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CHAPTER I 

INTRODUCTION 

Problem Statement 

In Oklahoma, over seven million acres exceed the USDA's highly erodible 

classification. Much of the highly erodible cropland has traditionally been seeded to 

continuous hard red winter wheat (Triticum aestivum). The quantity of land seeded to 

wheat has increased from 5,910,000 acres in 1950, to 7,500,000 acres in 1990. The 

yield per acre harvested over that period of time increased from nine bushels in 1950 to 

32 bushels in 1990 (Oklahoma Agricultural Statistics, 1989-1990, p. 16). 

During the last decade changes in the area seeded to wheat have been related to 

changes in government programs such as the conservation reserve and the wheat 

commodity program. Beginning in 1995 farmers will be faced with the problem of 

complying with federal regulations designed to reduce erosion on highly erodible land 

to maintain eligibility for deficiency payments and other government programs. Farmers 

who produce continuous wheat on land classified as highly erodible and who choose to 

implement a residue management program will encounter another problem, that of cheat 

(Bromus secalinus) infestation. In the absence of conventional tillage, cheat can become 

a serious problem in fields in Oklahoma which are continuously seeded to wheat. Some 

1 



2 

traditional practices for controlling cheat infestations include late or delayed planting, 

deep plowing, and crop rotation. 

Late planting helps in controlling cheat. This practice is effective when moisture 

is available in the fall to germinate cheat prior to the final wheat seedbed preparation 

(Greer et al.). However, an experiment conducted by Runyan showed that delayed 

planting did not eliminate the cheat problem but did result in reduced wheat yield if 

planting was delayed beyond October. Furthermore, this practice is not practical for 

farmers who use wheat to produce fall forage for grazing during the winter. 

Rotation of crops is an effective cheat control practice (Greer et al.). However, 

because of climate and markets there are limited opportunities for crop rotations in the 

major wheat producing areas of Oklahoma. 

The most widely used practice for controlling cheat in Oklahoma has been to use 

a moldboard plow in infested fields after harvest to reduce the cheat population in the 

subsequent crop (Runyan). Deep plowing is effective for cheat control if the soil is 

completely inverted. This practice buries most of the cheat seeds to depths from which 

they can not germinate and emerge. Conservation compliance guidelines, however, are 

expected to severely limit the frequency of use of moldboard plows on highly erodible 

land. 

As tillage practices are adjusted to comply with the surface residue requirements 

imposed by the federal regulations, populations of cheat are expected to increase in wheat 

fields. In the absence of alternative controls, after several years, producers may be 

confronted with serious infestations of cheat. Potential alternative controls include the 

use of chemical herbicides. However, a chemical herbicide that is harmless to wheat, 
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cost effective and consistently provides control of cheat in wheat fields is not available 

for the region (Greer et al.). 

Two cultural practices have been hypothesized as potential substitutes for 

moldboard plowing to control cheat: 1) seeding wheat in narrow rows and 2) increasing 

the seeding rate. These suggested practices are based on the assumption that the ability 

of wheat plants to compete with cheat for water and nutrients is influenced by the number 

of wheat plants per land unit and pattern of placement. 

The central objective of this research is to increase understanding of the impacts 

of alternative row spacing and alternative seeding rate on wheat grain yield for alternative 

levels of cheat infestation. The specific objective is to determine if the cultural practices 

of decreased row spacing and increased seeding rate, may be used to control populations 

of cheat in fields which are continuously cropped to winter wheat. 

Literature Review 

A review of prior research of wheat grain yield response to alternative factors 

(seeding rate, row spacing, herbicides, weedy grasses, and management practices) is 

presented in this section which is divided into three subsections. These are: tools for 

assessing economics of weed control, agronomic studies of weed control, functional 

structure of wheat yield response, and row spacing and seeding rate impacts on wheat 

grain yield. 
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Tools for Assessing the Economics of Weed Control 

Presence of weeds in a given crop field causes a decrease in the crop yield and 

has economic consequences. Several tools can be used to assess the economics of the 

presence of weeds and their control in a given field. Common tools include: economic 

thresholds, budgeting, investment criteria, and comparison of risky outcomes (Auld et 

al.). This section includes a discussion of these alternative tools for assessing the 

economics of weed control. 

Economic Thresholds: The threshold concept embodies the notion that some 

functional relationship exists between weed density, the intensity of control, and crop 

yield (Auld et al.). It allows the determination of weed densities at which it is just 

economic to treat the weed. That is, where the marginal value of incremental yield is 

equal to the marginal cost of control. The economic threshold method requires 

information including, yield loss function, price of the crop considered, costs of 

treatment of the weed including labor, and machinery costs. 

This method was used by Stallman and Miller in a study conducted in 

Southeastern Wyoming and West-Central Kansas on irrigated and dryland sites to 

quantify yield loss from downy brome interference and approximate economic threshold 

levels. They found that densities of 24, 40,and 65 downy brome m2 reduced wheat yield 

by 10, 15, and 20%, respectively. They reported potential monetary loss increased with 

increasing downy brome plant density. More specifically, increasing weed density up 

to 72 downy brome plants m2 increased monetary losses for potential wheat yields of 
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1786 to 2676 pounds per acre to nearly $20 and $30 per acre, respectively. The same 

method was used by Gillespsie et al., and Donald and Prato in North Dakota. 

Budgeting. This method uses enterprise or activity budgets. Here, the decision 

is one of choosing between alternative activities (select the least-cost weed control 

technique). An activity budget consists of: 1) a description of the activity, including the 

physical setting, and timing of operations; 2) a listing and quantification of the input 

requirements for the activity and their associated costs; and 3) a statement of activity 

output and its value. Ferreira et al. used budgeting (enterprise budgets) to assess 

economic returns from cheat control in winter wheat. A more sophisticated form of 

budgeting is linear programming (Auld et al.). 

Investment Criteria. This method provides criteria to assist farmers with 

decisions that have long-term economic consequences. There are two basic types of 

criteria (Auld et al.): 1) net present value and 2) internal rate of return. 

The investment in the weed control program should be undertaken if the net 

discounted present value is greater than zero, i.e if 

where: 

r (Br-C,) 
L., -- >0 
r·l (1 +r)' 

r = discount rate, 

t = time in years, 

B = benefits, and 

C = costs. 

(1) 
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If B, C, and t are known, the above expression may be set equal to zero, and 

solved for the discount rate which is known as the internal rate of return r·. If r· > r, 

then the investment should be undertaken. This method requires substantital information 

including benefits and costs per period of the proposed weed control program for each 

time period in the future which will be impacted. 

Comparing Risky Outcomes. This method allows farmers to select from among 

alternative weed control strategies. The alternative strategies may be associated with 

different degrees of expected profitability E(T) and risk which can be measured by 

variance of net returns E(if). Managers who engage in weed control activities are 

generally regarded as being risk averse. They may be willing to sacrifice some expected 

profit for a reduction in risk (Auld et al.). If one weed control strategy (A) is 

characterized by both higher E(T) and lower E(if) than an alternative strategy {B), then 

strategy A will be preferred to B. This method requires information including levels of 

weed infestation, weather, prices, carryover effects, time interval effects, costs of 

control, yield improvement, and quality effects. 

This method was used by Doyle et al. in a study conducted at the Grassland 

Research Institute and the AFRC Weed Research Institute in the United Kingdom to 

determine the long-term economic implications of controlling black-grass (Alopecurus 

myosuroides Huds.) infestations in winter wheat. They reported that a strategy of 

applying herbicides every year may tend to minimize the economic risks associated with 

a herbicide performing less satisfactorily than expected, even though it may not be the 

preferred strategy for risk neutral farmers. This method was used by Pannell at the 

University of Australia, and also by Pandey and Medd. 
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The decision regarding which method of economic assessment of weed-control 

strategy to use depends upon the availability of information. The more information is 

available, the more sophisticated the method of assessment may be. 

Agronomic Studies of Weed Control 

A study was conducted in Utah to determine if herbicides applied over the snow 

to winter small grains would consistently control weeds (Dewey et al.). Herbicide 

efficacy of over-snow applications was compared with conventional fall applications. 

The researchers reported that chlorsulfuron and metsulfuron applied with or without 

graphite in the fall were 91 to 100% effective in controlling weeds. Equivalent over­

snow treatments provided 92 to 100% control. They also reported that adding graphite 

to sulfonylurea herbicide treatments appears essential to consistently control weeds with 

over-snow applications. These results are similar to those reported by Donald and Prato. 

The most effective winter wheat herbicide in both studies was a sulfonylurea herbicide. 

Another study of herbicide application was conducted by Pannell at the University 

of Western Australia to find the determinants of optimal herbicide usage. The weed 

targeted was ryegrass (Lolium rigidum). The data used included wheat yield, wheat 

price, initial weed density, cost of herbicide, recommended dose of herbicide, herbicide 

application costs (labor, and machinery used), and costs from other inputs assumed fixed. 

The optimal herbicide rate was 0.26 kg active ingredient of diclofop-methyl per hectare. 

Ferreira et al. conducted a field experiment in Oklahoma to determine the 

influence of winter wheat seeding date and forage removal on the efficacy of cheat 

control herbicides, forage and grain yields, and net returns. Cheat infestation was 
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artificially induced by seeding cheat. Wheat was seeded at 74 kilograms per hectare (66 

pounds per acre) in 20 em (8 inch) rows on three dates at each location. The planting 

dates were: September 2 to 3 (early seeding), September 30 to October 11 (normal 

seeding period), and November 1 to 3 (delayed seeding). Herbicide treatments were 

metribuzin at 0.28 and 0.42 kilograms per hectare (0.25 to 0.0375 pounds per acre), 

ethyl-metribuzin at 0.84 and 1.3 kilograms per hectare (0.75 and 1.16 pounds per acre) 

and cyanazine at 0.45 and 0.67 kilograms per hectare (0.40 and 0.59 pounds per acre). 

They concluded that all herbicide treatments reduced the yield of wheat with delayed 

seeding. Metribuzin treatments reduced the yield more than other treatments. The 

results reported showed that neither metribuzin nor cyanazine were consistently effective 

herbicides capable of controlling cheat infestation without harming wheat yield. This 

finding is consistent with that reported by Greer et al. 

Donald and Prato conducted a similar study in North Dakota to determine if three 

sulfonylurea herbicides (metsulfuron, chlorsulfuron, and CGA-131036) could be 

profitably substituted for glyphosate to control annual broadleaf weeds present at planting 

of no-till spring wheat. The data used included planting dates, weather measures, wheat 

seed, wheat yield, wheat price, and herbicide costs. They found that absolute net returns 

of different treatments varied among herbicides, but relative net returns were insensitive 

to changes in either herbicide or wheat price. They concluded that the three sulfonylurea 

herbicides controlled both emerged kochia (Kochia scoparia) and wild mustard (Sinapis 

arvensis) whether or not combined with glyphosate better than glyphosate alone. 

