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CHAPTER I 

INTRODUCTION 

To maintain high levels of milk production of dairy cattle, one must feed an 

energy dense diet. Many producers and nutritionists increase energy density by 

increasing the proportion of concentrate in the diet. However, concentrates are 

digested more rapidly than fibrous feedstuffs and do not stimulate saliva production as 

well as forages. Digestive upsets may occur if the animal is unable to neutralize the 

acid produced by high concentrate diets. Many different compounds currently are 

being promoted as buffering compounds. An in vitro procedure to rapidly and 

accurately screen these compounds for effective buffering capacity would be useful. 

Three culture procedures are used currently: 1) continuous; 2) semi-continuous; and, 

3) batch. The continuous and semi-continuous procedures that effectively imitate 

ruminal changes are quite complex and time consuming. The batch culture approach is 

less complex and less time consuming, but may imitate post-feeding responses 

accurately. Results from all three procedures can be influenced by the type of diet 

consumed by the cow supplying the rumen fluid for the in vitro incubations. In 

addition, the quantity of rumen fluid added must be measured accurately (i.e., foam 

production must be minimized). Further, the cow supplying the rumen fluid should be 

consuming a diet typical of that currently fed in the industry. When incubated, the in 

vitro changes should simulate typical ruminal fermentation patterns. The objectives of 

the first study were to determine: 1) if a batch culture procedure adequately simulates 
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the release rates of ruminal buffers, 2) the optimum substrate for rumen fluid 

incubations and the impact of the source of the rumen fluid (from high or low 

concentrate diets), and 3) the procedure that imitates most closely the changes observed 

postfeeding in vivo, based upon temporal changes in pH, BC, BVI, and VFA 

production as the vital indicators. 

Dietary buffers have been fed to assist the animal's natural buffering system 

when high concentrate diets are fed. Several researchers (26, 29, 78) have attempted 

to determine the need for buffers based on the innate buffering capacity of individual 

dietary ingredients. Tucker et al. (63) attempted to predict the need for buffers based 

on the diet's buffer value index (BVI). However, in a study by Le Ruyet et al. (39), a 

high dietary BVI was associated with a low rumina! BVI. However, their results may 

have been influenced by use of two forages and separation of dietary ingredients. The 

objective of the second study was to examine the influence of dietary BVI on the 

ruminal environment of cows consuming diets with various BVI achieved by altering 

the ratio of sorghum silage to concentrate in the diet. 

Udder edema is a prevalent and potentially serious problem for dairy cows. 

Characterized by buildup of fluid between cells in the mammary gland, edema is not 

well understood. Grain has been implicated as a cause of udder edema; however, 

excessive salt intake and genetically superior animals have been correlated positively 

with udder edema. One frequent recommendation is to limit the salt intake during the 

dry period Oast 45 - 60 days postpartum). Unfortunately, edema still persists in many 

herds. With the new antibiotic residue laws now being enforced, prevention programs, 

rather than treatment programs, should be developed. One feed ingredient, calcium 

chloride, has been reported to reduce udder edema slightly when fed prepartum. The 

objectives of the third trial were to examine: 1) the relationship between udder edema 

and mineral concentrations in plasma and urine, and 2) the effects of feeding calcium 

chloride prepartum on mineral concentrations in plasma and urine. 



CHAPTER II 

REVIEW OF LITERATURE 

Ruminal Buffers 

Diets for dairy cattle have undergone numerous changes as nutritionists attempt 

to meet the nutritional demands of high producing dairy cattle. Milk production per 

cow has increased steadily through genetic improvement and better management. The 

number of cows per farm also has increased; this has reduced the feasibility of 

manually feeding each cow individually. Automated computer feeders allow dairy 

producers the flexibility of individually feeding and topdressing concentrate to cows, 

without having to manually feed each cow. However, the success of computer feeders 

has been mixed; some producers are not able to devote the time necessary to update the 

computer as milk production or diet composition changes. Historically, lactating cows 

were allowed to graze forages and were supplemented with a minimum of concentrate. 

Currently, ensiled forages are displacing grazed forage; this decreases the labor 

requirements of the dairy producer, and permits one to monitor dry matter intake more 

precisely and to mechanize the feeding program. Ensiled forages may constitute the 

entire forage portion of the diet. In addition, many different by-product feeds currently 

are available to alter extent of ruminal degradation of protein, and alter the non-fiber 

carbohydrate portion of the diet. The concentrate portion of the diet also has increased 

in an attempt to increase the caloric density of the diet. 
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Need for Rumina! Buffers 

These feeding strategies enhance the possibility for adverse changes in rumina! 

pH and digestibility. The potential exists for negative effects of pH on fiber 

digestibility (46) as the concentrate portion of a diet fed to high producing dairy cows 

increases. As rumina! pH fluctuates, the bacterial population within the rumen 

fluctuates between starch and fiber digesting species. A depression in fiber digestibility 

decreases rumina! acetate concentrations, and depresses fat content of the milk (30). 

Minimizing the fluctuations in ruminal fluid pH helps to maintain a stable environment 

for rumina! microbes and prevents the depression in milk fat percentage associated with 

high concentrate diets. Decreasing the digestibility of any portion of the diet decreases 

the amount of energy available from the diet. Concentrate feeding depresses rumina! 

pH by two mechanisms. First, concentrates are digested rapidly, resulting in rapid 

production of lactic acid and volatile fatty acids which depress rumina! pH. Second, 

high concentrate diets often contain insufficient amounts of effective fiber to stimulate 

rumination and production of saliva. In addition, if the silage is chopped too finely and 

no further fiber sources (such as long-stemmed hay) are included in the diet, the 

effectiveness of the fiber to stimulate rumination may be inadequate. If rumen contents 

are not agitated, lactic acid may build up around the rumina! epithelium from the 

digestion of small particles, resulting in the development of parakeratosis. This 

condition is characterized by abnormal papillae development and has been associated 

with an increased incidence of liver abscesses (20). Parakeratosis is alleviated partially 

by addition of fibrous feedstuffs and may be prevented by gradual adaptation of 

animals to high concentrate diets. 
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Temporal In Vivo Changes 

Postprandial changes in rumina! fluid pH have been characterized extensively. 

Rumina! fluid pH tends to be lowest 4 to 8 h after feeding, when rumina! volatile fatty 

acid concentration is highest (18). The use of ensiled forages poses potential feeding 

problems because 1) lactic acid is pre"ent in the silage, being formed during the 

fermentation process, and 2) moisture content of the feed is inversely related to saliva 

production. In addition, the nutrient availability of silage is reduced if the silage is not 

properly harvested and stored. Dry matter intake associated with ensiling forages has 

been depressed 4 to 50% (60). This may partially be due to the unpalatability 

associated with feeding an acidic diet. Shaver et al. (59, 60) increased the pH of corn 

silage using sodium bicarbonate and increased dry matter intake by 17% when 

compared to unbuffered corn silage (60). Kilmer et al. (33) also reported a trend 

towards increased dry matter intake when cows consumed buffered diets compared to 

unbuffered diets. Diets containing sufficient effective fiber modulate changes in 

ruminal pH because 1) they increase salivary flow, and 2) release of the rapidly 

digested cell contents is modulated by the presence of fibrous cell walls. In contrast, 

high concentrate diets are digested rapidly and may significantly depress rumina! pH. 

