
A TEST FOR ESTIMATING THE NUMBER OF COMPONENT 

DISTRIBUTIONS IN A NORMAL MIXTURE 

DISTRffiUTION AND THE RESULTS OF A 

MONTE CARLO SIMULATION OF 

THE TEST 

By 

MARK WAYNE PALKO 

Bachelor of Fine Arts 

Arkansas Tech University 

Russellville, Arkansas 

1985 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
May, 1993 



OKLAHOMA STATE UNIVERSITY 

A TEST FOR ESTIMATING THE NUMBER OF COMPONENT 

DISTRIBUTIONS IN A NORMAL MIXTURE 

DISTRIBUTION AND THE RESULTS OF A 

MONTE CARLO SIMULATION OF 

THE TEST 

Thesis Approved: 

Dean of the Graduate College 

ii 



ACKNOWLEDGMENTS 

I wish to express my sincere thanks to my report adviser, Dr. 

Mark Payton for his support, guidance, and, most of all, patience 

throughout my graduate program. I also wish to thank the members of 

my committee, Dr. David L. Weeks and Dr. William Warde, and my 

stand-by, Dr. Larry Claypool. 

Of the many helpful people at OSU, I need to single out Robert 

Steiner and Bob Wilson, whose expertise, insights, and time saved me 

from a great deal of grief. Special thanks also go to Iris McPherson, 

who helped me adapt my simulation to the mainframe. 

Off campus, I would like to thank Jennifer Gregory for her 

continued support. And fmally, thanks to my family; my parents, Tom 

and Hilda, and my brothers, Carl and James, who kept faith in me 

despite all evidence to the contrary. 

iii 



TABLE OF CONTENTS 

CHAPTER PAGE 

I. 

II. 

III. 

INTRODUCTION. 

LITERATURE REVIEW . . . . . . . . . . . . . . . . . . 

1 

3 

Finite Mixtures. . . . . . . . . . . . . . . . . . . . 3 
Current Methods of Estimation. . . . . . . . . . . . 7 

PROPOSED METHOD FOR ESTIMATING THE NUMBER 
OF COMPONENT POPULATIONS .............. . 

Variance Inflation . . . . . . . . . . . . . . . . . . 
The Bimodal Normal ................. . 
Dividing the Distribution. . . . . . . . . . . . . . . 
The Test Procedure . . . . . . . . . . . . . . . . . . 

13 

13 
14 
16 
18 

IV. TESTING THE PROCEDURE (A MONTE CARLO SIMULATION) .22 

v. 

VI. 

Generating the Sample. . . . . . . . . . . . . . . . . 23 
Standardizing and Sorting the Sample . . . . . . . . . 23 
Defining the Sum of Squares and Correction Factor. . 24 
Defining the Subgroups and Calculating Pseudo-F. . 24 
Finding F-max. . . . . . . . . . . . . . . . . . . . . 25 
The First Test Statistic . . . . . . . . . . . . . . . 26 
Dividing the Sample into Three Subgroups . . . . . . . 27 
The Second Test Statistic. . . . . . . . . . . . . . . 27 

ANALYSIS OF THE SIMULATION RESULTS ......... . 28 

Methods of Analysis. . . . . . . . . . . . . . . . . . 28 
Regression Models. . . . . . . . . . . . . . . . . . . 28 
Results of the Regression Analysis . . . . . . . . . . 29 
Graphs and Quantiles . . . . . . . . . . . . . . . . 30 

SUMMARY AND CONCLUSIONS ............. . 

Advantages and Disadvantages of the Proposed Test. 
Suggestions for Further Study. . . . . . . . . . . . . 

34 

34 
36 

BffiLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

APPENDICES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Appendix A--Program for the Monte Carlo Simulation . . . . . 39 

Appendix B--Simulation Results . . . . . . . . . . . . . . . . . 44 

IV 



FIGURE 

1. 

2. 

LIST OF FIGURES 

Approximate Power of the First Test. . . . . . . . . . . 

Approximate Power of the Second Test ......... . 

v 

PAGE 

31 

32 



CHAPTER I 

INTRODUCTION 

The effectiveness of certain drugs is strongly affected by qualitative 

factors such as gender, racial make-up or blood type. For this reason, 

experimenters studying these and similar drugs usually take these factors 

into account by analyzing the results from each group separately, 

partitioning out these factors in the analyses of variance of the results, 

or including appropriate indicator variables in their regression models. 

Often, however, the importance of a qualitative factor is not 

suspected before or during an experiment, so no levels of the factor are 

recorded. This information is lost and the observations from the different 

levels of the factor are pooled together. This can produce a multimodal 

distribution, which leads to a variety of problems. 

For example, the effects of a drug on different groups can cancel each 

other out in tests such as the paired-t. This occurs when a treatment has 

a positive effect on one group and a negative effect on another, so the 

overall mean effect is near zero, even though all of the subjects may have 

been strongly affected by the treatment. This illustrates how a Type II 

error may occur. 

Even if the effects are not contradictory, multimodality can still 

lead to Type II errors by artificially inflating the estimated variance. 

Even if all of the groups show a significant effect at a specified level of 

1 



a Type I error (a), the inflated error estimate can cause the pooled sample 

to be declared non-significant using the same a. 

2 



CHAPTER ll 

LITERATURE REVIEW 

Finite Mixtures 

The aforementioned examples are members of a special case of the class 

of distributions called mixture or compound distributions. A mixture 

distribution is a statistical distribution which can be expressed as a 

superposition of (usually simpler) component distributions. 

One example of a mixture distribution is the quantity of rice on an 

acre of land, using the distribution of rainfall in that area as one 

component and the distribution of rice growth for a given amount of 

rainfall as the other component. The resulting distribution could be 

expressed as: 

f(rice) - f g(rice ,· rain) h(rain) d rain, 

where g(rice ; rain) is the conditional distribution of rice growth on 

rainfall and h(rain) is the rainfall distribution in that area. Since 

h(rain) is a continuous distribution, the probability density function of 

rice growth has been expressed here as an infinite superposition of 

conditional density functions. 

If, instead of using rainfall, we had based the probability density 

function (p.d.f.) on whether or not the soil was fertilized, the marginal 

3 
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density function of rice growth would have been 

f(rice) = g.frice ,· nofert)Pr(nofert) + g2(rice ,· fert)Pr(fert). 

The expression g.frice ,· nofert) is the density of the conditional 

distribution of rice growth given that fertilizer was not applied, girice; 

fert) is the density of the distribution of growth given that fertilizer 

was applied, and p.fnofert) and p2(fert) are the probabilities of 

fertilizer not being or being applied, respectively, with the constraint 

that 

Pr(nofert) + Pr(fert) = 1. 