Pandey and Medd developed a systems model for herbicide recommendations 

taking into account multi-period effects of current weed control decisions, stochastic 
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influences, and farmers' attitude towards risk. They found that the optimal solution 

(optimal herbicide dose to apply) depends on weed density as well as seed density. They 

also reported that substantial economic gains can be realized if herbicide dose decisions 

are taken by considering future profit effects of current decisions, as opposed to the more 

common approach of only considering the current period effect. They used a dynamic 

stochastic programming framework. The weed grass targeted was wild oats (A vena 

fatua). The data used included weed density, seed density, herbicide dose, a measure 

of soil moisture, a measure of time, and wheat yield. 

Another study using stochastic dynamic programming was conducted by Taylor 

and Burt. Their research was conducted to determine near-optimal multiperiod decision 

rules for controlling wild oats in spring wheat in North Central Montana. They found 

that wild oats seed germination was triggered by soil temperature, while planting of 

spring wheat was typically based on soil moisture conditions. That is, the later the 

planting time relative to the occurrence of the critical soil temperature for wild oats 

germination, the less likely a herbicide will be needed because many of the wild oats will 

be destroyed by planting operations. 

Whatever the framework used, most of the literature cited confirms that herbicides 

help somewhat to control weeds in wheat fields. Few of the studies mention the possible 

harmful effects of herbicides on wheat yield. 

Functional Structure of Wheat Yield Response 

This section includes a description of alternative functional forms which have been 

used in the literature to address crop response to factors of production. The choice of 
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a functional form is not an easy task. Different functional forms have been used to 

estimate wheat yield response to factors including herbicides, seeding rate, and row 

spacing. Wheat yield response functions allow researchers to determine significant 

relationships between factors (herbicides, seeding rate, row spacing, weeds, 

macronutrients, and management practices) and wheat yield, thereby helping farmers in 

their decision making process. That is, wheat yield response functions can help 

discriminate among different cultural practices. 

A problem that researchers encounter in choosing a functional structure is whether 

to consider the crop response process as static or dynamic. In his presidential address 

to the Southern Agricultural Economics Association, Trapp argued that the single 

equation static production function is an obsolete research tool which should be replaced 

by dynamic production theory. Nevertheless, he recognized that there is still a very 

important need for the concepts of static production theory. The question that rises is: 

Does the use of dynamic theory in production help improve the decision making process? 

The debate on whether static production theory should be replaced by dynamic 

production theory is beyond the scope of this research. Indeed, for this research the 

static production theory will be used. Another problem that production economists 

encounter is the choice of a functional form. Different functional forms have been used 

to estimate crop growth response. 

Tompkins et al. in their study of the effects of seeding rate and row spacing on 

grain yield and yield components of no-till winter wheat, used a modified inverse 

polynomial function to describe the relationship between wheat yield and seeding rate. 

The function they used was written as follows : 
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Y = p.SR(l-SR!s)I(SR+p.le) (2) 

p. = the upper limit of yield (bushels per acre) when seeding rate is not limited, 

SR = seeding rate (bushels per acre), 

e = change in grain yield per unit of seeding rate, and 

s = allows for depression of yield at high seeding rates. It is a measure of 

sensitivity to excess levels of seeding rates (larger s values indicate less sensitivity), and 

Y = wheat yield (bushels per acre). 

Non-linear regression procedures (SAS, 1985) were used to provide least-squares 

estimates of the regression coefficients p., e, and s. 

They argued that the inverse polynomial function provides a response curve that 

more appropriately describes the normal shape of wheat grain yield response to seeding 

rate than a traditional quadratic function. The functional form permits an initial rapid 

yield increase followed by a plateau region and eventually a yield decrease. The model 

has been used in the literature to describe grain yield response to macronutrients 

(fertilizer). It has also been shown that grain yield decreases at very high levels of 

macronutrients (Fowler et al.). The inverse polynomial function has been used in the 

literature to address crop response to a single factor (nitrogen, or seeding rate) (Fowler 

et al., and Tompkins et al.). However, the properties of a multiple factor inverse 

polynomial function have not been established. 

Frank et al. compared alternative crop response models. The models compared 

include the quadratic specification and a linear plateau characterized by the Von Liebig 



12 

function. A Von Liebig function starts with a linear portion and then reaches a 

maximum plateau. The quadratic function used was: 

where: 

where: 

{3i = estimated parameters {i=0,1, .. ,5), 

Y = grain yield, 

N = nitrogen applied, and 

P = phosphorous applied. 

The Von Liebig model used by Frank et al. was: 

y• = maximum grain yield. 

(3) 

(4) 

Frank et al. concluded that, for the data at hand, the growth plateau specification 

characterized by the Von Liebig function performed better than the quadratic 

specification. This result was also supported by Ackello-Ogutu et al. who tested a Von 

Liebig crop response function against a polynomial specification. The model based on 

a Von Liebig function was seldom rejected in favor of a polynomial. Their results 

support the idea that crop response to nitrogen fertilizer is characterized by a plateau 

growth. 

Nonnested hypotheses tests were conducted by Grimm et al. to discriminate 

between the traditional polynomial response model and the Von Liebig specification. 

They failed to reject the Von Liebig model for wheat, com, and cotton. They referred 
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to a study conducted by Boyd to support the idea of plateau growth crop response. 

Indeed, after several studies of fertilization experiments with sugar beets, wheat, barley 

and potatoes, Boyd concluded that crop response can be characterized by a linear-plateau 

model. That is, over a range, yield responds linearly to additional levels of a variable 

input until the yield plateau is reached. The plateau indicates either the physiological 

yield limit, or the point at which some factors other than the variable factor is limiting 

yield. 

The hypothesis of plateau growth crop response is also supported by Perrin who 

argued that the linear response and plateau (LRP) provides an approximation of 

phenomenon that many agricultural economists have noted (that response curves often 

tend to be quite flat on the top). While, many agricultural economists support the 

hypothesis that response curves often tend to be quite flat at the top, few support the 

maintained hypothesis of the LRP characterized by the Von Liebig that the initial portion 

of crop response curves are linear. Indeed, empirical plots of data in general reflect a 

curvilinear shape for crop response curves for input levels less than that required to 

achieve the plateau. Hence, a quadratic plateau function may be a more appropriate 

specification than a linear plateau function. 

Griffin et al. evaluated several functional forms. They concluded that, 

"determination of the true functional form of a given relationship is impossible, so, the 

problem is to choose the best form for a given task" (Griffm et al. p. 220). 
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Several studies have evaluated the relationship between row spacing and wheat 

grain yield. Solie et al. found that narrowing row spacing from 23.0 em (9 inches) to 

7.5 em (3 inches) resulted in a 12.8% increase in wheat yield. Their work was 

conducted in Oklahoma at Stillwater, Orlando, Perkins, Lahoma, and Chickasha. They 

found that row spacing and wheat grain yield were inversely related in cheat-free field 

treatments at Stillwater and Orlando but not at Perkins and Lahoma. Their results for 

Perkins and Lahoma were not statistically significant. In the Chickasha experiment, row 

spacing and presence of cheat were not significant factors. 

Joseph et al. in a field experiment conducted in the coastal plain of Virginia 

evaluated row spacing and seeding rate influences on winter wheat grown under intensive 

management (adequate supply of macronutrients). The seeding rate ranged from 186 to 

558 seeds m-2 (1.2 square yards), and row spacings were 10 em (4 inches) and 20 em (8 

inches). Additional treatments of 744 and 1116 seeds m-2 (1.2 square yards) in 10 em 

(4 inches) row spacing were also included. They found that 10 em (4 inches) row 

spacings produced 0.6 to 0.8 Mg ha-1 (536 to 714 pounds per acre) higher grain yields 

than 20 em (8 inches) row spacings at identical seeding rates (approximately 12% yield 

increase). They also found that seeding rates of 372 to 744 seeds m-2 (1.2 square yards) 

in 10 em (4 inches) rows were sufficient to produce high yields. Similar results were 

reported by Johnson et al. from a study conducted in the southeastern United States to 

determine the effects of row spacing and seeding rates on grain yield and yield 

components of five cultivars in a high yield environment. Seeding rate ranged from 288 
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to 576 seeds m-2 (1.2 square yards). Row spacings were 10 em and 20 em (4 and 8 

inches). Their results showed that the 10 em (4 inches) row spacing yielded 8% more 

than the 20 em (8 inches) row spacing. They also reported that wheat yield was not 

influenced by seeding rates when averaged over years. Row spacing and seeding rate 

interactions on grain were found not to be statistically significant. Similar results of 

seeding rate effects on yields were reported by Roth et al. in Pennsylvania. 

A study conducted in the northeastern United States by Frederick and Marshall 

to determine the effects of seeding rate, row spacing, seed depth and rate of spring 

nitrogen fertilization concluded that seeding rates above 101 kilograms per hectare (90 

pounds per acre) increased grain yield in some locations. The seeding rate and row 

spacing used ranged from 101 to 235 kilograms per hectare (90 to 210 pounds per acre) 

and 12.7 to 17.8 em (5 to 7 inches), respectively. They also reported that yield response 

to seeding rate was influenced by environment and that a high seeding rate produced the 

greatest yield response with late planting (severe winter). They concluded that averaged 

over environment, 168 kilograms per hectare (150 pounds per acre) was the optimum 

wheat seeding rate. 

At West Lafayette, Indiana, yield response at two seeding rates and two row 

spacings were investigated by Marshall and Ohm. Seeding rates were 377 and 538 

kernels m-2 (1.2 square yards) at row spacings of 6.4 em and 19.2 em (2.5 and 7.5 

inches)_ They concluded that row spacings narrower than the conventional19.2 em (7.5 

inches) significantly increase grain yield, but the response varied depending on cultivar 

and environmental conditions. They also reported that a combination of increased 
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seeding rate and narrow row spacing was important for increasing grain yield (9 .1 % 

increase in grain yield). 

An Ontario (Canada) experiment conducted by Stoskopf determined yield 

performance of upright-leaved selections of winter wheat in narrow row spacings. Row 

spacings ranged from 22.8 and 17.8 em (9 and 7 inches) (wide) to 11.4 and 8.9 em (4.5 

and 3.5 inches) (narrow). Seeding rates were 60, 120, and 180 pounds per acre. He 

concluded that, at all three seeding rates, narrow rows produced 12.6% more grain than 

wide rows. Highest yields were obtained at a seeding rate of 120 pounds per acre. 

In a review of experimental work on winter wheat conducted at Leeds University, 

Holliday concluded that, at constant seeding rates, narrow row spacing ( 4 to 8 inches) 

yielded more grain than wide row spacing (12 inches). 

