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CHAPTER I 

INTRODUCTION 

In many mechanical control applications, the proliferation of low cost general 

purpose microcomputers has allowed networking across large spatial distances and 

the development of complex distributed control systems. Many of these control 

systems implement algorithms with hard real-time constraints. For stability of the 

controlled process, it may be required that not a single control output be missed, 

corrupted, or delayed. Methods for implementing algorithms in fault tolerant, 

reliable, and numerically stable fashion are critical to meeting these demanding 

constraints. Because of the importance of prior research in these areas, this thesis 

reviews some of the existing methods for achieving fault tolerant and reliable 

algorithms. In addition to the review, the contribution of this thesis involves the use 

of a concept for encoding control algorithms so that software failures may be 

detected promptly before control actions are performed or sensor I actuator failure 

decisions are made. In this thesis, a software failure is defined to be a non

catastrophic circumstance in which the software continues to run but cannot correctly 

compute the intended results. A variety of computing environment faults or failures 

could cause a software failure of this definition, and they range from single chip 

MTBF failures to communication problems in multi-processing environments. In 

regard to the contribution, the proposed concept is applied to the Bierman algorithm 

for uouT time and measurement update of the error covariance of the Kalman filter 

[1, 2]. This algorithm was chosen as a representative algorithm because of its 

popularity in industrial applications for the sequential processing of measurement 

information. The methods to be discussed are intended for the application level of a 
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software hierarchy. Many of the reviewed techniques were developed for stand

alone uniprocessors, but can or have been extended to supervisory and distributed 

systems for node self-diagnostics and acceptance tests whose existence is to prevent 

corrupt information from being passed to higher levels of authority and control. 

The following typical systems, shown in Figures 1a and 1 b, describe the 

computing node environments which are addressed. For high throughput, high 

bandwidth applications such as found in modern digital signal processing and 

control, multiprocessor architectures with systolic arrays, transputers or digital signal 

processors (DSPs) have been used to implement high order filters and other 

computationally intensive algorithms (Bromley, Kung, Swartzlander et al.,1988) [3]. 

Such parallelism and concurrency have been needed because uniprocessor 

implementations have historically been restricted by sampling rates which are 

dictated by the time taken for one step of recursive filters such as the Kalman Filter. 

For these implementations, uniprocessors with Real Time Operating Systems (RTOS) 

are commonly relegated to supervisory tasks such as control of data flow into and 

out of the array processor, network interface, graphical user interface, statistical 

analysis, set pointing, data storage, and control of peripherals, while number 

crunching is left to the array processors (Jacklin, 1988) [4]. For this case, the self

tests and audits which add fault tolerance, failure detection and stability may be an 

additional responsibility of the supervisory processor. However, if the processing 

can be distributed among several uniprocessors without the need for an array 

processor, tasks associated with recursive computations as well as self-test and 

diagnostic tasks may be implemented on each node of a distributed system of 

uniprocessors as depicted in Figure 1b, some taking advantage of the services and 

facilities of a multi-tasking RTOS. As an alternative to multiprocessing with a 

distributed system of uniprocessors, DSP solutions which are currently available use 
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both multiprocessing and real time operating systems for applications with high 

computational loads. They are available in both single and multiple board con

figurations. 



CHAPTER IT 

BACKGROUND 

While much research exists for general purpose modeling and the specification of 

real time systems and software, published research concerning the stability and fault 

tolerance of RTOS software implementations of control algorithms is limited. 

According to Kim [SJ, major issues associated with designing fault tolerant capabilities 

into hard-real-time distributed computing systems need to be resolved in the 1990s. 

To help resolve the issues, research is in progress on such techniques as N-version 

programming, Built-In-Test software, Data Redundancy, Checksums, Distributed 

Recovery Blocks, Comparing Schemes, and Triple Modular Redundancy. Also, 

modeling methods such as Petri Nets, Data Flow Diagrams, Finite State Automata, 

and State Charts provide tools for analysis. However, fault tolerant software 

strategies which exist in literature seem to be for generic applications or processes and 

not specifically related to particular control algorithms. To help fill this gap, 

subsequent sections review techniques which are common in the control community 

and should be considered for use as the self tests, data validations, acceptance tests, 

and other components of the overall fault tolerant software solution. As an aside, in 

the event of a permanent, non-correctable fault or failure, it is often a requirement of 

the system to reconfigure to work in the presence of the fault. The redefinition of 

processing responsibilities among the remaining processing nodes, or in the case of a 

uniprocessor, the remaining operable tasks, must be coordinated. Literature available 

on the stability of this reconfiguration process includes that of Mariton [6] and 

Srichander and Walker [7]. 

6 
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Software Fault Tolerance 

To begin, we need to review a few of the general definitions and concepts of 

software fault tolerance. Similar to how redundancy, built-in self-tests, and 

diagnostics are used to add reliability to computing hardware, software is even more 

flexible in regard to the addition of redundancy and self-tests given sufficient 

computing resources and timing constraints. Checkpointing and roll back recovery are 

very common techniques. According to Kim [5] (1988), checkpointing refers to saving 

the state of computation on a secure device at various execution points called recovery 

points (RP). When a fault happens, the system is able to resume computation or "roll 

back" to the most recent RP after any necessary reconfiguration. To determine if a 

fault occurs, some form of acceptance test must be performed to indicate the fault. As 

our concern is with the substance of the acceptance test in the context of common 

control algorithms, Figures 2 and 3 are two fault tolerant schemes (Kim, 1988) which 

use checkpointing and acceptance tests and have been adapted to illustrate a state 

estimation process using the Kalman filter. 

Figure 2 illustrates the use of primary and backup versions of Kalman filters in a 

Distributed Recovery Block scheme (Kim, 1988). This scheme uses multiple processors 

or nodes to achieve active redundancy by concurrently executing multiple versions of a 

software component. The same acceptance test is used for results from different 

versions of software. The scheme includes a time out mechanism such as a watch dog 

timer. Each recovery block consists of one or more routines, called "try blocks" by Kim, 

which compute functionally equivalent results. In the figure, the try blocks consist of 

Kalman filters and suboptimal filters. The acceptance test contains the criteria used 

for accepting the results. By Kim's definition, a recovery block could contain two or 

more try blocks. If desired, the scheme could be set up as a tandem system duplicating 

its running process with corresponding identical processes running on the other 

processors. Figure 3 shows an adaptation of a conversation scheme (Kim, 1988). 
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This scheme illustrates how controller functions might be partitioned into a set of tasks 

which run concurrently, communicate between each other periodically, and deliver a 

result by the end of the time step regardless of missing communication or data. The 

tasks include state estimation functions and the control law functions. In both 

schemes, the most recent accepted state and covariance would be saved in a buffer at 

the recovery points, and upon failed acceptance of the primary results, the system 

would either restart from the previous recovery point, which may not be desirable 

when a state estimate is needed by the end of a time step, or would accept the state 

estimate from backup or secondary processes which might be suboptimal. Possible 

secondary processes might feature reduced real time computational load, assumptions 

of almost or completely time invariant and linear system response over short periods 

of operation, and the use of precomputed gains and state error covariance. Such 

secondary processes would be particularly applicable during instances when process 

noise dominates the system (Gylys, 1983) [8]. Secondary processes might also use 

lookup tables to determine noise levels under differing operating conditions. 

Failure Modes and the Acceptance Test 

Before considering what should be included in an acceptance test, it is 

appropriate to analyze how the implementation might be expected to fail. Since the 

acceptance test also represents software which could fail, the sophistication of the 

recovery points and acceptance tests should be balanced against the additional 

computational cost and complexity. Depending on the need for safety and reliability, 

software associated with fault tolerance should be parsimoniously applied. In regard 

to general failure modes, causes of software failure are language and design 

methodology dependent. Even with good software engineering practices, they are so 

varied that it is impossible to adequately test for every possibility before the software 

is in operational use. Once in operational use, processor failures resulting from chip 

MTBFs and communication failures during high speed data transfers can occur in a 
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MTBFs and communication failures during high speed data transfers can occur in a 

subtle manner and result in incorrect results. We would like to have an acceptance test 

which covers a large number of the potential faults. To this end, the following topics 

exist in literature and concern typical modes of failure for recursive control algorithms. 

Numerical Stability 

The acceptance tests might be expected to check for numerical stability at the end 

of each step of the recursion. Use of the Kalman filter to discuss numerical stability 

issues is appropriate because the Kalman filter is a part of the group of kernel 

algorithms used in a variety of applications including recursive parameter estimation 

and adaptive control (Astrom, p. 412, 1989) [9], (Clarke, p. 62, 1984) [10]. The 

following equations present typical nomenclature for a time variant, discrete, linear 

state space representation of the system model and measurement process, and the 

elements of a conventional Kalman filter. 

Dynamic Model 

with: 

Xk = x(tk) e Rn, <I>k = <I>(tk, tk+ 1 ), 

rok = ro(tk) e RP, Bk = B(tk, tk+ 1 ), 

uk = u(tk) e RL, rk = r<tk, tk+ 1>, 

E[rok(i)) = 0, E[rokrok T] = Qk()jj 

(1) 

(2)-(8) 

where Xk is the state vector to be estimated, ~k is the estimated state, Uk is the 

deterministic input vector, <I>k and rk and Bk are time variant, discrete time system 

matrices. The process noise vector rok is usually assumed to be a zero mean, gaussian 

sequence with constant variance, independent of and uncorrelated with the 
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measurement noise sequence. Qk is a positive semidefinite process noise covariance 

matrix. 

Measurement Model 

with: 

zk = z(tk) e RID, Hk = H(tk) 

vk = v(tk) e RID 

E[vk(i)) = 0, E[vkvk T] = Rk8jj 

(9) 

(10)-(14) 

where zk is the measurement vector to be processed, and Hk is the observation matrix. 

The measurement noise vector vk is usually assumed to be a zero mean, gaussian 

sequence with constant variance, independent of and uncorrelated with the process 

noise. Rk is a positive definite measurement noise covariance matrix. 

Computation of Kalman Gain 

(15) 

or 

(16) 

Conventional Measurement Update of Error Covariance 

Joseph's Form of Measurement Update of Error Covariance 

(18) 
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State Estimate Based on Current Measurement 

(19) 

Time Propagation of State 

(20) 

Time Propagation of Error Covariance 

(21) 

Estimates of the initial state and error covariance, x(O) and P(O), are usually assumed 

to be known a priori. 

The conventional form of the covariance measurement update for the Kalman 

filter can be numerically unstable when using single precision arithmetic or when the 

modeled process is unstable. Roundoff errors and over convergence can cause the 

state error covariance matrix to divergently loose symmetry and positive definiteness. 

Although inaccurate modeling of the system or discretization errors can also cause 

filter divergence (Gelb, 1974) [11], assume that accurate model structure and 

parameters are available at each step of the recursion in at least one of the try blocks, 

and momentarily that numerical issues are the primarily topic of concern for the 

acceptance test. Methods available for use in the acceptance tests and for correction 

of the conventional filter include averaging the error covariance matrix with its 

transpose, computing only the upper or lower part of the matrix, or adding to the 

diagonal elements upon detection of negative eigenvalues. Verhaegen and Van Dooren 

(1988) presented an analysis of error propagation due to roundoff which explains why 

these heuristic methods work for the conventional covariance update [12]. Having 

recognized that the conventional filter mechanization may be numerically unstable, the 

complexity of an acceptance test will depend upon whether the application uses a 
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modified version of the conventional algorithm or an alternative, numerically stable 

mechanization. 

The version of the error covariance measurement update, commonly called 

"Joseph's" form, does not require symmetry detection/correction of the error covariance 

matrix. Thus, when using "Joseph's" form, the acceptance test would not be required to 

perform such a test. Also, other numerically stable mechanizations retain symmetry by 

propagating a factored version of the error covariance matrix. They are often referred 

to as "square root" algorithms even though the methods may be based on Choleski, 

uouT or other factor types, and they may be based on sequential or simultaneous 

processing of the measurement vector. These filter mechanizations are equivalent to 

the original form in that they result in optimal rather than suboptimal estimates, and 

they can be more computationally expensive (Thorton and Bierman, 1981} [2] (Chin, 

1983) [13] but generally give more accurate filter estimates and gains (Verhaegen and 

Van Dooren, 1988) [12]. Like "Joseph's" form, an acceptance test for a numerically 

stable filtering process would only involve ensuring that computations are performed 

correctly and would not involve checks for a positive definite error covariance matrix. 

Therefore, when the additional computational expense of an acceptance test is 

considered, the square root algorithm's become even more desirable, particularly when 

calculations are being performed with time varying system matrices and unstable 

process scenarios are known to exist. 

Instead of waiting until the end of the time step, the acceptance test may be 

performed at subintervals of the main time frame. Breaking the acceptance test up into 

several smaller tests may be an option if sequential processing of measurement 

information if performed rather than simultaneous processing. When the noise 

covariance matrix is diagonal, the covariance measurement update can be done by 

sequentially processing one measurement at a time, thus allowing the computation to 

be tested at intermediate points after the update from each measurement. Because of 

the convenience of inverting scalars opposed to matrices, some of the most popular 
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numerically stable versions for updating error covariance are based on sequential 

processing. Not much is lost, however, because sequential processing of the Kalman 

filter has long been advocated in cases of uncorrelated measurement noise as a method 

of avoiding the program storage and computation requirements for inverting the 

innovations covariance matrix [HPHT + R] (Sorenson, p. 256, 1966) (Gelb, p. 304, 

1974) [14, 11]. Thus, sequential processing facilitates the detection of computation 

failures at an earlier time within the overall time step frame, and possible use of 

remaining time to perform correction or processing with secondary processes. With 

sequential processing, the filtering task can also be efficiently interrupted by other 

tasks between measurement iterations, with a reduced chance of corrupting 

information during context switches. The measurement updates do not have to be 

performed in any particular order, and individual measurements can be incorporated 

as they become available, without having to wait until all measurements are received 

and validated. Because sequential processing avoids the computational and storage 

requirements for an algorithm which explicitly determines the inverse of a matrix, no 

acceptance tests are necessary to ensure that the inversion was performed correctly. 

