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PREFACE 

This thesis attempts to implement the building blocks required for the realization of 

the biologically motivated olfactory neural model in silicon as the special purpose 

hardware. The olfactory model is originally developed by R. Granger, G. Lynch, and 

Ambros-Ingerson. CMOS analog integrated circuits were used for this purpose. All of 

the building blocks were fabricated using the MOSIS service and tested at our site. The 

results of this study can be used to realize a system level integration of the olfactory 

model. 
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CHAPTER I 

OLFACTION AND ELECTRONIC 

NEURAL NETWORKS 

Olfaction 

The current research surge in neural networks (NN) falls into essentially three broad 

categories. The flrst category is that of the mathematical description and analysis of the 

learning properties of neural networks, often working from biological and physiological 

exemplars [1,2]. The second, and perhaps the largest, research effort uses computer 

simulations to verify the validity of the neural network models in addition to 

demonstrating their appliqtions [3,4]. Since the publication of John Hopfield's paper [5] 

on the prospect of compact and dense hardware implementation of neural networks in 

analog integrated circuit form, a third group of research topics, into which this thesis falls , 

has emerged. The researchers in this category attempt to impl~ment neural networks in 

LSI/VLSI hardware [6,7,8,9,10,11]. 

The theory of biological neuron and the actual neural processing within the brain are 

complex and involved [12]. The physical and chemical processes in the nerve cells that 

are responsible for learning and memory are beginning to yield to experimental study by 

physiologists and anatomists. By and large, biological neural nets exhibit massive 

parallelism and parallel processing. The modulation of synaptic junctions has long been 

1 
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regarded as the likely mechanism for learning and memory [13]. The long term 

potentiation (LTP) that is observed in the hippocampus, limbic system, and in some 

cortical structures of the brain, is believed to be similar to the mechanism used for 

learning [14]. The changes in the synaptic strength · due to LTP are rather course 

compared to precise and graded weight changes that are offered by artificial neural 

networks. , How a nervous system might respond to the ' computationally limited neural 

learning and neural processing that is used by artificial neural networks due to two 

dimensional connectivity [15], is a question. Extensive research is being carried out 

using computer simulations on such abstract neural network models to understand the 

effects of incorporated artificiality and also in an attempt to elucidate the organizational 

principle at the system level [1 ,2]. 

R. Granger, G. Lynch, and Ambros-Ingerson of U. C. Irvine have reported a 

potentially useful model, referred to as the GLA model henceforth, for the operation of 

the interacting neural networks of the olfactory bulb and piriform cortex that has been 

observed in rats [16, 17, 18]. Computer simulations of this model have demonstrated 

interesting computational properties, such as, (1) the ability to perform the hierarchical 

clustering of the input cues (odors) presented by the pattern of activity on the input lines 

from the olfactory receptors, (2) the extensibility to unsupervised learning, and 3) the 

ability to detect .weaker stimuli when masked by a stronger one. 

A central feature of this model is the periodic sampling of stimuli at the so-called 

theta rhythm, to which the network response is locked . Hierarchical clustering and 

unmasking operations proceed sequentially with successive sampling (sniffs) of the 

inputs. For example, if you are serious gardener, on the first sniff you might get a 
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response indicating the odor of flower, on the second a rose, and finally on the third, an 

"Oklahoma Orange Spirit." 

The goal of this research work is to develop a simplified electronic realization of 

GLA olfactory model suitable for analog implementation in bulk CMOS circuitry. This 

realization will retain the essential clustering properties of the olfactory bulb (OB) and 

paleocortex. The dominance of the theta rhythm in GLA model suggests the suitability 

of the synchronous or clocked approach, but the actual computation between the two 

clock cycles is analog, asynchronous, and carried out in parallel. In the GLA model, 

categorization in the paleocortex is done through an iterative procedure of sniffs, usually 

less then 5, with each sniff leading to a specific clustered solution down in the hierarchy. 

About Neural Networks 

Before the problem is presented, some review of the basic concepts of neural 

networks may be useful. Even though, at the later stages of this chapter, we have tried 

to subtly distinguish the GLA olfactory model from the traditional "abstract" neural 

networks (since the olfactory model more closely mimics the nervous system), GLA 

model still uses many of the concepts exploited by abstract artificial neural networks. 

The interested reader is referred to the work of Patri K. Simpson [19] for history and 

more details of artificial neural networks. This section gives the reader a brief review 

of neural networks. 

Artificial neural networks (ANN's) go by many different names, such as 

connectionist models, parallel distributed-processing models, or neuro-computers. The 

structure of artificial neural networks is based on the present understanding of the 
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biological nervous system. ANN's provide an alternative form of computation that 

attempts to mimic the neurophysiological functions. ANN's are composed of many 

nonlinear computational elements. These computational elements operate in parallel and 

arranged in patterns reminiscent of biological neural networks. Elements are connected 

via densely connected weights. Weights are typically adapted during use (learning) [3]. 

The information is held in these weights.· The new information is captured by changing 

the strength of the connection. Contrary to Von Neumann's computer, which processes 

instructions sequentially, neural network models explore many hypothesis simultaneously 

using their massive parallel structures. 

In its simplest form, a neuron sums weighted inputs and passes the result through 

a non-linearity. The neuron is characterized by an internal threshold or offset and by the 

type of non-linearity. The various types of non-linearities are hard and soft limiters, 

sigmoidal logistic non-linearities, and hyperbolic tangents [3]. The hyperbolic tangent is 

similar in shape to the logistic function. It is often used by biologists as a mathematical 

model of nerve-cell activation (OUT= tanh(x)). The most commonly used non-linearity 

is the sigmoidal logistic which is continuously clifferentiable. 

Based on existing results, most neural networks adapt the connection weights over 

time to improve network performance. Adaption or learning is a major interest area of 

neural net research. An example of such adaption is speech recognition, where training 

data is limited. The new speakers, words, dialects, phrases, and contests are continuously 

encountered. Traditional statistical techniques are not adaptive. They typically process 

all training data simultaneously before being used with new data. Neural net classifiers 

are non-parametric and they make weaker assumptions concerning the shapes of 
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underlying distributions than rraditional statistical classifiers do. Such neural network 

adaptive systems are often described by energy functions and/or probability distributions. 

The discussed neuron and the neural processing is a simplified version of biological 

neuron and neural processing. The biological neuron consists of a cell body called soma 

and an axon or nerve fiber that connects the cells to each other [20]. The junctions 

between neurons occur either on the cell body or on spin-like extensions of the cell body 

called dendrites. These junctions are referred to as synapses. Nerves and dendrites can 

be viewed as insulated conductors used for rransmitting electrochemical signals to 

neurons. In the human nervous system, about 1011 neurons participate in perhaps 1012 

interconnections over a transmission path that may range for a meter or more [20]. 

The neuron processing times are larger compared to today's advanced computer 

cycle times. The cycle time is the time taken to process a single piece of information 

from input to output. The cycle time of most advanced computers corresponding to one 

clock cycle for the CPU is on the order of 1 nanosecond. The average cycle time for a 

neuron in the brain is 2 milliseconds. The difference in speed is 2 x 106, yet due to 

brain's parallel nature, the brain is more time efficient than conventional computers. 

Neural network models offer their greatest potential in areas such as speech 

processing, image recognition, and pattern classification. In such applications, many 

hypothesis are pursued in parallel, high fault tolerant computation rates are required, and 

the existing computer systems are far from equaling human performance. When 

compared to traditional computing methods, the benefits of neural networks extend 

beyond the high computation rates provided by massive parallelism. Degree of robustness 

or fault tolerance provided by neural networks is greater than fault tolerance provided by 
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Von-Neumann sequential computers. Because of the many processing elements, damage 

to a few neurons and synapses does not significantly impair overall performance'. Like 

humans, trained neural networks recognize partial input information. 

"Abstract" Verses "Tightly Coupled" 

NeuraJ Network Paradigms 

This section focuses on distinguishing biologically coupled neural network paradigms 

(i.e. olfactory) from so-called traditional "abstract" neural networks. We believe that the 

subcategory of biologically mimicked or tightly coupled neural networks is necessary to 

highlight behavioral features and functions. Tightly coupled neural networks are 

significantly different in treatment when compared to many widely used abstract neural 

networks. 

Artificial neural networks may be classified according to learning algorithms, 

topologies, and node characteristics. Another factor that might be of paramount 

importance is the degree of biological plausibility of the network in question. Adaption 

or learning is the major process in neural networks and thus forms an important criteria 

for classification. Most neural networks adapt connection weights over time to improve 

performance. A number of widely used neural network paradigms feasible for parallel 

implementation are based on adaptations of conventional statistical and numerical 

techniques [1,21,22]. These' neural ·paradigms 3!e non-parametric. ''They make weaker 

assumptions:conceming the shapes of underlaying distributions than traditional statisticru 

classifiers do. Such adaptive systems are described by their energy function ~ arid. · 

probability distribution. Examples of such networks are traditional, layered, and heavily 
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interconnected feed-forward architectures such as the multi-layer perceptron with bayk 

propagation learning [1], vector quantization [21], and probabilistic neural networks [22] 

i.e. Boltzmann machine. The reciprocally and symmetrically interconnected architectures 

described by Hopfield [5] and Boltzmann machine [2~] are examples of physical systems. 

All of these networks [1,5,21,22,23] c~ be . categorized i ~.s abstract neural networks. 

Abstract neural networks attempt to emulate the functionality of the brain and intelligence 

within it. These networks seem to. be 11.1ore heavily influenced by the underlying 

' 
statistical distributions rather than being truly inspired by a straight forward one to one 

biological processing. The biological neural mechanisms at the neuron and synaptic level 

are considerably more involved and complex than those modeled by most widely used 

"abstract" neural networks. It is difficult to conclude which of the biological mechanisms 

to retain in the interest of computational efficiency. This is partially due to poor 

understanding of neural theories which are intem due to the extreme experimental 

difficulties encountered in biological network neuroscience. The answer dependents upon 

whether one wishes to develop artificial computational models or to understand 

neurobiology. Our goal is certainly the former. However, we also believe that modeling 

a considerable part of the biological machinery is h~lpful in cr~ating thinking machines. 

The theory that we wish to emphasis is that present artificial network models are too 

abstract to retain the computational efficiencies that are present in the biological world. 

Therefore in summery,. we view the broad spectrum of neural networks models as 

spanning from "abstract" (perception) to the loosely coupled (Kohonen) to the more 

closely emulated (Grossberg) to the tightly coupled GLA olfactory model. 

Thus, by way of contrast, the tightly coupled neural network models bear a the 
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straight forward structural relationship to a specific neural function within a nervous 

system. Tightly coupled neural networks are the subject of much current interest 

[24,25,26,37]. In this class, unfortunately, understanding of the collective function of 

neural networks in vertebrates is largely limited to sensory structures i.e. early processing. 

The sensory functions have been studied in the greatest depth and with most success. It 

appears that while most artificial neural networks are typically comprised of a densely 

connected layered network of simple neurons, tightly coupled networks employ sparsely 

connected networks of much more elaborate neurons in which substantial information 

processing occurs within a single neuron. The GLA olfactory paradigm is most certainly 

inspired by tightly coupled neural network philosophy. However, substantial biological 

complexity in these cases also is a result of constrained molecular properties (i.e. channel 

membrane transport). Therefore, ultimately a certain amount of abstraction (detennined 

by application) must be justified in order to build silicon hardware models. 

Hardware Implementation of "Tightly Coupled" 

Computational Models: A Review 

Now that the particular subcategory (tightly coupled neural networks) under which 

the olfaction problem is to be studied is defined, the following text will review what type 

of the tightly coupled neural networks have been jmplemented in hardware, before the 

hardware implementation of our olfaction model is proposed. In spite of a substantially 

different (straight forward tightly coupled) computational approach from most abstract 

neural networks, the essential technologies and hardware techniques remain the same in 

both cases. The interested reader is referred to the extensive literature review done by 
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John Wagnon [27] for details on various abstract neural systems that have been 

implemented to date in the hardware. 

The literature search connected with the hardware implementation of tightly coupled 

neural networks yielded only two papers detailing problems with the software simulations 

of olfaction [16,26] . To date, no parallel hardware implementation of olfaction has been 

reported. J. Bailey and D. Hammerstrom [28] have proposed the serial implementation 

of the GLA olfactory model. 'However, some researchers, most notably Carver Mead, 

have attempted to build silicon models of a biologically plausible early processing 

structures for sensory inputs [29,30,31]. 

Usually, the required real time auditory signal processing burden is too high to be 

handled by artificial speech recognition systems due to computational limitations. 

Computationally efficient special purpose hardware in analog integrated VLSI circuitry 

can be used to handle the large signal processing burden, thus forming an efficient 

solution to the problem of computational limitation. Carver Mead and co-workers have 

reported a working analog VLSI chip that implements a stereausis model of biological 

early auditory processing in the brain [32]. The chip essentially is an artificial cochlea 

that analyzes a sound wave and detects a fundamental note missing from the harmony. 

The binaural information exploited by the stereausis algorithm improves speech 

intelligibility in noisy environments compared to the monaural audio signal processing 

exhibited by most artificial speech recognition systems due to their computational 

limitations. The chip is based on the stereausis model of biological auditory processing 

that encodes bi-neural cross-correlation and spectral auto-correlation information by 

deriving a two dimensional representation of binaural sound waves from two sound inputs 
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(ears). Their algorithm has also demonstrated the ability to naturally segment moneural 

signals into distinct spectral regions. Although, to some e~tent the responses ·are found 

sensitive to the noise in the data, output patterns have demonstrated feature extraction 

capability for speech signals, specifically the spectral information of various sound waves 

and their location. The chip is comprised of 10,000 transistors using two micron analog 

CMOS technology and fabricated from MOSIS. 

An interesting real time hardware implementation of vertebrate retinal inhibitory 

behavior has recently been presented by Mead and Mahowald [33]. The processing relies 

on the lateral inhibition to adapt the system to a wide ranges of viewing conditions, and 

to produce an output that is independent of the absolute illumination level. Such 

processing is a direct result of initial inhibitory analog stage in retinal processing. The 

secondary effect of the lateral inhibition mechanism is enhancement of spatial edges in 

the image. Their silicon model implements the first stage of retinal processing on a 

single chip where the logarithm of the incident light is computed by a photoreceptor. The 

output of a photoreceptor is further spatially smoothed by a resistive network (grid). The 

amplitude difference between photoreceptor output and its smoothed counterpart is 

amplified to form a second order spatial filter. They have performed the experiments on 

a 48x48 array of silicon pixels on one quarter of a square centimeter chip in CMOS 

technology. Compared to the entire biological visual system, even though the system is 

realized at very low level, it creates the true biological representation upon which higher 

level processing stages can be built. The mathematical analysis of the network is 

presented by J. G. Taylor [34] which allows the extension of the results to a general class 

of resistive grids and inhibitory feedbacks. 
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Along similar lines, a neural network approach to the color consistency problem has 

been reported [35] . Color consistency is the ability to judge the reflectance of on object 

under different illumination conditions, since illumination elucidates the same object under 

different lighting conditions. The system is based on the Land's retinex theory. Land's 

retinex theory is inspired by mammalian neurobiology and human psychophysics [35]. 

This algorithm models our ability to see colors intensities roughly constant as light varies. 

Their computer simulations have confirmed validity of their implementation of the Land's 

model. They have implemented Land's algorithm in subthreshold analog CMOS VLSI 

using a two micron process from MOSIS. The chip is comprised of about 60,000 

transistors and is reported to operative at video rates. 

H. C. Card and W. R. Moore report that the learning and memory behavior at neuron 

and synaptic levels can be best understood in simple invertebrate animals such as worms 

and insects [36]. To demonstrate neuron and synaptic level memory behavior, they chose 

the well-studied marine specimen, mollusc Aplysia. These small animals exhibit the same 

learning patterns as vertebrates while keeping neural processing relatively simple. They 

have also proposed analog CMOS circuitry that explores both, the associative and non

associative learning mechanisms of habituation and sensitization in Aplysia. 

Proposal for Hardware Implementation 

of GLA Olfactory Model 

We propose the simplified hardware implementation of GLA olfactory model in a 

two micron, p-well, double poly, double metal bulk CMOS process from MOSIS. The 

implementation will retain the essential clustering properties of the GLA olfactory model. 
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The GLA model inherently possess many favorable features to aid simple hardware 

implementation. These features are: (1) mixed mode processing instead of a pure analog, 

(2) current and voltage mode processing, (3) rhythmic clocking for synchronization, 4) 

discrete, course, and unidirectional learning leading to simplified learning algorithm, and 

5) single quadrant multiplication instead of a four quadrant multiplication to obtain 

scaling closer to that exhibited by a synapse. 

The electronic implementation of the GLA olfactory model involves the integration 

of various mathematical functions in silicon as integrated sub-components. The system 

level GLA olfactory architecture can best be realized by developing such mathematical 

functions separately in the form of building blocks to allow for simplified testing, and 

then incorporating all such blocks onto a single substrate. This thesis specifically 

addresses the design, simulation, layout, fabrication, and testing of these basic building 

blocks. The system level realization is beyond the scope of this thesis. 

As opposed to traditional voltage mode analog signal processing, in which inherently 

current signals are transferred to the voltage domain before any analog signal processing 

takes place, the current mode analog signal processing approach is taken here. The use 

of current rather than voltage as an active parameter can result in higher gain, accuracy, 

and wider bandwidth due to the reduced voltage excursion at dynamic nodes [38]. 

Simulations are performed using SPICE on a personal computer. Layouts are 

accomplished by using MAGIC on Sun work-stations. All circuits are fabricated using 

fabrication service from MOSIS. Finally, the testing is performed. 

The following, II chapter, will describe in detail our interpretation of GLA olfactory 

model and proposed electronic implementation. Chapter ill will focus on the design, 
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simulation, and testing of all building blocks. Chapter IV will offer conclusions based 

on the results and suggestions for the future work connected with investigation of the this 

proposed hardware implementation of olfactory model. 



CHAPTER li 

OLFACTORY MODEL AND ITS HARDWARE 

IMPLEMENTATION 

The Bulbar-Cortical Model . 

Modeling of olfaction is a difficult task since olfaction theories are still in the 

developmental stages. On the one hand, a computer simulation of a too detailed 

anatomical olfactory model may result in large volumes of hard to analyze data, while on 

the other hand, too much abstraction and simplification of the anatomical olfactory model 

may altogether loose its relevance to biology with a potential loss of computational power 

for the anatomical model. Thus, the efforts towards the development of the moderately 

abstracted olfactory model is necessary. Such a model helps to understand the model as 

well as preserves the essential features of the model. A moderately abstracted mid level 

[17] GLA olfactory model has been proposed by Granger, Lynch, and Ambros-Ingerson. 

The interested reader is referred to the work of Granger et al. for details [16,17, 18]. In 

this section, we will focus on our interpretation of the essential features of the GLA 

model, leading to our simplified olfactory architecture suitable for a proposed hardware 

implementation. Throughout the course of the discussion, we will justify various 

assumptions and simplifications which are essential to keeping the implementation simple 

yet practical. These assumptions have resulted in a slightly modified architecture. 

