FINFS: A FLEXIBLE INTERNET
NETWORK FILE SYSTEM

BY
JAYATHIRTHA MOJNIDAR

Bachelor of Engineering
University of Mysore
Mandya, India
1987

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December 1993

FINFS: A FLEXIBLE INTERNET
NETWORK FILE SYSTEM

Thesis Approved :

Ju il) iledo o

WW |
A

¥

-, !

U R
. /'y,"'f S (~ (»?’f_/ff'/;’t»{?,,

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to Dr. Neilsen for his continuous
guidance throughout the course of my research. His constant support and encouragement
has helped me in fulfilling my objective. His valuable suggestions at various points in
time have helped me make speedy progress.

I wish to thank Dr. George and Dr. Benjamin, for agreeing to be in my committee
and for their constructive criticisms. They were highly cooperative and understanding.
They patiently lent their ears to all my discussions.

My parents have been a driving force and a spirit of encouragement throughout
my academic studies and other endeavors. I take this opportunity to thank them. I would
like to extend my deepest appreciation to a few special friends, Sridhar, Rosy, Nat, John,
Sam, Suresh, Shiva, Ravi, who have been a stimulating support and best companions in

all my endeavors. I also wish to thank all other friends and people who made my life

beautiful and happy.

iii

Chapter

II.

III.

IV.

VL

DESIGN ISS

TABLE OF CONTENTS

UE S et

TIANSPATENICY ...ttt ettt s ee e
Fault Tolerance ISSUES.........ccceierireriiriirieniineicrcse e a e
Scalability ISSUES......coivirririeriireer et
Concurrency ISSUESc.oovriviiiiiiniiieii vt

OVERVIEW OF EXISTING SYSTEMS ..o

...

Network File SYStem......coviiiiiieiiiiieiiiniienececeee e erae s

Prospero .

OVERVIEW

...

AdVEITISINE . .ccvviiiiiiieeiie ittt st st s
REGISTETIIE . ..veveeieiiiiiee ittt e te e s tee e sttt ee ettt e snbene e e ameenaesans

Session ...
User Mob

...

FHEY v eeeeereeseeeseeeseesnesesseseeeseeeseseseeseseesoeeeeeeeee s

F1le MODBIILY ooooiiecieee ettt s

IMPLEMENTATION ISSUESoccciimiininniniitiin e

Platform..

...

Connection Oriented vs Connectionless Serviceoovvevvviiviivvieeeeiveeennn.

Naming .
Mounting

...

...

iv

NeRRNoREN e

11

11
12
13
15

17

17
18
19
20
21

23

23
23
24
26

...

...

...

...

...

...

27
28

29

29
31

33

35

37

LIST OF FIGURES

Figure

1. AdVEItISEIMENLoeoiiiiieireeeeierteniesreseete st esesies e e e ssestesaessesrasseesesaeesennsenseses
2. ReEZISIAtION .. .ceiiiiiiiieicetciee ettt ettt st st e re e ne e
3 SESSION .eeiiureeeiiieerieeriee ettt re et r s e s s b e b e s e st e e s s e e s rne s e naessnanes
4. USEr MODIIILY ...c.coeiiiiiieiiecteertereccte sttt sree e st e sebessae et esasaesbessaesssnasssaasns
5. File MODILILY. ..coveoiioiiiiiiicieiintiniccccrc e

vi

Page
17
18
19
20

21

CHAPTER 1

Introduction

The need for information is increasing at an explosive rate. In order to increase
the availability of information, geographically dispersed information systems should be
integrated. In addition to providing information, information systems have the
responsibility of collecting, storing, retrieving and distributing the information.
Information systems are expected to provide a secure, reliable and efficient environment
to manage the information. In a computerized environment, information systems are
known as file systems. The Internet provides an integrated environment of
geographically dispersed file systems. Systems that manages these geographically
dispersed file systems are called distributed file systems.

Information can be stored and distributed using two different methods. In the first
method, information is stored at one place called a dedicated server. This method has
some disadvantages. Dedicated servers can become performance bottlenecks and the
information will no longer be available if the server fails. In the second method,
information is stored in the same file systems in which it is created. This overcomes most
of the disadvantages of the first method. This type of file system is called a network file
system.

In this paper, we present a prototype of a basic network file system called FINFS.
We make use of some concepts from the NFS [12, 21] model for FINFS. FINFS

provides user mobility and file mobility. In FINFS, access to remote files is given to

users on client machines by users on a server machine. FINFS is flexible in the following
ways:
1. Users on the client machine can access the remote files from any other machine
running FINFS.
2. Any remote file on a server can be transferred to any other machine
running FINFS.
3. A user can include any of his files in a remote list or delete a remote file from

that list directly, without the intervention of a superuser.

Chapter II discusses the need for a new DFS. Chapter III discusses issues
involved in designing a DFS. Chapter IV analyzes some of the existing DFSs with
respect to these design issues. Chapter V discusses the overview of the protocols.

Chapter VI discusses the implementation issues, and Chapter VII concludes the thesis.

CHAPTER II

Problem Statement

The distributed nature of a distributed file system (DFS) poses some unique
challenges in design and implementation. TCP/IP and UDP/IP protocols are used to
establish a connection between clients and servers. These communication protocols solve
the problems of establishing connections, transmission of data, error checking, etc.
Application software built using these protocols, like FINFS, manages the transactions
made by clients and servers. Some of the problems tackled by the application software
are heterogeneity, consistency of data, fault tolerance and user friendliness. A DFS may
contain different types of file systems. This type of DFS is called as heterogeneous file
system. Conversion of one format of file to another format is done by these DFSs.

IBM's SAA is a heterogeneous distributed file system used in the CICS environment [S].
A new distributed file system presented by Cheng et al. discusses a heterogeneous DFS
for MS-DOS[3]. Jade discusses a heterogeneous DFS for the Internet [14]. Since more
than one client may try to modify a file at the same time, consistency problems may arise.
Also, in a DFS environment all information about the client is lost in case of server crash.
The problems of consistency and fault tolerance have received much attention from early
designers of DFSs like Andrew [10, 13, 16], Coda {15, 16], and Locus [20].

The distributed nature causes special stress on user friendliness and flexibility in a
DFS. The problem of user friendliness includes three issues: location transparency,

location independence and user mobility.

1. Location Transparency: In any file system, a file is identified by its name and
its path from the root. In a DFS, in addition to these, the name of the file
system also has to be mentioned. This results in long names for remote files,
causing inconvenience to the user. Moreover, a location dependent name
may cause mapping problems when the file is renamed or relocated. To
tackle this problem in a global distributed file system GDFS, a unique name
is given to all remote sharable files. Also, renaming of a file locally is

possible. Most of the earlier DFSs have achieved location transparency.

2. Location Independence (File Migration): It is always useful to have
information as close as possible to the client [9]. Gavish et al., argue that
phenomenon of locality of reference applies to remote files, too [7]. In fact,
Gavish et al., argue that, in business application software there is a regular
pattern in which locality of reference varies. They consider an example of an
airplane flying from place 'A' to place 'B'. It can be observed that there are
more references made to a file containing information about the flight at 'A’ at
the time of departure and at 'B' at the time of arrival. To improve
performance, the file has to migrate from 'A' to 'B'. File migration is allowed
in very few DFS. Andrew supports file migration. NFS does not support

file migration. FINFS supports file migration.

3. User Mobility: File security is very important in a DFS. To make sure that
files are secure, accredition checking must be made for each access request
to a file. Servers maintain a list of legitimate clients and their access
permissions. A client is normally identified by its machine address. This ties
the user on the client machine to the machine. In some DFSs, such as Andrew

and Locus, user mobility is provided by identifying the user by his home

directory. In NFS, user mobility is not supported. In FINFS, user

mobility is supported.

In popular DFSs such as Andrew, Locus, and NFS, registration of a client,
creating a remote file or deleting a remote file are done by the superuser. This helps in
proper maintenance and unnecessary inclusion of remote files. For example, a client may
be trying to have remote access to one of his own files. In FINFS, a user registers all the
clients for his files and inclusion and deletion of remote files in the list is automatically
done by the software. Proper care is taken to avoid situations like the one mentioned
above. This makes the system user friendly and very much under user control.

In FINFS, providing access to remote directories is not allowed. In a UNIX
environment, a directory is a special type of file. Directories contain information about
the regular files belonging to the directory. In NFS[21], Andrew [13], Jade[14] and

Locus [20], remote access is provided to directories.

CHAPTER 111

Design Issues

3.1. Transparency

The aim of a DFS is to provide an environment similar to conventional file
systems; that is, the user should be allowed to access a remote file with the same set of
commands used to access a local file. For example, if a user is using the command /s to
list all of the files in a local directory, the same command /s should be able to list remote
files, too. This feature of a DFS is called rransparency. If both client and server are
running on UNIX-based machines, achieving transparency is much simpler than when
either one of them is not. In that case, a proper interface has to be designed for all UNIX
commands. Transparency can be achieved by supporting location transparency and
location independence.

Location transparency means that the name of a file should not reveal the
whereabouts of the file. For example, suppose that a file named 'filel’ is on machinel
and a user on machine2 wants to access that file. Then, if reference to that file is made by
referring to 'filel' we can say location transparency is achieved. If the file is referenced as
'machinel/filel' then location transparency is not achieved because the location of the file
is mentioned while referencing the file.

To achieve location transparency in a global distributed file system, all sharable
files in the network are given unique names. One exception is Prospero, where a sharable

file is allowed to be renamed, and that name is valid only locally. In NFS, for each

machine to which a user has access, a directory is maintained. All of the files in that
machine to which the user has mounting permission can be accessed as if accessing a file
in a local directory. FINFS attempts to achieve location transparency by allowing a client
to rename the file locally.

Location independence means that files are allowed to be relocated; that is, a
sharable file can move around within a network and still be accessed by the users who
have mounting permission to that file without being aware of the fact that the file has
been relocated. This is also called file mobility. The concept of file mobility makes a
system very flexible. Among the present DFSs, only Andrew supports the notion of file

mobility. FINFS also attempts to attain file mobility.

3.2. Fault Tolerance Issues

A fault in a system can be described as an event that reduces the performance of
the system and may bring the system to a grinding halt. Failure of either a client or a
server, or communication faults are examples of such events. In a DFS, faults are more
frequent because of the number of machines in the system and interactions between them.
Proper care should be taken to make a DFS fault tolerant. Failures of clients and servers
pose totally different kinds of problems.

Client Failure: The effect of a client crashing depends on the type of access to
remote files that is allowed in the system. If the status of a remote file access is
maintained by the server, then it is called stateful service. If it is maintained by the client,
it is called stateless service. For example, say that a remote file is being accessed. Then,
the whole file is not accessed at one time. The file may be accessed block by block. In
stateful service, after providing access to the first block, the server maintains the offset

into the file. In stateless service, the client maintains the offset.

In stateful service, if the client crashes after accessing the first page, and the
server learns about the crash, it can reset the status immediately. Usually, in stateful
service after accessing a page, the server sets a timer. If no reference is made to the file
within that time, the server resets the status automatically. In some DFSs, the server
makes a periodic check or checks whenever memory is short. This is called garbage
collection. If a DFS is large and serves many clients, garbage collection may be
expensive.

In stateless service, if a client crashes after accessing a file, no action needs to be
taken by the server because the status of the file is maintained by the client. One
disadvantage of stateless service is that a client cannot lock the file it is accessing to
prevent other users from accessing it. Hence, locking is always stateful. One other
disadvantage with the stateless service is that every time an access request is made to a
server, accreditation checks have to be performed by the server. This may resuit in
overloading the server. NFS successfully employs a stateless service. FINFS also
employ a stateless service. However, accreditation checks are made only the first time
when the file is accessed and whenever the access permissions are changed.

Server Failure: Server failures result in non-availability of remote files. This is
tackled by replicating files so that if a file server fails there is always another one with the
same file, and the client can automatically access the file from some other server.
However, maintaining consistency among all copies is a very complicated issue.

Communication faults can be controlled by reducing the number of interactions
made to access a file by caching more data with every access. Normally communication

faults are controlled by proper hardware design in lower layers of the network protocol.

3.3. Scalability Issues

The ability of a server to withstand fluctuations of load is called scalability.
Servers handling more than one client may act as a bottleneck. If a machine is a
dedicated server, it can be augmented with more than one CPU and more powerful CPUs.
But, increasing the number of resources like CPUs may not provide an adequate solution.
For example, in a DFS like NFS, a server can also be a client. Moreover, using more
resources can result in under utilization of resources. The best way to tackle this problem
is by minimizing the amount of interaction between the machines. For example, in a
stateful service, a client has to periodically interact with the server just to reset the timer
which increases the network traffic. A proper design of a DFS also helps in reducing the
load on the server. By providing symmetry to the system (by distributing the servers
throughout the network, instead of using a single dedicated server), scalability can be
improved. By identifying the set of machines which have a larger number of interactions
and providing an exclusive server for that group (known as a cluster), the load can be
balanced. For example, all machines in a LAN can be clustered together because they

interact more with other machines in the LAN.

3.4. Concurrency Issues

In a DFS there might be more than one access request for a remote file. There are
three policies in use to tackle this situation. The first policy is to make all sharable files
immutable; that is, provide only read-only files. Cedar is an example of such a file
system [8]. The second policy is to provide a locking mechanism, so that a client can
lock the file as soon as it has been accessed. This results in a queue being formed outside
of the file. Each access provides the user at the head of the queue with the most recent

version of the file. Since there is a queue formed, there may be delays in accessing the

10

file which makes the system non-transparent. The third policy is to use the UNIX
semantics of sharing. Here, any number of users can be provided with a copy of the
remote file. Whenever changes made in the copy are saved they are saved in the master
copy also. This does not guarantee strong consistency when remote files are accessed
concurrently. Most of the DFSs follow UNIX semantics or a variation. Locking is
popular among databases, and immutable files are used in sites which are used for sharing

information. FINFS also follows the UNIX semantics.

