
OKLAHOMA STATE UNIVERSITY

A METHOD FOR DETECTING SOFIWARE FAULTS

DURING UDUT COVARIANCE CALCULATIONS

USED IN KALMAN FILTERING

Thesis Approved:

, -~Dean of the Graduate College

ii

A METHOD FOR DETECTING SOFIW ARE FAULTS

DURING UDUT COVARIANCE CALCULATIONS

USED IN KALMAN FILTERING

By

MICHAEL R. MOAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1986

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

MASTER OF SCIENCE
July, 1993

ACKNOWLEDGMENTS

I express my sincere gratitude and appreciation to my major adviser, Dr. Gary

Young, for his guidance, support, and encouragement throughout the course of this

study. I also extend my appreciation to the other committee members, Dr. L. L.

Hoberock and Dr. E. A. Misawa.

Special appreciation is offered to the School of Mechanical Engineering at

Oklahoma State University for their assistance throughout my academic career.

Finally, many thanks and much love go to my family for their enduring support.

iii

TABLE OF CONTENTS

Chapter Page

l INTRODUCTION 1

Il BACKGROUND 6

Software Fault Tolerance .. 7
Failure Modes and the Acceptance Test 10
Numerical Stability ... 11
Need for Suboptimal Secondary Processes 15
Hardware Failure Detection and Isolation 17
General Considerations ... 18
Detecting Computational Faults ... 19

Ill METHODOLOGY 20

Algorithm Based Fault Tolerance ... 20
Using ABFT Techniques With the Kalman Filter 22
Additions to the Bierman UDUT Algorithms 24
UDUT Time Update of the Error Covariance 25
Software Fault Detection Additions to the

Time Update Algorithm 28
UDUT Measurement Update of the

Error Covariance 30
Software Fault Detection Additions to the

Measurement Update Algorithm .. 34

N. RESULTS AND DISCUSSION... 38

Simulation Environment .. 38
Results... 39

V. SUMMARY AND CONCLUSIONS .. 68

REFERENCES ... 70

APPENDIX -SIMULATION SOFTWARE .. 73

iv

LIST OF TABLES

Table Page

1. Operations Counts for the Standard Time Update
Algorithm and ABFT Additions .. 31

2. Computational Costs for the ABFT Additions in Terms
of a Percentage of Original Operations for the Time
Update Algorithm 31

3. Operations Counts for the Standard Measurement
Update Algorithm and ABFT Additions ... 37

4. Computational Costs for the ABFT Additions in
Terms of a Percentage of Original Operations
for the Measurement Update Algorithm.. 37

v

LIST OF FIGURES

Figure Page

1. Computing Node Environments oo 3

20 Fault Tolerant State Estimation Scheme Combined With a
Distributed Recovery Block Structure 00 000 000000000 oooooo 00000000000000000000000 0000000 oooooooooooooo-ooo 8

30 Schematic of Task Partitioning for Estimation and Control oooooooooooooooo······o·········o 9

40 Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 1, Steps 0 to 100 o o o o o o......................... 40

5. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 1, Steps 101 to 200 o o o o .. o o...... 41

6. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 1, Steps 0 to 100... 42

70 Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 1, Steps 101 to 200 ... o o 43

8o Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 2, Steps 0 to 100 .. 0.......... 44

90 Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 2, Steps 101 to 200 .. 0 .. 0..................... 45

10. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 2, Steps 0 to 100 o oo oo oo o .. ooooo 46

110 Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 2, Steps 101 to 200o o .. o.......................... 47

12 Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 3, Steps 0 to 100 o.... 48

130 Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 3, Steps 0 to 100 .. o o o o o 49

140 Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 4, Steps 0 to 100 o o o o o o o o...... 50

vi

Figure Page

15. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 4, Steps 101 to 200... 51

16. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 4, Steps 0 to 100... 52

17. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 4, Steps 101 to 200...... 53

18. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 5, Steps 0 to 100.... 54

19. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 5, Steps 101 to 200... 55

20. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 5, Steps 0 to 100 56

21. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 5, Steps 101 to 200.... 57

22. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 6, Steps 0 to 100... 58

23. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 6, Steps 101 to 200 59

24. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 6, Steps 0 to 100... 60

25. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 6, Steps 101 to 200... 61

26. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 7, Steps 0 to 100... 62

27. Software Fault Effect on Single Measurement UDUT Kalman Gains,
Case 7, Steps 101 to 200... 63

28 Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 7, Steps 0 to 100... 64

29. Software Fault Effect on Single Measurement UDUT Error Covariance,
Case 7, Steps 101 to 200.. 65

vii

CHAPTER I

INTRODUCTION

In many mechanical control applications, the proliferation of low cost general

purpose microcomputers has allowed networking across large spatial distances and

the development of complex distributed control systems. Many of these control

systems implement algorithms with hard real-time constraints. For stability of the

controlled process, it may be required that not a single control output be missed,

corrupted, or delayed. Methods for implementing algorithms in fault tolerant,

reliable, and numerically stable fashion are critical to meeting these demanding

constraints. Because of the importance of prior research in these areas, this thesis

reviews some of the existing methods for achieving fault tolerant and reliable

algorithms. In addition to the review, the contribution of this thesis involves the use

of a concept for encoding control algorithms so that software failures may be

detected promptly before control actions are performed or sensor I actuator failure

decisions are made. In this thesis, a software failure is defined to be a non

catastrophic circumstance in which the software continues to run but cannot correctly

compute the intended results. A variety of computing environment faults or failures

could cause a software failure of this definition, and they range from single chip

MTBF failures to communication problems in multi-processing environments. In

regard to the contribution, the proposed concept is applied to the Bierman algorithm

for uouT time and measurement update of the error covariance of the Kalman filter

[1, 2]. This algorithm was chosen as a representative algorithm because of its

popularity in industrial applications for the sequential processing of measurement

information. The methods to be discussed are intended for the application level of a

1

2

software hierarchy. Many of the reviewed techniques were developed for stand

alone uniprocessors, but can or have been extended to supervisory and distributed

systems for node self-diagnostics and acceptance tests whose existence is to prevent

corrupt information from being passed to higher levels of authority and control.

The following typical systems, shown in Figures 1a and 1 b, describe the

computing node environments which are addressed. For high throughput, high

bandwidth applications such as found in modern digital signal processing and

control, multiprocessor architectures with systolic arrays, transputers or digital signal

processors (DSPs) have been used to implement high order filters and other

computationally intensive algorithms (Bromley, Kung, Swartzlander et al.,1988) [3].

Such parallelism and concurrency have been needed because uniprocessor

implementations have historically been restricted by sampling rates which are

dictated by the time taken for one step of recursive filters such as the Kalman Filter.

For these implementations, uniprocessors with Real Time Operating Systems (RTOS)

are commonly relegated to supervisory tasks such as control of data flow into and

out of the array processor, network interface, graphical user interface, statistical

analysis, set pointing, data storage, and control of peripherals, while number

crunching is left to the array processors (Jacklin, 1988) [4]. For this case, the self

tests and audits which add fault tolerance, failure detection and stability may be an

additional responsibility of the supervisory processor. However, if the processing

can be distributed among several uniprocessors without the need for an array

processor, tasks associated with recursive computations as well as self-test and

diagnostic tasks may be implemented on each node of a distributed system of

uniprocessors as depicted in Figure 1b, some taking advantage of the services and

facilities of a multi-tasking RTOS. As an alternative to multiprocessing with a

distributed system of uniprocessors, DSP solutions which are currently available use

OPERATOR
INTERFACE
&MONITOR

SHARED
MEMORY

NO
CONVERTER

DISK/TAPE
DRIVES

NE1WORK
INTERFACE

HOST COMPUTER
W/RTOS

SETPOINTS

ARRAY
PROCESSOR

PRINTER

a. Controller design where array processor handle high throughput com
putations and host computer handles supervisorory tasks and operator
interface.

Figure 1. Computing Node Environments

3

TARGET
COMPliTER

&NODE

•
• •

CROSS DEVELOPMENr
HOST COMPUTER

NETWORK

TARGET
COMPlJfER

&NODE

•
• e DISK/TAPE

DRIVE

TARGET
COMPUTER

&NODE

LOCAL
OPERATOR
INTERFACE

4

PLANT

b. Controller design where control computations are distributed among many node
computers which may or may not have large spatial distances between nodes. Target
processor is responsible for controlling/ servicing all attached peripherals and accept
ing network messages and commands.

Figure 1. Continued

5

both multiprocessing and real time operating systems for applications with high

computational loads. They are available in both single and multiple board con

figurations.

CHAPTER IT

BACKGROUND

While much research exists for general purpose modeling and the specification of

real time systems and software, published research concerning the stability and fault

tolerance of RTOS software implementations of control algorithms is limited.

According to Kim [SJ, major issues associated with designing fault tolerant capabilities

into hard-real-time distributed computing systems need to be resolved in the 1990s.

To help resolve the issues, research is in progress on such techniques as N-version

programming, Built-In-Test software, Data Redundancy, Checksums, Distributed

Recovery Blocks, Comparing Schemes, and Triple Modular Redundancy. Also,

modeling methods such as Petri Nets, Data Flow Diagrams, Finite State Automata,

and State Charts provide tools for analysis. However, fault tolerant software

strategies which exist in literature seem to be for generic applications or processes and

not specifically related to particular control algorithms. To help fill this gap,

subsequent sections review techniques which are common in the control community

and should be considered for use as the self tests, data validations, acceptance tests,

and other components of the overall fault tolerant software solution. As an aside, in

the event of a permanent, non-correctable fault or failure, it is often a requirement of

the system to reconfigure to work in the presence of the fault. The redefinition of

processing responsibilities among the remaining processing nodes, or in the case of a

uniprocessor, the remaining operable tasks, must be coordinated. Literature available

on the stability of this reconfiguration process includes that of Mariton [6] and

Srichander and Walker [7].

6

7

Software Fault Tolerance

To begin, we need to review a few of the general definitions and concepts of

software fault tolerance. Similar to how redundancy, built-in self-tests, and

diagnostics are used to add reliability to computing hardware, software is even more

flexible in regard to the addition of redundancy and self-tests given sufficient

computing resources and timing constraints. Checkpointing and roll back recovery are

very common techniques. According to Kim [5] (1988), checkpointing refers to saving

the state of computation on a secure device at various execution points called recovery

points (RP). When a fault happens, the system is able to resume computation or "roll

back" to the most recent RP after any necessary reconfiguration. To determine if a

fault occurs, some form of acceptance test must be performed to indicate the fault. As

our concern is with the substance of the acceptance test in the context of common

control algorithms, Figures 2 and 3 are two fault tolerant schemes (Kim, 1988) which

use checkpointing and acceptance tests and have been adapted to illustrate a state

estimation process using the Kalman filter.

Figure 2 illustrates the use of primary and backup versions of Kalman filters in a

Distributed Recovery Block scheme (Kim, 1988). This scheme uses multiple processors

or nodes to achieve active redundancy by concurrently executing multiple versions of a

software component. The same acceptance test is used for results from different

versions of software. The scheme includes a time out mechanism such as a watch dog

timer. Each recovery block consists of one or more routines, called "try blocks" by Kim,

which compute functionally equivalent results. In the figure, the try blocks consist of

Kalman filters and suboptimal filters. The acceptance test contains the criteria used

for accepting the results. By Kim's definition, a recovery block could contain two or

more try blocks. If desired, the scheme could be set up as a tandem system duplicating

its running process with corresponding identical processes running on the other

processors. Figure 3 shows an adaptation of a conversation scheme (Kim, 1988).

PREDECESSOR
COMPUTATION

STEP

PRIMARY NODE BACKUP NODE

I
I

SUCCESSOR
COMPUTATION

STEP

Figure 2. Fault Tolerant State Estimation Scheme Combined With a
Distributed Recovery Block Structure

8

9

RECOVERY
UN~ I

I
TIME PROPAGATE
STATE ESTIMATE

MEASUREMENT
UPDATE OF

0
STATE I?SI1MATE

z
0
!= CALCULATE
B FILTER GAIN G)
~ ,,
~ G) "" DETERMINE SYSTEM
0 MATRICES&
rfJ VAUDATE

~ IMPLEMENT
[5 CONTROL LAW
:..:: @
~
!-< READ NO

CONVERTER

WRITED/A
CONVERTER

VAUDATE
MEASUREMENTS

tK
ACCEPTANCE TEST 1:8JI

RECOVERY POINT I
1Kt1

Figure 3. Schematic of Task Partitioning for Estimation and Control

10

This scheme illustrates how controller functions might be partitioned into a set of tasks

which run concurrently, communicate between each other periodically, and deliver a

result by the end of the time step regardless of missing communication or data. The

tasks include state estimation functions and the control law functions. In both

schemes, the most recent accepted state and covariance would be saved in a buffer at

the recovery points, and upon failed acceptance of the primary results, the system

would either restart from the previous recovery point, which may not be desirable

when a state estimate is needed by the end of a time step, or would accept the state

estimate from backup or secondary processes which might be suboptimal. Possible

secondary processes might feature reduced real time computational load, assumptions

of almost or completely time invariant and linear system response over short periods

of operation, and the use of precomputed gains and state error covariance. Such

secondary processes would be particularly applicable during instances when process

noise dominates the system (Gylys, 1983) [8]. Secondary processes might also use

lookup tables to determine noise levels under differing operating conditions.

Failure Modes and the Acceptance Test

Before considering what should be included in an acceptance test, it is

appropriate to analyze how the implementation might be expected to fail. Since the

acceptance test also represents software which could fail, the sophistication of the

recovery points and acceptance tests should be balanced against the additional

computational cost and complexity. Depending on the need for safety and reliability,

software associated with fault tolerance should be parsimoniously applied. In regard

to general failure modes, causes of software failure are language and design

methodology dependent. Even with good software engineering practices, they are so

varied that it is impossible to adequately test for every possibility before the software

is in operational use. Once in operational use, processor failures resulting from chip

MTBFs and communication failures during high speed data transfers can occur in a

11

MTBFs and communication failures during high speed data transfers can occur in a

subtle manner and result in incorrect results. We would like to have an acceptance test

which covers a large number of the potential faults. To this end, the following topics

exist in literature and concern typical modes of failure for recursive control algorithms.

Numerical Stability

The acceptance tests might be expected to check for numerical stability at the end

of each step of the recursion. Use of the Kalman filter to discuss numerical stability

issues is appropriate because the Kalman filter is a part of the group of kernel

algorithms used in a variety of applications including recursive parameter estimation

and adaptive control (Astrom, p. 412, 1989) [9], (Clarke, p. 62, 1984) [10]. The

following equations present typical nomenclature for a time variant, discrete, linear

state space representation of the system model and measurement process, and the

elements of a conventional Kalman filter.

Dynamic Model

with:

Xk = x(tk) e Rn, <I>k = <I>(tk, tk+ 1),

rok = ro(tk) e RP, Bk = B(tk, tk+ 1),

uk = u(tk) e RL, rk = r<tk, tk+ 1>,

E[rok(i)) = 0, E[rokrok T] = Qk()jj

(1)

(2)-(8)

where Xk is the state vector to be estimated, ~k is the estimated state, Uk is the

deterministic input vector, <I>k and rk and Bk are time variant, discrete time system

matrices. The process noise vector rok is usually assumed to be a zero mean, gaussian

sequence with constant variance, independent of and uncorrelated with the

12

measurement noise sequence. Qk is a positive semidefinite process noise covariance

matrix.

Measurement Model

with:

zk = z(tk) e RID, Hk = H(tk)

vk = v(tk) e RID

E[vk(i)) = 0, E[vkvk T] = Rk8jj

(9)

(10)-(14)

where zk is the measurement vector to be processed, and Hk is the observation matrix.

The measurement noise vector vk is usually assumed to be a zero mean, gaussian

sequence with constant variance, independent of and uncorrelated with the process

noise. Rk is a positive definite measurement noise covariance matrix.

Computation of Kalman Gain

(15)

or

(16)

Conventional Measurement Update of Error Covariance

Joseph's Form of Measurement Update of Error Covariance

(18)

13

State Estimate Based on Current Measurement

(19)

Time Propagation of State

(20)

Time Propagation of Error Covariance

(21)

Estimates of the initial state and error covariance, x(O) and P(O), are usually assumed

to be known a priori.

The conventional form of the covariance measurement update for the Kalman

filter can be numerically unstable when using single precision arithmetic or when the

modeled process is unstable. Roundoff errors and over convergence can cause the

state error covariance matrix to divergently loose symmetry and positive definiteness.