A study conducted by Freeze and Bacon in Arkansas evaluated three row spacings 

(4, 6, and 8 inches) and three seeding rates (13, 26,and 52 seeds per square foot). They 

concluded that row spacing effects on yield were not statistically significant. However, 

they did find that high seeding rates yielded more grain. Their conclusion on row 

spacing diverged from previous studies. Other studies have shown significant effects of 

changing row spacings on grain yield. A study in Canada using seeding rates of 35, 70, 

105, and 140 kilograms per hectare (31, 62.5, 93.7 and 125 pounds per acre) and 9, 18, 

27, and 36 em (3.5, 7, 10.6,and 14 inches) row spacings found that narrowing row 

spacings increased grain yield under favorable climatic conditions (Tompkins et al.). 

They also reported that high seeding rates and narrow row spacings interact positively 

to increase grain yield. 
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Beuerlein and Lafever found similar results for row spacing but not for seeding 

rate. They found that increasing seeding rate from 45 to 180 pounds per acre in 7 inch 

rows caused a linear decrease in yield. Their study was conducted at Wooster in Ohio 

in 1982-1983. Only a few studies have focused on the effect of seeding rate on cheat 

population. 

Summary of Literature Reviewed 

The agronomic studies reviewed, showed that herbicides can be used to mitigate 

somewhat the deleterious effects of weeds (Dewey et al; and Greer et al.). However, 

a chemical herbicide which provides consistent control of cheat with little to no damage 

to wheat is not commercially available to farmers. Cheat is physiologically very similar 

to wheat. It thrives in conditions conducive to good wheat production. The vast 

majority of herbicides used to control cheat are also detrimental to the growth of wheat. 

Hence, the herbicides currently registered for use to control cheat in wheat such as 

metribuzin, are ineffective or damage the crop if conditions are less than ideal when 

applied. 

The literature on functional structure showed that the choice of a functional form 

to model the production process is left to the researcher. However, theory and statistical 

tests can be used to assist with selecting an appropriate functional form to describe the 

information at hand. 

The literature confirms that many studies have evaluated the relationships between 

row spacing and wheat yield, and seeding rates and wheat yield. However, the influence 
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of seeding rate on wheat grain yield for alternative levels of cheat infestation has not 

been established. 

The majority of studies have found that reducing row spacing from levels 

conventionally used with seeding rate held constant resulted in increased yield. A second 

finding showed that yield was a function of seeding rate. However, none of the studies 

attempted to estimate a continuous function of yield response to seeding rate. The 

seeding rate at which yield was maximized varied with climate, soil, and wheat class. 

For example, Stoskopf whose study was conducted at Ontario reported highest 

yield at a seeding rate of 120 pounds per acre. But, Tompkins et al. reported highest 

yield with a seeding rate of 125 pounds per acre. Furthermore, Frederick and Marshall 

whose study was conducted in the northeastern United States reported highest yields at 

a seeding rate of 150 pounds per acre. None of the studies derived the economically 

optimal seeding rate. 

A third finding was that the impact of seeding rate and row spacing on the wheat 

plant's ability to compete with cheat for water and nutrients has not been established. 

It is not known if increasing the wheat seeding rate or changing row spacing are viable 

methods for reducing the deleterious impact of cheat on wheat yield. Moreover, the 

economic consequences of alternative seeding rates, row spacings and cheat infestation 

levels have not been established. 



CHAPTER II 

THE DATA 

Data were obtained from two trials conducted during the 1989-1990 growing 

season. Detailed descriptions of the experiments including the experimental design are 

provided in Solie et al. The trials were conducted at experiment stations near Lahoma, 

and Chickasha, Oklahoma. In both trials, treatments included three wheat seeding rates 

(60, 90, and 120 pounds per acre), three row spacings (3, 6, and 9 inches), and five 

levels of artificially induced cheat infestation. Cheat infestation was achieved by seeding 

cheat at rates of 0, 30, 60, 90, and 120 pounds per acre. 

Severe cheat populations resulted from the 120 pound cheat seeding rates. 

Moderate cheat infestations, typical of that which naturally occurs under stubble mulch 

tillage, were achieved with the 60 pound cheat seeding rate. All treatments were 

replicated six times. Factors other than seeding rate and cheat level, including fertilizer 

applied were constant across all plots. A total of 972 observations were available for 

response function estimation. The 972 observations were composed of two groups. The 

Lahoma study was composed of three row spacings (3, 6, and 9 inches) by three seeding 

rates (60, 90, and 120 pounds) by five cheat levels (0, 30, 60, 90, and 120 pounds) by 

six replications supplemented by three row spacings by three seeding rates by twelve 

replications and by three row spacings by three seeding rates by six replications for a 

19 



20 

a total of 432 observations. 

The Chickasha experiment included three row spacings (3, 6, and 9 inches) by 

three seeding rates (60, 90, and 120 pounds) by five cheat levels (0, 30, 60, 90, and 120 

pounds) by six replications supplemented by three row spacings by three seeding rates 

by eighteen replications, and by three row spacings by three seeding rates by twelve 

replications for a total of 540 observations. 

The Model 

This section describes the procedures used in this research. Linear and non-linear 

regression procedures were used to provide estimates of wheat grain yield response 

functions. 

Historically, a factor-product model has been characterized by a production 

function in which output is expressed as a function of the level of inputs: 

where: 

where: 

Y = total output, 

F = function of variables ~'s, and 

xi = level of input i. 

(5) 

The wheat plant growth response model estimated for this research is of the form: 

Y = F(SR,RS,CL,O) (6) 

Y = wheat yield (total output), 



SR = seeding rate, 

RS = row spacing, 

CL = cheat, and 
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0 = other factors influencing wheat plant growth such as fertilizer, which was 

fixed rather than a treatment variable in the field experiments, and weather. 

The literature contains only a few studies that report an explicit model to describe 

the functional relationship between grain yield and seeding rate (Tompkins et al). Unlike 

Tompkins et al., Guitard et al., and Boyd describe graphically wheat yield response to 

seeding rate. Boyd's study was conducted at Rothamsted Experiment Station in 

Harpenden (England) in 1952. The standard seeding rate was 120 pounds per acre. 

Guitard's study was conducted at the experimental farms at Beaverlodge and Fort 

Vermillion in Alberta (Canada) from 1954 to 1956. In both studies, wheat yield response 

to seeding rate was characterized by an initial rapid increase followed by a plateau 

region. An explicit model treating wheat grain yield response to seeding rate and cheat 

infestation at alternative row spacings has not been reported. For a better understanding 

of the variables affecting wheat grain yield, consider Figure 1. 

Figure 1 shows factors which may directly affect wheat grain yield. These factors 

are: natural factors, macronutrients, seeding rate, row spacing, cheat infestation level, 

management practices, capital, and pesticides. Natural factors include rainfall, climate, 

and the type of soil. Macronutrients include nitrogen, phosphorus, and potassium 

fertilizers. Management practices effects on wheat grain yield can be positive as well 

as negative. Similarly, capital and pesticides in economically optimal quantities are 

directly related to wheat yield. But excessive amounts of some pesticides may harm the 
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Figure 1. Variables Affecting Wheat Grain Yield. 
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crop. The effects of these variables on wheat yield are indicated on the flow chart by 

arithmetic signs. In this research, the treatment variables of concern are seeding rate, 

row spacing, and cheat infestation level. 

For this research, two functional forms were used to estimate equation (6): the 

quadratic, and the quadratic response plateau model (QRP). The choice of the quadratic 

function was based on its curvilinear and bell shape which describes initial rapid growth 

as the level of the factor of production is increased, followed by a maximum and then 

declining yield, its computational simplicity and its ability to statistically represent the 

data. Its marginal products are linear and unrestricted in sign. That is, the marginal 

products can be either positive or negative. The LRP characterized by the Von Liebig 

specification exhibits unrestricted but constant marginal products. That is, they do not 

allow model estimation to determine at what input level output begins to decrease but 

rather maintain the hypothesis of everywhere positive or zero marginal productivity 

(Griffin et al.). 

As mentioned in Chapter I, the properties of the inverse polynomial function when 

dealing with crop response to several factors have not yet been established. That is, it 

was not considered as a functional structure of crop response in this research. 

The quadratic specification is also characterized by variable elasticity of 

substitution of RS for SR. That is, the corresponding isoquants are elliptical. Thus, 

there may be areas of positive, negative, zero, and infinite slope (Beattie and Taylor). 

The substitutability of seeding rate and row spacing can be tested given the variable 

elasticity of substitution assumption. This hypothesis is more realistic than assuming 

constant elasticity of substitution or zero elasticity of substitution as the LRP 
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(characterized by the Von Liebig specification) does. 

Another advantage of the quadratic functional form is the relative ease in 

estimating with conventional statistical methods. The mathematical expression of the 

model is as follows: 

where: 

Y = f30 +f31SR+(32CL+(33RS+{34SR 2+(35SRCL+{36CL 2 

+(3-,RS 2 +(38RSCL+(3~SSR+{31cflSSRCL+e, 

Y = wheat grain yield expressed in bushels per acre, 

(3i = parameters to be estimated, 

SR, CL, and RS are as previously defined, 

SRCL = seeding rate and cheat level interaction, 

RSCL = row spacing and cheat level interaction, 

RSSR = row spacing and seeding rate interaction, 

RSSRCL = row spacing, seeding rate, and cheat level interaction, and 

~ = unobservable random variable. 

(7) 

Plateau response model estimation is not as convenient as that of the quadratic. 

However, it may provide a better description of wheat grain yield response to alternative 

seeding rates, row spacing, and levels of cheat infestation. For that reason, a QRP 

model was selected as an alternative specification of wheat grain yield response to 

seeding rate, row spacing, and levels of cheat infestation. The decision was to use both 

functional forms and conduct a nonnested hypothesis test to discriminate between the two 

specifications. The mathematical expression for the QRP model considered is as follows: 



where: 

Y = f30+{31SR+{32CL+f33RS+{34SR 2+{35SRCL+{36CL 2 

+{3.,RS 2+{38RSCL+f3;?.SSR+{310RSSRCL+e if SR :s:; SR0 

Y = YM + e if SR > SR0 

Y M = plateau yield, 

SR = seeding rate, and 

SRo = minimum seeding rate required to achieve the plateau yield. 
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(8) 

At Y M the assumed optimum cheat level and row spacing are zero and three 

inches, respectively. The QRP model as described by equation (8) forces a linear plateau 

which is smoothly grafted to a quadratic segment. Smoothness and continuity of the 

function are obtained by placing continuity and smoothness restrictions upon the model 

(Epplin and Schatzer). 

where: 

Ordinary Least Squares Procedure for Estimating f3 

The general form of the model to be estimated is: 

Y = X{3+e 

X = a (f x K) observable nonstochastic matrix, 

{3 = a (K x 1) vector of parameters to be estimated, 

Y = a (f x 1) observable random vector, and 

e = a (f x 1) unobservable random vector with the following properties: 

E(e) = 0 and E(ee') = <P = diag(o/,u/, .. . ,ul) 

(9) 
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Using OLS techniques to estimate (9) leads to the estimator 

b = (X'xr'x' Y (10) 

Given that the data contain information from two different trials, the OLS 

assumption of constant and identical variance of residuals, that is, E(f;<; 1 = cr for all 

t could be violated. If that is the case, and if OLS methods are used to estimate the 

model, the estimates will be unbiased, asymptotically unbiased, and consistent. 