CHAPTER IV
Overview of Existing Systems

This chapter gives an overview of some noteworthy DFSs which are very popular

and widely used. All DFSs mentioned here are analyzed with reference to the design

1ssues discussed earlier.

4.1 Andrew

Andrew is a huge DFS developed at Carnegie-Melon University [10, 13, 16]. It
consists of dedicated servers serving clusters of clients which are usually workstations.
Elaborate techniques are employed to provide location independence to the files and to
minimize the network traffic.

Remote files are given network-wide unique names and their location is stored in
a database called the Location Database. The Location Database is replicated on all
servers in the network. This increases the availability of the Location Database. The
names of the files are location transparent because they are unique. Each sharable file is
given a file id fid, similar to a UNIX i-node, which is used as the physical address of the
file. Fids have location independence; that is, a file can be relocated and each time it gets
relocated, the present location of the file gets updated in the Location Database. If several
clients are accessing a remote file concurrently, and if one of them changes the location

of the files, then all write-backs after the relocation of the file are sent to the new location.

11

12

To minimize the network traffic and improve the scalability, a whole file caching
technique is used. Whenever a file is accessed, the whole file is cached onto the local
machine. Then, during write-back, the whole file is transferred to the server. As a result
of whole file caching, clients interact with the servers only during opening and closing of
files. If a cached file is not modified, then even that is not necessary during closing of a
file. This key feature improves the performance of the whole system dramatically. Also,
this makes implementing UNIX semantics of sharing simpler. However, if a file is
concurrently accessed by more than one client, then all of the clients are informed about
the modification. Remote service is a stateful service because whenever an access is
made to a file, the status of the file is logged. This helps in keeping track of all clients
who have accessed a particular file and to inform them in case that file is modified.

User mobility is provided. User can access any file from any workstation.
Protection of files is provided by providing accreditation lists. The client-server
communication is implemented using off-the-shelf packages such as RPC [2]. Hence,

Andrew is portable and supports heterogeneity by providing a very good interface.
4.2 Locus

Locus is a DFS developed at UCLA [20]. It consists of dedicated servers serving
clients which are on workstations and mainframes connected by an Ethernet. Fault
tolerance and performance issues are emphasized in Locus.

Files in Locus are replicated and distributed to servers situated at different
locations in the network. This is done mainly to improve the availability of files.
Whenever a file is opened, a client sees the local copy. However, when a file is modified,
the primary copy is updated, and all servers are informed about the modification. File

replication also helps in case of server failure.

13

To improve performance, the client-server communication is tuned by designing
specialized remote action protocols instead of using off-the-shelf packages like RPC [2].
These protocols are built as a part of the kernel instead of providing a layer above the
kernel. This hampers portability and heterogeneity in Locus.

By using networkwide unique names to sharable files. location transparency is
provided. In Locus, clients are called Using Sites (US) and servers are called Selected
Sites (SS). A third entity which connects a SS to a US is called a Currently Synchronized
Site (CSS). A typical request from a US for accessing a remote file is made to a CSS
which finds the SS using the mount table maintained by the server and establishes
communication between the US and the SS. Also, the CSS maintains a list of all
remotely assessable files. Hence, at least one CSS should be accessible from each site.
and all remote transactions from that site must pass through it. This may result in a CSS
becoming a bottleneck. This hampers the scalability of Locus. Communication between
the primary copy and the local copy during modification may result in an increase in
network traffic.

Locus, in addition to using the UNIX semantics of sharing, provides locking for
concurrency control, if required. Fault tolerance issues are emphasized by replication of
files. Consistency is maintained by atomic broadcasting of modifications to all copies.
Recovery of a server after failure is simple, as it simply has to copy all files from the

primary copy to get the most recent version of the files.

4.3 Network File System

NFS is one of the most commercially successful DFS developed by Sun
Microsystems Inc. [12, 21]. The best feature of NFS is that any pair of machines is

allowed to share their files. In other DFSs, sharing of files is only between a client and a

14

dedicated server. Kernel to kernel communication is implemented by using the TCP/IP
protocol.

As explained earlier, remote access of files is performed in three stages:
advertising, registering and session. Remote files are accessed transparently by using a
mounting technique. However, while registering, the transaction is not transparent; that is.
while registering, the physical address of the file is used to identify the file. Once
registering is over, clients can rename the file locally and any reference to that file is done
by using the local name. This is achieved by having a mount table consisting of
mounting points. Mounting points are nothing but the location and real name of files to
which a client has access permission. File protection is given at the user level; that is, the
least addressable unit in the network is a user, instead of a workstation, which may be
used by more than one user. However, a superuser of the machine maintains the
mounting table for all the users who can log onto that workstation. In addition to the
local files, a machine can give mounting permission to remote files to which it has
mounting permission. This is called cascading mounts. However, having access to a
remote file system does not imply access to all the other file system to which the other
machine has mounting permission. In fact, a user who has mounting permission to a
remote file system can see those files to which he has mounting permission and not other
files in that file system. In NFS, sharable files are not allowed to be relocated. If they are
relocated or renamed, all of the clients are required to obtain new access permissions.
This means that location independence of files is not supported.

As mentioned earlier, NFS maintains a stateless service and hence it does not
provide any concurrency control. Only the UNIX semantics of sharing are supported.
However, instead of caching a whole file, a file is accessed page by page. After every
access, the file offset is maintained by the client. Since sharing is allowed between any
pair of machines, the system is fairly symmetric. Theoretically, there are no bottlenecks.

This feature improves the scalability of the system.

15

Sun NFS is highly successful, heterogeneous, reliable, and a de facro standard

commercially.

4.4. Prospero

Prospero is a revolutionary DFS developed at the University of Washington [4].
In addition to transparent access to remote files, emphasis is given to file and information
organization. It consists of dedicated servers which are viewed as archives of
information, serving a number of clients. The FTP sites in the Internet are integrated to
form these archives.

Location transparency is provided by allowing the user to rename a file in an
archive locally. A notion of user centered naming is used in naming a file. This helps in
minimizing the confusion created by the global organization of files. This is achieved by
allowing the user to create his own view of an archive. A user can create his own
directories and include any file in that directory, and can access it through that directory.
For example, user A may want to include a file which has information about a DFS in a
directory called "network" whereas user B may include that in a directory cailed
"distributed database". In addition to this to help a user organize files, the user is allowed
to see another user's view of the archive. These are achieved by providing virtual links to
the archive files. Hence, the name Virtual File System (VFS) is used. This also helps in
achieving transparency. Typically, a link specifies the name of the host, the real name of
the file and the local name to which it will be renamed. Real names are made
networkwide unique by adding closures to the real name which are normally the location
of the file. Once the link has been established, a reference to a local file name is mapped
onto the real name and a query is made to the Prospero directory server which has the

location of all files. Then, contact is made to that location.

16

Further, to help users in organizing files, some tools called filters are provided.
For example, a filter of type Distribute helps in distributing files depending on some
parameter mentioned by the user and Union helps in grouping together the files that are
logically related.

Prospero, unlike other DFSs, instead of creating and storing data helps in
organizing the available data. Prospero is highly heterogeneous and has a very good

interface with Andrew and NFS.

CHAPTER YV

Overview

This section briefly describes an overview and the implementation of FINFS. As
in NFS, FINFS also has three stages in creating and accessing a remote file:

1. Advertising, 2. Registering, and 3. Session.

5.1. Advertising

As in NFS, a user (server) who has a sharable file, sends a message to the users
(clients) with whom he would like to share it. The name of a sharable file is derived from
the file creator's address and the time of creation. A user can advertise only those files
which are presently resident on his machine. A user cannot advertise those files to which
he has access through mounting. An advertisement consists of the following:

1. Sender's machine address,

2. Name of the file he is advertising, and

3. Type of access mode provided.

Advertise (file, mode)
Client Server

Fig 1. Advertisement

17

18

5.2. Registering

Clients who received the message will send a request for registering to the server.
A request consists of the following:
1. Client's machine address, and

2. File name of the file he is requesting to access.

Before sending the registering request, the client is requested to rename the file
locally. The client will refer to the file only by that local name in the future. At no point
during the transaction is the network name of the file revealed either to the user on the
server machine or to the user on the client machine. This not only helps in achieving

location transparency, but also in hiding the network name of the file through which the
file is accessed.

Register(file, mode)

Client Server
Permit (file, mode)

Fig 2. Registration.

After receiving the request, the server creates a mounting point. This includes
setting the following parameters:

1. Local name of the file,

2. Client's address,

3. Access mode for the file,

4, Address of file creator, and

5. Network name of the file.

19

Finally, an acknowledgment of registration is sent to the client. On receipt of the
acknowledgment, the client creates its own remote mounting point. This includes setting
the following parameters:

1. Local name of the file,

2. Access mode to the file,

3. Present location of the file,

4. Location of the creator, and

5. Network name of the file.

5.3. Session

A reference to a remote file is made by the client. When referring to a remote file,
a user uses to the local name. The local name is mapped onto the network name of the
file and the present location of the file. A request for a session is made to the server. The
server tries to locate the file in its file system. If it fails to locate the file, it returns a
NOFILE message to the client. If a file is found, the server checks the access request
made by the client for that session and the access permission, and provides access if the
request is legitimate. If not, the server denies access to the file. The server provides the

port number of the file server to the client. For the rest of the session, the client

Session Request

Client Server
Permit Session

One Block of File

File Server

Access Request

Fig 3. Session

20

communicates only with the file server. When a request is made, the file server checks
the offset sent by the client (which is typically zero on the first request) and copies the
file into a buffer from that point onwards until either EOF is reached or the buffer is full.
If the buffer is full, it updates the offset, otherwise it sets the offset to -1. Throughout the
transaction, the offset is maintained by the client. The file server responds to any number

of requests from a client.
5.4 User Mobility

The user mobility is achieved as shown in Figure 4. The client, first contacts his
machine and provides the password to his server. In addition to the password, the user

has to mention the local name of the file he wishes to access. The client verifies the

Session

Current j. Server

Permit

pd

User Mobility

File Block

Client File Server

Fig 4. User Mobility

21

password. If it is legitimate, it provides the network name of the file and its present
location to the current machine. Current machine than onwards can contact the present
location of the file and access the file as if it has the access permission to that file through
out that session. Other than providing the password to his machine, to the user of the

client machine, the whole transaction is transparent.

5.5 File Mobility

File mobility or location independence is achieved as shown in the Figure 5. A
client can access a file as long as the file resides on the server. Now, say, a server wants
to transfer the file to a new server. The server sends a message to the new server about its

intention of transferring the file. If the new server accepts, the server transfer the

NOFILE
Client Server
Session
Transfer (file)
Session
Update
(Client)
Update
Creator New Server
(Creator)

Fig 5. File Mobility

whole file to the new server. Then, the server transfers the part of the mounting table
related to that file to the new server. Then, the server updates the whereabouts of the file

to the creator of that file. After the file has been transferred, a client may want to access

22

the file. Since the client is unaware of the file being transferred, the client sends an
access request to the old server. The server will not be able to map the network name of
that file to any of its local files. Hence, it will send back a NOFILE message to the client.
A client that receives a NOFILE message determines the creator of the file, and sends a
request for an update of the present location of the file to the creator. The creator looks
into its updated table and provides the present location of the file, in this case the new
server, to the client. Then, the client can access the file from the new server. Also, the
client updates the present location of the file so that it can contact the new server directly
to access the file in future. To the users on the creator, server , client, and the new server

machines, the whole transaction is transparent.

CHAPTER VI
Implementation Issues
6.1 Platform

The above protocols were implemented on UNIX-based machines connected to
the Internet using the Berkley sockets application program interface (API). The UNIX-
based machines that were used include a SEQUENT S-81 multiprocessor machine with
the Internet address 'a.cs.okstate.edu’, and two VAX machines with Internet addresses of
'unx.ucc.okstate.edu’ and 'osuunx.ucc.okstate.edu' here at Oklahoma State University.

The above protocols could be implemented using other APIs.
6.2 Connection-oriented vs. Connectionless Service

The above protocols were implemented using UDP/IP protocols. Choice of a
connectionless service is intentional. Even though, it is common to use a connection-
oriented service for file transfer applications [19], a connectionless service is used due to
the virrual nature of the transactions; that is, instead of transferring a file as one stream,
in FINFS it is transferred page by page. However, to maintain reliability,
acknowledgments are sent on receipt of a page or message. This helps in reducing the
overhead cost of maintaining a permanent connection between the machines. To
minimize the file handling and load on the network, access request were made only

whenever the client machine doesn't find the required portion of the file in its cache. A

23

24

user may need only the first page of a large file. In that case, accessing only that page
instead of the whole file is more economical. If the user needs the second page, it can be
accessed. But the first page is cached in the client machine so that if the user refers to the
first page again in the future it will not need to be accessed again over the network. In the
same way, a whole file can be cached only if it is required. In short, a server holding the
remote file acts as a virtual memory once the session starts. This technique of accessing
pages of a file only whenever they are required is called /azy caching. Since there is no
fixed interval of time between the access requests, maintaining a connection between the

machines when it is not in use may be less economical.

6.3. Naming

Naming of a file plays an important role in a distributed file system. The whole
idea of naming a file is to generate a name for a file which is unique throughout the file
system. Having a unique logical name for each file in a file system helps in reducing
ambiguity in mapping a logical name to the physical location of the file. The
conventional file system residing on a single machine also guarantees a unique file name
for each file residing in it. This is achieved by identifying each file by its name and its
path. Borrowing the same idea, even in a DFS a unique name can be guaranteed by
identifying a file by its name, its path name and the location of the machine; that is, the
Internet address of the machine. But the features of location transparency and location
independence in a DFS pose new challenges in naming a file.

There are four methods of naming a file. Three methods of naming a file are
mentioned in [1].