Although inaccurate modeling of the system or discretization errors can also cause

filter divergence (Gelb, 1974) [11], assume that accurate model structure and

parameters are available at each step of the recursion in at least one of the try blocks,

and momentarily that numerical issues are the primarily topic of concern for the

acceptance test. Methods available for use in the acceptance tests and for correction

of the conventional filter include averaging the error covariance matrix with its

transpose, computing only the upper or lower part of the matrix, or adding to the

diagonal elements upon detection of negative eigenvalues. Verhaegen and Van Dooren

(1988) presented an analysis of error propagation due to roundoff which explains why

these heuristic methods work for the conventional covariance update [12]. Having

recognized that the conventional filter mechanization may be numerically unstable, the

complexity of an acceptance test will depend upon whether the application uses a

14

modified version of the conventional algorithm or an alternative, numerically stable

mechanization.

The version of the error covariance measurement update, commonly called

"Joseph's" form, does not require symmetry detection/correction of the error covariance

matrix. Thus, when using "Joseph's" form, the acceptance test would not be required to

perform such a test. Also, other numerically stable mechanizations retain symmetry by

propagating a factored version of the error covariance matrix. They are often referred

to as "square root" algorithms even though the methods may be based on Choleski,

uouT or other factor types, and they may be based on sequential or simultaneous

processing of the measurement vector. These filter mechanizations are equivalent to

the original form in that they result in optimal rather than suboptimal estimates, and

they can be more computationally expensive (Thorton and Bierman, 1981} [2] (Chin,

1983) [13] but generally give more accurate filter estimates and gains (Verhaegen and

Van Dooren, 1988) [12]. Like "Joseph's" form, an acceptance test for a numerically

stable filtering process would only involve ensuring that computations are performed

correctly and would not involve checks for a positive definite error covariance matrix.

Therefore, when the additional computational expense of an acceptance test is

considered, the square root algorithm's become even more desirable, particularly when

calculations are being performed with time varying system matrices and unstable

process scenarios are known to exist.

Instead of waiting until the end of the time step, the acceptance test may be

performed at subintervals of the main time frame. Breaking the acceptance test up into

several smaller tests may be an option if sequential processing of measurement

information if performed rather than simultaneous processing. When the noise

covariance matrix is diagonal, the covariance measurement update can be done by

sequentially processing one measurement at a time, thus allowing the computation to

be tested at intermediate points after the update from each measurement. Because of

the convenience of inverting scalars opposed to matrices, some of the most popular

15

numerically stable versions for updating error covariance are based on sequential

processing. Not much is lost, however, because sequential processing of the Kalman

filter has long been advocated in cases of uncorrelated measurement noise as a method

of avoiding the program storage and computation requirements for inverting the

innovations covariance matrix [HPHT + R] (Sorenson, p. 256, 1966) (Gelb, p. 304,

1974) [14, 11]. Thus, sequential processing facilitates the detection of computation

failures at an earlier time within the overall time step frame, and possible use of

remaining time to perform correction or processing with secondary processes. With

sequential processing, the filtering task can also be efficiently interrupted by other

tasks between measurement iterations, with a reduced chance of corrupting

information during context switches. The measurement updates do not have to be

performed in any particular order, and individual measurements can be incorporated

as they become available, without having to wait until all measurements are received

and validated. Because sequential processing avoids the computational and storage

requirements for an algorithm which explicitly determines the inverse of a matrix, no

acceptance tests are necessary to ensure that the inversion was performed correctly.

Furthermore, for less sophisticated RTOS environments, shorter and more independent

calculations might prevent loss of information caused by non-maskable interrupts

during longer time blocks of CPU usage required by simultaneous processing. Note

that in one time step of sequential processing, the covariance matrix is not complete

until the last measurement has been incorporated.

Need for Suboptimal Secondary Processes

Estimation and control systems frequently encounter missing, time delayed,

and/ or invalid sensor observations. The following situations can all cause invalid

measurements: (1) sensor failures, (2) time skewing and improper ordering of data, (3)

network induced delays, (4) intermittent loss of signals during transient periods of high

noise, (5) sensor saturation, and (6) nonlinear sensor behavior. When measurement

16

data is missing or unreliable, recursive estimation algorithms such as the Kalman filter

do not give optimal estimates and would be expected to fail a fault tolerance

acceptance test. In such cases, the alternative or secondary process must provide the

suboptimal information necessary to continue the computation. This section discusses

typical methods used to test and compensate for corrupt, missing, or time-delayed

measurements.

As expected, heuristic methods for use in an acceptance test for measurement

validation and inference for the Kalman filter exist throughout the literature. According

to V. Gylys (1983) [8], when considering the robustness of an estimation process,

distributional assumptions can be bad and/ or measurements can be bad. Because bad

measurements can exist, Gylys suggests that the pre-processing and screening of

measurements to be used in the Kalman filter should "(1) screen against outliers, (2)

detect leading and trailing edges of high amplitude noise bursts, (3) detect the onset

and compensate for nonwhiteness in measurement noise, and (4) censor or bound

measurements or estimates," and that "preprocessing may include conversion and

prefiltering, computation of measurement residuals, and screening of residuals for

rejection." For instance, electro-magnetic compatibility problems can cause severe

measurement noise. Gylys also mentions that a± scaled multiple of the innovations

variance can be used as an acceptance interval to screen measurement residuals.

Statistical inference based on the innovation or residual sequence (z(k)-H(k)~(k I k-1))

is another method for validating measurements and monitoring software imple

mentation. However, T. H. Kerr (1990, p. 944) [15], on validating linear systems

software, points out that small residuals are necessary but not sufficient indicators of

good filter performance and that similar statements can be made concerning statis

tically white residuals.

For use as a secondary process, an intuitively appealing method of Kalman

filtering when a single measurement vector is missing is to simply skip the measurement

17

update and rely on the time propagated state estimate. Guanrong Chen (1990) [16]

showed that the predicted estimate of the state, ~k 1 k-1 = <1>k-1~k-11 k-1 + rk-1Uk-1,

could replace the unknown optimal estimate, ~k 1 k, and that convergence could be

guaranteed for time invariant cases, for a single bit of missing data, when no other

data is missed in the future. Motivation for using the estimate as a secondary process

is that at the instant when the data is missing, a suboptimal estimate of the unknown

state vector Xk is still needed in real time for control law or other purposes with hard

time constraints. Usually, the possibility of system instability prevents waiting for late

arrival of the missing data and the system must proceed to the successor time step, but

Luck and Ray (1990) [17] and Zhang and Ray (1991) [18] have proposed a multi-step

predictor for compensation of the effects of network induced delays.

Another alternative secondary process when data is missing is to greatly increase

the assumed noise statistics associated with the invalid measurement. By increasing

the assumed measurement noise for the missing information, less confidence is placed

on the measurement in the computation of the optimal Kalman gain. If the diagonal

elements of the measurement noise covariance matrix R associated with the invalid

measurements are increased to a large number (approaching infinity), this approach is

equivalent to the sequential processing technique of merely skipping the incorporation

of the invalid measurement into the measurement update for state estimate ~(k I k) and

error covariance P(k I k). However, this technique is not restricted to sequential

processing of measurements. Lynch and Figueroa (1991) [19] use this method to

improve the robustness of ultrasonic position estimates in the presence of missing

observations resulting from both structural intermittence and stochastic intermittence.

Hardware Failure Detection and Isolation

Terminology such as "fault tolerant control" is generally associated with the

detection, isolation, and reconfiguration (FDIR) of the control algorithms in the event of

sensor or actuator failures. Because of the possibility of sensor and actuator failures,

18

control system software often has the capability to gracefully degrade and avoid

catastrophe immediately following the occurrence of a failure. The generation of

residuals which develop a bias or exceed a threshold when a failure happens is one of

the most basic concepts of these failure detection schemes. Therefore, we would

expect that one or more of the redundant processes of a fault tolerant scheme would

be involved in the generation of residual sequences for the purpose of testing for sensor

and actuator failures. Thus, failure detection theories are available methods which

would be applicable to the design of acceptance tests. There are more than five major

survey papers concerning this area (Iserrnann, 1984) (Basseville, 1988) (Gertler, 1988)

(Frank, 1990) (Willsky, 1976) (Panossian, 1988) [20-25] and several books.

General Considerations

Miscellaneous techniques which could be modified for use in an acceptance test

exist throughout literature because difficult conditions, nonideal behavior, and limited

resources have plagued digital controllers since the sixties. It is not the intent of this

thesis to survey the general implementation issues which are covered in digital control

textbooks. However, they do exist and are available to the interested reader. For

instance, see Chapter 12 in Franklin, Powell, and Workman [26), Gelb [11], Chapter 11

in Astrom [9], or H. Hanselmann's survey [27] concerning implementation of digital

controllers. These references cover basics of hardware speeds and architectures, fixed

point and floating point arithmetic, controller structures, sensors, problems such as

parameter scaling and saturation, and introductions to software design and

programming issues. A good example of the amount of information available, although

generally not in one place, is the fact that Hanselmann's survey cites over 200

references which in some way discuss implementation issues.

19

Detecting Computational Faults

Within a fault tolerant computing scheme, the potential exists to confuse

software failures with sensor or actuator failures. Especially when information

generated by a process is used by other tasks or nodes to make failure detection

decisions, it would be desirable to have confidence that information contained in

residual processes has not been corrupted by faulty software. In some applications,

results of calculations may not be correct even if the processor passes its hardware

self-test and is still able to communicate to the other processors in the

networked/distributed environment. Therefore, the problem is to find a method of

encoding algorithms with redundant information such that abnormal residual or parity

relations resulting from faulty calculations can be differentiated from sensor or

actuator failures. An additional benefit of such a method is that corrupt information

and software processes can be identified before the information is used by other

processing nodes within the system, thus preventing unwanted actions based on faulty

information. An efficient technique providing such features would be of considerable

value to networked or distributed computing environments consisting of multiple

processing nodes among which the overall control responsibilities have been divided.

The next chapter discusses methodology for one potential technique.

CHAPTER III

METHOOOLOGY

Subsequent chapters of this thesis are concerned with the developmen't of the

software fault tolerance additions to the Bierman unuT error covariance algorithms.

The Algorithm Based Fault Tolerance (ABFf) concept is used because it is a method of

adding fault tolerance to matrix intensive calculations such as found in the Kalman

filter. ABFf has the potential to be a method of verifying that consistent parameters

have been input to the computational process and that the computation has been

consistently performed for many types of control algorithms. Dormant software bugs,

unexpected threads of execution, and inter-processor communication problems are a

few of the situations that may be detectable. Also, the method is computationally

cheaper than obtaining fault tolerance by using redundant processors and software

coupled with a voting or a comparing scheme. This chapter concerns the specific

methodologies used for adding software fault detection capabilities to the unuT error

covariance algorithms.

Algorithm Based Fault Tolerance

Algorithm Based Fault Tolerance (ABFf) is a concept developed by Huang and

Abraham (1984) [28]. ABFf is normally used in array processing or other instances of

multiprocessing to provide uninterrupted and correct results regardless of the failure of

individual processing elements. However, it also has a high probability of detecting

computational failures in uniprocessor environments. Because recursive least squares

parameter identification and the Kalman filter are examples of recursive algorithms

which involve many matrix operations, one contribution of this thesis will be the

20

21

investigation of the benefits and drawbacks of applying ABFf concepts in these

algorithms.

Huang and Abraham developed the approach based on the concept of using

matrix row and column checksums for detecting and correcting errors from within the

confinement of the algorithms software. Background in Anfinson and Luk, 1988 [29],

on the method is summarized as follows. Given nxn matrix A, nx(n+1) row checksum

matrix Ar is defined as Ar = [A Ae], where e is nx1 vector e = [1, 1, ... , 1]T. By

n
comparing 2, aij and (Ae)i fori = 1, 2, ... , n, an error in the ith row of A can be

j= 1

detected. Similarly, given nxn matrix A, (n+l)xn column checksum matrix Ac is

. defined as Ac=[t]. By comparing f aij and (eTA)j for j = l, 2, ... , n, an
e i = 1

error in the jth column of A can be detected. A full (n+l)x(n+l) checksum matrix Af is

defined as Af= [A Ae] . A column checksum matrix A multiplied by a
eTA eTAe

row checksum matrix B is a full checksum matrix AB. Also, when checksum matrices

are added and subtracted they result in checksum matrices. For error detection in full

checksum matrices, the location of one error in matrix A is found by intersection of

inconsistent rows and columns. The single error may be corrected using either the

inconsistent row or column.

Anfinson and Luk [29] also explain how the weighted checksum approach from

Jou and Abraham (1986) [30] can be used to locate more than one error. By creating d

weighted checksum columns or rows, and assigning appropriate weights, a maximum

of d errors can be detected and a maximum of (d/2) errors can be corrected. This was

proved by Anfinson and Luk [29]. After defining unique nx1 weight vectors w<i), i =
1, ... , d with unique elements Wj(i), j = 1, ... , n, the nx(n+d) weighted row checksum

matrix is:

Arw = [A Aw0) Aw(2) Aw(3) ... Aw(d)].

The (n+d)xn weighted column checksum matrix is:

A
w(l)TA

w(2)TA

w(3)TA

22

An example given by Anfinson and Luk shows how the d = 2 case can be

corrected using the weighted checksum approach. With the weights set as w(l) = e

and w(2) = w, and assuming that an error is in element apq' then letting

and

n
s1 = I, akq - (Ae)q

i=l

n
s2 = I, wkakq - (Aw)q

k=l

(22)

(23)

will allow the error to be located. The error can be located in the (p,q) position of A

because s2/s1 = wq. With the error located, apq can be corrected as apq +-- apq- s1.

The selection of appropriate weights is an open area of research.

Using ABFI' Techniques With the Kalman Filter

ABFI' checksum matrix concepts can be used for a quantitative indication of

consistency during each time step of the Kalman filter. The conventional form of the

filter can be used to illustrate this point. Before performing the computational

substeps of the filter, the consistency of time varying matrices passed to the filter can

be checked by comparing the row or column checksum elements with the sum of the

corresponding row or column. This check could be postponed until the end of the time

steps computations if lost computing time resulting from a passed-in fault is

allowable. The substeps of the filter are then performed with each substep including

23

the amount of ABFI' matrix operations and checks necessary for the desired level of

fault detection. The following example Kalman filter equations have been modified for

checksum matrix operations, but they do not provide the most complete fault coverage

possible for each substep. However if the checksums of each system matrix are

checked at the end of all substeps, a fault in any substep calculation would have a

high chance of being detected. In the equations, matrix multiplications should be

performed from left to right and vector e has an appropriate length for each particular

multiplication.

Computation of Kalman Gain

(24)

or

(25)

Conventional Measurement Update of Error Covariance

Innovation Calculation for Measurement Update of State Estimate

(27)

State Estimate Measurement Update

(28)

24

Time Propagation of State

(29)

Time Propagation of Error Covariance

(30)

As before, by comparing between . f Pij and (eTP)j, j = 1, 2, .. . , n, errors in the jth
1 = 1

column of the error covariance matrix can be detected after both the time propagation

and measurement update portions of the calculations. Similar comparisons can be

made for the results of the calculation of gain, innovations, state measurement update,

and state time propagation.

Additions to the Bierman UDUT Algorithms

To further investigate the possibility of using ABFI' concepts in control

algorithms, software fault detection capabilities based on ABFI' have been added to

the Bierman uouT estimate error covariance factorization equations and tested using

fault simulating software. The Bierman U-D covariance factorization algorithms were

chosen because they are widely used in Kalman filter applications for the sequential

processing of measurements, particularly when numerical precision is limited. While

some users may argue that single precision processing is outdated, many applications

still use single precision to obtain faster processing. Faster processing of basic

algorithms allows extra CPU time for improvements such as the use of higher order

models, more sensors, or failure detection and reconfiguration algorithms.

From Thornton and Bierman [2t the basic idea for obtaining numerically stable

time and measurement updates of the estimate error covariance (Equations (17) and

(21)) is to propagate factors of the estimate error covariance matrix instead of the

25

matrix itself. The covariance matrix is factored into unit upper triangular matrix U

and diagonal matrix 0 such that covariance matrix Pis

P = UDUT. (31)

Although several different algorithms exist for the time and measurement update of U

D factors of the estimate error covariance, the following discussion concentrates on the

Thornton and Bierman factorizations. Discussion on the specifics of the ABFT

additions to the factorization algorithms follows the discussion of the basic

algorithms.

To begin, assume that the noise and system matrices vary with time such that

tabulated and/ or steady state covariances cannot be precomputed and that Kalman

gains must be computed in real-time. Once the initial covariance matrix is factored,

the factors must be time propagated and then measurement updated at each time step.