Increasing the feeding frequency of concentrates may help minimize the fluctuations in 

rumina! fluid pH. Kaufman (30) fed cows 14 times/d and noted less fluctuation in 

rumina! fluid pH compared to a typical twice/d feeding schedule. In addition, 

increasing the feeding frequency increased the acetate:propionate ratio. However, the 

additional labor requirements and/or the expense associated with automated feeding 

equipment to feed numerous times per day may not prove feasible economically. Thus, 

it becomes necessary to supplement the diet with buffers to neutralize rumina! acid. 

The addition of dietary buffers may allow twice daily feeding while minimizing 

the deleterious effects associated with fluctuations in ruminal fluid pH. Maximum 
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rumina! cellulolytic activity occurs between pH 6.4 and 6.8 (18). Feeding high 

concentrate diets may depress rumina! pH to 6.0 or less, depressing fiber digestion, 

decreasing passage rate and reducing dry matter intake. Streptococcus bovis is one of 

the major lactic acid producers in the rumen. Because the growth rate of Streptococcus 

bovis is slowed above pH 6, maintaining rumina! pH above 6 would inhibit the 

production of lactate (19, 52) and reduces the incidence of acidosis. Abrupt diet 

alterations may change the rumina! fermentation pattern, affecting rumina! pH, rumina! 

volatile fatty acid production, and rumina! buffering capacity. During the first few 

weeks postpartum, it is necessary to rapidly change the diet from high fiber to low 

fiber to increase the energy density of the diet to meet the energy demands associated 

with lactation. Addition of dietary buffers may prove beneficial in preventing the 

depression in rumina! pH and low milk fat percentage and in increasing the dry matter 

intake during the early postpartum period. The addition of dietary buffers to grass­

legume based diets also has increased milk protein concentration (23). Because 

propionate is positively correlated with milk protein production (61), the addition of 

dietary buffers to high concentrate diets may increase both milk fat and protein 

production. 

Common Buffering_ Compounds 

Several different feed additives are available to help alleviate the depressed 

rumina! pH and other problems associated with feeding a high concentrate diet. The 

addition of NaHC03 (77), MgO (18), K2C03 (77), Na2C03 (18) , KHC03 (18, 77), 

and limestone (31) have increased either rumina! fluid pH, dry matter intake, and/or 

milk fat percentage. However, all these compounds cannot be classified as buffers 

according to the criteria defined by Erdman 1 18). By definition, a true buffer stabilizes 
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a solution by regulating hydrogen ion concentration. A buffer must be water soluble 

(18). Limestone and MgO are not readily soluble in water. Further, a buf!'er must be 

a weak acid or base or salt thereof (18). To be effective, the buffer's maximum 

effectiveness or equivalence point (pKa) must be near the physiological pH of the 

solution being buffered (18). MgO does not have a defined pKa, although it does raise 

rumina! fluid pH and milk fat percentage (18). Because in vivo studies to determine 

the buffering efficacy of a compound are costly and time consuming, in vitro 

procedures are needed to rapidly and accurately screen compounds. 

Culture Procedures 

Several procedures are available to evaluate rumina! fluid fermen_tation in vitro. 

The continuous culture system has received extensive evaluation ( 11, 19, 70, 77); 

semicontinuous cultures also have been used (6, 31, 34). These procedures have been 

used primarily to determine nutrient digestibility, although Keyser et al. (31) used a 

semicontinuous culture to study the effects of different grades of limestone on rumina! 

fluid pH. In addition, they (31) used a batch culture approach to evaluate the effects of 

limestone on changes in rumina! fluid pH during 6 h of incubation. Kone (34) used a 

semicontinuous culture to investigate the effects of ionophores and isoacids on rumen 

fermentation. Russell and Hino (52) utilized batch and continuous cultures to 

investigate the effects of pH on lactate production. Because rumina! fluid pH tends to 

be lowest 4 to 8 h after feeding, the effects of buffers on rumina! fluid pH should be 

determined during this period. Although the batch culture approach is less complex 

than continuous or semicontinuous culture, it appeared to imitate postfeeding rumina! 

acid concentration reasonably well (31). Nonetheless, results of in vitro measurements 

of the acid-neutralizing capacity of different limestone sources were not consistent with 



results of in vivo studies run concurrently. However, the medium (31) used may not 

have been similar enough to what the ruminal microorganisms were adjusted to 

consuming, preventing proper substrate breakdown in the in vitro procedure. 
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Tucker et al. (63) and Le Ruyet and Tucker (40) used batch cultures to 

investigate the effects of buffers on ruminal acid-base status. Ruminal fluid was 

obtained from cows fed typical concentrate:forage diets and was incubated for different 

lengths of time with different buffer additions. Results from both studies were 

consistent with in vivo studies utilizing ruminal buffers (62). Thus, the in vitro batch 

culture procedures yield results similar to in vivo results, but the rumen fluid used for 

the incubations should come from cows consuming a typical concentrate: forage diet. 

The impact of different concentrate: forage ratios fed to the cow supplying the rumen 

fluid still needs to be de~ermined. 

The response of in vitro incubations of ruminal fluid to dietary buffers may be 

affected by the type of diet fed to the cows supplying the ruminal fluid. Herod et al. 

(26) used a batch culture approach with ruminal fluid from cows fed an all concentrate 

with or without added alfalfa hay (72:28 ratio, DM basis); this fluid was incubated 

with ground, extruded, cooked com grain to evaluate the influence of several buffering 

compounds on pH and buffering capacity (BC) after 6 h of incubation. They reported 

that, compared with the grain and hay diet, the low initial pH of ruminal fluid from the 

all concentrate diet reduced the effectiveness of the buffers. Forages contribute 

effective fiber to diets, stimulating salivary flow and rumination. The lack of response 

in alfalfa-based diets to dietary buffers ( 18) would suggest that buffers need not be 

included when forages constitute a majority of the diet. Eickelberger et al. (15) 

reported no advantage of buffer supplementation of diets fed to early lactation cows 

when high quality alfalfa was the primary forage source. However, the inclusion of 

NaHC03 to com silage based diets increased d:·y matter intake by .5 kg/d and fat­

corrected milk by 1.1 kg/d (18). Well-made com silage is approximately 50% grain; 
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this suggests that the fiber contributed by corn silage may be overstated if corn silage is 

considered 100% roughage. In addition, significant amounts of organic acids are 

produced in the fermentation and preservation process of silage, and may depress 

rumina! pH shortly after silage is consumed. Diets containing a large proportion of 

concentrates tend to depress rumina! fluid pH shortly after consumption, due to rapid 

fermentation of starch and sugars. Ilifh fiber feeds are digested less rapidly and would 

depress rumina! fluid pH several hours after consumption, if at all. 

