 of this same reference. 

Soil Type 

The Soil Mechanics Laboratory in the School of Civil and Environmental 

Engineering at Oklahoma State University performed a sieve and mechanical analysis of 
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the soils on September 7, 1993. A composite sample representative of the soils from the 

three batches treated, was analyzed. The soils were comprised of 42% gravel, 50.4% 

sand, and 7. 6% clay or silt by weight. The high gravel content is not unusual because of 

successive layers of gravel used over the years around these engines as a ground cover. 

The high sand percentage was also expected because the engines were located in the 

Cimarron River valley. 

Biological Activity 

During the testing of the third batch of soils, samples were taken and shipped to 

Microbe Inotech Laboratories, Inc. in St. Louis, Missouri for analysis of biological 

activity. This initially consisted of a total plate count, bacterial identification and an 

endpoint assay. Subsequent samples were cultured for total plate counts and compared to 

the initial identification analysis to determine the specific counts of bacteria types within 

the population. 

Standard Bacterial Plate Count 

A standard spread plate method was used for this process. Aliquots from each 

sample were checked for weight and then serially diluted. Each dilution was then 

transferred in a sterile form to a laminar flow biological cabinet and placed on a previously 

prepared and dried trypticase soy broth agar (TSBA) medium in Petri plates. 

Observations for colony forming units (CFU) were made at 24 and 48 hours on incubation 

at 280C for each sample. The different types ofbacterial colonies formed were noted 

after 48 hours of incubation. These were counted and compared to the specific bacterial 

identification made below and the results reported. 
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Bacterial Identification 

Two different analysis methods were used to identify the bacterial strains. The 

first method is the Gas Chromatography Fatty Acid Methyl Ester (GC-FAME) System and 

the second is the Biolog Microplate System. The GC-F AME method identifies bacteria 

based on unique fatty acid profiles. These profiles are identified by gas chromatography 

and are compared to a database consisting of more than 60,000 profiles of strains. The 

Biolog Microplate method characterizes bacteria by carbon source utilization tests. There 

were 95 wells on a microplate which contained a carbon food source and a tetrazolium 

dye. As the bacteria consumed the carbon source in a well, the dye turns purple. Each 

species ofbacteria creates a distinct pattern of purple dots that is recognized by the 

automated microplate reader and compared to the Biolog database of Microbe Inotech 

Laboratories. 

The species characteristics in the GC-F AME and Biolog databases are an 

"average" ofthe characteristics of hundreds oftested bacteria ofthe same species. The 

similarity and distance coefficients of the organism are calculated based on a hypothetical 

'mean' organism in the databases. The database organism has a similarity coefficient of 

one and a distance of zero. The closer the strain is to one and zero the more closely it 

matches the mean organism in the database. 

Endpoint Assay 

The endpoint - kinetic assay measures the effectiveness of specific bacteria found 

in soil or water to break down hydrocarbon contaminants. After the plate counts, specific 

bacteria strains were isolated and grown for 18 hours on TSBA. The bacteria were then 

separately loaded into 96-well microtiter plates in which an undisclosed growth medium 

(mineral salts, vitamin mix, buffer), without a major carbon source, was added. The wells 

also contained a tetrazolium dye which was activated by the microbes oxidation of the 

carbon source. Free phase contaminant from the site was then added to selected wells to 
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serve as a the major carbon source. The bacterial strains were then allowed to grow and 

consume the contaminant as their carbon source. Based on the initial identification, 

counts were then made of each specific strain type. TSBA served as a positive growth 

control. The bacterial strains were also cultured on the oil and the TSBA separately as 

their sole carbon sources. The purpose was to determine their preferential substrate 

source and growth rates on each per strain. Bacterial growth was measured by color 

intensity of the dye after 24 hours of incubation. 

Treatment Methodology 

Three batches of soil contaminated by lubricating oil were treated from May 1992 

through November 1993. The first batch comprised 133 cubic yards of soil, the second 

batch 89 cubic yards and the third 75 cubic yards of soil. These soils were treated in an 

abandoned warehouse at a natural gas processing plant site. A bench scale test was 

conducted simultaneously on the first batch and was used to confirm residual TPH levels 

and nutrient requirements. A bench scale test was also conducted simultaneously with the 

third batch of soils to monitor biological activity. This bench scale test comprised two 

cells of approximately 0. 5 cubic yards of soil each. One cell contained contaminated soils 

from the third batch and the other "control" cell had uncontaminated soils from the same 

plant area. The soils were mixed with a nitrogen fertilizer and bulking agent of wheat 

straw, and water was added from a well supply. The windrow compost was aerated by 

turning with a backhoe every 7 to 1 0 days. The TPH, nutrient and moisture levels were 

sampled and analyzed approximately every 14 - 18 days. The warehouse was covered, 

had a concrete floor, and was large enough to accommodate the largest batch at a wind

row depth of three feet. A concrete floor, or other impermeable layer, prevents leaching 

of the contaminant into the surface soils and the roof or other cover prevents 

contaminated storm or treatment water from running off the site. The bench cells were 

turned by hand shovel and sampled and watered on approximately the same frequency. 
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Compost Process 

The bulking agent was mixed in the soils in the approximate ratio of I part wheat 

straw to 4 parts soil. Ammonium nitrate was added as the nitrogen source and 

ammonium phosphate as the phosphorous source. No other nutrients or trace elements 

were added. A carbon, nitrogen, and phosphorus ratio (C:N:P) of IO: 1:0.2 was initially 

established. This was accomplished by nitrogen and phosphorous analysis and calculating 

deficiencies based on the volume of soil and level of contamination. Because the soils 

were primarily inorganic (sands and gravel), the total petroleum hydrocarbon (TPH) levels 

were used as the basis for the total organic carbon content in the soil. Water was added to 

the soils from a well supply to keep the soils saturated to a point that no free liquids, 

drainage or slurries were produced. Water was added when the soils were turned to allow 

proper mixing and consistency. It was estimated that the moisture content of the soils was 

approximately 40 to 50% of a theoretical field capacity based on observations and 

moisture weight percent. The soils from all three successive batches were spread out into 

two piles (or rows) in the warehouse. The piles were 40 feet by 1 0 feet by 2 to 3 feet 

deep. A I 0 foot aisle in the center of the piles was left open for access by the backhoe. 