Because the number of component distributions in this expression 

was fmite, distributions such as these are called finite mixture 

distributions, and they are the general focus of this paper. The specific 

focus is a special case of finite mixture distributions, finite normal 

mixtures. 

Finite normal mixtures occur when the conditional distribution of a 

random variable, for any given value of a qualitative factor, is a normal 

distribution. Since most populations are affected by some qualitative 

(2) 

(3) 

factors, fmite normal mixtures are almost as common as normal populations 

are. In fact, any time a valid F-test is performed in an analysis of variance, 

the distribution of samples pooled over treatments is a finite normal 

mixture. 

There is no mathematical difference between the distribution of 

samples in a standard analysis of variance and those analyzed by finite 

mixture techniques. The difference is contextual. To perform an analysis 

of variance, the experimenter must have enough additional information about 
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the experimental units to partition the down into subsamples, such that 

each subsample is drawn from a normal population. When finite mixture 

techniques are used, it is assumed that the information necessary to break 

down the distribution is not available, either because it was not 

observable, or was simply not gathered. 

The finite normal mixture of K populations has the p.d.f. 

K 

E p.,P(x;J,t., u.), 
1 1 1 

i•l 

where ¢(x;J.t., a.) is the p.d.f. of a normal distribution with mean J.l. and 
1 1 1 

standard deviation u., and where p. is the probability associated with the 
1 1 

ith component population. In some contexts, it is more useful to define p. 
1 

as the proportion of the population contained in the ith component 

population. As a consequence of either of these definitions, the following 

two properties hold: 

0< p.< 1, 
1 

and 

For a given K, there are (3K - 1) unknown parameters in the p.d.f. 

Specifically, K values for the J.l's, K values for the a's, and (K - 1) 

values for the p's (the last value being uniquely determined by the 

remaining values). 

The value of K, however, is often not known a priori. In this case, 

the number of unknown parameters (3K) is itself dependent on the value of 

one of the parameters. 

(4) 

(5) 

This large, undetermined number of parameters can make the problem of 
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estimating parameter values unmanageable. For this reason, the problem is 

usually simplified by limiting the possible cases. 

One common solution is to set the value of K, based on inspection or 

some a priori knowledge of the population. Another is to assume that the 

component populations have equal variance. The solution used in this study 

is to assume equal variances and to place restrictions on the relative 

sizes of the !J'S. 

It is useful, at this point, to define a new parameter which focuses more 

narrowly on the properties of interest. Since the modality of a population 

(and the test statistic proposed in this report) is invariant to location, a 

variable is needed that gives the relative positions of the component means 

and is also invariant with respect to location. Such a variable can be defmed 

using the differences between the means. 

Given that, for any i from 1 to (K - 1): 

define the difference variable (d.) as 
1 

d = Jl-Jl 
i i i+t" 

The p.d.f. can now be rewritten: 

K i 

E p.f/>(x; 
i=l 1 

{!l 1 + E d.}, u.). 
j=l J 1 

Assuming the following 

d. - d. =d, for all i and j, 
1 J 

pi - pj= i· for all i and j, 

(6) 

(7) 

(8) 

(9) 

(10) 
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a. - a = a, for all i and j, 
1 j 

(11) 

gives us the following p.d.f.: 

K 
1 E .P(x;{p + (id)}, a). 
K . 1 1 

(12) 
1"' 

Existing Methods for Estimating K 

The problem of estimating values for pi and a i has parallels in the 

analysis of variance context. The values p. and K, on the other hand, have 
1 

to be known before an analysis can be performed. The problem of estimating 

p. occurs indirectly in discriminate analysis and the problem of estimating 
1 

K also occurs (in a multivariate context) in cluster analysis. 

The hypotheses for testing modality in finite mixtures are not, in 

most cases, well defined. This is due to the number of combinations of 

parameters that can produce the same distribution. In the case of a fmite 

normal mixture, a k-modal distribution approaches a (k - I)-modal 

distribution when one of the differences between the means, or the 

proportion of one of the component distributions approaches zero. 

For the purpose of developing a test for modality, equal differences, 

proportions and variances were used. The robustness of this procedure to 

deviations from these assumptions (component normality, equal component 

variance and equal spacing of component means) will have to be answered in 

later research. 

A number of techniques have been proposed to estimate the smallest 
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value of K that satisfies the normality conditions of the finite normal 

mixture. Of these, the most important are inspection (graphic) techniques, 

the method of moments, and the likelihood ratio test. 

Inspection techniques are not designed to test hypotheses about K. 

Their purpose is to present the data in a way that helps the experimenter 

recognize signs of a mixture distribution. These techniques fall into two 

categories: histograms and probability plots. 

Histograms are an obvious choice when trying to determine the nature 

of a distribution, being easy to set up and to explain, and familiar to 

almost everyone. Unfortunately, multimodality is often difficult to detect 

from a histogram. Murphy (1964) gave examples of samples of size 50 taken 

from a single normal (K= 1). Many of these gave the impression of 

multimodality. 

The simplest type of probability plot useful for detecting mixtures 

of fmite normals is a plot of the sample quantiles against the theoretical 

quantiles of the standard normal curve (Everitt and Hand, 1981). If samples 

are taken from a single (K= 1) standard normal distribution, their plots 

should tend to be approximately linear, while mixtures will tend to produce 

curves. A more sensitive plotting technique was developed by Fowlkes 

(1979). His technique plots the standardized sample quantiles against 

where p. = (i - 1/2)/n, 
1 

(13) 

(14) 

(15) 



and ~((y<1>- y)/s) is the probability of z < (y<1>- y)/s, where z is a 

standard normal variate. 

9 

The method of moments was first used by Karl Pearson in 1894 for the 

case when K=2 (Fowlkes, 1979) and has since been extended to K=K0 C!: 2. 

The likelihood ratio is probably the best known formal test for 

determining the number of components in a mixture, or, more formally, 

comparing the hypothesis K = K0 against the alternative hypothesis 

K=K1 (K0 < K1). 

These hypotheses are tested by computing the likelihood ratio, l, 

given by 

l = !2'k1 I !Eu, (16) 

where !2'k1 and !Ekl are the likelihoods, respectively, of the sample coming 

from the distribution described in the null hypothesis and from the 

distribution described in the alternative hypothesis. Given this ratio, 

the power and the probability of Type I error of the test can be 

calculated, provided the sampling distribution of l under the null 

hypothesis is known. This, unfortunately, is seldom the case. Researchers 

have been searching for the asymptotic distribution of l since the 1930's 

and, as yet, have only found special cases (Everitt and Hand, 1981). 