14 
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Our architecture of the bulbar-cortical (BC) is shown in the Figure 1. The model 

basically consists of the olfactory bulb (OB) and the piriform cortex (PC). The olfactory 

nomenclature is given in the preliminaries. 

Olfactory Bulb 

The olfactory bulb receives the input via the olfactory nerve (ON). Olfactory nerves 

originate from the olfactory receptor sheet and project onto the periglomerular in a 

topographic fashion. The receptor cells, which are most responsive to the particular 

chemical stimuli, project their axons to a· delimited area of the olfactory bulb referred to 

as the glomerulus. The receptor cells fire with higher frequency for higher concentrations 

of odorant The concentration of the odorant is modeled by the magnitude of a real 

positive number. This number reflects aggregate firing frequency and represents ON 

input to the corresponding glomerulus. 

The olfactory bulb is organized into a number of glomeruli g. Each glomeruli 

consists of m mitral/tufted cells. Each glomerulus receives excitatory input from an ON 

collectively forming system input vector Oi. It also receives inhibitory }nput vector ~ 

from the PC feedback through weights which are set during the developmental period to 

be discussed later. The excitatory inputs are summed with the inhibitory feedback signal 

forming the net un-norrnalized input activity o·i to the glomerulus. This un-nonnalized 

glomerulus activity is given by: 

(1) 

The resulting net inputs are then subjected to non-linear, scaled, and global 
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normalization mediated by the interaction between the excitatory and inhibitory cells of 

OB . This serves to nonnalize the output of the bulb by keeping the total number of 

mitral cells that are activated constant across the stimuli for different intensities and 

compositions. In this normalization scheme, the sum of the normalized glomeruli activity 

is maintained at a constant level. The normalization is obtained in such a way that the 

sum of the non-linearly mapped and scaled normalized activity remains nearly constant. 

Mathematically, the normalized glomerulus activity is given by: 

(2) 

In the above equation, the scaling constant, V K, is the smallest positive value that satisfies 

g 

L gs(VK G" )=KG (3) 

i=l 

where Ko is the glomerulus activity constant and &(.) is a non-linear mapping function 

that maps glomeruli activity into number of the activated mitral cells. Mathematically, 

(4) 

where KI> K2, K3, and ~ are circuit constants. The variable, x, is the input to non-linear 

mapping function. 

The intensity of the normalized glomerulus activity Gi is linearly reflected in the 

number of mitral cells within the particular glomeruli that it activates. The mitral cells 

have increasing thresholds, 8Mi < 8Mi+' (O~j~), where 8Mi is the activation threshold 

of the jth mitral cell in a glomerulus. Thus an increasing amount of normalized 
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glomerulus activation results in a greater number of mitral cells being ftred. The mitral 

cells are modeled as two state devices (active or inactive) or McCullough-Pitts neurons 

which are either high (logic 1) or low (logic 0) with glomerulus activity either above or 

below its threshold respectively. Mathematically, 

M =1 iJ 
=0 

if Gt~eM1 
otherwise 

(5) 

Thus, the overall processing within the olfactory bulb in the absence of inhibitory 

feedback is as follows. The nonlinear nonnalization and the constraint on the total 

normalized glomeruli activity results in the accentuation of insignificant components in 

the odorant while attenuation of stronger components, which is intuitively pleasing. The 

normalized glomerulus activity is spatially thermometer-coded via the mitral patch where 

the increasing amount of normalized glomerulus activity is reflected in greater number 

of mitral cells being triggered. The constant level of glomerulus output activity serves 

to keep the total number of mitral cells that are activated reasonably constant across 

stimuli with different concentrations and compositions. This means that even though the 

same odorant at different concentrations results in different activations of the same 

glomeruli, the normalization can result in an identical thermometer code. This makes 

GLA model insensitive to odor concentration, i.e., Oi amplitudes. 

Piriform Cortex 

The main features of the piriform cortex are the sparse, and forward projections of 

the mitral cells onto piriform cells [17] via the lateral olfactory tracts (LOT), and 

backward inhibition feedback to the OB. 
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The outputs of the mitral cells in the OB, Mij• are projected on to the piriform cells 

in the piriform cortex via the LOT lines, fanning a connection matrix between the OB 

and the PC in layer Ia of the PC. The excitory synapses W(ij)(kl) in the piriform cortex are 

sparse, meaning synapses are made at random with a sparseness on the order of 10%. 

In our model, we assume a unifonn distribution of synapses. However, in the GLA 

model, the sparsity decreases (tapering) as one travels from the rostral to the caudal 

region of the piriform cortex [17], i.e., from closer to OB to further away. Further, our 

model does not consider synapses that are present from PC to PC (thickening synapses) 

in layer Ib of PC, which are present in the GLA model. This assumption was necessary 

to simplify the winner take all (WT A) structure leading to a saving in the silicon area. 

The excitory piriform cells Pkl are arranged into p disjoint piriform patches with h 

piriform cells per patch. The indice k indicates the patch while indice 1 indicates the cell 

number within the piriform patch. The total input activation to the piriform cell is 

g m 

p·kl= L :LMijW@(kJ) (6) 

i=l j=l 

At each operating cycle, due to the strong local inhibition, the piriform patches 

exhibit a winner take all competition within a patch, which results in only the strongest 

or few near strongly activated piriform cells to fire, while the rest of the piriform cells 

remain quiescent. The winner take all competition is exhibited due to the presence of 

inhibitory interneuron within the layer II (the stellate cells). Stellate cells are activated 

by the most strongly activated piriform cell, producing strong local inhibition to all other 

piriform cells except the strongly activated piriform cell within the patch. Thus, the 

strongly activated piriform cell tries to become more activated while the activation of the 
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other piriform cells is suppressed. The piriform patch compartments makes this event 

local and thus competitive by stTOnger local inhibition. 

The winning piriform cell is declared activated only if the corresponding input 

activation to the piriform cell is equal to or greater than a fixed piriform cell threshold 

8p. The output of the pirifonn cell is given by: 

PW -1 kl-
=0 

if P* kl~e P' and P*klLP"/rJ for all l~j~h 
otherwise 

(7) 

The GLA model states that, in addition to a fixed threshold, piriform cells also have 

frequency facilitation (ff) and refractory states. In the ff state, the ffkl is increased or 

decreased by one every time a cell activates or remains quiescent. The refractory state 

starts when ffkl exceeds the threshold 8rr· The refractory state of previously active 

piriform cell (8rF1) assures distinct piriform bulbar output code in each minor cycle. The 

non-refractory restriction to wining ensures that the piriform cells which won in the 

previous cycle will never win in the present cycle. However, our model does not 

implement ff and refractory states. 

Finally, the output pattern forn1ed by the winning piriform cells is regarded as the 

spatially encoded output of the bulbar-cortical system. Intuitively, it is clear that these · 

winning piriform cells happen to have a relatively large number of their synapses from 

the active mitral cells. 

The glomeruli in the OB are enervated by the inhibitory feedback generated by the 

winning piriform cells of the PC. This inhibition is weighted through synapses. Synapses 

are modulated over different input cues during the developmental period according to a 

correctional or Hebb rule. Feedback inhibits those glomeruli which are most responsible 
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for firing the corresponding winning piriform cells, thus attempting to deactivate those 

winning piriform cells which had generated the output of PC competitions in the previous 

cycle. The weighted inhibition on LOT line ij in the backward direction is given by: 

(8) 

Inhibition on consecutive m LOT lines m the backward direction (from where the 

respective forward LOT lines were originated) is summed by grouping them together 

forming aggregate un-thresholded inhibition r"i to the glomeruli. Inhibition is given by: 

m 

r i=L,r u 
j=l 

for i=l.. .. . g (9) 

The feedback inhibitory signal into glomerulus is obtained by thresholding on 8 1 as 

It= L, r t where, 
y (10) 

I* =I* if r ~~e 1 t i 

=0 otherwise 

where, y is the indice for each minor clustering cycle. 

Learning 

Only one type of learning mechanism has been modeled. After long term 

potentiation (L TP), the active synapses W(ij){kil project from active mitral cells in OB onto 

the winning piriform cells in PC. The weight matrix W consists of such a sparsely placed 

synapses. The learning involved in these synapses is referred to as adult plasticity. The 

weights of these synapses are non-decremental, incremented in discrete steps ow (- 10% 

of their maximum weight), and saturated beyond maximum value wmax (- two to three 
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times their naive weights). Mathematically, learning can be described as 

w(V)(kl)=min[(W(if.l(kl)+OWWDlAX] if w(f/)(kl)*O, and Mtj>O, and Pld>O 
= w(!/)(kl) otherwise 

(11) 

From the above equations it is clear that the synaptic alterations take place only in 

physically existing synapses and only if pre and post synaptic sites are active. 

In our model, since we do not implement synapses that , are present from PC to PC 

(thickening) of layer Ib of GLA model, we do not implement the learning associated with 

these synapses. The learning involved in these synapses is similar to adult plasticity 

described above [13]. 

The anatomical model calls for a distinct forward path form OB to PC and a 

feedback path from PC to OB. Forward excitory synapses (adult) are trained according 

to the rules given by equation 11 and backward inhibitory synapses are trained by a 

correlative Hebb rule [] during the developmental phase prior to its use for actual 

hierarchical clustering. To facilitate area efficient electronic implementation, at this stage 

we propose common adult and developmental plasticities. Common adult and 

developmental plasticity allows use of a single time multiplexed weight matrix W in feed 

forward and backward cycles. 

In the feedback path, the active synapses projected from winning piriform cells in 

the PC onto the glomerulus in the OB are strengthened over different input cues during 

the simulated developmental period. For each input sample on the olfactory nerve (ON), 

feedback synapses projected on the glomeruli and co-activated by both, the ON input and 

the pirifonn feedback are strengthened while the remaining synapses are unchanged. 

However, since in any particular feedback path, feedback correlations arise as a direct 
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consequence of the given connectivity and strength of the forward excitory synapses in 

the corresponding column of the weight matrix W, the same effect can be obtained by 

using the transpose WT of weight matrix W to compute bulbar inhibition. Architecturally, 

this implies that a single weight matrix with time multiplexing can be used to compute 

the weighted excitory bulbar input to the PC in the forward phase, followed by weighted 

inhibitory feedback from winning piriform cells to the OB in the backward phase 

resulting in improved area efficiency. Equation 8 gives the glomerulus inhibition using 

WT. 

Multi-Sampling 

The computational properties of the coordinated operation of the entire bulbar

cortical structure can best be described by a so-called multi-sampling process. The 

flowchart of multi-sampling process is shown in Figure 2. It is observed that activity in 

the various brain regions of small mammals is synchronized to their sniffing rate at the 

so-called theta rhythm (4-5Hz,- 200 ms) [17]. The GLA model states that the role of 

the theta rhythm is for synchronization. This eliminates the potential for oscillations due 

to feedback. Such a synchronization permits the entire OB to operate in rhythmic 

synchronization with the brain, where upon reaching the thresholds, the mitral/tufted cells 

fire in synchrony at the theta clock. The input to the piriform cortex aries due to the 

synchronous bursting of the mitral cells, yielding to the cyclic activity of the reciprocal 

process of feed-forward excitation of the PC by the OB followed by feedback inhibition 

of the OB by the PC at the theta rhythm. 

As the animal sniffs a single odor, the following sequence of events takes place in 



G*i (y) = max(Oi+Ii(y), 0) 
Process According to 

Equations 
2, 3, 4 ,5 ,6, 7 

N 

Generate Feedback I i 

According to Equations 8, 9 

Learn According to Equation 
11 ·----------------~ 

Figure 2. Flowchart of the Multisampling Process 

24 



25 

the naive network. After the flrst sniff ( cycle 1), depending on . the input composition,. 

the OB output triggers the most active piriform cell in-each patch of the PC based on the 

discussed operating rules and random connectivity. The winning pirifonn cells in the PC 

produce a feedback signal to the OB. Once the feedback signal from the PC crosses the 

feedback threshold 8 1, the glomerulus with, ·the most significant input components are 

strongly inhibited for remaining cycles via the phenomena called "long lasting inhibition" 

that is observed in the OB. In the subsequent -sniffs (cycles 2;3, .. y), the normalized 

activity of the uninhibited glomeruli increases (according to the normalization property 

which attempts to keep total glomerulus activity at a constant level) in order to 

compensate for the inhibition of the strongest components in the previous cycle. This 

allows weaker components in the input vector to be expressed. As a result, the 

thermometer code or the spatial pattern of the mitral cells activity differs significantly 

from the spatial patterns in the previous cycles. Mitral cells associated with the glomeruli 

that are now inhibited do not fire while a larger number of mitral cells fire from 

glomerulus whose normalized activity has been increased. A different patterns of 

activation from the bulb at each step assures a distinct bulbar-cortical output codes. 

The process of obtaining distinct cortical responses by successively inhibiting 

components of the original stimuli is referred to as multi-sampling. This multi-sampling 

process is repeated until the bulb is sufficiently inhibited to be largely quiescent, meaning 

every component in the input stimuli, no matter how weak it is, is given a chance to be 

expressed in the hierarchical clustering process. 

The naive network can be trained on a training set containing noiseless versions of 

selected dissimilar odorant (vectors) according to the learning rules discussed above. The 
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flowchart of the learning process is shown in Figure 2. The effect of learning in the 

network, is to cluster essentially random PC Tesponses into -nearly equivalent estimates 

of the input vectors. These vectors are sufficiently close in ·Space· to the ones used in the 

training set. Thus, learning develops the ability in the network to cluster the sufficiently 

close input vectors. The similar vectors in the training set fonn one category while 

dissimilar vectors fonn distinct categories giving rise to a new class every time an input 

vector is found dissimilar to all other vectors. Any :input vector similar to some vectors 

in the training set is accommodated in that category whereas a novel vector dissimilar to 

all vectors in training set gives rise to a new category. 

A perfonnance comparison study [17] of untrained and trained networks for 

dissimilar noisy odors concludes that the trained network enhances the overall overlap of 

patterns obtained for noisy instances of the same odorant. Also, it reduces the overlap 

of all pairs of patterns obtained for noisy instances of a different odorant. This indicates 

an inclination towards accommodating all noisy instances of the original odor under the 

same category. It also indicates that after training, the set of cortical responses are largely 

distinct. 

After the first cycle, the overlap between the sequence of the cortical responses in 

the subsequent cycles becomes progressively lower for different cues, increasingly 

distinguishing a given input cue and thus producing a unique encoding for an individual 

odorant. During the first cycle, the network responses are nearly identical to the input 

cues which are sufficiently close in space, group:ing them together in a sub-cluster. At 

the same time, it maintains extremely low overlap between two sub-clusters such that 

during the second cycle, responses are nearly identical for the members of the sub-clusters 
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while different responses for the vectors that were not the members of the sub-clusters. 

The responses in the third cycle are nearly unique producing unique encoding for 

individuals. Thus, during the multi-sampling process, a hierarchical clustering takes place 

where initial output codes indicate broad class or cluster membership, and subsequent 

codes indicate sub-clusters within clusters, and finally individuals within those sub

clusters. Cluster and sub-cluster breadth in the input vector space are influenced by the 

weight increment size, the ratio of saturated to naive weight values, and dimension of the 

input vectors in the training set. 

Hardware Implementation 

This section focusses on our hardware implementation of GLA olfactory model. Our 

simplified olfactory architecture is suitable for the hybrid implementation in the MOSIS 

two micron, p-well, double poly, double metal bulk CMOS process. The GLA model 

inherently possess many favorable features to aid such simple hardware implementation. 

Out of the numerous possible architectures, one potentially feasible olfactory 

architecture is shown in Figure 1. The hierarchical clustering at the theta rhythm in the 

GLA model necessitates the synchronous or clocked approach, rather than truly analog 

continuous parallel processing. 

The input cues, analog current input vectors Oi, are assumed to be generated by 

suitable sensory structure (receptor in anatomical model) which are sampled periodically 

at an artificial theta rhythm. For each cycle in theta rhythm, there are two major non

overlapping phases: activation of the OB and feed-forward excitation of the PC indicated 

by forward phase <j> I> followed by feedback inhibition of the OB by the PC indicated by 
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<P 2• Each phase, <P 1 and <P 2, is further subdivided into two non-overlapping sub-phases, 

<P 11 , <P 12 and <P 21 , <P 22, respectively. The timing diagram of the olfactory system is shown 

in Figure 1. Prior to using the network for hierarchical clustering, the network is trained 

over a set of the input cues by updating the forward (excitory) nonvolatile weights in 

parallel according to the adult plasticity rule discussed in learning section. Even though 

system controls are derived from the clocks, the actual computation between two clocks 

is truly analog, concurrent, and carried out in parallel. Clocks are merely for multi

sampling, and synchronization purposes. 

The following sections discuss the overall operation of our architecture, the different 

building blocks used by the architecture, and the top level architectural issues together 

with their relevance to the anatomical model. Th~ essential blocks and their functions in 

the proposed architecture are: (1) The glomeruli normalizer within the OB to normalize 

the glomerulus activity at a constant level. (2) The mitral patch within glomeruli to 

generate the LOT lines or to thermometer encode the net normalized input. (3) The 

sparse weight matrix to scale and sparsely expand the LOT line activity onto the PC via 

the modifiable synapses. ( 4) The WT A piriform patches within the PC to exhibit the 

winner take all competition. (5) The tie resolver to digitally resolve the potential ties 

which occur among winning piriform cells within a piriform patch, and (6) the current 

copier integrator (CCI) to provide the thresholded, collateral, and cumulative feedback to 

the OB. 

The analog input current vectors 0; (l~i~g) generated by the receptors are sampled 

periodically at an artificial theta clock. In the OB, the net input a·; to the glomerulus is 

formed by summing the real positive input vector 0; point by point with the negative 
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inhibitory feedback current vector I; (equation 1). · 

The a·; is then subjected to the global nonlinear normalization by a glomeruli 

normalizer. Several alternatives for normalization have been developed. Essentially all 

normalization schemes are implemented with a closed feedback loop circuit similar to that 

used in automatic gain control (AGC). KG is the constant to which the sum of the 

normalized activity (equation 3) is maintained (20%). 

Each normalized' glomerulus signal G; is thermometer coded by the m mitral cells 

per mitral patch. Mitral cells have increasing equidistance thresholds, i.e., 8Mi < 8MG+LJ 

(O:s;j:s;m), where 8Mi is the activation threshold of jth mitral cell. Mitral thresholds are 

generated globally by a capacitive ladder. The mitral cells are modeled as two state 

devices (active or inactive) or McCullough-pitts neurons by the two stage comparators 

which are either high (logic 1) or low (logic 0) with glomerulus activity Gi either above 

or below threshold 8Mi, respectively. Electronically, this is equivalent to front end of a 

flash AID convertor. 