Buffering Capacitv 

Buffering capacity (BC) is defined as resistance to change in pH, and is 

calculated as milliequivalents of acid or base required to change pH from_ 4 to 9 (18, 

29, 78), 5 to 7 (5, 18, I9, 27, 39, 62, 63), or 5.5 to 7 (2I). When 30 ml of rumen 

fluid is used, BC, in liters is calculated as: BC = [(milliliters of IN HCl) + 

(milliliters of IN NaOH)] x 103/30. Physiologically, it is more accurate to use pH 5 to 

7 because rumina! pH seldom reaches pH extremes of 4 or 9. Ruminants consuming a 

forage based diet typically have a rumina! pH of 6.5 to 7, whereas ruminants fed a high 

concentrate diet may have rumina! pH between 5 to 5.5. 

In addition to the type of diet fed, individual feedstuffs may have an innate 

buffering capacity. In a continuous culture system, high protein feeds required less 

base to maintain pH at 6.5 when compared to concentrate feeds (II). Soybean meal 

even required addition of acid to maintain pH at 6.5 (II). Ammonia, which is 

produced during the catabolism of proteins, acts as a base and helps stabilize pH by 

combining with free hydrogen ions. Jasaitis et al. (29) found that forages and high 

protein feeds had an inherent buffering capacity (BC) three to fourfold higher than 

concentrates. Fadel (21) found that forages had a higher inherent buffering capacity 
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and that heating increased the buffering capacity of feedstuffs; concentrates tended to 

have the lowest BC. Heating may decrease the digestibility of feeds, reducing the 

possibility of rapid fermentation and subsequent acid production. Total dietary cations 

and total dietary ash (21) were correlated with BC of the diet. Herod et al. (26) found 

that oxides and hydroxides alone or in combination were poor buffers. Even though 

these compounds prevented a depression in ruminal fluid pH, they raised pH more than 

one pH unit immediately after being added. Bicarbonate and carbonate were more 

effective in minimizing the depression in ruminal fluid pH and did not significantly 

change ruminal fluid pH immediately when added. 

Buffer Value Index 

Because alterations both in pH and in BC of ruminal fluid are imponant to the 

maintenance of a viable ruminal fermentation, Tucker et al. (63) developed a buffer 

value index (BVI) to evaluate the effects of buffers on ruminal fluid acid-base status; 

this index is related directly to BC but inversely to hydrogen ion concentration. The 

formula is: BVI = ((((antilogw(-STPH))- (antilogw(-SAPH)))/(antilogiQ(-STPH)) 

+ ((SABC- STBC)/STBC)) x 10) + 100, where STPH = a standard pH of 6, SAPH 

= the ruminal fluid sample pH, SABC = the ruminal fluid sample BC 

(milliequivalents per liter), and STBC = a standard BC of 50 meq/L. This index has 

been used to appraise the acid-base status of diets. Le Ruyet et al. (39) investigated the 

effects of dietary ADF and BVI of the diet on the acid-base status of the rumen. 

Rumina! pH has been correlated positively with level of ADF in the diet (18). Le 

Ruyet et al. (39) noted that increasing the dietary ADF percentage increased ruminal 

fluid BVI, but a high dietary BVI inexplicably reduced ruminal fluid pH and BVI. 

Reducing diet ADF by one percentage unit decreases ruminal pH by .0564 (18). Thus, 
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increasing dietary ADF would increase rumina! fluid BVI. These paradoxical results 

were encountered with diets containing multiple fiber sources, which may have allowed 

sifting of ingredients and selective consumption of the diet. 

In summary, dietary buffers have shown positive responses in high concentrate 

diets for dairy cows by neutralizing rumina! acid, and allowing for increased fiber 

digestion and dry matter intake. Several compounds are used frequently as dietary 

buffers, but the response of these compounds is influenced by the type of diet 

consumed by the cow. Attempts have been made to determine whether dietary buffers 

are needed based on the innate buffering capacity of individual dietary ingredients. A 

buffer value index was developed to account for simultaneous changes in ruminal fluid 

pH and buffering capacity. Because of the variability associated with these methods, 

more research is needed to accurately determine the need for dietary buffers. 

Udder Edema 

Udder edema, characterized by excessive accumulation of fluid in the 

intercellular tissue spaces, causes swelling. Udder edema occurs approximately two to 

three weeks before parturition, peaks at calving (10), and disappears one to three weeks 

postpartum. Animals afflicted with severe cases of udder edema are more susceptible 

to mastitis, trauma, teat injury, and shorter herd life due to damage of the udder 

ligaments. Severe udder edema may rupture the ligaments supporting the udder (13, 

45), resulting in a pendulous udder with teats that strut lateral! y. This poses 

management problems to the dairyman in attaching the milking unit and in obtaining 

complete milkout. 

Severe prepartum udder edema in heifers may limit genetic improvement in a 

dairy herd because primiparous cows typically represent superior genetics in a dairy 
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herd. Severe udder edema is more prevalent in first calf heifers (16, 22, 24, 25). 

Hayes and Albright (24) indicated higher culling rates for animals exhibiting severe 

edema, because of mastitis and pendulous udders. As the severity of udder edema 

increased, the amount of scar tissue also increased; scar tissue may hinder the animal 

from expressing full genetic potential for milk production. Hence, severe and 

prolonged udder edema may have a significant negative impact on the profitability and 

genetic advancement of a dairy enterprise. 

Several different management practices have been recommended to control 

udder edema; these include restricting prepartum grain feeding and salt intake, 

increasing the amount of exercise, prophylactic treatments such as feeding a negative 

dietary cation-anion balance, and the use of diuretics. With the new drug residue laws 

in effect, it is important to limit the use of drugs to treat udder edema and emphasize 

prophylaxis. 

Mechanism of Udder Edema 

The formation of lymph is due to an interaction between two forces. The 

relationship is stated by Starling's law of ultrafiltration: Cfm = Kf[(Hc - Hi) - (Oc -

Oi)], where Cfm = rate of fluid movement across the capillary; Kf = filtration 

coefficient of capillary wall; He = capillary hydrostatic pressure; Hi = interstitial fluid 

hydrostatic pressure; Oc = plasma colloid osmotic pressure; and Oi = interstitial fluid 

colloid osmotic pressure (56). Hydrostatic pressure in the arterial end of the capillary, 

due to capillary blood pressure, is offset partially by tissue hydrostatic pressure. 

Constricting blood flow through either the external pudendal vein or the cranial 

superficial epigastric vein (milk vein) increases the venous blood pressure within the 

mammary gland. As capillary pressure exceeds tissue hydrostatic pressure, fluid is 
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forced into the interstitial spaces. Blood leaves the udder primarily by either the 

cranial superficial epigastric vein or the external pudendal veins. If blood t1ow remains 

constant, constriction of either vein should decrease mammary blood flow and increase 

capillary hydrostatic pressure. Compared to control cows, udder edema developed 

earlier and was more severe at parturition in Jersey cows afflicted with rectovaginal 

constriction (3). A decrease in mammary blood flow at parturition in cows afflicted 

with rectovaginal constriction was correlated with increased cranial superficial 

epigastric vein pressure, even though jugular vein pressure was not different from 

normal cows (3, 71). Mammary blood flow was lower at parturition in Holstein cows 

with a history of developing udder edema (2). 