Maintenance 

The windrows were turned every 7 to 10 days with a backhoe for aeration. Water 

was also added at this time if needed. It required approximately two labor hours to 

complete. Ammonium nitrate and ammonium phosphate would also be added at this 

time, if needed, based on the results of the latest analysis. These fertilizers were obtained 

at the local farmer's cooperative at a cost of less than $10 per 50 pound bag. The first 

batch treated had the greatest nutrient deficiencies which corresponded to the higher levels 

of TPH contamination in this batch. Samples were usually also collected at this time for 

analysis. 
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Sampling and Analysis Program 

Sampling and analysis was performed for TPH, moisture, volatile solids, ammonia 

nitrogen {NH3-N), nitrate nitrogen (N03-N), and phosphate (P04). The bench test 

associated with the third batch was analyzed initially for total heterotrophic plate count, 

bacterial identification and endpoint assay; subsequent samples were taken for plate counts 

only. These plate counts were correlated to the initial identification to determine the 

population of the hydrocarbon degrading species. Composite samples were taken which 

consisted of soils from least four different areas and depths in the warehouse (field) and 

bench study. The location of these samples for the composite were randomly selected. 

TPH. For the first batch, TPH was sampled at the start of the treatment process 

and was not sampled again until five months later. At this time it was discovered that 

detectable TPH levels were not present. Samples were not taken more frequently 

because of difficulties in setting up the project, adding the proper amount of nutrients and 

moisture, and establishing procedures and responsibilities for sampling. Samples were 

obtained and analyzed approximately every 14 days for the second batch and 

approximately every 14 days for the bench study of the third batch. TPH samples were 

analyzed about once every 30 days for third "field" batch. One TPH analysis was 

performed on the uncontaminated "control" bench cell. 

Moisture, Nutrients, Volatile Solids. Samples and analysis for moisture, nutrients 

and volatile solids were taken approximately every 30 days for the first and third batches 

and every 14 to 30 days for the second batch. For the third batch, samples were only 

taken from the field project and not the bench. The results from the field were correlated 

to the bench test. Although volatile solids analysis was performed, the results were 

inconclusive and did not correlate to the increases in cell mass or other factors. As such, 

they were not relied upon as indicator parameters or incorporated into the results or 

conclusions of this study. In addition, the results of the moisture analysis method selected 
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reflected the moisture content as percentage of weight and not as percentage of field 

capacity correlated to these excavated soils with a bulking agent addition. Subsequently, 

these results were not used to assess moisture requirements of the soil. This was made by 

physical observation and assessment alone to maintain the soils at speculated optimum 

moisture conditions. 

Results 

The results of the analyses performed for the compost treatment ofbatches one 

through three and the bench study are identified below with reference to appropriate tables 

and figures. 

Batch One Table I on the following page summarizes the treatment results from 

batch one. Table I-A on Page 36 identifies the detail of the analysis results from this 

testing. This table identifies three separate composite samples (site #l, #2 & #3) that were 

taken for the nutrient and other parameters and one composite sample for TPH. Total 

nitrogen is comprised of ammonium nitrogen (NH3) and nitrate nitrogen (N03). A 

simultaneous bench scale test was also being performed on a sample of these soils which 

followed the same treatment approach (i.e. aeration, nutrients, watering, etc.) as the field. 

The resulting TPH levels in the two cells from this test are also reported in this table. 



TABLE I 

SUMMARY OF TREATMENT RESULTS 
BATCH ONE 

Volume of Soil: 

Initial TPH Level: 

Ending TPH Level: 

Duration ofTreatment: 

Nutrient Additions: 

Estimated Cost: 

133 cubic yards 

9659 mg/kg (PPM) 

< 1 mglkg (field) 

6 months (5/92- 11/92) 

700 lbs. ammonium nitrate 
350 lbs. ammonium phosphate 

$1,700 ($800 labor, $400 material, 

$500 analysis) 

The lubricating oil in the contaminated soil in this batch was successfully 

remediated to non-detectable levels within a period of six months. The total nitrogen 

levels reflect an increase in microbial activity with a significant consumption of nitrogen 
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during this process. The total nitrogen levels taken on September 17th were 1,857 mg/kg 

and approximately 30 days later were 486 mg/kg. Although TPH levels were only 

identified at the beginning and end of the treatment process, it can be assumed that the oil 

degradation rate increased rapidly sometime after September 17th. Since this process 

began in May of 1992, it could be concluded based on subsequent batches and other 

studies cited in this review, that the nitrogen addition made between July and September 

of that year was a critical factor for the success of this treatment. 