However, they will not be efficient. In other words they will not necessarily have the 

minimum variance relative to other unbiased estimators (Judge et al.; Kennedy; Kmenta). 

Consequently, confidence intervals and hypothesis tests based on those estimates would 

not be valid. The violation of this OLS assumption is known in the literature as 

heteroskedasticity. 

Once b is obtained via OLS, a test for homoskedasticity is conducted to confirm 

the assumption of identical variances of residual variables. Several tests are described 

in the literature including Goldfeld-Quandt, White, Breusch-Pagan, Glejser, and Harvey 

(Judge et al.). For this research, the Breusch-Pagan (B-P) was used to test for the 

presence of heteroskedasticity. The choice of B-P does not require any ordering of 

observations as with the Goldfeld-Quandt test. The B-P and White tests are very similar. 

where: 

Using equation (9), assume that under the hypothesis of heteroskedasticity: 

(11) 

Equation (11) describes the form that the heteroskedasticity takes if it is present. 

z't = (1,z"/) = (1, z:a, ... ,21T) = a vector of observable explanatory variables, 

a = (aha"') = (ah···,aT) is a vector of unknown coefficients (Judge et al.), 
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and 

z't = the independent variable X or a group of independent variables other than 

X (Pindyck and Rubinfeld). 

Under the null hypothesis that the variance of the residuals are identical (o/ = 0), 

if errors are normally distributed, one-half the difference between the total sum of 

squares and the residual sum of squares from the regression 

.. 2 e, = za+v uz I I 

is distributed asymptotically as a chi-square with (T-1) degrees of freedom. 

where: 

~ = least squared residuals from the OLS regression (Judge et al.), and 

v 1 = unobservable random vector with the same properties as ~-

The relevant statistic is RSS/2 = x2 <t-t>· 

where: 

RSS = regression sum of squares, and 

x2 <t-n = chi square with (t-1) degrees of freedom. 

(12) 

(13) 

If RSS/2 is greater than the critical value for a given level of significance, the null 

hypothesis of homoskedasticity is rejected and it is concluded that heteroskedasticity is 

present. 

The estimator described in equation (10) is an unbiased and consistent estimator, 

but, in the absence of non-identical variance of the random variables it is not efficient. 

Given this inefficiency of b, the possibility of developing a best linear unbiased estimator 
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for .B was investigated (Judge et al.). 

The first step in developing that estimator is to transform (9) by multiplying both 

sides by a (TxT) matrix P which has the property that 

PI/IP' = IT 

where: 

1/1 = variance-covariance matrix of equation (9), and 

I = identity matrix. 1/1 is a positive definite matrix such that P 1/1 p• = IT 

always exists (Judge et al.). Using P to transform (9) yields: 

PY = PX{3 + Pe 
or 

y• = x· {3 + e· 
where: 

y• = py 
' 

X"= PX, and 

e· = Pe 

e· is such that E(e*) = E(Pe) = PE(e) = 0 

and E(e*e*') = E(Pee'P') = PE(ee')P' = ulP 1/1 P' = u2IT 

Thus, e· has the same properties as e in (9). 

Hence, the least squares estimator 

is the best, linear, unbiased estimator of the unknown parameter {3. 

Writing (17) in terms of the original observations gives: . 

~ = (X' P' PX)-1X 1 P' PY 

Because PI/IP' = In 1/1 = p-lp-l'. 

(14) 

(15) 

(16) 

(17) 

(18) 
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Rearranging the above equality yields t/t-1 = P'P. Thus, least squares applied to the 

transformed observations is given by: 

(19) 

where: 

{j = the Generalized Least Squares estimator (GLS). 

{j is obtained assuming that t/t is known. But, in general t/t is not known, and it 

must be estimated. Hence, t/t in equation 19 is replaced by ~ in (20) which leads to the 

Estimated Generalized Least Squares (EGLS) estimator denoted by: 

(20) 

It has been proven that {j is an unbiased estimator. However, it is neither "best" 

nor "linear" (Judge et al.). Consistency and asymptotic normality of {j have been 

established (Judge et al., pp. 353-356). Hence, in the presence ofheteroskedasticity, the 

EGLS procedure may be used to estimate parameters of the model considered. Other 

procedures to estimate parameters in the presence of heteroskedasticity are available, 

including, the maximum likelihood estimation procedure. 

Maximum Likelihood Procedure for estimating {j 

The maximum likelihood procedure may be used to estimate equation (9) in the 

presence of heteroskedasticity. The first step in using maximum likelihood (ML) is to 

make a distributional assumption. The second step is to set up a log-likelihood function. 

For this research, it is assumed that the unobserved variable is distributed normally with 
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mean zero and variance c?O. The log-likelihood function, excluding the constant terms, 

is given as follows: 

L = -~ lnal -~ lnl~ -~ (Y-X{3)'y/(Y-X{3) (21) 

where: 

In = symbol for the natural log. 

The objective in ML, is to find {3 and a1 which maximize the probability of 

obtaining the sample actually observed. In equation (21) only the last term contains {3 

Hence, maximizing equation (21) with respect to {3 is equivalent to maximizing 

(Y-X8)' w-1(Y-X{3) 
2al 

(22) 

Given the negative sign and the constant term 2al, maximizing equation (22) is equivalent 

to minimizing 

S = (Y-X{3)' t/t-1(Y-X{3) (23) 

with respect to {3. S in equation (23) is the least squares criterion (Judge et al., pp. 

223-225). 

Thus, we can write 

(24) 

To obtain c?, derive the first order condition of the maximization problem with respect 

to c?: 

aL = - T + l (Y-X{3)' t/t-'(Y-X{3) = 0 
a;; 2c? 2? 

(25) 

Solving equation (25) for c? gives: 



~ (Y-X{3)1t//(Y-X{3) = .;;, 

(Y-X{3)tVl(Y-X{3) = T 
(a2) 

(jl == [Y-X~]' tP- 1 [Y-X~] 
T 
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(26) 

(27) 

(28) 

Substituting equation (24) and the expression of a2 into equation (21) and rearranging 

terms gives: 

T - I - T 1 1_,( T 
L = -2 ln(Y-X/3)'tP- (Y-X{3) + 2 lnT - 2 lniY'I - 2 (29) 

Excluding constant terms leads to 

L(O) = - ~(Y-X~(O))' tP-'(O)(Y-XP(O)) - ~ IriPCO)I (30) 

The maximum likelihood estimator (MLE) for 0, 9, is that value of 0 for which L(O) 

is maximum. Define 

f = tP(O) (31) 

then, the maximum likelihood estimators for {3 and cr (not conditional on 0) are given 

by 

(32) 

_ (Y-X~)' .r -t (Y-XP) 
(]l = (il(O) = __ __;'~'-=r~-- (33) 

Thus, the MLE for {3 is of the same form as the EGLS estimator. But, instead of using 

an estimate of 1/; based on least squares residuals, it uses an estimate of tP obtained by 
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maximizing equation (30) with respect to (). Because the MLE p is also an EGLS 

estimator, the properties of the EGLS estimators hold for the MLE. However, in the 

MLE case, the estimator {3 is asymptotically efficient (Judge et al., pp. 180-182). 

Non-linear Regression Procedure for Estimating 

the Quadratic-Plateau Model 

For the quadratic-plateau model, a direct numerical search procedure known as 

Gauss-Newton method was used. This method is also known as the linearization method. 

It uses a Taylor series expansion to approximate the nonlinear regression model (Neter 

et al.). The Gauss-Newton method helps in simultaneously estimating the parameters and 

selecting the graft point which minimizes the sum of squared errors {Epplin and 

Schatzer). Continuity and smoothness restrictions are imposed for the function to be 

continuous and smooth at the graft point. The continuity restriction, for instance, forces 

the values of the segments to be equal at the grafted point. The smoothness constraint 

forces the first derivatives of the two segments to be equal at the point of graft. The 

quadratic-plateau model was given by equation (8). 

The restrictions that the plateau function be continuous and smooth at SRo result 

in: 

Y = .B0 + .B1 SRo + .B2 CL + .63 RS + .B4 SRo2 + .Bs SRoCL + .B6 CL2 + ~ RS2 + .B8 

RSCL + .B9 RSSRo + .610 RSSRoCL (34) 

where: 

(35) 



which requires that: 

YM = f30 + f12CL + f1,fl5 + {16 CL 2 + f)~S2 + f)gRSCL 

1 
- ~(/31 + f15CL + f)~S + {3 10RSCL)2 

Testing the Traditional Quadratic Specification 

Against the Quadratic-Plateau Specification 
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(36) 

A nonnested hypothesis test was conducted to discriminate between the traditional 

quadratic and the quadratic-plateau specification. Procedures for nonnested hypothesis 

testing are found in Pesaran and Deaton, Davidson and Mackinnon (1981, 1993), 

Pesaran, Godfrey and Pesaran, and Fisher and McAleer. For this research, the P-test 

developed by Davidson and MacKinnon was used. 

Let our two models be as follows: 

The quadratic specification: 

Y = Z0 = {10 + f) 1SR + f)2CL + f)3RS + f)4SR 2 + f)5SRCL + f)6CL 2 

+ f)~S2 + {18RSCL + f1PSR + f11rflSSRCL + e 

The quadratic-plateau specification: 

Y= y 7RS2 + y 8RSCL + y /lSSR + y 1oRSSRCL + e if SR ~ S~ 

where: 

(37) 

(38) 



Y = Z0 = Z1 = wheat yield, 

ZM = plateau wheat yield, and 

B ; and 'Y ; = parameters to be estimated (i = 1, ... , 1 0). 
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Both specifications must be differentiable to conduct the nonnested hypothesis test. 

However, the plateau model is not differentiable throughout. Thus, the test will be 

conducted on the part of the plateau function that is differentiable. 

Let the hypotheses be as follow: 

Ho : Y = Zo({3) + e 

H1 : Y = Z1( 'Y ) + e 

Z0 and Z1 are (n x ko) and (n x k1) matrices of observations, and {3 and 'Yare (ko x 1) and 

(k1 x 1) matrices of parameters, respectively. To test Ho, consider the Gauss-Newton 

regression from the original estimations: 

where: 

Z0 = the predicted value from 20, 

z, = the predicted value from zl' 

i = by definition Z( P ), and 

Diff = Z1 - Z0 

(39) 

(40) 
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Z({3) is the (n x ko) matrix of derivatives of Zo({3) with respect to {3, and {3 is the estimate 

of {3 under Ho. The P-test uses the t-statistic for a = 0 from the Gauss-Newton 

regression to test H0 against H1• The same test is conducted to test H1 against H0• 

If the null hypothesis of a = 0 is rejected the alternative, H1 is selected as the 

correct specification. Because each hypothesis may or may not be rejected, four possible 

outcomes are possible from the test. If both hypotheses (Ho and H1) are rejected, neither 

model is satisfactory. Each model may possess unique information. Failure to reject 

either hypotheses, suggests that both models fit the data equally well and that neither 

provides evidence that the other is misspecified. This result may be because the two 

models are very similar, or because the data set is not informative (Davidson and 

MacKinnon 1993). 