The first method is a simple method of forming a name of a file with some

combination of host name and the local name of the file. Even though this guarantees a

25

networkwide unique name, it is neither location transparent nor location independent
[12].

In the second method, to overcome the above problem, in some systems, a
networkwide unique name which is not dependent on the file's location is provided. Even
though this is helpful in achieving location transparency, generating a unique name for
each file is a difficult task [1]. Especially for system files which are present on all the
machines, providing an unique name is very difficult.

NFS follows a new approach of creating a separate directory for each remote file,
depending on the location of the machine in which the file is actually residing. All
remote files residing on the same machine, can be grouped together in one directory. All
files in that directory can be accessed by their name and path in that directory. To the
user, accessing the remote directory is no different from accessing any of a local
directory. This method is location transparent. The disadvantage of using this method is
higher administrative cost and less flexibility as a remote file can be accessed only
through a particular directory.

The fourth classic method is called renaming [4]. In this method, a remote file
having a networkwide unique name is allowed to be renamed locally by the user of the
local machine. This file is always accessed using the local name only. The machine
maintains a table of which local files reside on which remote machine. This method is
transparent and flexible as the renamed files can be moved to other local directories like
any other local files. The disadvantage of this method is higher administrative cost.

In FINFS, a slightly modified version of the renaming method, proposed by
Prospero [4], is employed. The inherent problem with renaming is that the files are not
location independent. Location independence feature of a DFS pose a new challenge.
Say, a file 'A' residing on 'machine A' has a network name of 'A/machine A'. Say,
'machine B' has remote access to this file. Then, 'machine B' can access that file by the

name 'A/machine A'. Now suppose that, file 'A' has been transferred to another machine

26

'machine C' and 'machine A' creates another file with the same name 'A'. The new file
have a network name of 'A/machine A'. Now. 'machine B' automatically has remote
access to the new file to which it is not supposed to have access. To overcome this
problem, in FINFS, in addition to the location of the file being attached to the local name
of the file to form the network name, the creation time of the file is also attached. Even
Apollo Domain uses time stamping as part of the name of a file [11]. If the above
situation arises in FINFS, the network names of the old file 'A' and new file 'A' would be
different. The access request for file 'A’ from machine 'B' after the transfer of old file 'A’
would be invalid. As in Prospero, clients are allowed to rename remote files [4]. A
typical network name for a file in FINFS would be 'local name/path name/Internet
address/time of creation'. Change of location of a file does not change its network name;
that is, the network name always contains the local name it had at the time of its creation
and the Internet address of the creator. Renaming of a file only changes the local name to
which this network name is mapped onto locally in that particular machine. The 'Internet
address' and 'time of creation’ part of the network name has no significance, other than
making it unique throughout the file system. The present location of a remote file is
always saved along with its local name and network name. When a reference to a local
name of a remote file is made in addition to the network name its mapped on to the
present location also. The disadvantage of this method is a higher administrative cost for
keeping track of the present address of each remote file. But the advantages of a flexible,

transparent and location independent file server, clearly outweigh the disadvantage.
6.4 Mounting

A mounting technique is used by NFS[21, 12], Andrew [13, 16}, Locus [20] file
systems. Mounting can be achieved by accessing mounting points. A mounting point

provides an entry to another file system. A mounting point, should contain at least the

27

local name of the file, the network name of the file and the location of the file. It maps
the local name to the network name and to the present location. In addition to these. a
mounting point can store other information also. In FINFS, a mounting point stores the
mode of accessing, and the creator's location. A list of all such mounting points is called
a mounting table. In a mounting table, all entries can be grouped either according to the
file name or location name. On the server side, where the file resides, a mounting table
can be grouped according to the file name. On the client side, all files residing at the
same place can be grouped together. This helps to improve the performance of accessing
mounting points in large servers and clients. Since FINFS is a network file system, with
a separate mounting table provided for each user, it was assumed that the number of files
to which each user has remote access is small. Hence, in FINFS the mounting point
entries are created when the file is created.

In FINFS the mounting table is stored in a hidden file. Separate files for server
side mounting points and client side mounting points are maintained. Saving the

mounting points in a file helps in preserving them in case of a crash.

6.5 Stateless Service

A stateless server is one which is not aware of a client being active or not. As
mentioned earlier, if a server maintains the offset of a file which has been accessed from a
client, then that server is a stateful server. A server can be a stateful server even if the
client maintains the offset. For example, if a server creates a separate file server when it
provides access permission to a remote client, and terminates it when the transaction is
completed, then it is stateful server. In the above example, even though the client
maintains the offset, the file server waits for an end of transaction indication from the
client to terminate. In case of a client crashing before sending the end of transaction

indication, there is no way the file server can terminate. So, the server has to periodically

28

check, and terminate all file servers which are not active. In short, it has to do garbage
collection as in stateful service. Hence, this type of a server is also a stateful server.

To overcome the above problem, a truly stateless server processes all requests. A
file server running in the background processes all file handling requests from all clients.
This technique is helpful in off loading the server and eliminating the accredition

checking each time a client accesses the file.

6.6 Security

Security is required to prevent either an illegitimate user from accessing a file or a
legitimate user accessing a file with an illegitimate mode. This helps in ensuring the
consistency and integrity of the file system. In FINFS, the network name is hidden. At
no point of time is the network name of a file revealed to the user. The files containing
network names of files, like the mounting table and location table are hidden and hence, it
can not be tampered. However, if a user wants to know to what files and what mode he
has access to, a separate command 'rls' is provided to list remote files. Creation of a
network name for a file by a user is also difficult, as networks names are formed by the
combining the file creator's location and the file's time of creation which are not revealed
to the user.

To prevent users from accessing a file with an illegitimate mode, the server
checks the mode of accessing before providing access permission. If its an illegitimate

mode, the server sends a DENY message.

CHAPTER V11

Conclusion

7.1 Summary

A DFS is created by integrating file systems on different machines over a
geographical area. Presently only the Andrew file system has made an attempt to allow
file mobility [13, 16]. FINFS makes an attempt to provide file mobility. Further, to
make the system more flexible, an attempt is made to provide user mobility. FINFS
identifies a file's owner as the ultimate authority to provide remote access to his files. By
bringing the control down to the user level, the system is more flexible and more under
the user's control.

The main goal of FINFS is to achieve user mobility and file mobility. User
mobility is achieved by identifying a user by his password. File mobility is achieved by
transferring a file to other machine and updating the present location of the file with the
creator. Transactions other than advertising and registering are transparent.

FINFS is implemented on UNIX-based machines using Berkley sockets. Itisa
stateless, virtual, fault tolerant and reliable file system, and uses the UNIX semantics of
sharing.

Finally, the features of FINFS can be summarized with respect to the following

issues:

29

1. Scalability : FINFS is a symmetric network file system. It prevents any
concentration of load at any point.

2. Concurrency: FINFS allows concurrent access of a file.

3. Sharing Semantics : FINFS supports the UNIX semantics of sharing; that
is, the most recent modification of a file is stored. This may lead to some
consistency problems when files are accessed concurrently. For example, if
two users access the first page of a file and if one of them modifies it, the
other will only have the older version.

4. Fault Tolerance : FINFS is a stateless server. Performance of the server is not
affected if a client crashes. However, in case of server crash, files are not
available as no replication of the files is performed. A client tries to contact
the server at increasing intervals of time. After trying for certain number of
times, the client prompts the user about the unavailability of the server. To
minimize the risk of losing the information about the mounting points, in
case of a crash, update is made to a temporary file and then that file is
renamed. In case of file transfer (file mobility), after the creator is
informed about the location of the file, the server updates its mounting points.

5. Transparency : The main goal of FINFS is to achieve transparency and
flexibility. Transparency is achieved by allowing the user to rename a remote
file. Other than advertising, registering and transfering files, all other
transactions are transparent. For user mobility, a user has to provide his
password to access his own files or remote files from other than his machine.

6. Flexibility : FINFS is a very flexible file system. All remote transactions are
the under the user's control. A user can provide remote access to his files to
other users and remove any remote access to others any time he wants.
Unlike NFS, intervention by the superuser is not required.

7. Speed and Reliability : Speed of accessing a remote file mainly depends on

31

the network communication speed on which FINFS does not have any control.
The speed also depends on the block size used to fetch the information from
the remote machine. In addition to that, since in FINFS, all of the information
about the mounting points, registration requests and location table are not
cached. This helps in preventing loss of information in case of machine
failure. However, this introduces a delay in file seeking every time an access
request or registration request made. No advance caching is done by the file
server. Every time a file is accessed, the file server seeks that file and copies
the required portion of the file. Even though these features causes delay, these

are necessary to maintain a fault tolerant and stateless server.

FINFS is a highly reliable file system. It is fault tolerant. No users have access to
the mounting table or location table. This prevents users from tampering with it. To
prevent misuse, the access mode provided and the access mode a user requesting is
checked before providing the access. No user can have two access points to a single file.
If a user tries to advertise the same file to the same client a second time, FINFS prompts
the user. A file which is not resident cannot be advertised. These features ensure that
only legitimate users can access the files and nobody else can access the files without the

knowledge of the server.

7.2 Scope of Future Work

Presently, in FINFS access is only allowed for regular files. This can be extended
to directories, block special, and character special files. Transparency can be improved
by installing the software into a file system. Also, FINFS can be implemented as a utility
on any UNIX machine by reserving ports for the file server and distributing the messages

received depending upon the login name. Error handling features, such as checking disk

32

space availability before transferring the file to the receiving machine, can be done.
Presently, FINFS supports ASCII files only. In the future this can be extended to binary

files as well.

10.

Barak, A., Malki, D., Wheeler, R., "AFS, BFS, CFS ... or Distributed File Systems for
UNIX", Users Group Conference Proceedings, 461-472, Sept. 1986.

Birrel, A.D., Nelson, J.B., "Implementing remote procedure calls", ACM
Transactions on Computer Systems, 2(1):39-59, Feb. 1984.

Cheng, H., Sheu, J., "Design and implementation of a distributed file system",
Software: Practice & Experience, 21(7): 657-675, Jul. 1991.

Clifford, N. B., "The Prospero file system based on the virtual system model",
Computing Systems, 5(4): 407-430, Fall 1992.

Deinhart, K., "SAA distributed file access to the CICS environment", IBM Systems
Journal, 31(3): 516-534, 1992.

Comer, D. E., Stevens, D. L. "Internetworking with TCP/IP", Prentice Hall Inc.,
1993.

Gavish, B., Liu, S., Olivia, R., "Dynamic file migration in distributed computer
systems", Communications of the ACM, 33(2): 177-189, Feb. 1990.

Gifford, D.K., Needham, R.M., Schroeder, M.D., "The Cedar File System",
Communications of the ACM, 31(3), 288-98, Mar. 1988

Goscinski, A., Beaton, K., "A simple distributed computer system for supporting
collaboration in distant and synchronous meetings", Computers in Industry, 12(7): 95-

106, May 1989.
Kerr, S., "IBM's NFS alternative (Andrew File System)", Datamation, 34(35): 63-65,

Jan. 1, 1989.

33

11

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.

34

Leach, P. J., Stump, B. L., Hamilton, J. A., Levine, P. H., "UIDs as internal names in
a distributed file system", Proceedings of the 1st Symposium on Principles of
Distributed Computing of ACM, 34-41, Aug. 1982,

Levy, E., Silberschatz, A., "Distributed file systems : Concepts and examples", ACM
Computing Surveys, 22(4):321-374, Dec. 1990.

Morris, J. H., Sathyanarayanan, M., Conner, M. H., Howard, J. H., Rosenthal,

D. S. H., and Smith, F. D., "Andrew: A distributed personal computing environment",
Communications of ACM, 29(3):184-201, Mar. 1986.

Rao, C. H., Peterson, L. L., "Accessing File in an Internet: Jade File System", IEEE
Transactions on Software Engineering, 19 (6): Jun. 1993.

Sathyanarayanan, M., "Disconnected operation in the Coda File System", ACM
Transactions on Computer Systems, 10(1): 3-25, Feb. 1992.

Sathyanarayan, M., "Scalable, secure, and highly available distributed file access
(Andrew and Coda)", Computer 23(2): 9-18, May 1990.

Stevens, R. W., "UNIX Network Programming", Prentice Hall Inc., 1990.
Svobodova, L., "File servers for network-based distributed systems", Computing
Surveys, 16(7): 353-398, Dec. 1984.

Tanenbaum, S. A., "Computer Networks", second edition, Prentice Hall Inc., 1988.
Walker, B., Popek, J., English, R., Kline, C., Thiel, G. "The LOCUS distributed
operating system". ACM SIGOPS, operating system review, 17(5):49-70, Oct. 1983.
Walsh, D., Lyon, R., Sager, G., "Overview of the Sun Network File System",

Proceedings of the Usenix Winter Conference (Dallas Texas), 117-124, 1985.

APPENDIX A

GLOSSARY

35

A client is a process that requests a service from some other process.

A Distributed File System (DFS) consists of a number of file systems located on
geographically distributed machines. A DFS manages remote sharable files.

A dedicated server is a server which is used only for storing and retrieving information.
A file is a data structure that is used for long term storage of data.

A file server is a server that provides access to requested files.

A file system is the part of the operating system that control access to a collection of files.
A Global Distributed File System (GDFS) is a type of distributed file system in which a
file is identified by a unique name throughout the network.

A Network File System (NFS) is a type of distributed file system in which a machine can
be both server and client.

A remote file for a machine is a file that is not situated on the same machine.

A server is a process that provides a service to a client when a request is made.

A shared file is a file which can be shared by more than one user.

36

APPENDIX B

SOURCE CODE

/*

REBEREEREEIRAEEE SR SRR RE SRS R R RS SRR AR SRR R R RS SRR R R A ERE R SR SR NS R RSB R

* File: Defs.h
Include file: limits.h.

*
*
*
*

Contains definitions of some of the variables used in FINFS.