SAMPLE DATE 

12-Jul-92 
17-Sep-92 
23-0ct-92 
11-Dec-92 

12-Jul-92 
17-Sep-92 
23-0ct-92 
11-Dec-92 

12-Jul-92 
17-Sep-92 
23-0ct-92 
11-Dec-92 

12-Jul-92 
I 

17-Sep-92 
23-0ct-92 

12-Jul-92 
17-Sep-92 
23-0ct-92 

I 
10-Jul-92 

17-Sep-92 
23-0ct-92 

10-Jul-92 
17-Sep-92 
23-0ct-92 

21-May-92 
06-Nov-92 
25-Nov-92 
21-Dec-92 
21-Dec-92 

TABLE I-A 

BATCH ONE -NUTRIENTS I TPH 
ANALYSIS RESULTS 

NUTRIENT I OTHER SAMPLING LOCATIONS 
PARAMETER SITE #1 SITE #2 SITE #3 

Moisture 6.79 5.24 5.48 
(% by weight) 11.15 13.23 -

7.87 16.14 8.84 
8.53 8.21 8.37 

Volatile Solids - - -
(%wet) 4.23 4.33 -

3.62 5.17 5.08 
4.51 4.60 4.55 

Volatile Solids 5.79 5.14 4.69 
(% dry) 4.88 4.88 -

3.93 6.17 5.57 
4.93 5.01 4.97 

NH3-N 401.00 352.00 322.00 
(mg/kg) 179.00 329.00 -

445.00 334.00 527.00 

N03-N - - -
(mg/kg) 1470.00 1735.00 -

111.80 11.50 29.40 

Total N 401.00 352.00 322.00 
(mg/kg) 1649.00 2064.00 0.00 

556.80 345.50 556.40 

P04-P 0.00 0.04 0.00 
(mg/kg) 0.00 0.00 -

257.00 370.00 411.00 

TPH 9569,00 (Composite Samples) 
(mg/kg) < 1.00 

< 1.00 
56.00 (Bench) 
82.00 (Bench) 
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AVERAGE 

5.84 
12.19 
10.95 
8.37 

-
4.28 
4.62 
4.55 

5.21 
4.88 
5.22 
4.971 

i 

358.33 
254.00 
435.33 

I -
1602.50 

50.90 

358.33 

I 
1856.50 
486.23 

0.01 
0.00 

346.00 

9569.00 
< 1.00 

I 

< 1.00 
56.00 
82.00 
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No phosphorous was initially detected in the soils and none was added until after 

September. It is not known what impact the phosphorus had on the microbial activity. 

The next sample on October 23, 1992 indicated levels of346 mglkg but no further 

analysis was perfonned after that. Based on similar compost treatment studies, it could be 

assumed that a noticeable phosphorus loss probably did not have a significant effect on 

microbial growth and activity since it is should be present in excess of bacterial 

requirements. However, the results of batch two of this study indicate a steady 

phosphorus loss correlated to decreased TPH levels, indicative of healthy increases in 

microbial activity and consumption of phosphorus. No other sources of phosphorus loss 

have been identified in the testing or literature review of this study. 

Batch Two Table II below summarizes the treatment results from batch two. 

Table II-A on page 39 identifies the detail of the analysis results from this testing. This 

table identifies four separate composite samples (site #I, #2, #3 & #4) for nutrient and 

other parameters and one composite sample for TPH. Total nitrogen is comprised ofNH3 

and N03 . 

TABLE II 

SUMMARY OF TREATMENT RESULTS 
BATCH TWO 

Volume of Soil: 

Initial TPH Level: 

Ending TPH Level: 

Duration of Treatment: 

Nutrient Additions: 

Estimated Cost: 

90 cubic yards 

3006 mglkg 

48 mg/kg 

4 months (3/93 - 6/93) 

200 lbs. ammonium nitrate 

0 lbs. ammonium phosphate 

$1,600 ($800 labor, $100 material, 

$700 analysis) 

The lubricating oil in the contaminated soil was successfully remediated below the 

target levels of 50 mglkg during the three month treatment process. The total nitrogen 
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consumption corresponded with the hydrocarbon degradation rates as evidenced by total 

nitrogen levels of 678 mglkg on 21 April 1993 and 226 mglkg on 13 May. Additional 

nitrogen was added at the end of May following this analysis and was reflected by the level 

of 1,380 mglkg indicated in June. The correlation between the increased nitrogen levels 

and the decrease in TPH levels between March and May is clearly evident. As the total 

nitrogen decreases in late April and May, the decrease in TPH becomes less dramatic and 

levels out in May to at or below target levels. Figure 1 on page 40 identifies the changes 

and relationships of TPH, nitrogen and phosphorus over the treatment period all in units 

of mglkg. This is based on data from Table II-A. 

Interestingly, the phosphorus levels showed a steady decline which also correlated 

to the decreases in the TPH and is indicative of an increase of microbial activity. The 

initial levels in March were 1,667 mglkg and declined steadily to 742 mglkg at the end of 

the treatment period in June. However, the loss rate of phosphorus above background or 

nutrient requirements cannot be directly correlated to an increase in microbial activity and 

degradation of the contaminant. It does appear that phosphorus loss is proportional to the 

amount available. 