Furthermore, for less sophisticated RTOS environments, shorter and more independent 

calculations might prevent loss of information caused by non-maskable interrupts 

during longer time blocks of CPU usage required by simultaneous processing. Note 

that in one time step of sequential processing, the covariance matrix is not complete 

until the last measurement has been incorporated. 

Need for Suboptimal Secondary Processes 

Estimation and control systems frequently encounter missing, time delayed, 

and/ or invalid sensor observations. The following situations can all cause invalid 

measurements: (1) sensor failures, (2) time skewing and improper ordering of data, (3) 

network induced delays, (4) intermittent loss of signals during transient periods of high 

noise, (5) sensor saturation, and (6) nonlinear sensor behavior. When measurement 
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data is missing or unreliable, recursive estimation algorithms such as the Kalman filter 

do not give optimal estimates and would be expected to fail a fault tolerance 

acceptance test. In such cases, the alternative or secondary process must provide the 

suboptimal information necessary to continue the computation. This section discusses 

typical methods used to test and compensate for corrupt, missing, or time-delayed 

measurements. 

As expected, heuristic methods for use in an acceptance test for measurement 

validation and inference for the Kalman filter exist throughout the literature. According 

to V. Gylys (1983) [8], when considering the robustness of an estimation process, 

distributional assumptions can be bad and/ or measurements can be bad. Because bad 

measurements can exist, Gylys suggests that the pre-processing and screening of 

measurements to be used in the Kalman filter should "(1) screen against outliers, (2) 

detect leading and trailing edges of high amplitude noise bursts, (3) detect the onset 

and compensate for nonwhiteness in measurement noise, and (4) censor or bound 

measurements or estimates," and that "preprocessing may include conversion and 

prefiltering, computation of measurement residuals, and screening of residuals for 

rejection." For instance, electro-magnetic compatibility problems can cause severe 

measurement noise. Gylys also mentions that a± scaled multiple of the innovations 

variance can be used as an acceptance interval to screen measurement residuals. 

Statistical inference based on the innovation or residual sequence (z(k)-H(k)~(k I k-1)) 

is another method for validating measurements and monitoring software imple

mentation. However, T. H. Kerr (1990, p. 944) [15], on validating linear systems 

software, points out that small residuals are necessary but not sufficient indicators of 

good filter performance and that similar statements can be made concerning statis

tically white residuals. 

For use as a secondary process, an intuitively appealing method of Kalman 

filtering when a single measurement vector is missing is to simply skip the measurement 
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update and rely on the time propagated state estimate. Guanrong Chen (1990) [16] 

showed that the predicted estimate of the state, ~k 1 k-1 = <1>k-1~k-11 k-1 + rk-1Uk-1, 

could replace the unknown optimal estimate, ~k 1 k, and that convergence could be 

guaranteed for time invariant cases, for a single bit of missing data, when no other 

data is missed in the future. Motivation for using the estimate as a secondary process 

is that at the instant when the data is missing, a suboptimal estimate of the unknown 

state vector Xk is still needed in real time for control law or other purposes with hard 

time constraints. Usually, the possibility of system instability prevents waiting for late 

arrival of the missing data and the system must proceed to the successor time step, but 

Luck and Ray (1990) [17] and Zhang and Ray (1991) [18] have proposed a multi-step 

predictor for compensation of the effects of network induced delays. 

Another alternative secondary process when data is missing is to greatly increase 

the assumed noise statistics associated with the invalid measurement. By increasing 

the assumed measurement noise for the missing information, less confidence is placed 

on the measurement in the computation of the optimal Kalman gain. If the diagonal 

elements of the measurement noise covariance matrix R associated with the invalid 

measurements are increased to a large number (approaching infinity), this approach is 

equivalent to the sequential processing technique of merely skipping the incorporation 

of the invalid measurement into the measurement update for state estimate ~(k I k) and 

error covariance P(k I k). However, this technique is not restricted to sequential 

processing of measurements. Lynch and Figueroa (1991) [19] use this method to 

improve the robustness of ultrasonic position estimates in the presence of missing 

observations resulting from both structural intermittence and stochastic intermittence. 

Hardware Failure Detection and Isolation 

Terminology such as "fault tolerant control" is generally associated with the 

detection, isolation, and reconfiguration (FDIR) of the control algorithms in the event of 

sensor or actuator failures. Because of the possibility of sensor and actuator failures, 
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control system software often has the capability to gracefully degrade and avoid 

catastrophe immediately following the occurrence of a failure. The generation of 

residuals which develop a bias or exceed a threshold when a failure happens is one of 

the most basic concepts of these failure detection schemes. Therefore, we would 

expect that one or more of the redundant processes of a fault tolerant scheme would 

be involved in the generation of residual sequences for the purpose of testing for sensor 

and actuator failures. Thus, failure detection theories are available methods which 

would be applicable to the design of acceptance tests. There are more than five major 

survey papers concerning this area (Iserrnann, 1984) (Basseville, 1988) (Gertler, 1988) 

(Frank, 1990) (Willsky, 1976) (Panossian, 1988) [20-25] and several books. 

General Considerations 

Miscellaneous techniques which could be modified for use in an acceptance test 

exist throughout literature because difficult conditions, nonideal behavior, and limited 

resources have plagued digital controllers since the sixties. It is not the intent of this 

thesis to survey the general implementation issues which are covered in digital control 

textbooks. However, they do exist and are available to the interested reader. For 

instance, see Chapter 12 in Franklin, Powell, and Workman [26), Gelb [11], Chapter 11 

in Astrom [9], or H. Hanselmann's survey [27] concerning implementation of digital 

controllers. These references cover basics of hardware speeds and architectures, fixed 

point and floating point arithmetic, controller structures, sensors, problems such as 

parameter scaling and saturation, and introductions to software design and 

programming issues. A good example of the amount of information available, although 

generally not in one place, is the fact that Hanselmann's survey cites over 200 

references which in some way discuss implementation issues. 
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Detecting Computational Faults 

Within a fault tolerant computing scheme, the potential exists to confuse 

software failures with sensor or actuator failures. Especially when information 

generated by a process is used by other tasks or nodes to make failure detection 

decisions, it would be desirable to have confidence that information contained in 

residual processes has not been corrupted by faulty software. In some applications, 

results of calculations may not be correct even if the processor passes its hardware 

self-test and is still able to communicate to the other processors in the 

networked/distributed environment. Therefore, the problem is to find a method of 

encoding algorithms with redundant information such that abnormal residual or parity 

relations resulting from faulty calculations can be differentiated from sensor or 

actuator failures. An additional benefit of such a method is that corrupt information 

and software processes can be identified before the information is used by other 

processing nodes within the system, thus preventing unwanted actions based on faulty 

information. An efficient technique providing such features would be of considerable 

value to networked or distributed computing environments consisting of multiple 

processing nodes among which the overall control responsibilities have been divided. 

The next chapter discusses methodology for one potential technique. 



CHAPTER III 

METHOOOLOGY 

Subsequent chapters of this thesis are concerned with the developmen't of the 

software fault tolerance additions to the Bierman unuT error covariance algorithms. 

The Algorithm Based Fault Tolerance (ABFf) concept is used because it is a method of 

adding fault tolerance to matrix intensive calculations such as found in the Kalman 

filter. ABFf has the potential to be a method of verifying that consistent parameters 

have been input to the computational process and that the computation has been 

consistently performed for many types of control algorithms. Dormant software bugs, 

unexpected threads of execution, and inter-processor communication problems are a 

few of the situations that may be detectable. Also, the method is computationally 

cheaper than obtaining fault tolerance by using redundant processors and software 

coupled with a voting or a comparing scheme. This chapter concerns the specific 

methodologies used for adding software fault detection capabilities to the unuT error 

covariance algorithms. 

Algorithm Based Fault Tolerance 

Algorithm Based Fault Tolerance (ABFf) is a concept developed by Huang and 

Abraham (1984) [28]. ABFf is normally used in array processing or other instances of 

multiprocessing to provide uninterrupted and correct results regardless of the failure of 

individual processing elements. However, it also has a high probability of detecting 

computational failures in uniprocessor environments. Because recursive least squares 

parameter identification and the Kalman filter are examples of recursive algorithms 

which involve many matrix operations, one contribution of this thesis will be the 
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investigation of the benefits and drawbacks of applying ABFf concepts in these 

algorithms. 

Huang and Abraham developed the approach based on the concept of using 

matrix row and column checksums for detecting and correcting errors from within the 

confinement of the algorithms software. Background in Anfinson and Luk, 1988 [29], 

on the method is summarized as follows. Given nxn matrix A, nx(n+1) row checksum 

matrix Ar is defined as Ar = [A Ae], where e is nx1 vector e = [ 1, 1, ... , 1 ]T. By 

n 
comparing 2, aij and (Ae)i fori = 1, 2, ... , n, an error in the ith row of A can be 

j= 1 

detected. Similarly, given nxn matrix A, (n+l)xn column checksum matrix Ac is 

. defined as Ac=[ t]. By comparing f aij and (eTA)j for j = l, 2, ... , n, an 
e i = 1 

error in the jth column of A can be detected. A full (n+l)x(n+l) checksum matrix Af is 

defined as Af= [ A Ae ] . A column checksum matrix A multiplied by a 
eTA eTAe 

row checksum matrix B is a full checksum matrix AB. Also, when checksum matrices 

are added and subtracted they result in checksum matrices. For error detection in full 

checksum matrices, the location of one error in matrix A is found by intersection of 

inconsistent rows and columns. The single error may be corrected using either the 

inconsistent row or column. 

Anfinson and Luk [29] also explain how the weighted checksum approach from 

Jou and Abraham (1986) [30] can be used to locate more than one error. By creating d 

weighted checksum columns or rows, and assigning appropriate weights, a maximum 

of d errors can be detected and a maximum of (d/2) errors can be corrected. This was 

proved by Anfinson and Luk [29]. After defining unique nx1 weight vectors w<i), i = 
1, ... , d with unique elements Wj(i), j = 1, ... , n, the nx(n+d) weighted row checksum 

matrix is: 

Arw = [A Aw0) Aw(2) Aw(3) ... Aw(d) ]. 



The (n+d)xn weighted column checksum matrix is: 

A 
w(l)TA 

w(2)TA 

w(3)TA 
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An example given by Anfinson and Luk shows how the d = 2 case can be 

corrected using the weighted checksum approach. With the weights set as w(l) = e 

and w(2) = w, and assuming that an error is in element apq' then letting 

and 

n 
s1 = I, akq - (Ae)q 

i=l 

n 
s2 = I, wkakq - (Aw)q 

k=l 

(22) 

(23) 

will allow the error to be located. The error can be located in the (p,q) position of A 

because s2/s1 = wq. With the error located, apq can be corrected as apq +-- apq- s1. 

The selection of appropriate weights is an open area of research. 

Using ABFI' Techniques With the Kalman Filter 

ABFI' checksum matrix concepts can be used for a quantitative indication of 

consistency during each time step of the Kalman filter. The conventional form of the 

filter can be used to illustrate this point. Before performing the computational 

substeps of the filter, the consistency of time varying matrices passed to the filter can 

be checked by comparing the row or column checksum elements with the sum of the 

corresponding row or column. This check could be postponed until the end of the time 

steps computations if lost computing time resulting from a passed-in fault is 

allowable. The substeps of the filter are then performed with each substep including 
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the amount of ABFI' matrix operations and checks necessary for the desired level of 

fault detection. The following example Kalman filter equations have been modified for 

checksum matrix operations, but they do not provide the most complete fault coverage 

possible for each substep. However if the checksums of each system matrix are 

checked at the end of all substeps, a fault in any substep calculation would have a 

high chance of being detected. In the equations, matrix multiplications should be 

performed from left to right and vector e has an appropriate length for each particular 

multiplication. 

Computation of Kalman Gain 

(24) 

or 

(25) 

Conventional Measurement Update of Error Covariance 

Innovation Calculation for Measurement Update of State Estimate 

(27) 

State Estimate Measurement Update 

(28) 
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Time Propagation of State 

(29) 

Time Propagation of Error Covariance 

(30) 

As before, by comparing between . f Pij and (eTP)j, j = 1, 2, .. . , n, errors in the jth 
1 = 1 

column of the error covariance matrix can be detected after both the time propagation 

and measurement update portions of the calculations. Similar comparisons can be 

made for the results of the calculation of gain, innovations, state measurement update, 

and state time propagation. 

Additions to the Bierman UDUT Algorithms 

To further investigate the possibility of using ABFI' concepts in control 

algorithms, software fault detection capabilities based on ABFI' have been added to 

the Bierman uouT estimate error covariance factorization equations and tested using 

fault simulating software. The Bierman U-D covariance factorization algorithms were 

chosen because they are widely used in Kalman filter applications for the sequential 

processing of measurements, particularly when numerical precision is limited. While 

some users may argue that single precision processing is outdated, many applications 

still use single precision to obtain faster processing. Faster processing of basic 

algorithms allows extra CPU time for improvements such as the use of higher order 

models, more sensors, or failure detection and reconfiguration algorithms. 