Variability of Predicted Wheat Grain Yields 

Once estimates of the parameters of a response function are available (equation 

(9)), the function may be used to predict the dependent variable for selected values of the 

independent variables. The justification of this section is that farmers may be concerned 

about the variability in wheat grain yields for alternative levels of row spacing, seeding 

rate, and cheat infestation. Within this context, consider equation (9) 

Y = X{3 = XB + e 

Using the estimated model 

y =X~ 

(41) 

(42) 

The value of the dependent variable Y is determined for each set of explanatory 

variables. Y represents the predicted values from the estimated equation. To investigate 
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the variability in predicted yields, consider the prediction error, that is (Y - Y ). The 

variability of an individual observation 

(Y,-Y,) = e, 

is a random variable, normally distributed, with mean zero. The variance of the 

prediction error can be estimated as follows: 

VAR(Y-Y) = VAR(Y) + VAR(Y)- 2COV(Y,Y) 

given that 

COV(Y,f) = E[Y-E(f)][Y-E(f)] 

and that 

Y = X{3 + e 

E(Y) = E( X{3 + e) = X{3 + E(e) 

E(e) = 0 

E(Y) = X{3 

Consequently, 

Y - E(Y) = X{3 + e - X{3 = e 

if Y =X~ 

E(}) = E(X~) = X{3 

then Y - E(}) = X~ - X{3 = X(~ -{3) 

Thus COV(Y,i) = E[e(~-m1 = XE[e(~-{3)] 

given that E(e) = 0 we have 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 



COV(Y, f) = 0 

Finally, we have 

where: 

VAR (Y-Y) = VAR(Y)+ VAR(Y) 

VAR (Y) = dl 

VAR ff) = a2[X0(X'X)-1 X0+ !1 
n 
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(51) 

(52) 

(53) 

(54) 

X0 = vector of the independent variables (seeding rate, row spacing, and cheat 

levels) used to compute the predicted yield, 

X = matrix of seeding rate, row spacing, and cheat level observations, and 

n = number of observations. 

VAR(Y-¥) = VAR(e) = u} = u2 + u'l[X0(X1X)-' X0 + ~] 
n 

dl1 = dl[l + ~ +X0(X1X)-1XJ 

(55) 

(56) 

An unbiased estimator of u? is obtained by replacing a2 by s2 (Kmenta, pp. 426-427). 

Using the resulting estimator (s/) it is possible to construct the following test statistic: 

(57) 

From the above statistic a prediction interval can be constructed for each individual 

predicted value of wheat yield with a selected probability. Designating that probability 

.,., we can write 

(58) 
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which is the confidence interval or prediction interval at (1-a)lOO% for Y. With a bound 

on the error of predicting Y, we would expect the error to be less, in absolute value, 

than (tT-ba/2)*Sr with probability equal to (1-a) (Mendenhall et al.). Sr is the standard 

deviation of the prediction error. An F-test can be constructed. Since 

(59) 

A chi-square can be defined for the alternative cheat infestation levels as described by 

equation (60). Consider the following test statistic: 

(60) 

which is different from the one in equation (59). Using these two statistics an F-test is 

constructed to test wheat yield variability: 

si 
-F s; (T-K,T-K) 

(61) 

Substituting (59) and (60) into (61) yields the following result 

x/I(T-K) _ F 
x/I(T-K) (T-K,T-K) 

(62) 

which can be used to test for differences in wheat yield variability across different levels 

of row spacing, cheat level, and seeding rate. 
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Methods for Conducting Economic Analysis of 

Weed Control Alternatives 

This section presents methods for conducting economic analysis of weed control 

alternatives. As mentioned in Chapter I, different tools to assess the economics of weed 

control are available (economic thresholds, budgeting, investment criteria, and 

comparison of risky outcomes). Either tool of assessment requires the existence of an 

objective function. The type of objective function may vary from the simple single 

equation static deterministic objective function to a complicated dynamic stochastic 

objective function. This section includes alternative objective functions and information 

needed for their estimation. 

Consider a single equation static deterministic objective function. 

n 

7r(Xi, ... ,Xi, ... ,Xn) = p F(Xi, ... ,Xi, ... ,Xn) - L r,Xi (63) 
i=i 

where: 

1r = value of the objective function, 

F(X1, ... ,Xi> ... ,XJ = concave production function, 

P = output price, 

xi = level of input i, and 

ri = price of input i. 

The necessary conditions for profit maximization are obtained by taking the partial 

derivatives of the objective function with respect to the input variables and setting them 

equal to zero. 
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(64) 

For a given set of prices (P and r) the level of ~ that maximizes ,... can be 

determined by solving equation (64) for the optimal~- The information needed for the 

above analysis includes output and input prices, and the response function, 

To allow for the impact of weeds on crop yield, include a weed variable in the 

single equation static deterministic response function: 

where: 

W = weed density. 

aY < 0 
aw 

The objective function will be: 

II 

1r(XI' ... ,Xi, .. . X,., W) = P Y - L r ;X; 
i•l 

where: 

The first order conditions for profit maximization are given by: 

(65) 

(66) 

(67) 

(68) 

The information needed for this analysis includes, in addition to the data needed for the 

first method, weed density as an argument in the response function. 



41 

The model may be expanded to include a weed control variable in the crop 

response function. The weed control variable can be a chemical herbicide or a cultural 

practice. The response function with the weed control variable can be written as follows: 

(69) 

where: 

H = weed control variable. 

The objective function is: 

n 

1r(Xw .. ,xw .. ,X,, W,H) = P Y - L r ;cj - en (70) 
i=l 

where: 

c = cost of weed control. 

The first order condition for profit maximization is as follows: 

ihr = p a y - r. = 0 
axi axi ' 

(71) 

a1r = P aY _ c = 0 
an an (72) 

At the optimum, the value of using an additional unit of X; and H should be just equal 

the price of input i and the cost of weed control, respectively. The additional 

information needed for the above objective function includes: herbicide dose (if 

herbicide is used as weed control agent), and the costs of treatment. The weed density 

at which it is just economical to apply the herbicide is referred to in the literature as the 

economic threshold. 
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The static model may be modified to include time in the response function. 

(73) 

where: 

t = time period (1,2, ... ,T). 

Let rt be the expected profit at time period t. The objective of the farmer will be to 

maximize the present value of the expected profit in time period t. Thus, we need a 

multi-period profit function. 

II 

r,(Xlt' ... Xu, ... ,X111 , W,,H,) = P, Y, - L r ;/(.u - c,H, (74) 
i•l 

Let u, be the discount rate at which future profits are discounted, and G(Wt, HJ be a 

function measuring change in weed seed density. G is known as the equation of motion 

(Pandey and Medd). 

oG 
oH, < 0 

aG is unrestricted in sign. aw, 
The net discounted present value of future profits is given by: 

T 

L 
rzl 

rlX11 , ••• ,Xu, ... ,X111 , We, He) 

(l+uY 

(75) 

(76) 

(77) 

The objective function assuming profit maximization for a multi-period crop response 

function is to maximize net discounted present value (NDPV) where: 

(78) 

subject to: 
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(79) 

Equations (78) and (79) can be written as follows: 

T 

L = L 
1=1 (1 +uY 

(80) 

The first order conditions for profit maximization are as follows: 

1 a1f, 
(81) - =0 

(1 +u)' ax it 
1 a1r, 

+ A.,.t aa = 0 (82) 
(1 +u)' an, an, 

"-t+t = marginal change in net discounted present value caused by a marginal change in 

the seed density at the beginning of time period t. "-t+t < 0 because, ceteris paribus, 

an increase in the current weed density will reduce future profits. The solutions to the 

first order conditions equations are Xit. = the level of input i in time period t necessary 

to maximize NDPV; W1• = the level of weed density at which it is just economical to 

control the weed; H1• = the level of the weed control variable in time period t necessary 

to maximize NDPV. The additional information needed for this multi-period analysis 

include: a finite time period, herbicide dose, herbicide bank in the soil over the time 

period considered (for carryover effects), a discount rate, a set of output and input prices 

over the time period, and data on the crop production, and input used. Beside the 

investment criteria, other tools such as budgeting (for dynamic programming) can be 

used. 

The model may be expanded to account for uncertainty. Uncertainty in the crop-

weed-control system arises mainly from the variability in the performance of control 
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measures, variability in the weed-free yield and variability of weed density (Pandey and 

Medd). In addition those factors, causes of uncertainty include: weather, output and 

input prices, the system of production, and all other factors that affect crop production 

but cannot be predicted with certainty. The multi-period profit function is the same as 

equation (74). The presence of uncertainty is reflected in uncertainty in crop yield and 

return in the next time period. Indeed, the current cropping decision whether to control 

weeds affects future decisions through the equation of motion. The equation of motion 

takes the form described in equation (79). Because of the uncertainty, Pt, Yt, and Wt 

become stochastic variables with the following probability density functions (Deen et al.): 

(83) 

(84) 

(85) 

incorporating the probability distributions of the stochastic variables in equation (74) 

results in the following expected profit function: 

II 

= E {p(P,) y (Y,, w(W,)) - L r ~u - cp, } 
i=l 

The net discounted present value of expected future profits 

T 1 L Ep(P,) y(Y,,w(W,) -
r-1 (1 +u)' 

is used to setup the objective function. 

Let 

(86) 

(87) 
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p = (88) 

That is, the objective function takes the same form as in equations (78) and (79). 

The Lagrangian for the maximization problem is as follows: 

L = p E {p(P1) y(Y,, w(W:)) 

II 

- L r ;xu - cfl, } + "-r+I G(Wz,H) 
(89) 

i•l 

The first order conditions for maximization of NDPV of expected future profits are as 

follows: 

(90) 

aY, aG 
PI aH - c, + "-r+l- = 0 

t oHr 
(91) 

Equations (90) and (91) are equivalent to setting marginal profit equal to zero. In 

equation (91), marginal profit is equal to zero if either ~+ 1 or oG is assumed to be 
oH1 

zero. The additional information needed for this analysis include: probability 

distribution for the stochastic variables. This can be done using Monte Carlo simulations 

assuming that prices and yields are jointly (negatively correlated) distributed normally, 

and that weed densities approximate a negative binomial distribution (Deen et al.). The 

tools of analysis include budgeting (for dynamic stochastic programming). 

For this research, given the data available an economic threshold method will be 

used (equations (65) and (67)). The standard objective is to maximize profit. The 
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economic threshold method implies the existence of a functional relationship between the 

crop yield and the factors involved in the production of that crop. The functional 

structure considered for this research is the one described in equation (7), and it is 

assumed to possess certain properties: 1) marginal products are unrestricted in sign; 2) 

nonzero elasticity of substitution between SR and RS; and 3) the production function is 

strictly concave (Henderson and Quandt). 