(R EEREERER LB SR ERREE SRS RS E R R SRR R RS S SN A F R Rk R E R R kR ks

*

#include <limits.h>

/* Transaction requests varibles. */

1
—

#define DENY

#define ADVERTISE
#define REGISTER
#define PERMITED
#define SESSION

#define ACCESS

#define NOFILE

#define CLOSE

#define USER_MOBIL
#define FILE_MOBIL
#define UPDATE_PRESENT
#define DELETE

#define SERV_PRESENT

ﬁg ég ORIV EWN O

#define ERROR -1
#define SUCCESS 1

/* Message size declarations. */
#define MAXLINE 512

#define PACKSIZE 500

#define ACKSIZE 100
#define FILESIZE 3300
#define TIME_INTERVAL 10

#define MAX_RESEND 5

/* Limit for number of characters
for password. */

/* for access deny. */

/* for advertising. */

/* for registration. */

/* for access permission. */

/* for a session request. */

/* for permitting an access. */

/* If no file is present. */

/* To write back a file. */

/* For user mobility request. */
/* For transfering a file. */

/* To update location of a file. */
/* Deletion of a mounting point. */
/* Request for present location

of a file. */

/* To indicate failure. */
/* To indicate a success. */

/* Max acknowledgement size. */
/* To transfer a file. */

/* Time interval between sending
message and receiving ack. */

char PASWORD[PASS_MAX];

38

39

/*

(3222 PR R RS AR 2 R R E PR E R R R RS R SRR A R R R AR R R 2 R SRR R LY YL
* File: Headers.h

*

* Contains standard include files which are used in FINFS.

»*

SRS R AR X ERBRERRERRE SR X RS E R AR R R RS R R RS R RR B AR R LR R SRR EER R AR R LSRR E R SRR SRR RS

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in . h>
#include <netdb.h>

/%
EREEEEERERE R R R RS R RE R R R R R ER R AR AR R R RN Rk Rk

*

* File: Structures.h.

*

* Contains declarations of structuress used through out FINFS.
x

XX R RSB RS R R SRR RS S PR E R SRR SRR R R R R R Rk ke h kR ke k kK

*/

} F_NODE;

typedef struct Package {
int header; /* Contains transaction request. */
int owner_port; /* Owners port. */
int toport; /* Clients port. */
int present_port; /* File's present location port. */
char local[30]; /* Local name of the file. */
char rlocal[30]; /* Clients name of the file. */
char network([801]; /* Network name of the file. */
char owner[30]; /* Owner's address. */
char present[30]; /* Present address of the file. */
char toa[30]; /* Client's address. */
char permissions{4]; /* Access permission for a file. */
char passwd[9]; /* Password used during user mobility*/
char request[4]; /* Session access mode. */
char login[50]; /* Server's login. */
struct Package *next;
} Package;

/* Structure for transfering a file. */

typedef struct fnode {
int header;
int client_port;
int server_port;
long offset; /* Offset of an accessed file. */
int index;
char request{4}];
char client{40];
char server[40];
char network[80];
char local[80];
char mesg[10]{1007;
struct fnode *prev;
struct fnode *next;

40

41

/‘

RERREEEERE R SRR R R R SRR E R BB B R R SRR R R R R Rk Rk ke h Rk Rk bk Rk kR &
*

* File: Sys.h.

*

* Contains system dependant variables.

*

PR RS S S S 2R RS2 RS RS 2222 222222 R R R 2R R R s R SR R R R R R R R st

*/

#define SERV_UDP_PORT 6464

*/

#define FILE_CLI_PORT 6664

#define FILE_SERV_PORT 6767

#define FILE_MOBIL_PORT 6868

#define FILE_MOBIL_SERV_PORT 6768

#define ACK_PORT 8887

#define SELF_NAME "a.cs.okstate.edu”

#define LOGIN "mojnida”

/* Address server's port.

/* client's file port. */

/* File server's port. */

/* Client's file mobile port. */

/* Server's file mobile port. */

/* Port for acknowledgements. */

/* Self Internet address. */
/* Selflogin name. */

/‘

A2 A2 R R A R RS e Rt e P R R e P e T T T e T)
*

* File: UtiL.h.

* Include files: Nil.

* Functions: prmesg, erro_dump.

*r

* Contains message printing functions.

*

a2t 22 2 22 2 2 222 222 S P 2t i il Pt a2 d it ittt Y]]

*/

IAd

RRER R R AR E R R R SRR R ke bk kR kR h ok kk kb kxR ko k

Function to print a message.
Rk R AR b kR kEE ek R kR kR kR kR Rk kR kR kR kR kR

*/

prmesg (s, mesg)
char s[];
char mesg(];

{
fprintf (stderr, "\n\n%s\n%s\n\n", s, mesg);

/*

PRI S22 P22 2P R Rt 22 i 22 Rt 12 R 2t 2222 i 2ttt ittt

Function to print message and exit.
Wk ol e o o a2 ol i ol e o ool o o ol o o o oo o e e e o oo e e e ok ok oo ok ok ok o ok ok ok

*/

erro_dump (s)

char s}

{
fprintf(stderr, "%s", s);
exit(1);

42

43

1*

RS BAEE RS RSB AR R SRS SRR R R AR SRS R AR AR AR SR RIS RES SR NSRS R R Rk E

File: server.h
Include Files: Nil.
Functions: server.

* # & # % *

Contains function for binding a server to a port.
¥R bR AR RSB N SRR USSR SRS A SRS R SRS LR RS SRR R SRR SRR S ek ke

*/

/t

LR I3RS RS R R R RSS2 R R R RS R R R R R RS R 2R 2 2222 R iR Rt i i i it lsy]
*

* Function to bind a socket to a port and returns a socket.

*

SRR E XSRS SRR R AR R R B S E RS R R R R RS SRR R R ARk RNk n Rk bk k Rk k ke k ks akk ik

*/

server(SELF_PORT)

int SELF_PORT;

{
int sock;
struct sockaddr_in serv_addr;

if ((sock = socket (AF_INET, SOCK_DGRAM, 0)) <0)
erro_dump("server:can't open datagram socket"),

serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl (INADDR_ANY);
serv_addr.sin_port = htons (SELF_PORT);

if (bind (sock, (struct sockaddr *)

&serv_addr, sizeof (serv_addr)) < 0){
printf ("Port Number: %d\n", SELF_PORT);
erro_dump ("Server: Can't bind local address.");

}

return (sock);

44

/#

R L 2t RS R R R L L R P P P P P TR P I PP e Y P TTIi it
* FILE : clientc

* Include Files: singal.h

* Functions: client, shakehand,

* resend, send_ack, client_ack.

*

* Handles all client transactions.

*

R R AL 22t 2R R LRSS R R R 22 R Rt it TSI R R s i s R eyt

*/

#include <signal.h>

void Resend(); /* Function for resending the package. */

struct sockaddr_in serv_addr, cli_addr; /* Server and client addr. */

int sockc, sockserv; /* Sockets. */

char sendline [FILESIZE + ACKSIZE]; /* String containing message. */

int Timeout, resend; /* Variables for inter message time interval
and number of times to send the message.

*/

/#

ER RS PRSI LS RS R R R R e R R e S R R LR e et e R R s L]

Function to format the messge and sending it.
EEEXS RS RS RS AR RS F R SRR R E R RS R R RS Rk kR R Rk kg R Rk kR ko bk ok ok

*/
client (char HostName(], int PortNum,char cpack[], int size)
{
struct hostent *hp, *gethostbyname();
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(PortNum);
sethostent(0);

if ((hp = gethostbyname (HostName)) == 0)
erro_dump("Client: Can't find host.\n");

memcpy(&serv_addr.sin_addr, hp->h_addr, hp->h_length),
/* Socket for sending the message. */

if ((sockc = socket (AF_INET, SOCK_DGRAM, 0)) <0)
erro_dump ("Client: can't open datagram socket.\n"),

cli_addr.sin_family = AF_INET;
cli_addr.sin_addr.s_addr = hton}(INADDR_ANY);,
cli_addr.sin_port = htons(0),

if (bind (sockc, (struct sockaddr *) &cli_addr, sizeof (cli_addr)) < 0)
erro_dump ("Client: Can't bind local address.\n");

Timeout = TIME_INTERVAL; /* TIME INTERVAL defined in Defs.h. */
resend = 0;

sockserv = server (ACK_PORT); /* Bind a server to recieve ack. */

sprintf (sendline, "%d %s %s", ACK_PORT, SELF_NAME, cpack);

shakehand(); /* Function to send the messge and recieve ack. */

close (sockc);
close (sockserv);
return (SUCCESS);
}
/#

306200 20 o 200 2 200 200200 o 2 2 e ol s o 2k 2 3K o 20030030k e ke o o o o o ok ol e e oo o ol o o o a0 a6 o a0 300 o a0 o0 e o ol e e e o o oo o ok o o ok ok

Function to send the message and wait for an ack.
FEEEE R R F R R R R R RN R SRR EE R R Rk KRk ke kk ko ke Rk bk ke

*

shakehand ()
{
int n, clilen;
int size;
char recvline[ACKSIZE + 1};

size = strien (sendline) + 1;
if ((sendto (sockc, sendline, size, 0, (struct sockaddr *)

&serv_addr, sizeof(serv_addr))) != size)
erro_dump ("Error in sending the message.\n");

signal (SIGALRM, Resend); /* Resend is called if
ack is not recieved. */

alarm (Timeout); /* Set the alarm. */
n = recvfrom (sockserv, recvline, ACKSIZE + 1, 0, NULL, &clilen);

alarm (0); /* Reset the alarm. */
printf ("Message Reached.\n\n\n");

45

46

/t
LA b At A AL Rl Al A A i i R L L L e T T T T e T Ty

This function is reached only if ack is not reached. It resends

the message.
AR LAt R R R R A L e Y I L LI st ittty

*/

void Resend()

{
resend += 1, /* Count the number of times the message is sent. */
Timeout *= 2;

/* MAX_RESEND is defined in Defs.h. */

if (resend > MAX_RESEND) erro_dump ("Server may not be active.\n");
printf ("\nResending the package.\n");
shakehand();

3

/#

SRRk REREREE R R R R e Rk Rk R RS E R R kR kb k kb

Function to send the acknowledgements.

kR R SRR R R AR RN RS Rk kR R kR KRR kR kbR kbR bk kR k

*/

client_ack (char HostName(], int PortNum,char cpack(], int size)

{
struct sockaddr_in ser_addr, clin_addr;
int sock;
struct hostent *hp, *gethostbyname();
ser_addr.sin_family = AF_INET;
ser_addr.sin_port= htons(PortNum);
sethostent(0);

if ((hp = gethostbyname (HostName)) = 0){
printf ("HOSTNAME = %s\n", HostName);
erro_dump("Client_ack: Can't find host");

}
memcpy(&ser_addr.sin_addr, hp->h_addr, hp->h_length);

if ((sock = socket (AF_INET, SOCK_DGRAM, 0)) <0)
erro_dump ("Client_ack: can't open datagram socket.\n"),

clin_addr.sin_family = AF_INET;
clin_addr.sin_addr.s_addr = htonl(INADDR_ANY);
clin_addr.sin_port = htons(0);

if (bind (sock, (struct sockaddr *) &clin_addr, sizeof (clin_addr)) < 0)
erro_dump ("Client: Can't bind local address.\n"),

47

if ((sendto (sock, cpack, size, O,
(struct sockaddr *) &ser_addr,
sizeof(ser_addr))) != size)
erro_dump ("Error in sending acknowledgement.\n");

close (sock);

return (SUCCESS);

}

/t

AR ESEBR SRS RN RSB ER R BA R SRR RS R AR ER SRR RE SRR RS E R Rk
Function to send the ack and strip off the ack from the message.

2222 R 2 R A 2 2 2222 R R 22t Rttt a2t R bt AR R R R R R R iR R sl

*/

send_ack (mesg, cpack, Host)

char mesg(];
char cpack{];
{

char ack_addr(80];
int ack_port, n;

/* Set the acknowledgement. */

sscanf (mesg, "%d %s %n", &ack_port, ack_addr, &n);
/* Get the message in cpack. */

strepy (cpack, mesg + n);

strepy (Host, ack_addr);
client_ack (ack_addr, ack_port, "RECIEVED", 8),

/#

oo ool o ol o e ool o o o o oo o o o o o o o o o o ok

*
* File: mount.h.

* Include Files: Headers.h, Sys.h Util.h, Defs.h

* Structers.h

* Functions : create_package, print_pack, unpak_pack
* pak_pak, set_pack.

*x

* Contains Package handling functions.

BERERRBE R SRR E R AR RRERE R R A AR RS R R R Rk bRk kR Rk Rk k kR Rk kR

*/
/* Headers files other than the standard header files. */

#include <stdio.h>
#include "Headers.h"
#include "Sys.h"
#include "Util.h"
#include "Defs.h"
#include "Structures.h"”

*

ot o o e ok of o ok a3 e ofe o e e ol ok a2 ok o e 3k o o afe o a3k i ok ok ai o ol ol ok e ol ol ke ok ol ol o e ok e ol e ok i ol ol o ok ok ook ok ok ok 2k ok ok o e ok Kok ko
*

* Function to create a Package and initialize all the fields.