The binary voltage output of the mitral cells Mij in the OB is spatially projected onto 

the hxp piriform cells in the piriform cortex via mxg LOT lines, forming the synapses 

between the OB and the PC. The synaptic weights W(ij){kl) are realized by a floating gate, 

non-volatile, analog programmable memory. The memory is used in conjunction with a 

MOS transistor operating either in the triode or saturation region. The conductance of a 

MOS transistor is modulated by the charge on the floating gate. The weights are non

decremental, incremented in discrete steps (- 10% of their maximum weight), and 

saturated beyond the maximum value of wmax (- two to three times their naive weights). 

The excitory synapses WCii)(kiJ are sparse rather than topographic, that is, they are randomly 
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distributed within the PC with a sparseness on the order of 10%. The sparse weight 

matrix W<mxg)(hxp) consists of sparsely placed synapses. Synapses are randomly arranged 

in the 4x5 sub-matrices. Restricting the PC random interconnections to a small local area 

is biologically unsupported. However, the choice of a 4x5 sub-matrix area was selected 

for fabrication convenience without any biological formulation. Each sub-matrix receives 

4 consecutive LOT lines (rows) and five consecutive piriform lines (columns) resulting 

in the 20 cross .junctions. The 10 percent sparse random connectivity within the sub

matrix is achieved by establishing two randomly chosen connections and placing a 

weighing transistor at these cross junction. Within the sub-matrix, any LOT line may be 

interconnected with any piriform input line, with the exception that double 

interconnections between a pair of lines is excluded. During layout, the location of the 

metal contact to the weighing transistor will be derived by executing a macro that 

generates a randomized connection between LOT and piriform line. Local grouping of 

interconnects minimizes interconnection and routing area, resulting in 10 to 20 percent 

area saving [15]. 

Simplification of the weight matrix (specifically the local interconnect) architecture 

results in the loss of certain statistical independence of the connectivity exhibited in the 

anatomical model. The architecture also results in the uniform distribution of weights as 

opposed to the increasingly tapered distribution from caudal to rostral region in the 

anatomical model. Further, due to the restrictions imposed on the connectivity of the sub

matrix, there exist a zero probability for forming some particular pattern of connectivity 

within a sub-matrix, where as in the absence such restrictions, corresponding probabilities 

would have some finite values. The architecture would seem to be less prone to these 
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effects in networks with a sufficiently wide input vector, since according to the central 

limit theorem, with increasing LOT lines the constrained distribution in the sub-matrix 

tend to be very similar to the unconstrained interconnection patterns of the anatomical 

model. 

As discussed earlier, we use a common adult and developmental plasticities which 

allows the use of the single weight matrix W in the forward and the backward cycles. 

This requires that weight matrix W be must time multiplexed to compute the weighted 

excitory bulbar output currents into the PC in the forward phase, and the weighted 

inhibitory feedback currents from winning piriform cells into the OB in the backward 

phase. The use of a common weight matrix results in a significant area saving since the 

weight matrix dominates the total silicon area as the weight matrix area grows in a square 

while the input/output dimensions grow linearly. 

Current conveyor (CC) based bi-directional voltage/current buffers (BiVI) permit bi

directional use of W. They provide the dual functions of voltage drivers and current 

sources/sinks to isolate the W matrix in the forward and backward mode. During the feed 

forward cycles, the BiVI buffers on the mitral side and the piriform side act as the voltage 

controlled voltage sources and the current controlled current sources respectively. Their 

roles are reversed in backward cycle. The detailed, time-multiplexed BiVI buffer 

operation is described in chapter III. 

The currents produced by the inner-products between the LOT activity and the sparse 

weights, are summed on the columns of W according to Kirchoff's current law. The 

weight matrix columns are organized into p patches with h neighboring columns/patch. 

The resulting inner-product analog currents p• kl are amplified/scaled by the BiVI buffers 
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and fed into the PC. In the PC, the excitory piriform cells Pkl are arranged into p disjoint 

winner-take-all piriform patches with h piriform cells per patch. The indice k and 1 

indicate the piriform patch and the cell number within the piriform patch, respectively. 

Each column feeds only one piriform cell. During the sub phase <j> 11 , the piriform patches 

exhibit a winner take all competition within a patch which results in only the piriform cell 

associated with highest input current to become logic high while the rest of the cells 

remain at a logic low. The winning piriform cell is declared activated only if the 

corresponding input current to the piriform cell is equal or greater than the piriform cell 

threshold 8p. 

The output Pk1 of WT A ideally should have only p winners. But due to the finite 

resolution of the WT A circuit, it is not possible to avoid ties among the highest and the 

few near highest input currents. A tie resolver circuit has been added to do post WT A 

processing during phase <j> 12 thereby digitally resolving the ties. The vectors Pkl, PW kl are 

unresolved input, and resolved output respectively. During the multi-sampling process, 

resolved WTA outputs produce a distinct output code. This output code is used for 

clustering as well as forming the basis for feedback inhibition. 

To implement feedback inhibition to the OB by the PC during the backward phase 

<j> 2, binary outputs of the resolved winning piriform cell PW~c~ are latched and reciprocally 

applied via the caudal BiVI buffers to the multiplexed WT matrix. This generates the 

inhibitory currents on the respective LOT lines configured for sinking the currents. The 

resulting inhibitory currents are amplified/scaled by the rostral BiVI buffers. By 

Kirchoff's current law, inhibition on consecutive m caudal "BiVI or backward LOT lines 

is summed by switching them together. Thus, forming an aggregate un-thresholded 
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inhibition ri (equation 9) to the glomeruli, from which the respective forward LOT lines 

are originated. The multiplexed operation of the weight matrix together with BiVI buffers 

is discussed in chapter III. 

The CCI provides the function of accumulative collateral feedback inhibition from 

the active pirifonn patches. If the corresponding LOT line was active in the feed-forward 

phase, fi is sampled and stored in each feedback cycle by the CCI circuit. The CCI runs 

in two phase ¢21 and ¢ 22, for storing and for updating l*i respectively. During the multi

sampling process, of the feedback phase, inhibition I; is applied to the glomerulus at the 

end of each minor cycle. Inhibition persists to be used during the next cycle in the 

forward phase. During the successive cycles, all of the inhibition currents that are 

generated in the backward phase are sampled and added to previously stored inhibition. 

In this way, as the multi-sampling proceeds, cumulative inhibition up to present minor 

cycle is applied to the glomerulus to inhibit the stronger input patterns. Thus, making the 

remaining (weaker) patterns more significant and allowing them to take an active part in 

the overall clustering process. el, the inhibitory threshold imposed on ti (equation 10) 

is necessary to eliminate the effects of floor noise on inhibition. 



CHAPTER III 

SYSTEM BUILDING BLOCKS 

This chapter focuses on the design, simulation, and testing of the basic building 

blocks. Simulations were performed using SPICE. Some auxiliary circuits such as 

current sources/sinks, digital control pulses, and triggering circuits had to be bread

boarded before actual blocks could be tested for their functionality. Testing is mainly 

performed to check DC response. Future test of transient response for speed verification 

will require that the testing circuitry be fabricated on-chip along the functional block 

being tested. This avoids the external capacitance contribution to the block due to the set 

up itself. Fabrication of such on-chip testing circuitry is beyond the scope of this thesis. 

However, we have reported transient responses as measured by an oscilloscope at the pad 

pins. This obviously adds a parasitic setup capacitance to the circuit nodes. Therefore, 

extrapolation of transient results is required to estimate the internal bandwidth. Once 

again, considering the vast and more important topics ahead, we leave this topic for the 

future. The system level integration of the olfaction system is also beyond the scope of 

this study. 

Glomerulus Normalization 

In real world artificial intelligence problems, such as pattern recognition, natural 

language processing, and olfactory clustering, signals in the input vector on the multiple 

34 
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channels convey useful information both, in the position and amplitude ratios of the 

vector elements. The signal processing burden in such cases is high. The absolute level 

of these signals may have minimal bearing on the final outcome of the classification or 

clustering of related observations. In such applications, slinple analog circuits can be 

used to perlorm the task of signal normalization. That is, to generate an output array in 

which each element is proportional to the corresponding element in the input array when 

normalized by a suitably-derived metric of the overall magnitude of the input, generally, 

the largest element or sum of all the element in the output array. 

Several signal normalization techniques based on the translinear principle have been 

reported and realizeq in monolithic forn1 [39]. These circuits exhibit undesirable pattern 

sensitivity because they don't scale with respect to a suitably-derived metric of the overall 

magnitude of the element in input array, i.e., scaling becomes a function of the number 

of input elements. Also being bipolar, they can not be used in the bulk CMOS process. 

The concept behind normalization circuits is the prospect of perlorming massively parallel 

and truly concurrent signal processing. 

In this section, various schemes to achieve olfactory bulb normalization are 

presented. The normalization scheme shown in Figure 3 consists of two feedback loops 

across all of the bulb inputs. An AGC function controls gain and an offset function 

ensures that the activity of normalized outputs is large in amplitude to strongly activate 

the mitral patch. The other normalizing schemes illustrated in Figure 4 and Figure 5 do 

not incorporate an offset function but use a linear and nonlinear (square law) functions 

respectively, to process the bulb inputs in the feedback loop. The following sub-sections 

elaborate each normalizing scheme in detail. 
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AGC and Offset Combined Normalizing Function 

The block diagram of the AGC and offset combined linear normalization function 

is shown in the Figure 3. The normalization block consists of two feedback loops across 

the inhibited bulb input G·;· The basic building blocks involved are the multiplier, offset 

summer, and operational amplifier. The off-chip operational amplifiers will be used to 

simplify conceptual block testing. G'; is the signal obtained after AGC while G; is the 

normalized offset output signal. The multiplier in the closed loop ensures a constant 

level, Ka percent, of mitral activity. The offset summer in the closed loop detects the 

maximum value of element G'imax in G'; and adds the difference between the G'imax and the 

set point IFS, to all the elements in G';· This difference between the set point IFs and 

G'imax is referred to as an offset. The offset activity can best be illustrated mathematically, 

Offset= I Fs-G' i.ma.x 

and output is given as 

G~=G1 1±1Qffse~ + if G'i.ma.x <I FS 

- if G 'lnuJJ:> I FS 

The multiplier activity is given by 

(12) 

(13) 

(14) 

where gm is the linear transconductance of the multiplier and scaler V K is the smallest 

value that satisfies 
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(15) 

where ~ is glomerulus activity constant. AGC closed loop activity sets V K at 

(16) 

The multiplication in equation 14, and offsetting of the automatic gain controlled 

vector in equation 12 and 13, is accomplished by the multiplier and offset summer circuits 

of Figure 6 and 15, respectively. The following sections discuss each functional building 

block in detail. 

Transconductance Multiplier 

The schematic diagram of the cross-coupled double quad CMOS transconductance 

multiplier used in the normalization circuit is shown in Figure 6. The circuit is composed 

of the linear CMOS transconductor and its biasing circuitry. The transconductance is a 

crucial component of the design since it may limit the multiplier linearity, frequency 

response, and noise performance. High linearity for large input signals, low noise, no 

dominant internal poles, large transconductance, and low quiescent power dissipation are 

the desired properties of any transconductance circuit. Several techniques for improving 

the linearity of the MOS transconductance elements have been proposed [ 40]. Most of 

the differential transconductance schemes can be broadly classified into four categories: 

adaptive biasing, class A-B, source degeneration, and current differencing. Some combine 

two or more of these techniques to achieve linearization. Detailed information can be 

found elsewhere [ 40]. 
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The proposed circuit comes under the class A-B transconductors . Transconductors 

m which the maximum output is greater than the quiescent bias current (rplOO%), 

generally operate in the class A-B mode. Class A-B transconductors typically exploit the 

square law characteristics of an MOS transistor in the saturation region to achieve 

linearization [41]. In this section, we will discuss the fundamental principle and design 

of the transconductance multiplier circuit. 

The fundamental principle of the class A-B transconductors can be understood by 

examining the two transistor configuration shown in Figure 7. Assuming both transistors 

are perfectly matched and operating in the saturation region, the differential output current 

is given by: 

(17) 

Above equation states that a linear transconductance can be achieved by ensuring that the 

sum of the gate-to-source voltage is constant. With the sum constant, if Y;d is equal to 

V Gs1-V Gs2 then equation 17 reduces to : 

(18) 

where V eM = (V Gs1+ V Gs;J/2 is the common mode input level. The transconductance 

gm=~(V eM- V T) is linear and may be varied electronically by adjusting the common mode 

input level. From the above analysis, the fundamental principle of class A-B operation 

can be defined as: "Under the conditions of a constant sum of gate to source voltages, two 

matched MOS transistors operating in the saturation region display a linear relationship 

between the difference of the gate-to-source voltages and the difference of the drain 



Figure 7. Demonstration of Class AB Principle 
With Two Transistors 
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currents" [ 40]. This applies in the operating range: 

In this region current may vary as 

- 2J DC~[ diff 

lnc=PCVcM- VT? 

where Inc is the total de bias current. 

44 

(19) 

(20) 

The second fundamental principle involved in the design of cross-coupled double 

quad transconductance is replacement of the single transistor M 1 or M2 with the CMOS 

double pair as shown in Figure 8. This overcomes the matching problems associated with 

n-channel class A-B operation. Using the saturation region equation of the MOS device 

results into, 

(21) 

The equivalent gate-to-source voltage, V oseq = V osN+ V asP of the double-pair is then given 

by: 

(22) 

where, 

(23) 

and 



Figure 8. CMOS Equivalent of Single 
MOS Transistor 
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~ = ~ N~ p 

sq C/P N+{ff;)2 
(24) 

This concludes that a pair of opposite polarity MOS transistors acts as a single transistor 

with an equivalent threshold voltage and transconductance given by equations 23 and 24, 

respectively. 

In equation 18, the transconductance is perfectly linear. Although it has excellent 

linearity and efficiency, some of the class A-B implementations suffer from limitations 

such as the requirement of fully balanced signals for non-linearity cancel1ation and poor 

common mode rejection. The class-AB double quad circuit, which overcomes most of 

these problems, is shown in Figure 9. From the fundamental principal of class AB 

transconductance and equation 18, the sum of the gate-to-source voltage of M1 and M2 

must be constant for non-linearity cancellation to occur. Applying KVL around the loop 

(25) 

and 

(26) 

In the above equation, Vid need not be a balanced input. Current source biasing can be 

ratio. As a result, the common mode input level no longer affects the transconductance 

or the linear range. Substituting equations 25 and 26 into equation 17 results in 

(27) 

The transconductance gm=2~V n is perfectly linear and can be tuned by changing V 8 . It 

should be noted that the differential current flows through the floating voltage sources. 



+ 

Figure 9. Linear MOS Transconductance 
Principle 
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The magnitude of these voltage sources should remain constant regardless of the current 

flowing through them. A better solution can be realized by replacing a single transistor 

(M 1 & M 2) with its CMOS equivalent double pair as described previously. This does not 

change the circuit behavior since the CMOS double pair acts like a single transistor, 

except ~ in equation 27 is replaced by ~eq and V T by V Teq as given by equations 23 and 

24 (see Figure 10). In this configuration, drain current no longer flows through the 

floating voltage sources. Thus the required floating voltage sources can now be achieved 

by the diode connected CMOS pairs biased with the current sink as shown in Figure 11. 

From equation 22, the bias voltage V 8 is given by: 

v.~ ~ 2I. 
p eq 

(28) 

Combining this biasing network with Figure 10 results in the final transconductor as 

shown in Figure 6. The differential output current is obtained by incorporating 

differential mirroring pairs consisting of M9, M 14 and M 10, M 15 . Finally, from equation 

27 and 28 

(29) 

for the differential range 

Vw<~ (30) 

The transconductance of equation 29 is perfectly linear and can be tuned with the bias 

current I13• Since both, the quiescent current and the maximum linear output currents are 

4I8 , the maximum efficiency is 100%. The efficiency can be increased above 100% by 
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Figure 10. Linear MOS Transconductance Using 
the MOS Equivalent pair 
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Figure 11. Double Pair Implementation of a 
Floating Voltage Source 
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decreasing the W /L ratio of the inner quad transistors with respect to the outer quads. 

The differential output current is obtained by incorporating the differential mirroring stage 

in series with the inner quads. From Figure 6 and equation 29 

(31) 

It should be clear from the equations 29 and 31 that by making the bias current I8 a 

function of one variable, V K> the transconductance circuit can be used as a linear 

multiplier. However, it is essential that both bias current sources remain in saturation 

over the entire operating range to be a linear function of the gate voltage V K· In order 

to maintain symmetry of operation in both the quads, as well as to achieve good 

efficiency, the following geometrical relations can be determined by inspection. For the 

symmetrical operation of the inner quads: (W!Lh=(WIL)3, and (WIL\=(W/L)7• To have 

identical biasing resistance for both quads: (W!L)16 = (W/L) 18 , (W!L) 17=(WIL)19; and for 

proper differential current mirroring: (W!L)J(W/L)14 = (W!L)Hj(W/L) 15. Moreover, to 

the outer quad. The inner quad is made geometrically half of the outer quad to achieve 

greater than 100% efficiency, i.e., P2=P/2. With these simplifications, equation 31 

becomes 

Imr..JCP P 11) (VK- vr11) Vw 
=gm(VK-VTl)Vw 

(32) 

where gm= CP~11) 112 is the linear transconductance. As pointed out earlier, the input does 



52 

not have to be fully balanced. Keeping one end (point b) of the differential input Y;d at 

ground potentiaJ., the differential signal can be made single ended. But, then V os at 5 V 

is not sufficient to keep M8 and M 12 in saturation for higher values of VK. Thus M12 falls 

into triode region and the multiplier from suffers linearity degradation . Therefore, the 

common mode range of the differential signal should be increased by V T or 2 V T, 

allowing increased V os headroom to keep M8 and M12 in saturation over the entire 

operating range of VK. This is achieved by two identical complementary linear resistors 

Ru,, each made of transistors M16, M17 and M18, M19 connected in a back to back fashion 

as shown in Figure 6. FinaJly, 

G' t=ldiff (33) 
=gm (G* J?.ill) 11 VK 

where, !J.VK=VK-VT!l. The resistance R;n is given by: 

(34) 

Clearly, the output current is the function of input current G"; and scaler V K· 

Simulations. The SPICE simulations of the DC transfer characteristics of the 

multiplier are shown in the Figure 12. A family of curves is obtained by ramping 

inhibited receptor currents G"i from 0 to 250 !-LA for the different closed loop voltage, V K> 

varied over the 1 V to 2.4 V range in steps of 0.2 V. The output currents are sampled 

via R0 . 

The transconductance obtained from the DC transfer characteristics is approximately 

linear and satisfies equation 32. The non-linearity at lower values of inputs is due to the 
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non-linear Rin (equation 34). The non-zero output current at a·i=O is a result of the 

differential offset that is present due to the finite amount of current that is required to 

flow to provide V b· 

Testing. Due to the difficulty in obtaining the ramped DC sinking current a·i, saw 

tooth voltage v. is used instead of G·i· This requires that the bias voltage Vb (see Figure 

6) must be known to confirm the zero crossing of the output currents. The SPICE 

simulations performed on the extracted file are shown in Figure 13 . V b was found to be 

2.25 V. Keeping this in mind, a family of curves is obtained by ramping v. from 1 V 

to 3.5 V for different values of V K varied over a I V to 2.5 V range. Test results are 

shown in the Figure 14. During the testing, two quadrant operation of the multiplier is 

exhibited due to the fact that Vb is biased to a positive voltage (2.25 V) instead to a zero. 