From a practical point of view, likelihood ratios have an even more 

serious problem: time. Since the likelihood equations for normal (and many 

non-normal) mixture distributions are typically algebraically complex, 

non-linear functions of the mixture parameters, iterative procedures that 

require extensive computing are needed to fmd the maximum likelihood 

estimators (MLE's). Furthermore, the likelihood surfaces may have multiple 

local maxima or saddle points. This means that the algorithms may converge 
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very slowly, or perhaps not converge at all. Even if they do converge, 

there is no guarantee that the resulting estimate is a global maximum, 

only that a maximum is found from that particular starting value (Furman 

and Lindsay, 1992). 

A third approach is the method of moments. This method uses the 

moments (and functions of the moments) to estimate parameters of the 

distribution from which the sample was drawn. The currently used version 

of this test involves a matrix of moments, which is constructed by putting 

1 (the expected value of ~ in the upper left hand comer, using the first 

moment as the next diagonal element, using the second moment as the next 

diagonal element, and continuing until the 2pth moment is placed in the 

lower right hand comer. The structure of the resulting matrix "reveals 

information about the number and location of the support points for a 

discrete distribution ... " (Lindsay, 1989). The term, "number of support 

points," in Lindsay's paper is analogous to the number of component 

distributions in this paper. The determinants of the matrices are used to 

analyze the results. 

W. David Furman and Bruce G. Lindsay (1992) offered two procedures 

based on the method of moments and argued for the general superiority (or, 

at least, equivalence) of these methods over the traditional likelihood 

ratio procedures. They work with the case of normal subpopulations with 

equal variance, and use the following hypotheses: 

vs. 

In order to find a statistic to test these hypotheses, Furman and 
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Lindsay start by finding a moment matrix for the observed data and use this 

matrix to estimate the variances of the component distributions (~) under 
1 

both the null and alternative hypotheses. The estimated values are written 

"' "' cr and ti respectively. The test statistic, called a pseudo F, is 
p p+l 

* The logarithm of F was used "with the goal of stabilizing the limiting 

distribution." Note that this statistic is location and scale invariant 

(Furman and Lindsay, 1992). 

Under the null hypothesis of p subpopulations, the expected value of 

"' "' the ratio (a2/cr ) is one. Under the alternative, however, the expected 
p p+l 

"' value of the ratio is greater than one. The value of a2 is larger in this 
p 

case because the difference between two of the means is included in this 

estimate. This idea is examined more· fully in the next chapter. 

Furman and Lindsay draw an analogy between this procedure and the 

more familiar analysis of variance. Both tests measure the reduction of 

variance caused by reassigning the observed data points to new groups and 

pooling the resulting variances. Unlike the analysis of variance, 

however, there are not pre-existing criteria for assigning a given 

observation to a given group, so the estimation of the factors determining 

these criteria adds another level of difficulty to the problem. 

Though the likelihood ratio test is usually slightly more powerful 

than the methods of moments test, it involves a slower procedure, making 

the method of moments test a more practical choice in most situations. 

Engleman and Hartigan (1969) developed a variation of the likelihood 

(17) 
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ratio to test for bimodality. This variation is of special relevance to 

the method proposed in the next section. Their method finds the grouping 

that maximizes the ratio of variance between groups to variance within 

groups for k groups by calculating each of the different combinations that 

satisfy the requirement that all groupings be contiguous. They refer to the 

maximum ratio as the F-max. This statistic is not actually F-distributed 

except in the extreme case where the samples from each component 

distribution have no overlap. 

F-max is used as a statistic for testing the hypothesis of unimodal 

normality against the alternative hypothesis of bimodal normality. The 

possibility of a compound alternative hypothesis, which would have included 

trimodal normality, was not considered. 



CHAPTER ill 

A PROPOSED METHOD FOR ESTIMATING THE NUMBER 

OF COMPONENT POPULATIONS 

This paper proposes a method which (after limited Monte Carlo 

simulations) seems to have power comparable to the two established tests 

and with potentially greater efficiency than either. This test has a 

theoretical basis similar to that of the method of moments, but approaches 

the problem from a different direction. 

Variance Inflation 

Variance, as a measure of dispersion, is affected by such 

distributional properties as skewness and multimodality. Given this, the use 

of variance when distributions arc multimodal may lead to questionable 

results. In a sense, variance estimates in these situations arc in/lilted 

when compared to other measures of dispersion such as range. 

This property of the class of multimodal distributions considered here 

can cause serious problems for experimenters, particularly when the 

difference between component means is large relative to the component 

variances. It can also be used as the basis for a test of multimodality. 

13 
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The Bimodal Normal 

The simplest class of multimodal normal distributions is the bimodal 

normal, which has the p.d.f.: 

f(x) = p tP/Jl 1, o) + q tP/J.l2, a2), (18) 

where p + q = 1. (19) 

If each component has equal proportion and variance, the p.d.f. 

simplifies to: 

Let 

f(x) -
q,t(jJt, a) + q,2(JJ2' a) 

2 

ft= q,t(jJl, a); 

f2 = q,2(jJ2, 0'). 

All simulations were performed on this simplified case and, unless 

otherwise noted, all further discussion about the bimodal normal assumes 

equal variances and proportions. 

(20) 

(21) 

(22) 

Compared to a unimodal distribution with the same variance, a bimodal 

distribution with approximately equal component weights can have a range 

less than one half as large, depending on the variance of the component 

populations and the difference between the means of the subpopulations. 

This property can be confirmed by considering the degenerate case of 

the bimodal distribution. If the variances of the component populations are 

negligible relative to the difference between the component means, the 

bimodal normal degenerates into a binomial distribution with the 



appropriate scaling parameter, which has a range equal to twice the 

standard deviation assuming equal proportions. 

The variance of a symmetric bimodal is 

d2 
+ci-

4 

where 

d2 = I (p 1 + /12) I· 
The formula for variance is somewhat more complicated when equal 

proportions and variances are not assumed. 

15 

If a bimodal mixture of normal distributions is divided at the point 

(a), the following condition holds; 

f 1(a) = f2(a). 

The resulting subdistributions are roughly mound shaped and, in some 

cases, almost symmetric. The pooled variance of the two subdivisions will 

be less than or equal to the variance of the component distributions (ci-), 

depending on the degree of overlap. The squared difference terms drop out 

entirely. A large difference between the variance of the original 

distribution and the pooled variance of the subdivisions indicates a large 

difference between the component means. Consequently, the difference 

between the estimated variance of a whole sample and the estimated pooled 

variance of subgroups of that sample could form a reasonable basis for a 

test of modality. 