Capillary osmotic pressure, which partially offsets the capillary hydrostatic 

pressure, is due primarily to plasma proteins, of which 80% is due to the albumin 

fraction of the protein. The volume of fluid and the concentration of protein are higher 

in blood than in the tissue spaces (74). As blood travels from the arterial end to the 

venous end of the capillary, capillary hydrostatic pressure forces fluid and crystalloids 

out, which increases the capillary protein concentration and, thus, the capillary osmotic 

pressure. Capillary hydrostatic pressure is greatly reduced at the venous end, even 

though the tissue hydrostatic pressure remains the same. The increased capillary 

osmotic pressure, coupled with the reduced capillary hydrostatic pressure, causes a net 

movement of fluid into the bloodstream. If the net filtration of fluid out of the 

bloodstream exceeds that being reabsorbed, fluid accumulates in the tissue spaces. The 

excess fluid not absorbed by the lymph system results in edema. 
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Rating_Systcrns 

Edema tends to develop in a specific pattern, settling first around the base of the 

udder, and then extending ventrally along the abdominal wall until it reaches the 

brisket. It also develops vertically until it reaches the thighs and vulva (severe edema). 

The scale typically utilized has been one (no edema) to five (very severe edema) (2, 

10, 12, 13, 22, 25, 36, 50, 53, 58, 76). A scale of zero (none) to four (extreme) was 

utilized by Emery et al. (16), while a ten point system was utilized by Malven et al. 

(44). Because of the variation within these scoring systems and their subjective nature, 

Tucker et al. (65) statistically evaluated the precision and accuracy of a ten point rating 

system (0 = no edema, 10 = severe edema). 

Effects of Grain Feeding 

Heifers that calve at approximately 24 months of age are not physically mature 

and need additional nutrients for growth as well as for milk production. To allow for 

growth of first and second lactation cows, maintenance allowances are increased by 20 

and 10%, respectively (47). Yet, dairymen are reluctant to increase the amount of 

concentrate fed to heifers, because they believed feeding grain during the prepartum 

period will increase the incidence and severity of udder edema. 

Several studies have been conducted to investigate the effects of prepartum 

grain feeding on the incidence and severity of udder edema. Schmidt and Schultz (57) 

fed three levels of grain during an 8-wk dry period to Holstein, Jersey, Guernsey, and 

Brown Swiss cows. All cows were fed 12 to 13 kg corn silage daily and were given 

free choice access to good quality mixed hay. A 16% crude protein concentrate, 

consisting of ground oats, ground corn, wheat bran, corn gluten feed and soybean oil 
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meal, was fed at either 0, 2.7, or 6.8 kg/cow daily. High levels of concentrate were 

not correlated with higher edema scores, but udder edema ratings and production were 

positively correlated. 

Hemken et al. (25) fed two different concentrate mixes to cows and heifers 

beginning 40 to 50 days before calving. Concentrate A was an 18.7% crude protein 

mix with 1. 71 Meal NEL/kg, consisting of ground oats, wheat bran, linseed oil meal 

and molasses. Concentrate B contained 18.7% crude protein and 1.93 Meal NELfkg; 

this mix consisted of corn and cob meal and soybean oil meal. Groups I and II were 

fed concentrate A at 2.7 and 7.3 to 8.2 kg/d, respectively, while group III was fed 7.3 

to 8.2 kg/d of concentrate B. The only significant difference was higher edema ratings 

for heifers than for cows. 

Greenhalgh and Gardner (22) fed cows and heifers a basal ration consisting of 

corn silage and alfalfa hay, supplemented with a 15.4% crude protein grain mix 

consisting of yellow shelled corn, oats, wheat bran, soybean meal, linseed meal, 

steamed bone meal, and trace mineralized salt. Cows supplemented with an average of 

4.1 kg/d of grain during the 6 wk prepartum period did not exhibit significantly higher 

edema scores than cows receiving no grain during the prepartum period. Heifers 

supplemented with an average of 2.7 kg/d of grain for 6 wk prepartum exhibited more 

edema than cows, but they did not exhibit more edema than heifers receiving no grain 

during the prepartum period. 

Emery et al. (16) fed two levels (none vs some) of grain to cows and heifers 

beginning 21 days prepartum. The grain mix consisted primarily of ground corn, oats, 

soybean oil meal, and a trace mineralized salt mix. Even though udder edema scores 

were higher in heifers consuming grain prepartum, the results are difficult to separate 

from the increased production also noticed from supplemented heifers. High pedigree 

heifers had 11 % more cases of edema than heifers selected for low genetic potential 

(16); this supports work by Shanks et al. (58). In contrast, Wautlet et al. (76) reported 
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no difference in severity of udder edema between Holstein heifers selected for low vs 

high milk production. Emery et al. (16) suggested that the increased nutrient supply 

raised the intramammary pressure sufficiently to hinder venous and lymphatic drainage, 

which results in the formation of edema. 

Due to the differences in diets fed in the individual trials, significant trends in 

udder edema due to prepartum grain feeding are difficult to detect. The studies 

reported above disprove the theory that grain feeding for any length during the 

prepartum period will consistently increase the incidence and severity of udder edema 

in primiparous and multiparous cows. These studies do, however, show a trend 

towards increased udder edema in primiparous heifers vs multiparous cows. 

Season 

Hayes and Albright (24) and Conway et al. (10) reported that edema was more 

severe in fall and winter months. Animals typically are more confined during winter 

months and, thus, exercise less. Because the walls of lymph vessels are thin, lymph 

movement is aided by muscle contractions, the mechanical action of the visceral 

organs, and by the skin. Lamb et al. (36) reported that prepartum udder edema scores 

were decreased in heifers exercised 1.6 km/d, 5 d/wk for 4 wk prepartum. However, 

edema scores at calving and duration of postpartum edema was not affected. Dentine 

and McDaniel (12), Wautlet et al. (76), Erb and Grahn (17), and Malven et al. (44) 

reported no differences in udder edema due to seasonal effects. 
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Age at Fir_st Calving 

Age at first calving has been correlated positively with severity of udder edema. 

Hayes and Albright (24) reported an increase of 152% in reported cases of severe 

edema as age at first calving increased beyond 26 months in Holsteins and Guernseys. 

This is supported by Malven et al. (44) and Dentine and McDaniel (12) who noticed 

increased edema severity in Holstein heifers as age at first calving increased. Heifers 

that calve at 24 mo would tend to be smaller and exhibit less ucl!er edema than heifers 

that calve at an older age. However, Wautlet et al. (76) reported that udder edema was 

more severe in smaller animals. Breeding for smaller body size generally is not 

practiced in the dairy industry, but the genetic study (76) suggests that direct selection 

for smaller size might increase the incidence of severe edema. 