We begin with the time update algorithm and the software fault detection additions to

the algorithm. In the remaining discussion, "k I k-1 or k+ 11 k and k I k" subscripts are

dropped in favor of"-" and """designations consistent with the Thorton and Bierman

publication.

UDUT Time Update of the Error Covariance

The time update algorithm time propagates the U-D factors of the error

covariance and is a factorized version of the covariance calculation of Equation (21).

The derivation of the algorithm begins by rewriting Equation (21) as Equation (32),

with theW and DD matrices in terms of the U-0 factors of the error covariance. With

appropriate matrices Wand DO, the matrix W is factored into upper triangular matrix

D and orthogonal row matrix W as in Equation (33) such that W, W T and DO form D

as in Equation (34).

P=W(OO)WT (32)

W=UW (33)

(34)

26

According to Thornton and Bierman, when <1> is large or P is ill-conditioned, the

computation of Equation (21) can have serious errors, thus giving motivation for the

use of their algorithm.

In terms of the 0 and IS factors prior to update, time updating is accomplished

by forming matrices DD and W such that

DD = diag(D, Q) (35)
and

(36)

and then performing the factorization of W with a modified Gram-Schmidt

orthogonalization of the rows of W. Keeping in mind the definitions that

0, 0 T, L>, P, W, and W T are the matrices after time update, this orthogonalization is

accomplished by starting with the last row of W, and progressively "D

orthogonalizing" the remaining rows of W by subtracting out the "D-weighted"

component of each row vector which is in the direction of the row currently being used

to orthogonalize remaining rows. This method creates both the updated unit upper

triangular matrix D (which is the transformation matrix) and matrix W which satisfy

Equations (32), (33) and (34).

The following definitions and equations are necessary for understanding the

algorithm:

1. Since f> is an nxn diagonal matrix and Q is an npxnp diagonal matrix, DO is

an NxN diagonal matrix where N = n + np.

2. Equation (21) is rewritten as Equation (32),

(32)

3. The modified Gram-Schmidt orthogonalization of W uses a "D-weighted"

inner product rather than an ordinary inner product, and a "D-weighted" inner product

is defined as

27

(37)

4. The modified type of orthogonalization which is performed on the rows of W

is "D-orthogonalization," and two vectors are defined to be "D-orthogonal'' if

(a,b)0 = 0. (38)

5. Because after the orthogonalization of W, the rows Wi of W are "D

orthogonal" to the columns WiT of W T for i ~ j, then

where o is the Kronecker delta.

6. As a result of Equation (39),

D=W(DD)WT (40)

where

From Thorton and Bierman [2], the summary of the U-D Time Update Algorithm

is repeated here to facilitate the discussion of the software fault detection additions to

the algorithm.

U-D Time Update Algorithm by Thorton and Bierman

For j = n, n-1, . .. I 2 cycle through Equations (a) through (c).

fj. = (w~n-J) w~n-]J)
J J ' I DD

(a)

I t I I DD J • •
. l=11···1 1. {

O(ij") = (w5n-J) w}n-J)) /D. }

wt-J+U = wi<n-J)- U{i~J)Wr-J) r (b) and (c)

D- _ (w<n-1) •. .ln-1)\
1- 1 ' VVf IDD (d)

28

Software Fault Detection Additions to the Time Update Algorithm

The following items describe how the UDUT time update algorithm was

modified to include the ABFT additions.

1. First, current time step system matrices and U and D factors from the

measurement update of the error covariance must be input to the algorithm. Because

of the ABFT modifications, the following checksum matrices were passed into the

algorithm instead of matrices without checksums. For this effort, the checksums for

these matrices are assumed to have been verified in the previous time steps

measurement update algorithm, so no checksums were tested at the time the matrices

were passed into the algorithm.

Q

0

2. Form matrix W by calculating ct>O and a checksum verification as follows.

a. [<t>O
eT<t>O

NotCalc.l [<I>][l - = --- 0 Oe
eTct>Oe eT<l> .

b. Check ~ ~ (<I>U)(i,j) versus e Tct>Oe.
I

3. Form DD=

DO
OQ

0

B

0

eTQe + eTf>e

29

4. Factor W using the modified Gram-Schmidt orthogonalization algorithm into

OW. Every time a vector component 0(i,j)Wi(n-j) is subtracted from a row Wi(n-j) of

W, also subtract the same amount from the column checksum row eTW such that the

column checksums are always current.

5. Reset the row checksum's for U to zero in

and as each W rows 0 basis transformation coefficients O(i,j) are created, add the

element to the row checksum column of 0 as soon as the coefficient is calculated.

6. Reset the checksum forD and as each element Oi is calculated, update the

diagonal elements checksum e TOe, where e TOe is part of the matrix

7. Finally, verify that the row or column checksums are consistent with the row

or column elements of each of following matrices. This is accomplished by summing

row or column elements and making a direct comparison with the row or column

checksum.

a. Check column checksums (e TW)i versus 1: W(i,j).
I

b. Check <Oe)i versus k U(i,j).
J

c. Check e TQe +e Toe versus l: DD(j).
J

d. Check (eTDe) versusl: D(j).
J

30

Table 1 summarizes the number of operations required before the modification

and the number of operations added by the modification for a comparison of the

overhead required by the ABFf additions. Table 2 contains calculations of the

percentage increase in computational overhead which is caused by the ABFf

addidtions for several different system order sizes. The values in Table 2 illustrate

how the percentage overhead resulting from the ABFf additions decreases significantly

as the number of state variables increase.

uouT Measurement Update of the Error Covariance

The measurement update algorithm concerns the calculations involved in

updating the U-D factors of the estimate error covariance given the a priori state

estimate

xklk-l=x,

estimate error covariance

- -.,..,.-r
Pklk-1 = P = UuU

(41)

(42)

and a scalar measurement with zero mean normally distributed noise with covariance

R. It performs a factorized version of the covariance calculation of equation (17), and

results in the error covariance P for the minimum variance estimate :X = Xk 1 k· As a

byproduct, the algorithm also generates an n-state normalized Kalman gain vector.

Similar to the way the time update algorithm is derived by first rewriting Equation (21)

in terms of D and D factors of P, the derivation of Bierman's measurement update

algorithm starts by rewriting Equation (17) in terms of the factors D and D of P. This

rewritten equation has a special structure which can be exploited to form the D and D

factors of P = 000 r. Using nomenclature from the Thornton and Bierman

publication, it can be verified that Equation (17) can be rewritten as

(43)

TABLE 1

OPERATION COUNTS FOR THE STANDARD TIME
UPDATE ALGORITHM AND ABFT ADDITIONS

Algorithm Adds Multiplies Divides Logic

MWGSU-D 1.5n3 + 0.5n2 1.5n3 + 2n2- n-1 [2]
+ n2np + 0.5n +

(0.5n2 - O.Sn)"' (n2 + n)np +

(n2- n)"'

ABFT 0.5n3 + 3n2 + 0.5n2 + 0.5n 0

ADDITIONS 3.5n + np + 1

TOMWGS +np(0.5n2 +

U-D 0.5n)

"'Variance matrix formed.

TABLE 2

COMPUTATIONAL COSTS FOR THE ABFT ADDITIONS IN
TERMS OF A PERCENT AGE OF ORIGINAL OPERATIONS

FOR THE TIME UPDATE ALGORITHM

0

5

State Variables Adds Multiplies Divides Logic Overall
(n)

10 54% 3% 0% N/A 27%

50 37% 0.7% 0% N/A 19%

100 35% 0.3% 0% N/A 18%

31

where

fT =HD ,

g=L>f <gi=OA i=l, ... ,n>,

a= R + f g.f.
i=l II.

32

(44)

(45)

(46)

From Thornton and Bierman, the bracketed term in Equation (43) is positive semi

definite and can be factored as UDUT. Because the product of unit upper triangular

matrices is unit upper triangular,

D = OV. (47)

and

(48)

As previously mentioned, it is the special structure of the bracketed term in Equation

(43) which is exploited to createD and D. Given that

unoT = 0-0/a)ggT, (49)

it can be rewritten as

t o.o<Oo<OT = t D·e·er -(1/a)ggT,
i=l I i=l Ill

(50)

where

(51)

(52)

D(i) - ITr(i) u-(i) 1 0 O)T
-\U} t• ••f j-}1 I ,. • •I I (53)

and ei is a null vector with the exception of a unit value for the i-th element. From this

point the derivation shows that the Ui and Di components can be determined in a

backward recursive fashion for i = n, n-1, ... , 1 as depicted in the following equation,

where

.Jl. ,.. T (n) (n)T _ - - -T - - -T
i~1 Dieiei -cnv v -DnUnUn + Dn-1Un-1Un-1

n-2 ,.,
+ (i~ Dieie(-cn-2V(n-2)v(n-2JI)

Dn = Dn<an-1/an)

ai = R + ± gkfk, i = 1, ... ,n
k=1

yn-1 = (g1, ... ,gn-1'0) T

u<n) = -(fn/ an-1)gi, i = 1, ... , n-1,

33

(54)

(55)

(56)

(57)

(58)

(59)

but the derivations to get to the final algorithm are lengthy and the interested reader is

refered to Thorton and Bierman. From Thorton and Bierman [2], the summary of the

U-D measurement update algorithm is also repeated to facilitate the discussion of the

software fault detection additions to the algorithm.

U-D Measurement Update Algorithm By Bierman

For j = 1, ... , n cycle through Equations (c) through (h):

a(= aj-1 + f%i llo = R
(j-dimensional partial-state innovations variance)

D(= (ai_1/ ai)Di (6 (= T5 i if aj = 0)

(diagonal element fractional update)

V(=gj

A.:=- f/ ai-1 ().. := 0 if ai-1 = 0)

(• For j = 1, (f) not included.)

(a)

(b)

(c)

(d)

(e)

Fori= 1, ... , j-1 compute recursively (g) and (h):

a···= a-·+ v·l IJ" 1) I

(update of column j of the U matrix factor)

v ··= V·+ U··V· I' I IJ }

(j-dimensional partial state normalized gain)

(*For j = 1, (g) and (h) not included.)

Software Fault Detection Additions to the

Measurement Update Algorithm

34

The following items describe how the uouT measurement update algorithm was

· modified to include the ABFT additions.

1. First, current time step system matrices and U and D factors from the time

update of the error covariance must be input to the algorithm. Because of the ABFT

modifications, the following checksum matrices were passed into the algorithm instead

of matrices without checksums. For this effort, the checksums for these matrices are

assumed to have been verified in the previous time steps time update algorithm, so no

checksums were tested at the time the matrices were passed into the algorithm.

0

0

2. In the first step of the algorithm, Equation (a), the vector fT is formed. The

ABFT addition to this step consisted of the multiplication of the column checksum

matrix for H (even though His a vector in this case) by the row checksum matrix for 0

as follows,

[
fT

Not Calc.

Not Calc.] [H l
er~re = ~iH 0 : Oe ·

(60)

Verification of the checksum was delayed until the end of the algorithm.

35

3. In the second step of the algorithm, Equation (b), the vector g is formed. The

ABFf addition to this step consisted of the formation and update of a checksum for g

as each element of g was calculated. Verification of the checksum was performed near

the end of the algorithm.

4. The checksum for 0 was checked following Equation (b) by comparing

~ Di versus eToe. (61)

5. While cycling through Equations (c) through (h) for j = 1, ... , n, a checksum

for ex was created and updated by adding each exj as they were calculated.

Verification with a duplicate copy of the current alpha is performed at the end of

Equation (h) at each value of j, and a verification of the checksum for ex is performed

at the end of the algorithm.

6. While cycling through Equations (c) through (h) for j = 1, ... , n, at each

fractional update of D in Equation (d), the previous value of Dj was subtracted and

the new value of Dj was added to the checksum for D as follows,

eToe = eTJSe- f>i + (ai-1/ai)Di (62)

Verification of the checksum was performed at the end of the algorithm.

7. Although a software fault for A was not simulated, the algorithm changes

included keeping duplicate copies of A in separate memory locations, and then

performing a comparison when the current value would no longer need to be used at

the end of Equation (h) for each value of j.

8. Similarly, although a software fault for Vj was not simulated, the algorithm

changes included keeping duplicate copies of Vj in separate memory locations, and

then performing a comparison when the current value would no longer need to be used.

Also, a checksum for v was created and updated as each element of v was changed in

Equation (h).

36

9. As each viA. increment was added to the U(i,j) elements in equation (f), the

row checksum column DeforD was updated,

Verification of the checksum was performed at the end of the algorithm.

10. Finally, the algorithm verifies that the row or column checksums are consistent

with the row or column elements of each of following matrices. This is accomplished

by summing row or column elements and making a direct comparison with the row or

column checksum.

a. Check eTg versus l: gi.
I

b. Check (Oe)i versus~ 0(i,j).
J

c. Check e TfT versus l: fr
I

d. Check (e Toe) versus I: D(j).
J

e. Check a checksum.

f. Check e Tv versus ~ vi.
I

Table 3 summarizes the number of operations required before the modification

and the number of operations added by the modification for a comparison of the

overhead required by the ABFT additions to the measurement update algorithm. Table

4 contains calculations of the percentage increase in computational overhead which is

caused by the ABFT addidtions for several different system order sizes. Again, the

values in Table 4 illustrate how the percentage overhead resulting from the ABFT

additions decreases significantly as the number of state variables increase.

TABLE 3

OPERATION COUNTS FOR THE STANDARD MEASUREMENT
UPDATE ALGORITHM AND ABFT ADDITIONS

Algorithm Adds Multiplies Divides Logic

U-D Factor- o.sn2 + (1.Sn2 + n-1 0

ization [2] 1.5n)m + S.Sn)m +

(O.Sn2 - O.Sn)• (n2- n)•

ABFT (1.Sn2 + tun 0 (3n +7)m

additions to 11.5n)m

U-D

Factorization

•variance matrix formed.

TABLE 4

COMPUTATIONAL COSTS FOR THE ABFT ADDITIONS IN
TERMS OF A PERCENTAGE OF ORIGINAL OPERATIONS

FOR THE MEASUREMENT UPDATE ALGORITHM

State Variables Adds Multiplies Divides Logic Overall
(n)

10 161% 5% 0% N/A 84%

so 113% 1% 0% N/A 58%

100 107% 0.6% 0% N/A 54%

37

CHAPTER IV

SIMULATIONS

Simulation Environment

To test the software fault detection methods, an RTOS software implementation

of the uouT Kalman filter (Thornton and Bierman (1977)) error covariance update

algorithms with the ABFf modifications was developed. Rather than developing

Matlab code which simulated a real-time multitasking operating system, the filtering

algorithms with ABFf modifications were coded and run entirely in the VxWorks real

time operating system environment. This software implementation is included in the

Appendix. If the simulations had been performed in Matlab, the introduction of faults

into the calculations and the fault locations would have been pre-determined.

However, by performing the simulation directly in the VxWorks environment, the faults

were allowed to happen in a non-exact periodic fashion with all the timing

irregularities of the pre-emptive priority based and multi-tasking operating system.

Faults were simulated by creating a rogue task which periodically corrupted informa

tion in shared memory being used by the covariance update tasks. The rogue routine

was created so that the user could control the periodicity, value and location of the

fault. Using the algorithm modifications previously discussed, the error covariance

factorization algorithms were able to independently and immediately detect simulated

faults as they occurred. The simulated faults are representative of errors which might

result from external environments, corrupt communication with external processors,

software faults, and/ or memory and logic chip MTBF failures. The software is coded

in "C".

38

The OSU College of Engineering Interdisciplinary Real Time Distributed Systems

Laboratory was used to simulate the proposed techniques. The simulation used a

VME-based system with a Heurikon Motorola 68040 microprocessor-based single

board computer utilizing the VxWorks real time operating system kernel, with cross

development performed on a Sun Spare workstation. Matlab compatible data files

were transferred via file transfer protocol (FfP) from the Heurikon computer to a

engineering college RS6000 computer. On the RS6000, a matlab script file with an

embedded UNIX C-shell "sleep" command was made to periodically form the

covariance matrix elements from the U-D factors stored in the data files, display plots

of the Kalman gains and covariances for 100 time step frames, write the plots to a

uniquely named postscript file, and then remove the used data files before arrival of

the next frames data. The displays were remotely plotted on the Sun Spare work

station being used for cross development.

Results

Figures 4 through 29 are representative plots of the effects of the simulated faults

on the error covariance and Kalman gain calculations for a second-order system.