SAMPLE DATE 

18-Mar-93

1 
21-Apr-93 
13-May-93 
18-May-93 
07-Jun-93 

18-Mar-93 
21-Apr-93 
13-May-93 
18-May-93 
07-Jun-93 

18-Mar-93 
21-Apr-93 
13-May-93 
18-May-93 
07-Jun-93 

18-Mar-93 
21-Apr-93 
13-May-93 
18-May-93 
07-Jun-93 

18-Mar-93 
21-Apr-93 
13-May-93 
18-May-93 

07-Jun-93 

18-Mar-93 

21-Apr-93 
13-May-93 
18-May-93 
07-Jun-93 

18-Mar-93 
21-Apr-93 
13-May-93 
18-May-93 
07-Jun-93 

18-Mar-93 
14-Apr-93 
23-Apr-93 
28-Apr-93 

05-May-93 
24-May-93 
07-Jun-93 
18-Jun-93 

TABLE II-A 

BATCH TWO -NUTRIENTS I TPH 
ANALYSIS RESULTS 

NUTRIENT/OTHER SAMPLING LOCATIONS 
PARAMETER SITE #1 SITE #2 SITE #3 SITE #4 

Moisture 10.30 9.19 8.87 8.61 
(% by weight) 10.87 10.06 10.34 10.49 

13.37 16.34 15.06 -
14.31 14.92 14.58 -

8.51 8.95 6.71 10.94 I 

Volatile Solids 3.82 4.52 4.60 2.25 
(%wet) 3.84 3.94 3.88 4.12 

4.06 3.58 3.72 -
4.43 3.09 3.63 -
3.76 4.19 4.57 3.84 

Volatile Solids 4.25 4.98 5.05 2.47 
(%dry) 4.31 4.39 4.33 4.62 

4.71 4.28 4.38 -
5.17 3.64 3.63 -
4.11 4.61 4.89 4.31 

NH3-N 112.97 17.91 175.66 57.88 
(mg/kg) 126.87 244.36 477.81 425.87 

20.93 189.09 23.13 -
170.94 124.71 15.73 -
75.79 15.69 - 25.73 

N03-N 47.66 14.43 103.26 28.64 
(mg/kg) 216.11 267.47 706.19 245.31 

259.98 11.39 172.29 -
48.16 152.99 204.93 -

1318.76 1600.31 1489.19 993.04 

Total N 160.63 32.34 278.92 86.52 
(mg/kg) 342.98 511.83 1184.00 671.18 

280.91 200.48 195.42 -
219.10 277.70 220.66 -

1394.55 1616.00 1489.19 1018.77 

P04-P 2156.48 51.78 2884.17 1576.41 
(mg/kg) 644.38 661.67 1916.87 1614.07 

1071.74 1574.69 989.75 -
538.63 1601.36 809.25 -
756.86 538.85 674.83 996.48 

TPH 3006.00 (Composite Samples) 
(mg/kg) 698.00 

324.00 
I 338.00 

38.00 I 

55.00 
104.00 
48.00 
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AVERAGE 

9.24 
10.44 
14.92 
14.60 
8.78 

3.80 
3.95 
3.79 
3.72 
4.09 

4.19 
4.41 
4.46 
4.15 
4.48 

91.11 
318.73 

77.72 
103.79 
39.07 

48.50 
358.77 
147.89 
135.36 

1350.33 

139.60 

677.50 
225.60 
239.15 

1379.631 

1667.21 
1209.25 
1212.06 
983.08 
741.76 

3006.00 
698.00 
324.00 
338.00 

38.00 
55.00 

104.00 
48.00 
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Figure 1. Batch Two - TPH I Nitrogen I Phosphorus Levels 
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Batch Three (w/bench test) Table III below summarizes the treatment results 

from batch three. Table III-A on the following page identifies the detail of the analysis 

results from this testing. This table identifies two separate composite samples for nutrients 

and other parameters and one composite sample for TPH. The nutrient and other 

parameters sampled are taken from the field location and TPH is taken from both the field 

and bench study. 

TABLE III 

SUMMARY OF TREATMENT RESULTS 
BATCH THREE 

Volume of Soil: 

Initial TPH Level: 

Ending TPH Level: 

Duration of Treatment: 

Nutrient Additions: 

Estimated Cost (field): 

Estimated Cost (bench): 

75 cubic yards 

1601 mglkg 

175 mg/kg 

3 months (7 /93 - 10/93) 

200 lbs. of ammonium nitrate 

0 lbs. of ammonium phosphate 

$1,000 ($600 labor, $100 material, 

$300 analysis) 

$1,500 ($200 TPH, $500 plate 

counts, $800 endpoint assay) 

The lubricating oil contaminant was degraded from initial levels of 1,601 mglkg to 

175 mglkg. The duration of the treatment process was three months. The target level of 

50 mglkg was not reached during this time because of the onset of cold weather and the 

probable resulting decrease in microbial metabolic activity in this low temperature range. 

The treatment and monitoring of this batch will continue in the spring of I 994. Figure 2 

on page 43 identifies the changes and relationships ofTPH, nitrogen and phosphorus 

levels over the treatment period measured in units of mglkg. The results from the TPH, 

nitrogen and phosphorus are from samples from the field study as reported in Table III-A. 