*

Xpke kR Rk kR Rk ke bk kR Rk kR kk ok Rk kR ke kR ko kR kR kR

*/

Package *create_package (pack)
Package *pack;
{

/* Create a Package. */

if ((pack = (Package *) (malloc (sizeof (Package)))) == NULL)

erro_dump ("mount.h: Error in memory allocation for Package");
/* Initialise the Package. */

strepy (pack->local, "!I");
strepy (pack->rlocal, "1");
strepy (pack->network, "!");
strcpy (pack->present, "!");
strcpy (pack->owner, "!");
strepy (pack->passwd, "!");
strepy (pack->login, “1");
strcpy (pack->toa, "!");
strcpy (pack->permissions, "!");
strcpy(pack->request, "!");
pack->header = -2;
pack->owner_port = -2;

pack->present_port = -2;
pack->toport = -2;

49

bt A LI R P A R e T L L Y P P L L et TIII T

return (pack);
}
/t
*
* Function to print a Package.
*

b b D Al A 2 St 2t R R Rt e R Y Y Y P T P YRS

*/

print_pack (pack)

Package *pack;

{
printf ("Header: %d\n", pack->header);
printf ("owner_port: %d\n", pack->owner_port);
printf ("toport : %d\n", pack->toport);
printf ("present_port: %d\n", pack->present_port);
printf ("local: %s\n", pack->local);
printf ("rlocal: %s\n", pack->rlocal);
printf ("Network: %s\n", pack->network);
printf ("Owner: %s\n", pack->owner);
printf ("Present: %s\n", pack->present);
printf ("To: %s\n", pack->toa);
printf ("permissions: %s\n", pack->permissions);
printf ("request: %s\n", pack->request);
printf ("login: %s\n", pack->login);

H

/#

22 2L E RS RS R R R R R PR LR RIS AR RS2 22 22222 2SR 22 R 222 S22 2 222 E 22 2 2t ¢t

*

* Function to unpack the data from the given Package and

* arrange the data in message format.

3

EEREEER SRS F SRR AR SRR RN SRRk ke k kb kb kkk kb kok ko k ko ko kokk ko k ok ok k

*

unpak_pack(pack, cpack)
Package pack;

char cpack{];

{

char temp[40];

cpack|0] = "0,

sprintf (temp, “%d", pack.header);
strcat (cpack, temp);

strcat (cpack, " "),
sprintf (temp, "%d", pack.owner_port);
strcat (cpack, temp);
strcat (cpack, " ");
sprintf (temp, "%d", pack.toport);
strcat (cpack, temp),
strcat (cpack, " "),
sprintf (temp, "%d", pack.present_port);
strcat (cpack, temp);
strcat (cpack, " "),
strcat (cpack, pack.local);
strcat (cpack, " "),
strcat (cpack, pack.rlocal);
strcat (cpack, " "),
strcat (cpack, pack.network);
strcat (cpack, " "),
strcat (cpack, pack.owner);
strcat (cpack, " *);
strcat (cpack, pack.present);
strcat (cpack, " ");
strcat (cpack, pack.toa);
strcat (cpack, " *);
strcat (cpack, pack.permissions),
streat (cpack, " "),
strcat (cpack, pack,passwd);
strcat (cpack, " "),
strcat (cpack, pack.request);
strcat (cpack, " "),
strcat (cpack, pack.login);
strcat (cpack, " 7);

}

J*

*EEEEREEE R R R RN SRS AR RSB RS E R GEBER R R Bk bk kb h bk ko kkok ok ki kok

*

* Function to break-up a message and load into a Package.

®
REEREN B R BERRR SRR RE R R B R ek kSRR bk gk kb ko kk gk k kg

*/

pak_pack (pack, cpack)
Package *pack;

char cpack(};

{

int i=0,j, num;

sscanf (cpack + i, "%d %n”", &num, &j);
pack->header = num;

i=i+j;

sscanf (cpack + i, "%d %n", &num, &j);
pack->owner_port = num;

i=i+j;

sscanf (cpack + i, "%d %n", &num, &;j);
pack->toport = num,

50

;sZn;J(CPack * i, "%d %n", &num, &j);
pack->present_port = num;

1=i+j;

sscanf(cpack + i, "%s %n’", pack->local, &j);
.lss;;n';(]_‘;l’ack + 1, "%s %n", pack->rlocal, &j);
;S@';“;(;Pack +1, "%s %n", pack->network, &j),
;s;n;(?pa& + 1, "%s %n", pack->owner, &j);
;S;“;(JF'Pack *+1, "%s %n", pack->present, &j);
;s;n;(tpack +1, "%s %n", pack->toa, &j);
;S;n;('g’pack +1, "%s %n", pack->permissions, &j);
;S;;“;(J,C’Pack +1, "%s %n", pack->passwd, &j);
.sszn.;(Jf;pack + i, "%s %n", pack->request, &j);
;;;(;Pack *1, "%s %n", pack->login, &j);
1=1+}],

H
/*

L a2l A 2SR R L S R AL DA RS S LI 2 ARt 2 RSt RS SSSR R E I sy
*

* Function to initialise a given Package.
*
M ae s o 2 ol ol e e o o e ke o0 3k e s 2 e ade e o o o o ok e e 2 o ade o ade afe e e a2 o o e e o ade sl ode o 2 e e e 2 ok ok ke i ol ol o ke ol e ol ok ok e e o ol o ok e ok

*/

set_pack (pack)
Package *pack;
{

pack->header = -2;
pack->owner_port = -2;
pack->toport = -2;
pack->present_port = -2;
strepy (pack->local, "!");
strcpy (pack->rlocal, "1%);
strcpy (pack->network, "!");
strepy (pack->owner, "I");
strepy (pack->present, "!");
strepy (pack->toa, "1*);
strepy (pack->permissions, "!");
strepy (pack->passwd, "!I");
strcpy (pack->request, "!");
strepy (pack->login, "!");

51

/*

LRl RS R R L L A i R L Rl P R L P e T T T IR T Ty o Y
*

* File: fdpak.h.

. Include files: Nil.

* Functions: unpack_fd, pack_fd, set_fd.

*

* This file contains functions for unpacking, packing and initialising

* a given F_NODE.

*

AR 22 e 2 S22 2R E R R R A R R 2t R Rt IR SRR E R R 2 RS LT]

*/

/t

I I e TR R R P R A PR R R Ty eI I PR P R P TSI PR P
®

* Function to unpack a given F_NODE and arrange the data in the

* message format.

*

LR RIS R PRS2SR 22 R R R 2 R S 2 AR RSt RS R a2 R Rt Rt Rt it b LS L

*/

unpack_fd (fd, cpack)

char cpack[];

F_NODE id;

{
char temp[80];
int i;
cpack[0] = "0";

sprintf (temp, "%d", fd.header);
strcat (cpack, temp);

streat (cpack, * ");

sprintf (temp, "%d", fd.client_port);
strcat (cpack, temp);

strcat (cpack, " ");

sprintf (temp, "%d", fd.server_port),
strcat (cpack, temp);

streat (cpack, " "),

sprintf (temp, "%ld", fd.offset);
strcat (cpack, temp);

streat (cpack, " ");

sprintf (temp, "%d", fd.index);
strcat (cpack, temp);

strcat (cpack, " ");

strcat (cpack, fd.request);

strcat (cpack, " ");

strcat (cpack, fd.client);

streat (cpack, " ");

strcat (cpack, fd.server),

streat (cpack, " "),

streat (cpack, fd.network);
strcat (cpack, * ");

52

strcat (cpack, fd.local);
strcat (cpack, " ");

for (1=0; i< 10; i++) {

if (strcmp (fd.mesg|[i], "!") = 0) break;

strcat (cpack, fd.mesg([i]);
strcat (cpack, " ");
}

}

/*

RS RSB AR R R RSk RS RERR AR RN SRR R Rk kAR RS ERkARERkkkk®S

*
*
*

PR 2 E I3 22 PR SRS R SRR 22 R A R R 2 R R R R R R iRt bt it st a iR st)

Function to break-up the message into a F_NODE.

%/

pack_fd (fd, cpack)

F_NODE *fd;

char cpackl[];

{
int i=0,j, k, num, FLAG;
long Num;
char temp[100];

53

sscanf (cpack, "%d %n", &num, &j);
fd->header = num,;

i=i+j

sscanf (cpack + i, "%d %n", &num, &j);
fd->client_port = num,

i=i+j;

sscanf (cpack + i, "%d %n", &num, &j);
fd->server_port = num,

i=i+j

sscanf (cpack + i, "%ld %n", &Num, &j),
fd->offset = Num;

i=i+j;

sscanf (cpack + i, "%d %n", &num, &j);
fd->index = num;

i=i+j;

sscanf (cpack + i, "%s %n", fd->request, &j);
;:c;n;](;cpack +i, "%s %n", fd->client, &j);
;;:n-; J(i:xnack +1, "%s %n", fd->server, &j);
:s:ca:n;J(i:pack +1, "%s %n", fd->network, &j);
;;:n-; J(;Cx:'«‘ick +1, "%s %n’", fd->local, &j);

i=i+]

i=6;
k=0,
FLAG=1;
for (; cpack(i] = "0"; i++){
if (FLAG = 1) && (cpack[i] ="' ") FLAG =0;

else {

fd->mesg[j][k] = cpack[i];
k++;

FLAG=0;

}

if (cpack[i] = "n') {
fd->mesg[j][k] = \0";

i+
k=0;
FLAG=1;
}
}
k++;
fd->mesg[j][k] = "\0';
}
/*
R R 2 AR R 2 E 2 2 2 R R R 2 R R R 22 S22 R R RS R SRR 2 R Rt 2 d iR iRl y]
*
* Function to initialise a F_NODE.
*

EE I AR R 2 R Pl P AR R R RS R R 22 SR IR R R SRR RS P LAY R 2222 2 8L]

*/

set_fd (fd)
F_NODE *fd;
{

int i

fd->header = -2;
fd->server_port = -2;
fd->client_port = -2;
fd->offset = -2;
fd->index = -2;
strepy (fd->request,”™!");
strepy (fd->client,"!");
strcpy (fd->server,"!");
strepy (fd->network,"!");
strcpy (fd->local, "1™);
for (i=0; i <10; i++)
strcpy (fd->mesg{i], "!");

fd->prev = NULL;
fd->next = NULL;

55

/*

RERSAEERIR AR R R AR R R R AR R R AR R R AR R AR R AR R A KRR R R R R KRR RN R RS R Rk

File: Virtual.h

Include files: Nil.

Functions: create_fd, 1d_fd, wtransact,
rtransact, etransact, update mt,
get_prev, get_next, copy_fd, copy_pfd,
wind_up.

Contains file handling functions which are called by
remopen and umopen files.

LR JEE JEE JEE IR IR R EE R B

LRt A At AR 22 L L a R R L R R I Rl S T IS e RIS 2 L]

*/

F_NODE *1I1_fd; /* Pointer to the active F_NODE. */
F_NODE *11_first; /* Pointer to the first F_NODE. */
/‘

R REE R AR R KRR RS RSB SRRR B E LR SRR E AR R KR SRR R R SRR FkS Rk E R ® X
*
Function to allot memory for a F_NODE and initialising all the fields.

*
R RREEFRRRE R RS AR R RS R R R R R RN Rk kT Rk Rk ek Rk kR kb kb ke ko k kR k%

*/

create_fd (fd1)

F_NODE **fdl;

{
F_NODE *fd;
int I;

/* Create aF_NODE. */

if ((fd = (F_NODE *) (malloc (sizeof (F_NODE)))) == NULL)
erro_dump ("files.h: Error in memory allocation for fd.\n"),

/* Initialize all the fields. */

fd->header = -2;
fd->client_port = -2;
fd->server_port = -2;
fd->offset = -2;
fd->index = -2;

strcpy (fd->request,”!");
strepy (fd->client,"!");
strepy (fd->server,"!");
strepy (fd->network,"!");
strepy (fd->local,"!");

for (i=0;i<10; i++) strcpy (fd->mesg[i], *1");
fd->prev = NULL;
fd->next = NULL;

*fdl =1d;
}
/t
##‘#‘#t‘#t"#‘t##t“ttt‘##‘t*#‘*‘t##‘tt‘#‘##‘####*#t#*##t#“#‘#‘#tttt‘#tt**#t#
*x
* Function to load relevant data to a fiven F_NODE from the
* given Package.
*x

bt R R R R L Y LI

*/

1d_fd (pack, fd)
F_NODE *fd;
Package pack;

{

fd->header = pack.header;
fd->client_port = FILE_CLI_PORT;
fd->server_port = pack.present_port,
fd->offset = 0;

strepy (fd->request, pack.request);
strcpy (fd->client, SELF_NAME);
strcpy (fd->server, pack.present);
strcpy (fd->network, pack.network);
strcpy (fd->local, pack.local);

/*

T T T T L Tt

* Function to handle a transaction for write mode on client side.
* User can write a message from a file or from the screen,

* User can either append a message at the back or at the front.

*

3 o 2 o o o o o oo o oo oo o ok o oo o o o o o o oo ok ok o ook o ok ok

*/

wtransact (pack, request)

Package pack;
char request(];
{
F_NODE fd;
char fpack[FILESIZE + 1], File[30];
int sock, clilen, n,i;
int FLAG =0, flag;

FILE *fp;

/* Initialize 2a F_NODE and load the relevant data. */

set_fd(&fd);
1d_fd (pack, &fd);

/* Check whether to append at the front or back. */

if (strcmp (request, "w") == 0)

fd offset = 0; /* Front append. */
else fd.offset = 1, /* Back append. */
fd.header = CLOSE, /* CLOSE is defined in Defs.h. */

/* To write from a file or from the screen.
Get the option from the user. */

printf ("Include Filen Y = 1, N = 0\n");
scanf ("%d", &flag);

/* If the option is to write from a file. */

if (flag){
printf ("\nPlese Give The File Name: "),
scanf ("%s", File);
if ((fp = fopen (File, "r")) == NULL)
erro_dump ("Specified file not available.");

3

for(;;){
if (flag) {
for (i=0;1<10;i++) {
/* Read the file. Break from for loop at EOF. */

if(fgets (fd.mesg[i], 99, fp) == NULL){

FLAG=1;

strcpy (fd.mesg(i], "!");
break;

}

}

/* If the input is given from the screen. */

else {
for (i=0; i < 10; i++){
printf ("To end the transaction end with "lq\n");
printf ("please give the string.\n");
gets(fd. mesg[i]);
if(stremp(fd.mesg[i], "!q") == O}{
FLAG =1,

57

58

strepy (fd.mesg(i], "!");

break;
strmt(fdx}nesg[i], "\n");
, 3
fpack[0] = "\0",

/* Unpack the F_ NODE to message format. */

unpack_fd(fd, fpack); /* Function unpack_fd is in fdpak.h. */
sock = server (FILE_CLI_PORT);

/* Send one block of a file. */

client (fd.server, fd.server_port, fpack, strlen (fpack + 1));
close (sock);

/* If transaction is over */

if FLAG == 1) break;

fd.offset = 1;
for (i = 0; 1 < 10; i++) strcpy (fd. mesg[i] , "");
}
if (flag) fclose (fp);
}
/*

LA RS2 2 R 222 2 a2 R A b2 22 22 22t st gt f iR s a2t R it iyt

*
Function to edit a file. Function copies the whole file and opens
local copy for edit. When editing is over whole file is transferred

back to the server.