Seven different cases are represented. Six cases are shown with time frames from 0 to

100 time steps and 100 to 200 time steps, and one case in Figures 12 through 13 is

shown for the time frame from 0 to 100 time steps. The following second-order system

parameters and noise covariances were used in the simulations.

<I> - [1.0 0.02]
- 0 1.00

R = 0.1

Q = 0.01

H = [1.0 0.0}

and

B = G =[~:8] (63)

39

~

eli
c: ·rn

(!)
c:
ra
E
iii
~

3.5

3

2.5

2

1.5

1

0.5

0

FAULT PERIOD (steps) = 1

FAULT AFFECTS-> U

FAULT VALUE= 10.000

ERROR TYPE = 40

-0 5 . 0 ~ ~ ~ 00 100
Time Step, k <'o' marks first detection in current frame>

Figure 4. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 1, Steps 0 to 100

40

1

0.9

0.8

0.7
~

00.6
c:
'iii
(!J 0 5 c: .
<IS
E
ro0.4
~

0.3

0.2

0.1

r.>.
~··T

FAULT PERIOD (steps) = 1

FAULT AFFECTS-> U

FAULT VALUE= 10.000

ERROR TYPE = 40

IL..l.O_, \

'\""••7

?oo 120 140 160 180 200
Time Step, k <'o' marks first detection in current frame>

Figure 5. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 1, Steps 101 to 200

41

.... e w

12rr--------.--------~--------.--------.--------.

2

FAULT PERIOD (steps) = 1

FAULT AFFECTS -> U

FAULTVALUE = 10.000

ERROR TYPE = 40

2 40 60 80 100
Time Steps, k <'o' marks first detection in current frame>

Figure 6. Software Fault Effect on Single Measurement unuT Error
Covariance, Case 1, Steps 0 to 100

42

0.1~------~r-------~--------~--------~--------~

0.09

D:o.oa
~
~0.07
Q)

jjj
x0.06
·.::
1ii
~0.05
Q)

g

FAULT PERIOD (steps)= 1

FAULT AFFECTS-> U

FAULT VALUE= 10.000

I::: ERROR TYPE = 40

.... e
wo.o2

0.01

~00 120 140 160 180
Time Steps, k <'o' marks first detection in current frame>

Figure 7. Software Fault Effect on Single Measurement unuT Error
Covariance, Case 1, 101 to 200

200

43

~

en c
'it!
(.!)

ffi
E
"it!
~

3.5

3

2.5

2

1.5

0.5

0

FAULT PERIOD (steps) = 1

FAULT AFFECTS -> D

FAULT VALUE= 10.000

ERROR TYPE = 65

-0.50 20 40 60 80 100
Time Step, k <'o' marks first detection in current frame>

Figure 8. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 2, Steps 0 to 100

44

1~======~========================~==~~ "\ ,.,
0.9

0.8

0.7

:X:
ui0.6
c
'ffi

~0.5

FAULT PERIOD (steps)= 1

FAULT AFFECTS -> D

FAULT VALUE = 10.000

ttl
E
"ffi 0.4 ERROR TYPE = 65
:X:

0.3

0.2

0.1

120 140 160 186'-'''
Time Step, k <'o' marks first detection in current frame>

Figure 9. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 2, Steps 101 to 200

200

45

....
0 w

12~--------~------~--------~--------~------~

2

(2,2)

FAULT PERIOD (steps) = 1

FAULT AFFECTS -> D

FAULTVALUE = 10.000

ERRO lYPE = 65

O L

0 26 40 60 80 1 00
Time Steps, k <'o' marks first detection in current frame>

Figure 10. Software Fault Effect on Single Measurement uouT Error
Covariance, Case 2, Steps 0 to 100

46

0..
rJi -c::
Q)

E
Q)

jjj
X ·;:::;
tn
~
Q)
0 c::
ro ·;:::;
ro
~
0
~

0 w

10

9 FA ~LT PERIOD (steps)= 1

8 FA LT AFFECTS-> D

7 FA LT VALUE= 10.000

6

5

4 =RR A TYPE= 5

3

2
.....

1
, r'

'---
foo 120 140 160 180 200

Time Steps, k <'o' marks first detection in current frame>

Figure 11. Software Fault Effect on Single Measurement unuT Error
Covariance, Case 2, Steps 101 to 200

47

3.5rr--------.--------,--------,--------~-------.

3

2.5

~ 2
~

"ffi
cg 1.5
ct!
E
~ 1

0

FAULT PERIOD (steps) = 15

FAULT AFFECTS -> U

FAULT VALUE= -10.000

ERROR TYPE = 40

-0.5 0 20 40 60 80
Time Step, k <'o' marks first detection in current frame>

Figure 12. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 3, Steps 0 to 100

100

48

CJ) -c:
<I>
E
<I> w
X ·;:: -co
~
<I>
()
c: co ·;::
co
>
0
0
.....
0
UJ

12~-------.--------~-------.--------.--------.

FAULT PERIOD (steps) = 15

8 FAULT AFFECTS-> U

FAULT VALUE= -10.000

6

4 ERROR TYPE = 40

2

2 40 60 80 100
Time Steps, k <'o' marks first detection in current frame>

Figure 13. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 3, Steps 0 to 100

49

~

en
c
'ffi
C)
c
~

E
'ffi
~

3.5

3

2.5

2

1.5

0.5

0

FAULT PERIOD (steps) = 70

FAULT AFFECTS -> U

FAULT VALUE= 5.000

ERROR TYPE = 40

-0.5 0 20 40 60 80 100
Time Step, k <'o' marks first detection in current frame>

Figure 14. Software Fault Effect on Single Measurement uouT
Kalman Gains, Case 4, Steps 0 to 100

50

0.9

0.8

0.7

:X::
(1)0.6
c:
'iii
(!) 0.5
c:
«<
E
(ij 0.4
:X::

0.2

FAULT PERIOD (steps) = 70

FAULT AFFECTS -> U

FAULT VALUE = 5.000

foo 120 140 160 180
Time Step, k <'o' marks first detection in current frame>

Figure 15. Software Fault Effect on Single Measurement uouT
Kalman Gains, Case 4, Steps 101 to 200

51

200

12~--------~--------r-------~---------.---------,

(/)

E
<1>

~ 8
[ij
X

·;::: -ca
~ 6
<1>
(.)
c:
ca
·;:::
ca
~ 4
()
.....
0 .._
w 2

FAULT PERIOD (steps) = 70

FAULT AFFECTS-> U

FAULT VALUE::. 5.000

ERROR TYPE = 40

2 40 60 80
Time Steps, k <'o' marks first detection in current frame>

100

Figure 16. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 4, Steps 0 to 100

52

0.2r--------.--------~---------.--------.--------.

0.18

a.._ 0.16
(/) -c:
E o.14
Q)

w
X 0.12

·;:: -<t!
~ 0.1
Q)
(.)
c:
.!!! 0.08
<t!

~
o0.06

PERIOD (steps) = 70

?oo 120 140 160 180 200
Time Steps, k <'o' marks first detection in current frame>

Figure 17. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 4, Steps 101 to 200

53

12~--------r--------.---------.--------.--------.

C/) -c:
Q)

E
Q)

w
X ·;::

iU
::2 6
Q)
u
c: en
-~
0 4
0
....
0 w

2

FAULT PERIOD (steps) = 70

FAULT AFFECTS -> DO

FAULTVALUE = -10.000

RROR TYPE = 16384

2 40 60 80 100
Time Steps, k <'o' marks first detection in current frame>

Figure 18. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 5, Steps 0 to 100

54

4.5~--------~------~~------~~------~~-------.

4

a..
(1)3.5
'E
Q)

~ 3
w
X

~2.5
~
Q)

g 2

FAULT PERIOD (steps) = 70

FAULT AFFECTS-> DD

FAULT VALUE= -10.000

·~ RROR TYPE = 16384
C'tl
~ 1.5
0

g 1
w

120
Time Steps, k

140 1 60 180 . 00
<'o' marks first detection in current frame>

Figure 19. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 5, Steps 101 to 200

55

~

u)
c:
'(ij
(!)
c:
cu
E
iii
~

3.5

3 ROR TYPE= 16384

2.5

2

1.5

1

0.5

0

-0.50
20 40 60 80 100

Time Step, k <'o' marks first detection in current frame>

Figure 20. Software Fault Effect on Single Measurement unuT
Kalman Gains, Case 5, Steps 0 to 100

56

8r-------~--------~--------~--------~------~

7

6

~_5
(J)

c:: ·ca
<.!}4
c::
~

E

FAULT PERIOD (steps) = 70

FAULT AFFECTS-> DD

FAULT VALUE= -10.000

~ 3 AOA TYPE = 16384

2

120 140 160 180 200
Time Step, k <'o' marks first detection in current frame>

Figure 21. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 5, Steps 101 to 200

57

::s::::
u)
c: ·a;
(!)
c: ca
E

~

3.5

3

2.5

2

1.5

1

0.5

0

FAULT PERIOD (steps) = 70

FAULT AFFECTS-> W

FAULT VALUE= 10.000

ERROR TYPE = 32768

-0 5 . 0 20 40 60 80 100
Time Step, k <'o' marks first detection in current frame>

Figure 22. Software Fault Effect on Single Measurement unuT
Kalman Gains, Case 6, Steps 0 to 100

58

0.9~-------,--------~--------~--------~--------,

0.8

0.7

~0.6
Ill
c::
'iii
(!J 0.5
c::
ctl
E
"ffi
~0.4

0.3

0.2

FAULT PERIOD (steps) = 70

FAULT AFFECTS -> W

FAULT VALUE= 10.000

= 32768

120 140 160 180
Time Step, k <'o' marks first detection in current frame>

Figure 23. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 6, Steps 101 to 200

200

59

12~------~~------~---------r--------.-------~

VJ -c:
Q)

E
Q)

iii
X ·;::

iii
:E 6
Q)
()
c:
ct!

-~
0 4
(.)
.... e
w 2

FAULT PERIOD (steps) = 70

FAULT AFFECTS -> W

FAULT VALUE= 10.000

ERROR TYPE = 32768

0~~~~~~~~~--~~~~~----~
0 2 40 60 80

Time Steps, k <'o' marks first detection in current frame>

Figure 24. Software Fault Effect on Single Measurement unuT Error
Covariance, Case 6, Steps 0 to 100

100

60

0.7.-------~---------r--------~--------.--------.

a..
II) -a5 0.5
E
Q)

jjJ

·~ 0.4 -cu
~
Q)
(.)

ffi 0.3
·;:::
cu
>
0
00.2 ,_
0 ,_ ,_
w

0.1

FAULT PERIOD (steps) = 70

FAULT AFFECTS -> W

FAULT VALUE = 10.000

120 140 160 180 200
Time Steps, k <'o' marks first detection in current frame>

Figure 25. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 6, Steps 101 to 200

61

~

u>
c:
·~

CJ
c:
en
E co
~

3.5

3

2.5

2

1.5

0.5

0

FAULT PERIOD (steps) = 70

FAULT AFFECTS-> 0

FAULT VALUE= -10.000

ERROR TYPE = 65

-0 5 . 0 20 40 60 80 100
Time Step, k <'o' marks first detection in current frame>

Figure 26. Software Fault Effect on Single Measurement UDUT
Kalman Gains, Case 7, Steps 0 to 100

62

1.2.-------~---------.---------r--------.--------.

0.8

(/)

.5: 0.6
C'Cl
~
c::
C'Cl
E 0.4

~

0

FAULT PERIOD (steps) = 70

FAULT AFFECTS-> D

FAULT VALUE= -10.000

120 140 160 180
Time Step, k <'o' marks first detection in current frame>

Figure 27. Software Fault Effect on Single Measurement unuT
Kalman Gains, Case 7, Steps 101 to 200

200

63

12rr--------.---------.--------.--------,--------~

ui c
Q)

E
Q)

iii
X

~
~ 6
Q)
0
c:
1'1:1
·c:
1'1:1
~ 4
u
~

0
~ w

2

FAULT PERIOD (steps)= 70

FAULT AFFECTS -> D

FAULT VALUE= -10.000

ERROR TYPE = 65

2 40 60 80
Time Steps, k <'o' marks first detection in current frame>

100

Figure 28. Software Fault Effect on Single Measurement unuT Error
Covariance, Case 7, Steps 0 to 100

64

0.3r-------~--------~--------~--------~------~

a.. 0.25
u)
c
Q)

E
Q) 0.2
jjj
.i!:S ,_
(ij
~0.15
Q)
0
c:
co ·;::

~ 0 0.1
u ,_
0 ,_

w0.05

ERROR TYPE = 65

120 140 160 180 200
Time Steps, k <'o' marks first detection in current frame>

Figure 29. Software Fault Effect on Single Measurement UDUT Error
Covariance, Case 7, Steps 101 to 200

65

66

For each case, the initial starting time of the periodic faults affecting the calculations

was delayed 40 to 70 steps to facilitate plotting and to avoid any confusion with the

filter's startup period. As can be seen in the plots, this delay allowed the filter to

reach its steady state values before being corrupted by faults. In a real-time

application, a fault could occur at any time, including the startup period.

When the period of fault occurrence is very fast, such as 1 time step in the first

two cases shown in Figures 4 through 7 and Figures 8 through 11, the covariance and

gain calculations take on erroneous values. In the first case, which is shown in Figures

4 through 11, all erroneous values are fairly constant. In the second case, which is

shown in Figures 8 through 11, the erroneous values of the Kalman gains are fairly

constant, but the value for the second diagonal element of the covariance matrix is

increasing with time. Also note in Figures 10 and 11 that the timing of the fault in the

first element of D occasionally causes a spike in the calculation of the first diagonal

element of P for some time steps. Although Figures 10 and 11 are the only figures

presented which show this spike behavior when forming the covariance matrix P, the

behavior was often found when simulating faults in other variables. Thus, faults can

cause erroneous gains and covariances with either transient, fairly constant or

increasing behaviors. Note that the "error type" shown in the figures is a number which

corresponds to the locations in the software where the fault was first detected, but

does not indicate whether the value is steady or transient. In regard to the remaining

cases, as the period of the fault increases from once every 1 step to once every 15 steps

in the case of Figures 12 and 13, and then to once every 70 steps in the other four cases

in Figures 14 through 29, the algorithms react as if they have been reset with new initial

conditions following the occurrence of each fault. With enough time between faults, the

Kalman gains and covariance return to steady-state values. They return to steady

state values because state matrices and noise covariances were kept constant during

the simulation so that effects of the fault could be illustrated separately from effects

caused by varying system parameters or noise. Even though the calculations return to

steady-state values, the important observation is that the erroneous Kalman gains

67

resulting from the faulty calculations will likely cause incorrect state estimates,

incorrect control actions, and unrecoverable system instabilities if corrective action is

not taken upon immediate detection of a faulty calculation.

CHAPTER V

CONCLUSIONS

Future control systems need to exhibit increasingly better software fault

tolerance. Systems which have human safety requirements, such as the automated

highway system, are obvious examples of systems which will require software fault

tolerance. With these types of systems in mind, concepts of software fault tolerance

such as the Distributed Recovery Block scheme were reviewed in the context of control

system applications. Several previously developed methods for identifying failures

and maintaining suboptimal performance of control algorithms have been recast as

candidate elements for the acceptance test in software fault tolerance schemes. In

particular, the following conclusions can be made from the work of this thesis.

Algorithm Based Fault Tolerance (ABFT) techniques were shown to have the

potential for use as quantitative measures for computation acceptance at the end of

each time step of recursive estimation algorithms such as the Kalman Filter. To test the

method, Bierman's UDUT covariance factorization algorithms were modified to

include ABFT methods and test cases were run with simulated faults. Faults causing

erroneous Kalman gains and covariances with transient, fairly constant and/or

increasing behaviors were immediately detected by the algorithm modifications.

Operation counts for the ABFT modifications to the algorithms were tabulated versus

the original operation counts. The required overhead of the modifications was

tabulated as a percentage of the original algorithm operations for system orders of 10,

50, and 100 state variables. The overhead of the proposed algorithms is

approximately 25% of the original operation count for the time update algorithm and

60% for the measurement update algorithm. Because the overhead is less than that

68

69

required to run a duplicate process of the unmodified algorithms, the method may be

particularly applicable when physically redundant processors are not desirable or

available. An additional benefit of the modifications concerns the isolation of system

faults to system components. The elimination of software faults (resulting from

computing environment failures) as causes of large residual sequences is desirable

when sensor and actuator failure detection decisions are being made. In addition, for

implementations in which system matrices are passed as parameters into filter

routines, checksum matrices provide an additional method of validating that the

matrices are consistent and have been passed without corruption.