We also see a similar reduction in pooled variance when going from a 

trimodal normal divided into two subdistributions to three subdistri-

butions. 

Using this principle, a test statistic may be constructed for testing 

(23) 

(24) 

(25) 
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the hypothesis of H0:K - K , vs. H :K > K . The test statistic is 
0 • 0 

Pooled Variance (K ) 
M - Pooled Variance (K + 1) 

where K is the smallest number of normal component distributions with which 

the original distribution can be written. 

Dividing the Distribution 

In the bimodal case, the optimum point for dividing a distribution 

into two subgroups occurs at the point of equal likelihood, defined as the 

point that has an equal likelihood value for each of the normal 

subcomponents (which occurs at the point f1(a) = f/a), described earlier 

in this chapter). Since the normal distribution is continuous, the point of 

equal likelihood will occur somewhere between the observed values of the 

sample. 

The likelihood of an observation being from a certain component is a 

decreasing function of the distance between a given point and the mean of 

that component. For that reason, the values falling in the group with the 

smaller mean will all be smaller than any value from the group with the 

larger mean. 

W.D. Fisher uses this fact to develop a system for grouping 

observations for maximum homogeneity. His method finds the grouping that 

minimizes the pooled variance of the groups. Fisher showed that any 

grouping that satisfies this condition must consist of nonoverlapping 
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groups, so only partitions of the set of ranked observations need to be 

considered. Without this property, the pooled variance of all possible 

combinations would have to be calculated, making the procedure impractical 

for most cases. 

In order to use Fisher's procedure, the number of groups has to be 

decided before the calculations commence. The procedure cannot be used 

to test hypotheses about the optimum number of groupings. It does, however, 

provide the basis for Engleman and Hartigan's test (1969), described in the 

previous chapter, and that test forms an important part of the test 

proposed in this chapter. 

Engelman and Hatigan's test provides a simple method for locating the 

the region between two consecutive observed values that contains the point 

of equal likelihood. 

Engleman and Hatigan limited their work to K = 1, but the basis of the 

work, established by Fisher, is valid for all values of K. The method 

proposed in this chapter uses F-max to estimate the points of equal 

likelihood, then, unlike Engleman and Hartigan's test, compares the 

behavior of certain test statistics for different numbers of groups. 

Having divided the sample into k groups, the pooled variance of the k 

groups (s ... 2 ) can be compared to the pooled variance of k-1 groups (s 2 ). 
... k- 1 

This comparison is achieved by the ratio 

R-
s 2 

k 

s 2 
(t-1) 

(27) 
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The Procedure 

The frrst step in this procedure is to rank the observed values from 

smallest to largest and apply Engleman and Hartigan's method. Starting 

with the smallest observation in group one and the remaining observations 

in group two, calculate the error mean squared (MSE) for the two groups. 

Then find the mean of each group and calculate the between group variance. 

Calculate the ratio of these two numbers. Repeat the process with the 

first two observations in the frrst group and the remaining observations in 

the second. Repeat for all (n-1) combinations. 

Consider the following example. A sample of size 24 is taken. Only 

one variable is recorded, but on inspection of the data, the experimenter 

suspects that the population sampled may not be unimodal. If this is the 

case, be may have to conduct another experiment, this time including 

additional variables that might explain the multimodality. 

Here are the results of the first experiment ranked in ascending order; 

Observed values: -2.48, -1.51, -0.97, -0.83, -0.37, -0.18 

-0.05, 0.2, 0.25, 0.32, 0.7, 1.28, 1.3, 

1.37, 2.08, 2.19, 2.66, 2.72, 3.11, 3.83, 

3.83, 4.0, 4.11, 4.24. 

The variance of this sample is 3.805 (s~). The pooled variances of the 

groups will be less than 3.805. If one of the pooled variances is greater 

than the variance of the sample taken as a whole, a mistake bas been made 

in the calculations. 
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The frrst step is to calculate the F statistic for each nonoverlapping 

partition. The first partition is: 

First group: -2.48. 

Second Group: -1.51, -0.97, -0.83, -0.37, -0.18, -0.05, 0.2, 0.25, 

0.32, 0.7, 1.28, 1.3, 1.37, 2.08, 2.19, 2.66, 2.72, 3.11, 3.83, 

3.83, 4.0, 4.11, 4.24. 

The F statistic for these two groups is 4.608. The pooled variance of 

the two groups is 3.29, only slightly lower than the variance of the sample 

taken as whole. This is to be expected because pooled variance is a 

weighted average and, though the first group yields no estimate of variance 

and is treated as zero in the calculations, the larger weight of the second 

group largely cancels out the reduction in variance caused by the first 

group. 

If 4.608 had been the largest F value, the statistic for testing 

bimodality would be the ratio of 3.29 and 3.805. Other partitions, however, 

prove to have considerably larger values. 

When -1.51 is taken from the second group and included in the first 

group, the value of F increases to 8.368 and the pooled variance decreases 

to 2.88. 
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The maximum value of F is reached when the sample is partitioned as 

follows: 

First Group: -2.48, -1.51, -0.97, -0.83, -0.37, -0.18 

-0.05, 0.2, 0.25, 0.32, 0.7, 1.28, 1.3, 1.37. 

Second Group: 2.08, 2.19, 2.66, 2.72, 3.11, 3.83, 

3.83, 4.0, 4.11, 4.24. 

The value of F for this partition is 64.88. The pooled variance 

of the groups is 1.01. 

The grouping that produces the largest ratio is used to estimate the 

pooled variance. This doesn't involve any additional calculation since the 

pooled variance had already been used as the denominator of the ratio. 

In the case of the earlier example, the statistic for testing the 

hypothesis of unimodality against the hypothesis of bimodality is: 

R- 1.01 

3.805 
- 0.265 

A test statistic value this low would indicate that the experimenter 

probably did take his sample from a multimodal distribution. 

From this point, the process is similar to the method of moments 

test, but with one important difference in interpretation. Both tests 

use ratios of variance estimates corresponding to the hypothesized 

number of components (k) and one more than the hypothesized number 

(28) 

(k+ 1), and in both tests, a large difference from k to k+ 1 is significant. In 

the method of moments test, however, the expected value of the ratio 
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under the null is one, while in the proposed test, the ratio will always 

be less than one, regardless of the distribution. 

This property is a result of the contiguous arrangement of the groups. 