From Thornton and Bierman [2t the basic idea for obtaining numerically stable 

time and measurement updates of the estimate error covariance (Equations (17) and 

(21)) is to propagate factors of the estimate error covariance matrix instead of the 



25 

matrix itself. The covariance matrix is factored into unit upper triangular matrix U 

and diagonal matrix 0 such that covariance matrix Pis 

P = UDUT. (31) 

Although several different algorithms exist for the time and measurement update of U

D factors of the estimate error covariance, the following discussion concentrates on the 

Thornton and Bierman factorizations. Discussion on the specifics of the ABFT 

additions to the factorization algorithms follows the discussion of the basic 

algorithms. 

To begin, assume that the noise and system matrices vary with time such that 

tabulated and/ or steady state covariances cannot be precomputed and that Kalman 

gains must be computed in real-time. Once the initial covariance matrix is factored, 

the factors must be time propagated and then measurement updated at each time step. 

We begin with the time update algorithm and the software fault detection additions to 

the algorithm. In the remaining discussion, "k I k-1 or k+ 11 k and k I k" subscripts are 

dropped in favor of"-" and """designations consistent with the Thorton and Bierman 

publication. 

UDUT Time Update of the Error Covariance 

The time update algorithm time propagates the U-D factors of the error 

covariance and is a factorized version of the covariance calculation of Equation (21). 

The derivation of the algorithm begins by rewriting Equation (21) as Equation (32), 

with theW and DD matrices in terms of the U-0 factors of the error covariance. With 

appropriate matrices Wand DO, the matrix W is factored into upper triangular matrix 

D and orthogonal row matrix W as in Equation (33) such that W, W T and DO form D 

as in Equation (34). 

P=W(OO)WT (32) 

W=UW (33) 

(34) 
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According to Thornton and Bierman, when <1> is large or P is ill-conditioned, the 

computation of Equation (21) can have serious errors, thus giving motivation for the 

use of their algorithm. 

In terms of the 0 and IS factors prior to update, time updating is accomplished 

by forming matrices DD and W such that 

DD = diag(D, Q) (35) 
and 

(36) 

and then performing the factorization of W with a modified Gram-Schmidt 

orthogonalization of the rows of W. Keeping in mind the definitions that 

0, 0 T, L>, P, W, and W T are the matrices after time update, this orthogonalization is 

accomplished by starting with the last row of W, and progressively "D

orthogonalizing" the remaining rows of W by subtracting out the "D-weighted" 

component of each row vector which is in the direction of the row currently being used 

to orthogonalize remaining rows. This method creates both the updated unit upper 

triangular matrix D (which is the transformation matrix) and matrix W which satisfy 

Equations (32), (33) and (34). 

The following definitions and equations are necessary for understanding the 

algorithm: 

1. Since f> is an nxn diagonal matrix and Q is an npxnp diagonal matrix, DO is 

an NxN diagonal matrix where N = n + np. 

2. Equation (21) is rewritten as Equation (32), 

(32) 

3. The modified Gram-Schmidt orthogonalization of W uses a "D-weighted" 

inner product rather than an ordinary inner product, and a "D-weighted" inner product 

is defined as 
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(37) 

4. The modified type of orthogonalization which is performed on the rows of W 

is "D-orthogonalization," and two vectors are defined to be "D-orthogonal'' if 

(a,b)0 = 0. (38) 

5. Because after the orthogonalization of W, the rows Wi of W are "D

orthogonal" to the columns WiT of W T for i ~ j, then 

where o is the Kronecker delta. 

6. As a result of Equation (39), 

D=W(DD)WT (40) 

where 

From Thorton and Bierman [2], the summary of the U-D Time Update Algorithm 

is repeated here to facilitate the discussion of the software fault detection additions to 

the algorithm. 

U-D Time Update Algorithm by Thorton and Bierman 

For j = n, n-1, . .. I 2 cycle through Equations (a) through (c). 

fj. = (w~n-J) w~n-]J) 
J J ' I DD 

(a) 

I t I I DD J • • 
. l=11···1 1. {

O(ij") = (w5n-J) w}n-J)) /D. } 

wt-J+U = wi<n-J)- U{i~J)Wr-J) r (b) and (c) 

D- _ (w<n-1) •. .ln-1)\ 
1- 1 ' VVf IDD (d) 
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Software Fault Detection Additions to the Time Update Algorithm 

The following items describe how the UDUT time update algorithm was 

modified to include the ABFT additions. 

1. First, current time step system matrices and U and D factors from the 

measurement update of the error covariance must be input to the algorithm. Because 

of the ABFT modifications, the following checksum matrices were passed into the 

algorithm instead of matrices without checksums. For this effort, the checksums for 

these matrices are assumed to have been verified in the previous time steps 

measurement update algorithm, so no checksums were tested at the time the matrices 

were passed into the algorithm. 

Q 

0 

2. Form matrix W by calculating ct>O and a checksum verification as follows. 

a. [ <t>O 
eT<t>O 

NotCalc.l [ <I> ][ l - = --- 0 Oe 
eTct>Oe eT<l> . 

b. Check ~ ~ (<I>U)(i,j) versus e Tct>Oe. 
I 

3. Form DD= 

DO 
OQ 

0 

B 

0 

eTQe + eTf>e 
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4. Factor W using the modified Gram-Schmidt orthogonalization algorithm into 

OW. Every time a vector component 0(i,j)Wi(n-j) is subtracted from a row Wi(n-j) of 

W, also subtract the same amount from the column checksum row eTW such that the 

column checksums are always current. 

5. Reset the row checksum's for U to zero in 

and as each W rows 0 basis transformation coefficients O(i,j) are created, add the 

element to the row checksum column of 0 as soon as the coefficient is calculated. 

6. Reset the checksum forD and as each element Oi is calculated, update the 

diagonal elements checksum e TOe, where e TOe is part of the matrix 

7. Finally, verify that the row or column checksums are consistent with the row 

or column elements of each of following matrices. This is accomplished by summing 

row or column elements and making a direct comparison with the row or column 

checksum. 

a. Check column checksums (e TW)i versus 1: W(i,j). 
I 

b. Check <Oe)i versus k U(i,j). 
J 

c. Check e TQe +e Toe versus l: DD(j). 
J 

d. Check (eTDe) versusl: D(j). 
J 
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Table 1 summarizes the number of operations required before the modification 

and the number of operations added by the modification for a comparison of the 

overhead required by the ABFf additions. Table 2 contains calculations of the 

percentage increase in computational overhead which is caused by the ABFf 

addidtions for several different system order sizes. The values in Table 2 illustrate 

how the percentage overhead resulting from the ABFf additions decreases significantly 

as the number of state variables increase. 

uouT Measurement Update of the Error Covariance 

The measurement update algorithm concerns the calculations involved in 

updating the U-D factors of the estimate error covariance given the a priori state 

estimate 

xklk-l=x, 

estimate error covariance 

- -.,..,.-r 
Pklk-1 = P = UuU 

(41) 

(42) 

and a scalar measurement with zero mean normally distributed noise with covariance 

R. It performs a factorized version of the covariance calculation of equation (17), and 

results in the error covariance P for the minimum variance estimate :X = Xk 1 k· As a 

byproduct, the algorithm also generates an n-state normalized Kalman gain vector. 

Similar to the way the time update algorithm is derived by first rewriting Equation (21) 

in terms of D and D factors of P, the derivation of Bierman's measurement update 

algorithm starts by rewriting Equation (17) in terms of the factors D and D of P. This 

rewritten equation has a special structure which can be exploited to form the D and D 

factors of P = 000 r. Using nomenclature from the Thornton and Bierman 

publication, it can be verified that Equation (17) can be rewritten as 

(43) 



TABLE 1 

OPERATION COUNTS FOR THE STANDARD TIME 
UPDATE ALGORITHM AND ABFT ADDITIONS 

Algorithm Adds Multiplies Divides Logic 

MWGSU-D 1.5n3 + 0.5n2 1.5n3 + 2n2- n-1 [2] 
+ n2np + 0.5n + 

(0.5n2 - O.Sn)"' (n2 + n)np + 

(n2- n)"' 

ABFT 0.5n3 + 3n2 + 0.5n2 + 0.5n 0 

ADDITIONS 3.5n + np + 1 

TOMWGS +np(0.5n2 + 

U-D 0.5n) 

"'Variance matrix formed. 

TABLE 2 

COMPUTATIONAL COSTS FOR THE ABFT ADDITIONS IN 
TERMS OF A PERCENT AGE OF ORIGINAL OPERATIONS 

FOR THE TIME UPDATE ALGORITHM 

0 

5 

State Variables Adds Multiplies Divides Logic Overall 
(n) 

10 54% 3% 0% N/A 27% 

50 37% 0.7% 0% N/A 19% 

100 35% 0.3% 0% N/A 18% 
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where 

fT =HD , 

g=L>f <gi=OA i=l, ... ,n>, 

a= R + f g.f. 
i=l II. 
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(44) 

(45) 

(46) 

From Thornton and Bierman, the bracketed term in Equation (43) is positive semi

definite and can be factored as UDUT. Because the product of unit upper triangular 

matrices is unit upper triangular, 

D = OV. (47) 

and 

(48) 

As previously mentioned, it is the special structure of the bracketed term in Equation 

(43) which is exploited to createD and D. Given that 

unoT = 0-0/a)ggT, (49) 

it can be rewritten as 

t o.o<Oo<OT = t D·e·er -(1/a)ggT, 
i=l I i=l Ill 

(50) 

where 

(51) 

(52) 

D(i) - ITr(i) u-(i) 1 0 O)T 
-\U} t• ••f j-}1 I ,. • •I I (53) 

and ei is a null vector with the exception of a unit value for the i-th element. From this 

point the derivation shows that the Ui and Di components can be determined in a 

backward recursive fashion for i = n, n-1, ... , 1 as depicted in the following equation, 



where 

.Jl. ,.. T (n) (n)T _ - - -T - - -T 
i~1 Dieiei -cnv v -DnUnUn + Dn-1Un-1Un-1 

n-2 ,., 
+ (i~ Dieie(-cn-2V(n-2)v(n-2JI) 

Dn = Dn<an-1/an) 

ai = R + ± gkfk, i = 1, ... ,n 
k=1 

yn-1 = (g1, ... ,gn-1'0) T 

u<n) = -(fn/ an-1)gi, i = 1, ... , n-1, 
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(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

but the derivations to get to the final algorithm are lengthy and the interested reader is 

refered to Thorton and Bierman. From Thorton and Bierman [2], the summary of the 

U-D measurement update algorithm is also repeated to facilitate the discussion of the 

software fault detection additions to the algorithm. 

U-D Measurement Update Algorithm By Bierman 

For j = 1, ... , n cycle through Equations (c) through (h): 

a(= aj-1 + f%i llo = R 
(j-dimensional partial-state innovations variance) 

D(= (ai_1/ ai)Di (6 (= T5 i if aj = 0) 

(diagonal element fractional update) 

V(=gj 

A.:=- f/ ai-1 ().. := 0 if ai-1 = 0) 

(• For j = 1, (f) not included.) 

(a) 

(b) 

(c) 

(d) 

(e) 



Fori= 1, ... , j-1 compute recursively (g) and (h): 

a···= a-·+ v·l IJ" 1) I 

(update of column j of the U matrix factor) 

v ··= V·+ U··V· I' I IJ } 

(j-dimensional partial state normalized gain) 

(*For j = 1, (g) and (h) not included.) 

Software Fault Detection Additions to the 

Measurement Update Algorithm 
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The following items describe how the uouT measurement update algorithm was 

· modified to include the ABFT additions. 

1. First, current time step system matrices and U and D factors from the time 

update of the error covariance must be input to the algorithm. Because of the ABFT 

modifications, the following checksum matrices were passed into the algorithm instead 

of matrices without checksums. For this effort, the checksums for these matrices are 

assumed to have been verified in the previous time steps time update algorithm, so no 

checksums were tested at the time the matrices were passed into the algorithm. 

0 

0 

2. In the first step of the algorithm, Equation (a), the vector fT is formed. The 

ABFT addition to this step consisted of the multiplication of the column checksum 

matrix for H (even though His a vector in this case) by the row checksum matrix for 0 

as follows, 

[ 
fT 

Not Calc. 

Not Calc.] [ H l 
er~re = ~iH 0 : Oe · 

(60) 

Verification of the checksum was delayed until the end of the algorithm. 
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3. In the second step of the algorithm, Equation (b), the vector g is formed. The 

ABFf addition to this step consisted of the formation and update of a checksum for g 

as each element of g was calculated. Verification of the checksum was performed near 

the end of the algorithm. 

4. The checksum for 0 was checked following Equation (b) by comparing 

~ Di versus eToe. (61) 

5. While cycling through Equations (c) through (h) for j = 1, ... , n, a checksum 

for ex was created and updated by adding each exj as they were calculated. 

Verification with a duplicate copy of the current alpha is performed at the end of 

Equation (h) at each value of j, and a verification of the checksum for ex is performed 

at the end of the algorithm. 

6. While cycling through Equations (c) through (h) for j = 1, ... , n, at each 

fractional update of D in Equation (d), the previous value of Dj was subtracted and 

the new value of Dj was added to the checksum for D as follows, 

eToe = eTJSe- f>i + (ai-1/ai)Di (62) 

Verification of the checksum was performed at the end of the algorithm. 

7. Although a software fault for A was not simulated, the algorithm changes 

included keeping duplicate copies of A in separate memory locations, and then 

performing a comparison when the current value would no longer need to be used at 

the end of Equation (h) for each value of j. 

8. Similarly, although a software fault for Vj was not simulated, the algorithm 

changes included keeping duplicate copies of Vj in separate memory locations, and 

then performing a comparison when the current value would no longer need to be used. 

Also, a checksum for v was created and updated as each element of v was changed in 

Equation (h). 
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9. As each viA. increment was added to the U(i,j) elements in equation (f), the 

row checksum column DeforD was updated, 

Verification of the checksum was performed at the end of the algorithm. 