SAMPLE DATE 

14-Jul-93 
24-Aug-93 
21-Sep-93 

14-Jul-93 
24-Aug-93 
21-Sep-93 

14-Jul-93 
24-Aug-93 
21-Sep-93 

14-Jul-93 
24-Aug-93j 
21-Sep-93 

14-Jul-93 
24-Aug-93 
21-Sep-93 

14-Jul-93 
24-Aug-93 
21-Sep-93 
01-0ct-93 

14-Jul-93 
24-Aug-93 
21-Sep-93 

10-Aug-93 
25-Aug-93 
06-Sep-93 
20-Sep-93 
28-0ct-93 

Control Cell: 
20-Sep-93 

TABLE III-A 

BATCH THREE -NUTRIENTS I TPH 
ANALYSIS RESULTS 

NUTRIENT/OTHER SAMPLING LOCATIONS 
PARAMETER SITE#1 SITE#2 

Moisture 9.18 6.53 
(% by weight) 10.21 -

11.94 -

Volatile Solids 
(%wet) 3.10 2.87 

6.97 -
6.90 -

Volatile Solids 
(%dry) 3.41 3.07 

7.75 -
7.82 _, 

NH3-N 
(mg/kg) 223.74 236.39 

26.10 -
22.29 -

N03-N 
(mg/kg) 1140.32 434.94 

66.96 -· 
25.46 -

Total N 
(mg/kg) 

(ESTIMATED- N ADDED 10/1) 

P04-P 
(mg/kg) 3307.39 2178.81 

365.92 -
392.29 

TPH (Bench) (Field) I 
(mg/kg) 1601.00 1601.00 

5410.00 
4333.00 657.00 
2654.00 356.00 
215.00 175.00 

0.00 
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AVERAGE 

7.86 
10.21 
11.94 

2.99 
6.97 
6.90 

3.24 
7.75 
7.82 

230.07 
26.10 
22.29 

787.63 
66.96 
25.46 

1017.70 
93.061 
47.75 

500.00' 

2743.10 
365.92 
392.29 

n/a 
n/a 
n/a 
n/a 
n/a 
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Figure 2. Batch Three - TPH I Nitrogen I Phosphorus Levels 
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The nitrogen and phosphorus levels decreased dramatically from July to August. 

The initial levels were 1,017 mglkg and 2, 743 mglkg respectively in July which decreased 

to 93 mglkg and 366 mglkg in August. Although this may be due in part to sampling 

anomalies, it does correlate to changes in TPH levels and increases in microbial activity. 

A significant increase in TPH levels of 1,601 mglkg on August lOth to 5,410 

mglkg on August 25th occurred from bench test samples. This increase was not evident in 

the field scale project which showed steady declines. One possible explanation for this 

would be a biosurfactant effect of the microbe population and differences in population 

composition between the field and bench study. Other laboratory (flask) and bench scale 

projects have also shown increases in TPH levels in the early stages of treatment. 

During the early stages of degradation, the microbe populations produce surfactant-type 

enzymes which release contaminants from soil particles to which they have a high 

attraction. The surfactants solubilize the contaminant which is then more readily available 

for microbial consumption and also more easily detected by laboratory analysis. The 

enzyme surfactants are suspected to be more complex and efficient than the extraction 

method used by the laboratory analysis. 

A possible explanation of why this was not evidenced in the field study is because 

of differences in microbial composition. The bench study, due to its smaller scale, 

provided oxygen, nutrients and water more readily to the microbes at first. This allows a 

rapid growth of certain species which dominated the population for that time and produce 

a surfactant effect on the contaminant and soil particles. Other species which produce 

the enzymes and other proteins necessary for completion of the degradation process have 

not yet been allowed to fully develop. The field study may support a more diverse 

population producing earlier the variety of necessary enzymes to complete the degradation 

process. 
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Batch Three (Biological Data) The soils from the two bench test cells were 

sampled for biological activity and TPH levels. One cell contained soil from batch three of 

the field test and the other contained uncontaminated soil from the same general plant 

area. Both cells were treated with water and aerated identically. Nutrients were also 

added to both cells based on sampling and deficiencies identified from the soils in the field 

test. The total plate counts taken on August 1 0, 1993 identified substantial populations of 

hydrocarbon degrading bacteria in both cells. These initial six strains are identified in 

Table IV on the following page. The identification process was explained earlier in this 

text and was accomplished by comparing the results of two different methods. These 

were the GC-FAME method and the Biolog method. In each method the profiles of the 

strains are compared to database profiles of known strains to arrive at a 'mean' organism. 

This database organism has a similarity coefficient of one and a distance of zero. A good 

match is considered one with a similarity coefficient greater than 0.5 and a distance 

coefficient ofless than 7.0 according to Microbe Inotech Laboratories. The total count of 

these six strains of bacteria identified was 7. 81 x I 08 colony forming units per gram 

(CFU/g) in the cell with contaminated soil. 

Table Von page 47 identifies the results of plate counts from the bench samples 

taken during the first two months of treatment. During August there were two composite 

samples taken (sample A & B) and these were averaged. During September only one 

composite sample was taken. Also during September the control cell (with the 

uncontaminated soils) had one composite sample taken. During the two month treatment 

period II different strains were identified. The first six were specifically identified from 

the bacterial identification testing. Table V also shows the proportion of the total count 

for each strain. 