With this arrangement, each cut creates an additional group, and since the 

groups are nonoverlapping, more groups mean smaller pooled variance. 

Since the expected value of the proposed test statistic is a function 

of the number of cuts, p-values will have to be calculated individually for 

each k. This problem may also occur with the method of moments test. 

Furman and Lindsay only ran simulations for k= 1 and k=2. Other factors, 

such as sample size and possibly proportion, will also have to be taken 

into account. 



CHAPTER IV 

THE SIMULATION 

In order to test the effectiveness of this new test (and judge the 

merits of other test statistics), a series of small scale Monte Carlo 

simulations were performed using different combinations of values for 

sample size, difference in means, and modality. Each component of a given 

sample had equal variance and were in proportion. Each sample was 

standardized for convenience of interpretation. This was accomplished by 

dividing by the sample variance. This had no effect on the test 

statistic's values because the common multiplier canceled out in the ratio. 

The program was written in SASIIML and is included in the appendix. 

It tested for bimodality and trimodality. An additional subroutine was 

written to test for higher modality, but was not used in this simulation. 

The program accomplished three primary tasks: it generated random 

samples from suitable distributions; it performed Engelman and Hartigan's 

method on the sample; it calculated the test statistic for the bimodality 

test. The last two tasks were repeated to find the test statistic for the 

trimodality test. 
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Generating the Sample 

The distributions were broken into three categories according to 

modality (unimodal, bimodal and trimodal), all based on normal component 

distribution of equal variance (unity). Separate simulations were 

performed for each of the categories. The results of these three 

simulations were used to determine the power of the proposed test. 

Each of the component distributions was generated individually using 

the random normal function of SASIIML. For the univariate case, the 

component distribution was normal with mean zero and variance one (N(O,l)). 

For the bimodal case, the distributions were N(O,l) and N(Diff,l), where 

the values of Diff varied from 1 to 4 standard deviations. For the 

trimodal case, the component distributions were N(O,l), N(Diff,1) and 

N(2Diff,1), with the same range for the parameter Diff. Equal differences 

between means were chosen to make the analysis easier. 

Each component was assigned an equal number of data points. The 

number of combined samples for each run was a multiple of 6 so results from 

the three distributions could be compared. The number of combined samples 

varied from 12 to 180. 

Standardizing and Sorting the Sample 

Though the variances of the component distributions were the same in 

all the simulations, the variances of the finite mixtures were not. The 

variance of a finite mixture density was much larger. 
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To accommodate for the discrepancy in variances, the distributions 

were standardized by dividing by sample standard deviation. This had no 

effect on the test statistic which, due to the properties of the ratio, was 

not affected by a multiplier. The procedure, however, was easier with the 

standardized samples. 

After standardizing, the observations were sorted using a bubble sort. 

This algorithm was chosen for simplicity, not for speed. 

Defining the Sum of Squares (Total) and the Correction Factor 

Since each grouping of the sample will have the same total sum of 

squares, the same total degrees of freedom and the same correction factor, 

these quantities are calculated frrst and used throughout the remaining 

calculations regarding this sample. In the original version of this 

program, these quantities were calculated using matrix multiplication (in 

the form y'Ay). Unfortunately, the memory of the PC's on which these 

programs were written limited the number of matrices that could be declared 

in a single program. To avoid this limitation, the final program used the 

sum and sum of squares functions of SASIIML. 

Defining the Subgroups and Calculating the Pseudo-F 

The next step in the test is to divide the sample into two subgroups 

and find the ratio of the variance between these two groups to the 

pooled variance within the two groups, then repeat the procedure for all 

contiguous combinations. 
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The subgroups are defined by partitioning the ordered sample vector 

into two smaller vectors. The sum of squares from these two vectors is 

called sstrt, which stands for treatment sum of squares. This is not a 

treatment sum of squares in the sense of a true F test. In that context, 

the samples would have to come from two independent distributions. That 

condition is not met by these two nonoverlapping samples. However, the 

calculation of this sstrt and its role in calculating the pseudo-F is 

analogous to that of treatment sum of squares for the true F. 

The pooled variance of these two groups (mserr) is calculated by 

subtracting the treatment sum of squares from the total sum of squares and 

dividing by the appropriate degrees of freedom. The error mean square is 

more commonly calculated by taking the difference between corrected sums of 

squares, but since the same correction term is used for both total and 

treatment sum of squares, the term cancels out and the end result is the 

same. 

The correction term is then subtracted from the treatment sum of 

squares and the difference is divided by the appropriate degrees of freedom 

to produce the mean square of the treatment (mstrt). The ratio of treatment 

mean square and the error mean square is the pseudo F for that particular 

combination. 

Finding F Max 

The proposed method uses the mean square error term associated with 

the largest value of the pseudo F, so, for each new combination, the F is 

compared to the largest previous F. If the new F is larger, its value and 



the corresponding error mean square are substituted for the previous 

values. 
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This algorithm was written for simplicity rather than speed and many 

streamlining steps have been ignored. One such step is to start the 

procedure at some point in the middle of the sample and work toward the 

side with the larger variance. This step alone would reduce the time 

required by this procedure by about half. 

The First Test Statistic 

The generalized form of the proposed test statistic for testing the 

null hypothesis (K s K0) against the alternative hypothesis (K > K0) is 

MSE(B) 

MSE(A) , 
(29) 

where MSE(A) is the error mean square of the sample when partitioned into 

K0 subgroups and MSE(B) is the error mean square of the sample when 

partitioned into (K0 + 1) subgroups. 

In this case, MSE(B) is the error mean square of the sample when 

partitioned into two subgroups and MSE(A) is the error mean square of the 

sample before any cuts were made. In other words, MSE(A) is the sample 

variance. However, since the sample had already been standardized with 

respect to the sample variance, MSE(A) is unity and the fust test 

statistic is simply MSE(B). 
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Dividing the Sample into Three Subgroups 

The procedure for partitioning the sample into three subgroups uses 

the same steps used to partition the sample into two subgroups, but adds a 

subroutine. For each combination of two subgroups except (n - 1) and 1, a 

nested loop divides the second subgroup into two additional subgroups, 

running through all possible combinations of three subgroups. 

This step is the most time consuming part of the program, due to the 

sheer number of combinations of three subgroups. All possible combinations 

are tried. No information from the first series of divisions is carried 

over to the second series, though only the variance of the middle subgroup 

is being calculated for the first time. This time-saving information was 

ignored to keep the program simple and to stay within the memory 

constraints of the PC. 