10. Finally, the algorithm verifies that the row or column checksums are consistent 

with the row or column elements of each of following matrices. This is accomplished 

by summing row or column elements and making a direct comparison with the row or 

column checksum. 

a. Check eTg versus l: gi. 
I 

b. Check (Oe)i versus~ 0(i,j). 
J 

c. Check e TfT versus l: fr 
I 

d. Check (e Toe) versus I: D(j). 
J 

e. Check a checksum. 

f. Check e Tv versus ~ vi. 
I 

Table 3 summarizes the number of operations required before the modification 

and the number of operations added by the modification for a comparison of the 

overhead required by the ABFT additions to the measurement update algorithm. Table 

4 contains calculations of the percentage increase in computational overhead which is 

caused by the ABFT addidtions for several different system order sizes. Again, the 

values in Table 4 illustrate how the percentage overhead resulting from the ABFT 

additions decreases significantly as the number of state variables increase. 



TABLE 3 

OPERATION COUNTS FOR THE STANDARD MEASUREMENT 
UPDATE ALGORITHM AND ABFT ADDITIONS 

Algorithm Adds Multiplies Divides Logic 

U-D Factor- o.sn2 + (1.Sn2 + n-1 0 

ization [2] 1.5n)m + S.Sn)m + 

(O.Sn2 - O.Sn)• (n2- n)• 

ABFT (1.Sn2 + tun 0 (3n +7)m 

additions to 11.5n)m 

U-D 

Factorization 

•variance matrix formed. 

TABLE 4 

COMPUTATIONAL COSTS FOR THE ABFT ADDITIONS IN 
TERMS OF A PERCENTAGE OF ORIGINAL OPERATIONS 

FOR THE MEASUREMENT UPDATE ALGORITHM 

State Variables Adds Multiplies Divides Logic Overall 
(n) 

10 161% 5% 0% N/A 84% 

so 113% 1% 0% N/A 58% 

100 107% 0.6% 0% N/A 54% 
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CHAPTER IV 

SIMULATIONS 

Simulation Environment 

To test the software fault detection methods, an RTOS software implementation 

of the uouT Kalman filter (Thornton and Bierman (1977)) error covariance update 

algorithms with the ABFf modifications was developed. Rather than developing 

Matlab code which simulated a real-time multitasking operating system, the filtering 

algorithms with ABFf modifications were coded and run entirely in the VxWorks real

time operating system environment. This software implementation is included in the 

Appendix. If the simulations had been performed in Matlab, the introduction of faults 

into the calculations and the fault locations would have been pre-determined. 

However, by performing the simulation directly in the VxWorks environment, the faults 

were allowed to happen in a non-exact periodic fashion with all the timing 

irregularities of the pre-emptive priority based and multi-tasking operating system. 

Faults were simulated by creating a rogue task which periodically corrupted informa

tion in shared memory being used by the covariance update tasks. The rogue routine 

was created so that the user could control the periodicity, value and location of the 

fault. Using the algorithm modifications previously discussed, the error covariance 

factorization algorithms were able to independently and immediately detect simulated 

faults as they occurred. The simulated faults are representative of errors which might 

result from external environments, corrupt communication with external processors, 

software faults, and/ or memory and logic chip MTBF failures. The software is coded 

in "C". 
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The OSU College of Engineering Interdisciplinary Real Time Distributed Systems 

Laboratory was used to simulate the proposed techniques. The simulation used a 

VME-based system with a Heurikon Motorola 68040 microprocessor-based single 

board computer utilizing the VxWorks real time operating system kernel, with cross 

development performed on a Sun Spare workstation. Matlab compatible data files 

were transferred via file transfer protocol (FfP) from the Heurikon computer to a 

engineering college RS6000 computer. On the RS6000, a matlab script file with an 

embedded UNIX C-shell "sleep" command was made to periodically form the 

covariance matrix elements from the U-D factors stored in the data files, display plots 

of the Kalman gains and covariances for 100 time step frames, write the plots to a 

uniquely named postscript file, and then remove the used data files before arrival of 

the next frames data. The displays were remotely plotted on the Sun Spare work

station being used for cross development. 

Results 

Figures 4 through 29 are representative plots of the effects of the simulated faults 

on the error covariance and Kalman gain calculations for a second-order system. 

Seven different cases are represented. Six cases are shown with time frames from 0 to 

100 time steps and 100 to 200 time steps, and one case in Figures 12 through 13 is 

shown for the time frame from 0 to 100 time steps. The following second-order system 

parameters and noise covariances were used in the simulations. 

<I> - [ 1.0 0.02] 
- 0 1.00 

R = 0.1 

Q = 0.01 

H = [1.0 0.0} 

and 

B = G =[~:8] (63) 
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For each case, the initial starting time of the periodic faults affecting the calculations 

was delayed 40 to 70 steps to facilitate plotting and to avoid any confusion with the 

filter's startup period. As can be seen in the plots, this delay allowed the filter to 

reach its steady state values before being corrupted by faults. In a real-time 

application, a fault could occur at any time, including the startup period. 

When the period of fault occurrence is very fast, such as 1 time step in the first 

two cases shown in Figures 4 through 7 and Figures 8 through 11, the covariance and 

gain calculations take on erroneous values. In the first case, which is shown in Figures 

4 through 11, all erroneous values are fairly constant. In the second case, which is 

shown in Figures 8 through 11, the erroneous values of the Kalman gains are fairly 

constant, but the value for the second diagonal element of the covariance matrix is 

increasing with time. Also note in Figures 10 and 11 that the timing of the fault in the 

first element of D occasionally causes a spike in the calculation of the first diagonal 

element of P for some time steps. Although Figures 10 and 11 are the only figures 

presented which show this spike behavior when forming the covariance matrix P, the 

behavior was often found when simulating faults in other variables. Thus, faults can 

cause erroneous gains and covariances with either transient, fairly constant or 

increasing behaviors. Note that the "error type" shown in the figures is a number which 

corresponds to the locations in the software where the fault was first detected, but 

does not indicate whether the value is steady or transient. In regard to the remaining 

cases, as the period of the fault increases from once every 1 step to once every 15 steps 

in the case of Figures 12 and 13, and then to once every 70 steps in the other four cases 

in Figures 14 through 29, the algorithms react as if they have been reset with new initial 

conditions following the occurrence of each fault. With enough time between faults, the 

Kalman gains and covariance return to steady-state values. They return to steady

state values because state matrices and noise covariances were kept constant during 

the simulation so that effects of the fault could be illustrated separately from effects 

caused by varying system parameters or noise. Even though the calculations return to 

steady-state values, the important observation is that the erroneous Kalman gains 
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resulting from the faulty calculations will likely cause incorrect state estimates, 

incorrect control actions, and unrecoverable system instabilities if corrective action is 

not taken upon immediate detection of a faulty calculation. 



CHAPTER V 

CONCLUSIONS 

Future control systems need to exhibit increasingly better software fault 

tolerance. Systems which have human safety requirements, such as the automated 

highway system, are obvious examples of systems which will require software fault 

tolerance. With these types of systems in mind, concepts of software fault tolerance 

such as the Distributed Recovery Block scheme were reviewed in the context of control 

system applications. Several previously developed methods for identifying failures 

and maintaining suboptimal performance of control algorithms have been recast as 

candidate elements for the acceptance test in software fault tolerance schemes. In 

particular, the following conclusions can be made from the work of this thesis. 

Algorithm Based Fault Tolerance (ABFT) techniques were shown to have the 

potential for use as quantitative measures for computation acceptance at the end of 

each time step of recursive estimation algorithms such as the Kalman Filter. To test the 

method, Bierman's UDUT covariance factorization algorithms were modified to 

include ABFT methods and test cases were run with simulated faults. Faults causing 

erroneous Kalman gains and covariances with transient, fairly constant and/or 

increasing behaviors were immediately detected by the algorithm modifications. 

Operation counts for the ABFT modifications to the algorithms were tabulated versus 

the original operation counts. The required overhead of the modifications was 

tabulated as a percentage of the original algorithm operations for system orders of 10, 

50, and 100 state variables. The overhead of the proposed algorithms is 

approximately 25% of the original operation count for the time update algorithm and 

60% for the measurement update algorithm. Because the overhead is less than that 
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required to run a duplicate process of the unmodified algorithms, the method may be 

particularly applicable when physically redundant processors are not desirable or 

available. An additional benefit of the modifications concerns the isolation of system 

faults to system components. The elimination of software faults (resulting from 

computing environment failures) as causes of large residual sequences is desirable 

when sensor and actuator failure detection decisions are being made. In addition, for 

implementations in which system matrices are passed as parameters into filter 

routines, checksum matrices provide an additional method of validating that the 

matrices are consistent and have been passed without corruption. 
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tlnclude •vxWorks.h'* 
linclude •stdloLlb.h" 
flnclude "loLib.h• 
tinclude "taskLlb.h• 
tlnclude "wdLlb.h" 
finclude •a out.h• 
tlnclude "s'trLlb.h" 
finclude •tioLib.h" 
t1nclude •vme.h• 
tlnclude- "lflath.h" 

I* macro's *I 
I define mmln(a, b) ( ((a) < (bll? (a): (bl) 
Ide tine mmax (a, b) ( ((a) < (b) I? (b): (a) 1 
ldeflne abs(xl (((xl > 0.) ? (x):-(x)) 

ft task oriented definitions *I 
ldef!ne STACKS!U 5000 

1• A./0 de!initlons •1 
ldeflne MAX SNGL ENDED CHANNELS 32 
ldef!ne MAX-DIFF-CHANNELS 16 
Ide t1 ne MAX =PAST= MEASUREMENTS 50 

I • ABFT USUAGE 
ldeflne EPSILON 

'I 
0.00001 

I* Definitions tor Direct D1q1tal Control code seqrnents. •1 
ldef!ne TICKS PER SEC 60 
lde[!ne PI - - 3.1415926535891932384 
tdeflne STATES 6 /"' (maximum number of states n) 
tde!1ne INPUTS 6 1• (maximum number o! inputs) ,.. 
Ide fine MEAS 6 
ldeflne PROCESS NOISE 6 
ldeflne MEAS NOISE 6 
ldeflne ID - 10 

/* Global Measurements */ 

double y (MAX_SNGL_ENDED _Cf!ANNE!.S) !MAX_PAST_MEASUREMENTS): 

t 1 *I 
•I 

/* System Global Parameter& */ 

double ph If STATES II STATES 1: 
double 9atnma[STATES) [INPUTS); 
double PI STATES I I STATES I; 
double U(STATES) [STATES); 
double D[STATES); 
double DD(STATES+PROCESS NOISE); 
double H[MEAS) [STATES); -
double WISTATES) [STATES+PROCESS_NOISE); 
double diMEAS)IINPUTS); 
double X (STATES] i 
double ~[STATES) [MEAS); 
double R[MEAS NOISE); 
double Q[PROCESS NOISE); 
double G(STATES)fPROCESS_NOISE); 

double rogue_ value; 

1nt states; 
tnt process noise; 
int meas noise; 
int meas; 
lnt rogue delay; 
lnt roque=start; 
int !ault _type; 

char go_on; 

fiLE •fpErrorl; 
FIL£ •tpKgaln; 
FILE • fpU; 
riLE '[p0; 

I,.."',..,.* • .,.., • •• * ••••tt •• *• ,..., •• •• •• •"' * • .,. ** ** • ••• ,.,. * • •• •• •• ••"" ,.. • • •• *" * • .,. I 
1.. NC»1ENCLATURE: .. I 
1u Time varylnQ linear system: ,.,/ 
1.. x(k+l) • phi•x(k) + qamma 11 u t G111 q ••1 
!"'• y•H•xtd•u+r 11111 / 

/,., Vectors and Matrlcies: ••1 
1 11111 y - vector of measurements, (mxl) .. / 
I'" u- vector of control inputs, (lxl) ·-; 
!*• q- process noise, (pxl) Hf 
/** r - measurement nolse, (mxl) u; 
1 11111 r and q are mutually uncorrelated jointly Gaussian white noise ••1 
I* • sequences. 
/,.. H - observation matrix tmxn) 
J·H phi - state transition matrix, (nxn) 
I"* qantll'la - control input matrix, {nxl) 
1.. G - (nxp) 

1 11111 x - vector of states 
1u K - kalman gain vector 
/ 11111 P - oriqinal covariance matrix 
t•• U - U factor of covarianc-e P • UDU' 
;u D - o !actor of covariance P • uoo· 

..I 

.. I 

.. I 

.. I 

.. I 

"I 
"I 
"I 
.. I 
.. I 

I.. R- Measurement noise covariance m.atrix, positive deflnlte tmxm) .. I 
t•• (vector of diagonal elements) 11 •/ 
/~~* 0 - Process no1.se c:ovarlance, positive sem1det1n1te (pxp) .,./ 
1• • • *I 
/.. x{O) is multivariate Gaussianf with mean mx(OJ and covariance 
1,.. Px(OI. X(O) .... N(K(O);mx(O),Px(O)), 

.. I 

.. I 

1···········,.·······················~~···11·······~~····11·················1111/ 

SEM_to sem_systern; " ~ 



SEH 10 en t 1m• etep •ync; 
SEM-ID•em-updt't -
SEM=ID sem=:w_DD; 

1• talk ldantlUcatlona */ 
lnt tldl; 
int tid2; 
1nt tldl; 
lnt tid4; 
lnt tld5; 
tnt t1d6r 