The decision to control weeds is influenced by the most probable increase in 

benefit, especially the increased value of production (Auld et al.). The value of 

increased production is equal to the quantity of increased production multiplied by the 

market price received for each unit of production. The decision to control weeds is 

economical if the increased value of production is greater or equal to the increased cost 

of control. For this research, increased costs of control include only the increased dollar 

amount used to purchase the additional wheat seed. Given the functional structure 

considered, the problem can be written as follows: 

where: 

1r(SR,RS,CL,O) = PF(SR,RS,CL,O) -r1SR-rzRS 

1r = the objective function value, 

P = the per unit price of wheat, 

r1 = the per unit cost of wheat seed, 

r2 = cost of changing the row spacing width, and 

(92) 

The first order conditions for a maximum 1r consists of the marginal conditions 

for optimization: 
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(93) 

07r 
p "'(JE) - 'z = 0 (94) 

Solving the above equations for SR, RS, and CL gives the economically optimal seeding 

rate, row spacing, and level of cheat infestation, which are functions of wheat seed and 

wheat prices. The second order conditions for maximum 'II" are fulfilled given the strict 

concavity assumption. 



CHAPTER III 

RESULTS 

This chapter includes the results of the statistical and economic analysis conducted 

to complete the objectives of the study. 

Expected Results 

Based on information reported in the literature, the seeding rate variable is 

hypothesized to be positively related to wheat yield. Thus, the coefficient associated with 

the seeding rate variable is expected to be positive. The presence of cheat is 

hypothesized to decrease wheat yield. Based on previous studies and given the range of 

row spacings used in the field experiments, the row spacing variable is expected to be 

negatively related to wheat yield. That is, narrow row spacing is hypothesized to result 

in increased yields. Quadratic terms for seeding rate, cheat level, and row spacing are 

expected to be negative, positive, and positive, respectively. 

The seeding rate and cheat level interaction is hypothesized to be positively 

related to wheat yield. That is, it is hypothesized that increasing seeding rate in a cheat 

infested field results in increased yields. The row spacing cheat level interaction term 

is hypothesized to be negatively related to wheat yield. That is, narrow row spacing in 

a cheat infested field is hypothesized to result in increased wheat yields. 

48 
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Empirical Results 

The quadratic functional form depicted in equation (8) was used to estimate wheat 

production response to alternative seeding rate, cheat level, and row spacing. A total of 

five models were estimated for each location. An additional five models were estimated 

with data pooled from the two locations. Results of the statistical estimates are reported 

in sections which follow. 

The Chickasha Experiment 

Table 1 contains statistical results obtained from the data generated in the field 

trial conducted at Chickasha. The full model was estimated with methods described in 

Chapter II. A series of t-tests were conducted to select variables for omission from 

successive reduced models. 

All five models reported in Table 1 resulted in poor statistical fits. Indeed, none 

of the parameter estimates for any of the models are statistically significantly different 

from zero at the 0.05 level of probability. However, the seeding rate and cheat level 

variables have the expected signs. The interaction of cheat level and seeding rate is 

positive. The pathetic statistical fits may be a function of physical factors including the 

variable soil across replications at the experiment station location and weather conditions 

which prevailed during the year of the study. 

Graphical presentations of the parameter estimates of Model E in Table 1 are 

included in Figures 2, 3, and 4 for three, six, and nine inch row spacing, respectively. 

The graphs reflect the estimated lack of differences between wheat yield for the 

alternative row spacings. That is, changing row spacing from conventional to narrow 
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Table 1. Ordinary Least Squares Estimates of Wheat Yield Response to Alternative 
Seeding Rates, Row Spacing, and Levels of Cheat Infestation at Chickasha. 

Model 

Variable A B c D E 

Intercept 36.682492 37.506196 38.033089 34.608339 33.859688 
(3.229) (3.457) (3.862) (3.894) (3.849) 

Seeding Rate 0.090380 0.090380 0.084526 0.122578 0.122578 
(0.423) (0.424) (0.408) (0.608) (0.608) 

Cheat Level -0.082361 -0.082361 -0.093338 -0.093338 -0.07n41 
(-0. 731) (-0.732) (-1.524) ( -1.525) (-1.400) 

Row Spacing -0.239566 -0.569048 -0.656830 -0.086071 0.038704 
(-0.140) (-0.531) (-0.864) (-0.306) (0.202) 

Seeding Rate -0.000597 -0.000597 -0.000597 -0.000597 -O.cros97 
Squared (-0.537) (-0.538) (-0.538) (-0.538) (-0.539) 

Seeding Rate x 0.000546 0.000546 0.000668 0.000668 O.OC0668 
Cheat Level (0.481) (0.482) (1.560) (1.561) (1.562) 

Cheat Level -0.000297 -0.000297 -0.000297 -0.000297 -O.<XX>297 
Squared (-0.793) (-0. 794) (-0.794) (-0. 795) (-0.795) 

Row Spacing -0.027457 
Squared (-0.247) 

Row Spacing x 0.000770 0.000770 0.002599 0.002599 
Cheat Level (0.047) (0.047) (0.607) (0.608) 

Row Spacing x 0.005366 0.005366 0.006342 
Seeding Rate (0.466) (0.467) (0.808) 

Row Spacing x 0.000020 0.000020 
Seeding Rate x (0.116) (0.116) 
Cheat Level 

Adj. R-square 0.0387 0.04 0.0422 0.0433 0.0439 

Values in parentheses are t-statistics of the estimated coefficients. 
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widths did not reduce wheat yield loss as a result of cheat infestation. The graphs reflect 

the positive (but statistically insignificant) impact of seeding rate on wheat yields. 

The positive sign of the seeding rate by cheat level interaction variable is 

manifested in Figures 2, 3, and 4. For example, for a seeding rate of 60 pounds per 

acre, estimated wheat yield is 39 bushels per acre in a cheat free field and 31 bushels (8 

bushels less) per acre in a field with severe cheat infestation. However, for a seeding 

rate of 120 pounds per acre the estimated wheat yield is 40 bushels in a cheat free field, 

and 36 bushels ( 4 bushels less) per acre in field with severe cheat infestation. That is, 

increasing wheat seeding rate can help mitigate the negative effect of infestations of 

cheat. 

The Lahoma Experiment 

Results from the Lahoma experiment are presented in Table 2. The full model, 

including all the interaction terms, is reported as model A. The variables that were not 

significant (in a statistical sense at 0.05 probability level) in the full model were dropped 

one at a time and four reduced models were estimated. 

ModelE, which includes seeding rate, cheat level, row spacing, seeding rate by 

cheat level interaction, and quadratic terms for seeding rate and cheat level was selected 

for further analysis. All parameter estimates for Model E are significant at the five 

percent probability level. In addition, all estimated coefficients have the expected signs. 

Seeding rate is positively related to wheat yield. That is, over a range of the data, 

wheat yield can be increased by increasing the seeding rate. However, the 
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Table 2. Ordinary Least Squares Estimates of Wheat Yield Response to Alternative 
Seeding Rates, Row Spacing, and Levels of Cheat Infestation at Lahoma. 

Model 

Variable A B c D E 

Intercept 35.081424 37.216262 36.342366 36.590479 36.1750Cl9 
(3.730) (4.140) (4.468) (4.988) (4.985) 

Seeding Rate 0.386473 0.386473 0.396183 0.393426 0.393426 
(2.192) (2.193) (2.318) (2.366) (2.369) 

Cheat Level -0.307942 -0.307942 -0.290130 -0.290130 -0.2816}) 
(-3.327) (-3.329) (-5.848) (-5.855) (-6.293) 

Row Spacing 0.142753 -0.711183 -0.565533 -0.606886 -0.537650 
(0.101) (-0.796) (-0.901) (-2.594) (-3.398) 

Seeding Rate -0.002085 -0.002085 -0.002085 -0.002085 -0.002085 
Squared (-2.273) (-2.274) (-2.277) (-2.280) (-2.282) 

Seeding Rate x 0.001461 0.001461 0.001263 0.001263 0.001263 
Cheat Level (1.559) (1.560) (3.572) (3.577) (3.580) 

Cheat Level 0.000583 0.000583 0.000583 0.000583 O.<XXl583 
Squared (2.047) (2.048) (2.050) (2.053) (2.055) 

Row Spacing -0.071161 
Squared (-0.776) 

Row Spacing x 0.004389 0.004389 0.001420 0.001420 
Cheat Level (0.325) (0.326) (0.402) (0.402) 

Row Spacing x 0.001159 0.001159 -0.000459 
Seeding Rate (0.121) (0.121) (-0.071) 

Row Spacing x -0.000033 -0.000033 
Seeding Rate x (-0.228) (-0.228) 
Cheat Level 

Adj. R -square 0.3146 0.3153 0.3168 0.3184 0.3197 

Values in parentheses are t-statistics of the estimated coefficients. 
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quadratic term for seeding rate is negative. This indicates that yield increases with 

seeding rate at a decreasing rate. As hypothesized, the cheat level variable has a 

negative sign. The presence of cheat significantly reduces wheat yield. The quadratic 

term for cheat level is positive. This means that wheat yield decreases with cheat 

infestation at an increasing rate. 

Over the data range, row spacing is negatively related to wheat yield. That is, 

wheat yield can be improved by planting wheat in narrow rows. The lack of significance 

for the row spacing by cheat level interaction term indicates that a change in row spacing 

will not reduce the negative impacts of cheat on wheat yield. In other words, wheat 

yield loss to cheat infestation is insensitive to changes in row spacings. 

The seeding rate by cheat level interaction variable has a positive sign. That is, 

as seeding rate is increased, the negative effect of cheat is reduced. The above results 

for Model E are reflected by the graphs included in Figures 5, 6, and 7. 

Results for the Pooled data from Chickasha and Lahoma 

The results for the pooled data are presented in Table 3. Five models which 

included the same variables as those estimated for the location specific models were 

estimated. All five models were supplemented with an intercept shifting dummy variable 

which was included to allow for linear differences across locations. 

Model E of Table 3 has the expected signs for all variables except for the 

quadratic term for cheat infestation. The presence of cheat significantly reduce wheat 

yield. Reducing row spacing from conventional to narrow widths results in increased 

yields. However, reducing row spacing is not an effective cheat control practice. The 
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Table 3. Estimated Generalized Least Squares Estimates of Wheat Yield Response to 
Alternative Seeding Rates, Row Spacing, and Levels of Cheat Infestation at 
Chickasha and Lahoma. 