Length of Gestation 

Malven et al. (44) and Wautlet et al. (76) reponed that edema was :ess 

prevalent as calf size increased in larger heifers. However, udder edema was more 

severe in smaller heifers who gave birth to larger calves. Longer gestation also is 

associated with increased udder edema (44); this seems contradictory because heavier 

birth weight usually is associated with longer gestation length. Malven et al. (44) 

noticed a positive relationship between udder edema and plasma estrone and estradiol-

17a; however, the relationship was negative for plasma estradiol-17/3 and 

progesterone. Plasma prolactin was not related to edema score. 
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Protein Replacement 

Feeding colostrum is an excellent method of passively transferring antibodies to 

the newborn calf. Colostrum contains 14% protein and 6% immunoglobulins whereas 

whole milk contains only 3.1 and .09%, respectively. Larson and Hays (37) reported a 

drop in blood protein concentration near the time of parturition, due chiefly to reduced 

amounts of (32 and 1'1 globulins. This is supported by other studies (38, 42). A 

decrease in blood protein concentration would increase the difference between the 

blood hydrostatic pressure and blood osmotic pressure, resulting in an increased flow 

of water and crystalloids into the interstitial fluid. By intravenously injecting bovine 

serum albumin, they increased blood osmolality and slightly decreased udder edema. 

However, one animal died due to respiratory difficulties associated with the treatment; 

the cost of the blood protein replacements makes this treatment approach impractical. 

Vestweber and Al-Ani (74) measured serum and interstitial fluid concentrations 

of total protein, albumin, globulin, sodium, potassium, chloride, calcium, and 

inorganic phosphorous and compared concentrations of these respective constituents 

between cows with or without udder edema. In contrast to results of Larson and Hayes 

(37), serum concentrations of total protein, albumin, globulin, and calcium were not 

significantly different between control and affected cows two weeks before parturition, 

at parturition, or two weeks postpartum. Interstitial fluid concentrations of total 

protein, albumin, globulin, and calcium were significantly lower than the serum 

concentrations, however. Differences between serum and interstitial concentrations of 

sodium, potassium, chloride, and inorganic phosphorus were not significant. Lymph is 

similar to blood except that it contains no red blood cells and only one-half the protein. 

Lymph protein content is related inversely to the rate of lymph flow. 
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Mineral Interactions 

The addition of sodium, chloride, and potassium to prepartum diets has been 

suggested to cause udder edema (4, 10, 28, 48, 50, 54). Increasing the sodium content 

of the diet increases excretion of sodium and plasma volume. The increased plasma 

volume would decrease plasma osmotic pressure and increase plasma hydrostatic 

pressure, thus increasing extracellular fluid. However, Vestwl!ber et al. (72) suggested 

that excessive NaCl is not a major factor in udder edema. If increased dietary 

concentrations of these nutrients were responsible for increased likelihood of udder 

edema, increased excretion of these specific nutrients would be detected as the body 

attempted to equalize intake and excretion of sodium. Because renal clearance of 

creatinine is quite constant, comparing renal clearance of electrolytes and creatinine 

should reflect renal absorption or secretion of the electrolyte. Renal clearance of 

sodium and chloride was not significantly different between control cows and cows 

affected with udder edema. 

The dietary cation-anion balance is a relatively new concept in the field of 

nutrition. It is calculated by subtracting anion milliequivalents (meq) from cationic 

milliequivalents. Cation-anion balance equals meq ((Na + K) - (Cl + S)) per 100 g 

diet DM (66). Feeding negative DCAB diets for an extended period of time would 

tend to produce a metabolic acidosis (75). As blood pH decreases, H+ concentration 

increases. Blood HC03- combines with excess H+ in a natural buffering response. 

Tucker et al. (67, 68) reported that HC03- decreased as dietary CaCl2 was increased 

from 1. 0 to 1. 5%. As available HC03- decreases, the respiratory and renal systems 

attempt to minimize the change in the pC02/HC03- ratio by increasing the respiration 

rate, thereby decreasing pC02 (51). In a natural buffering response, calcium is 

released from bone, increasing the pool of available calcium. In order to maintain 
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plasma calcium, less of the filtered calcium is reabsorbed, resulting in increased urine 

calcium output. 

Calcium chloride has recently been investigated as a method of reducing edema, 

increasing feed intake, and improving milk yield. In addition to mobilizing calcium, a 

low DCAB diet increases calcium absorption from the intestine (43), which may be 

beneficial in preventing parturient paresis. Kiess et al. (32) fed primiparous Holstein 

heifers different amounts of chloride and sodium. Chloride, supplemented at four 

times the required dietary DM concentration (47) as calcium or ammonium salts 

without added sodium, lowered the dietary DCAB by twenty eight meq/100 g diet DM. 

Sodium, supplemented also at four times the required dietary DM concentration (47) 

without added chloride, raised the DCAB by thirty meq/100 g diet DM. The low 

DCAB did not affect plasma concentrations of calcium, magnesium, potassium or 

sodium (32). Feeding a low DCAB diet prepartum resulted in more rapid regression of 

udder edema postpartum (69). Although they (32) did not measure urinary mineral 

concentrations to detect an increase in the readily available pool of calcium, urinary 

calcium concentration needs to be measured. Neither Tucker et al. (69) or Kiess et al. 

(32) rated the severity of udder edema daily. Instead, Kiess et al. (32) measured t~e 

decrease in udder floor after removal of 12 h of milk. Because the relationship 

between udder floor area and edema has not been established, no direct effects of 

feeding a low DCAB on udder edema could be determined. 

Lema et al. (41) fed heifers a diet containing 1.5% CaCl2 (DM basis) for three 

wk prepartum. Udder edema was scored daily on a ten point scale (65). While no 

blood and urine samples were taken, they detected a slight decrease in udder edema 

during the first week of feeding CaCl2. Calcium is excreted by the kidneys in a 

manner similar to sodium (35); i.e., calcium excretion increases urine volume. 

Feeding CaCI2 initially should increase plasma calcium concentrations, resulting in a 

decrease in parathormone (35). Renal excretion of calcium should increase (67, 68), 
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increasing urine volume and decreasing plasma volume. Capillary hydrostatic pressure 

would decrease and plasma osmotic pressure would increase, resulting in net absorption 

of interstitial fluid and a decrease in edema. If the reduction in udder edema due to 

feeding CaCl2 lasts for only a few days, feeding for a short period of time and then 

removing and refeeding it may be a better approach to reduce udder edema than 

feeding CaCl2 continuously for the entire three week prepartum period. 

Effects of a negative DCAB on dry matter intake have been difficult to 

interpret. Feeding a negative DCAB diet during the postpartum period to lactating 

cows decreased DMI 7% when compared to a positive DCAB (64), while feeding a 

negative DCAB diet during the prepartum period to heifers decreased DMI 9%. Other 

studies (7, 49) have reported no decrease in DMI during the prepartum period due to 

feeding a negative DCAB. Depression of DMI with a negative DCAB may be 

associated with palatability problems. Removal of the acidic portion of the diet would 

increase the palatability of the diet and increase DMI (41). 