Thus, the sign of the differential input voltage (Vict = V.-Vb) and output current changes 

(equation 32) when v. is varied from below Vb to above Vb. The output current is 

sampled in terms of the voltage drop V0 across the 10 Kohms precision resistor R0 . 

The test results are compared with the results that are obtained from the SPICE 

simulations performed under the identical conditions. The multiplier behaves linearly 

within the operating range. The percentage difference between the output currents 

obtained from simulation and testing is found to be below 25 percent. This linearities 

is present due to the nonlinear resistance given by equation 34. 

Offset Circuit 

The offset circuit for a one bit wide input vector is shown in Figure 15. The circuit 
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is divided into two parts: the global off-setter and the offset summer that is repeated 

perelement of the input vector. The simulations consider four bit wide input ,and output 

analog current vectors, G'; and G;, respectively. 

The off-setter is comprised of an operational amplifier (op-arnp) connected in the 

negative feedback loop, and the offsetting circuit (M13_16, M14A> M 15A> and M m). The op

amp may locally be integrated on-chip or it may be connected off-chip at the expense of 

the bandwidth. For testing, op-amp is connected off-chip. Simulations are performed by 

considering an ideal op-amp, while for testing purposes it is replaced by a discrete off

chip amplifier. The voltage drop across M17_18 and M82 corresponding to the full scale 

input current Ips forms the inverting input to the op-amp. 

The offset summer is comprised of the compensator (M9_12), a current mirror (M1_8) 

and the maximum function circuit (M19_20, MBl). The bias voltage VB2 required by the 

current mirror is generated on-chip by the voltage reference circuit CMva2p and MVBm). 

o·i, where i=1,2, .. g, forms the input vector to the offset summer. Let o·imax be the 

maximum value of the input current among the elements of the o·i· This circuit achieves 

the offsetting of the input vector G'; by adding the difference between the full scale 

current and the maximum input current (IFS-G'imax) to all the elements of the input vector 

including G'imax· All of the elements in the output vector Gi are offset by an equal 

amount. This is due to fact that the compensating circuit, along with the op-amp 

generates in parallel the same global feedback + V FS and -V FS to all the individual 

elements. The appeal of this circuit lies primarily in the prospect of performing massive 

parallel signal normalization. Note that the bandwidth is limited by slew rate of the 

operational amplifier and the Cas load of M10. 11 • 
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Two copies, GCi and GCCi, of the output vector Gi are generated by the current 

minor. Cascades M5_7 minimize the copying error that is present due to channel length 

modulation. Gi forms the input to the mitral patch for further processing of the signal. 

GCi is used in a closed loop to maintain the input activity to KG percent while GCCi feeds 

the maximum function circuit that is used to detect the maximum value of the element 

G'imax in the input vector a·i· The multiple input-single output maximum function circuit 

is comprised of several single input-single output sub circuits connected in parallel, and 

repeated for each element of a·j- Each sub-circuit (M19_20) is comprised of two MOS 

devices connected in diode fashion. The circuit diagram (g=4) of the maximum function 

circuit is shown in the Figure 16. MB1 is a long channel transistor necessary to provide 

the leakage cunent to bias M20A, M20B, M2oc, and M200. Nodes A, B, C, and D possess 

different potentials depending on the corresponding mirrored input currents that are 

flowing through M19A , M19B, M19e, and M190 respectively. The node "-" acquires the 

max (VA' VB' V c' V 0 } corresponding to the maximum current. This voltage reverse biases 

all other diodes except the diode in the branch with maximum current, thereby detecting 

the maximum potential corresponding to the a·imax- The value of the a·imax can be 

estimated by comparing max {VA' VB' V c' V 0 } with the drop across an identical structure 

(M17_18) due to known full scale current. The voltage drop across the identical sub-circuit 

M17_18 forms the inverting input of the op-amp. IFS being a single element, M18 and M82 

are unnecessary. They maintain symmetry for minimizing the input offset. 

The output of the op-amp V 0 together with the compensating circuit, provides global 

feedback to a compensator via two buses: +VFS and -VFS. Applying a KVL around the 

loop shown in Figure 15, we get: 
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(35) 

Assuming M 14A and M15A are operating in saturation, 

a leakage current IL to keep M14A and M15A conducting in the subthreshold region. 

The sign and value of the differential input determines sign and value of V 0 . As V 0 

increases in the positive direction, V Gs14 and V Gs15 increase. M 14 pulls down bus + V Fs 

while PM OS M15 looses pull-up action therefore bus -V Fs also decreases. The converse 

is true if V 0 decreases in negative direction. At any point in time, the difference between 

+VFS and -VFS remains constant, but the mean changes. In other words, +VFS and -VFS 

vary in the same direction by an equal amount. 

The operating principle of the offset summer circuit can best be illustrated by 

considering the circuit operating in a closed loop configuration. Assuming that a·imax>IFS, 

the following sequence of operations takes place. The current mirror generates two 

copies, GC; and GCC;, of the output vector G;. Each one is used for a specific purpose 

as described earlier. Since a·imax > IFS, VD becomes greater than Vr, thus Yo increases in 

the positive direction resulting in a decrease in both + V FS and -V FS· ~ starts conducting 

while M12 shuts off. If a ·imax has to be normalized to IFS then the extra current, G'imax-IFS, 

must come from M9• Thus, only IFS flows through M4 which after mirroring is available 

as an offset version of the input G';- Since + V FS and -V FS are common to all the elements 

in the input vector, the same offset, a ·imax-IFS is added to every element in the input 
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vector. Since G'; is a constant, only G';-(G'imax-IFs) flows through the corresponding M4 

which when mirrored is available as G;. The identical but reverse action takes place if 

G'imax < Ir-s· M 9 shuts off and the shortfall (IF5-G'imax) flows through M 12, thus the element 

corresponding to G'imax gets offset to become G'imax+lFs-G'imax=IFs and all other elements 

are offset to G';+IFs-G'ima.· 

Simulations. The SPICE simulations of the DC transfer characteristics of the offset 

summer circuit are shown in the Figure 17. For simplicity, a four bit wide input vector 

0'1.4 is considered. The DC transfer curves are obtained by holding G'24 at the constant 

levels, i.e., 44 )..l.A, 34 )..l.A, and 24 )..l.A respectively, whereas 0'1 is ramped from 100 )..l.A 

to 0. The full scale current, ID(MF5), is held at 64 )..l.A. The offset output current is 

sampled via M4 in each sub-circuit which, when mirrored, is available as normalized 

output vector 0 14. Normalization is analyzed at the four discrete points A, B, C, and D. 

These points are· shown on the plot. 

At point A, G'1=G'imax· According to previous discussion, when G'imax > IFS, offset 

IS IF5-G'imax> i.e, -36 )..l.A in this case is added to all the elements in the input vector. 

Mathematically, the normalized currents G 14 become 64 )..l.A, 8 )..l.A, -2 )..l.A, and -12 ~A 

respectively. The normalized currents obtained at point A in the plot are off by 4 )..l.A 

since the maximum element gets normalized to 68 ~-tA rather than to 64 )..l.A. This error 

is shown on the plot. The error is attributed primarily to the copying fidelity of the 

current mirrors. 

At point B, G' 1=64 ).1.A. Thus the offset reduces to zero. Mathematically, the 

normalized currents G 14 should possess their original values of 64 J..l.A, 44 ).1.A, 34 )..l.A, 
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24 )l.A respectively. Currents obtained are once again off by 4 J.LA because of the 

previously stated reasons. 

At point C, 0'1=0·2. Any further reduction in 0'1 makes G'2=G·imax· Thus, from this 

point forward, a constant offset (IFS-G'J, 20 ~A in this case, is added to a· 1_4 . 

Mathematically, at point D, the normalized currents G14 should possess 20 ).l.A, 64 J.LA, 

54 J.LA, and 44 ).l.A respectively. The currents obtained from the plot at point D verify 

these values. 

Testing. The testing of the entire offset circuit connected in a closed feedback loop 

didn't lead to conclusive results. To locate the fault, each sub-circuit was tested 

separately. 

The common node formed by gates of M14 is a high impedance node. The leakage 

resistance R in Figure 15 is essential to provide the bias current to M8. Without R, even 

though correctly-biased by V B2, M8 fails to configure M14 in the current mirror mode, thus 

no feedback in the closed loop is made available to the maximum function circuit. The 

value of R is of the order of one meg ohm. 

CMOS technology inherently does not offer area efficient way to realize linear high 

on-chip resistances. Realizing R internally by using a poly resistor is not an area efficient 

solution. Alternatively, a common gate can be made available externally so that the 

external resistance can be used. The later needs i pins for i bit wide input vector. Our 

failure to implement R by either means restricted us from testing the entire circuit in a 

closed loop. However, the effect of V0 on the + VFS is observed. The V0 is ramped 

linearly from 0 to 3 V. From Figure 15, 



65 

+ v,s= VDD-~ CVo-vT,.,)+ VTIJ (37) 

The testing results closely follow the above equation. 

Linear Limiter with AGC Normalization Function 

The block diagram of the linear limiter with AGC normalizing function is shown in 

Figure 4. · It is essentially identical to the AGC and offset combined normalization 

function, except that it uses different normalization parameters and does not have an 

offset function. It consists of an AGC feedback loop across all the inhibited bulb inputs 

to perform the task of signal normalization, that is, to generate an output array in which 

each element is proportional to the corresponding element in the input array divided by 

the largest element of the input array. 

First, using the previously described maximum function circuit, the maximum 

element in the inhibited input vector G"i, is detected. From Figure 4 and equation 33 

(38) 

where gm and ~n have their usual meanings. Also from Figure 4 

(39) 

where 11 V K = V K-V Tll· Substituting equation 38 into equation 39 results in 

(40) 

If Av1 is sufficiently large such that 1 +G" imax Av1 Rin R gm "" a· imax Av1 Rin R gm then, 
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I A v ,.. FS 

K G • ima:.c Rin gm 
(41) 

Note that, 

(42) 

Finally, combining equation 41 and equation 42 results in 

I 
G =G* FS 

t . t G* . 
lmcJX 

(43) 

The maximum element in the input vector is always normalized to some 

predetermined full scale value, while all other elements are ratioed corresponding to their 

absolute values with respect to a maximum value. Note that this scheme represents the 

normalized vector in terms of ratios of relative value of the individual elements with 

respect to maximum element in the input vector. 

Square Law Bulb Normalization Function 

The block diagram of the square law bulb normalization function is shown in Figure 

5. Conceptually, this scheme is similar to schemes described previously except for some 

important features. GLA model [17] calls for the scaling of on-normalized glomerulus 

activity G"i by a suitable scaler V K ' such that the sum of the non-linearly processed and 

scaled un-normalized glomerulus activity is constant (equation 2 and equation 3). The 

effect of such a nonlinear normalization on an overall clustering process is discussed in 

multi-sampling section. The nonlinear sigmoid-like transfer function is mathematically 

characterized by equation 4. 
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The normalization scheme is comprised of: the multiplier, the approximate sigmoid 

function g.(.), and on or off chip operational amplifier. From Figure 5 and equation 33, 

the AGC scaled vector G.i is 

(44) 

and the normalized activity is 

(45) 

where gm and Rio carry their usual meaning, g.(.) is the approximate sigmoid transfer 

function given by equation 4, and scaler V K is the smallest value that satisfies 

g 

Lgs(R G't)=KG (46) 
i=l 

In closed loop, VK settles at 

(47) 

The following sections discuss the electronic realization of the approximate sigmoidal 

transfer function. 

Approximate Sigmoidal Function 

The squashing cell is shown in Figure 18 [ 42] . It takes advantage of the inherent 

nonlinear drain to source I-V characteristics of aMOS device to generate the continuously 

differentiable and gain programmable transfer function. The cell is versatile, is extremely 

simple to design, and provides independent voltage or current programmable control of 

the gain. From an analog electronic system perspective, the sigmoidal non-linearity can 
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be thought of as an amplifier with a nonlinear transconductance. This results in nonlinear 

DC transfer characteristics. The gain is the slope of the output-input curve at a specific 

input excitation leveL It varies from a low value at large positive or negative excitations 

(flat portions of the curve in Figure 20), to a maximum value at zero excitation. This 

non-linear transconductance nmmalizes the input activity. In this novel cell, the inherent 

nonlinear drain to source I-V characteristics of the MOS device are utilized to generate 

high gain near zero crossover using the triode region and low gain using the saturation 

region at high excitations. 

In Figure 18, G' ;R, eG, + V c, and G; are the input voltage, the threshold controlled 

voltage, the sigmoidal gain control voltage, and the normalized output currents 

respectively. G; forms the input to the mitral patch used for further processing of the 

signal, whereas GC; in a closed loop is used to set the output activity to Ko percent. The 

geometries of M5,6,7,8 are designed such that all of the MOS devices operate in the 

saturation region. Applying KVL around the loop shown, results in the following voltage 

loop equation: 

(48) 

in Ps=P7 and P6=P8. Since they are all n type devices, it is assumed that the threshold 

voltages of all of the devices are matched. However, because of different body potentials 

there will be slight mismatch in the threshold voltages. Assuming matched V T , s, equation 

48 simplifies to 
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(49) 

Noting that G'; R is impressed across M9 , and using an accurate strong inversion model 

[ 43] of an n-channel MOS transistor operating in the triode and saturation regions, the 

drain or output current of the NMOS device operating in the triode and saturation regions 

is modeled as 

I _ {W)jc · ~ 1 (G'tK)2
] 1 • 1 D9-K - vc-VT9'G i R- (l+.l.G, R) , vc-v19~G j R ± eF 

L 2 (50) 

= Kn(W) (V -v· '~2(1+~G1 17\ V -V --G1 R ± B 2 L c T9' ,._ I .1.\.) c 19~ i F 
9 

where A, is the channel length modulation parameter. In general, 

Gt=ID9 

=g/G') 
(51) 

It is important to note that in the transition between the triode and saturation regions, 

commonly referred to as the moderate inversion, the MOS model neither fits into the 

triode nor the saturation model. In many treatments, no moderate-inversion is defined. 

Sometimes this region is considered as the lower part of strong inversion. Such models 

can lead to large errors. 

Note that the described squashing function operates in a single (1st) quadrant. The 

symmetrical two quadrant (1st and 3rd) operation can be achieved by incorporating the 

complementary equivalent into the circuit in Figure 18. At any instance, only one 

quadrant is operative depending on the polarity of the input voltage V in· Symmetry in two 

quadrants is maintained by the proper selection of device geometries in their respective 

parts. The simulations and fabrication are based on the two quadrant squashing function . 
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Note that in Figure 18, the R can be replaced by a MOS transistor operating in linear 

region. 

In summery, the squashing circuit transfers the input voltage across the drain to the 

source of the transistor M9. Over the supply voltage range, this MOSFET has a 

continuously differentiable I-V characteristics. In the triode dV c-VT91>1G'i Rl) and 

saturation dV c-V TJ<G'i R) regions, the transconductance gain, gds, is ~(V 05- V T-V 05) 

and Al0 , respectively. The resulting nonlinear drain current is mirrored by M11_12. The 

current is linear at small values of input voltage and saturates, as the input voltage 

increases and the transistor M9 enters into the saturation region. 

The input voltage G'iR is "squashed" into a nonlinear current that is made available 

as an output after current mirroring. The important features are independently 

programmable control of the sigmoidal gain and offset 8 0 . The saturation knee point can 

be placed anywhere simply by proper combination of gate voltages and geometry of M9. 

Finally, it is important to point out that this circuit achieves voltage to current conversion 

(transconductance). 

Simulations. Figure 19 shows the AC response of the celL The cell achieves a 

bandwidth on the order of 10 Mhz into a one Megaohm load. The SPICE simulations of 

the DC transfer characteristics of the cell are shown in Figure 20. The family of curves 

is obtained by ramping the input voltage V in from -3 V to 3 V for different sigmoidal gain 

voltages, V c· The output current Gi is sampled via R0 . 

Testing. The DC transfer characteristics obtained from the experimental data are 

shown in the Figure 21. When compared with the simulation results for the same V in and 
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Figure 21. DC Transfer Characteristics of sigmoidal Function (Test Results) 
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V c• current in the 1st quadrant due to n the devices'is lower than in the Jrd quadrant due 

to p devices. This is due to the threshold and beta mismatches between the n and p 

devices. With the V c's set at low values, the threshold mismatch was 'foundto ,be 0.266 

Y. + V c and -V c were adjusted for threshold mismatch before recording the test data. 

The current mismatch at higher values of V c's is mainly due to the beta mismatch and 

the channel length modulations for large voltages of n and p devices. The testing data 

closely follows equation 50. 

The small signal transient step response rise and' fall times with a 10 kQ output 

resistor and 20 pF oscilloscope probe capacitance plus test,fixture capacitance are found 

to be 2.5 ~s and 2.25 ~s respectively. 

Mitral Patch 

The bulb simulations consider mxg projections (mitral cells). Projections are divided 

into g separate groups (mitral patches). Each mitral patch is excited by the normalized 

input from one group of peripheral receptors. The normalized output ensures input 

activity of mitral patch significantly large in amplitude to strongly activate the mitral 

patch and to keep the total number of mitral cells that are activated reasonably constant 

across the input vectors with different intensities and compositions. Within the mitral 

patch, the intensity of a normalized input is thermometer coded by the number of active 

cells. In other words, a thermometer code is an output representation, in which input 

activity is linearly coded by the increased number of units being triggered for the 

increased input activity. Thus, depending on the input activity, each mitral patch is 

spatially expanded from 1 to j t11ermometer coded LOT lines which project onto the 



76 

pyriform neurons. The mitral patch implements AID conversion with a logical 

thermometer code. 

The circuit diagram of the mitral patch is shown in Figure 22. It is comprised of a 

global capacitor reference ladder that sets the full scale current into m equidistance global 

thresholds, 8Mi. These thresholds are then compared to the input by m comparators in 

each mitral patch. The output currents, G;, of the normalizing glomerulus function are 

used as an input to mitral patch. The scheme is equivalent to front end of the m level 
:t 

flash AID converter, generating the thermometer coded digital LOT lines. 

After mirroring through n mirror stage MR3.4 and p mirror stage MR1.2, the full scale 

current IFs is dropped acrs>ss the active load (MR5_6) creating a full scale voltage reference. 

This voltage reference is impressed across the ladder of m identical MOS capacitors 

producing m voltage levels. The poly-1 to poly-2 unit capacitance has a tolerance of± 

6 Ff/j...tm2 with a typical value of 50 Ff/j...lm2• Looking into the comparator, if Cas is the 

gate to source capacitor of M2 then, the jth mitral cell threshold voltage is given by: 

l V. 1 + V. l C GS V= 1 ... ; - +V --
1 C 111 2C 
2+~ 

2C 
(52) 

l-}+1 + YJ-1 .,. for C GS<.2C 
2 

Nonidentical step capacitances result in non-equidistance threshold levels, if C>>Cas• then 

(53) 

Thus step threshold voltages can be approximated as, 
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(54) 

where j is the mitral cell index and m is the total number of mitral cells per mitral patch. 