Model 

Variable A B c D E 

Intercept 37.002000 38.738000 37.539000 36.607000 35.849000 
(4.897) (5.345) (5.829) (6.295} (6.240) 

Seeding Rate 0.119370 0.117910 0.131340 0.141830 0.144010 
(0.855) (0.844) (0.975) (1.082) (1.098) 

Cheat Level -0.125950 -0.126090 -0.104140 -0.103420 -0.090410 
(-1.796) (-1.792) (-2.679) (-2.666) (-2.515) 

Row Spacing -0.084202 -0.583280 -0.387660 -0.237450 -0.125810 
(-0.074) (-0.795) (-0.788) (-1.219) (-1.018) 

Seeding Rate -0.000736 -0.000730 -0.000730 -0.000732 -0.000744 
Squared (-1.022) (-1.014) (-1.014) (-1.016) (-1.033) 

Seeding Rate x 0.001108 0.001112 0.000859 0.000856 0.000857 
Cheat Level (1.551) (1.551) (3.182) (3.171) (3.174) 

Cheat Level -0.000502 -0.000504 -0.000499 -0.000501 -0.000509 
Squared (-2.268) (-2.275) (-2.256) (-2.263) (-2.299) 

Row Spacing -0.055286 
Squared (-0.772) 

Row Spacing x 0.005726 0.005774 0.002088 0.002035 
Cheat Level (0.571) (0.573) (0.771) (0.752) 

Row Spacing x 0.003824 0.003849 0.001666 
Seeding Rate (0.486) (0.487) (0.331) 

Row Spacing x -0.000041 -0.000041 
Seeding Rate x (-0.377) (-0.379) 
Cheat Level 

Location 4.5444 4.5499 4.5489 4.5485 4.5456 

Dummy (Lahoma) (7.323) (7.329) (7.327) (7.326) (7.319) 

Adj. R-square 0.1873 0.1878 0.1893 0.1889 0.1895 

Values in parentheses are t-statistics of the estimated coefficients. 
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results of Model E are reflected in the graphs of Figures 8, 9, and 10. 

Nonnested Hypothesis Test 

The parameters reported for Model E of Table 2 which were estimated from the 

data generated in the Lahoma experiment were used to initialize the search procedure to 

fit a quadratic-plateau functional form. The iterative search procedure failed to fulfill 

convergence requirements. Terminal parameter estimates are reported in Table 4. 

Data obtained from the three and nine inch row spacing treatments were deleted 

and a QRP model was estimated with data from the six inch row spacing Lahoma 

treatments. Results are reported as Model C in Table 5. 

Models A and B of Table 5 were estimated with conventional linear methods to 

generate initial parameters for the nonlinear iterative search procedure used to estimate 

the QRP model. Since all observations used to estimate Model C of Table 5 were 

obtained with data generated in six inch row spacings, row spacing was not included as 

a variable. The quadratic term for cheat level was not included in Model C since it was 

not significant in Model A. 

To determine the most appropriate functional form, results generated by Models 

B and C were used to conduct a nonnested hypothesis test. Results of the Gauss-Newton 

regression used to conduct the test are presented in Table 6. The coefficient of variable 

Diff, which is the difference between the predicted values of the quadratic specification 

(Model B of Table 5) and those of the quadratic-plateau functional form (Model C of 

Table 5) is the parameter of interest. The t-value of that parameter obtained when testing 

Ho versus H1 is not significantly different from zero. That is, the test fails to reject the 



Wheat Yield 
50r---------------------------------~ 

40 ······················-··· 

30 - .... -- ........... ··- ........ - .... - ..... - .... -- .... ------.-.-

ao ··················-·---··---··········--····················· 

10 - ... ----.- ...... -- ... -- .... - .... -.- ........... --- .. ----.-.--. 

QL-~--~~--L-~--L--L--~-L--~~~ 

&0 &5 70 75 80 85 90 95 100 105 110 115 120 

Seeding Rates 
- ri=O -+-- ri=BU ~ ri=1ZO 

Figure 8. Impacts of Cheat on Wheat Yield in a Three Inch Row 
Spacing Field for the Pooled Data from Chickasha 
and Lahoma. 

62 



Wheat Yield 

40 ············································· 

30 ............................................................ . 

ao ····························································· 

10 ............................................................ . 

oL--L--~~--~~--~~--~--L-~--L-_j 
60 65 70 75 SO 85 80 85 lOU LU5 110 Ll5 IZU 

Seeding Rates 
-- rl=D -+- rl=&U ->IE- rl= lZD 

Figure 9. Impacts of Cheat on Wheat Yield in a Six Inch Row 
Spacing Field for the Pooled Data from Chickasha 
and Lahoma. 

63 



Wheat Yield 
50r-----------------------------------~ 

40 -- -----------------------------------------------

30 --------------------------------

an --------------------------------------------········· .. 

IU ·- · · ·- ·-- ·--.-- ·-.--- .•••. -- .. - ...•••..........•............. 

o~~--~~--~~--~~--~--~~--~-J 
60 65 711 75 BO B5 DO 11'9 lOll lll5 liD 115 lii!O 

Seeding Rates 

- ri=O -+- ri=BD --'*- rl=lii!O 

Figure 10. Impacts of Cheat on Wheat Yield in a Nine Inch Row 
Spacing Field for the Pooled Data from Chickasha 
and Lahoma. 

64 



65 

Table 4. Nonlinear Least Squares Estimates of Wheat Yield Response, with a 
Quadratic-Plateau Functional Form. 

Model Plateau specification fails to converge 

Variable 

Intercept 36.175069 
(5.174) 

Seeding Rate 0.393426 
(2.202) 

Cheat Level -0.281609 
(-5.693) 

Row Spacing -0.537650 
(-3.507) 

Seeding Rate -0.002085 
Squared (1.783) 

Seeding Rate x 0.001263 
Cheat Level (2.213) 

Cheat Level 0.000586 
Squared (1.972) 

Estimated Plateau Yield 49.895 

Minimum seeding rate required 94.347 
to achieve the plateau 
in a cheat free field 

Values in parentheses are t-statistics of the estimated coefficients. 
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Table 5. Ordinary Least Squares Estimates of Wheat Yield Response, to Alternative 
Seeding Rate and Levels of Cheat Infestation for Six Inch Row Spacings at 
Lahoma. 

Model Polynomial specification Plateau specification 

Variable A B c 

Intercept 19.414637 19.090953 12.44982 
(1.438) (1.417) (0.276) 

Seeding Rate 0.771920 0.771920 1.003995 
(2.477) (2.481) (0.766) 

Cheat Level -0.320423 -0.278178 -0.32904 
(-3.816) (-4.512) (-2.211) 

Seeding Rate -0.004400 -0.004400 -0.00653 
Squared (-2.567) (-2.571) (-0.690) 

Seeding Rate x 0.001891 0.001891 0.002826 
Cheat Level (2.857) (2.861) (1.279) 

Cheat Level 0.000396 
Squared (0.743) 

Adj. R-square 0.2974 0.2997 

Estimated Plateau Yield 51.039 

Minimum seeding rate required 76.855 
to achieve the plateau 
in a cheat free field 

Values in parentheses are t-statistics of the estimated coefficients. 
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Table 6. Gauss-Newton Regression Estimates for Testing the Quadratic Functional 
Form Versus the Quadratic-Plateau Specification. 

Variables Testing HO Testing H1 

Intercept -0.00779 -0.00779 
(-0.001) (-0.001) 

Z({3) 0.000173 0.000173 
(0.001) (0.001) 

Diff 0.003637 0.996363 
(0.006) (1.724f 

• Significant at 0.10 probability level 
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quadratic specification. An additional statistical test confirms this result. 

The results as reported in Table 6, show that the t-value associated with the 

coefficient of the variable Diff is significantly different from zero at the 0.10 probability 

level. The null hypothesis H1 is therefore rejected. That is, given the data set evaluated, 

the quadratic functional form is a more appropriate specification of wheat yield response 

to seeding rate than the quadratic-plateau functional form. The QRP model was rejected. 

Hence, Model E of Table 2 was selected and used to determine the optimal seeding rate 

for selected prices and levels of cheat infestation. 

Test of Wheat Yield Variability 

Standard errors of the predicted yields for selected levels of seeding rate and cheat 

infestation are reported in Tables 7 and 8. Model E of Table 2, which was generated 

from data obtained in the Lahoma experiment, was used to compute the predicted yields, 

standard errors, and damage in terms of wheat yield loss, attributable to cheat infestation. 

These results are included in Table 7. Model B of Table 5 was used to compute the 

predicted yields which are reported in Table 8. 

Statistical analysis was conducted to test the null hypothesis of equal variance of 

predicted yields across alternative levels of cheat, wheat seeding rate, and row spacing. 

The hypothesis testing procedure for conducting the test was described in Chapter IT. 

The specific test for the 60 pound seeding rate between a cheat free field and a 

field with a moderate level of cheat with three inch row spacing was conducted as 

described by equation (64). The test statistic is the ratio of variances which has an F­

distribution. In this case sl is the variance of the predicted yields in the cheat free 
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Table 7. Predicted Yields, Estimated Standard Errors of Predicted Yield, and Estimated 
Yield Loss Due to Cheat for Alternative Seeding Rates Based on Parameter 
Estimates of ModelE in Table 2. 

Seeding Row Cheat Predicted Standard Error Estimated Yield 
Rate Spacing Level Yield of Predicted Loss Due to 
(lbs/ac) (inch) (lbs/ac) (bu/ac) Yield (bu/ac) Cheat (bu/ac) 

60 3 0 50.7 7.9 0 
90 3 0 53.1 7.9 0 

120 3 0 51.8 7.9 0 

60 3 60 40.4 7.9 10.3 
90 3 60 45.1 7.9 8 

120 3 60 46.1 7.9 5.7 

60 3 120 34.4 7.9 16.3 
90 3 120 41.3 7.9 11.8 

120 3 120 44.6 7.9 7.2 

60 6 0 49.1 7.9 0 
90 6 0 51.5 8 0 

120 6 0 50.1 7.9 0 

60 6 60 38.8 8 10.3 
90 6 60 43.5 8 8 

120 6 60 44.4 8 5.7 

60 6 120 32.8 7.9 16.3 
90 6 120 39.7 7.9 11.8 

120 6 120 42.9 7.9 7.2 

60 9 0 47.4 7.9 0 
90 9 0 49.8 7.9 0 

120 9 0 48.5 7.9 0 

60 9 60 37.2 7.9 10.2 
90 9 60 41.9 7.9 7.9 
20 9 60 42.8 7.9 5.7 

60 9 120 31.1 7.9 16.3 
90 9 120 38.1 7.9 11.7 

120 9 120 41.3 7.9 7.2 
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Table 8. Predicted Wheat Yield, Estimated Standard Errors of the Predicted Yields, and 
Estimated Yield Loss Due to Cheat for Alternative Seeding Rates Based on 
Parameter Estimates of Model B, of Table 8. 

Seeding Cheat Predicted Standard Error Estimated Yield 
Rate Level Yield of Predicted Loss Due to 
(lbs/ac) (lbs/ac) (bu/ac) Yield (bu/ac) Cheat (bu/ac) 

60 0 49.6 8.5 0 
90 0 52.9 8.6 0 

120 0 48.4 8.5 0 

60 60 39.7 8.6 9.9 
90 60 46.4 8.6 6.5 

120 60 45.3 8.6 3.1 

60 120 29.8 8.4 19.8 
90 120 40 8.5 12.9 

120 120 42.2 8.4 6.2 
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field and s J is the variance of the predicted yields in the field with moderate cheat. 