REFERENCES

[1] Bierman, G. J. Factorization Methods for Discrete Sequential Estimation. New York:
Academic Press, 1977.

[2] Thornton, C. L. and Bierman, G. J. "UDUT Covariance Factorization for
Kalman Filtering." Control and Dynamic Systems. Vol. 16. C. T. Leodnes,
Ed. New York: Academic Press, 1980, pp. 125-192.

[3] Bromley, K., Kung, S., Swartzlander, E. (Eds.). Proceedings, International Confer
ence on Systolic Arrays. Washington, OC: IEEE Computer Society Press,
1988.

[4] Jacklin, S. A. "Arranging Computer Architectures to Create Higher-Performance
Controllers." Control and Dynamic Systems, Advances in Theory and
Applications, Vol. 29 (1988), pp. 67-99.

[5] Kim, K. H. "Designing Fault Tolerance Capabilities Into Real-Time Distributed
Computer Systems." Proceedings, IEEE Computer Sodety's Workshop on the
Future Trends of Distributed Computing Systems in the 1990's, Hong Kong,
Sept. 1988, pp.318-328.

[6] Mariton, M. "Detection Delays, False Alarm Rates and the Reconfiguration of
Control Systems." International Journal of Control, Vol. 49 (1989), pp. 981-
992.

[7] Srichander, R, and Walker, B. K. "Stochastic Stability Analysis for Continuous
Time Fault Tolerant Control Systems." Proceedings of the 1991 American
Control Conference, pp. 493-501.

[8] Gylys, V. B. "Design of Real-Time Estimation Algorithms for Implementation in
Microprocessor and Distributed Processor Systems." Control and Dynamic
Systems, Advances in Theory and Applications. Vol. 19. C. T. Leodnes, Ed.
New York: Academic Press, 1983, pp. 193-295.

[9] Astrom, K. J. and Wittenmark, B. Adaptive Control. Reading, MA: Addison
Wesley, 1989.

[10] Clarke, D. W. "Self-Tuning Controller Design and Implementation." Real-Time
Computer Control. Bennett, S. and Linkens, D.A., Eds. London, U.K.:
Peter Pergrinus, Ltd., 1984.

[11 J Gelb, A. et al. Applied Optimal Estimation. Cambridge, MA: The MIT Press,
1974.

70

71

[12] Verhaegen, M. H., and Van Dooren, P. "New Insights in the Numerical
Reliability Properties of Existing Kalman Filter Implementations." Control
and Dynamic Systems, Advances in Theory and Applications. Vol. 29:
Advances in Algorithms and Computational Techniques in Dynamic Systems
Control. Part 2 of 3 (1988), pp. 1-45.

[13] Chin, L. "Advances in Computational Efficiendes of Linear Filtering," Control
and Dynamic Systems: Advances in Theory and Applications. Vol. 19. C. T.
Leodnes, Ed. New York: Academic Press, 1983, pp. 125-192.

[14} Sorenson, H. W. "Kalman Filtering Techniques." Advances in Control Systems.
Vol. 3. C. T. Leodnes, Ed. New York: Academic Press, 1966.

[15} Kerr, T. "Use of Idempotent Matrices to Validate Linear Systems Software."
IEEE Transactions On Aerospace and Electronic Systems. Vol. 26, No. 6
(1990), pp. 935-952.

[16} Chen, G. "A Simple Treatment for Suboptimal Kalman Filtering in Case of
Measurement Data Missing." IEEE Transactions on Aerospace and Electronic
Systems, Vol. 26, No. 2 (1990), pp. 413-415.

[17} Luck, R. and Ray, A. "Delay Compensation in Integrated Communication and
Control Systems." Proceedings of the 1990 American Control Conference, pp.
2045-2055.

[18] Zhang, Z. and Ray, A. "Robust Compensation of Distributed Delays In
Integrated Communication and Control Systems." Proceedings of the 1991
American Control Conference, pp. 2183-2184.

[19] Lynch, P. M. and Figueroa, J. F. "Position Estimation With Intermittent
Measurements." Proceeding of the 1991 American Control Conference, pp.
2280-2285.

(20] Isermann, R. "Process Fault Detection Based on Modeling and Estimation-A
Survey." Automatica, Vol. 20 (1984), pp. 387-404.

[21] Basseville, M. "Detecting Changes in Signals and Systems-A Survey." Auto
matica, Vol. 24 (1988), pp. 309-326.

[22] Gertler, J. J. "Survey of Model-Based Failure Detection and Isolation in Complex
Plants." IEEE Control Systems Magazine, Vol. 8 (1988), pp. 3-11.

(23] Frank, P. M. "Fault Diagnosis in Dynamic Systems Using Analytical and
Knowledge-Based Redundancy-A Survey and Some New Results."
Automatica, Vol. 26 (1990), pp. 459-474.

(24] Willsky, A. S. "A Survey of Design Methods for Failure Detection in Dynamic
Systems." Automatica, Vol. 12 (1976), pp. 601-611.

72

[25] Panossian, H. "Algorithms For System Fault Detection Through Modeling and
Estimation Techniques." Control and Dynamic Systems, Advances in Theory
and Applications. Vol. 29: Advances in Algorithms and Computational
Techniques in Dynamic Systems Control. Part 2 of 3 (1988), pp. 47-66.

[26] Franklin, G. F., Powell, J. D., and Workman, M. L. Digital Control Systems, 2nd
ed Reading, Mass.: Addison-Wesley, 1990.

[27] Hanselmann, H. "Implementation of Digital Controllers-A Survey." Auto
matica, Vol. 23, No. 1 (1987), pp. 7-32.

[28] Huang, K. and Abraham, J. A. "Algorithm-Based Fault Tolerance for Matrix
Operations." IEEE Transactions on Computers, Vol. C-33 (1984), pp. 518-
528.

[29] Anfinson, C.]., and Luk, F. T. "A Linear Algebraic Model of Algorithm-Based
Fault Tolerance." Proceeding of the International Conference on Systolic·
Arrays, May 25-27, 1988, pp. 483-493.

[30] Jou, J. Y., and Abraham, J. A. "Fault-Tolerant Matrix Arithmetic and Signal
Processing on Highly Concurrent Computing Structures." Proceedings,
IEEE, Special Issue on Fault Tolerance in VLSI, Vol. 74, No. 5 (May 1986),
pp. 732-741.

General References

[31] Chen, C. H., and Cherkassky, V. "Task Reallocation for Fault Tolerance in
Multiprocessor Systems." Proceedings of IEEE National Aerospace and
Electronics Conference, NAECON '90 (1990), pp. 495-500.

[32] Singer, R. A., and Sea, R. G. "Increasing the Computational Efficiency of
Discrete Kalman Filters." IEEE Transactions on Automatic Control, 1971.

[33] Doty, K.W., McEntire, P.l., Reilly, J.G., and Sridhar, B. "Software Allocation for
Distributed Signal Processors." Real Time Signal Processing V, SPIE, Vol.
341 (1982).

[34] Jones, R. H. "Maximum Likelihood Fitting of ARMA Models to Time Series With
Missing Observations." Technometrics, Vol. 22, No.3 (1980), pp. 389-394.

[35] Masreliez, C. J., and Martin, R. D. "Robust Bayesian Estimation for the Linear
Model and Robustifying the Kalman Filter." IEEE Transactions on
Automatic Control. Vol. AC-22, No. 3 (1977), pp. 361-371.

[36] Puthenpura, S. and Sinha, N. K. "Robust Bootstrap Method for Joint Estimation
of States and Parameters of a Linear System." Journal of Dynamic
Systems, Measurement, and Control, Vol. 108 (1986), pp. 255-263.

APPENDIX

SIMULATION SOFIW ARE

73

/IIIII II ,. •••• ,. ,. .. ,.,.,. .. ,.,. * 1111111111111t •• ,
/11 * File: udursf2.c rountlnes *"'/
/"'* Purpose~ UDU' Kalman filter procedures, performance analysis u;
t•• and plottino in matlab, testinQ A.BFT tolerance techniques. 11111 /

/1111 For use on rsLceat.okstate.edu because of ava1lab111ty of matlab. ••1
I*" • •! /• 11 oriQinator: MRM
1•• Date: 5-11-93
t•• moditlcatlon history I. II _____ ..., _____________ _
I •• uduabrsr. c:
/** 02a, 12may93, mnn
I • •
, .. 02b, 11may93, mm
I"
/~~* 02c, 19may93f mnn
1 ..
,.,. udurst2.c:
;·u 02d, 21may93, mrm
I"
I''

added rogue routine and algorithm based !ault
tolerance techniques to the udu!ilter.c program.
added things to make the program work on
rs L ceat .okstate .edu.
c:hanqed error codes to base 2 numbers
and added capability to corrupt 0.

chanqed to 1 second time step, OEBUC 1 fdef• s for
a lot of print f statements, added cont col of when
fault for W and DO is introduced.

••I
.. I
.. I
.. I
.. I
.. I
"I
.. I
.. I
"I
..I

''I
"I
.. I
"I

/* ••••••••••••••• * t •• ,. ••••••• ,. * •••••• " •• ""* ** illt ••• ,. ** ••• ••!
tlnclude •vxWorks.h'*
linclude •stdloLlb.h"
flnclude "loLib.h•
tinclude "taskLlb.h•
tlnclude "wdLlb.h"
finclude •a out.h•
tlnclude "s'trLlb.h"
finclude •tioLib.h"
t1nclude •vme.h•
tlnclude- "lflath.h"

I* macro's *I
I define mmln(a, b) (((a) < (bll? (a): (bl)
Ide tine mmax (a, b) (((a) < (b) I? (b): (a) 1
ldeflne abs(xl (((xl > 0.) ? (x):-(x))

ft task oriented definitions *I
ldef!ne STACKS!U 5000

1• A./0 de!initlons •1
ldeflne MAX SNGL ENDED CHANNELS 32
ldef!ne MAX-DIFF-CHANNELS 16
Ide t1 ne MAX =PAST= MEASUREMENTS 50

I • ABFT USUAGE
ldeflne EPSILON

'I
0.00001

I* Definitions tor Direct D1q1tal Control code seqrnents. •1
ldef!ne TICKS PER SEC 60
lde[!ne PI - - 3.1415926535891932384
tdeflne STATES 6 /"' (maximum number of states n)
tde!1ne INPUTS 6 1• (maximum number o! inputs) ,..
Ide fine MEAS 6
ldeflne PROCESS NOISE 6
ldeflne MEAS NOISE 6
ldeflne ID - 10

/* Global Measurements */

double y (MAX_SNGL_ENDED _Cf!ANNE!.S) !MAX_PAST_MEASUREMENTS):

t 1 *I
•I

/* System Global Parameter& */

double ph If STATES II STATES 1:
double 9atnma[STATES) [INPUTS);
double PI STATES I I STATES I;
double U(STATES) [STATES);
double D[STATES);
double DD(STATES+PROCESS NOISE);
double H[MEAS) [STATES); -
double WISTATES) [STATES+PROCESS_NOISE);
double diMEAS)IINPUTS);
double X (STATES] i
double ~[STATES) [MEAS);
double R[MEAS NOISE);
double Q[PROCESS NOISE);
double G(STATES)fPROCESS_NOISE);

double rogue_ value;

1nt states;
tnt process noise;
int meas noise;
int meas;
lnt rogue delay;
lnt roque=start;
int !ault _type;

char go_on;

fiLE •fpErrorl;
FIL£ •tpKgaln;
FILE • fpU;
riLE '[p0;

I,.."',..,.* • .,.., • •• * ••••tt •• *• ,..., •• •• •• •"' * • .,. ** ** • ••• ,.,. * • •• •• •• ••"" ,.. • • •• *" * • .,. I
1.. NC»1ENCLATURE: .. I
1u Time varylnQ linear system: ,.,/
1.. x(k+l) • phi•x(k) + qamma 11 u t G111 q ••1
!"'• y•H•xtd•u+r 11111 /

/,., Vectors and Matrlcies: ••1
1 11111 y - vector of measurements, (mxl) .. /
I'" u- vector of control inputs, (lxl) ·-;
!*• q- process noise, (pxl) Hf
/** r - measurement nolse, (mxl) u;
1 11111 r and q are mutually uncorrelated jointly Gaussian white noise ••1
I* • sequences.
/,.. H - observation matrix tmxn)
J·H phi - state transition matrix, (nxn)
I"* qantll'la - control input matrix, {nxl)
1.. G - (nxp)

1 11111 x - vector of states
1u K - kalman gain vector
/ 11111 P - oriqinal covariance matrix
t•• U - U factor of covarianc-e P • UDU'
;u D - o !actor of covariance P • uoo·

..I

.. I

.. I

.. I

.. I

"I
"I
"I
.. I
.. I

I.. R- Measurement noise covariance m.atrix, positive deflnlte tmxm) .. I
t•• (vector of diagonal elements) 11 •/
/~~* 0 - Process no1.se c:ovarlance, positive sem1det1n1te (pxp) .,./
1• • • *I
/.. x{O) is multivariate Gaussianf with mean mx(OJ and covariance
1,.. Px(OI. X(O) N(K(O);mx(O),Px(O)),

.. I

.. I

1···········,.·······················~~···11·······~~····11·················1111/

SEM_to sem_systern; " ~

SEH 10 en t 1m• etep •ync;
SEM-ID•em-updt't -
SEM=ID sem=:w_DD;

1• talk ldantlUcatlona */
lnt tldl;
int tid2;
1nt tldl;
lnt tid4;
lnt tld5;
tnt t1d6r

/* file descriptors */
1 nt fdl
1 nt fd2
1 nt !d3
lnt td4

/*decl•ratlon of subroutines*/
void filter lnltO;
void sya pal-" am updt 0;
void simUlator-();
lnt mea• updt ();
lnt ud factor 0:
int ud-factor propO;
void task killer();
lloat qet -t !me 0:
void printm 0;
void prlntv 0:
void cont ();
void stop 0:
void start me 0 ;
void roque(};
void abft _check 0 :

, .. _ ,
, .. filter inlt 0 is the entry point !or a filter spawned by **/
, .. a startup routine or function. ""'I
/**modification history **/
/** -------------------- ••!
/"* 02a, 19may93, mrm added fault type to errorl output ••;
!*• 02b, 27may93, mrm added DEBUG-lfde!' s for print! statements **/
, ••• "*"*·············••!

void filter In! t 0
I -

tnt t 1me step, inde.x by 100, k, j, l;
lnt abft=error,error=fliq, error_type;

error t laq • FALSE;
error~ type .. FALSE;
abft error • FALSE;
lndeH by 100•0;
ttme_SteP - 0;

lam (•moan•, •un1xcshell 11);

1!! lfp~galn•fopen I" rsf: /u/moan/ rs6000/Kgal n. m•, "w"Jl ••NULL)
printf("'\n Kqaln.m !open falled.\n•);

1 f ((fpU•fopen (11 rat: IU/moan/ rs6000/UpperP .m"', •w•)) ••NULL}
print!("'\n UpperP.m !open falled.\n•);

It ((tpO•fopen I" rof: /u/moan/u6000/DioqP .m•, "w"Jl ••NULL)

prlntt(•\n DlaQP.m !open falled.\n•);

1 f { {fpErrorl•topen (•rs!: /u/moanlrs6000/errorl.m•, •w•)) ••NULL)
print! (•\n errorl.m Copen failed. \n•):

taskDelay (10);

11 !de f DEBUG
1• Print out P "'!

printf ("Printlnq P(O) \n");
prlntm (P, states., states);
prlntf(•\n•);

tendlf DEBUG

/* Initialize fault detection information to NULL state
fprlntf (fpErrorl, "'\n error type • 0;\n•J;
fprlntf UpErrorl, '"\n time_ Or_ error • o; \n'");

/* Initialize fault type information !or plottlnq */

*I

fprintf ffpEt:rorl, ""\n fault. type • td ;\n 11 , fault type):
fpr1ntf(fpE:rrorl,"\n roque-start • td ;\n•, rogue start)
tprlntf(!pErrorl,•\n roque-delay- td ;\n"', roque-delay)
fprlntf(fpErrorl, .. \n roque=value • 't ;\n•, rogue=value)

I* Print PO to Upper.m •;
fprint!(!pU,"\nPO•(\n ..);
tor(k•O; k < states;k.H)

I
tor (j•O; j < states; j++)

(

fpr!ntflfpU,"H •, P{klilll;
);