/* file descriptors */ 
1 nt fdl 
1 nt fd2 
1 nt !d3 
lnt td4 

/*decl•ratlon of subroutines*/ 
void filter lnltO; 
void sya pal-" am updt 0; 
void simUlator-(); 
lnt mea• updt (); 
lnt ud factor 0: 
int ud-factor propO; 
void task killer(); 
lloat qet -t !me 0: 
void printm 0; 
void prlntv 0: 
void cont (); 
void stop 0: 
void start me 0 ; 
void roque(}; 
void abft _check 0 : 

, ........................................ _ .................................... , 
, .. filter inlt 0 is the entry point !or a filter spawned by **/ 
, .. a startup routine or function. ""'I 
/**modification history **/ 
/** -------------------- ••! 
/"* 02a, 19may93, mrm added fault type to errorl output ••; 
!*• 02b, 27may93, mrm added DEBUG-lfde!' s for print! statements **/ 
, ••••••••••••••••••••••••••••••••••••••••••••••••••••• "*"*·············••! 

void filter In! t 0 
I -

tnt t 1me step, inde.x by 100, k, j, l; 
lnt abft=error,error=fliq, error_type; 

error t laq • FALSE; 
error~ type .. FALSE; 
abft error • FALSE;
lndeH by 100•0; 
ttme_SteP - 0; 

lam (•moan•, •un1xcshell 11 ); 

1!! lfp~galn•fopen I" rsf: /u/moan/ rs6000/Kgal n. m•, "w"Jl ••NULL) 
printf("'\n Kqaln.m !open falled.\n•); 

1 f ( (fpU•fopen ( 11 rat: IU/moan/ rs6000/UpperP .m"', •w•)) ••NULL} 
print!("'\n UpperP.m !open falled.\n•); 

It ( (tpO•fopen I" rof: /u/moan/u6000/DioqP .m•, "w"Jl ••NULL) 

prlntt(•\n DlaQP.m !open falled.\n•); 

1 f { {fpErrorl•topen (•rs!: /u/moanlrs6000/errorl.m•, •w•) ) ••NULL) 
print! (•\n errorl.m Copen failed. \n•): 

taskDelay (10); 

11 !de f DEBUG 
1• Print out P "'! 

printf ("Printlnq P(O) \n"); 
prlntm (P, states., states); 
prlntf(•\n•); 

tendlf DEBUG 

/* Initialize fault detection information to NULL state 
fprlntf (fpErrorl, "'\n error type • 0;\n•J; 
fprlntf UpErrorl, '"\n time_ Or_ error • o; \n'"); 

/* Initialize fault type information !or plottlnq */ 

*I 

fprintf ffpEt:rorl, ""\n fault. type • td ;\n 11 , fault type): 
fpr1ntf(fpE:rrorl,"\n roque-start • td ;\n•, rogue start) 
tprlntf(!pErrorl,•\n roque-delay- td ;\n"', roque-delay) 
fprlntf(fpErrorl, .. \n roque=value • 't ;\n•, rogue=value) 

I* Print PO to Upper.m •; 
fprint!(!pU,"\nPO•( \n .. ); 
tor(k•O; k < states;k.H) 

I 
tor (j•O; j < states; j++) 

( 

fpr!ntflfpU,"H •, P{klilll; 
); 

!prlntf (!pU, •; \n"l; 
); 

fprlnttl!pU,"I: \n"); 

flfdef DEBUG 
I* Print out phi •/ 

prlntf(•Printlnq phi\n•); 
prl ntm (phi 1 st at es, states) : 
prlnt!l"\n"l; 

fendif DEBUG 

fprlntflfpU,"\nphl•{ In"); 
for(k•O; k < states;k+t} 

( 

for(j•O; j < states;jt+l 
I 
!prlntf(fpU,"H •, phi {kl llll: 
1: 

!printf(fpU 1 '"; \n"'}; 
I; 

!print! (fpU, • I: \n"J: 

11 !de f DEBUG 
I* Print out R */ 

prlntf( 11 Pr1ntJng R\n""); 
prlntv(R,meas noise); 
print f t•\n"') ~-

fend! f DEBUG 

!print! {!pU, •\nR- { \n""); 
!or(k•O: k < meas nolse;k+•l 

I - '-I 
U1 



tprintt(tpu,•u •, R!kll~ 

fprlntf(fpU,•~ \n") ~ 
); 

fprlntf(fpU,•I; \n•); 

abtt_error • ud_factor (); 

I* Evaluate fault status and report to errorLm if TRUE •t 
It (error tla9 •• FALSE) 

I -
1r (abft error ! • FALSE) 

{ -

1: 

lltdef DEBUG 

error !lao .. TRUE; 
error-type • ab!t error; 
fprlntftfpErrorl,;;\ntlme of error • 'd ;\n", time step); 
fpr1ntf(!p£rrori,•\nerror_tfpe • 'd ;\n•, error_tYpe); 
); 

I* Print out U */ 
prlnt!C'"Printinq factored U{O)\n'"); 
prlntm (U, states, states,; 
printf ("\n"l ~ 

tend!! DEBUG 

fprintt (fpU, "\nU• ( \n") ~ 
tor (k•O; k < states;k++) 

I 
for (j•O; j < states; jt+-) 

I 

); 

Hlk •• 11 
I 
!print! (fpU, "1.0 "); 
) 

else 
fprlntf(!pU,•H •, U(ki(JJI; 
); 

tprintf (fpU, •; \n•); 

tl!def DEBUG 
I* Print out D */ 

print! ("Print lng factored D (01\n"); 
prlntv (O, •tates); 
prl nt f 1"\n"); 

tendit DEBUG 

fprlntt(fpO,"\nD•( \n"); 
for(k•O; k < states;k++) 

( 
fprlntf(fpD,"H •, D{k)); 

I ~ 
fprlntf(fpO,•; \n"); 

I* Start Printing out Kalman Gains */ 
fprlnt!(fpKgaln, "\nK•I \n"); 
tor (k•O; k < states; k,..+J 

' fprlnt!(!pKQaln,•\f •, K(kl (0)); 
); 
fprintf (fpKqaln,•: \n..,); 

tor II: I 

semTake (sem_t1me_step_lync); 

It~ loop tor multiple measurements to be added here 
I* for (l-0; 1 < meas; 1++) 
I' I 
I* validate_meas(); 

1•0; 
semTake (sem_system); 

abft_error•meas_updt (l); 

'I 
*I 
'I 
*I 

I* Evaluate fault status and report to errorl .m 1! TRUE 
If (error flag •• FALSE) 

I -

1 t (abft error ! • FALS£) 
I -

'I 

error tlao .. TF.UE; 
error-type- ab!t error; 
fprtnt"t(!pErrorl,;\ntlme of error- 'd ;\n"', time step); 
fprintt (!p£rrorl, •\nerror tYpe • 'd ;\n .. ~ error tyPe); 
I; -· -

tlldef DEBUG 

tend! f DEBUG 

); 

1• Print out U t.l 
print f t•Printinq me.as_updt U\n•); 
prlntm (U, states, states); 
prlntft"\n"l; 

lf(l -- 01 
I 
for {k•O; k < states; k++) 

' for ( j•O; j < states; j++} 

); 

I 
if (k -- j) 

I 
fprlntf(fpU, "1.0 "I; 
I 

else 
fprlntf(fpU,•tt •,U(klllli; 
); 

fpr1ntf(fpU,•; \n"); 
J; 

llfdef DEBUG 
1• Print out D *I 

lendlt DEBUG 

prlntf(•Prlnt1nq meas updt D\n•); 
print v (0, states); -
print! ("\n"l; 

1!(1 -- 0) 
I 
for (k•O; k < states;k,..t) 

I 
fprlntf(!pD,"'f .. , D(kJ); 
]; 

fprlntt (fpD, •; \n"l; 
); ...., 

"' 



Hfdef DEBUG 
I* Prlnt out K *I 

prlntf t•PrlntlnQ Kalman Gain Vector 1<.\n"); 
prlntm(K,states, 1); 

Iandi! DEBUG 
print! ("\n"); 

1f(l -- 0) 
I 
for(k•O: k < states;k++J 

I 
fprlntt (fpKqaln,•H •, K(kl (01); 
I; 

fprlnt t (fpKg:aln, •; \n•); 
); 

/*allow sys param udpt to update the system parameters •t 
/*if new values are available*/ 
semGlve (sem_system): 

, ........................................................................... ····; 
/** Comment is a stub for sequent lal state estimation update for each 
I** measurement to be placed herea 

• 'I 
••; , ..... ,. ..... "****"**•·················· .. ··························-··········t 

I'' '*I 

aemTake (sem system); 
abft_error : ud_factor_prop(); 

I* Evaluate f.ault status and report to errorl.m if TRUE 
if (error flaQ -- FALSE) 

I -
1 f (abft error ! • FALSE) 

I -

., 

error flaq - TRUE; 
error-type • abtt error; 
fprlnt"f{fpErrorl, ;\ntlme of error • 'd ;\n•, tirne step); 
fprlntf(fpErrorl,•\nerror tyPe- 'd ;\n"', error tYpe); 
); - -

) ; 

I lfde! DEBUG 
1• Print out U */ 
print! ("'Printing time propogated U\n"'); 
prlntm (U, states, states,; 
prlntf ("\n"); 

lend! f DEBUG 

flfdef DEBUG 
J• Print out D •t 
print! ("PrlntlnQ time propagated D\n"); 
prlntv (0, states); 
prlntf ("'\n"'); 

fend! f DEBUG 

, ............................... - ................................... * •• ,.. .................. , 
I** Comment is a stub tor time propoqatlng the state vector to the .. , 
t•• next t1m.e step. (prediction of state at t (k+l) .. / 
1.. Hay also be qood place for control law calculations ""/ , ................................ ,..,. ............................................. , 

seMCive (sem_aystem); 

;···········································································! ,., Since global system data ts protected by sem system., this could .,, 
;u Allow sys param updt ' control laws to proc8ed sending information **/ 
/* ............. ; •• -····· ...................................................... , 

H ltlme_step •• 100) 
I 

fprlntf (fpU, "I; \n"); 
!prlntflfpO,"I; \n"); 
fprintf{!p!C:galn, •J; \n"}; 

tpr1ntf{t'pU, "'\n lndexlOO .. •); 
fprlntf(fpU, "'d ; \n", lndex_by_lOO); 

print! ("'\n indexlOO - "'); 
printf("'td; \n•,tndex._by~l00); 

++index_ by _1 00: 

time_step - 1; 

lam t•moan•, •unixcshe ll "') ; 

lf ((!close (fpU)) •• EOF) 
print! ("'\n fpU !close failed. \n"); 

1 t ((!close (fpD)) •• EO f) 
pr1ntt(•\n fpD fclose failed.\n•); 

lf(l!close(fpKqaln)) •• EOF') 
print! (•\n fpKqain fclose fat led. \n"); 

If I (fclose lfpErrorl)) •• EOF) 
print! ("'\n !pE:rrorl !close failed. \n"); 

1 f ( ( !p)(ga ln•fopen (" rs !: /u/moan/rs6000/KQa 1 n .m•, •w•) } ••NULL) 
pr1ntt(•\n Kgain.m fopen failed.\n•); 

l! ( I !pU•!open (" rsf: /u/moan/ rs6000/UpperP. m•, "w")) ••NULL) 
printf(•\n UpperP.tn fopen !ailed.\n'"); 

HI ( !pD•fopen I" rs t: /u /moan/ rs6000/0iaqP .m••, "w"))- •NULL) 
prlntfl"\n DlaQP,m !open falled.\n"); 

1 t { (fpErrorl- !open ( .. rsf: /u/moan/rs6000/er ror 1 .m•, •w•) ) ••NULl,) 
print f ("\n errorl.m. !open failed. \n"); 

/* Initialize fault detection information to NULL state */ 
fpr1nt!(fpErrorl,•\n error type .. 0;\n"l; 
fpr:lntf(fpErrorl,"'\n time_Of_error ... O; \n•); 

/* In1t1alize fault type information for plottlnq */ 
!printf(fpErrorl,"'\n fault type"" 'd ;\n"', fault type): 
fpdntf(fpErrorl,"'\n roque~stan • 'd \n"', roque start) 
fpr1ntf(fp£rrorl,'"\n roque-delay • 'd \n"', roque-delay) 
fprintf(fpErrorl,•\n rogue=value- '( \n•, roque=value) 

error tlaQ • fALSE 
error-type • fALSE 
abft_error • FALSE 

fprlntf(tpU,"\n U•l \n"); ....., 
....., 



fprlntf(fpO,"\n D•( \n"); 
fprlntf (fpKq&ln, "\n K·( \n"); 

el•e 
I 

); 

++time_&tEip; 
); 

I***" •• "'*"'********* ******** *" •••• ** •••• •• •••• *' •" •• ** "'* ** •• •• ** * • • * •• •• •• I 
, .. ays pJ~ram updt() is lp&wned to update system parameter when u/ 
I* • nec8aa&ry: "'*/ 
/** ••t 
/*"'modification history *"/ 

I* • -------------------- ••! 
;u Ola, 12m.ay93, mrm added stuff for alqorlthm based fault "'/ 
;u tolerance. .., I 
,.. **/ , ................................................. " .......................... , 
void sys param updt 0 
I - -

tnt Btiltes but; 
int procesS noise buf; 
int meas noise buf; 
Lnt meas -but; -
int j,k;-

double ph! bull STATES) (STATES); 
double gamma bu((STATESI (INPUTS); 
double P but( STATES) [STATES); 
double U-buf[STATESI(STATES); 
double D-buf[STATESJ; 
double DO bu! (STATES+ PROCESS NOISE J; 
double H buf{MEASJ(STATES); -
double W-buf[STATESI [STATES+PROCESS NOISE!; 
double d-buf[HEASJ(INPUTS); -
double X -buf{STATES); 
double K-buf{STATES] {MEAS); 
double R-buf{MEAS NOISE]; 
double Q-buf{PROCESS NOISE!; 
double G=buf[STATESJ(P~OCESS_NOISEJ; 

for(; ;I 
I 

1• This pa:rt is a stub !or readlnQ new parameters lnto a buffer 
I" when a messaqe or interrupt is sent to slqnal that new 
1• parameters are available~ 

semTake (sem updt) ~ 
states but-2; 
procesS noise buf•l; 
meas noise buf•l; 
meas=buf•lT 

phi buf(OJ (01•1.0; 
phi-buf{l!IO!• Or 
phi-buf[21{01• 1.0; 
ph!=buf IJJIOI• O; 