* #* X »®

AERRERRR AR KRR R RN RS R R R SRR R Rk kR kR kR Rk kk kg k kK

*/

etransact (pack)
Package pack;
{
FILE *fp;
F_NODE *temp, fd;
char fpack{FILESIZE + 1], file[50], local[60],
int i;

/* Read the whole file. */

strepy (pack.request, "r");
riransact (pack);

while (11_fd->offset != ERROR) {
get_next();
}

/* Copy the whole file into a .ed file. */

sprintf (file, "%s.ed", pack.local);
if ((fp = fopen (file, “w")) == NULL)
erro_dump ("ERROR: In opening edit file.\n");

temp = 1I_first;
while (temp != NULL) {
for (i=0; i< 10; i++)
fprintf (fp, "%s", temp->mesg([i]);
temp = temp->next;

}

fprintf (fp, "\n");
fclose (fp);

/* Open the file for edit. */

sprintf (local, "vi %s", file),
system (local);

/* Copy the whole .ed file back to server. */

if ((fp = fopen (file, "r")) = NULL)
erro_dump ("ERROR: In opening .edit file");

Il_first = NULL;

strcpy (pack.request, "w");
set_fd (&fd);

1d_fd (pack, &fd);
fd.offset = 0;

while (1) { :
for(i=0;i<10;i++) {
if (fgets (fd.mesg[i], 99, fp) = NULL)
break;
}

fd.header = CLOSE;
strepy (fpack, ™);
unpack_fd (fd, fpack);
if (i 1=0)
client (fd.server, fd.server_port, fpack, strlen (fpack) + 1);
if (i < 10) break;
set_fd (&fd);
Id_fd (pack, &fd);
fd.offset=1;
3

59

/* Delete local .ed file. */

sprntf (local, "rm %s", file);
system (local);

/%

S PR RS R P R 222 RS R R A 22 S A LRI TR R RS R SR E e R RS2 P St a2 2t
*x

* Function to read the first page of a remote file.
*
ER R TR 222 P PR 2L RS2 R R R R R R R e iR et P SR R 222 St R Rt t 2]

*/

rtransact (pack)
Package pack;
{
F_NODE fd;
char fpack[FILESIZE + 1], sfpack(FILESIZE + ACKSIZE + 1],
char Host{501;
int sock,clilen, n;
set_fd (&fd);

/* Create a linked list of pages of a remote file. */

create_fd (&l1l_fd);

1d_fd(pack, &fd);

fpack[0] = "\0";

unpack_fd (fd, fpack);

sock = server (FILE_CLI_PORT);

/* Send a request to read the first page of a file. */

client (fd.server,fd.server_port, fpack,strlen(fpack)+1),

fpack[0] = "\0';
sfpack{0] = "\0";
Host[0] = "\0";

/* Recieve the first page. */

n = recvfrom(sock, sfpack, FILESIZE + ACKSIZE + 1, 0, NULL, &clilen);
send_ack (sfpack, fpack, Host); /* Function send_ack is in client.h.*/
pack_fd(&fd, fpack); /* function pack_fd is in fdpak.h. */
fd.index = 0;
close (sock);
if (fd.header == ERROR)

erro_dump ("ERROR: In opening file.\n");

61

copy_pfd(ll_fd, fd),

IL_first =11_fd;
/t
RS RR RPN ES R B SRR AR B RS RE R RSN RSB N kN h bk kS Rk kR
*
* Function update the file location of a remote file.

*®
PERSEL R LI ES S SRS IR A R R R 2 2SR RS L RIS TS P RS R d I S Rt A Rl 2t

*/

update_MT (file, present, port)

char file[];
char present(];
int port;
{
FILE *rptr, *wptr,
int junk;
char line[200], buf[200], dummy({50];
char request{50];

sprintf (line, "%os %s %d ", file, present, port),
/* Open the mounting table. */

if ((rptr = fopen (".MT", "1")) == NULL)
erro_dump ("Error in opening .MT file for update.\n");

/* Open atemp file. */

if ((wptr = fopen (".temp", "w")) == NULL)
erro_dump ("Error in opening .MT file for update.\n");

/* Read the whole mounting table. */

while ((fgets (buf, 199, rptr)) = NULL) {
sscanf (buf, "%s %s %d %s", dummy, request, &junk, request);

/* Check for the referance made in the mounting table
for the required file. */

if ((stremp (dummy, file)) == 0){
/* Update the present location. */
strcat (line, request);

fprintf (wptr, "%s\n", line);
}

else fprintf (wptr, "%s", buf);

62

fgets (buf, 199, rptr);
fprintf (wptr, "%s", buf);
fgets (buf, 199, rptr);
fprintf (wptr, "%s", buf);
H

fclose (rptr);

fclose (wptr);

/* Use in future the updated mounting table as mounting table. */

rename (".temp", ".MT");
/t
FEBE R R R R R R LR ER R R R E SRS E SRS R R R RN R R R R R R R K ok ok ko ko kR

*®
* Function to move the active F_NODE to its previous node

* containing the previous page.
®
SRR ER X R F SRR R E R R R RS R SRR R RSk kR kR Rk kR ko ko ko ke ok ok

*/

get_prev ()
{

/* If it is not the first node move to the previous node. */

if (11_fd->prev == NULL) {

printf ("No previous page.\n");
return;
}
11_fd = 1i_fd->prev;
H
/t
‘##“‘t‘#‘t*t#*t#*““##‘““###**‘#tt**‘t##tt‘“t‘#‘t“t###t““‘“‘t“t#lt‘#
*
b Function to get the next page of the remote file and move the
. active node to the next page.
*

‘#tt#tttt‘#*tt##“##t".t*#'.#‘tt'*#“‘*##tt##t*“*"***“*#*‘*tﬁ#t*tt‘**t‘*tt

*/

get_next()

{
F_NODE newfd, *dummy;
int sock, n, clilen;

char fpack{FILESIZE + 1}, sfpack[FILESIZE + ACKSIZE + 1};
char Host[50];

/* If already EOF is reached */

if (1_fd->offset == ERROR) {
printf ("\n\nEnd of file Reached.\n");
return;
}

/* If next page is already cached */

if (I1_fd->next != NULL){
printf ("\nMoving to next Local Page.\n");
1l_fd =1l_fd->next;
II_fd->index = 0,
return;
}

/* If next page is not already cached */
printf ("\nGetting Next page from Remote Machine.\n");
/* Create a new node to hold the new page. */

create_fd (&dummy);

11_fd->next = dummy;;
copy_fd(ll_fd, &newfd);

fpack[0] = "0";

unpack_fd (newfd, fpack);

sock = server (FILE_CLI_PORT),

/* Send a request for next page. */

client (newfd.server, newfd.server_port, fpack, strlen (fpack) + 1);
fpack[0] = "0";

sfpack[0] = "0";

Host[0] = "\0";

/* Recieve the next page. */

n = recvfrom (sock, sfpack, FILESIZE + ACKSIZE + 1, 0, NULL, &clilen);
send_ack (sfpack, fpack, Host);

close (sock);

pack_fd (&newfd, fpack);

newfd.index = 0;

/* Move the active node to the next node. */
I1_fd->next->prev = 11_fd;

11_fd=11_fd->next;
copy_pfd (1i_fd, newfd);

63

/i
##ttttttt##t‘t#‘t#tttt##.ttt##ttt“tt-ttttltttttitt‘ttttt'#tttttt#t##t#t“t‘t
*

* Function to copy relevant data from a given F_NODE to a new F_NODE.

*
t#t.t#‘#‘t“i“tttt"tttt#tttt‘##tt##‘ttttt#ttt#*"t#*t‘ittt#tt‘*#tt#t#t*t#*#

*/

copy_fd(fd, fd1)
F_NODE *fd, *fdl;
{

fdl->header = fd->header;
fd1->client_port = fd->client_port;
fd1->server_port = fd->server_port;
fd1->offset = fd->offset;

fd1->index = fd->index;

strepy (fd1->request, fd->request);
strepy (fd1->client, fd->client);
strcpy (fd1->server, fd->server);
strcpy (fd1->network, fd->network);
strepy (fd1->local, fd->local);

}

/*

LSS A2 R PR RS 2222 S 22 2 R R d At 2 R iR ittt ittt st E et Rty
*

* Function to replicate a F_NODE.
*®
Rk EEEE SRR KRR R AR SRR SRS R R RSB R R Rk e bk kbbb bk kb kR k%

*/

copy_pfd(tfd,ffd)
F_NODE *tfd;
F_NODE fid;
{
int i

tfd->header = fid.header;
tfd->client_port = fid.client_port;
tfd->server_port = ffd.server_port;
tfd->offset = fid.offset;

tfd->index = fid index;

strepy (tfd->request, fid_request);
strcpy (tfd->client, ffd.client);
strepy (tfd->server, fid.server);
strepy (tfd->network, ffd. network);
strcpy (tfd->local, fid.local),

for (i = 0; i < 10; i++) strepy (tfd->mesg[i], fid. mesg[i]);

*
AREEXERERERREA BB R RE LRSS S SRR R SR AR RS RS R RN RSB IS RS A RSB R X R R LR E R NS SN
*

* Function to destroy a linked list.

-
LA 22T R AR PR IRt R A R R R R R R R SRR 22t il it 2ttt et st

*/

wind_up(
{

F_NODE *dummy;,

while(l_first = NULL) {
dummy = 1I_first;
11_first = M_first->next;
free(dummy);
}
free (11_fd);
}

65

/*

*t#t"*t“t‘**#**‘ltl*tt*“##t‘t“‘t‘t*““‘*#tll*#‘tt‘t*ttttt‘**“t‘tttt**t#‘

™

* % X * & % % % »

File: SCIver.c

Include files: mount.h, s.h, c.h.

Functions: transact, del_rmt, ser_present, ser_update, fcopy, ser_fm,
sgets, ser_um, ser_s¢ss, serach_RMMT, ser_mit, ser_reg,
ser_ad, Id_um_pack.

This file contains all the functions required for processing the
requests from the clients.

b i b i d 2L Lt 2 AR R LR AR E ST TR R R DT T TR 2 E p e i a g S gripnpppay

*/

/* Header files. */

#include <stdlib.h>
#include "mount.h"
#include "s.h"
#include "c.h"

Package *search RMMT();

/*

EEL R E R E L RSS2 S 22 s R R RS AT R R R R Rt E St RSt a Y S]

]

* * % % * ¥

This program has code for address server. It binds to a well known port.
It gets a password from the user. The main program creates a child
and exits. The child process recieves messages. The child process
creates a child to process each message. This program also maintains
mounting tables and location table which are hidden from the user.

LR IR RS2 22 R S PP RS RS TS SRRt 2 Rt ittt i el L]

*/

main()

{

int sock, child, proc;

int clilen, n;

char mesg[FILESIZE + ACKSIZE + 1];
char cpack[FILESIZE + 1], Host[80];
char dummyfPASS_MAX];

/* Bind a socket to server port. */
sock = server (SERV_UDP_PORT),
/* Register a password for the server. */

fprintf (stderr, "Please Register The Password Now: ");
strepy (dummy, "),

filush(stdin);
strcpy (PASWORD, getpass(dummy));

/* Create a daemon server. */

child = fork();

if (child == ERROR){
close (sock);
erro_dump ("Can't create child.\n");
}

if (child == 0) {
printf ("Server is created.\n");

for (;;) {
/* Receive a message. */
strepy (cpack, ");
strcpy (mesg, "");
strcpy (Host, "*);
n = recvfrom(sock, mesg, FILESIZE + ACKSIZE + 1,0,NULL, &clilen);

if(n<0)
erro_dump ("Error: In receiving messge.\n");

/* Send an acknowledgement. */

send_ack(mesg, cpack, Host);

proc = fork();
if (proc = ERROR) printf ("Can't process a request.\n");
if (proc = 0) {
transact (cpack, Host);
exit (0);
}
}
}
H
/t

e e e o e o e o e e ol ol e e i e g afe e o o o o o o o e e ol ol o o e ok e ok e s ol ok o e 3 ok ok e e ol e ofe e ol ofe ke e o ok ok e ok ok

*

* Function to process a message recieved in main.
*
(2P T EE RS 2L R A2 RS PR R RS SRS RS EE R R SR LRSS RS TR A RS R 2SR R 2222 AR 22 2L 1]

*/

transact (cpack, Host)
char cpack(];
char Host[];

{

67

Package *packi, pack:

1nt n;

char mesg{FILESIZE + 1];
char ack_addr{80];

char HostName[50], Local[50];
int Port, ack_port;

int sockl, clilen;

set_pack (&pack);

strcpy (mesg, cpack),

/* If the message is of Package type */

if ((cpack([0] !="8") || (cpack[0] !="9"))

else

pak_pack (&pack, mesg);

sscanf (cpack, "%d", &pack.header);