!prlntf (!pU, •; \n"l;
);

fprlnttl!pU,"I: \n");

flfdef DEBUG
I* Print out phi •/

prlntf(•Printlnq phi\n•);
prl ntm (phi 1 st at es, states) :
prlnt!l"\n"l;

fendif DEBUG

fprlntflfpU,"\nphl•{ In");
for(k•O; k < states;k+t}

(

for(j•O; j < states;jt+l
I
!prlntf(fpU,"H •, phi {kl llll:
1:

!printf(fpU 1 '"; \n"'};
I;

!print! (fpU, • I: \n"J:

11 !de f DEBUG
I* Print out R */

prlntf(11 Pr1ntJng R\n"");
prlntv(R,meas noise);
print f t•\n"') ~-

fend! f DEBUG

!print! {!pU, •\nR- { \n"");
!or(k•O: k < meas nolse;k+•l

I - '-I
U1

tprintt(tpu,•u •, R!kll~

fprlntf(fpU,•~ \n") ~
);

fprlntf(fpU,•I; \n•);

abtt_error • ud_factor ();

I* Evaluate fault status and report to errorLm if TRUE •t
It (error tla9 •• FALSE)

I -
1r (abft error ! • FALSE)

{ -

1:

lltdef DEBUG

error !lao .. TRUE;
error-type • ab!t error;
fprlntftfpErrorl,;;\ntlme of error • 'd ;\n", time step);
fpr1ntf(!p£rrori,•\nerror_tfpe • 'd ;\n•, error_tYpe);
);

I* Print out U */
prlnt!C'"Printinq factored U{O)\n'");
prlntm (U, states, states,;
printf ("\n"l ~

tend!! DEBUG

fprintt (fpU, "\nU• (\n") ~
tor (k•O; k < states;k++)

I
for (j•O; j < states; jt+-)

I

);

Hlk •• 11
I
!print! (fpU, "1.0 ");
)

else
fprlntf(!pU,•H •, U(ki(JJI;
);

tprintf (fpU, •; \n•);

tl!def DEBUG
I* Print out D */

print! ("Print lng factored D (01\n");
prlntv (O, •tates);
prl nt f 1"\n");

tendit DEBUG

fprlntt(fpO,"\nD•(\n");
for(k•O; k < states;k++)

(
fprlntf(fpD,"H •, D{k));

I ~
fprlntf(fpO,•; \n");

I* Start Printing out Kalman Gains */
fprlnt!(fpKgaln, "\nK•I \n");
tor (k•O; k < states; k,..+J

' fprlnt!(!pKQaln,•\f •, K(kl (0));
);
fprintf (fpKqaln,•: \n..,);

tor II: I

semTake (sem_t1me_step_lync);

It~ loop tor multiple measurements to be added here
I* for (l-0; 1 < meas; 1++)
I' I
I* validate_meas();

1•0;
semTake (sem_system);

abft_error•meas_updt (l);

'I
*I
'I
*I

I* Evaluate fault status and report to errorl .m 1! TRUE
If (error flag •• FALSE)

I -

1 t (abft error ! • FALS£)
I -

'I

error tlao .. TF.UE;
error-type- ab!t error;
fprtnt"t(!pErrorl,;\ntlme of error- 'd ;\n"', time step);
fprintt (!p£rrorl, •\nerror tYpe • 'd ;\n .. ~ error tyPe);
I; -· -

tlldef DEBUG

tend! f DEBUG

);

1• Print out U t.l
print f t•Printinq me.as_updt U\n•);
prlntm (U, states, states);
prlntft"\n"l;

lf(l -- 01
I
for {k•O; k < states; k++)

' for (j•O; j < states; j++}

);

I
if (k -- j)

I
fprlntf(fpU, "1.0 "I;
I

else
fprlntf(fpU,•tt •,U(klllli;
);

fpr1ntf(fpU,•; \n");
J;

llfdef DEBUG
1• Print out D *I

lendlt DEBUG

prlntf(•Prlnt1nq meas updt D\n•);
print v (0, states); -
print! ("\n"l;

1!(1 -- 0)
I
for (k•O; k < states;k,..t)

I
fprlntf(!pD,"'f .. , D(kJ);
];

fprlntt (fpD, •; \n"l;
);,

"'

Hfdef DEBUG
I* Prlnt out K *I

prlntf t•PrlntlnQ Kalman Gain Vector 1<.\n");
prlntm(K,states, 1);

Iandi! DEBUG
print! ("\n");

1f(l -- 0)
I
for(k•O: k < states;k++J

I
fprlntt (fpKqaln,•H •, K(kl (01);
I;

fprlnt t (fpKg:aln, •; \n•);
);

/*allow sys param udpt to update the system parameters •t
/*if new values are available*/
semGlve (sem_system):

, ... ····;
/** Comment is a stub for sequent lal state estimation update for each
I** measurement to be placed herea

• 'I
••; , ,. "****"**•·················· .. ··························-··········t

I'' '*I

aemTake (sem system);
abft_error : ud_factor_prop();

I* Evaluate f.ault status and report to errorl.m if TRUE
if (error flaQ -- FALSE)

I -
1 f (abft error ! • FALSE)

I -

.,

error flaq - TRUE;
error-type • abtt error;
fprlnt"f{fpErrorl, ;\ntlme of error • 'd ;\n•, tirne step);
fprlntf(fpErrorl,•\nerror tyPe- 'd ;\n"', error tYpe);
); - -

) ;

I lfde! DEBUG
1• Print out U */
print! ("'Printing time propogated U\n"');
prlntm (U, states, states,;
prlntf ("\n");

lend! f DEBUG

flfdef DEBUG
J• Print out D •t
print! ("PrlntlnQ time propagated D\n");
prlntv (0, states);
prlntf ("'\n"');

fend! f DEBUG

, - * •• ,.. ,
I** Comment is a stub tor time propoqatlng the state vector to the .. ,
t•• next t1m.e step. (prediction of state at t (k+l) .. /
1.. Hay also be qood place for control law calculations ""/ , ,..,. ... ,

seMCive (sem_aystem);

;···! ,., Since global system data ts protected by sem system., this could .,,
;u Allow sys param updt ' control laws to proc8ed sending information **/
/* ; •• -····· .. ,

H ltlme_step •• 100)
I

fprlntf (fpU, "I; \n");
!prlntflfpO,"I; \n");
fprintf{!p!C:galn, •J; \n"};

tpr1ntf{t'pU, "'\n lndexlOO .. •);
fprlntf(fpU, "'d ; \n", lndex_by_lOO);

print! ("'\n indexlOO - "');
printf("'td; \n•,tndex._by~l00);

++index_ by _1 00:

time_step - 1;

lam t•moan•, •unixcshe ll "') ;

lf ((!close (fpU)) •• EOF)
print! ("'\n fpU !close failed. \n");

1 t ((!close (fpD)) •• EO f)
pr1ntt(•\n fpD fclose failed.\n•);

lf(l!close(fpKqaln)) •• EOF')
print! (•\n fpKqain fclose fat led. \n");

If I (fclose lfpErrorl)) •• EOF)
print! ("'\n !pE:rrorl !close failed. \n");

1 f ((!p)(ga ln•fopen (" rs !: /u/moan/rs6000/KQa 1 n .m•, •w•) } ••NULL)
pr1ntt(•\n Kgain.m fopen failed.\n•);

l! (I !pU•!open (" rsf: /u/moan/ rs6000/UpperP. m•, "w")) ••NULL)
printf(•\n UpperP.tn fopen !ailed.\n'");

HI (!pD•fopen I" rs t: /u /moan/ rs6000/0iaqP .m••, "w"))- •NULL)
prlntfl"\n DlaQP,m !open falled.\n");

1 t { (fpErrorl- !open (.. rsf: /u/moan/rs6000/er ror 1 .m•, •w•)) ••NULl,)
print f ("\n errorl.m. !open failed. \n");

/* Initialize fault detection information to NULL state */
fpr1nt!(fpErrorl,•\n error type .. 0;\n"l;
fpr:lntf(fpErrorl,"'\n time_Of_error ... O; \n•);

/* In1t1alize fault type information for plottlnq */
!printf(fpErrorl,"'\n fault type"" 'd ;\n"', fault type):
fpdntf(fpErrorl,"'\n roque~stan • 'd \n"', roque start)
fpr1ntf(fp£rrorl,'"\n roque-delay • 'd \n"', roque-delay)
fprintf(fpErrorl,•\n rogue=value- '(\n•, roque=value)

error tlaQ • fALSE
error-type • fALSE
abft_error • FALSE

fprlntf(tpU,"\n U•l \n");,
.....,

fprlntf(fpO,"\n D•(\n");
fprlntf (fpKq&ln, "\n K·(\n");

el•e
I

);

++time_&tEip;
);

I***" •• "'*"'********* ******** *" •••• ** •••• •• •••• *' •" •• ** "'* ** •• •• ** * • • * •• •• •• I
, .. ays pJ~ram updt() is lp&wned to update system parameter when u/
I* • nec8aa&ry: "'*/
/** ••t
/*"'modification history *"/

I* • -------------------- ••!
;u Ola, 12m.ay93, mrm added stuff for alqorlthm based fault "'/
;u tolerance. .., I
,.. **/ , ... " ,
void sys param updt 0
I - -

tnt Btiltes but;
int procesS noise buf;
int meas noise buf;
Lnt meas -but; -
int j,k;-

double ph! bull STATES) (STATES);
double gamma bu((STATESI (INPUTS);
double P but(STATES) [STATES);
double U-buf[STATESI(STATES);
double D-buf[STATESJ;
double DO bu! (STATES+ PROCESS NOISE J;
double H buf{MEASJ(STATES); -
double W-buf[STATESI [STATES+PROCESS NOISE!;
double d-buf[HEASJ(INPUTS); -
double X -buf{STATES);
double K-buf{STATES] {MEAS);
double R-buf{MEAS NOISE];
double Q-buf{PROCESS NOISE!;
double G=buf[STATESJ(P~OCESS_NOISEJ;

for(; ;I
I

1• This pa:rt is a stub !or readlnQ new parameters lnto a buffer
I" when a messaqe or interrupt is sent to slqnal that new
1• parameters are available~

semTake (sem updt) ~
states but-2;
procesS noise buf•l;
meas noise buf•l;
meas=buf•lT

phi buf(OJ (01•1.0;
phi-buf{l!IO!• Or
phi-buf[21{01• 1.0;
ph!=buf IJJIOI• O;

., .,
•!

phi buf(O]{l!• .02;
phi-but[ll [lJ• 1.0 ;
ph1-buf[2J [11• 1.02
phl=buf[31 [11• o

phi buf[OI{2J•
phl-buf[ll [21•
phi-bu![2J {21•
phi=buf[3](2J•

phi buf(0][3J• o
phi-buf[1J[3J· 0
phl-buf(21 [JJ· 0
phi=buf(3JI3J•

P buf[OJ [01•10;
P-buf[OJ(ll• 0;
P-buf{OJ 121• 10;
P=buf(OJ(3i• 0;

P buf{lJ [OJ• 0
P-buf(lJ (11- 10
P-buf[ll {21• 10
P::_bu!(ll [31• o

P buf(2J(OJ• 0
P-buf[2J [lJ· 0
P-buf(2112J•
P=buf[21 [31•

P buf(JJIOJ•
P-buf[JI Ill·
P-buf[JJ (21•
P::_buf[3J [31·

R buf{O)• 0.1;
R::_buf[ll• 0.1;

Q buf(OJ•O.Ol;
Q-buf(l!•O.Ol;
Q -but 121•0;
0-buf[li•O;
Q=bu!(4J•O;

H buf[OJ (0)•1.0
H-buf [0 I I 11•0.0
H::_buf(OJ (2!•0.0

H buf(li{O)•l.O
H-buf{ll {1]•0.0
H=buf[l![2J·O.O

G buf[OJ {0]• 0.0;
G-buf[OJ {lJ• 0.0;
G-buf[OJ [2]· 0;
c::_buf[OJ {31· o;

G buf[11 (OJ• 1.0;
G-buf[lJ(lJ• 0;
G-buf(l}(2J- 0;
c::_buf(1J [3!• o ;

G buf(2J (OJ• 1.0;
c::_buf(2Jill• o;

'-..J
co

G huf(2J 121• 0
c::but(2J (31· o

G bu!(ll [OJ• 0
G-buf[l} Ill• 0
G-buf[l} [21• 0 ;
G::buf[JJ [31• o.o:

/* End ot stub

aemTake (aem syatem);
statea•stat8• but;
process noise:process noise buf;
maas noise•me,as noise -buf; -
meas:meas_buf; - -

I* Also reads in phi column checksums */
tor (k•O; k < states;k++)

[
tor(j•O; j < (states+ ll;j++l

{

phl(j}[k}•phl bu!(jJ(kJ;
1: -

1:

for(k•O; k < at.ates;k+t)
(
for (j•O; j < states; j++)

(
P(kJ[j(•P but(k}(j};
1: -

(;

JA Also reads in R dlaqonal check.sum */
tor (k•O; k < (meas noisef.}) :k++)

(-
R(k(•R bu![k};

I; -

I* Also reads in 0 dlaQonal checksum */
for (k•O; k < (process noise+!); k++)

(-
O!kJ•O bu!(kJ;

I; -

I* Also reads ln H column checksums *I
tor(k•OI k < (meas+lJ1k++J

(
for(j•OI j < states1J++J

I
H[k} (j(•H but[kl [j);
I; -

I I

1• Also reads ln G column checksums */
for(k•O; k < (states+l);k++•

{

for [j•O; j < process noise; j++J
(-
G(k](j(•G bu!(kJ(jl;
II -

1:
sem.Gl ve (sem ay•tem):
1: -

• I

/***** ••• ** •••• •••••• •• **** •••••••• •• * ••••••••• **** ** ************ * * •• **I
I** Hessaqe simulator stub, which controls how often sys_param_updt **/
;u CJets exercised. **/ /***••···;
void simulator 0
{

for(;:)
(
taskDelay (300001;
semGl ve {sem _ updt);
);

, ... 1
I** U/D Measurement Update AlQorlthm aft:"er Bierman and Thornton. **/ /** c language version coded by HRM !rom algorithm **/
/** qlven by V. Gylys on pp. 278, Control And Dynamic Systems, "*/
I* • Advances in Theory and Appllc.at ions, edited by c. T. Leondes ••;
/** Volume 19: Nonlinear And Kalman Filterlnq Techniques ••t
I"
I"
1,.. modification history
I** --------------------
1•• 02a, 12may93, mrm added checksum fault tolerance
1 .. 02c, 19may93, mrm changed error codes

.. ,
"I
"I .. ,
"I .. ,

/** •••• ,. ••• ** ** .,. •• ** "'* •••••••••••••••••••••••••••••••••••••• **/
1 nt mea a updt (y row)

int Y_tow; -

double ![STATES);
double g[STATES(;
double alpha (STATES I;
double v [STATES I;
double last alpha, last alpha2;
double last -U; -
double temp;
double lambda, lambda ch.eck:
double check; -
double f_sum, alpha_sum, g_sum, v_sum;

I nt k, I, j;
1nt check_status;

check • o;
check_status • 0;

/" I. calculate H•U *I
for (1•0; 1 < states; it+)

(

!(II • H[OJ(IJ:
fortj•O; j < l; j++J

(

I;

!(II • ![II • H(OI (j('U[jl [IJ;
1:

/*Create ! awn • e'•H*U*e */
t sum•H(meaoJ (ot•tes-11;
tOr (k• rat .ate•-21; t>-o: k--,,

1.0

l
t awn • t sum+ H[meas][k]• (U[k] [states) t 1):
II -

J• Calculate Oi • Dl*fi and checksum */
9 sum • O;
t0r(1•0; l < states; 1++1

I
9111 • 0[1]•![1];
q sum +• g{l]; ,;

t• check D diaQonal checksum
tor ll•O; j < states; j++)

I
check +• Dill:
1:

*I

lf(!abs(check- D[otatea() >EPSILON!