The effects of dietary cation-anion balance on milk production have been 

variable. A positive DCAB increased actual milk production 8% compared to a 

negative DCAB (64). ~1ilk production of heifers fed a negative DCAB during the 

prepartum period was lower than heifers fed a positive DCAB during the prepartum 

period ( 41). In a study investigating the effects of DCAB on the occurrence of milk 

fever (7), cows fed a positive DCAB during the prepartum period produced i.ess milk 

during the next lactation than did cows fed a negative DCAB during the prepartum 

period. This effect was attributable to the fact that cows consuming the positive DCAB 

during the prepartum period had a higher incidence of milk fever. In herds where milk 

fever is not a problem, the potential positive effects of increased postpartum DMI may 

outweigh the decreased milk production from feeding a negative DCAB during the 

prepartum period. 



Treatment 

The new drug residue laws in effect for milk increase the need for alternative 

therapies which do not involve the use of antibiotics. Massaging the udder and 

alternately applying hot and cold packs help to stimulate blood flow. The physical 

action of massaging the udder forces the lymph fluid towards the supra mammary 

lymph gland. Udder supports help protect the udder from abrasions, reduce the 

possibility of teat injury, and help ease the strain on the supporting ligaments of the 

udder. Theoretically, prepartum milking would ease the strain on the ligaments and 

stimulate mammary blood flow. However, this approach has not proven to be 

beneficial ( 1). 
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Diuretics are not antibiotics and have been used to treat severe, prolonged cases 

of udder edema. These drugs act on the proximal tubule and the distal nephron, 

disrupting the absorption of crystalloids and water. Furosemides inhibit the absorption 

of Na + and CI- by the thick ascending limb of the Loop of Henle, thus preventing 

water from being absorbed. Vestweber et al. (73) detected a decrease in the cranial 

superficial epigastric venous blood pressure within 5 min after IV administration of 500 

mg of furosemide. Serum calcium and sodium increased while serum potassium 

decreased. A decrease in urine pH was associated with an increase in urine c!1loride, 

potassium, and sodium. 

Thiazide diuretics, of which hydrochlorothiazide is a member, inhibit the Na +­

Cl- symport in the distal nephron, increasing the Na + load to the collecting duct. 

Increased plasma aldosterone levels, stimulated by decreased plasma Na +, i:1crease 

K + secretion in the collecting duct, which may lead to hypokalemia (35). Because of 

the high electrical resistance and the tight junctions in the collecting duct, reabsorption 

of chloride becomes hindered. Administering 250 mg of hydrochlorothiazide caused a 
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mean increase in serum chloride while decreasing serum potassium and sodium. Urine 

chloride, potassium, and sodium increased, while urine pH decreased (72). 

Acetazolamide inhibits the enzyme carbonic anhydrase, which catalyzes the 

hydration of C02. It also inhibits Na + reabsorption in the proximal tubule (35), 

which increases the delivery of Na + to the distal nephron. Vestweber et al. (72) 

administered 500 mg of acetazolamide IV and noticed increases in serum c:,loride and 

urine sodium, whereas serum potassium, sodium, and phosphorous concentrations 

decreased. 

Summarv 

The exact mechanism of udder edema development is not fully understood. The 

common belief that prepartum grain feeding increases the severity of udder edema has 

been disproved. Restriction of mammary blood flow and the subsequent effects on 

hydrostatic and osmotic pressure can partially explain udder edema. Salt has also been 

implicated, but recent results suggest that salt is not a major cause of udder edema. 

Feeding a negative dietary cation-anion balance has shown promise in reducing udder 

edema, increasing dry matter intake, and increasing milk production. Even though 

diuretics have proven repeatedly to increase urinary output, metabolic disturbances 

associated with diuretics require close supervision, and these drugs should be used for 

only short time periods. 



CHAPTER III 

EVALUATION OF BATCH CULTURE APPROACHES 

THAT CAN BE USED TO SCREEN RELEASE 

RATES OF RUMINAL BUFFERS 

Abstract 

Our objectives were to evaluate in vitro characteristics of rumina! fluid from 

several diets and from several substrates that can be used to evaluate release rates of 

rumina! buffers. Rumina! fluid was collected from three cows fed diets of concentrate 

and sorghum silage in three ratios: 70:30, 60:40, and 50:50 (DM basis). Rumina! 

fluid was incubated in a shaking water bath with either purified corn starch, the same 

grain mix that was fed to the cow providing the rumina! fluid for incubation, or the 

TMR fed to the cow providing the rumina! fluid, In addition to this substrate, 

incubation flasks received either .5 g of a 2: 1 mixture of NaHC03 and MgO or no 

buffer. A flask representing each substrate and buffer combination was removed every 

hour for 5 hand analyzed for pH, buffering capacity, buffer value index, and VFA 

content. Each of the substrates yielded temporal alterations in rumina! fluid acid-base 

status similar to those observed previously in vivo. However, because rumina! fluid 

acidity tended to develop more rapidly with TMR as a substrate, we recommend that 

TMR should be used as the substrate in a batch culture approach to evaluate release 

rates of rumina! buffers. Addition of .5 g of a 2: 1 mixture of NaHC03 and MgO 
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yielded an increase in ruminal fluid pH similar to that observed previously in vivo. 

Ruminal fluid acidity was highest for fluid from cows consuming the 70:30 diet; 

however, the high gas content of this fluid prevented accurate volume measurement for 

the incubations. Based on handling characteristics and temporal acid generation, we 

suggest that donor cows be fed a 60:40 grain to forage ratio to provide ruminal fluid 

for batch culture incubation; a combination of 75 ml of this fluid, .5 g of this TMR, 

and .5 g of the test buffer provided a model acceptable for rapidly screening the release 

rates of ruminal buffers in vitro. 

Introduction 

Several procedures are available to evaluate ruminal fluid fermentation in vitro. 

The continuous culture system has received extensive evaluation (11, 70); 

semicontinuous cultures also have been used (6). These procedures were used 

primarily to determine nutrient digestibility, although Keyser et al. (31) used a 

semicontinuous culture to study the effects of different grades of limestone on ruminal 

fluid pH. In addition, they (31) used a batch culture approach to evaluate the effects of 

limestone on changes in ruminal fluid pH during 6 h of incubation. The batch culture 

approach is less complex than continuous or semicontinuous culture, but it appeared to 

imitate postfeeding ruminal acid concentration reasonably well (31). Nonetheless, in 

vitro measurements of the acid-neutralizing capacity of different limestone sources 

were not consistent with in vivo studies run concurrently. 

Herod et al. (26) used a batch culture approach with ruminal fluid from cows 

fed either an all concentrate or a concentrate plus alfalfa hay diet (72:28 ratio, DM 

basis); this fluid was incubated with ground, extruded, cooked corn gra.:n to evaluate 

the influence of several buffering compounds on pH and buffering capacity (BC) after 
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6 h of incubation. They reported that, compared with the grain and hay diet, the low 

initial pH of ruminal fluid from the all concentrate diet reduced the effectiveness of the 

buffers. 