/* process the request. */

switch (pack.header) {

case ADVERTISE: /* Recieving an advertisement. */
ser_ad (&pack);
break;

case REGISTER ; /* Recieving a register request. */

if(ser_reg (&pack) = SUCCESS)
prmesg("Error in registering"”, pack.local);

strepy (cpack, "),
unpak_pack(pack, cpack);
client (pack.toa, pack.toport, cpack, strlen (cpack)+1);
break;
casc PERMITED : /* Getting a permission in response

to registration request. */
ser_mt (&pack),
break;
case SESSION : /* Session requests from clients. */
ser_sess(&pack),
strcpy (mesg, "");
unpak_pack(pack, mesg);
client (Host,pack.toport,mesg,strien(mesg)+1);
break;

case USER_MOBIL : /* Request from owner from remote machine. */

ser_um (&pack);

strcpy (HostName, pack.toa);
strcpy (mesg, "");
unpak_pack (pack, mesg),

68

client (Host,pack.toport,mesg,strlen(mesg)+1);
break;

case FILE_MOBIL : /* Recieving a file. */
strepy (Local, "),
strepy (HostName, "");
Port =-1;
if{(ser_fm (cpack, Local, HostName, &Port)) == SUCCESS){
sockl = server (FILE_MOBIL_SERV_PORT);
sprintf (cpack, "%d %d ",
FILE_MORBIL, FILE_MOBIL_SERV_PORT);,
client (HostName, Port, cpack, strlen (cpack) + 1);
n=1;
printf ("Recieving File. .");
while (n = ERROR) {
strepy (cpack, "),
strcpy (mesg, "*);
strepy (Host, ™),
n = recvirom(sock1, mesg, FILESIZE + 1,
0, NULL, &clilen);
send_ack (mesg, cpack, Host);
n = fcopy (cpack, Local);

printf (" .");
}
printf ("\nFile Recieved.\n");
close (sockl);
}
break;
case UPDATE_PRESENT : /* Update the location table. */
ser_update (cpack);
break;
case SERV_PRESENT : /* Update a client about the present

location of a file. */
ser_present (cpack, HostName, &Port),
client (HostName, Port, cpack, strlen (cpack) + 1);
break;

case DELETE : /* Delete a client. */
del_rmt {cpack);
break;

default :
erro_dump (*Ambiguous Command.\n");

break;

69

70

/‘
R R SR ER R R EE R R R R R R R EER R SR ERR SR E SRR R SRR R RS RS R SRR S Rk Ehk
*

* Function to delete an access given to a client for a file.
*

SRR R ER AR SRR R R R R SRR R RPN SRR BRSPS R EI SR SRR AR AR SRR AN R kSRR kg

*/

del_rmt (cpack)
char cpack{];
{
FILE *rptr, *wptr,
char line[100}, nline [100], network[100], oline [100], dumch[30];
char log [100], logcli[100], clien [100], cli[100];
int dummy,

if((rptr = fopen (".RMMT", "r")) = NULL)
return;

if ((wptr = fopen (".temp", "w")) = NULL)
return;

sscanf (cpack, "%d %s %s %s", &dummy, network, clien, logcli);
/* Search for the mounitng points and delete them. */

while (fgets (line, 99, rptr) {= NULL) {
fgets (oline, 99, rptr);
fgets (nline, 99, rptr);
if(nline[strlen(nline) - 1] == "n")
nline[strlen (nline) - 1] ="\0";
if (strcmp (nline, network) = 0) {
sscanf (line, "%s %s %d %s", dumch, cli, &dummy, log),
if ((stremp (cli, clien) == 0) &&
(stremp (log, logcli) == 0));

else {
fprintf (wptr, "%s", line),
fprintf (wptr, "%s", oline);
fprintf (wptr, "%s\n", nline);
}
}
else {
fprintf (wptr, "%s", line);
fprintf (wptr, "%s", oline);
fprintf (wptr, "%s\n", nline);
}
}
fclose (rptr);
fclose (wptr);
rename (".temp”, ".RMMT"),

71

/#
tt##tt*‘*###‘#*‘*#ttt‘ttt‘*t###t***‘ttt“‘*"t**tt#t*#“‘#**t‘*#*t*‘t‘***#ttttt
*

* Function to update the clients about the location of the file created
* by the local machine.
*

tt“#*““‘t‘#“‘*‘t“*“‘t“#*t#i*t*“t‘#t‘#*t*‘#ttt*#t#‘tt*t‘*t*t*##tt*tt**t#

*f

ser_present (cpack, toa, Port)

char cpack{l;

char toal];

int *Port;

{
char dummy[100], network[100], line [201];
int header, port;
FILE *fp;

sscanf (cpack, "%d %s %s %d",&header, dummy, toa, &port);
*Port = port;

/* Update from the location table. */

if (fp = fopen (".ofile", "r")) == NULL)
erro_dump ("Can't open .ofile.\n™);

while ((fgets (line, 200, fp)) = NULL) {
sscanf (line, "%s", network);
if ((strcmp (network, dummy)) == 0)
sprintf (cpack, "%d %s", SERV_PRESENT, line);

}

fclose (fp);
}
/t
(2222 R R 222 b R 2R R 2 RS2 32 2R i 22 s s iR 2 i s RS Rs2222 2R 22 20 T
*
* Function to update the location of the file which has been created
* and then have been transferred other machines.

*
EZ 3223 RS PR RS2 RS R RS2 2R RS R RS Rt Rt R i R a2 ittt E s it et R st

*/

ser_update (cpack)

char cpack({];
{
int i
char dummy(3};

FILE *p;

A Update the location table. */

if ((fp = fopen (".ofile", "a")) == NULL)
erro_dump ("Can't update the location table.\n");

sscanf (cpack, "%s %n", dummy, &i);
fprintf (fp, "%s\n", cpack + i);

fclose(fp);
/#
RRBE SRR R RN R R R Rkl b 0 oo o e oo oo o o0 oo o oo o o o e o oo o o o o e e o e ook ok ko
*
* Function to copy a block of file.
E

ot ool o o o o o oo g o o o o e ol oo e e o o o e a0 o o e e o o o o o o oo o e o o o e o o o e o oo o o ol K ok o ok ok ok o

*/

fcopy (cpack, Local)

char cpack{];

char Local{];

{
FILE *fp;
char dummyf{20];
int ij;

if ((fp = fopen (Local, "a")) == NULL){
sprintf (cpack,"Can't open %s for writing.\n", Local);
erro_dump (cpack);
}

fseek (fp, 0, 2);

sscanf (cpack, "%s %n", dummy, &i);
sscanf (cpack + i, "%s %n", dummy, &j);

i=i+j;

sscanf (cpack + i, "%s %n", dummy, &j);

i=i+j;

fprintf (fp, "%s", cpack +i);

fclose(fp);

if (strcmp (dummy, "-1") == 0) return (ERROR);

return (SUCCESS),
}
/*
"tt“#"t‘*##ttt‘t#“‘t#'t"“#tt#t“tt‘t#‘#t‘*t*‘*"**‘*ttt‘*‘t‘#tt#tttt#t#tt
E 3
* Function to create new mounting points when a new shared file has
* transferred to the server.
*

tt#‘*"#‘t#tt#‘t#t###“"###‘*‘#*#““‘tttttt*t‘**“#‘#t‘#*‘*#“‘#t**'t‘t##t#tt

*/

72

ser_fm (cpack, Local, HostName, Port)

char
char
char
int

{

cpack[];
Localf];
HostName(];
*Port;

char network([100], owner[50];

t.:har line[100], oline{100], dummy[125];
int i, j, port;

FILE *fp;

i=0;

sscanf (cpack, "%d %n", &j, &i);

sscanf (cpack + i, "%s %n", HostName, &j);
i=i+j;

sscanf (cpack + i, "%d %n",&port, &j);
i=i+j;

*Port = port;

sscanf (cpack + i, "%s %n", Local, &;);
i=i+j;

sscanf (cpack + i, "%s %n", network, &j);
i=i+j;

/* Get file creator's name. */

sscanf (cpack + i, "%s %n", oline, &j);
i=i+j;

sscanf (cpack + i, "%s %n", dummy, &,;j);
i=i+j;

strcat (oline, " *);
strcat (oline, dummy);

if ((fp = fopen (".RMMT", "3")) == NULL)
erro_dump ("Error in opening .RMMT file.\n");

/* Get all client's names. */

while (sgets (cpack, line, &i) !=-1){
strcpy (dummy, Local);
strcat (dummy, " ");
strcat (dummy, line);
fprintf (fp, "%s\n", dummy),
fprintf (fp, "%s\n", oline);
fprintf (fp, "%s\n", network);

}

fclose (fp);
return (SUCCESS);

73

}

/#
't*‘*t-.t..#‘*““*#tt#‘#tt##““‘“#*.-““‘##titl‘t#‘tt#“ttt‘tt‘l#“‘tllt‘t#
*

* This function gets a line terminated with a \n' from a given string,

*
t‘#“““‘##“‘#““‘i#t#‘t‘.*#“““““‘##“‘tl“#tt#t“‘t‘*‘tl't#lt#‘t*tt*#t

*/

sgets (cpack, line, i)

char cpack[], line[];

int *i;

{
int ik
i=*

for (k = 0 ; (cpack[j] 1= "n') && (cpack[j] != "0'); j++, k++)
line[k] = cpackl[jl;
linefk] ="0'";
*i=j+1;
if (cpack[j] = "\0")
return (ERRORY);
return (SUCCESS),
}

1*

RSN R R NSRS SRR SRR R YRR R SRR AR E R SR AR RS R RS SRS RR R e R Rk

* Function to compare the password provided by the user with the

* password he has registered and call the function which handles

* the user mobility transactions.

*

AR LSRR SRR R R SRR EEES RS EERE R RS EE R AR R R RS Rk Rk E R &

*/

ser_um (pack)
Package *pack;
{

if ((strcmp (pack->passwd, PASWORD)) 1= 0) {
pack->header = DENY;
return (ERROR);
}

1d_um_pack (pack->rlocal, pack->request, &pack);

74

75

Vd

t#‘tt*.#.*t‘t*#““‘*‘###“““#‘t““ttl#‘#.t‘#‘#"tl‘##“‘l*t‘tt*iit‘t#*ttti*
E]

* Function to check the access acredations.
-
ttttttttttt#ttt#t‘t#‘ttt.ttt#‘tt..t“ttt.#t‘ttt#tt“!‘tttt‘#ttt‘.‘t‘*“‘#t###‘

*/

ser_sess (pack)
Package *pack;
{
Package *temp;
char tpermit{4], ppermit{4];

/* Get the mounting point. */

temp = search RMMT (pack->network, pack->toa, pack->login);
if(temp->header = NOFILE) {
pack->header = NOFILE;
return (SUCCESS);
}

/* Check the file requested and the client who made the request. */

if((strcmp(pack->network, temp->network) = 0) &&
(stremp (pack->login, temp->login) == 0)){
strcpy (ppermit, pack->request),

/* Allow append and edit requests also for write permission, */

if ((stremp (ppermit, "a") == 0)
(| (stremp (ppermit, "e™) == 0))
strcpy (ppermit, "w");
strcpy (tpermit, temp->permissions);

/* Accredition checking for READ' request. */

if ((ppermit[0] == 'r') && (tpermit[0] == 'T)){
pack->header = ACCESS;
strcpy(pack->permissions, "r");
pack->present_port = FILE_SERV_PORT;
strepy (pack->local, temp->local);
printf("Success in accessing.\n\n"),
return (SUCCESS);

}

/* Accredition checking for "WRITE' request. */

else if ((ppermit[0] == 'w') && ((tpermit[0] = 'W") ||
(tpermit[1] =='w"))) {
pack->header = ACCESS;
pack->present_port = FILE_SERV_PORT,;

strcpy (pack->permissions, "w");

strepy (pack->local, temp->local);

printf("Success in accessing for write.\n")

return (SUCCESS);
}

/* Deny access for an illegitimate access request. */

else {
pack->header = DENY;
strepy(pack->permissions, "");
printf(" Access permission denied.\n");
return (ERROR);
}

H

/* If the client is not a legitimate user DENY access. */

else {

pack->header = DENY;
strepy(pack->permissions, NULL);
printf("access permission denied.\n");
return (ERROR);
}

H

/t

FERRESRRERE KRR R ER KSR R RR R R R R RS RS R R RN R R RNk Rk R Rk

®

* Function to get the mounting point of the requested file.

RERERRERE R R RS EE RN B R RREE R RSB R R R R RS RS REREEEEEE AR RS RSB REEREEE R R &

*/

Package *search RMMT (network, toa, Login)
char network[];

char toa[];
char Login(];
{
Package temp;
char line[200], pline[200}, nline[200];
int dummy;
FILE *fp;

if((fp = fopen(". RMMT", "r")) == NULL) {
temp.header = NOFILE;
return (&temp);
}

/* Search for the mounting point. */

while ((fgets (line, 200, fp)) = NULL) {
fgets (pline, 200, fp),

fgets (nline, 200, fp);
if (nline[strien (nline) - 1] == "n")
nline[strlen (nline) - 1] = "\0";
if ((stremp (nline, network)) == 0){
set_pack(&temp);
if (line[strlen (line) - 1] = "n")
line[strlen (line) - 1] = "0";

/* Get all the info available about the mounting point. */

sscanf (line, "%s %s %d %s %s”,
temp.local, temp.toa, &dummy,
temp.login, temp.permissions);
if ((strcmp (toa, temp.toa) == 0) &&
(stremp (Login, temp.login) == 0)){

fclose (fp);
strcpy (temp.network, nline);
return (&temp);
3
}
fclose (fp);
temp.header = NOFILE;
return (&temp);
}
/#

KRR RRERRER R SRR RS ER R R R AR R R R R R R R R R R R R ERE R R R e kR

*

* Function to add a mounting point to the mounting table.