., ., 
•! 

phi buf(O]{l!• .02; 
phi-but[ll [lJ• 1.0 ; 
ph1-buf[2J [11• 1.02 
phl=buf[31 [11• o 

phi buf[OI{2J• 
phl-buf[ll [21• 
phi-bu![2J {21• 
phi=buf[3](2J• 

phi buf(0][3J• o 
phi-buf[1J[3J· 0 
phl-buf(21 [JJ· 0 
phi=buf(3JI3J• 

P buf[OJ [01•10; 
P-buf[OJ(ll• 0; 
P-buf{OJ 121• 10; 
P=buf(OJ(3i• 0; 

P buf{lJ [OJ• 0 
P-buf(lJ (11- 10 
P-buf[ll {21• 10 
P::_bu!(ll [31• o 

P buf(2J(OJ• 0 
P-buf[2J [lJ· 0 
P-buf(2112J• 
P=buf[21 [31• 

P buf(JJIOJ• 
P-buf[JI Ill· 
P-buf[JJ (21• 
P::_buf[3J [31· 

R buf{O)• 0.1; 
R::_buf[ll• 0.1; 

Q buf(OJ•O.Ol; 
Q-buf(l!•O.Ol; 
Q -but 121•0; 
0-buf[li•O; 
Q=bu!(4J•O; 

H buf[OJ (0)•1.0 
H-buf [0 I I 11•0.0 
H::_buf(OJ (2!•0.0 

H buf(li{O)•l.O 
H-buf{ll {1]•0.0 
H=buf[l![2J·O.O 

G buf[OJ {0]• 0.0; 
G-buf[OJ {lJ• 0.0; 
G-buf[OJ [2]· 0; 
c::_buf[OJ {31· o; 

G buf[11 (OJ• 1.0; 
G-buf[lJ(lJ• 0; 
G-buf(l}(2J- 0; 
c::_buf(1J [3!• o ; 

G buf(2J (OJ• 1.0; 
c::_buf(2Jill• o; 

'-..J 
co 



G huf(2J 121• 0 
c::but(2J (31· o 

G bu!(ll [OJ• 0 
G-buf[l} Ill• 0 
G-buf[l} [21• 0 ; 
G::buf[JJ [31• o.o: 

/* End ot stub 

aemTake (aem syatem); 
statea•stat8• but; 
process noise:process noise buf; 
maas noise•me,as noise -buf; -
meas:meas_buf; - -

I* Also reads in phi column checksums */ 
tor (k•O; k < states;k++) 

[ 
tor(j•O; j < (states+ ll;j++l 

{ 

phl(j}[k}•phl bu!(jJ(kJ; 
1: -

1: 

for(k•O; k < at.ates;k+t) 
( 
for (j•O; j < states; j++) 

( 
P(kJ[j(•P but(k}(j}; 
1: -

(; 

JA Also reads in R dlaqonal check.sum */ 
tor (k•O; k < (meas noisef.}) :k++) 

( -
R(k(•R bu![k}; 

I; -

I* Also reads in 0 dlaQonal checksum */ 
for (k•O; k < (process noise+!); k++) 

( -
O!kJ•O bu!(kJ; 

I; -

I* Also reads ln H column checksums *I 
tor(k•OI k < (meas+lJ1k++J 

( 
for(j•OI j < states1J++J 

I 
H[k} (j(•H but[kl [j); 
I; -

I I 

1• Also reads ln G column checksums */ 
for(k•O; k < (states+l);k++• 

{ 

for [j•O; j < process noise; j++J 
( -
G(k](j(•G bu!(kJ(jl; 
II -

1: 
sem.Gl ve (sem ay•tem): 
1: -

• I 

/***** ••• ** •••• •••••• •• **** •••••••• •• * ••••••••• **** ** ************ * * •• **I 
I** Hessaqe simulator stub, which controls how often sys_param_updt **/ 
;u CJets exercised. **/ /***••·································································; 
void simulator 0 
{ 

for(;:) 
( 
taskDelay (300001; 
semGl ve {sem _ updt); 
); 

, ........................................................................... 1 
I** U/D Measurement Update AlQorlthm aft:"er Bierman and Thornton. **/ /** c language version coded by HRM !rom algorithm **/ 
/** qlven by V. Gylys on pp. 278, Control And Dynamic Systems, "*/ 
I* • Advances in Theory and Appllc.at ions, edited by c. T. Leondes ••; 
/** Volume 19: Nonlinear And Kalman Filterlnq Techniques ••t 
I" 
I" 
1,.. modification history 
I** --------------------
1•• 02a, 12may93, mrm added checksum fault tolerance 
1 .. 02c, 19may93, mrm changed error codes 

.. , 
"I 
"I .. , 
"I .. , 

/** •••• ,. ••• ** ......... ** .,. •• ** "'* •••••••••••••••••••••••••••••••••••••• **/ 
1 nt mea a updt (y row) 

int Y_tow; -

double ![STATES); 
double g[STATES(; 
double alpha (STATES I; 
double v [STATES I; 
double last alpha, last alpha2; 
double last -U; -
double temp; 
double lambda, lambda ch.eck: 
double check; -
double f_sum, alpha_sum, g_sum, v_sum; 

I nt k, I, j; 
1nt check_status; 

check • o; 
check_status • 0; 

/" I. calculate H•U *I 
for (1•0; 1 < states; it+) 

( 

!(II • H[OJ(IJ: 
fortj•O; j < l; j++J 

( 

I; 

!(II • ![II • H(OI (j('U[jl [IJ; 
1: 

/*Create ! awn • e'•H*U*e */ 
t sum•H(meaoJ (ot•tes-11; 
tOr (k• rat .ate•-21; t>-o: k--, ...., 

1.0 



l 
t awn • t sum+ H[meas][k]• (U[k] [states) t 1): 
II -

J• Calculate Oi • Dl*fi and checksum */ 
9 sum • O; 
t0r(1•0; l < states; 1++1 

I 
9111 • 0[1]•![1]; 
q sum +• g{l]; ,; 

t• check D diaQonal checksum 
tor ll•O; j < states; j++) 

I 
check +• Dill: 
1: 

*I 

lf(!abs(check- D[otatea() >EPSILON! 

I 
check status +• 1; 
1: -

check • 0; 

1• lnltl.llize v sum, alpha sum, lambda, lambda check 
v sum - 0; - - -
alpha sum - O: 
lambdi • 0; 
lambda_check • 0; 

I* Start U and D update •1 
last alpha • R.{y row); 
tast:alpha2 - arY_rowJ: 

tor IJ·O; j < states; j++J 
I 
alpha[jl • last alpha+ t(jJ*qJJJ; 
alpha sum •· alpha[jJ; 
lflalphalll !• OJ 

I 

*I 

t• tractional update D{j} and update checksum "/ 
temp • D[jJ; 
D[jJ • (last alpha/alpha[JII*O[j); 
D[statUI •--Dill -temp; 
1: 

1• form v{jl and keep a checksum •1 
v[jJ • QIJJ; 
v_sum +• giJI; 

t• continue update */ 
!f(j !• 0) 

I 
it(laat alpha 

I -
lambda • 0; 
I 

else 
I 

0) 

lambda • -fiJI/last alpha; 
I; -

lambda check • lambda; 
for 11•0; 1 < J; 1++1 

f 
laot_U- Ullllll: 

1: 

temp- v(i)•lambda; 
U(il Ill • U[il Ill +temp; 
I* update U row checksum •1 
U[i((statesj +• temp; 
temp- last u•vrll; 
•Ill • v(il-. last u•v[lJ: 
1• update v sum •7 
v_sum +• telnp; 
1: 

/* check lambda "/ 
if (tabs (lambda - lambda check) > 0.0000011 

I -
if (check status < 2) 

1 -

); 

check stat us + • 2; 
); -

/* check last alpha's "I 
lf{fabs(last alpha- last a!pha2) > 0.000001) 

I - -

1! (check_status < 4) 

I; 

I 
check_status +• 4; 
1: 

last alpha • alphalll: 
last_::alpha2- alphalll; 
1: 

/* Kalman qain column vector for the y row measurement •1 
I* and form column checksum - *I 

l<(statesJ (y row! • 0; 
for u-o; 1 < states; 1++) 

I 
K[ll[y row] • v[!l/alpha[ (states-!)); 
KlstatesJ [y row( •- Klilly row]; 
I; - -

I* check t• - H*U */ 
check • 0; 
for (k •0; k<states; k + +-) 

I 
check ... check • f [k l: 
1: 

if(fabs(check- f_sum) > EPSILON) 

I 
check status +,.. 8; 
); -

check • 0; 

1• check g • 0*! "I 
for (j•O; j < states; :]'f-+) 

I 
check 
); 

QIJI: 

if (tabs [check - Q sum) > EPSILON) 
1 -
check atatu& +• 16; 
1: -

(X) 
0 



check • 0; 

I" check row checksums of u •1 
!or(j•O; j < states-1; j++} 

l 
for (k•stateo-1; k > j; k--1 

t 
check +• U I j 1 [ k I ; 

); 
lf(fabs(check- U[ji(states]} >EPSILON} 

l 
iftcheck status< 32J 

I -
check status +• 32; 
I: -

); 
check • 0; 

); 

I* check sums for 0 •; 
!or (j•O; j < states; j++) 

l 
check + • 0 [ j [ ; 
I; 

lftfabs(check-C[states)) >EPSILON) 
I 
check status +• 64; 
I: -

check • 0; 

I* check alpha */ 
for {j•O; j < states; j++) 

I 
check 
t; 

alpha [ j): 

l!(tabslcheck- alpha sum) >EPSILON} 
I -
check status +• 128; 
I; -

check • 0; 

t• check v ., 
for tj•O; j < states; j++l 

I 
check +• v( ll: 
1: 

lt(fabs(check- v_sum} >EPSILON! 

I 
check status +• 256; 
); -

ret urn (check_stat us); 

t••···~~~······················ ............................................. l 
/.., U 0 factorization Algorithm 
1 .. C lan<;~uaQe version coded by HRM from alqorlthm 
/ .. qlven by V. Gylys on pp. 21!12, Control And Dynamic Systems, 
, .. Advances ln Theory and Appllcat ions, edited by C. T. Leondes 
;u Volume 19: Nonlinear And Kalman Filtering Techniques , .. 

.. , .. , .. , .. , .. , .., 

tu· Input: nxn 1ymmetrlc matrix P, with maln-diaoonal and 
;u: upper-trianQular elements stored in an n x n array P. , .. 
;•• Output: n x n uni\-diaoonal, upper-triangular matrix U, with 
/** lts upper trlanqular portion stored ln n x n array 
1•• U (which can be •equivalenced"' with array 
1•• P so that the original 1' is destroyed). , .. 
/"* Output: The maln-dlaqonal elements of n x n diat;,onal matrix D 
t•• stored in vector D (which optionally can be stored in 
/"* locations of the maln-diaqonal elements ot array P). , .. 
t•• Remarks: the alqorlthm does not explicitly Qenerate the maln-
;u diagonal unit elements of U , .. 
;u modltlcation history , .. --------------------

.. , .., .., .. , .. , .. , .., .., .. , .. , .., .., .. , .. , .., .. , .. , 
I*• 02a, 12may93, mrm added checksum !a.ult tolerance .. , 
/,., 02c, 19no.ay93, mrm chang:ed error codes ••; 
;••••••••••"'••• •• ••• • "• • * •• •••• ••• • •• •• ••• • •• •• • • • • • • "* • • • ••• •• •• •••-•• I 

lnt ud __ factor () 
( 

double alpha; 
double beta; 
double check~ 
lnt 1,k,j; 
int check_status; 

che-ck .. 0; 
check status • O: 
D[sta'tes) •0; 

for (j•states-1; J > 0; j--1 
( 
D(j) • P{jJ(j); 
I* D[states} is the location of the checksum */ 
D(states) +• Dill: 
alpha • 1.0/D(j); 
!or(k•O; k < j; k++) 

I; 

I 
!f(j •• lstates-1)) 

I 
U(k) [states) • 0; 
); 

beta • P(kl (J); 
U I k I ( Jl • a! ph a •bet a; 
/* U{kJ (states! is the 1ocat1on of the rowchecksums •; 
U[k}(states( +• U{k)IJI; 
for (1•0; 1 < k; 1 H) 

I; 

I 
P (II [ k 1 -· beta•u [II ( Jl; 
); 

D{O)•P[O) [0]; 
D[states) +• 0(0); 

;• check sums •t 
!or(j•O; j <states; jt+) 

I 
check +• D(jl; 
I; 

lf(fabs(check-D(states}) >EPSILON) Q) .... 



check_•tatue +• Sl2; 
1: 

check • O; 

I* check row sums */ 
tor(j•O; j < states-1; j++) 

( 
for (k•otates-1; k > j; k--1 

I 
check +• U { j 1 I k 1; 

); 
lf{hbo(check- U[j![states)l >EPSILON! 

l 
1! (check status < J) 

I -

1; 

check status +• 102(; 
!; -

Chii!!!Ck • 0; 
I: 

return (check_statua:); 