The output current of each glomerulus is equilibrated across an identical active load 

MR7.8• The resulting voltage drop is compared with threshold voltages using a series of 

comparators. The two stage comparator is shown in the Figure 22 [ 44]. The low gain 

of the differential stage is augmented by the gain of the current sink inverting stage. The 

problem associated with such an comparator is a poorly predicted trip-point voltage. 

Simulations 

The SPICE simulations of the DC and transient characteristics for the mitral patch 

circuit are shown in the Figures 23 and 24, respectively. With the full scale current set 

at 64 flA, the DC characteristics are obtained by ramping the normalized bulb input 

currents G;, from 0 to 64 J..LA. V 1. 16 are the threshold voltages applied to the inverting 

input of the comparator, Y301_316 are the digital output voltages of comparators and V in is 

the non-inverting input of the comparator. As V in crosses threshold voltage, the output 

of the corresponding comparator is driven high. In this manner, the intensity of a 

normalized input is thermometer coded by the number of cells that normalized input 

activates. 

The transient step response reveals that the LOT lines that are thresholded near the 

full scale current are slower than those that are thresholded near ground. This is due to 

the changing input differential voltages as a function of ladder position. The differential 

voltage is a maximum at lowest threshold 8Mp and minimum at highest threshold 8M01 • 
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Testing 

The Limitation on the package pins restricted external access to only a few LOT 

lines. To confinn the proper functionality of the capacitive ladder, LOT1, LOT15 , and 

LOT16 are connected to the pad-frame. With IFs set to a known positive value, Gi is 

varied from zero to IFs ).!A and the state of the LOT lines is observed. The global 

capacitive ladder is suppose to set the full scale current into m (16 in this case) 

equidistance global thresholds. With IFS equal to 64 IJ.A, theoretical toggling levels for 

LOT1, LOT15, and LOT16 are 4 ).lA, 60 ).lA, and 64 ).!A, respectively. The corresponding ,, 

toggling levels recorded from testing data are 4.74 !lA, 40 ).!A and 43 ).!A. 

The large signal step transient response agrees with the theoretical conclusion, i.e., 

LOT lines that are thresholded near Ips are slower compared to those that are thresholded 

near ground. The rise time of LOT1 is 4 ).ls, LOT15 is 10 f.l.S, and LOT16 is 12 ).lS. 

Bi-directional Voltage/Current Buffers 

The bi-directional voltage/current (BiVI) buffers that are based on the current 

conveyor concept are shown in Figure 25. These buffers provide the dual functions of 

voltage drivers and current sources/sinks to isolate the W matrix in the forward and 

backward mode. During the feed forward cycle, the BiVI buffers on the mitral side are 

configured as voltage controlled voltage sources, and the buffers on the pyrifonn side are 

configured as current controlled current sources. During the inhibition in the backward 

cycle, their roles are reversed. Bi-directional operation is achieved by switching S1 and 

S2, at the Y inputs of the current conveyors, to either a reference voltage Vrcr or to the 
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ground potential. When the Y input of one buffer is at ground, the other may be either 

at ground, or at Vrcr causing a current flow proportional to the charge on the floating gate 

and v ref to flow. 

Current conveyor circuits began to emerge as an important class of circuits during 

the early 70's. They have proven to be functionally flexible and versatile, gaining 

acceptance as both a theoretical and a practical building block that offers an alternative 

way of abstracting complex functions. Current conveyors offer several advantages over 

conventional operational amplifiers. They provide higher gain over a greater signal 

bandwidth [ 46]. 

The block diagram of a CC is shown in Figure 26. Class-I (CCI±) and class-II 

(CCII±) conveyors have defined properties [45]. A CCII± can be expressed in the 

following hybrid equations: 

1r o o· o vr 
Vx = 1 0 0 lx 

Iz 0 ±1 0 Vz 

(55) 

The above equation states that no current flows into terminal Y, thus terminal Y exhibits 

an infinite input impedance. If the voltage is applied to input terminal Y, an equal 

voltage appears on the input terminal X, thus X exhibits a zero input impedance. Finally, 

an input current Ix on terminal X is conveyed to high impedance output terminal Z. The 

positive sign denotes that at any instant both, Ix and lz flow into or away from the 

conveyor signifying CCII+ while the minus sign denotes the opposite directions of the 

currents signifying CCII-. 

The CCII may be viewed as an ideal MOS transistor [ 45]. The ideal behavior of the 
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NMOS (MFN in Figure 27) transistor can be achieved by incorporating transistor in the 

negative feedback loop of the operational amplifier. In which case, the cuiTent is 

resoicted to flowing away from the X terminal. Similarly, with the PMOS (MFr) 

transistor incorporated in the feedback loop, current is restricted to flowing into the X 

terminal. Bi-directional current flow can be achieved by using a complementary pair of 

MOS transistors (MFN and MFP) in the op-amp feedback loop. When minored by 

complementary minors, this current can be made available on the output node Z. Thus 

the input current Ix is conveyed to output Clfrrent ~ (assuming ID(M7_8) =0). The scaling 

of the input current can be obtained by designing proper mirror ratio or by providing an 

alternate parallel path for the current via branch M7_8 • Thus, allowing only a portion of 

input current to flow through the mirrors. This is a CCII+ realization since both, Ix and 

~ simultaneously flow into or away from the conveyor. 

The CMOS folded cascade op amp shown in the Figure 27 has been integrated on-

chip to be used as the CCII+ op-amp. In the. design of the op-amp, the locations of 
; 

dominant poles are decided by high impedance nodes that are responsible for deteriorating 

the phase margin. In a simple two stage op amp, Miller compensation attempts to drive 

the pole at an output beyond the GB, while making the internal pole dominant. This 

scheme does not completely eliminate the output pole problem, since for large load 

capacitances, the output pole has tendency to shift back toward the origin resulting in 

unstable operation [ 46]. Since the input resistance of a folded cascade stage is very low 

(1/gm), the folded cascade eliminates the high impedance nodes and thus only one 

dominant pole exist at the output In contrast to the two stage Miller compensated op 

amp, any increase in the load capacitance for the folded cascade increases the 
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compensation, resulting in a further increase in the phase margin [ 46]. 

In Figure 25, switch S1 is activated by the forward digital LOT signal and switch S2 

is activated by the backward digital signal from the tie resolver. During the forward 

cycle, switch S1 is switched to Vrer while switch S2 is' switched to ground. The voltage 

controlled voltage source configured CC ensures V x1 equals to Vy1• S2 is switched to 

ground forcing X2 to the ground reference. If the LOT line is digitally high, then the 

potential difference between xl and x2 CVrcJ, causes a current Ixl to flowing in the 

forward direction proportional to the charge on the floating gate and the value of vrcf· 

The current controlled current source configured CC ensures Iz2 equals to Ix2- lz2 is then 

processed further by the winner take all circuit. 

The BiVI buffers must be able to supply the total weight current in one column of 

the weight matrix. To accomplish this, the source/sink transistors, MJPA• MFN, MINA> and 

MFP must be sized appropriately. The current sources are sized to source currents in the 

voltage controlled voltage source mode, while the current sinks are sized to sink weighted 

currents in the current controlled current source mode. 

During the backward phase, S2 is activated by lines from tie resolver switching Y 1 

either to the reference voltage or to the ground potential, depending on the state of the 

corresponding resolver line. A winning state results in Y 1 being switched to V rer· The 

voltage controlled voltage source configured CC ensures V x2 equals to V n· S, is 

switched to ground forcing X1 to be a virtual ground. If a WTA line is a logic high, then 

the · potential difference between X2 and X, causes current Ix2 to flowing during the 

backward phase proportionally to the charge on the floating gate and the value of V re r· 

The current controlled current source configured CC ensures 12 1 equals to In The 
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resulting 121 is processed further by the current copier integrator circuit. 

Simulations 

Figure 28 shows the transient response and Figure 29 shows the ac response of the 

CCI circuit. The CCII+ circuit is capable of source/sink 1 Ma of current while slewing 

a single weight current (40 !lA) in less then 400 ns into a 1 K ohm load. A small signal 

bandwidth is greater than 10 Mhz frequency. 

The SPICE simulations of the DC transfer characteristics of the CCII+ conveyor are 

shown in Figure 30. The characteristics are obtained by ramping the input current Ix 

from the negative to the positive value. Over the range -2 Ma to 2 Ma, the output current 

lz is a linear function of the input. The CCII+ looses its linearity as the internal 

transistors MFN and Mr:P begin to fall out of saturation. 

Testing 

The DC transfer characteristics are obtained by ramping voltage Vy from -2.5 V to 

2.5 V. According to equation 55, Yx=Vy. The test data indicates that Yx exactly tracks 

V Y· The resistance connected between terminal X and ground, thus draws current Ix 

proportional to Vy. Ix is conveyed to the output as lz via CC. The Ix-lz transfer curve 

is shown in Figure 31. The test results are comparable to the simulations except that CC 

is linear over Ix range -2 Ma to 1.75 Ma compared to ±2 Ma for the simulations. 

The small signal transient step response rise and fall times are found to both be 2.5 

!lS. The transient response times are limited by the parasitic capacitances at nodes X, Y, 

and Z. 



89 

Date{fime run: 07/31/91 07:05:47 Temperature: 27.0 
4.0'1+--------------+---------------r--------------+--------------+--------------+ 

I I 
I I 
I I 
I I 
I 
I 
I 
I 
I 
I 

0.0'1f 
I 
I 
I 

I 
I 
I 
I 

+ I 
I 
I 
I 
I 
I 
I 
I 

I I 

-4.0'1+--------------+---------------r--------------+--------------~-------------~ 

40u~--------------+---------------r--------------+--------------~--------------+ 
I I 
I I 
I 
I 
I 
I 
I 
I 
I 
I 

OuAj-

Ix: lz-
I 

+ I 
I 
I 
I 
I 
I 
I 
I 

I I 

-40u1t;------------1ao~-----------2Cio~----------3(jo~-----------4oo-;--------5oo~ 
Tiine 

Figure 28. Transient Response of the Current Conveyor 



90 

Date{fime run: 07/31/91 07:05:47 Temperature: 27.0 
-0 t=======:t:::======~====~==~--:;;--:,;-.::--+-::!::.:-----------+------------r 

! 1 kohm Load _.: ! 
I I 
I I 
I I 

-50+ + 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

-lOOt t 
I I 
I I 
I I 

: I : 
I I 

-150t BY\1 t 
I I 
I I 
I I 
I I 
I I 
I I 

-200+ + 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

-250t I t 
I I 
I I 
I I I I I 

: · 20Mh : 
-3q~o~h-------i()h--------1~0iFCh _______ 1o1f~------i~~------ilk3_h ____ io-octh 

a DB(IM(Iz)!IM(Ix)) • IP(Iz) 
Frequency ---+-

Figure 29. Current Conveyor AC Response 



91 

Date(Time run: 07/31/91 07:05:47 Temperature: 27.0 
1.2rni\ t------------r-----------;------------1------------+------------+------------r 

I 
I 

I 
I 
I 

0.8mi\ + 
I 
I 
I 
I 
I 
I 
I 

0.4mi\ t 
I 
I 
I 
I 
I 
I 

I 
I 
I 

+ 
I 
I 
I 
I 
I 
I 
I 

+ 

O.Omi\+1 ----------------~----------~------~~~----------------+ 
I 
I 
I 
I 
I 
I 

-0.4mi\ + 
I 
I 
I 
t 
I 
I 

-0.8mi\ + 
I 
I 
I 
I 

ID(MINA) 

I 
I 
I 
I 
I 
I 

+ 
I 
I 
I 
I 
I 
I 
I 

+ 

I I 

· - l.2m1.i~;;-----:ro;A.------~it~-A--------o.o;;i\------i~t~A.-------r"ir~A.----3~o7n~ 

Figure 30. DC Transfer Characteristics of the CC Obtained From Simulations 



0. 8 ---r---r-- -~--- -,-- --,---,---,--- -r---T--- T--- r- -- r-- -~ 
I I I I I I I I I I 

0 6 I I I I I I I I 
. ~_,---r--T-~--~--;---r--T--~=-T-~---r--4 

0.4+---r--T---r--T---r--T---r--~--r-~---r--;-~ 

I I I I I I I I I I I I 
I I I I I I I I I I I I I 

-- .J--- ..1--- .1--- l.-- - l.---L---L---L-- -'--- -1--- .J--- .J- - - .J 

Figure 31. 

Ix 

DC Transfer Characteristics of the CC Obtained 
from Test Results 

92 



93 

Weight Matrix 

One of the most onerous requirements facing the designers of the neural networks 

integrated circuit (NNIC) is the appropriate selection of technology and circuit 

configuration to produce a memory with suitable characteristics. In general, from the 

electronic neural networks perspective, a memory element can be characterized by: (1) 

nature of memory, analog or digital (2) location, on-chip or off-chip (3) volatility, volatile 

or nonvolatile (4) programming/erasing method, electrical or non-electrical, and (5) the 

precision in bits. More often than not, the technology selection is restricted by factors 

such as the cost and availability of a particular process by the commercial vendors. Most 

of the research reported to date, requires a special processes such as an ultrathin window, 

nitrite oxide, and textured polysilicon. 

Knowledge in the analog artificial neural networks is stored in the form of variable 

weights. Neura1 networks adapt themselves by modifying the strength of connecting 

weights according to the specific learning algorithms. This requires that the weight be 

easily altered in order to take a wide range of positive values. These weights must allow 

long term storage and must be locally stored to allow easy and rapid access. Storage of 

analog weights necessitates analog memories that are (1) truly non-volatility, for long 

term retention of the stored knowledge, (2) on-chip and rapidly programmable, to expedite 

the network learning by minimizing read and write times, and (3) application specific yet 

simple, for ease of fabrication. Strictly speaking, due to factors such as the learning rate 

in an ENN, discrete programming of true analog memories results in finite resolution, 

usually specified in bits. The electronic implementations of most widely used networks 
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includjng back propagation typically requ ire resolution on the order of 5 bits or greater 

[ 47]. 

The favorable learning features of the GLA model are that the weights require only 

low precision on the order of three to five bits. The learning in the network comprises 

of course, unidirectional, and parallel real time weight updates which take place according 

to a simple Hebb-type co-active based update rule. The inherently slow multi-sampling 

process at theta rhythm (200 ms) can tolerate long programming times although fast 

updates are prefened. Due to the coarse learning, retentivity of 3-5 bit over 10 years at 

room temperature is -~llowed. Thus, in summary, to implement network learning with a 

sparse synaptic weights requrres coarsely analog, non-volatile, electrically 

programmable/erasable memory with progranuning time on the order of 200 ms. Each 

memory element should be configured with a variable conductance synapse, whose 

conductance can be modulated by the nonvolatile weight. The sparse weight matrix W 

consist of sparsely placed electrically erasable/programmable transistors and randomly 

ananged in a 4x5 sub-matrix as shown in Figure 32. 

In the past, attempts to build neural weights have resulted in simplified non

adaptable or discontinuously adaptable synaptic weights [48]. Some provide a continuous 

true analog nature, but do not store the weights locally on chip. This limits the 

computational capability of the NNIC or neural systems because the read and write 

become input/output limited resulting in very large developmental time. The numerous 

possibilities to build a memory element can be broadly classified as: digital semiconductor 

memories, analog semiconductor memories, i.e. CCD, and floating gate analog 

semiconductor memories. 
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Semiconductor memories (e.g. SRAMs) are volatile in nature, that is, data content 

IS lost when power is removed. This problem can be solved by using . the · fixed 

programmable memories or the mask programmable read only memories (ROM's), where 

data content is placed in the memory during the manufacturing process. This makes them 

non adaptable. Also, these memories require a large manufacturing volume of a particular 

program to recover the high fabrication cost. Programmable read only memories 

(PROM's) allow programming prior to use. These memories ·can be built using either 

bipolar technology (fusible link) or the MOS technology, e.g., the floating gate avalanche 

injection MOS (FAMOS) [49]. Bipolar devices are non adaptable because they cannot 

be erased once programmed. However, FAMOS can be erased by exposing it to 

ultraviolet rays. Unfortunately, none of the above memories truly satisfies the need of 

electrically programmable/erasable analog memory. 

In digital semiconductor memories, the MOS capacitor holds data which is 

dynamically refreshed to preserves the data content. Weights can be stored in digital 

form and then converted into analog form by D/A converters (for example, M-DAC). 

This technique relies on the fact that the conductance or transconductance of a MOS 

transistor can be modulated by changing the transistor gate voltage. The transistor is 

operated in the triode region where non-linearity of the synapse is fairly low. 

Multiplexing and routing complexities make the parallel updating of weights in such 

architectures slow and complex. Proper trade off between quantization error and silicon 

area (RAM memory) is necessary. Along the similar lines, another technique is suggested 

by Y. Tsividis and S. Satyanarayana [50] where analog voltages are stored at the gate 

capacitance of the synaptic MOS transistor itself. They suggest canceling the inherent 
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non-linearity of a transistor by using complementary input voltages through the matched 

weighing transistor, or by passing the same voltages through the complementary weighing 

transistors: the n-channel and the p-channel. Learning takes place by addressing the 

proper capacitors and charging them according to a specified learning algorithm. Once 

the weights are settled (RC time constant), the capacitors are periodically accessed for 

reading, charging, and refreshing. This scheme suffers from a relatively shmt retentivity 

resulting in decreased accuracy. As a result, the network becomes "absent minded", 

forgetting information shortly after learning. 

Floating-gate analog semiconductor memories have been proposed and studied by 

a number of researchers [51] as a suitable analog medium for the long-term storage of the 

weights. They serve the dual purpose of providing local on-chip weight storage on the 

floating gate of synaptic transistor. The transistor intern can be used as the variable 

synapse. The strength of the synaptic weight depends upon the stored charge on the 

floating gate. This type of memory element exhibits long term retention because no 

discharge path is available since the gate is surrounded by the dielectric material Si02. 

The charge transport mechanism used by floating gate memories can broadly be 

classified as the avalanche injection of electrons [52], and Fowler-Nordheim tunneling of 

electrons [53]. Some use a combination of these two. There are four basic categories of 

avalanche injection (52]. In the avalanche injection of electrons, high energy electrons 

are generated within a substrate, to surmount the Si02 barrier and to be injected onto the 

conductive floating silicon gate. While in the Fowler-Nordheim tunneling of electrons, 

a high voltage is placed across a thin oxide, typically a window across the floating gate. 

This impart sufficient energy to the electrons within the substrate to tunnel through the 
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Si02 barrier. However, the process by which the stored charge may be altered is highly 

nonlinear, sensitive to geometric and processing parameters, and can require high 

programming voltages (greater than 5 Y). In general, it is a function of the applied 

electric field intensity, programming duration, and back emf. It is difficult to conceive 

precise modification of analog weights without feedback control. The most obvious 

solution is the use of course weights. A few researchers have proposed modification of 

established algorithms by using very coarse quantization weight updates [54). 