Other than the additional number of cuts, the only differences in 

this part of the program are the degrees of freedom and the number of 

variance terms pooled in the error mean square. The same algorithm is used 

to fmd the largest F and the corresponding error mean square. 

The Second Test Statistic 

The second test statistic is the ratio of the two error mean squares 

found by this program. This ratio is labeled ereduct, which stands for 

error reduction. The difference between the two variances was also included 

in the output under the name gain. 



CHAPTER V 

ANALYSIS OF THE RESULTS 

Methods of Analysis 

Three primary methods were used to analyze the results of the Monte 

Carlo simulation: a number of regression models were written (using PROC 

REG on SAS) to check which variables or combinations of variables showed a 

significant relationship to modality; graphs and quantiles were used to 

provide an idea of the usefulness and power of different tests. 

Regression Models 

Multiple regression models were constructed for a number of the 

potential test statistics. The primary purpose was to see if the test 

statistics of samples taken from unimodal, bimodal and trimodal populations 

behaved differently. To test this, dummy variables were included 

corresponding to the different modalities. 

Initially, these models were applied to all of the results of the 

simulation. In later stages, the results were grouped into pairs of 

populations to determine how well the test statistics differentiated 

between unimodal, bimodal and trimodal distributions. 

The secondary purpose of the models was to determine the relationship 

28 



29 

of the other parameters (sample size and difference in means) on the test 

statistic. This was complicated by the fact that difference was related to 

population modality. The samples from unimodal populations all had a 

difference of means equal to zero. 

Results of the Regression Analysis 

The test statistics that were tried included the two error terms, the 

F statistics, the ratio of the errors, the sum of the errors, and various 

combinations of these quantities. As expected the dummy variable 

differentiating between the unimodal and multimodal populations was most 

significant for the test statistics derived from the first series of cuts 

(those dividing the population into two subpopulations). The dummy variable 

distinguishing unimodal and bimodal populations from trimodal populations 

was most significant for test statistics · that used information from both 

series of cuts. The results were particularly encouraging for the ratio of 

the two error terms. 

Sample size (n) had a comparatively small effect on the means of all 

the test statistics considered, but it did have a significant effect on the 

variance of the statistics. All of the test statistics showed their 

highest variance at n = 12, and their smallest variance at n = 240. For 

this reason, further analysis (and some additional simulations) omitted the 

smaller sample sizes and concentrated on samples of size greater than or 

equal to 60. 

All test statistics showed a significant relationship to the 

difference in means of the component populations. This indicated that the 
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larger the difference between component means, the easier the difference in 

modality is to detect. 

Graphs and Quantiles 

A number of graphs were plotted based on the results of the regression 

analysis. In these graphs, the value of the given statistics was plotted 

against the modality of the sample (see figures 1 and 2). Since the object 

of the test is to use these values to determine modality, this type of 

graph summarizes the most important aspect of the data in the simplest 

fashion. 

The graphs included in this thesis are the two test statistics of the 

proposed method (ratios of consecutive mse's). The graphs of the two 

proposed statistics suggest that the proposed test shows sufficient power 

to merit further study. 

The graphs, though useful for suggesting relationships and power, can 

only approximate the actual quantities. For a more accurate estimate of 

power, the quantiles of the different modalities need to be compared. 

Regardless of the technique, the power estimates based on this data will 

have limited accuracy, due to the small number of trials in this study. 

Based on the results of the regression analysis and the graphs, 

additional simulations were run concentrating on certain distributions. 

These included unimodal normals of size n = 60, and bimodal normals of 

size n = 60 and difference = 2.5 or 3.5. 



A 
B 
c 

0.40 + D 
H 
I 
H 
E 
J 

0.35 + E 
F A 
E 
D c 
D E A 

[£] A 
0.30 + r; ~ 5%1 D 

E 
J 

MSE(2) I 
MSE(l) E 

B 
0.25 + c 

L 
B 
F 
E 
J 

0.20 + G 
G Power ~ 95% 
G 
E 
F 
I 

0.15 + G 
D 
E 
c 

0.10 + 
A 

---+-------------------+-------------------+--
1 

UNIMODAL 

Legend: A = 1 obs, B = 2 obs, etc. 

2 
BIMODAL 

n = 72 to 144 and difference between means>1.5 

3 
TRIMODAL 

31 

Figure 1. Approximate Power of the Proposed Method for Testing the 
Null Hypothesis of Unimodality against the Alternative Hypothesis of 
Hul timodal 1 ty. 
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The quantiles of interest are those in the overlap between the sample 

which was taken from population(s) in the null hypothesis and the sample 

taken from the population(s) in the alternative hypothesis. For the first 

test statistic, the unimodal population is in the null and the bimodal and 

trimodal populations are in the alternative. For the second test statistic, 

the bimodal population is added to the null, leaving the trimodal 

population in the alternative. 

By comparing the percentile in the null sample of a given value with 

the percentile that value would have in the alternative sample, the power 

(1 - p) is estimated for the a that corresponds to the percentile of the 

null sample. 

For example, to estimate the power of a one sided, a = 5% test, flnd 

either the 5th percentile or the 95th percentile, depending on the 

direction of the test, of the sample representing the null hypothesis (in 

this case, the 5th percentile). Find the percentile (call it the rth 

percentile) in the sample representing the alternative hypothesis that 

corresponds with the percentile from the null. The estimate of the power 

for (a = 5%) is r% if the 5th percentile of the null sample was used and 

(100 - r)% if the 95th percentile was used (power = r%, in this case). 

Based on the quantiles of the later simulations, an (a = 5%) test 

would have a power of almost 50% against an alternative (bimodal) 

distribution with difference = 2.5 u and a power of more than 90% for a 

difference of 3.5 u. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Advantages and Disadvantages of the Proposed Test 

Multimodal normal mixtures occur frequently in a wide variety of 

practical contexts. The failure to recognize multimodality can lead to a 

number of problems for the experimenter and data analyst, including a 

greatly increased probability of Type IT error. Multimodality also causes 

problems in multivariate situations (particularly clustering) where 

variables of different units are standardized using the standard 

deviations. All of which indicates the need for a practical test of 

modality. 

None of the existing tests (including the proposed method) have a 

known asymptotic distribution. Many other questions such as the 

sufficiency of the statistic are yet unanswered. 

Although the exact distribution of the proposed test statistic is not 

known, a general relationship between partitioning and variance has been 

defined, and this relationship supports the observed behavior of the test 

statistic. 