Because alterations both in pH and in BC of ruminal fluid are important to the 

maintenance of a viable ruminal fermentation, Tucker et al. (63) developed a buffer 

value index (BVI) that simultaneously accounts for changes in both pH and BC. The 

objective of the present study was to evaluate batch culture procedures for rapidly 

screening the release rates of ruminal buffers. The influence of substrate and of 

ruminal fluid source (high or low concentrate diet) on these release rates was 

examined. An additional objective was to utilize comparative analysis of temporal 

alterations in pH, BC, BVI and VFA production to determine the procedure that 

imitates most closely the changes observed postfeeding for these variables in vivo. The 

purpose for developing this procedure was to allow rapid evaluation of release rates of 

different buffering compounds, enhancing our efforts to develop a controlled release 

buffer that releases its buffering capacity and acid-neutralizing potential during the 

interval postfeeding in which ruminal fluid acidity is highest. 

Materials and Methods 

Animals. Feeding. and Experimental Design 

Three ruminally cannulated Holstein cows (18 ± 10 DIM) were fed three diets 

in a 3 x 3 Latin square study with 3-wk experimental periods to provide ruminal fluid 

to evaluate in vitro systems designed to screen rapidly the release rates of ruminal 

buffers. Cows were housed individually in pens and had free access to dirt exercise 

lots; cows were milked twice per day (0300 and 1500 h). The three different TMR 



27 

(Table 1) contained concentrate and sorghum silage (70:30, 60:40, or 50:50 ratio, DM 

basis), and cows were fed twice daily (0550 and 1750 h). Orts were recorded daily. 

Samples of the TMR were collected weekly and frozen for nutrient analyses by a 

commercial laboratory (Northeast DIDA, Ithaca, NY). Dry matter content of the 

sorghum silage, determined weekly via toluene distillation, was used to maintain a 

constant ratio of ingredients and nutrients in dietary DI\.L 

Sample Collection. Incubation, and Analysis 

Beginning 3 d before the end of each experimental period, ruminal fluid was 

collected from one of the three cows each day. Ruminal fluid (4 L) was collected from 

the ventral sac of the rumen with an electric vacuum pump 2 h after the 0550::-h 

feeding; the fluid was filtered through four layers of cheesecloth and collected in a 4-L 

Erlenmeyer flask. Treatments were fermentation additions added in a 2 x 4 factorial 

arrangement. These factors were the amount of buffer added (0 or .5 g of a 2:1, 

weightlweight, mixture of NaHC03 and MgO) and the type of substrate added to the 

fluid (no substrate, .5 g of purified com starch, .5 g of the grain mix consumed by the 

cow from which ruminal fluid was collected, or .5 g of the TMR consumed by the cow 

from which ruminal fluid was collected). 

At the beginning of the study, representative samples of the three grain mixes 

and the three TMR were collected. These grain mixes were dried for 48 hat 60°C. 

The TMR samples were lyophilized. After drying, the samples were ground in a 

Wiley mill (Arthur H. Thomas, Philadelphia, PA) to pass through a 1-mm screen and 

stored in a desiccator until used. 

Ruminal fluid (75 ml) was dispensed into each of six, 125-ml Erlenmeyer 

flasks; each of these six flasks contained the same substrate and buffer combination. 
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TABLE 1 

INGREDIENT AND ~UTRIENT COMPOSITION OF EXPERIMENTAL DIETS 
(DM BASIS) FOR COWS SUPPLYING Rl.Tl'vHT\'AT, FLUID FOR IX VITRO 

INCUBATIONS 

Ingredient 
Forage sorghum silage 
Ground shelled corn 
Soybean meal, 44% CP 
Limestone 
Dicalcium phosphate 
Dynamate (B) a 
Trace-mineralized salt 
Vitamin A premixb 
Vitamin E premixC 

Nutrient 
DM,% 
CP. % 
1'-.cL, Meal/kg 
Ca,% 
P, % 
1·1g,% 
s. % 
K, % 
Na,% 

50:50 

50.01 
23.44 
23.95 

.75 

.91 

.39 

.53 

.01 

.01 

38.8 
14.6 

1.43 
.59 
.32 
.32 
.26 

1.31 
.20 

Grain:forage ratio 
60:40 

(%) 

40.03 
34.45 
22.87 

.91 

.88 

.36 

.49 

.01 

.01 

40.9 
16.0 
1.58 

.73 

.46 

.31 

.28 
1.27 
.20 

aoouble sulfate of K and Mg, Pitman-Moore, Inc., Mundelein, IL. 
bsupplied 30,000,000 IU of vitamin A I kg of premix. 
csup;:>iied 500,000 IU of vitamin E I kg of premix. 

70:30 

30.02 
44.66 
22.58 

i .06 
.82 
.41 
.43 
.01 
.01 

48.0 
16.5 

1.65 
.75 
.47 
.31 
.30 

1.22 
.20 
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One of the six flasks was analyzed immediately for pH and BC; the remaining flasks 

were incubated in a shaking water bath at 39°C. An incubation was begun every 7.5 

min until each of the eight buffer and substrate combinations was added to the water 

baths. A flask representing each substrate and buffer combination was removed each 

60 min for 5 h after incubation was initiated. A 5-ml aliquot of ruminal fluid, 

dispensed into a polyethylene snap-cap tube containing 50 mg of crystalline 

metaphosphoric acid, was frozen for VFA analysis by GLC (AutoSystem GC; Perkin­

Elmer, Norwalk, CT). A capillary column (.53 mm) coated with acidified 

polyethylene glycol was utilized for the analysis; He served as the carrier gas. 

Ruminal fluid pH (model 950 pH-ion analyzer; Fisher Scientific, Pittsburgh, PA) was 

recorded following 30 s of equilibration. Buffering capacity, defined as the resistance 

to change in pH from pH 7 to 5, was determined by titrating a 30-ml aliquot of ruminal 

fluid with continuous stirring from its initial pH to a pH of 5 with lN HCl and titrating 

a second 30-ml aliquot from its initial pH to a pH of 7 with lN NaOH. When the 

initial pH was higher than 7, we recorded only the volume of acid required to reduce 

the pH from 7 to 5. Buffering capacity was converted to milliequivalents per liter as 

follows: 3C = ((milliliters of lN HCl) + (milliliters of IN NaOH)) x 103/30. The 

BVI of the ruminal fluid was calculated according to the formula of Tucker et al. (63) 

as: BVI = ((((antilog10(-STPH))- (antilog10(-SAPH))) I (antilog10(-STPH)) + 

((SABC- STBC) I STBC)) x 10) + 100, where STPH = a standard pH of 6, SAPH 

= the ruminal fluid sample pH, SABC = the ruminal fluid sample BC 

(milliequivalents per liter) and STBC = a standard BC of 50 meq/L. 



Statistical Analysis 

Data were analyzed via SAS General Linear Models ANOV A (55) with the 

following model: 
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Y = p. + Ch + Pj + Dj + CDhj + Bk + S1 + Im + BSkl + Blkm + SI1m 

+ DSjl + Dljm + DBjk + ~ijklm , 

where 

Y = dependent variable, 

JJ. =mean, 

c = cow (h = 1' 2, 3)' 

P =period (i = 1, 2, 3), 

D = diet (j = 1, 2, 3), 

B = buffer (k = 0, 1), 

S = substrate (1 = 0, 1, 2, 3), 

I = incubation interval (m = 0, 1, 2, 3, 4, 5), and 

E = residual error. 