One well known solution for adaptable weight is the metal nitride oxide

semiconductor (MNOS) technology [48]. A MNOS device has a variable threshold which 

can be electrically changed by a tunneling charge into an interfacial layer in the gate 

dielectric. By reversing the polarizing field, the charge can be tunneled out of the 

interfacial layer, thus making the device electrically writable/erasable. The MNOS 

fabrication process is complicated because the control of the silicon nitrite-tunneling gate 

oxide is difficult. With some modifications to the FAMOS structure, it is possible to 

have an electrically" programmable/erasable non-volatile memory. The most recent 

development is the dual injector floating gate MOS (DIFMOS). In the DIFMOS, like the 

FAMOS, data are stored on the floating gate which is charged by the avalanche injection 

of electrons. But unlike the FAMOS, erasure is achieved by the avalanche injection of 

holes. However, hole injection is an order of magnitude slower than electron injection 

[49]. 

The following sections briefly review the widely used floating gate semiconductor 

technologies. 
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Floating Gate Avalanche Injection MOS Memory 

The concept of an insulated gate field effect transistor with a floating gate as a 

nonvolatile memory element was first advanced by Khang and Sze [55]. The operation 

of the proposed structure is based on the charge transport from the silicon substrate across 

a thin insulator layer(:::: 50 A) to a floating metal electrode which is covered by a second 

insulator and the upper metal gate. The charge is stored in the floating metal gate in 

response to the applied voltage between the upper metal and the substrate. The fonnation 

of the metal gate over a very thin dielectric layer is the major obstacle in the practical 

realization of the proposed structure. The similar concept is involved in the MNOS 

structure in which the floating metal gate is replaced by a layer of traps of the silicon 

nitrite. MNOS technology will be discussed in detail in the next section. 

Nicollian et al. [56] reported that the high electron current densities can be achieved 

in the MOS capacitors by avalanche injection from the P type substrate at considerably 

lower current density than the hole injection from the N type substrate. The FAMOS 

structure uses this principle to avoid the basic drawback of Khang and Sze's structure. 

FAMOS combines the floating gate concept with an avalanche injection of electrons to 

yield a nonvolatile memory element [57 ,58]. 

The cross section of a FAMOS structure is shown in Figure 33. It is essentially a 

p-channel device in which no electrical contact is made with the silicon gate. The 

floating gate is fanned by depositing a polysilicon layer over 1000 A or thinner gate 

oxide. Gate is isolated from the top by a 1 11m thick oxide. Initially all the tenninals are 

at a common ground potential and the floating gate is at neutral. Also consider that a 
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negative drain to the source voltage is applied. As the voltage increases, a positive drop 

appears across the overlap region between the floating gate and the P+ drain region. This 

drop tries to invert the heavily doped drain region. As a result, depletion takes place at 

the drain end near the Si02 interface. Eventually, the electric field induced in the surface 

depletion region reaches a point at which avalanche multiplication occurs. The generated 

high energy electrons acquire sufficient energy to surmount the Si02 .barrier and to be 

swept towards the conductive floating silicon gate. This charge is · responsible for the 

inversion layer underneath the Si-Si02 boundary. The amount of the charge transferred 

to the floating gate is a function of the amplitude and the duration of the applied p-n 

junction potential. The amount of the transferred charge can be determined by measuring 

drain to source conduction. The accumulation of charge changes the threshold of the 

MOS structure (57]. The change in the threshold voltage is given by: 

(56) 

where Q0 is the final stored charge, Q0 <0> is the initial charge (if any), and C0 is the oxide 

capacitance. In general, the threshold voltage is given by: 

(57) 

where VFB is the flat-band voltage, $ss is the polysilicon work function, Q,5 is the fixed 

charge at the Si-Si02 interface, $F is the Fermi potential, and Qn is the charge within the 

substrate. 
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The I0 -V05 characteristics of a charged and uncharged FAMOS device reveal that 

the device conducts even when there is no charge on the floating gate. This is due to the 

capacitive feedthrough voltage from drain to gate. The feedback voltage is given by: 

(58) 

where C08 is the series combination of C0 and CB. The 10 - V ns characteristics of the 

FAMOS device and the ordinary MOS device with its gate voltage equivalent to the 

amount of charge transferred on the floating gate of the FAMOS, are not the same. This 

is mainly due to the capacitive feedback to the floating gate. The amount of the feedback 

voltage depends on the value of the drain voltage. The variation in the feedback factor 

(8V G~ oV os) stems from the variation of the inter-electrode capacitance as a function of 

the drain voltage. When V0 >V05-VT (triode region), the inversion layer extends from 

source to drain. Thus, CG is splitted between drain and source equally. This increases the 

numerator of equation 58, thus increasing the feedback factor. At higher values of drain 

voltage (saturation), due to the pinch off of the channel, CG is diverted to source. This 

decreases the numerator of equation 58, thus reducing the feedback factor. 

Charge accumulation in a FAMOS is identical to that of aMOS whose gate is kept 

floating. A MOS transistor with a gate oxide thickness of 1000 A takes approximately 

80 V across drain to source before any appreciable gate current can be observed. In the 

same structure, avalanche-junction breakdown can occur at 30 V. Had this gate been 

floating, the avalanche injection would have resulted in the transfer of an equivalent 

amount of charge to the gate. This charge, divided by the oxide capacitance, gives the 

change in the threshold voltage. The amount of charge transferred is a function of the 
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applied junction voltage, programming duration, and the charge stored on the floating 

gate. 

A stored charge of 4xl06 electron/cm2 results in an electric field intensity of 

approximately 2xl06 V/cm across the thermal oxide [57] : If the polysilicon-Si02 barrier 

is assumed to be 3.2 e V, then the discharge current due to oxide leakage will be of the 

order of 10-4° amp/cm2 at 300° C. Retentivity plots at different initial charge and 

temperatures reveal drastic initial decay and thereafter a logarithmic decay [57]. Initially, 

negatively charged electrons counterbalance the positive charge accumulated at the Si

Si02 interface (due to the high dielectric field in the oxide created by the floating gate 

at elevated temperatures). The logarithmic retentivity is due to leakage through oxide. 

Since the gate is surrounded by a dielectric, it is not accessible. Thus FAMOS is 

not electrically erasable. Due to a lack of evidence of substantial hole conduction through 

the oxide, the possibility of neutralizing electrons by the injection of holes from the 

substrate is doubtful. But Tarui et al. [59] have reported that hole injection is possible. 

With a slight modification of the basic FAMOS structure, electrical erasure is theoretically 

possible. In the modified FAMOS, like Khang and Sze's structure, the top gate is added 

to facilitate electrical programming/erasure. The device is held at a high positive voltage 

and programmed similar to the FAMOS structure. Erasure takes place with the top gate 

at ground or negative potential to favor hole injection into the floating gate. Classically, 

the device is restored to its neutral condition by exposing it to ultraviolet or X-ray 

radiation. Rays with suitable wavelength excite electrons to overcome the oxide barrier 

of approximately 4.3 eY. Erasure by X-ray radiation involves the generation of a hole 

electron pair in the oxide. 
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An interesting problem occurs when the device is in the read mode. Generally, the 

memory cell is read by sensing the drain current This ·is done by applying low negative 

voltage, around -15 V, to the drain of the FAMOS. This raises the possibility of whether 

an uncharged memory cell can be slowly charged by repeatedly selecting it in the read 

mode, which is of-course undesirable. Empirical experiments demonstrate that such 

parasitic charging does not present a potential programming problem in memory cell 

operation [57]. 

Metal Nitrite Oxide Silicon Memory 

The process limitation in the formation of a metal layer over a very thin dielectric 

in Khang and Sze's structure, has led to the invention of the MNOS structure. It is 

typically used as a digital memory element in EEPROM. The structure is the same as the 

modified F AMOS, except that in lieu of a metal gate, a nitride layer is laid on the thin 

oxide. The top gate is made of polysilicon. For ann-channel MNOS device, a high gate 

voltage causes electrons to be injected from the substrate to the insulating silicon nitride 

layer. The injection uses the modified Fowler-Nordheim tunneling and other mechanisms 

[60,61]. The oxide thickness must be less than 50 A. Trapped electrons in the dielectric 

nitrite layer result in a positive shift of the threshold. During electrical erasure, high 

negative gate voltages repel or drive electrons from the nitrite trap layer to the substrate. 

The threshold window (minimum and maximum amplitude in the threshold swings) is 

limited by the number of write/erase cycles. The degradation in swing is caused by a 

creation of surface states and surface charges due to the high field across the oxide layer 

applied during the first few programming/erasing pulses. The increased number of states 
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results in a loss of stored charge from the oxide-nitrite surface, short term retention of 

weights and a reduction in threshold swing. The retention time in MNOS devices ranges 

from one to ten years, depending on the permittivity of nitride silicon [48]. 

Dual Injector Floating Gate MOS Memory 

From a neural networks integrated circuits perspective, one of the problems in the 

discussed memories, is the learning time. Any basic weighing memory cell operates in 

two modes: read and write. In the discussed memories, reading and programming can not 

be done simultaneously since terminals are common for read and write operations. In 

order to achieve both operations simultaneously, separate read and write terminals are 

necessary. The DIFMOS is a four terminal device [ 49]. Two of the terminals, the drain 

and source, function as a built-in electrometer for measuring the charge stored on the 

floating gate. The other two electrodes belong to the electron and hole injector diodes. 

The DIFMOS structure is shown in Figure 34. When reverse biased into avalanche 

breakdown, these injectors inject electrons and holes into the floating gate. Both injectors 

are excited by negative current sources. As programming proceeds, the charge on floating 

gate retards further accumulation of electrons due to back emf but encourages the 

injection of positively charged holes. The level of the drain current indicates the state of 

the device. 

The DIFMOS basically consists of a sensing transistor, a floating gate, an electron 

injector, and a hole injector. The bootstrap capacitor functions as a part of the hole 

injector by providing a favorable electric field for hole injection. Because greater current 

densities can be achieved with lower electric fields from the majority injection, DIFMOS 
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uses p+p junctions for its electron ·injection and p-n+ junctions for hole injectors. 

Ideally, the hole injector should discharge the floating gate to the cutoff voltage. But 

it is not capable of discharging the floating gate below the threshold V T of the hole 

injector. This problem can be overcome by using a bootstrap capacitor. The capacitor 

is formed between a floating gate and the p diffusion. During normal operation, VB is 

held at the substrate potential. During the erase operation, sufficiently negative voltage 

is applied to VB which capacitively couples a voltage to the floating gate equivalent to 

the minimum discharge threshold voltage. Erasing action only occurs when both, the 

bootstrap capacitor and the hole injector are operated simultaneously. The capacitively 

coupled voltage is given by: 

(59) 

where CB is the bootstrap capacitor, C is the total floating gate capacitance, CJC is a 

referred to as coupling ratio. The minimum bootstrap voltage required is given by: 

(60) 

where V T is the threshold voltage. 

Performance measurements were reported by M. Gosney [48]. Programming pulses 

of 500 1-lA and 50 llS duration were used for the write and erase operations. The 

bootstrap voltage pulse was -40 V for 100 ms. The bootstrap voltage is applied just 

before the hole injector avalanche is turned on. After avalanche is over, the bootstrap is 

removed. Timing of the bootstrap and avalanche is not critical, but both must be present 

for the erase operation. The device suffers from WTite/erase time limitations which are 
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several orders of magnitude slower than read time. Therefore, the DIFMOS will 

generally be limited to read-mostly applications. The device suffers from the trapping of 

holes and electrons in the oxide as all others memories do. As traps are filled, the 

charging and discharging times become longer. For a given voltage configuration, the 

decay in gate voltage is approximately linear with the logarithm of the number of 

write/erase cycles. Endurance (life) is a function of the cumulative trap charge. Trapped 

charges reduces the gate voltage window. At room temperature, retention is measured 

at 0.06 percent/decade, while at elevated temperatures of 80° C, it is approximately 1 

percent per decade [48] . 

From a fabrication perspective, the DIFMOS and the CMOS are nearly equal in 

process complexity. The FAMOS is much simpler but has no electrical erasure ability. 

The process comparison among the PMOS, FAMOS, CMOS, DIFMOS, and MNOS, is 

reported by Gosney [ 48]. 

Floating Gate Analog Memory in 

Standard CMOS Process 

The memories discussed above require a special fabrication process such as ultrathin 

window, nitrite trap oxide, or a conventional textured polysilicon. These processes are 

not yet matured. Usually, these special processes are expensive and simply not available 

in many design environments, especially universities. In order to fulfill the need of an 

analog neural network designers for programmable memories, existing standard CMOS 

process without modifications must be able to provide a solution to realize floating gate 

memories. Recently several such implementations have been reported [62,63]. 
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Based on the limitations discussed above, we propose that the sparse weight matrix 

W to be implemented in a standard CMOS process. This memory takes advantage of the 

mask geometries to cause the field-enhanced Fowler-Nordheim tunneling of the electrons 

from a substrate through a standard gate oxide of thickness 40 nm at relatively low 

programming voltages. Unlike the existing methods for the tunneling of electrons through 

a thick oxide by field enhancement, this method does not require a special process for 

textured-surface polysilicon, nor does it require an ultrathin gate oxide. Instead, the mask 

geometric factors induced by the physical shape of the gate are used to enhance the 

electric field strength at the Si02 interface. The following section discusses this weighing 

memory in detail. 

Memory Structure 

The test structure designed to understand the charge transport mechanism in the 

floating gate memory is fabricated in the two micron, p-well, double poly, double metal 

CMOS process with a gate-oxide thickness of 40 nm. The electrical equivalent schematic 

of the layout is shown in Figure 35. 

There are four basic test cells. Each test cell consists of the following: (1) a current 

injector Cinj' for injecting and removing electrons to and from the floating gate, (2) a 

PMOS sense transistor M, for sensing charge on the floating gate, and finally (3) a 

bootstrap capacitor CB, to allow external control and programming of the floating gate 

voltages without actually having an electrical connection between the programming gate 

and the floating gate. All four cells are identical except for their injector structures and 

the value of their bootstrap capacitor. The different injector shapes are deliberately 
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chosen to assist in detern1ining the effect of the injector structure on the tunneled.charge. 

The CB is sized to approxin1ately maintain a constant CJCini ratio among all the test cells. 

The injector structure details are summarized in table I. 

All four cells with the different injector structure are intended to be programmed or 

erased simultaneously in order to compare the geometrically dependent behavior of the 

charge injection at various points during progranuning. This arrangement removes effects 

that are present due to the variation in amplitude and duration of the programming pulses 

as well as the variation due to different drain to source voltage of the sense transistors. 

These effects are present if the devices are tested separately. The sources of all of the 

identical sense transistors are connected together and the same drain voltage is 

simultaneously impressed across them. This ensures the equal drain to source voltage 

across each memory cell and thus removes the effect of channel length modulation on the 

drain current. 

In the injector structure, a self alignment process results in a lateral diffusion of the 

n+ region under the floating gate by a lateral diffusion factor WD. A floating polysilicon 

gate, ends up with its peripheral edge and corners over the n+ diffusion. Theoretically, 

the electric field due to the floating gate voltage is concentrated locally at the corners and · 

may be along the peripheral edge. The exact field distribution density of the electric field 

is complex and believed to be a function of the geometry of the injector. Experimental 

results indicate that a field enhancement factor of 2 to 4 can be obtained [62]. In order 

to experimental! y predict I-V curves, different combinations of comers and periphery as 

given in table 1 have been selected. We theorize that injector area does not play an 

important role in the tunneling process since the electric field generated by the 
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programming voltages is not sufficiently high to cause a significant amount of tunneling 

from the p well to the floating gate. However, the tunneling may be present along the 

edges\ of the injector. 

The bootstrap capacitor is formed between poly-1 and poly-2. Poly 1 serves as a 

floating gate as well as the lower plate of the capacitor, while poly-2 acts as the upper 

plate of the capacitor. Thus, poly-1 is floated, i.e., electrically isolated from all the 

nodes. The poly-1 to poly-2 oxide thickness is 50 nm. Since the floating gate is 

surrounded by insulating Si02 from all the sides, charge leakage will be insignificant. 

During the programming and erasing, the voltage difference between the floating 

gate and the n+ diffusion is responsible for the Fowler Nordheim tunneling of the 

electrons. The bootstrap capacitor is necessary to control and isolate the floating gate 

voltage. Figure 35 also shows the different parasitic capacitances associated with a 

memory cell. The percentage of the programming voltage that appears on the floating 

gate depends on the capacitive coupling ratio a . This ratio is given by: 

CB 
a=------------------ (61) 

C B + c GS+ c GB +C GD +C inj 

where C8 is the bootstrap capacitor between the floating gate and the control gate across 

the poly-1 to ploy-2 oxide, Cas is the floating gate to source capacitance, C08 is the 

capacitance between the floating gate and the bulk, C00 is the capacitance between the 

floating gate and the drain, and Cinj is the injector capacitance across the gate oxide. 

The voltage responsible for the tunneling is thus given by: 
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(62) 

Clearly for the giVen tunneling voltages, tighter coupling minimizes the required 

programming voltages Vp. For this reason, the bootstrap capacitor should be at least one 

order of magnitude larger than the sum of C05, C08, C00 and Cinj· Taking into account 

the circuit area, proper trade offs between the size of the bootstrap capacitor and 

programming voltage have to be made. Using typical assumptions, the approximate 

bootstrap coupling ratio for all the four cells in this case is 10/11. 

The bootstrap capacitor C8 formed between poly-1 and poly-2 does not impose a 

significant limitation on the highest value of the programming voltage. The diffusion-poly 

capacitor, on the other hands, would have limited the maximum signal peak to 

approximately ±14 V (for the orbit process) to save the device from avalanche breakdown 

either between the diffusion and the well or between the well and the substrate. However, 

for the chosen process, the per unit capacitance formed between the diffusion and the poly 

is more area efficient than that formed between the two polys. 

The sense t::r;ansistor and the charge on its floating gate represent the synapse in the 

weight matrix W and the value of the weight respectively. As the network learns, the 

strength of the synapse increases. This is the electrical equivalent of dumping more 

charge on the floating gate, i.e., programming. Programming modulates the electrical 

conductivity of the synapse (P-MOS) device. Thus during programming, the electrical 

conductivity of the synapse is expected to mcrease. The P-sense transistor was 

specifically chosen to achieve this operation. During programming, the floating gate 

acquires electrons. Trapped electrons develop a negative potential on the floating gate 
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of the P-MOS sense transistor. The floating gate voltage tends to become more negative 

as programm.ing proceeds. Therefore, the drain current through the device increases, i.e., 

conductivity increases. This would not have been possible with a N-MOS because 

conductivity of NMOS decreases with the decrease in gate voltage. To avoid the problem 

associated with the N-MOS as a sense transistor, the synapses would initially have to be 

driven to the cutoff region by programming. Then by removing electrons in the erasing 

mode and superimposing fixed bias voltage on the controlling · gate, weights would be 

loaded. Another reason for using the P-MOS sense transistor is to avoid an erroneous 

change in the gate voltage due to the generation of hot electrons near the floating gate. 