I
check status +• 1;
1: -

check • 0;

1• lnltl.llize v sum, alpha sum, lambda, lambda check
v sum - 0; - - -
alpha sum - O:
lambdi • 0;
lambda_check • 0;

I* Start U and D update •1
last alpha • R.{y row);
tast:alpha2 - arY_rowJ:

tor IJ·O; j < states; j++J
I
alpha[jl • last alpha+ t(jJ*qJJJ;
alpha sum •· alpha[jJ;
lflalphalll !• OJ

I

*I

t• tractional update D{j} and update checksum "/
temp • D[jJ;
D[jJ • (last alpha/alpha[JII*O[j);
D[statUI •--Dill -temp;
1:

1• form v{jl and keep a checksum •1
v[jJ • QIJJ;
v_sum +• giJI;

t• continue update */
!f(j !• 0)

I
it(laat alpha

I -
lambda • 0;
I

else
I

0)

lambda • -fiJI/last alpha;
I; -

lambda check • lambda;
for 11•0; 1 < J; 1++1

f
laot_U- Ullllll:

1:

temp- v(i)•lambda;
U(il Ill • U[il Ill +temp;
I* update U row checksum •1
U[i((statesj +• temp;
temp- last u•vrll;
•Ill • v(il-. last u•v[lJ:
1• update v sum •7
v_sum +• telnp;
1:

/* check lambda "/
if (tabs (lambda - lambda check) > 0.0000011

I -
if (check status < 2)

1 -

);

check stat us + • 2;
); -

/* check last alpha's "I
lf{fabs(last alpha- last a!pha2) > 0.000001)

I - -

1! (check_status < 4)

I;

I
check_status +• 4;
1:

last alpha • alphalll:
last_::alpha2- alphalll;
1:

/* Kalman qain column vector for the y row measurement •1
I* and form column checksum - *I

l<(statesJ (y row! • 0;
for u-o; 1 < states; 1++)

I
K[ll[y row] • v[!l/alpha[(states-!));
KlstatesJ [y row(•- Klilly row];
I; - -

I* check t• - H*U */
check • 0;
for (k •0; k<states; k + +-)

I
check ... check • f [k l:
1:

if(fabs(check- f_sum) > EPSILON)

I
check status +,.. 8;
); -

check • 0;

1• check g • 0*! "I
for (j•O; j < states; :]'f-+)

I
check
);

QIJI:

if (tabs [check - Q sum) > EPSILON)
1 -
check atatu& +• 16;
1: -

(X)
0

check • 0;

I" check row checksums of u •1
!or(j•O; j < states-1; j++}

l
for (k•stateo-1; k > j; k--1

t
check +• U I j 1 [k I ;

);
lf(fabs(check- U[ji(states]} >EPSILON}

l
iftcheck status< 32J

I -
check status +• 32;
I: -

);
check • 0;

);

I* check sums for 0 •;
!or (j•O; j < states; j++)

l
check + • 0 [j [;
I;

lftfabs(check-C[states)) >EPSILON)
I
check status +• 64;
I: -

check • 0;

I* check alpha */
for {j•O; j < states; j++)

I
check
t;

alpha [j):

l!(tabslcheck- alpha sum) >EPSILON}
I -
check status +• 128;
I; -

check • 0;

t• check v .,
for tj•O; j < states; j++l

I
check +• v(ll:
1:

lt(fabs(check- v_sum} >EPSILON!

I
check status +• 256;
); -

ret urn (check_stat us);

t••···~~~······················ ... l
/.., U 0 factorization Algorithm
1 .. C lan<;~uaQe version coded by HRM from alqorlthm
/ .. qlven by V. Gylys on pp. 21!12, Control And Dynamic Systems,
, .. Advances ln Theory and Appllcat ions, edited by C. T. Leondes
;u Volume 19: Nonlinear And Kalman Filtering Techniques , ..

.. , .. , .. , .. , .. , ..,

tu· Input: nxn 1ymmetrlc matrix P, with maln-diaoonal and
;u: upper-trianQular elements stored in an n x n array P. , ..
;•• Output: n x n uni\-diaoonal, upper-triangular matrix U, with
/** lts upper trlanqular portion stored ln n x n array
1•• U (which can be •equivalenced"' with array
1•• P so that the original 1' is destroyed). , ..
/"* Output: The maln-dlaqonal elements of n x n diat;,onal matrix D
t•• stored in vector D (which optionally can be stored in
/"* locations of the maln-diaqonal elements ot array P). , ..
t•• Remarks: the alqorlthm does not explicitly Qenerate the maln-
;u diagonal unit elements of U , ..
;u modltlcation history , .. --------------------

.. , .., .., .. , .. , .. , .., .., .. , .. , .., .., .. , .. , .., .. , .. ,
I*• 02a, 12may93, mrm added checksum !a.ult tolerance .. ,
/,., 02c, 19no.ay93, mrm chang:ed error codes ••;
;••••••••••"'••• •• ••• • "• • * •• •••• ••• • •• •• ••• • •• •• • • • • • • "* • • • ••• •• •• •••-•• I

lnt ud __ factor ()
(

double alpha;
double beta;
double check~
lnt 1,k,j;
int check_status;

che-ck .. 0;
check status • O:
D[sta'tes) •0;

for (j•states-1; J > 0; j--1
(
D(j) • P{jJ(j);
I* D[states} is the location of the checksum */
D(states) +• Dill:
alpha • 1.0/D(j);
!or(k•O; k < j; k++)

I;

I
!f(j •• lstates-1))

I
U(k) [states) • 0;
);

beta • P(kl (J);
U I k I (Jl • a! ph a •bet a;
/* U{kJ (states! is the 1ocat1on of the rowchecksums •;
U[k}(states(+• U{k)IJI;
for (1•0; 1 < k; 1 H)

I;

I
P (II [k 1 -· beta•u [II (Jl;
);

D{O)•P[O) [0];
D[states) +• 0(0);

;• check sums •t
!or(j•O; j <states; jt+)

I
check +• D(jl;
I;

lf(fabs(check-D(states}) >EPSILON) Q)

check_•tatue +• Sl2;
1:

check • O;

I* check row sums */
tor(j•O; j < states-1; j++)

(
for (k•otates-1; k > j; k--1

I
check +• U { j 1 I k 1;

);
lf{hbo(check- U[j![states)l >EPSILON!

l
1! (check status < J)

I -

1;

check status +• 102(;
!; -

Chii!!!Ck • 0;
I:

return (check_statua:);

I* • • • • • • • •• • •• • • • • • • • •• • • • • • • • • • • • • •• • • • • • • • • •• * • • • • • • • •• • • • • • • • • • • • • • •t
I*" U/D Factor Propaqatlon fT1me Update) ••1
/* • C lanouage version coded by MRM from alQorl thm •• 1
;u ;tven by v. Gylys on pp. 284. Control And Dynamic Systems, ••t
t• • Advance• in Theory and Applications, ed 1 ted by C. T. Leon des .. /
/** Volume 19: Nonlinear And K.alman Filtering Techniques ••1
I*" • *I
/u Input: U.D,Q,G , ..
,..,, Calc: n x N symmetric matrix W, with rows wl""T, ••. wn"'T. , ..
/** Calc: N x N dlaqonal matrh DO defined by {0 0;0 01 , ..
t•• Output: the upper trlanqular part U of prop.aqated n x n
/** unlt-diaqonal, upper-trianqular mo~trix U. , ..
I'* Output: the main dlaqonal elements, stored .a.s a vector D,
I** of n x n dlaqonal matrix D. , ..
1•• Define; wj""(O) • wj for j • 1, -··• n. , .. , ..
, .. madiflc~:t ion history , .. -~------------------

··I ..,
"I .., .. ,
"I .. , .., ..,
"I
"I ..,
• 'I
"I
"I .. , .. ,

1., 02a, 12may93,. mrm added checksum fault tolerance. **/
/** 02c, 19may93, mrm ch•n;ed error codes. ••t
t•• 02d, 21may93, mrm added sem W DO to control when fault occurs . .. 1
, •••••••••••••••••••••••••••••••• ;.; 1

I nt ud_!actor_prop 0
f

double DD inner prod;
double ch8clt,w_Sum,Temp;
int i,j,k;
int check_atatus;

check - 0;
check_statu• • 0;

I* form larqe DO matrix of dia9onal elements *I
tor (1•0; !<states; 1 ++)

f
DD{l)•D[l];
I;

for (1•0; 1<process_no1se; it+)

I
DD(states+l1•Q[ll;
);

I* Form dlaqonal checksum •1
OD(states+process_nol.seJ • D{statesJ + O[process_noisej;

/* .. Put DO fault here •••t
It (fault type •• 31

I -
semGi ve (sem W OD) :
I; --

1•••• • Creo~te W •(PHI*U I GJ ••••••••••••••••••••••••••••••••1
ror (i •0; 1 <states; i +•)

(

I;

tor ll•O; j<states; j++)
I

!;

w !11 I l 1 •phi I 1! ! l 1 ;
!or (k•j-1; k>•O; k--1

(

W(1! (j]•W[1) (j)+phl(l)[l<I'U(k)(j);
!;

t• Create le' *PHI) •u •t
for (j•O; j<states; j H·l

I
W(states! (j)•ph1(states[Ill:
for (k•l-l:k>•O;l<--1

1:

I
W(states1 [ji•W[states) [j)+phl[states1 [l<I'Uikl (j];
I;

t• Create check • e' "'PHt•u•e •J
check-phllstates!tstates-1];
for (k• lst.ates-2 t; k >•0; k--)

I
check • check+ phl(statesj(k]•(UfkJ(states! t ll;
1:

t• check calculation of PHI*U */
W sum • 0;
tOr tj•O; j<states; j+•)

I
for (k•O; k<states; k+ + l

I
II sum • W own+ W[kl [j!; 1: -

);

1f (fabo (Check - ll_sum) > EPSILON!
00
1'-.)

check •tatua +• 2041;
}; -

check - 0;

1• also include column checksum elements for G ln bottom row of W •1
for~ 1•0; i<atatea+l; l++)

t

1:

for (j•O; j<procass noise; 1++)
t -

W[1 l[atates+11•G [!I [11;
1:

!••••• Perform D-orthogonallzatlon •••••••••••••••!
D[statesi•O.O;

JH reset U{il (states} • 0 •••t
for (1•0; 1 < states; 1++)

t
U[ll [states)•O;
1:

!••• Put W fault hare **"'/
1t (fault type •• 41

I -
sem.Gtve (sam w DO);
J; --

/** start orthogonali,ation .. ,
for t1•atates-l; j > 0; 1--1

I
D[j)•O.O;
tor (1•0; 1 < (states+process noise); 1++}

I -
Dill +•ll[j)lll'W[ji[II'DD[II;
I;

t••• New diagonal checkiUIII •••1
Dlstatesl +• D[j);
for (1•0; 1 < 1: 1++1

I
DO inner prod•O.O;
tor (k•O; -k < (statea•proceas noise); k++}

I -
DD Inner prod +• W[ll [k)'W[j) [k)'DD[k);
I;- -

U[ll [jl • DD Inner prod/0[11;
J•• Keep traCk of ilew row checksum for U **/
U[l)(statesl +• U(IJij);
for (k•O; k < (states+proc.ess noise); k++)

I;
I;

0[01•0.0;

I -
Temp • U[!IIJI'WIJI [k);
ll[l)[kl • ll[l)[kl- Temp;
;u Also subtract temp from M(statesj {k) **/
W[states)lk) • W[states) [k) -Temp;
I;

!or (1•0; 1 < (states+proce.ss nolae); 1+-+)
I -
0[0) +• W{OIJII'W[O)[I)•DD[I);
I;

/*** last update of d1aoonal eheckaum tor 0 ... ,
0 [states) +• 0[01;

I* check row checksums ot U .,
for (j•O; j < states-!; j++)

I
for (k•states-1; k > j; k--)

I
check +• u! j I [k I;

);

lf{fabs(check- U[j) [states)) >EPSILON)
I
If {check_status < 4096)

[

);

check status +• 4096;
); -

check • 0;
J;

/* check sums for D •t
!or lj•O; j < states; j++l

I
check +• O[j);
J;

lt(!abs(check-O[states)J >EPSILON)
I
check status +• 8192;
I; -

check • 0;

I' check sums for DO */
!or(j•O; j < (states+ process noise•; :l•••

I -

check +• OO[j);
J;

1 f (!abs (chec.k-00 {states+process noise)) > EPS !LON)
I -
check status +• 16384;
I; -

check • O:

I* check column sums of w... */
for (j•O; j < (process noise + states); j++J

I -
for (k•O; k < states; k++)

I
check +• W[kl [j);

);

If (fabslcheck - W[statesl [j)) > EPSILON)
I
If {check status < 32768)

I -

);

check stat us -t- 3 2 '7 68;
I; -

check - 0;
I;

/** more fault control !or W and DO ••1

If !fault type •• 31
(-
1emTake tsem_W_DD); 00

w

);

If (fault type •• 4)
t -
aemTake (sem H OD) ;
); --

/** return &tatus **/
return (check_statua);

I• ••••• ** •••• •• •• •• •• •• "*** •~~t •• **** •••• • ****" • • ** • * •• * • • • •• •• •• *I
/** Task killer is called to delete all the spaliined tasks. ""/
, •••••••••••• ** •••••••••••••••••••••• ** ••••••••• * ,

vold task killer (1)
1nt I;

t•

If (1 •• 0)

I
taskDelete (tldl 1
taskDelete (tld21
UskDelete (tldl)
taskDelete (t ld4l
taskDelete (tldS)
taskDelete(tld6)

fclose(fpU);
fclose(fpD);
fclose(fpKQaln);
fclose (fp£r rorl);

);
return;

•t

/****"*"** • •• •• •• •• •• ... •• •••••••••• •••••••• •••• •• •• .. * •• •• •• •• * • •• •• * ••• *I
I"
t••
t••

oet_tlme - returns a floattn9 point number that contains the **/
number of SECONDS on the olobal tick counter. .. ,

"I
I* ••• ** •• * * • • •• •• •• *" •• ** •••••• *** * •••••••••••"' * • ** •• •"' •• •• •• •• •• •• •• •••t
tloat Qet t !me 0
I -

ULONG ticks;
ticks • tlckGet();
ret urn ((float) t 1 cks/TICKS _PER_ SEC);

, ... ,
I** Print out matrlcies .. I
, ••••••••••••••••••••••••••••••••••• 11 •••••••••••••• 11 •••••••• ,
vold prlntm (a, row, col)

int row,col;
double all (STATES);

i nt 1, j, btm, top, count;

print f (•\n• J;
btm•top•O;
while Cbtm<col)

I
top-wunln(col, (bta+l));

printt(•prlntlno matrix columna 'cl to 'd\n•,btlll, (top-1));
tor(j•O;j<row; j++)

);
ret urn;

(

tor (l•btm; 1 <top; 1 ++)
(

pr! nt t I • •• •, a I j !Ill 1 :
l:

print! t•\n"J;
I;
btm~·e;

/*ll**••··························*··························t t•• Print out vector ••/ , ... , ,
void printv(J~,lenqth)

lnt length;
double a {);

lnt l,btm,top;

printf("\n•);
btm•top•O;
while (btm<lenqth)

I
top-mm.1n (length, (btm+8)};
printf(•printinq vector entries td to lld\n",btm, (top-Ill;

);
return;

for(i•btm; i<top; 1++)

I
printf(• \e", a(i});
);

prlntf("\n");
btm+•B;

/" • "* ** *" *" *****"•** *"II*** • * • • * "'* ** ** •• •• ** •• • **"'*II t *'"* ** • **I /"' * continue .. I /*lllllfll····lllllflltt•••······················<l····················; void cant(}

semG1ve(sem __ t1me_step_syncl;
ret urn;

, ~ 111 ••••••••••• /

/** Stop .. I , **lltlllr ••••<~••••••••11•••••11•/
vold stop()
(

go_on • 'n'j
return:

, , 11<1******•••••••····11-·J
, .. Roque software to cause problems with the calculatlon ••1
, ... modification history • •t
I*, -------------------- .. ,
, ... 02c, 19may93, mrm. .added D fault type .. , 00

.l:'-

t•··J void roqueo
I

taakDelay{roque start,;
torftn -

I
1f (fault type •• 1)

I -
U{OJ !11 • ro;ue value;
) -

else 1f (fault type •• 2)
(-
D[O) • roque value:
) -

else if (fault type •• 3)
(-
semTake (sem W OD);
DO{ 1 J • rooUe-value;
semGive (sem W-DD);
l --

else if (fault type •• 4)
(-
semTake (sem W DO);
Hill [OJ • ro;ue value;
semGi ve (sem w o0);
); --

pt·intf ("'Gotta love me step \n"l;
taskDelay (roque delay);
); -

I*• •••Ill• • • * •••• •• • •••••••••• • •• *"' • • •• • • •• •• •• • * ** • • •• * • * • •• • I
/** Start **/
1•• modification hlatory **/ I•. __________ .., ________ _ .. ,
ru 02b, 18may9J, mrm transfer file to rsf via ftp **/
1 ... 02c, 19may93, mrm added request for fault type 111 */ , ..
,.,, 02d, 2?rnay93, mm , ..

and chanqed period to make faster ••1
added sem W DO, changed to 1 sec •• I
period (det:;ults chanqed) 0 ••1 ;···; void start_ me (I