TABLE IV 

BACTERIAL IDENTIFICATION 
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Summary of GC-F AME/Biolog Analyses 

Strain Primary 
Sim. Dist Primary ID by Plate Sim. Dist. Identification 

Name 
by GC Coef. Coer. Biologn.s Type Coef Coer 

2337-1 Escherichia coli 0.268 5.246 
Klebsiella pneumonia GN 0.668 5.015 

A 

no ID closest no ID closest species 
2337-2 species Bacillus 0.49 3.859 Staphylococcus GP 0.463 7.639 

megaterium simulans 

2337-3 
Enterobacter 

0.252 5.365 
No ID closest species GN 0.158 15.463 

sakazakii Citrobacter freuruiii 

Gordo11ll 
no ID closest species 

2337-4 
bronchia lis 

0.522 3.685 Rhodococcus GP 0.182 15.883 
erythropolis 

2337-5 
Pseudomonas 

0.287 6.851 
Klebsiella pneumoniae GN 0.866 2.153 

aerugirwsa A 

2337-6 
Pseudomonas 

0.661 4.222 
Pseudomonas GN 0.515 4.834 

aerugirwsa citronellolis 

Strain# Closest Match J.D. Method 

#1 Klebsiella pneumonia Biolog 

#2 Bacillus megaterium GC-FAME 

#3 Enterobacter sakazakii GC-FAME 

#4 Gordona bronchia/is GC-FAME 

#5 Klebsiella pneumoniae Biolog 

#6 Pseudomonas aemginosa GC-FAME 
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TABLE V 

BIOLOGICAL ACTIVITY OF PLATE 
COUNTS PER STRAIN 

Total 
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Date Sample# #1 #2 

Strain Type/ 
Proportion of Total Count 

#3 #4 #5 #6 

0.50 I 0.10 I 0.30 'I 
181E+081362E+071 1 09E+08 

08/10/93 A 3.62E+08 

B 1.20E+09 0.50 0.031 0.15 
6.00E+08 3.60E+07 1.80E+08 

AVG. 7.81E+08 0.50 0.07 0.23 
3.91 E +08 3.61E+07 1.44E+08 

08/26/93 A 3.94E+oal 0.50 0.05 0.10 I 1.97E+08 1.97E+07 3.94E+07 
I 

B 2.44E + o9j o.5o I 0.20 0.05 
\1.22E+09' 4.88E+08 1.22E + 08 

I 
AVG. 1.42E+09I o.5o 0.13 0.08 

I 7.09E+08 2.54E+08 8.07E+07 

! 
09/08/93 A 2.18E+09I 0.10 0.20 0.00 

t2.18E+08 4.36E +08 

coNTROL 5.00E + 10 I 0.05 0.05 0.00 
I 2.50E+09,2.50E+09 

I I I 
09/28/93 A 11.13E+08, 0.001 020 0.00 

I 2.26E+07 
l ' 

i j j 

0.00 I 0.1C I CONTROL,5.32E+071 0.00 
5.32E+06 

Strain Type/ 
Sample Proportion of Total Count 

Date Sample# #7 #8 #9 #10 
I 

08/10/931 A 0.00 0.00 0.00 o.oo I 
8 0.00 0.00 0.00 0.00 

AVG. 0.00 0.00 0.00 0.00 

08/26/93 A 0.00 0.00 0.00, 0.00 
8 0.00 0.00 0.00 0.00 

AVG. 0.00 0.00 0.00 0.00 

09/08/93 A 0.05 0.05 0.05 0.00 
1.09E+0811.09E+08 1.09E+08 

CONTROL 0.20 0.02 0.03 0.05 
1.00E+10 1.00E +09 1.50E+09 2.50E+09 

09/28/93 A 0.30 0.20 0.05 0.00 
3.39E+07! 2.26E+07 5.65E+06 

CONTROL 0.20 0.15 0.10 0.00 
11.06E+07 7.98E+06 5.32E+06 

0.02 

00~0 
0.02 

2.40E+07 

0.10 
3.62E+07 

0.20 
2.40E+08 2.40E+07 

0.01 
1.20E+07 

0.20 
7.88E + 07 

0.10 
2.44E+08 

0.15 
1.61E+08 

0.50 
1.09E + 09 

0.50 
2.50E+ 10 

0.00 

0.20 

0.01 
1.20E+07 

0.00 

0.05 
1.22E+08 

0.03 
6.10E+07 

0.00 

0.15 
1.38E +08 

0.15 
5.91E+07t 

0.101 
2.44E +08 

0.13 
1.52E+08 

0.001 
i 

o.ool o 251 

12.83E +071 

1.06E+07 I 
I 

fifiF~-~~~1 0. 2oj 
~~.06E+07 

#11 

0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

0.00 

0.10 
5.00E +09 

0.00 

0.00 
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The endpoint assay testing concluded that strains #1, #3 and #6 were the most 

aggressive hydrocarbon degraders. The strains were cultured on an optimum growth 

medium of TSBA and also on the oil contaminant as the substrate to compare growth. 

Figure 3 on the following page of the endpoint assay identifies that strains # 1, #3, and #6 

consumed oil as the carbon source almost as readily as the TSBA medium and their 

growth was greater than the other three strains. Microbial activity is correlated with 

carbon dioxide production, which in tum is measured by a colorimetric analysis of a 

tetrazolium dye (redox indicator) at the wavelength of maximum intensity for detecting 

the dye. 

The six strains were also cultured on the oil contaminant as their only substrate 

source. Their growth was measured with the same redox indicator and compared after a 

24 hour period. Figure 4 on page 50 of the endpoint assay identifies the results from this 

test. Strains # 1, #3 and #6 can again be seen as having the highest growth rate on this 

substrate. These three strains dominated the population with 88% of the total count 

during the first month of treatment and with total plate counts increasing during this time. 

At the beginning of the second month, strains #2 and #4 then began to dominate with 70% 

of the total population with only moderate increases in total growth. At the end of the 

second month strains #6 and previously unidentified strains #7 and #8 dominated with 

75% of the total population with decreases in total population growth also resulting. 