N-MOS transistors operating at higher values of V05 are more prone to such effects [62]. 

Field Enhanced Fowler-Nordheim Tunneling 

A simplified explanation of the Fowler-Nordheim tunneling is as follows [62]. There 

exist an energy barrier of approximately 3.2 Ev that prevents the escape of electrons from 

the substrate to the Si02• At room temperature, the kinetic energy of the electrons allows 

them to tunnel through an oxide barrier whose thickness is approximately 5 nm. If the 

favorable electric field (generated due to external potential within this 5 nm range near 

the oxide silicon interface) is less than 3.2 Ev, then the electrons are pulled back into 

silicon. However, if the external field strength in this region is greater than 3.2 Ev, a 

percentage of the total electrons continue to travel in the direction of the external field 

and thus a small current flows from the Si surface. Increasing the electric field increases 

the electron flow and thus the electron current. Keeping these numbers in mind, it takes 

approximately 25 V to tunnel electron across a thickness of 40 nm. This voltage should 
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be well below the gate-oxide breakdown voltage, which is about 28 V for MOSIS 

process. 

According to this theory, the electric field within 5 nm of the Si02 interface plays 

an important role in the tunneling process. The electron emitting surface can be 

structured in order to increase the local electric field at the Si02 interface, thus allowing 

electron currents to be induced at much lower external voltages. Commercial EEPROMs 

use the same concept by deliberately introducing spikes or other non uniformities, such 

as surface textures, on the Si-Si02 interface. Enhancement of the electric field in such 

cases is reported to be by factor 4 to 5. In the present case, instead of special processing 

such as textured polysilicon, the lithographic features have been used to enhance the local 

field intensity. The field enhancement factor obtained by lithographic features (2 to 4) 

[62] is less than the field enhancement factor obtained by the textured polysilicon injector 

(4 to 5) [62]. 

The theorized area of a gate th~J.t is influenced by sufficient freld strength is very 

small (probably only comers). Thus programming and erasing are extremely slow. 

However, this is not critical for the implementation of the plasticity in the electronic 

olfactory system. 

Programming 

The test setup is shown in Figure 36. The setup is configured to measure the 

threshold voltage of the sense transistors M1-4 before and after every programming 

attempt. Programming results in the tunneling of the electrons onto the floating gate, 

which according to equation 56 produces the negative shift in the threshold voltage of the 



117 

tVoo 
r------------------------------------ -----, 

5V : 

_If ) 
%VGs C 

1est CB 

~~M1 
Vp HV Pulses Program , j_ C 1 

.1_ inj 
...... 

Tesl ~Program 

-------------------------------~-----~§ ___ _ 
Figure 36. Test Setup for Testing Weighting Cell 



118 

sense transistors. The shift in the threshold voltage is used to confirm the presence of 

tunneling phenomena. 

To measure the threshold voltage, switches a and b are switched over to the test 

mode while c and d are closed. The plot of square root of the drain currents versus V os 

of the un-programmed devices is shown in Figure 37. The threshold voltage for the cells 

is found to be approximately -0.8 V. 

To program the memory cells, switches a and b are switched over to the program 

mode while c and d were left open. With VE set at 0 V, -5 V, and -10 V, programming 

pulses (Vp) of amplitude ranging from 5 V to 16 V with the step of 1 V were applied. 

The same programming voltages was applied across all of the cells. Thus, any difference 

in electron current flowing onto the floating gate could'-be attributed to the differences in 

the injector structures. The duration of pulses was varied from 2 ms to 40 ms in the steps 

of 5 ms. The rise and fall times of Vp were controlled, since it determines the peak 

capacitive current that flows through the injector. A sufficient rise time [62] of the pulse 

was used to prevent sharp capacitive current pulses that can result in gate oxide 

breakdown. After every programming attempt, the threshold voltage of the sense 

transistors was measured by switching the devices in test mode to observe any shift in the 

threshold voltage due to the progranuning. Over numerous such attempts, no significant 

shift in the threshold voltage was observed. However, a significant shift in the threshold 

voltage was observed in the last set with VE at- 10 V and with VP pulse amplitude of 16 

V. But, in this case, V00 was left floating instead of connected to the power supply. The 

resulting shift in the threshold voltages is shown in Figure 38. 

Figure 38 together with table 1, does not clearly reveal the possible relationship 
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between injector structure and programming level. For bootstrap ratio of 10/11, the 

tunneling voltage of 27 V is comparatively higher than reported by L. R. Carley (18 V 

to 19 V) [62]. Note that for the same programming voltages, no tunneling was observed 

when V DD was used. This raises a question as to whether powering of V 00 (see Figure 

35) adds an extra capacitance to the floating gate thereby reducing the effective bootstrap 

coupling ratio. The decrease in the bootstrap ratio leads to higher programming voltages. 

The validity of the above statement has not yet been verified. 

Retentivity plots taken at room temp (26° C) after 3 and 130 hours are shown in 

Figure 39, and 40 respectively. The comparison study of Figures 38 and 39 demonstrate 

excellent short term retentivity. However, the comparison study of Figure 37 and 40 

demonstrate that cell does r:tot possess long term retentivity. 
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Winner Take All 

Winner take all (WTA) competition of the pirifom1 cortex is accommodated in the 

p identical piriform patches. One (k=l ) such WTA piriform patch within a PC is shown 

in Figure 41. The patch consists of h identical piriform cells connected in parallel. 

Within a patch, the cells share a common comparison node C. Node C serves as a strong 

local inhibitory feedback, similar to the circuit designed by Lazarro et al. [64]. However, 

the circuit is designed for improved sensitivity. Each piriform cell receives input current, 

P* 11 (l:S:l::.:;h), from the piriform BiVI buffer. A single piriform cell is shown by the dotted 

box. Gate of M 1 is the node where comparison takes place. This node is common with 

other cells. M7 is a cascade device provided to minimize the current mirroring error in 

M 1 which is present due to the channel length modulation. M3 provides leakage current 

that is present on the common gate. M5 is provides source for the shortfall in the 

mirrored current. 

The circuit is reset at the beginning of each sniff by pre-charging the common 

mirroring node C to V ss by the switch M9 which is actually distributed in each of the 

piriform cell. During the winner take all co~petition, M9 is shut off and the circuit is 

allowed to seek a stable equilibrium. Depending on the time constant at node C, the 

common gate voltage starts rising due to the incoming currents and finally settles to the 

voltage corresponding to the highest value of input current p•limax· Since this voltage is 

common to all h piriform cells, the highest input current gets mirrored in the rest of the 

h-1 cells by the M 1 transistor in the other cells. At this stage, all comparing transistors 

(M 1 's) attempt to sink to the maximum input current. Thus in all but the cell with highest 
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input current, sinking currents exceed the input currents P"11 • The shonfall, the 

difference between the maximum current and the corresponding input current in cells 

(P" 1"""x-P. 11), is supplied by the diode connected transistor M5 connected at the cell input. 

The differential current results in drop across M5. The drop biases M3 to conduct and 

M5 to shut off in the branch associated with p·,"i"'" making the corresponding M 1 a main 

controlling device while all other (h-1) M1 's mirroring devices. At this transition, the 

voltage at the input drops from a threshold above ground to a threshold below ground 

at all of the input nodes, except the branch with the highest current since the shortfall in 

that branch is zero. The resulting change in the diode voltage (2 VT approximately) is 

amplified by the invertor M17, 18 and level shifted by invertor M19,20. Thus, the maximum 

current results in the logic high at the output of the piriform cell signifying the winner, 

while all other piriform cells remain low signifying the losers. 

In Figure 41, if Iw; is the winner's input current, IL is looser's input current, 

I0 w is the drain current via M1 of winner, IoL is the drain current via M, of looser, Is is 

drain current via M 5, and 10 is the leakage current on node C, then 

(63) 

and 

(64) 

The common node C attends a gate voltage of 

(65) 

Theoretically, current mirroring should result in I0 L is equal to low· However, due 
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to the beta and threshold mismatch, and channel length modulation associated with the 

M,'s, IDL is equal to IDw ± .6.1, where .6.1 is given by: 

!:.!=!:. ~1(VGSJ-VTJ)±Pl!:. VTJ±A!:. VDSlpl 

::::/:. pl(VcsJ-VTI)±plil VTJ 

Subtracting equation 64 from equation 63 results in 

(66) 

(67) 

The 15 is responsible for exhibition of WTA competition. To be able to resolve the 

winner and the looser, Is should be grater than the resolution capacity of the WTA 

circuit. 

The circuit has limited resolution, due to the mirroring error associated with M 1• 

Simulations 

The SPICE. simulations are shown in Figures 42 and 43. Figure 42 demonstrates 

the ability to resolve the winner between inputs, which differ in amplitude by 1 f.l.A at 

low levels of input currents while Figure 43 demonstrates its inability to resolve the same 

differential at high levels of input currents. The settling time is a complex function of 

both the magnitude of all the currents and the differential between the winning and 

loosing currents. In general, the settling time 7 5 is the inverse function of the 

differential. The worst case time is derived from a pmr of closely matched low 

amplitude input currents. With all identical losers, it is found to be typically 1 f.LS. 

In Figure 43, the looser becomes high, even if the inputs have a differential of 1 

f.l.A, whereby the circuit fails to resolve a winner. However, since the settling time is 
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the inverse function of the differential, the settling time of the true winner is always less 

than the other winners. This fact may be used in the future applications to an advantage 

in separating the true winner from many winners. 

Simulations have been performed on as many as 250 WTA cells operating in parallel 

within a single piriform patch. It is observed that number of active WTA cells has an 

limited influence on the timing performance of the circuit. 

Testing 

Due to the pin limitation, only four WT A cells were fabricated. The cell inputs p•11 , 

P* 12, p•13, and P\4 are supplied through the high resolution current sinks. While testing, 

p·,2, P'"13, and P\4 are grouped together and supplied by a common current sink. The 

function generator is used to reset the circuit, thus when <!> 12 is pulled to a logic low, the 

circuit is allowed to seek the stable equilibrium. 

Experiments are carried out keeping in mind the effect of the mean value of the 

input currents, and the differential current between the winner and the looser, on the 

settling time of the circuit. Figure 44 shows the settling time as a function of the input 

current level with the difference current (5 J.LA) as a constant parameter. For the same 

differential, any increase in the mean level of the input current beyond the shown current 

range results in failure to resolve the inputs. It can be seen that with an increase in the 

current level, the settling time of the winner tw increases while the settling time of looser 

1:L decreases. For the present circuit geometries, the current level for the minimum 

settling time is found to be approximately 40 !J.A. 

Figure 45 shows the effect of the current difference when current level is set as a 
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constant parameter. As expected, the graph reveals the discrepancy between winner and 

loosing currents. 

Testing results taken at a low level of the input currents (near 5 11-A) show that the 

circuit is capable of resolving difference currents as small as 2 !J.A. As the current level 

goes higher, the resolution decreases. Testing results taken at current mean equal to 70 

11-A shows that the circuit is capable of resolving difference current of about 5 )lA. 

Tie Resolver 

The short corning, i.e., the finite resolutions of the WT A circuit was discussed in the 

pervious section. To ensure only one winner in a single piriform patch, a resolver circuit 

is required to post-process the WT A circuit output 

The tie resolver element is shown in the Figure 46. This element digitally resolves 

the ties among the winners. In the circuit, inputs and outputs are defined as follows: L 

is the learn, TI1 is the control input, T01 is the control output, Pkl is the unresolved input, 

and PW kl is the resolved output. The 1 bit resolver is formed by connecting l resolver 

cells in a chained fashion, where TI, is propagated across the entire input vector Pkl from 

left to right. The control output of the preceding resolver element forms the control input 

to the next element. That is, T00)==~1+l)' except with TI1. 

The truth table II for the resolving logic function states that, with learn high, the 

high TI, is propagated from left to right until it encounters the first winner, making PWkl 

of the corresponding element high and negating its control output TO,. For PW kl to be 

high, both TI1 and Pk1 must be high. This ensures that if there is more than one winner, 
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TABLE IT 

TRUTH TABLE 

L Til pkl PWkl T01 

1 1 0 0 1 

1 1 1 1 0 

1 0 X 0 0 
0 X 0 0 X 

0 X 1 1 X 
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only the one with the lowest settling time corresponding to the highest input, will be 

transferred to the output. Since Tl1 is propagated from left to right, the left most winner 

is selected and declared as the final winner. 

The Karnaugh map of the tie resolver logic results in 

TOI=(Tll+P kl) 

PWkl=P kl+(L.111) 

(68) 

The hardware implementation of the above Boolian equations is shown in Figure 46. The 

standard CMOS gates have been used from a standard library to fabricate the resolver 

circuit. The layout is done by using the VLSI tool LAGER. Logical simulations are 

carried out by the built in circuit simulator IRSIM. 

Testing 

The testing results agreed with the Boolian equation 68. However, with the 5 V 

supply voltage, the high logic level on the T01 is found to be only 1.6 V. We attribute 

this fault to the possible defect in the mask since the standard LAGER cells were used 

to build the circuit. The rise and fall times are found to be 0.56 ~s and 0.5 11-s 

respectively. 

Dynamic Current Copier Integrator 

The current copier integrator (CCI) provides collateral feedback inhibition from the 

active piriform patches to glomeruli. Winning piriform neurons are applied to the WT 

matrix generating feedback currents. Feedback currents are sampled, stored, and 

integrated in the CCI. During the backward phase and at the end of each minor cycle, 
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inhibition is applied to the glomerulus. This inhibition persists to be used during the 

forward phase of the next cycle. During successive cycles, all of the inhibition currents 

that are generated in the backward phase are sampled and summed with previously stored 

inhibition. In this way, according to GLA olfactory model, as the multi-sampling 

proceeds, the cumulative inhibition up to that cycle is applied to the glomerulus to inhibit 

the stronger components in the input vector. This allows weaker components to become 

comparatively significant thus taking an active part in the overall clustering process. The 

CCI is a dynamic, yet discrete analog memory element to compute and store the 

accumulation of the san1pled feedback analog currents. The circuit is based on dynamic 

current copier principle. The following text describes the electronic implementation of 

the CCI. 

Background 

The standard current mirror is the most widely used block in analog integrated 

circuits. The current mirror concept was originally applied in bipolar technology. It is 

now extensively used in the CMOS process to duplicate, multiply or divide the currents. 

Current error due to the threshold mismatch and 1/f flicker noise is the most significant 

limitation of the standard MOS current mirrors, when used in a high precision analog 

circuits. Inspite of the various circuit design techniques reported, these errors typically 

could not be reduced below 1% [65]. The dynamic current copier, also referred to by 

many other names such as a current copier, current self calibrating circuit, and dynamic 

current mirror, etc., is a recent innovation. They completely overcome the limitations of 

the standard current mirrors, and moves achievable precision to tighter limits [65]. The 
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circuit is essentially a sample and hold cell that suppljes current by storing a voltage at 

the gate of a MOS transistor through which current flows. Current copiers can replace 

the standard current mmors to achieve multiple copies of a reference current with an 

accuracy of several PPM as compare to the typical one percent accuracy in standard 

current mirrors. This advantage led to the invention of the dynamic current copying 

techniques. 

Since the gate of the MOS device has practically infinite input impedance, it can be 

used to store the information on the gate capacitor for a short time period, i.e., for a few 

ms. Figure 47 shows the basic N-copier cell. To copy the current Ia into the cell, 

switches S 1 and S2 are closed (sample phase). The capacitor is charged to the gate 

voltage required by the transistor to achieve the drain current Io. If M 1 is in saturation, 

the gate voltage is given by: 

Vas=~+ VT> 
(69) 

The capacitor C1 will be charged to a voltage V Gs· The switches may then be opened (S 1 

must be opened before S2 to avoid the ilischarge of C1 via M 1). Ideally, the cell is 

capable of sinking Io when connected to the a load via S3 (hold phase). Several cells can 

sequentially be loaded from the same source. Note that a P-copier cell can be obtained 

by replacing the N-MOS transistor with its equivalent P-MOS transistor, and by reversing 

the supply polarities and the direction of currents. In such a case, the cell sources Io 

when connected to the load. The cells need not be accurately matched with respect to the 

transistor dimensions or the capacitor values since the current copying operation in each 

case results in the appropriate transistor gate voltage being stored on the gate capacitor 
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Figure 47. Basic Current Copier 
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of the selected transistor. Since the same transistor is used for sampling and holding, beta 

and threshold mismatches are completely eliminated. However, inevitable circuit flaws 

result in an error current causing the Io retrieved from a cell in hold phase different from 

Io of sampled phase. This error current is denoted by lU. The mechanisms of the 

original-to-copy error include: (1) switch charge feedthrough, limiting the initial accuracy 

,• 

of the current sample, (2) channel length modulation, producing a change in the retrieved 

current as the voltage V05 changes (as with standard current sources), (3) junction leakage 

; 

associated with S1, causing a steady discharge of the storage capacitor, (4) channel charge 

injection associated with switch S1, causing a change in V 05 when S1 is opened, and other 

flaws in the circuit. 

The Operating Principle of the Current Copier Integrator 

In Figure 47, integer multiplication of I0 by variable n can be achieved by making 

n copies of Io. These copies can be added together through a common load. This would 

require n identical current copier cells, whereby after adding them together would give 

a load current of n><Io. However, serial discrete integration of Io (L) can be obtained by 

using a pair of complementary (N & P) current copying cells connected in a circular 

fashion where during any instance, one of them acts as a temporary memory. Figure 48 

shows such a current copier integrator. The N-cell acts as a temporary memory while the 

P-cell acts as the sampler and surruner. The circuit operates in two phases requiring two 

non-overlapping switching clocks of the same frequency, ¢ 21 and ¢22. During phase 1, 

S1 is closed and S2 is opened while during phase 2, S2 is closed and S1 is opened. During 

phase 1, S1 is closed on phase ~21 and the steady state input current f; is sampled into 
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the P-cell. Capacitor ~1 is charged to the gate voltage V CHI corresponding to the. drain 

current r"i that is flowing through M1p. During phase . 2, V CHI is transferred and 

memorized on CH2 by closing switch S2 on 4> 22• This completes one cycle. Note that S, 

should be opened before closer of S2, and vice a versa to avoid .the improper operation 

of the cifcuit At this stage, transistor MIN is capable of sinking exactly ri. During the 

next cycle when S1 is closed again, CHI is charged to the gate voltage corresponding to 

the drain current 2ri ( I*i from input plus ri from MIN ) that is flowing through MIP· For 

a steady state input current, over n cycles, a total of nxl"; current flows through M1p, 

which when mirrored by M0 is available as an output current li. However, if the input 

is a time varying analog signal ri(t), then the output over n cycles is given by: 

n 

It(n)= L r tCn) ; n=0,1.2, ... J (70) 

where 

(71) 

The parameter T is the time period of the switching frequency 4> 2. I"Jt) is assumed 

constant during sampling. From the above equation, the output is clearly a discrete 

integration of the time varying input current. The initialization of the integrator is 

essential in order to restart the inhibition for different sets of inputs. The minimum 

dimension switches, Msp and MsN are used to reset the gate voltage or hold capacitors. 