This method is also the only one described which addresses the problem 

of a composite null. When testing for three or more modes (K), the null 

hypothesis is H0:K ::s 2 or, equivalently K = 1 or K = 2. The proposed 
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method uses sequential testing: the test for K = 1 vs. K = 2 is performed 

first and the test for K = 2 vs K = 3 is applied only if the statistic from 

the fust test was in the critical region. Even with the fust test 

statistic in the critical region, there is still a chance of the population 

being unimodal (the p-value of the first test), but since this probability is 

known, its potential impact can be assessed. 

Another potential advantage of the proposed method is its focus. This 

method measures the increase in variance (or error) caused by 

multimodality. The increase in variance causes a number of problems for the 

experimenter, including excessively wide confidence intervals, 

prohibitively large sample size requirements and a greatly increased 

probability of Type II error. This method, in a sense, "measures the 

damage" to an experiment caused by unrecognized multimodality. As a result, 

the multimodal distributions that this test fails to recognize are those 

distributions where the multimodality causes the fewest problems. 

Though the small scale of this simulation limits the inferences that 

should be drawn about the proposed test, the initial results indicate a 

potentially useful test meriting further study. 

The next step is a larger scale simulation sufficient to construct 

probability tables for the test statistics and describe power as function 

of the difference between means of component distributions. Additional 

simulations will be needed to study the effect of unequal component 

variances and proportions, as well as unequal differences in means in the 

trimodal case. Additional simulations are also needed to investigate the 

behavior of the test statistics under other distributions, such as 

quadmodal and uniform (which can be considered the limiting distribution as 
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k approaches infinity). 

Suggestions for Further Study 

Investigate the possibility of a new test based on comparisons of 

variance and other measures of dispersion, such as range, quantiles, or 

interquartile range. Such a test could be investigated with a small 

modification to the program described in this paper and, if feasible, would 

be easier and quicker than any existing method. 

Reexamine the Engelman and Hartigan test. The research done for this 

report has suggested modifications to the test which could increase the 

speed of the test. 

Investigate the behavior of the proposed test statistic working 

directly from the finite normal mixture distribution. The goal here would 

be to define the distribution of this test statistic explicitly, rather 

than inferring the distribution from the results of simulations. 
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* F-max Master Program, Simplified (name output.prg); 

* Corrected for Mean Square Mistake; 

* With MSE tabulation; 

* and ratio gain in error; 

* Standardized Variance; 

proc iml; reset noname; start main; 

filename uuuu 'c:mwp2.dat'; file uuuu; 

n= I8; seed=5I; differ=2.5; 
dummy=O; dummy2=0; 

* Two Populations partitioned by Two and Three Subpops; 

* Create New Data Sets; 

y=j(n,I,O); 
do L=I to 2; 

Do I= I to (n/2); 
Y(jil)=normal (seed); 
end; 

Do I=(n/2+ I) to n; 
Y(jil) =normal (seed) + differ; 
end; 

* Standardize the variance; 
sd=sqrt((ssq(y) - (((sum(y))**2)/n))/(n-I)); 
y=(y/sd); 
print ' 
print 'sd=' sd; 
print ' 

* Sort the Observations; 

k=l; 
do until (k=n); 

if y(lkl) > Y(jk+ I D then do; 
d=y(jkl}; 
y(,kj)=y(jk+ 1 I); 
y( k+Ij)=d; 
k=I; 

end; 
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else k=k+1; 
end; 

* Define the Sum of Squares (total) and the Correction Factor; 
sstot = y'*y; 
cfact = sum(y)**2/n; 

* Define Degrees of Freedom (total); 
dftot = n - 1; 

* Make the cuts; 

do i= 1 to (n-1); 
n1=i; n2=n-n1; 
y1 =y[1:i]; 
y2 =y[(i + 1):n]; 

* Define Sum of Squares (treatment); 

sstrt=(sum(y1)**2)/n1 + (sum(y2)**2)/n2; 

* Define Degrees of Freedom for treatment and error; 
dftrt= 1; 
dferr=dftot - dftrt; 

* Define Mean Squares for Treatment and Error; 
mstrt=(sstrt - cfact)/dftrt; 
mserr=(sstot - sstrt)/dferr; 

* Define F; 

F=mstrt/mserr; 

* Print results; 

* 

* 

print L i F; 

end; 

if f> dummy then do; 
dummy=f; 
dummy2 = mserr; 

end; 
print 'dummy =' dummy; 

* define Fmax; 

fmax 1 =dummy; 
ferror=dummy2; 

print ' L=' L; 
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print 'fmax 1 =' fmax 1 'ferror =' ferror; 
dummy = 0; 
dummy2 = 0; 

* Make the cuts for three subpops; 

do i= 1 to (n-2); 
nl =i; 
yl =y[1:i]; 

do j=l to (n-i-1); 
n2=j; n3=n-nl-j; 
y2=y[(i+1):(i + j)]; 
y3=y[(i + 1 + j):n]; 

* Define Sum of Squares (treatment) for three levels; 

sstrt=(sum(y1)**2)/nl + (sum(y2)**2)/n2 +(sum(y3)**2)/n3; 

* Define Degrees of Freedom for treatment and error; 
dftrt=2; 
dferr=dftot - dftrt; 

* Define Mean Squares for Treatment and Error; 
mstrt = (sstrt - cfact)/dftrt; 
mserr=(sstot - sstrt)/dferr; 

* Define F; 

F=mstrt/mserr; 

* Print results; 

* print dftrt mstrt mserr F; 

* Find Fmax2; 

* 
end; 

end; 

if f> dummy then do; 
dummy=f; 
dummy2 =mserr; 

end; 
print 'dummy =' dummy; 

fmax2 = dummy; 
zzz = ferror; 
ferror = dummy2; 

print 'fmax2=' fmax2 'ferror=' ferror; 
dummy = 0; 
dummy2 = 0; 
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gain = fmax2 - fmax1; 
ereduct = zzz/ferror; 
print 'Gain=' gain 'Error reduction ratio =' ereduct; 

put @1 L 4.0 + 3 differ 3.1 + 3 n 5.0 + 3 zzz 8.7 +3 ferror 8.7; 

end; 
closefJ.le uuuu; 
finish; run main; 
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Results of the Proposed Procedure on 
Samples Drawn from a Standard Normal Distribution 

Size F-Max Error F-Max Error 
of for Ratio for Ratio 

Sample Two for Three for 
Groups Two Groups Three 

Groups """'\ Groups 

24 54.4045 .3010296 59.8438 .1634828 
48 144.7457 .2464014 150.5583 .1357924 
72 146.9927 .3272000 171.6055 .1722419 
96 170.7372 .3588465 207.8456 . 1867537 