I
sysClkRateSet (TICKS PER SEC I;
t1ckSet (0); /*seta-the-time reference to zero*/

sem system • semCreate 0:
sem-t lme step sync • semcreate ():
sem-updt-- seincreate 0;
sem=W_DD • semCreate();

host Add (•rsf", "139. 78.3 o 7•):

netOevCreate (• rsf: •, •rst•, 1) :

aemG 1 ve (sem. updt) ;
aeft\Cive (sem=system);

print!P'\nPleaae enter the fault type: 1 tU),
1f ((scan! l"'d", Hautt type)) •• NULL I I

(fault typ8 !• 1 '' fault type !•
" fault_type !· 411 -

!Dl, 3 (DD), 4 (Wl :\n");

'' tault_type ! • 3

print!("\nError enterin9 !ault typeJ Default 1 aet.\n");
tault type • 1;
l; -

printf("\nPlease enter the value of the rooue information,\n"J;
print f C"wlth declma 1 point: l.e o, -10. 7\n");

l"t {{scant ("Uf", Hoque_value) l •• NULL)
I
prlntf("\nError entering value! Default -10 set.\n•);
roque_value ... -10;
l;

print!("\nThe value entered is: '! \n", roque_value);

print! ("\nPlease enter the delay for the roque routlne:\n"):
1 f ((scan! (•\d", 'roque delay)) •• NULL)

I -
pdntf("\nError entering delay! Default 6000 seto\n•);
rogue delay • 6000:
I; -

pr1ntff"\nPlease enter the starting delay tor the rogue routine:\n"');
1f({scanf("\d•,,rogue_start}) •• NULL)

I
print!("'\nError enter1nq startinq delay! Default 3000 set.\n•J;
rogue_delay • 3000;
);

t1dl • taskSp,a,wn(•param•,7o,O,STACKSIZ£,sys param updt);
taskDelay (10); - -
tld2 • period(l,cont):
taskDelay (101;
t1d3 • taskSpawn("'!ilter 1n1t",80,VX STDIO,STACKSlZE,fllter init);
taskOelay (10); - - -

t 1d4 • taskSpawn (•sim lnt ", 60, 0, STACKSIZE, simulator);
task.Delay (10); -
tidS .. t.askSpavnt•rogue"',55,0,STACKSIZE,ro.gue);
task.Delay (10);

co
VI

' Hatlab tile uoed to plot !ilter performance
t and fault detection information.
• FILE: covplotnt .m
' l-18-93
\ mod1!1cat1on history ' --------------------
' 02a, 17may93, mrm
' added featurel!l to remove the files

' Upper.m, kqaln.m, DlaqP.m, errorl.m from the Unix
directory in which they reside. Added while loop to
plot five 1100 time steps} postscript plots and
than plot lndeflnltely to the screen thereafter.
Improved information on plots.

' OJa, 19may93, mrm

' ch.anqed while loop to look for files and all kinds o! stuff
' 03b, 27may93, mrm

chanqed
chanoed
chanqed

' ' ' OJc, 11 june93, mrm

stuff to make the postscript files look riQht.
stu!! to make plots less cluttered.
tor a 1 second time step

made unique files for plots •
••• •• ·-·· ••••••••••••••••••••• 11111*11• **** •••

current time • -1;
! sleep I so
while (l),
cpu t lmel • cputtme;
~Qain
UpperP
CiaQP
errorl
lndexlOO
if current time •• -1,

time of error .. time of error + 2;
elem-lo'Cat2 • 15; - -
elem-locatl • 15;

else, -
elem locat2 • 80;
elem-locat1 - 90;

end; -
(1ndex100'100 • 11) • •••
-1).

1 f (current tJme
(current -time

current_time - (1ndex100'100) • 1;
end;

dlmen•size(U)'(l OJ'
states•aJ z.e {K) • (0 1)'
steps•[current tlme:l: (current tlme+dlmen-ll)';
K al t • I<; - -
,-*This stuff was used to crop an area around the labels*
\blank 1 • elem locatl;
\blank -2 ... elem-locat1+7;
'blank -3 • elem-locat2;
tblank-4 • elem-locat2+7;
\K alt(blank. l;blank 2,:) .. nan•k alt(blank l:blank 2,:);
\K -a It (blank -3 :blank-4, 2) • nan• K-a 1 t {blank-J:blank-4, 2);
\M-alt (blank-1:blank-2,2J - K(b1ank 1:b1ank-2,2); -
axls~'auto'l""i - -
!lqure (1)
tsubplot (2, 1, 1)
plot (steps,~ altJ

1 t current t"1me ·- -1,
uh((-1 100 -.5 3.5J);
end;

xlabel ('Time Step, k <'o• marks flr•t detection ln current frame>')
yl•bel ('KJ~laan Gains, Jlt')

tor index .. l:l:states,
it index 1,
text(steps(elem locatl),K(elem locatl,l),'K(l,:)');
if error type _: 0, -

hold on-
plot(steps(time of error),K(time of error,l), 'o')
hold of! - - - -

end;
el$e1 t index 2,
text(steps(elem locat2),K(elem locat2,2),'K(2,:)');
if error type _: 0, -
hold on-
plot(steps(t1me of error},K(time of error,21, •o~l
hold off - - - -

end;
elseif index -- 3,
text(steps(elem locatll,fll(elem locatl,J),'K{3,:)');
if error type _:- 0, -
hold on-
plot(steps~tlme ot error},K(tlme of error,3), 'o')
hold off - - - -

end;
elseif index -- 4,
text(stepstelem locatl),K(elem locat1,4),'K{4,:)');
lf error type .. :- 0, -
hold on-
plot(steps(tlme of error),K(tlme of error,4), 'o')
hold or! - - - -

end;
else!. f index •• 5,
text(steps(elem locatl),K(elem locatl,SI,'K(S,:}'J;
Jf error type : .. 0, -
hold on-
plot(steps(time of error),K(tlme of er-ror,S), 'a' I
hold off - - - -

end;
els.el t index ·- 6,
text(steps(elem locatl},K(elem locat1,6),'K(6,:)');
if error type : .. 0, -

hold on-

plot(steps(time of error),K(time of error,6), 'a'}
hold ot r - - - -

end;
elself index •• 7,
text(steps(elem locatl),K(elem locat1,1),'K(1,:)~);
if error type :. 0, -
hold on-
plot(steps(tlme of error),K(time of error,71, 'o')
hold oft - - - -

end;
elseif index •• B,
text(steps(elem locatl),K(elem locatl,8),'K(8,;)'l;
if error type :. 0, -
hold on-
plot{steps(time of error),!<{tlme of error,8), 'o' J
hold of! - - - -

end;
else;
end;

end;
s•sprlnt f ('FAULT PERIOD (steps} • td', round (roque delay/ (60))):
text((max(steps)-99), (max(max(l<.)) 11 0-9}, s); -
a•spr1ntf(•fAULT VALUE \8_3!', roque value);
text((m.ax(ltepa}-99), (maxcm.ax(f())*O.i2), a);

CXI
0'\

1t fault type -- 1,
text((mAX (steps) -99), (max (max (K)) *0.81), 'FAULT AFFECTS -> U');

end;
1t fault type -- 2,

text((max(ateps)-99), (max(max(K))*0.81), 'FAULT AFFECTS-> 0');
end;
it fault type -- J,
text((mAX(steps)-99), (max(max(K))*0,81), 'FAULT AFFECTS-> 00');

end;
it fault type -- 4,

text ((max (steps) -99) , (max (max tK)) •o. 81), • FAULT AFFECTS -> W') ;
end;

'text ((max (steps) -20), (max (max UO) •o. g}, date);
if error type -• 0,
•text(steps(tlme o! error), (max(max(K))*.S), •••
,. 0 -> SOFTWARE FAULT DETECTED');
s•sprlntt ('ERROR TYPE • 'd', error type);
text(ateps(tlme ot error), (max(mai{K))".4~, s);
end; - -

title(' SOFTWARE FAULT EFFECT ON SINGLE MEASUREMENT UOU' KALMAN GAINS')
if current time <• 401,
print -dpi -append oaln cov.ps;
e~; -
' Error Covariance
figure (2);
\subplot (2, 1, 2)
torn • l:l:dlmen,
utemp • (reshape (U (n,:) latatea, states))';
ptemp•utemp*dlag (0 (n,:) ', 0) •utemp';
p (n,:, •reshape (ptemp' r 1, (states•states));
end;
Palt•P;
'for index .. 0:1: (states-1) ,
H alt (blank l:blonk 4, (!+index• (statea+l))) -
'nin•P alt (blank l:blank 4, (l+index.• (atatea+l}));
\end; - - -
H alt(blank J:blank 4,1) - P(blsnk 3:blank 4,1);
,P-alt(blank-l:blank-2,1) • nan•P alt(blank-l:bl~nk 2,U;
pl0t(steps,P=altl - - - -
if current time •• -1,
uls((-1 100 -.05 1211
end;
xlabel('Time Steps, k <,o~ marks first detection in current frame>')
ylabel('Error Covariance Matrix Elements, P'J
to[" index • 0:1: (Stltes-11,
if index •• 0,
text (steps (elem _locat 1) , P (elem_locat 1, (1 +index* (states+ 1)) 1 , • P (1, 1) •) :
if error type 0,
hold on -
plot (steps (tlme_of_error) 1 P (tlma_of_error, (l+lndex* (states+l))), • o'l
hold off
end;
elself index •• 1,
text {steps (elem locat 2), P (e lem locat 2, {1+ lndex• (states+ 1 J)) , 1 P (2, 2J ');
1 f error type ... : 0, -
hold on -
plot (steps (t lme _of_ error), P {time _o!_ error, (1 + index• (st at.es+ 1) 1) 1 • o•)
hold ott
end;
l!lseif index -- 2,
text (at epa (elem_loca.t2) ,P (elem_locat2, (l+lndex"' (st.ates+l))), 'P (J, 3) •):
it error type O,
hold on -
plot (steps (time _ot_error), P (t 1me _ ot _error, (1 + index• (Stl.tes+l J)) , • o')

hold off
end;
elsei! index -- 3,
text (steps (elem locat 2), P (elem locat2, (1 +index• (states+l))), 'P (4, 4) '};
if error type -= 0, -
hold on -
plot(steps(time of error}, P(tlme of error, (l+lndex.*(atates+l))), 'O')
hold of! - - - -

end;
elself index -- 4,
text (steps (elem locat2) ,P (elem locat2, (l+lndex* (states+l))), • P (5, 5)');
1! error type _:; 0, -
hold on -

plot(steps(t1me of error), P(tirne of error, (ltlndex•tstates+l)l), 'o')
hold off - - - -
end;
elseif index -- 5,
text (steps (elem locat 2) , P (e lem locat2, (1 +index* (states+ 1))) , • P (6, 6) •) :
1 f error type .;: O, -
hold on -
plot(steps(time of error), P(time of error, (l+index•(states+l})), 'o')
hold off - - - -
end;
else! t index •• 6,
text (steps {elem locat2), P (elem locat2, (1+ index., (states+l))), 'P (7, 7) 1):

1! error type .. : o, ~

hold on -
plot(stepa(time of error), P(time ot error, (l+index•(states+l})), 'o'}
hold off - - - --
end;
elseif Lndex -· 7,
text (steps (elem locat 2) , P (elem locat 2, (1-t 1 ndex• (states+l))) , 'P (8, 81 •):
if error type ... : 0, -
hold on -
plot(steps(t1me of error), P{time of error, (l+index"(states+l)J), 'o')
hold off - - - -
end;
else;
end;
end;
s•sprint! ('FAULT PERIOD (step!!:) - 'd', round (roQue delay/ {60))):
text{(max(steps)-99), {max(max(P))"0.9), sl; -
s•spr1ntf ('FAULT VALUE • ,8,3!', roque value):
text((max(steps)-99}, (max(max(P)).,0,72), s};
lf fault type •• 1,
text ((mix (steps)- 99), (max (max (P 1 1 •a. 81) 1 • fAULT AFFECTS -> U' 1 ;

end;
if fault type •• 2,

text((ifiax{steps}-99), (max(max(Pl}"0.81), 'FAULT AFFECTS-> D'l:
end;
1! f.!lult type •• 3,
text{(max(steps)-99), (max(max(Pll"0.811, 'FAULT AfF'ECTS -> DD'l;

end;
lf !ault type •• 4,

text (tniax (steps) -99) I {max (max (P)) •o. 81), , FAULT AffECTS -> w·);
end;

\text ((max (steps} -20), (max (max (PI) •o. 91 , date 1;
i! error type 0,.
\text(st8ps(tlme of errot), (max(max1P))"0*5), .••
,. 0 •> SOFTWARE FAULT DETECTED' I;
s•sprintf ('ERROR TYPE - \d', error type);
text{stepa(tirne of error), (max(maXtP)).,0.4}, sl:
end; - -

title(' SOFTWARE FAULT EFFECT ON SINGLE HEllS. UDU' ERROR COVARIANCE' I;

(X)
-..j

1 f current time <• 401,
pr1 nt -dpl .. append qatn cov .pa;

end; -
lf current time •• 401,
lcp galn cov.ps thesls$$.ps
lrm qain-cov.ps
end; -
current time • current time + 100;
lf current time -- 99;

current time • 101;
end; -

track cputime • cputime - cpu tlmel
whoa - -

' f rm UpperP.m
l rm. DlaqP .m
I rm ~qaln.m
! rm errorl.m
cpu tlme2 • cputime
til; sum•O;
tlme:::before_plot • 90;
while (file sum < 4),
test for tiles • la;
fileS stie • size(test for filea)"[O 1)';
t l!e ium • 0; - -
for nl- 1:1: ({l!es slze-8!,

file sum • tile aUm • atrcmp{test for flles(l,nl:(nl+'l~l,'errorLm')t
end; - - - -

for n2 • l:l:(flles slze-8),
file 8Utn • file sum+ atrcmp{teat for f1les(l,n2:(n2+7}},'UpperP.m'};

end; - - - -
for nl • 1:1: {files size-1},

file sum • tile sUm + strcmp{test for files (l,nJ: (n3+6} ~, '01a;P.m');
end; - - - -

for n4 - 1:1: (flies aiJ:e-7},
file sum • tile sUm+ strcm.p(test for flles(l,n4:(n4+6l},'Koa1n.m•J;

end; - - - -

file sum
time=:before_plot • tlme_be!ore_plot - (eputlme- cpu_t1me2)
!sleep 20
end;
clear P
'return to ma.tlab
end;

())
())

VITA

Michael R. Moan

Candidate for the Degree of

Master of Science

Thesis: A METHOD FOR DETECTING SOFTWARE FAUL1S DURING uouT
COVARIANCE CALCULATIONS USED IN KALMAN FILTERING

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma, August 9, 1963, the son of Ray 0. and
Kathleen L. Moan.

Education: Graduated from Booker T. Washington High School, Tulsa, Okla
homa, in 1981; received the Bachelor of Science degree in Mechanical
Engineering from Oklahoma State University in May, 1986; completed
requirements for the Master of Science degree in July, 1993.

Professional Experience: Mechanical Engineer, Frontier Engineering, Stillwater,
Oklahoma, August 1985, to December 1990; Research Assistant, School of
Mechanical Engineering, Oklahoma State University, January 1991, to July
1993; member of Tau Beta Pi and Pi Tau Sigma.

	Image1
	Image2
	Image3
	Image4
	Image5
	Image6
	Image7
	Image8
	Image9
	Image10
	Image11
	Image12
	Image13
	Image14
	Image15
	Image16
	Image17
	Image18
	Image19
	Image20
	Image21
	Image22
	Image23
	Image24
	Image25
	Image26
	Image27
	Image28
	Image29
	Image30
	Image31
	Image32
	Image33
	Image34
	Image35
	Image36
	Image37
	Image38
	Image39
	Image40
	Image41
	Image42
	Image43
	Image44
	Image45
	Image47
	Image48
	Image49
	Image50
	Image51
	Image52
	Image53
	Image54
	Image55
	Image56
	Image57
	Image58
	Image59
	Image60
	Image61
	Image62
	Image63
	Image64
	Image65
	Image66
	Image67
	Image68
	Image69
	Image70
	Image71
	Image72
	Image73
	Image74
	Image75
	Image76
	Image77
	Image78
	Image79
	Image80
	Image81
	Image82
	Image83
	Image84
	Image85
	Image86
	Image87
	Image88
	Image89
	Image90
	Image91
	Image92
	Image93
	Image94
	Image95
	Image96
	Image97