The circuit is initialized by resetting V cHr and V CHl to zero on RESET if> 2• To reduce the 

error due to the channel length modulation, cascade devices M2P and Mm are added. 

Dynamic biasing of these cascades gives improved cascading. This is achieved by using 
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additional dynamic biasing circuitry consisting of M0 p, MIP, MIN and MnN· Cascade Moe 

serves the same purpose of reducing error due to channel length modulation. Switches 

sl and s2 are made of transmission gates to cancel the effects of the feed through and 

channel charge injection. The precision MOS capacitors CH1 and CH2 are realized between 

poly-1 aitd poly-2. 

Circuit Design 

This section addresses the CCI design. It addresses the limitations imposed on 

maximum integration level, the maxiinum switching frequency, and the minimum 

switching frequency. 

Upper Integration Limit 

Equation 70 to be accurate within 5%, the transistors MFN M1N, M1p, and MFP must 

stay in saturation over the entire dynamic range. As the integration progresses, for the 

unidirectional input current, the current (integrand) in the circuit rises. For the selected 

geometries, let ~ax be the maximum attainable current that can be delivered without any 

of the transistors slipping out of the saturation region. Thus ~ax determines the upper 

limit on integration. For any current above ~ax• the circuit looses its accuracy as either 

one or all of the transistors fall into the triode region. This fonns the design criteria for 

~ax· Assuming ~MtP = ~M2P = ~M2N = ~MIN = ~ and assuming all corresponding transistors 

in the P-copier leg operating in saturation, the maximum current that can be pushed 

through P-copier leg is given by: 
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(72) 

The sampled current in the sampler has to be exactly transferred to the hold cell. This 

requires ~MFP equals to ~MtP• and ~MFN equals to ~MIN· Finally, to mirror the integrand 

in the circuit to the output with the unity ratio requires ~0 equals to ~MIP· 

The bias voltages V5 and V6 of the cascode transistors should be maintained as low 

as possible to maximize the full 'scale current range. The dynamic cascoding is essential 

for optimized cascading effects at all integrated levels of the input current. To achieve 

this, the bias voltages V5 and V6 must be a function of the present level of the current in 

the circuit. M0 p is a 1:1 biasing current mirror that copies the present current level and 

feeds it into the biasing circuitry. Considering the worst case that occurs when the 

current level is ~ax' the biasing voltages needed for proper functioning of the circuit are 

given by: 

(73) 

Similarly, 

(74) 

MIN is an active resistor used to dynamically bias M2N. The bias voltage V5 at the current 

level ~ax requires the geometry of MIN to be: 

2 lmu. p =---
MIN (Vs - VTi 

(75) 

Similarly, if ~~HN equals to ~MDN• then the geometry of MIP is given by: 
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(76) 

Maximum Switching Frequency 

In order to calculate bandwidth of the CCI circuit, it is essential to know that how 

fast circuit can be run without adding excessive error in the integration . The transient 

response of the CCI is limited by the settling time of RC network formed by the 

switching elements, sample and hold capacitors. 

As the integration progresses, the accumulative sum of the sampled current 

(integrand) in the circuit continuously changes its value. During both phases, it is 

essential to update the value of the last stored voltages V CHI and V cH2 to a new voltage 

corresponding to the latest sum. This stores the integrand up to that point in the copier 

cell and allows the variation to be followed by the output current I;. If switch S1 during 

phase 1 remains closed for duration t1, then correct updating is only possible if the time 

duration t1 is longer than the settling time of the sample and the hold formed by M1p, S1 

and CHI· Assuming small perturbations, the settling behavior of this circuit can be 

examined by means of the P-cell of Figure 49. Opening the loop between capacitor CH1 

and the gate, the open loop transfer function is [65] given by: 

(77) 

where, 
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gx 

Figure 49. The P-Cell 
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(78) 

The &nand gx are the transconductance of M1 and switch respectively. The two poles of 

the closed loop circuit are the roots ~f equation 1- G(s) = 0 

I s =--± 
1,2 2 

1"2 

I 1 (79) 

For 4~ > 't1, the response is a damped oscillations with an envelope time constant of 2t2. 

For t 1 >> 4't2, it settles exponentially with the time constant t 1• The global settling time 

constant may be reasonably approximated by: 

(80) 

'ts must be 5 to 7 times (depending on the desired. accuracy) smaller than t1 to ensure that 

equilibrium is reached. Applying similar treatment during phase 2 for the N-cell, results 

in ~- Therefore, the maximum switching frequency is: 

1 
<I> CC-

2,_ t +t 
1 2 

(81) 

These conditions place an upper limit on the operational frequency, and upper limit on 

values of CH1 and CH2. They also place a lower limit on gx and gm. 

Minimum Switching Frequency 

During normal operation, S 1 is opened followed by the closer of S2 and vice a versa. 

The time intervals, t12 and ~1 between these two instances determine the minimum 
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possible switching frequency. During these intervals, the circuit is idle since neither of 

the capacitors are connected to their respective dqtins through switches since both of the 

switches are off. Thus, the gate voltages Ycm and V cH2 float to their pre-charged 

voltages. The voltages stored on the MOS c~pacitors at the gates of MFN and M 1p are 

affected by the leakage currents that is flowing from the gate. The peak to peak variation 

caused by the leakage current is given by: 

t 
.dV =I ~ 

pp leak c 
Rl 

Variation in the gate voltage produces a variation in the drain current 

(82) 

(83) 

The leakage current is present due to the reverse biased diode current associated with 

transmission gates. Longer t12 and {21 result in larger drain current errors. These relations 

impose the upper limit on the t12 and {21 for a given tolerance in drain current error. 

These times may be referred to as circuit idle time. The idle time is given by: 

.111 CHI 
t =- - -
12 gm llhlk 

(84) 

Note that {21 equals to t12• They set the minimum allowable operational frequency at: 

(85) 

Switching frequencies below ¢2min introduce unacceptable errors in the output current. 

Increasing CH1 and CIU results in a lower operational frequency but increases the settling 

time. Hence, a proper trade off has to be made. 
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Mechanisms of Errors 

This section addresses the errors that are present in the output current of CCI circuit. 

These errors are result of charge injection, switch feedthrough, channel length modulation, 

and leakage current. The error due to the -leakage current was discussed previously. 

Charge Injection 

A significant limitation to the precisiOn Qf the current copiers is due to the 

realization of the various switches by means of transistors. To close the switch, the 

switching transistor is made conductive by mobile carriers that are attracted into the 

channel by the gate voltage. For charge equilibrium, the total charge of the mobile 

carriers in the channel must be equal to the total charge stored on the gate. The charge 

stored on the gate in strong inversion is given by: 

(86) 

When the switch is opened, these carriers are released from the channel in order to block 

the transistor. The channel charge flows into the source and drain. Thus in theN-copier 

when switch S1 opens, a fraction bq of q is dumped on the capacitor CH2. The factor b 

determines the amount of charge that is dumped on the source of the MOS transistor. In 

some literature, it is specified to be 0.5 [66]. This causes gate voltage error given by 

!J. V= 6q 
Cm 

(W L COX') Sl(VGS- VT) Sl 
=6--------~~~~~ 

(87) 

CH2 

in the stored voltage V CH2• This voltage error in turn creates a relative error in the output 
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current of the copier as 

!:J.[ DMFN gm MFN !:J. V 

IDMFN IDMFN 

(W L COX')sl (Vas- VT) SJ 
= 

(88) 

11. V can be decreased by making gate oxide .capacitance of the switch a small percentage 

of the CH2 where one limit is given by the area of the CH2• It can also be decreased by 

reducing the total charge q in the channeLwhich ir!tern reduces the fraction 11.q that flows 

onto CH2. This can be achieved by minimizing the gate area WxL and/or by controlling 

the gate voltages of the switch. The percentage error also tends to be low at higher 

values of V cH2. A similar treatment applies to the P-copier cell for determination of the 

error due to the charge injection. 

Switch Feedthrough 

Switch feedthrough contribution is due to the clock voltage that is coupled to the 

gate via Cas. The clock voltages is partially transferred to the gate via the capacitive 

network. The transferred voltage js given by, 

(89) 

where V 8 is the gate voltage of switch transistor and Cas is gate to drain capacitance of 

the transmission gate. The change in the gate voltage multiplied by the transconductance 

reflects an error in the drain current. 
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Cascade Configurations 

Consider the structure illustrated in Figure 48 without the cascade devices M2p and 

M2N. For any cycle, during phase 1 and 2, currents are sampled on CH1 and CH2, 

respectively. While during the remainder of the cycle time, the copier hold these sampled 

currents on their gates. Considering the P-cell, let V75 and V m be the voltages attended 

by node 7 during the sample phase and the hold phase, respectively. The V7 must return 

to the value v7S equals to v CHI during sample pha~e I. During the hold phase, sl is open 

and V7 jumps to the voltage V m' imposed by the relative impedances of M 1N, M 1p, and 

the input current sink. Since V 75 is not equal to V m' the difference in drain voltages 

during the two phases produces additional contributions to the inaccuracy of the 

integration. 

The first contribution is due to the channel length modulation producing change in 

the drain current as the drain to source voltage changes. Mathematically, this can be 

represented in terms of the effective output conductance fSo, where go is the combined 

transconductance of cascaded MlP and M2P. Thus, the relative error in the output 

current of the copier can be written as 

fl./ D g o(V1H- V1S) (90) 
ID ID 

The second contribution is due to the drain voltage transferred to the gate via C00. 

The difference in the two voltages is partially transferred to the gate via the capacitive 

network as 
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(91) 

where VDsample and vobold are the drain voltages attended by M1P in sample and hold 

phases respectively. The change in the gate voltage multiplied by the transconductance 

reflects an error in the drain current. 

Simulations 

The transient simulation of the CCI is shown in Figure 50. With a 30 J..lA steady 

state input current applied, integration over 5 cycles is observed. <j> 21 and <j> 22 are the 

switching clocks. The output current is sampled via Ro-

Initially, the circuit is reset to the initial conditions. The first output sample is found 

to be approximately 35 J..lA. A successive increase in step size of the output current is 

attributed to the cumulative integration of an error term that is present due to previously 

described factors specifically channel length modulation effects and channel charge 

injection. Over 5 cycles, the error is found to be 33%. For the designed geometries, the 

circuit saturates above 300 J..lA. 

This simulation demonstrates maximum switching frequencies in excess of 10 MHz. 

Testing 

The test set up consisted of two variable duty cycle non-overlapping clocks <j> 21 and 

<J> 22, derived from the pulse generator and applied to CCI. The auxiliary bread boarded 

circuit which was driven by <J> 21 was used to generate complementary reset pulses after 

every 8 clock cycles. Thus, throughout the testing, integration is performed over 8 clock 
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154 

cycles by periodically resetting the V CHI and V cH2 with reset pulses. The auxiliary circuit 

was bread boarded to produce a precision current sink ri, where current was controlled 

in steps. The output current I; was sampled across a precision 10 K.Q sampling resistor. 

The performance was observed and recorded under two conditions: with, and without 

the external gate capacitances added to the internal MOS capacitances CHI and CH2. With 

an external capacitance of 200 pF each is added to both CH1 and CH2, the clock speed is 

set at the low value (1 KHz). In this case for fi equal to 20 ~A, during the first clock 

cycle, Ii is found to be 20 f..LA which is in exact agreement with the integrator theory. 

But, during the second clock cycle, ~ raised to 70 ).LA instead of the theoretical 40 ~A 

value, leading to a 75% error in the integrand. During the subsequent cycles, the output 

current is observed to be increasingly deviating from its expected theoretical values. 

Clearly, this is due to the cumulative integration of an error term, which is being added 

during every cycle along with the information signal. Thus, as the integration progresses, 

a larger error accumulates leading to a substantial error term during the later part of the 

prolonged integration cycles (200%). Hence, in the subsequent designs the following 

factors should be considered: (1) an error compensation scheme to the basic circuitry of 

Figure 48, in order to cancel the error in the integrand before it is processed further, and 

(2) the additional cascades to MFN and 1v1FP. 

The circuit conditions without the external capacitance added to the circuit are 

identical to the earlier case except that ti is set at 5 ).LA. In this case, a step in the output 

current due to channel charge injection and/or feedthrough is observed. It occurs when 

S 1 and S2 are opened. From equation 87, the channel charge injection error is a function 

of the ratio of switch oxide capacitance and hold capacitance. It has been suggested 
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previously that such an error can be reduced by making switch oxide capacitance a small 

percentage of Cr-r1 and CH2. Therefore, during the previous experiment, the off-chip 200 

pF capacitances were added to the internal MOS capacitances CH1 and CH2• With the 

external capacitances removed, 11 V due to the channel charge injection or switch 

feedthrough is comparatively high, resulting in a false step in the output current in every 

cycle. The resultant error in the output current due to the channel charge injection or 

switch feedthrough was found to be as high as 40%. 

Summary 

From the above discussion, it is clear that dynamic current copying techniques are 

potentially superior to the normal current mirroring techniques, due to the complete 

elimination of threshold mismatch errors and potential removal of flicker noise. However, 

proper selection of switching frequencies, incorporation of proper compensating schemes, 

and proper circuit design techniques cannot be overlooked when attempting to minimize 

errors. Appropriate device geometries, switches, and gate capacitances are important 

factors in the design of the CCL Increasing gate capacitance CH1 and CH2 improves 

accuracy but lowers the operating frequencies. Therefore proper trade off between space 

and accuracy is required. In summary, charge injection, switch feedthrough and other 

errors due to a variation in drain voltage, are the main sources of errors which occur 

during the integration. Complementary clocks which are suggested for driving 

complementary transmission switches to cancel the effect of switch feedthrough appear 

to be of little value. Therefore, future designs will make use of dununy switches in 

conjunction with single channel transistor switches. 



CHAPTER IV 

CONCLUSIONS AND FUTURE PROSPECTS 

Analog circuits are often criticized for their functionality when compared to their 

digital counterparts. Usually, analog integrated circuits designed by even the most 

experienced designers require multiple attempts to achieve desired results. Our experience 

in this regard is the other way around. Seven of nine blocks showed satisfactory DC 

behavior, due to the utmost care in design, simulation, and layout. However, the 

electronic olfaction topic is still open to many improvements, both in the olfactory model 

and in the refinement of electronic building blocks. The following suggestions provide 

the future scope that will help in realizing the system level integration of the GLA 

olfactory model. 

The GLA olfactory model described in chapter II is most definitely biologically 

inspired, but the basic idea in the minds of the original investigators initially may not 

have been its hardware implementation. In other words, the model may need additional 

simplifications that favor a simple electronic implementation while retaining the model's 

essential clustering properties. The ongoing simulation efforts of the simplified model 

by our group at Oklahoma State University and some researchers elsewhere [ 47] will 

hopefully lead to further simplified but computationally efficient model in the near future. 

In spite of the number of favorable features that make the GLA model suitable for direct 

implementation, we foresee some problems that may be encountered during 
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The system level integration of the olfactory ·model will require 

additional knowledge of specific model parameters values (g, m, p, h). The primary task 

of selecting the best set of implementation strategies for an olfactory architecture is a 

rather difficult issue since olfaction is poorly understood. Extensive computer simulations 

will be required to analyze the effect of various model parameters such as number of 

glomerulus and mitral patches etc. on the clustering properties. This will assist in 

selecting the most optimal parameters thus providing efficient use of the silicon area. 

These parameters will have a direct impa:ct on the transistor level design. 

Two dimensional connectivity may form a bottleneck. In this regard, techniques like 

multiplexing, and inherent sparse and spatially local interconnect or shared wires will help 

to reduce routing complexity. 

The problems of communication, weight representation, and learning will also be of 

particular importance. To achieve effective communication on the memory front, local 

storage of the weight in close proximity of the multiplier hardware is the preferred 

solution. The task of weight updates is complex since it involves issues related to high 

voltage non-linear programming, learning algorithm, weight storage, on/off chip learning 

etc. In other words local optimization will dominate design and will remain a key focus 

in any olfactory system design. 

From an electronic perspective, the future prospects for electronic olfaction are 

unlimited. Adhering to the sequence as it is presented in chapter Ill, the multiplier testing 

results closely match with simulation and theoretical results. However, the present 

multiplier circuit is area consuming. The possibility of an alternative area efficient single 

quadrant multiplier needs to be investigated. The mitral patch circuit needs thorough 
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analysis. The idea of incorporating the sigmoidal function within the mitral patch by 

arranging thresholds in a nonlinear fashion certainly deserves some attention. The offset 

circuit associated with the multiplier needs special attention. The area efficient way must 

be found to realize an internal high leakage resistance. MOSFET operating in the 

subthreshold region should be investigated for this purpose. 

In electronic neural networks, the problem of realizing a trainable analog medium 

is current subject of high interest. Floating gate memories provide the best answer to 

electrically programmable/erasable non-volatile semiconductor memories. Out of the 

numerous possibilities, the concept of standard CMOS floating gate memory, based on 

the field enhancement due to mask geometries, is relatively new and poorly understood. 

These memories may not ever be suitable due to their heavy dependence on the 

manufacturing process. Precise control of the weight needs extensive experimentation to 

mathematical model and understand and the programming and erasing behaviors. This 

will assist in uncovering the basic physical principals hidden behind the field 

enhancement due to mask geometries and the retention of charge. 

System level integration will require a suitable programming scheme. An algorithm 

has to be devised to convert the inherently complex and non-linear programming into a 

relatively simplified and hopefully linearized learning algorithm. 

The on-chip generation of high. voltage poses a real challenge. However, the 

tunneling physics and high voltage pulse generation are two separate issues and initially 

should by handled separately for conceptual testing and understanding, and then should 

be combined together. Other issues relating to the weight matrix are cell layout, 

placement, and signal routing. Cell layout will have a direct impact on both the silicon 
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area as well as on the cell performance. Significant expertise is needed to arrive at the 

optimal design. A suitable signal routing scheme is required since the weight matrix is 

expected to be dominated by routing wires. In this regard, high voltage concems such 

as field threshold, reverse breakdown etc. need special attention. 

The testing of the WT A circuit reveals a limited operating range (0-70 ~A). Device 

geometries have to be pushed to achieve a higher dynamic range. Further, a creative on

chip testing structure must be developed to measure the bandwidth. The CCI circuit has 

to be modified [65] to incorporate the error compensation scheme, improved dynamic 

cascading, and the dummy switches. This will bring down the errors in the output current. 

Finally, another milestone of this research, the system level integration of the 

olfactory model on a single substrate will require a serious effort Each factor 

(simplification of the model, suitable programming scheme, on-chip high voltage 

generation, weight cell characterization etc.) by itself can be significant enough to be 

another thesis. By no means does the author imply that the above list of problems is 

complete. But as we dwell into the area, hopefully we will come up with many more 

opportunities for improvements. 
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