I* • • • • • • • •• • •• • • • • • • • •• • • • • • • • • • • • • •• • • • • • • • • •• * • • • • • • • •• • • • • • • • • • • • • • •t 
I*" U/D Factor Propaqatlon fT1me Update) ••1 
/* • C lanouage version coded by MRM from alQorl thm •• 1 
;u ;tven by v. Gylys on pp. 284. Control And Dynamic Systems, ••t 
t• • Advance• in Theory and Applications, ed 1 ted by C. T. Leon des .. / 
/** Volume 19: Nonlinear And K.alman Filtering Techniques ••1 
I*" • *I 
/u Input: U.D,Q,G , .. 
,..,, Calc: n x N symmetric matrix W, with rows wl""T, ••. wn"'T. , .. 
/** Calc: N x N dlaqonal matrh DO defined by {0 0;0 01 , .. 
t•• Output: the upper trlanqular part U of prop.aqated n x n 
/** unlt-diaqonal, upper-trianqular mo~trix U. , .. 
I'* Output: the main dlaqonal elements, stored .a.s a vector D, 
I** of n x n dlaqonal matrix D. , .. 
1•• Define; wj""(O) • wj for j • 1, -··• n. , .. , .. 
, .. madiflc~:t ion history , .. -~------------------

··I .., 
"I .., .. , 
"I .. , .., .., 
"I 
"I .., 
• 'I 
"I 
"I .. , .. , 

1., 02a, 12may93,. mrm added checksum fault tolerance. **/ 
/** 02c, 19may93, mrm ch•n;ed error codes. ••t 
t•• 02d, 21may93, mrm added sem W DO to control when fault occurs . .. 1 
, •••••••••••••••••••••••••••••••• ;.; ..................................... 1 

I nt ud_!actor_prop 0 
f 

double DD inner prod; 
double ch8clt,w_Sum,Temp; 
int i,j,k; 
int check_atatus; 

check - 0; 
check_statu• • 0; 

I* form larqe DO matrix of dia9onal elements *I 
tor (1•0; !<states; 1 ++) 

f 
DD{l)•D[l]; 
I; 

for (1•0; 1<process_no1se; it+) 

I 
DD(states+l1•Q[ll; 
); 

I* Form dlaqonal checksum •1 
OD(states+process_nol.seJ • D{statesJ + O[process_noisej; 

/* .. Put DO fault here •••t 
It (fault type •• 31 

I -
semGi ve (sem W OD) : 
I; --

1•••• • Creo~te W •(PHI*U I GJ ••••••••••••••••••••••••••••••••1 
ror (i •0; 1 <states; i +•) 

( 

I; 

tor ll•O; j<states; j++) 
I 

!; 

w !11 I l 1 •phi I 1! ! l 1 ; 
!or (k•j-1; k>•O; k--1 

( 

W(1! (j]•W[1) (j)+phl(l)[l<I'U(k)(j); 
!; 

t• Create le' *PHI) •u •t 
for (j•O; j<states; j H·l 

I 
W(states! (j)•ph1(states[ Ill: 
for (k•l-l:k>•O;l<--1 

1: 

I 
W(states1 [ji•W[states) [j)+phl[states1 [l<I'Uikl (j]; 
I; 

t• Create check • e' "'PHt•u•e •J 
check-phllstates!tstates-1]; 
for (k• lst.ates-2 t; k >•0; k--) 

I 
check • check+ phl(statesj(k]•(UfkJ(states! t ll; 
1: 

t• check calculation of PHI*U */ 
W sum • 0; 
tOr tj•O; j<states; j+•) 

I 
for (k•O; k<states; k+ + l 

I 
II sum • W own+ W[kl [j!; 1: -

); 

1f (fabo (Check - ll_sum) > EPSILON! 
00 
1'-.) 



check •tatua +• 2041; 
}; -

check - 0; 

1• also include column checksum elements for G ln bottom row of W •1 
for~ 1•0; i<atatea+l; l++) 

t 

1: 

for (j•O; j<procass noise; 1++) 
t -

W[ 1 l[atates+11•G [!I [ 11; 
1: 

!••••• Perform D-orthogonallzatlon •••••••••••••••! 
D[statesi•O.O; 

JH reset U{il (states} • 0 •••t 
for (1•0; 1 < states; 1++) 

t 
U[ll [states)•O; 
1: 

!••• Put W fault hare **"'/ 
1t (fault type •• 41 

I -
sem.Gtve (sam w DO); 
J; --

/** start orthogonali,ation .. , 
for t1•atates-l; j > 0; 1--1 

I 
D[j)•O.O; 
tor (1•0; 1 < (states+process noise); 1++} 

I -
Dill +•ll[j)lll'W[ji[II'DD[II; 
I; 

t••• New diagonal checkiUIII •••1 
Dlstatesl +• D[j); 
for (1•0; 1 < 1: 1++1 

I 
DO inner prod•O.O; 
tor (k•O; -k < (statea•proceas noise); k++} 

I -
DD Inner prod +• W[ll [k)'W[j) [k)'DD[k); 
I;- -

U[ll [jl • DD Inner prod/0[11; 
J•• Keep traCk of ilew row checksum for U **/ 
U[l)(statesl +• U(IJij); 
for (k•O; k < (states+proc.ess noise); k++) 

I; 
I; 

0[01•0.0; 

I -
Temp • U[!IIJI'WIJI [k); 
ll[l)[kl • ll[l)[kl- Temp; 
;u Also subtract temp from M(statesj {k) **/ 
W[states)lk) • W[states) [k) -Temp; 
I; 

!or (1•0; 1 < (states+proce.ss nolae); 1+-+) 
I -
0[0) +• W{OIJII'W[O)[I)•DD[I); 
I; 

/*** last update of d1aoonal eheckaum tor 0 ... , 
0 [states) +• 0[01; 

I* check row checksums ot U ., 
for (j•O; j < states-!; j++) 

I 
for (k•states-1; k > j; k--) 

I 
check +• u! j I [k I; 

); 

lf{fabs(check- U[j) [states)) >EPSILON) 
I 
If {check_status < 4096) 

[ 

); 

check status +• 4096; 
); -

check • 0; 
J; 

/* check sums for D •t 
!or lj•O; j < states; j++l 

I 
check +• O[j); 
J; 

lt(!abs(check-O[states)J >EPSILON) 
I 
check status +• 8192; 
I; -

check • 0; 

I' check sums for DO */ 
!or(j•O; j < (states+ process noise•; :l••• 

I -

check +• OO[j); 
J; 

1 f ( !abs (chec.k-00 {states+process noise)) > EPS !LON) 
I -
check status +• 16384; 
I; -

check • O: 

I* check column sums of w... */ 
for (j•O; j < (process noise + states); j++J 

I -
for (k•O; k < states; k++) 

I 
check +• W[kl [j); 

); 

If (fabslcheck - W[statesl [j)) > EPSILON) 
I 
If {check status < 32768) 

I -

); 

check stat us -t- 3 2 '7 68; 
I; -

check - 0; 
I; 

/** more fault control !or W and DO ••1 

If !fault type •• 31 
( -
1emTake tsem_W_DD); 00 

w 



); 

If (fault type •• 4) 
t -
aemTake (sem H OD) ; 
); --

/** return &tatus **/ 
return (check_statua); 

I• ••••• ** •••• •• •• •• •• •• "*** •~~t •• **** •••• • ****" • • ** • * •• * • • • •• •• •• *I 
/** Task killer is called to delete all the spaliined tasks. ""/ 
, •••••••••••• ** •••••••••••••••••••••• ** ••••••••• * ................ , 

vold task killer (1) 
1nt I; 

t• 

If (1 •• 0) 

I 
taskDelete (tldl 1 
taskDelete (tld21 
UskDelete (tldl) 
taskDelete (t ld4l 
taskDelete (tldS) 
taskDelete(tld6) 

fclose(fpU); 
fclose(fpD); 
fclose(fpKQaln); 
fclose ( fp£r rorl); 

); 
return; 

•t 

/****"*"** • •• •• •• •• •• ... •• •••••••••• •••••••• •••• •• •• .. * •• •• •• •• * • •• •• * ••• *I 
I" 
t•• 
t•• 

oet_tlme - returns a floattn9 point number that contains the **/ 
number of SECONDS on the olobal tick counter. .. , 

"I 
I* ••• ** •• * * • • •• •• •• *" •• ** •••••• *** * •••••••••••"' * • ** •• •"' •• •• •• •• •• •• •• •••t 
tloat Qet t !me 0 
I -

ULONG ticks; 
ticks • tlckGet(); 
ret urn ((float) t 1 cks/TICKS _PER_ SEC); 

, ............................................................. , 
I** Print out matrlcies .. I 
, ••••••••••••••••••••••••••••••••••• 11 •••••••••••••• 11 •••••••• , 
vold prlntm (a, row, col) 

int row,col; 
double all (STATES); 

i nt 1, j, btm, top, count; 

print f (•\n• J; 
btm•top•O; 
while Cbtm<col) 

I 
top-wunln(col, (bta+l)); 

printt(•prlntlno matrix columna 'cl to 'd\n•,btlll, (top-1)); 
tor(j•O;j<row; j++) 

); 
ret urn; 

( 

tor (l•btm; 1 <top; 1 ++) 
( 

pr! nt t I • •• •, a I j !Ill 1 : 
l: 

print! t•\n"J; 
I; 
btm~·e; 

/*ll**••··························*··························t t•• Print out vector ••/ , ................................................. , .......... , 
void printv(J~,lenqth) 

lnt length; 
double a {); 

lnt l,btm,top; 

printf("\n•); 
btm•top•O; 
while (btm<lenqth) 

I 
top-mm.1n (length, (btm+8)}; 
printf(•printinq vector entries td to lld\n",btm, (top-Ill; 

); 
return; 

for(i•btm; i<top; 1++) 

I 
printf(• \e", a(i}); 
); 

prlntf("\n"); 
btm+•B; 

/" • "* ** *" *" *****"•** *"II*** • * • • * "'* ** ** •• •• ** •• • **"'*II t *'"* ** • **I /"' * continue .. I /*lllllfll····lllllflltt•••······················<l····················; void cant(} 

semG1ve(sem __ t1me_step_syncl; 
ret urn; 

, .......................... ~ ........................ 111 ••••••••••• / 

/** Stop .. I , ................................. **lltlllr ••••<~••••••••11•••••11•/ 
vold stop() 
( 

go_on • 'n'j 
return: 

, ..................... , .................. 11<1******•••••••····11-·J 
, .. Roque software to cause problems with the calculatlon ••1 
, ... modification history • •t 
I*, -------------------- .. , 
, ... 02c, 19may93, mrm. .added D fault type .. , 00 

.l:'-



t•··························································J void roqueo 
I 

taakDelay{roque start,; 
torftn -

I 
1f (fault type •• 1) 

I -
U{OJ !11 • ro;ue value; 
) -

else 1f (fault type •• 2) 
( -
D[O) • roque value: 
) -

else if (fault type •• 3) 
( -
semTake (sem W OD); 
DO{ 1 J • rooUe-value; 
semGive (sem W-DD); 
l --

else if (fault type •• 4) 
( -
semTake (sem W DO); 
Hill [OJ • ro;ue value; 
semGi ve (sem w o0); 
); --

pt·intf ("'Gotta love me step \n"l; 
taskDelay (roque delay); 
); -

I*• •••Ill• • • * •••• •• • •••••••••• • •• *"' • • •• • • •• •• •• • * ** • • •• * • * • •• • I 
/** Start **/ 
1•• modification hlatory **/ I•. __________ .., ________ _ .. , 
ru 02b, 18may9J, mrm transfer file to rsf via ftp **/ 
1 ... 02c, 19may93, mrm added request for fault type 111 */ , .. 
,.,, 02d, 2?rnay93, mm , .. 

and chanqed period to make faster ••1 
added sem W DO, changed to 1 sec •• I 
period (det:;ults chanqed) 0 ••1 ;···························································; void start_ me (I 

I 
sysClkRateSet (TICKS PER SEC I; 
t1ckSet (0); /*seta-the-time reference to zero*/ 

sem system • semCreate 0: 
sem-t lme step sync • semcreate (): 
sem-updt-- seincreate 0; 
sem=W_DD • semCreate(); 

host Add (•rsf", "139. 78.3 o 7•): 

netOevCreate (• rsf: •, •rst•, 1) : 

aemG 1 ve ( sem. updt) ; 
aeft\Cive (sem=system); 

print!P'\nPleaae enter the fault type: 1 tU), 
1f ((scan! l"'d", Hautt type)) •• NULL I I 

(fault typ8 !• 1 '' fault type !• 
" fault_type !· 411 -

!Dl, 3 (DD), 4 (Wl :\n"); 

'' tault_type ! • 3 

print!("\nError enterin9 !ault typeJ Default 1 aet.\n"); 
tault type • 1; 
l; -

printf("\nPlease enter the value of the rooue information,\n"J; 
print f C"wlth declma 1 point: l.e o, -10. 7\n"); 

l"t {{scant ("Uf", Hoque_value) l •• NULL) 
I 
prlntf("\nError entering value! Default -10 set.\n•); 
roque_value ... -10; 
l; 

print!("\nThe value entered is: '! \n", roque_value); 

print! ("\nPlease enter the delay for the roque routlne:\n"): 
1 f ((scan! (•\d", 'roque delay)) •• NULL) 

I -
pdntf("\nError entering delay! Default 6000 seto\n•); 
rogue delay • 6000: 
I; -

pr1ntff"\nPlease enter the starting delay tor the rogue routine:\n"'); 
1f({scanf("\d•,,rogue_start}) •• NULL) 

I 
print!("'\nError enter1nq startinq delay! Default 3000 set.\n•J; 
rogue_delay • 3000; 
); 

t1dl • taskSp,a,wn(•param•,7o,O,STACKSIZ£,sys param updt); 
taskDelay (10); - -
tld2 • period(l,cont): 
taskDelay (101; 
t1d3 • taskSpawn("'!ilter 1n1t",80,VX STDIO,STACKSlZE,fllter init); 
taskOelay (10); - - -

t 1d4 • taskSpawn (•sim lnt ", 60, 0, STACKSIZE, simulator); 
task.Delay (10); -
tidS .. t.askSpavnt•rogue"',55,0,STACKSIZE,ro.gue); 
task.Delay (10); 

co 
VI 



' Hatlab tile uoed to plot !ilter performance 
t and fault detection information. 
• FILE: covplotnt .m 
' l-18-93 
\ mod1!1cat1on history ' --------------------
' 02a, 17may93, mrm 
' added featurel!l to remove the files 

' Upper.m, kqaln.m, DlaqP.m, errorl.m from the Unix 
directory in which they reside. Added while loop to 
plot five 1100 time steps} postscript plots and 
than plot lndeflnltely to the screen thereafter. 
Improved information on plots. 