120 172.3062 .4099120 258.3688 .1877749 
144 279.1056 .3395823 338.6563 .1747498 
24 27.5798 .4638983 34.3485 .2564188 
48 96.7521 .3292422 103.2943 .1868129 
72 147.8129 .3259678 205.5104 .1479103 
96 189.3872 .3352303 213.0099 .1830373 

120 203.0548 .3706532 228.8509 .2070639 
144 279.6146 .3391723 386.6032 .1564198 
24 28.8573 .4522457 78.2253 .1296135 
48 103.1684 .3150801 108.3480 .1795977 
72 101.0849 .4149986 138.3337 .2053998 
96 147.7562 .3929578 196.8437 .1951972 

120 186.6637 .3905946 279.2472 .1761672 
144 252.3670 .3626064 314.0165 .1859478 
24 29.0254 .4507556 31.4516 .2741253 
48 115.2825 .2914141 126.4767 .1577428 
72 111.9497 .3902178 145.7072 .1969955 
96 169.7658 .3601680 252.5824 .1588191 

120 219.1001 .3530109 290.6244 .1704264 
144 308.9251 .3171258 355.7165 .1677551 

24 65.3808 .2632157 118.8747 .0888891 
48 74.3037 .3906778 116.6061 .1689358 
72 110.4093 .3935496 166.0841 .1769831 
96 148.2153 .3922130 236.2982 .1679643 

120 244.2312 .3285194 347.0215 . 1467247 
144 249.4085 .3653472 308.7544 .1885278 
24 49.1032 .3234733 85.2615 .1200900 
48 109.9774 .3013257 150.5189 .1358233 
72 118.8191 .3760213 12~. 3671 .2220595 
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96 179.7062 .3470875 196.5936 .1953980 
120 217.6948 .3544887 229.5311 .2065749 
144 253.7921 .3613008 338.8865 .1746516 
24 71.9810 .2447303 123.0050 .0861391 
48 125.8310 .2735245 138.9515 .1455546 
72 140.7557 .3368829 144.2975 .1985486 
96 186.5051 .3386747 229.1935 .1722928 

120 196.3014 .3786174 281.0570 .1752283 
144 213.4510 .4023058 312.0213 .1869177 
24 55.9001 .2952500 84.8049 .1206653 
48 76.3700 .3840811 112.S436 .1736321 
72 134.3579 .3474297 155.3914 .1869489 
96 185.0857 .3403973 221.5525 .1772041 

120 175.4081 .4055784 221.4959 .2125031 
144 268.0173 .34876:i7 299.8579 .1930565 
24 50.1243 .3188940 84.5712 .1209619 
48 89.8287 .3460242 156.1453 .1315456 
72 160.3420 .3082374 156.7396 .1856310 
96 187.9246 .3369695 265.8333 . 1520811 

120 192.2747 .3835311 260.6623 .1864255 
144 277.4083 .3409565 333.9482 .1767841 
24 50.2405 .3183808 63.5550 .1552900 
48 70.4795 .4035046 92. 1774 .2049226 
72 127.8592 .3588410 176.2155 .1684736 
96 157.3099 .3780193 197.4191 .1947367 

120 214.9873 .3573710 289.5491 .1709529 
144 217.5539 .3977150 311.9323 .1869612 
24 43.4459 .3514353 55. 1660 .1751287 
48 93.1168 .3378455 127.1028 .1570826 
72 105.9000 .4036384 151.9980 .1903506 
96 131.8848 .4205683 210.4380 .1848695 

120 233.3057 .3387363 291.9635 .1697752 
144 214.5283 .4010901 280.3347 .2037997 
24 33.6533 .4132731 36.6256 .2440287 
48 117.6154 .2872590 132. 1484 .1519576 
72 103.0120 .4103761 129.5246 .2164310 
96 177.9081 .3493827 187.7939 .2027368 

120 189.2550 .3873005 279.0949 .1762467 
144 226.4414 .3881214 272.0914 .2087035 
24 44.6900 .3448791 53.4702 .1797711 
48 109.2578 .3027223 143.1717 . 1418468 
72 119.6548 .3743643 152.0186 .1903296 
96 161.5258 .3717824 215.6819 .1811719 

120 247.7186 .3253868 2~.4974 .1724651 
144 233.3120 .3810163 374.4124 .1607058 
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24 36.9750 .3899954 82.0518 .1242547 
48 70.8950 .4020703 107.9035 .1802099 
72 152.9484 .3184593 184.3155 . 1622372 
96 156.4645 .3792952 279.3714 .1457630 

120 164.2618 .4215944 234.7178 .2029208 
144 260.2698 .3554828 392.4611 .1544406 

24 39.7748 .3723200 72.7114 . 1382022 
48 48.1767 .4990620 61.0947 . 2811182 
72 116.9431 .3797948 137.9273 .2058838 
96 151.3020 .3872777 188.3625 .2022460 

120 261.6168 .3134740 294.1'334 . 1687305 
144 257.4895 .3579568 330.3290 .1783803 

24 48.1948 .3276595 91.7322 .1124891 
48 78.5668 .3773076 87.9677 .2127318 
72 158.2135 . 3111122 171.9111 .1719869 
96 188.7841 .3359454 245.1117 .1628878 

120 190.9318 .3851983 251. 1569 .1921481 
144 243.0894 .3713424 365.0738 .1641513 

24 42.4391 .3569264 57.3266 .1695501 
48 75.4592 .3869611 101.2832 .1898481 
72 143.8478 . 3320118 200.1150 .1513117 
96 152.0078 .3861667 189.2653 .2014716 

120 203.2095 .3704747 300.6261 .1656800 
144 259.9968 .3557242 318.4685 .1838195 

24 45.8408 .3390291 71.0818 .1409629 
48 89.1907 .3476570 120.5076 .1643270 
72 111.8002 .3905387 171.8278 .1720563 
96 172.3489 .3566751 268.1004 . 1509852 

120 259.1273 .3155433 291.1948 .1701484 
144 243.4682 .3709775 304.5487 .1906419 

24 49.9809 .3195293 56.4061 .1718826 
48 99.4678 .3230954 102.8035 .1875446 
72 157.9304 .3114985 177.6241 .1673549 
96 158.1799 .3767152 172.7098 .2166874 

120 191. 1971 .3848677 328.2284 .1538547 
144 225.9822 .3886057 355.3973 .1678808 

24 37.9223 .3838306 62.1849 .1582172 
48 114.2955 .2932085 123.1463 .1613498 
72 123.3468 .3672157 141.0953 .2021694 
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