The "control" cell was sampled at the beginning ofthe second month and indicated 

5.00 x 1010 CFU/g. The dominant strains in this population were #4 and #7. By the end 

ofthe second month the total population ofthe "control" cell dropped to 5.32 x 107 with 

#4, #6 and #7 dominating with 60% of the population. Figure 5 on page 51 identifies the 

composition of the various strains in proportion to the total population over the treatment 

period. Figure 6 on page 52 identifies the total count per strain over the treatment 

period. 
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Increases in total plate count activity corresponded to decreases (consumption) of 

nitrogen and phosphorus. Figure 7 on the following page identifies this correlation 

between nitrogen and phosphorus consumption and total plate count activity. This figure 

clearly shows the increase in total plate count activity during the first month and 

corresponding decreases of nitrogen and phosphorus during this same period of time. 

However, the biological samples were taken from the bench cells and the nutrient analysis 

was taken on the field test which may not accurately represent this correlation. Decreases 

in TPH levels also corresponded to rising total plate count levels. Figure 8 on page 55 

compares total plate counts and the TPH levels from bench samples over the two month 

treatment period. The decrease in TPH levels after September 8th began as total plate 

counts were reaching their highest levels and continued as total plate counts also began to 

decline. 
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Counts of hydrocarbon degrading microbes greater than 106 CFU/g are considered 

necessary for successful remediation and total counts greater than 104 CFU/g are 

considered adequate baseline populations (Riser-Roberts, 1992). The beginning levels for 

this project have been identified as 7.81 x 1 os and were 1.13 x 1 os and the end of the 

second month of treatment. One explanation for the high initial bacterial counts is the 

historical nature of the contaminant. The oils have been present in the soils for at least 

eight years with the indigenous microbes acclimating and prospering on this substrate 

source. 

It was during the second month that most ofthe hydrocarbon degradation was 

observed (from the field analysis) with increases in total population counts correlating to 

decreasing TPH levels. There was also a noticeable shift in strain domination and 

composition over the treatment period. This can be expected because of the substrate 

changes due to the degradation of this complex mixture of longer chain hydrocarbons. 

The utilization of these new substrates is preferred by other microbes. The consumption 

or losses of nitrogen and phosphorus also corresponded to increases in microbial activity 

and growth. 



CHAPTER V. 

CONCLUSIONS 

This testing has demonstrated that inorganic based soils contaminated with 

lubricating oils of up to 10,000 mg/kg can be remediated to less than 50 mglkg within 

three to four months. Although the TPH level in batch three was 175 mglkg at the end of 

this test, it is expected, as evidenced by testing of the other two batches and the trend of 

decreasing levels during treatment, that further treatment during warmer months will 

further reduce these levels to below 50 mg/kg. The treatment period for batch one was 

six months. However, the TPH levels were not monitored closely during this time and it is 

anticipated that the target level would have been reached in half the time if the nutrient and 

moisture additions and sampling regime had commenced earlier. This is based on the 

results demonstrated from batch two and other case studies cited in this text. 

Other studies have shown that this same type of treatment process should also be 

effective for other heavier, long-chained hydrocarbon contaminants in different types of 

soils (Fyock, Nordum, Fogel & Findlay, 1991; McMillen, Kerr, Gray & Findlay, 1992). 

The results of this testing also indicate the oil contaminant was removed by biological 

degradation and not by other processes. Other processes could be volatilization or 

solubilization and dispersion in the treatment water. Long-chain hydrocarbons such as 

these are not conducive to volatilization even during mechanical aeration of these soils 

because of their heavy empirical weights and high boiling points. This is also evidenced by 

the fact that surface spills of these hydrocarbons are prevalent for many years even after 

constant exposure to sunlight, heat and oxygen. 

For this treatment process it is also not practical to assume that the hydrocarbons 

solubilized and dispersed during the three to six month treatment period of this testing. 
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This is because neither treatment or storm water ran off the site or leached into the 

ground. There was no collection of water or leachate that formed under the treatment 

piles, nor was there evidence of leachate formation. The laboratory analysis method 

selected would have continued to detect a soluble TPH in the samples even more readily 

than non-soluble forms. Even more conclusive is that the endpoint assay and plate count 

testing also confirm the presence and growth of hydrocarbon degrading bacteria. The first 

batch was tested and was found to contain no contaminants that should be toxic to 

microbial growth (e.g. heavy metals & chlorinated compounds). Since the soil from all 

three batches was taken from the same area and exposed to the same type of operations 

and contaminants, it was assumed that successive batches would have the same results. 

A bulking agent of wheat straw proved very effective with these types of soils. If 

more cohesive soils such as clay or organic based soils are treated, straw may be more 

effective if first chopped in a leaf shredder or other apparatus. The straw did not 

decompose significantly over the six month treatment process and was an important 

conduit for moisture and oxygen transfer. This was especially critical since the soils were 

not turned or watered except every 7 to 10 days. Other studies that have not used a 

bulking agent or other type of soil treatment had difficulty in maintaining adequate 

porosity of the soil to keep it from agglomerating . As a result, the soil has to be aerated 

much more frequently to keep anaerobic conditions from occurring and to provide 

effective treatment (Jackson, Haby, Hammer, Hoffman, Gorman, 1993). 

The addition of moisture based on physical observation proved effective by 

maintaining moisture levels just to a point of any free drainage or slurries (mud) from 

forming. It is not known how this moisture level corresponds to field capacity since this 

measurement is not applicable to excavated soils with a bulking agent addition. It is 

suspected that this level corresponds to the reported optimum level of 50 percent of field 

capacity based on reported observations from other studies cited in this text. 