F = (7.9)2 = 1 
2 (7.9)2 (64) 

F(O.OS,425,425) = 1. 14 

The critical value for a 95 percent level of probability with 425 degrees of 

freedom is greater than the computed value. The null hypothesis of equal variances of 

the predicted wheat yields between a cheat free field and a field with a moderate level 

of cheat is not rejected. Similarly, none the null hypotheses of equal variances across 

the three seeding rates, three cheat levels, and the three row spacings were rejected. In 

other words, the presence of cheat in the treatments did not increase or decrease yield 

variability across the levels of seeding rate and row spacing investigated. 

Optimal Seeding Rates 

Model E of Table 2, and Model B of Table 5 were used to determine the 

physically, and economically optimal seeding rates for several combinations of wheat 

seed and wheat grain prices (Tables 9, 10, and 11). These models were also used to 

estimate the damage in terms of wheat grain yield loss due to cheat infestation (Tables 

7 and 8). 

In the absence of cheat, the physically optimal seeding rate is 94.3 pounds per 

acre. The expected wheat yield from this seeding rate is 53.1, 51.5, and 49.9 bushels 

per acre for 3, 6, and 9 inch row spacings, respectively. In the statistical models the 

row spacing by seeding rate interaction term was not significant. Hence, the physically 

optimal seeding rate is the same across the three row spacings. 
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Table 9. Physically Optimal Wheat Seeding Rate (pounds per acre) for Alternative 
Levels of Cheat Infestation and Row Spacings Based on Parameter Estimates 
of Model E in Table 2. 

Cheat Infestation Physically Optimal Row Expected Yield 
(Lbs/ac) Seeding Rate (Lbs/ac) Spacing (bu/ac) 

3 53.1 
0 94.3 6 51.9 

9 49.9 

3 46.2 
60 112.5 6 44.5 

9 42.9 

3 44.8 
120 130.7 6 43.2 

9 41.6 

Table 10. Optimal Wheat Seeding Rate (pounds per acre) for Selected Prices and Levels 
of Cheat Infestation Based on Parameter Estimates of Model E in Table 2. 

Seed Cheat Wheat Price ($/bu) 
Price Infestation 
($/bu) (Lbs/ac) 2.50 3.00 3.50 4.00 

6 0 85 86 87 88 
9 0 80 82 84 85 

6 60 103 105 106 107 
9 60 98 101 102 104 

6 120 121 123 124 125 

9 120 116 119 120 122 



73 

Table 11. Optimal Wheat Seeding Rate (pounds per acre) for Selected Prices and Levels 
of Cheat Infestation Based on Parameter Estimates of Model B, in Table 8. 

Seed 
Price 
($/bu) 

6 
9 

6 
9 

6 
9 

Cheat 
Infestation 
(Lbs/ac) 

0 
0 

60 
60 

120 
120 

2.5 

83 
81 

96 
94 

109 
107 

Wheat Price($/bu) 

3 3.5 4 

84 84 85 
82 83 83 

97 97 98 
95 96 96 

110 110 111 
108 109 109 
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For a moderately infested field, the optimal seeding rate is 112.5 pounds per acre 

which is expected to generate yields of 46.2, 44.5, and 42.9 bushels per acre in 3, 6, and 

9 inch row spacings, respectively. For severe cheat infestations, the estimated physically 

optimal wheat seeding rate of 130.7 pounds per acre is beyond the data range available 

for this research. Nevertheless, if that level of wheat seed was used, by extrapolation, 

expected yields are 44.8, 43.2, and 41.6 bushels per acre for 3, 6, and 9 inch row 

spacings, respectively. 

A comparison of the information in Tables 10 and 11, and 7 and 8 reveals that 

there are few practical differences between the economically optimal seeding rate and 

predicted yields obtained from Model 6 in Table 2, and the economically optimal seeding 

rate and predicted yields obtained from Model B of Table 5. Both models were 

estimated from data generated in the Lahoma experiment. However, data across all row 

spacings were used to estimate ModelE, whereas only six inch row spacing data were 

used to estimate Model B. Hence, Model B was used to compute the economically 

optimal wheat seeding rates reported in Table 11. 

Economically optimal seeding rates are presented in Tables 10 and 11 for a 

selected set of prices. For a relatively low wheat price ($2.50 per bushel) and a 

relatively high price of wheat seed ($9 per bushel) the economically optimal seeding rate 

of 80 pounds per acre (with a row spacing of three inches) is expected to result in a yield 

of 53 bushels per acre in the absence of cheat (Table 10). Alternatively, for relatively 

high wheat ($4 per bushel) and wheat seed prices ($9 per bushel), 85 pounds of seed per 

acre is economically optimal. 

The economically optimal wheat seeding rate is relatively insensitive to wheat seed 
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and wheat grain prices. For example, with zero cheat, for a relatively high seed price 

of $9 per bushel and low wheat price of $2.50 per bushel the optimal wheat seeding rate 

is 81 pounds per acre (Table 11). On the other hand, for a relatively low seed price of 

$6 per bushel and high wheat price of $4 per bushel, the optimal seeding rate is 85 

pounds per acre. The difference in optimal seeding rate is only four pounds per acre 

across the range of prices investigated. 

Expected yields are approximately 53 bushels per acre across all economically 

optimal seeding rates for zero cheat, 47 bushels per acre for moderate infestations of 

cheat, and 42 bushels per acre for severe infestations of cheat. Severe infestations of 

cheat reduce the economically optimal yield by approximately 11 bushels per acre across 

the range of wheat seed and wheat market prices used. 

The economically optimal seeding rate is sensitive to the level of cheat infestation. 

In general, for a given set of wheat seed and wheat grain market prices, the optimal 

wheat seeding rate is 13 and 26 pounds per acre more for moderate and severe 

infestations of cheat, respectively. 

For a wheat seed price of $6 and a wheat market price of $3 per bushel, the 

economically optimal seeding rates are 84, 97, and 110 pounds per acre for zero, 

moderate, and severe levels of cheat infestation, respectively. With an 84 pound seeding 

rate, moderate levels of cheat would be expected to reduce yield by 7.15 bushels per acre 

relative to the cheat-free yield. However, if the farmer confronted moderate levels of 

cheat adjusted seeding rate to 97 pounds per acre, the expected yield decline would be 

reduced to 5. 99 bushels per acre. The economic significance of the cultural practice of 

adjusting the seeding rate, which is expected to result in an additional 1.16 bushels per 
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acre, depends upon the wheat market price net of harvesting costs. 

For severe infestations of cheat, the economic benefits of adjusting the seeding rate 

are more pronounced. With an 84 pound seeding rate, severe levels of cheat would be 

expected to reduce yield by 14.3 bushels per acre relative to the cheat-free field. 

However, if the farmer responded to severe levels of cheat by seeding 110 rather than 

84 pounds per acre, the expected yield would increase by 3.8 bushels, from 38.6 to 42.4 

bushels per acre. For a net market price of $3 per bushel the economic benefit of the 

practice would exceed $10 per acre. 



CHAPTER IV 

SUMMARY AND CONCLUSION 

Infestation of weeds, especially cheat, have hampered the adoption of residue 

management programs on soils which are continuously cropped to winter wheat in the 

southern plains. Periodic use of the moldboard plow, typically every third year, is the 

primary cheat control practice. Information regarding alternatives to intensive tillage is 

necessary to assist farmers confronted with the requirement to restrict moldboard plowing 

on highly erodible soil and for farmers in general who are evaluating less intensive tillage 

systems on land which is not highly erodible. 

The objective of this research was to determine the economically optimal wheat 

seeding rate for fields which are continuously cropped to winter wheat and have severe, 

moderate, and zero levels of cheat infestation. The work was initiated to determine if 

the relatively inexpensive and environmentally neutral cultural practice of altering seeding 

rates, and changing patterns of placement can be used to mitigate the deleterious effects 

of cheat on wheat yield. 

Seventeen wheat gram yield response functions were estimated from data 

generated in experiment station trials. Yield was estimated as a function of wheat 

seeding rate, row spacing, and level of cheat infestation. Cheat infestation was 

artificially induced by seeding cheat in the plots. Level of cheat infestation varied from 

zero to severe. 
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A traditional quadratic response function was used as well as a quadratic-plateau 

functional form. A nonnested hypothesis test was conducted to discriminate between the 

two specifications. Wheat yield variability for alternative levels of cheat infestations was 

estimated. Finally, physically and economically optimal seeding rates were determined. 

Conclusion 

The nonnested hypothesis test conducted failed to reject the quadratic 

specification. The statistical analysis based on the quadratic specification of the yield 

response function confirmed that the presence of cheat reduces wheat yield, and that 

changing row spacing from nine to three inches increases yield. For a seeding rate of 

90 pounds per acre, moderate to severe levels of cheat reduced yield by 6 to 13 bushels 

per acre. This result confirmed the potential economic consequences of cheat infestation. 

It also explains why farmers are concerned about cheat and why they have continued to 

use moldboard plows in tillage rotations. 

The hypothesis of equal variance of wheat yield for alternative levels of cheat was 

not rejected. The statistical analysis also confirmed the hypothesis that increasing 

seeding rate reduces the wheat yield loss in cheat infested fields. Changing row spacings 

influences wheat yield but is not an effective response to cheat. The economically 

optimal seeding rate is relatively insensitive to the price of seed and the price of wheat. 

However, it is sensitive to the level of cheat infestation. In general, for a given set of 

wheat seed and market prices, the optimal seeding rate was 13 to 26 pounds per acre 

more for moderate and severe levels of cheat relative to zero cheat. Increasing seeding 

rate is an appropriate strategy for farmers confronted with the cheat problem. However, 
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even with the increased seeding rate, yield losses exceeding 10 bushels per acre can be 

expected from severe cheat infestations. 

While the study does illustrate the serious nature of the cheat problem and 

confirms that the environmentally benign practice of adjusting the seeding rate is 

appropriate, it does not address the very relevant issue of whether farmers should 

continue to use moldboard plows. Additional research is necessary to consider the long 

run consequences of plowing on cheat levels, farm income, soil loss, and soil 

productivity over time. 

Most studies based upon agronomic data obtained from experiment station plots 

have shortcomings. This study does as well. An underlying assumption is that fertility 

level and management practices used in the field experiments are similar to those of 

farms in the region. Additional work is necessary to confirm the estimates over several 

years and locations, and to calibrate the level of artificially induced cheat to actual field 

situations. 

In recent decades, agronomists have been reluctant to artificially introduce weeds 

on an experiment station except to evaluate chemical herbicides. Efforts to evaluate 

alternatives to chemicals, such as the one described in this research, are rare. 
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