' OJa, 19may93, mrm 

' ch.anqed while loop to look for files and all kinds o! stuff 
' 03b, 27may93, mrm 

chanqed 
chanoed 
chanqed 

' ' ' OJc, 11 june93, mrm 

stuff to make the postscript files look riQht. 
stu!! to make plots less cluttered. 
tor a 1 second time step 

made unique files for plots • 
••• .......................... ....... •• ·-·· ••••••••••••••••••••• 11111*11• **** ••• 

current time • -1; 
! sleep I so 
while (l), 
cpu t lmel • cputtme; 
~Qain 
UpperP 
CiaQP 
errorl 
lndexlOO 
if current time •• -1, 

time of error .. time of error + 2; 
elem-lo'Cat2 • 15; - -
elem-locatl • 15; 

else, -
elem locat2 • 80; 
elem-locat1 - 90; 

end; -
(1ndex100'100 • 11) • ••• 
-1). 

1 f (current tJme 
(current -time 

current_time - (1ndex100'100) • 1; 
end; 

dlmen•size(U)'(l OJ' 
states•aJ z.e {K) • (0 1)' 
steps•[current tlme:l: (current tlme+dlmen-ll )'; 
K al t • I<; - -
,-*This stuff was used to crop an area around the labels* 
\blank 1 • elem locatl; 
\blank -2 ... elem-locat1+7; 
'blank -3 • elem-locat2; 
tblank-4 • elem-locat2+7; 
\K alt(blank. l;blank 2,:) .. nan•k alt(blank l:blank 2,:); 
\K -a It (blank -3 :blank-4, 2) • nan• K-a 1 t {blank-J:blank-4, 2); 
\M-alt (blank-1:blank-2,2J - K(b1ank 1:b1ank-2,2); -
axls~'auto'l""i - -
!lqure (1) 
tsubplot (2, 1, 1) 
plot (steps,~ altJ 

1 t current t"1me ·- -1, 
uh((-1 100 -.5 3.5J); 
end; 

xlabel ('Time Step, k <'o• marks flr•t detection ln current frame>') 
yl•bel ('KJ~laan Gains, Jlt') 

tor index .. l:l:states, 
it index .... 1, 
text(steps(elem locatl),K(elem locatl,l),'K(l,:)'); 
if error type _: 0, -

hold on-
plot(steps(time of error),K(time of error,l), 'o') 
hold of! - - - -

end; 
el$e1 t index .... 2, 
text(steps(elem locat2),K(elem locat2,2),'K(2,:)'); 
if error type _: 0, -
hold on-
plot(steps(t1me of error},K(time of error,21, •o~l 
hold off - - - -

end; 
elseif index -- 3, 
text(steps(elem locatll,fll(elem locatl,J),'K{3,:)'); 
if error type _:- 0, -
hold on-
plot(steps~tlme ot error},K(tlme of error,3), 'o') 
hold off - - - -

end; 
elseif index -- 4, 
text(stepstelem locatl),K(elem locat1,4),'K{4,:)'); 
lf error type .. :- 0, -
hold on-
plot(steps(tlme of error),K(tlme of error,4), 'o') 
hold or! - - - -

end; 
else!. f index •• 5, 
text(steps(elem locatl),K(elem locatl,SI,'K(S,:}'J; 
Jf error type : .. 0, -
hold on-
plot(steps(time of error),K(tlme of er-ror,S), 'a' I 
hold off - - - -

end; 
els.el t index ·- 6, 
text(steps(elem locatl},K(elem locat1,6),'K(6,:)'); 
if error type : .. 0, -

hold on-

plot(steps(time of error),K(time of error,6), 'a'} 
hold ot r - - - -

end; 
elself index •• 7, 
text(steps(elem locatl),K(elem locat1,1),'K(1,:)~); 
if error type :. 0, -
hold on-
plot(steps(tlme of error),K(time of error,71, 'o') 
hold oft - - - -

end; 
elseif index •• B, 
text(steps(elem locatl),K(elem locatl,8),'K(8,;)'l; 
if error type :. 0, -
hold on-
plot{steps(time of error),!<{tlme of error,8), 'o' J 
hold of! - - - -

end; 
else; 
end; 

end; 
s•sprlnt f ('FAULT PERIOD (steps} • td', round (roque delay/ (60))): 
text((max(steps)-99), (max(max(l<.)) 11 0-9}, s); -
a•spr1ntf(•fAULT VALUE .... \8_3!', roque value); 
text((m.ax(ltepa}-99), (maxcm.ax(f())*O.i2), a); 

CXI 
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1t fault type -- 1, 
text( (mAX (steps) -99), (max (max (K)) *0.81), 'FAULT AFFECTS -> U'); 

end; 
1t fault type -- 2, 

text((max(ateps)-99), (max(max(K))*0.81), 'FAULT AFFECTS-> 0'); 
end; 
it fault type -- J, 
text((mAX(steps)-99), (max(max(K))*0,81), 'FAULT AFFECTS-> 00'); 

end; 
it fault type -- 4, 

text ((max (steps) -99) , (max (max tK) ) •o. 81), • FAULT AFFECTS -> W') ; 
end; 

'text ((max (steps) -20), (max (max UO) •o. g}, date); 
if error type -• 0, 
•text(steps(tlme o! error), (max(max(K))*.S), ••• 
,. 0 -> SOFTWARE FAULT DETECTED'); 
s•sprlntt ('ERROR TYPE • 'd', error type); 
text(ateps(tlme ot error), (max(mai{K))".4~, s); 
end; - -

title(' SOFTWARE FAULT EFFECT ON SINGLE MEASUREMENT UOU' KALMAN GAINS') 
if current time <• 401, 
print -dpi -append oaln cov.ps; 
e~; -
' Error Covariance 
figure (2); 
\subplot (2, 1, 2) 
torn • l:l:dlmen, 
utemp • (reshape (U (n,:) latatea, states))'; 
ptemp•utemp*dlag (0 (n,:) ', 0) •utemp'; 
p (n,:, •reshape (ptemp' r 1, (states•states)); 
end; 
Palt•P; 
'for index .. 0:1: (states-1) , 
H alt (blank l:blonk 4, (!+index• (statea+l))) -
'nin•P alt (blank l:blank 4, (l+index.• (atatea+l})); 
\end; - - -
H alt(blank J:blank 4,1) - P(blsnk 3:blank 4,1); 
,P-alt(blank-l:blank-2,1) • nan•P alt(blank-l:bl~nk 2,U; 
pl0t(steps,P=altl - - - -
if current time •• -1, 
uls((-1 100 -.05 1211 
end; 
xlabel('Time Steps, k <,o~ marks first detection in current frame>') 
ylabel('Error Covariance Matrix Elements, P'J 
to[" index • 0:1: (Stltes-11, 
if index •• 0, 
text (steps (elem _locat 1) , P (elem_locat 1, ( 1 +index* (states+ 1) ) 1 , • P (1, 1) •) : 
if error type .... 0, 
hold on -
plot (steps (tlme_of_error) 1 P (tlma_of_error, (l+lndex* (states+l))), • o'l 
hold off 
end; 
elself index •• 1, 
text {steps (elem locat 2), P (e lem locat 2, {1+ lndex• (states+ 1 J ) ) , 1 P ( 2, 2J '); 
1 f error type ... : 0, -
hold on -
plot (steps (t lme _of_ error), P {time _o!_ error, (1 + index• (st at.es+ 1) 1 ) 1 • o• ) 
hold ott 
end; 
l!lseif index -- 2, 
text (at epa (elem_loca.t2) ,P (elem_locat2, (l+lndex"' (st.ates+l))), 'P (J, 3) •): 
it error type .... O, 
hold on -
plot (steps (time _ot_error), P (t 1me _ ot _error, (1 + index• (Stl.tes+l J) ) , • o' ) 

hold off 
end; 
elsei! index -- 3, 
text (steps (elem locat 2), P (elem locat2, (1 +index• (states+l))), 'P (4, 4) '}; 
if error type -= 0, -
hold on -
plot(steps(time of error}, P(tlme of error, (l+lndex.*(atates+l))), 'O') 
hold of! - - - -

end; 
elself index -- 4, 
text (steps (elem locat2) ,P (elem locat2, (l+lndex* (states+l))), • P (5, 5)'); 
1! error type _:; 0, -
hold on -

plot(steps(t1me of error), P(tirne of error, (ltlndex•tstates+l)l), 'o') 
hold off - - - -
end; 
elseif index -- 5, 
text (steps (elem locat 2) , P (e lem locat2, (1 +index* (states+ 1) ) ) , • P ( 6, 6) •) : 
1 f error type .;: O, -
hold on -
plot(steps(time of error), P(time of error, (l+index•(states+l})), 'o') 
hold off - - - -
end; 
else! t index •• 6, 
text (steps {elem locat2), P (elem locat2, (1+ index., (states+l))), 'P (7, 7) 1 ): 

1! error type .. : o, ~ 

hold on -
plot(stepa(time of error), P(time ot error, (l+index•(states+l})), 'o'} 
hold off - - - --
end; 
elseif Lndex -· 7, 
text (steps (elem locat 2) , P (elem locat 2, (1-t 1 ndex• (states+l) ) ) , 'P (8, 81 •): 
if error type ... : 0, -
hold on -
plot(steps(t1me of error), P{time of error, (l+index"(states+l)J), 'o') 
hold off - - - -
end; 
else; 
end; 
end; 
s•sprint! ('FAULT PERIOD (step!!:) - 'd', round (roQue delay/ {60))): 
text{(max(steps)-99), {max(max(P) )"0.9), sl; -
s•spr1ntf ('FAULT VALUE • ,8,3!', roque value): 
text((max(steps)-99}, (max(max(P)).,0,72), s}; 
lf fault type •• 1, 
text ( (mix (steps)- 99), (max (max (P 1 1 •a. 81) 1 • fAULT AFFECTS -> U' 1 ; 

end; 
if fault type •• 2, 

text((ifiax{steps}-99), (max(max(Pl}"0.81), 'FAULT AFFECTS-> D'l: 
end; 
1! f.!lult type •• 3, 
text{(max(steps)-99), (max(max(Pll"0.811, 'FAULT AfF'ECTS -> DD'l; 

end; 
lf !ault type •• 4, 

text ( tniax (steps) -99) I {max (max (P)) •o. 81), , FAULT AffECTS -> w·); 
end; 

\text ((max (steps} -20), (max (max (PI ) •o. 91 , date 1; 
i! error type .... 0,. 
\text(st8ps(tlme of errot), (max(max1P))"0*5), .•• 
,. 0 •> SOFTWARE FAULT DETECTED' I; 
s•sprintf ('ERROR TYPE - \d', error type); 
text{stepa(tirne of error), (max(maXtP)).,0.4}, sl: 
end; - -

title(' SOFTWARE FAULT EFFECT ON SINGLE HEllS. UDU' ERROR COVARIANCE' I; 

(X) 
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1 f current time <• 401, 
pr1 nt -dpl .. append qatn cov .pa; 

end; -
lf current time •• 401, 
lcp galn cov.ps thesls$$.ps 
lrm qain-cov.ps 
end; -
current time • current time + 100; 
lf current time -- 99; 

current time • 101; 
end; -

track cputime • cputime - cpu tlmel 
whoa - -

' f rm UpperP.m 
l rm. DlaqP .m 
I rm ~qaln.m 
! rm errorl.m 
cpu tlme2 • cputime 
til; sum•O; 
tlme:::before_plot • 90; 
while (file sum < 4), 
test for tiles • la; 
fileS stie • size(test for filea)"[O 1)'; 
t l!e ium • 0; - -
for nl- 1:1: ({l!es slze-8!, 

file sum • tile aUm • atrcmp{test for flles(l,nl:(nl+'l~l,'errorLm')t 
end; - - - -

for n2 • l:l:(flles slze-8), 
file 8Utn • file sum+ atrcmp{teat for f1les(l,n2:(n2+7}},'UpperP.m'}; 

end; - - - -
for nl • 1:1: {files size-1}, 

file sum • tile sUm + strcmp{test for files (l,nJ: (n3+6} ~, '01a;P.m'); 
end; - - - -

for n4 - 1:1: (flies aiJ:e-7}, 
file sum • tile sUm+ strcm.p(test for flles(l,n4:(n4+6l},'Koa1n.m•J; 

end; - - - -

file sum 
time=:before_plot • tlme_be!ore_plot - (eputlme- cpu_t1me2) 
!sleep 20 
end; 
clear P 
'return to ma.tlab 
end; 

()) 
()) 
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