*
T T T T T T T e T P PR P T

*/

ser_mt (pack)
Package *pack;

{
FILE *ptr;

if((ptr = fopen (".MT", "a™)) == NULL)
erro_dump(“Error in updating mounting table. Mounting aborted.\n");

fprintf (ptr, "%s %s %d %s\n", pack->rlocal, pack->present,
pack->present_port, pack->permissions);

fprintf (ptr, "%s %d\n", pack->owner, pack->owner_port),

fprintf (ptr, "%s\n", pack->network);

fclose (ptr);
return (SUCCESS);

78

/#
lttltt*‘t“"*“**‘*#“##t“t#*#““‘t“#‘#“*t‘it#*t#tttttt#t#tlt#t‘t##ttttt##
*

: Function to add a mounting point *server side* for a file to a client.

#t*‘*‘tt*‘t‘t####“*‘#‘#tt“ﬁ*t#“##‘*t‘-‘#“*####‘t**##‘#t“##‘t##‘*t*#*‘###t
*/
ser_reg (pack)

Package *pack;
{

FILE *fp;

pack->header = PERMITED,;

if ((fp = fopen (".RMMT", "a")) = NULL)
prmesg("s.c:", "Error in opening .RMMT\n");

else {
fprintf (fp, "%s %s %ed Y%s %s\n",
pack->local, pack->toa, pack->toport,
pack->login, pack->permissions);
fprintf (fp, "%s %d\n", pack->owner, pack->owner_port),
fprintf (fp, "%s\n", pack->network);
fclose (fp);
H
return (SUCCESS);
}
/*
SRR RSB R R R SRR R PSRN R AR Rk R RS R R Rk Bk Rk K kR
*
. Function to save all the advertisements recieved.
E 3

LA T2 2SS R 2RSS RS R 2 S 222222 ad it 222t 2ttt id ittt s

*/

ser_ad (pack)
Package *pack;
{

FILE *ptr;
if ((ptr = fopen (".regs", "a")) = NULL)
erro_dump ("Server: Can't write messages.\n");

fprintf (ptr, "%d %s %s %s %d %d %s\n", pack->header, pack->owner,
pack->local, pack->present, pack->owner_port,

79

pack->present_port, pack->permissions),

fprintf (ptr, "%s\n", pack->network);

fclose (ptr);
/t
(P2 T2 22X 2 R R 2Rt R E s R a2 RS Rt SRR RS2 R R 222 R 2 222ttt
*
* Function to handle request user mobility request.

*
FEBEPRRAEE R R B REEE PRI RS R AR SRR R SSRGS R R R RN Rk R ko kol ok o ook gk ok ok ok ko ok ok okok

*/

Id_um_pack(file, request, um_pack)
char file[];

char request(];

Package **um_pack;

{
FILE *ptr, *fptr;
char buf[91], cmd[15], rlocal[30],
int »=0;
Package *pack;

/* Get the mounting point. */

pack = *um_pack;
if((ptr = fopen(".MT", "r")) == NULL)
erro_dump("files.h: Error in opening .MT");

if ((fgets (buf, 90, ptr)) = NULL){
pack->header = NOFILE;
return (0);

}

sscanf(buf, "%s %n", rlocal, &j);
while (strcmp(rlocal, file) 1= 0) {
fgets(buf, 90, ptr);
fgets(buf, 90, ptr);
if (fgets(buf, 90, ptr) == NULL){
pack->header = NOFILE;
return (0),

}
sscanf(buf, "%s %n", rlocal, &j);
H

/* Load the relevant info about the file. */

1=14; '
sscanf(buf + i, "%s %n", pack->present, &j);
i=it;

sscanf (buf + i, "%d %n", &pack->present_port, &j);

i=i+j;
sscanf (buf + i, "%s", pack->permissions);

fgets (buf, 90, ptr);
sscanf (buf, "%s %d", pack->owner, &pack->owner_port);

fgets (buf, 90, ptr);

strepy(pack->network, buf),

if (pack->network[strlen (pack->network) - 1] == "n')
pack->network|strlen(pack->network) -1] = "\0'";

pack->header = SESSION;

fclose (ptr);

*um_pack = pack;

80

81

,t
"“#“‘t#!!t‘tt“*#tt‘*t‘#‘*"t####“tt“*‘#t#‘#tt‘t“‘*#t#‘.#t“#‘.t‘t‘tt“##
*

* File: FileServer.c

* Include files: mount.h, ¢.h, s.h, fdpak.h.

. Functions: Get_file, Put_file, serv, transact.

*

* This file contains file handling functions.

L]

L Bt 2 A R A Rt R R R e I T e e e T I I P L P P TR e I R P P T Y 2
*

#include "mount.h"”
#include "c.h"
#include "s.h"
#include "fdpak.h"

,*

(A2 IR 2222 2222 2 e 2224t 222 PR LAt R A ittt it R ittt ittt ittt ittt sttt
*

* Function to read a block of file.
*
HRRR R R R AR A RSk Rk SRRk p Rk kb h kg Rk Rk kg

*/

Get_file (fd)

F_NODE *fd;

{
FILE *fp;
int i=0;
fp =NULL;

if ((fp = fopen (fd->local, fd->request)) == NULL){
fd->header = ERROR;
return;
}

fseek (fp, fd->offset, 0);

while ((fgets (fd->mesg[i], 99, fp) = NULL) && (i < 9)) i++;
if (i < 9) fd->offset = -1,

else fd->offset = fiell(fp);

fclose (fp);

/*
ttit"t#t‘tt‘tt‘tttt‘ttttttttt#t#ittt#t*tt‘tt‘tt#tttt#tt#‘t‘tt**tti‘it*tttttt*t
»*

* Function to write to a file.

E]

#ttt#t“.“t‘##t“##‘#**###t“#“*“““‘t#t#‘#‘*ttt##t#“t*#*‘tttt““t*“#‘#*

*/

Put_file (fd)

F_NODE fd;

{
FILE *fp;
int i

if (fd.offset = 1)
if ((fp = fopen (fd.local, "a")) = NULL)
return(ERROR);
if (fd.offset = 0)
if ((fp = fopen (fd.local, "w")) = NULL)
return (ERROR);

for (1=0; i< 10; i++) {
if (strcmp (fd.mesg[i], "!") 1= 0)
fprintf (fp, "%s", fd.mesg([i]);

else break;
fclose (fpi;
return (SUCCESS);
}
/*

Rk Rk kR kR kR kR R R ke ok g o ol o o age ok e ok e o o e o e o e ol o ok e ko ke ko

*

* This program creates a file server. It binds a socket. It creates

* a child to recieve messages. The child create a child to process all
* the requests made by the client. Typical requests are read a block
* of file, write to a file.

*

3T TR R SR PE R 2R 2R R 2R 2 22 R RS PR R AR R R PSR SR AT R R R 222 R 2 2 b L 2])
*/
main()
{
int child, sock;
/* Bind the server to a well known port. */

sock = server (FILE_SERV_PORT),

82

83

/* Run the server in the background. */
child = fork();

if (child == ERROR) erro_dump (*Can't run the file server.\n");

if (child == 0){
serv (sock);
exit(0);
}
/*
SRR EE SRR E R R RS R R RS ER RS SRR RS R R BB REEEE SR SRR Rk R Rk
*
* This function recieves a message and creates a child to handle
* the messge.

*
(22 PR 222 2222 it it R A s R R R Rt it a it ittt ittty L]

*/

serv (sock)
int sock;
{
F_NODE fd,
int n, clilen, child;
struct sockaddr cli_addr;
char sfpack[FILESIZE + ACKSIZE + 1], fpack[FILESIZE + 1],
char Host[50];

clilen = sizeof (cli_addr);
set_fd(&fd);

for (;;) {
/* Reset the variables. */
fpack[0] = "\0";
sfpack[0] = "\0';
Host[0] = "\0";
set_fd (&fd);

/* Recieve a message. */

n = recvfrom (sock, sfpack, FILESIZE + ACKSIZE + 1,
0, &cli_addr, &clilen);

/* Send an acknowledgement. */
send_ack (sfpack, fpack, Host),

/* Create a child to process the message. */

child = fork();
if (child == ERROR) printf ("Can't process a message.\n");

if (child = 0) {
transact (fpack);
exit(0);
3
}
}
/#

AL R RS 22 R A R Rt S R ARSI R RS A R Rt iRt R s
*

* Function to process the message.
*
SRR R RS R RSP ERF SRR EE SRS E SRS RPN RS R R ER R R bRk kb kR ko

*/

transact (fpack)
char fpack(];
{

F_NODE fd;

pack_fd (&fd, fpack);
switch (fd.header) {

/* Request to read a block of file. */

case ACCESS:
Get_file (&fd),
fpack[0] = "\0";

unpack fd (fd, fpack);
client(fd.client, fd.client_port, fpack, strlen (fpack) + 1);
break;
/* Request to write a file. */
case CLOSE :
Put_file (fd);

break;
}

84

85

/‘
##tt#'ttt‘“‘*##*"‘t"‘tttttttttttt‘ttt‘tttt‘t‘t“ttttttt#tttt#‘tttt#t**tttt‘#
*

File: advertise.c

Include files: mount.h, c.h, s.h.

Functions : get_Id_pak, get_net_name.

This file contains code for advertising a file.

* * % * x »

bbbt b Al ALl A AL I S S SR ST 2 I T L2 1L L D B L P o g prpeprprprpnpngnprpnprpnpprapnpnppnn

*/
/* Header files. */

#include "mount.h"
#include "s.h"
#include "c.h"

/*

A R 22 Al A R e A R AL R R L R R I e R R PR R P P R RS2 PR S R
*

This program advertises a file for sharing.

It gets name of the file to be shared, the access permissions

provided, and to what user from the user. Then, the program checks
whether the file is present in the local machine or not. Then,

if the file is already shared with some other client it uses the

same network name. Hence, guarenteeing a unique network name for
each file. Also, if the client already have the access to the same

file, this program prompts the user. If necessary, this programs
creates a network name of a file, by attaching location, path of the
file and the time of creation, to the local name of the file. Finally,
this program sends a message to the client about the advertisement.

LN K IR IR B B K JEE S Y

AR ERRRRREEERERES R RS R R REERE R SRR R AR RE R R R R RSk R Rk k

*/

main(argc, argv)

int argg;
char **argv,
{
char HostName[100};
char cpack[PACKSIZE], cack[ACKSIZE + 1};
Package pack;
int PortNum, num, n, clilen;
set_pack (&pack);

pack.toport = 6464, /* Address server port. */

/* Check for wrong modes. */

if (arge =73) {
strepy (pack.local, argv{1]);

86

if ((stremp (argv[2], "r™) 1=0) &&
(stremp (argv[2], "w") 1= 0) &&
(stremp (argv[2], "rw") = 0)) {
printf ("Wrong mode : %s\n", argv([2]);
erro_dump ("Please use 'r' or 'w' or 'rw' modes.\n");
}

strepy (pack permissions, argvi2]);

strcpy (pack.toa, argv(3]);

;trcmf (pack.login, argvi4]);

/* If required, get the data interactively. */

else if (argc == 1) {
printf ("\n Please give the FILE name.\n");
fflush(stdin),
scanf ("%s" pack.local),

printf ("\nPlease give the ACCESS permissions.\n");

printf ("\nUse following notations for access permissions.\n");
printf ("\n\n For READ ONLY use r.\n");

printf ("\n For READ & WRITE use w.\n");

fflush(stdin);
scanf("%s", pack.permissions);
if ((strcmp (pack.permissions, "r*) 1= 0) &&
(strcmp (pack.permissions, "w") 1= 0) &&
(strcmp (pack.permissions, "rw") !=0))
erro_dump ("Select proper mode.\n");

printf (*Please give the Client's address.\n");
fflush(stdin);

scanf ("%s", pack.toa);

printf ("Please give the Client's login.\n"),
fflush(stdin);

scanf ("%s", pack.login),

}

else erro_dump
("FORMAT: File' ‘Mode’' 'Client's Address' 'Client's Login\n"),

/* load the Package. */

if (get_ld_pk(&pack) {= ERROR){
unpak_pack(pack, cpack);

/* Send message to the client. */

client (pack.toa, pack.toport, cpack, strien (cpack) + 1);
}

/*
PRI LRI AL ST T P T T T 2 L P T P P TP T e T PP PP

*

Function load a Package with the relevant data about the file.
This function also checks whether the client has access to the
file being advertised. If so, it prompts the user. If the file is
already shared by some other client, same network name is used.
Otherwise, a new network name for the file is created.

* % ¥ & % #

RAEEEAREBEREE AL SR RR IR BN B RSB ER SRR S A B AR AR A RS SR RS EE SR SRR R R R R Rk g Rk Rk Rk

*/

int get_Id_pk (pack)

Package *pack;

{
char cmd[100], file[20];
FILE *ptr, *Iptr;
int n=101,i, j, FLAG =0,
char buf{100], line[100];
long offset = -1,

sprintf (line, "%s %s %d %s %s\n", pack->local, pack->toa,
pack->toport, pack->login, pack->permissions);

/* Check the mount table for network name of the file. */

ptr = NULL,;
if ((rptr = fopen (".RMMT", "r")) I= NULL){
while ((fgets (buf, 100, rptr)) = NULL) {
sscanf (buf, "%s %n", file, &j);
if ((stremp (file, pack->local)) 1= 0) {
fgets(buf, 100, rptr);
fgets(buf, 100, rptr);
}

/* If the client already has the access */

else if ((strcmp (file, pack->local)) == 0) {
if ((stremp (line, buf)) == 0) {
sprintf (line,
*%s %s already have access to %s.\n",
pack->toa, pack->login, pack->local);
erro_dump (line);

}

/* If file has a network name use the same. */

if {FLAG) {
strcpy (pack->present, SELF_NAME),
pack->present_port = SERV_UDP_PORT,

fgets (buf, 100, rptr);

sscanf (buf, "%s %d”,
pack->owner, &pack->owner_port);,
fgets(pack->network, 80, rptr);
pack->header = <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>