The stoichiometric equation for microbial growth introduced in this text indicated 

that for a hydrocarbon substrate of this nature, utilizing oxygen as the electron acceptor 
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and nitrate as the nutrient source, that microbial growth and substrate degradation could 

occur. This also indicated that the oxygen and nutrient requirements were reasonable to 

obtain for this type of windrow composting process. The phosphorus requirement was 

not considered in this equation because of the cells' requirements for this nutrient being 

typically not a limiting factor. 

The initial carbon to nitrogen ratio (C:N) used in this testing was 10:1. This was 

used because it corresponds approximately to the chemical composition of a typical cell. 

Other studies have shown effective results with much higher C:N ratios of25: I (Kane, 

1991; Jackson, Haby, Hammer, Hoffinan, Gorman, 1993) as evidenced by increases in 

plate count activity and decreases in TPH. Typically, no other nitrogen was added during 

this testing unless total nitrogen dropped below levels of 500 mg/kg. The overall nitrogen 

level during testing of the three batches was maintained closer to the 25: l ratio than the 

initial I 0: 1. The nitrogen uptake or loss rates did directly correspond to increases in 

microbial growth in batch three. Although the biological activity was not monitored in 

batch one and two, the nitrogen losses did correspond to decreases in TPH levels. There 

is no other reasonable explanation for this nitrogen loss except through microbial 

consumption from this testing. 

Noticeable phosphorus losses were also identified from the three batches. The loss 

rate appears to be proportional to the amount of phosphorus available. This study has 

shown that phosphorus levels as small as 300 mg/kg and as large as 2,000 mglkg resulted 

in apparently the same degradation levels of the contaminant. The optimum levels to 

maintain biological activity were not determined from this study. However, phosphorus is 

a key nutrient needed for cell synthesis and enzyme production. The majority of the other 

studies cited in this text provided no phosphorus additions or monitoring. This leads to 

the conclusion that background levels of phosphorus in most soil environments are 

probably sufficient to promote microbial growth. However, additions of phosphorus 

above any background levels have not inhibited growth and will probably enhance it. This 
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may be especially important to sustain high microbial levels needed to degrade complex or 

high concentrations of contaminants. 

The endpoint assay testing concluded that three of the six bacteria found in the 

soils were aggressive hydrocarbon degrading species. This is typical of most soil 

environments reported where up to 50% of the bacteria are hydrocarbon degrading 

species (Buday, Gergely, Torok, Szoboszlay, 1989). The prevalence ofthese acclimated 

microbes, with preference of this contaminant as their substrate, can be explained by the 

historic nature ofthese contaminated soils with the microbes being exposed to this 

contaminant for several years. AJso the soil environment was amenable to microbial 

growth because of its natural porosity and relatively high moisture conditions. Although 

strains #1, #3 and #6 were the dominant strains during the first month oftreatment 

comprising 88 % of the total population, their population then diminished with other 

strains dominating after the first month. This is typical of preferential substrate use by 

other microbes. As the contaminant was broken down other microbes with the capacity to 

utilize this characteristically different substrate then began to flourish. 

The cost of this windrow composting approach, assuming I 00 cubic yard batches 

of soil and minimal TPH, nutrient and biological monitoring, would be approximately $15 

per cubic yard. This compares to approximately $30 for "forced air" static-pile compost 

processes, $50 to $100 for special industrial waste landfills and enclosed "bioreactor" 

methods and $1,000 per cubic yard for hazardous waste landfills. 

Topics For Future Research 

Topic I: Determining soil conditioning methods to reduce the cohesiveness and 

increase the porosity of predominant clay and other silty based soils for more effective 

bioremediation in compost systems. 
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Topic II: Identifying the most common types of surfactant-type enzymes and the 

microbes that produce them in various contaminated soil systems and determining 

approaches to optimize their use. 

Topic III: Evaluate the use of commercial surfactants for their ability to enhance 

bioremediation processes of oil contaminated soils. 
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APPENDIX A 

STOICIDOMETRIC EQUATION FOR MICROBIAL 

GROWTH AND SUBSTRATE UTILIZATION (R) 

Applying the overall stoichiometric equation of R = Rd - feRa - fsRc where: 

fs = (Y grams volatile solids formed/gram COD removed) (8 grams 

COD equivalent) I 5.65* grams volatile solids equivalent 

fs = 1.42 Y 

Y = 0.37 gram cells/gram COD removed for Pseudomonas organisms 

Y = 0.37 (0.85)** = 0.31 (observed cell yield) 

* Using CsH70 2N, one mole of cells weighs 113 grams and one 
equivalent is 1/20 of a mole, or 5.65 grams ofvolatile (organic) 
microbial solids. 

** Assumes microbial cells are approximately 85% volatile. 

fs = 1.42 (0.31) = 0.44; fe = 1.00-0.44 = 0.56 

Rd = 0.022 C8H160 + 0.326 H20 = 0.174 C02 + H+ + e

Ra= 0.50 H20 = 0.25 0 2 + H++e-

Rc = 0.036C5H70 2N + 0.393H20 = 0.036N03 + 0.185C02 + 1.036H++ e-

Applying the equation results in: 

R=0.023 C H 0+0.141 0 +0.016NO 
8 16 2 3 

= 0 127 H 0 + 0 093 CO + 0.016 C H 0 N 
. 2 . 2 s 7 2 

Normalize to one mole of oil by dividing through by 0.023. 

R=CH 0+6.130 +0.70NO 
8 16 2 3 

= 5.52 H20 + 4.04 C02 + 0. 70 C5H70 2N 
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