The test term for cow, period, and diet was the cow by diet interaction; buffer, 

substrate, incubation interval, and their interactions were tested using the residual 

error. Statistical significance was declared at P < .05 unless noted otherwise. 

Results and Discussion 

Acid-Base Status 

Diet Effects. Although the mean effect of diets throughout the incubation 

interval was not significant, the diet by incubation interval interaction was an important 
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source of variation for ruminal fluid H+ and BVI (fable 2). Acid content of the 

ruminal fluid increased during incubation, presumably as a result of substrate 

fermentation. Ruminal fluid acidity increased sharply for fluid from cows consuming a 

70:30 grain to forage ratio (Figure 1); temporal changes for the 50:50 and 60:40 diets 

were more moderate. Diet by incubation interval variation was not significant for 

rumina! fluid BC (Table 2, Figure 1). Because BC was similar for fluid from the three 

diets, changes in rumina! fluid BVI (Table 2, Figure 1) were dictated primarily by 

changes in ruminal fluid H+; BVI dropped more sharply with incubation of fluid from 

cows fed the 70:30 diet than from cows fed the 60:40 and 50:50 diets. 

We intended to characterize the rapidity of fermentation-induced changes in 

rumina! fluid acid-base status occurring in batch culture for ruminal fluid from low, 

intermediate, and high grain diets. This information is essential to the selection of 

appropriate proportions of grain and forage to feed to cows used as sources of ruminal 

fluid for in vitro evaluation of the release rates of buffers. Dietary buffers have been 

more beneficial for cows consuming diets with high than with low grain content (18); 

ideally, the acidity and BC of incubated fluid should follow patterns occurring in cows 

consuming high grain diets. However, the fluid also should have a low enough gas 

content to allow accurate measurement of fluid volume. In the present study, rumina! 

fluid from the 70:30 diet yielded the sharpest increase in ruminal fluid acidity upon 

incubation; however, the high gas content of this fluid caused excessive foaming. 

When a graduated cylinder was used to measure 75 ml of fluid for filling the batch 

culture flask, foam interfered with accurate measurement of the fluid. This problem 

did not occur for fluid from the 60:40 or 50:50 diets. Although not apparent in our 

study, fluid from cows fed the 60:40 diet should yield more acid than from cows fed 

the 50:50 diet. Hence, we think that among the diets tested in our study, the 60:40 

grain to forage ratio provided the most acceptable combination of handling and 



TABLE 2 

MEAN SQUARES FOR INDICATORS OF RUMINAL FLUID ACID-BASE STATUS 

pH H +, neq/1. __]_£c _,_ meq[L 
MS6 Sourcea df p MS p MS p MS ---

Main plots 
Cow 2 3.770 .214 15,647,487 .399 3747 .462 1097 
Perioli 2 .678 .603 5,689,399 .646 1156 .736 507 
Diet 2 3.392 .233 23,217,292 .309 183 .946 2359 
Cow by diet 2 1.028 10,401,435 3217 638 

Subplots 
Buffer 1 66.550 <.001 238,370,713 <.001 96,128 < .IIIII 46,380 
Substrate 3 .622 <.001 2,849,087 <.001 205 .014 278 
Incubation interval 5 .684 <.001 6,760,557 <.001 73 .273 601 
Buffer by substrate 3 .014 .333 1,465,463 <.001 108 .130 106 
Buffer by incubation interval 5 .211 <.001 4,504,726 <.001 265 <.001 333 
Substrate by incubation interval 15 .038 <.001 168,895 .577 40 .787 19 
Diet by substrate 6 .038 .005 238,085 .278 20 .909 25 
Did by incubation interval 10 .017 .159 389,430 .028 64 .343 4-i 

Did by buffer 2 .119 <.001 13,075,054 <.001 652 <.001 996 
Residual 373 .012 189,982 57 18 

- .. 

at-.·1ain plot variables (cow, perioli, and liiet) were tested against cow by diet inh.:rat.:tion; allulher variablc:s w.:re tested against residual error. 
bType I mean squares. 
cBC == buff,•ring capacity. 
dBVI == buffer valut.: index. 

BVId -
p 

.368 

.557 

.213 

<.001 
<.001 
<.001 
<.001 
<.001 

.391 

.222 

.008 
<.001 

I.J.) 

N 
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Figure 1. Ruminal Fluid pH (A), H + (B), Buffering Capacity (BC) (C), 
and Buffer Value Index (BVI) (D) During 5 h of Incubation 
with Different Diets. o = Ruminal Fluid from Cows Fed a 
50:50 Grain to Forage Diet (DM Basis), 0 = Rumina! fluid 
from Cows Fed a 60:40 Diet, and .0..= Rumina! Fluid from 
Cows Fed a 70:30 Diet. Vertical Bars Represent Standard 
Errors. 
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fermentation characteristics for evaluating temporal release rates of buffers in batch 

culture. 
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Buffer Effects. Addition of .5 g of buffer to our batch culture flasks 

dramatically affected all measures of rumina! fluid acid-base status (Table 2). 

However, several buffer interactions were evident. A bu:'fer by incubation interval 

interaction was identifiable for all measures of acid-base s:.atus. Rumina! fluid acidity 

increased sharply during incubation for unbuffered flasks, but it was lower and fairly 

stable with buffer addition (Figure 2). Herod et al. (26) reported that a 2:1 mixture of 

NaHC03 and MgO increased rumina! fluid pH in batch culture by 2 to 3 pH units; our 

increase was more moderate, ranging from .5 to .9 units throughout the incubation 

interval. Our batch cultures provided a consistent increase in rumina! fluid acidity 

from 0 to 5 h of incubation in the unbuffered flasks. This pattern is similar to that 

observed in vivo; Erdman (18) reported that rumina! fluid acidity typically is highest 

from 4 to 8 h postfeeding. 

Rumina! fluid BC (Figure 2) was stable for buffered flasks but tended to 

increase with incubation for unbuffered flasks. The reason for this increase is not 

clear, but it may be related to the increase in VFA concentrations; VF A provide some 

BC at a pH of 5. Rumina! fluid BVI (Figure 2) decreased by 13 units for unbuffered 

tlasks during incubation, but it dropped by only 2 units when buffer was present. 

Increased stability of rumina! fluid BVI with dietary buffers also was observed in vivo 

(62). In the present study, all indicators of acid-base status in buffered flasks were 

remarkably constant during incubation. 

Diet by buffer interaction was significant for all measures of acid-base status 

(Table 2). Rumina! fluid acidity (Figure 3) increased sharply for unbuffered flasks as 

the grain to forage ratio fed to the fluid source cows was increased from 60:40 to 

70:30; the acidity increase for the corresponding ratios in the buffered flasks was less 

dramatic. Rumina! fluid BC (Figure 3) for unbuffered flasks was highest for 70:30, 



Figure 2. Rumina! Fluid pH (A), H+ (B). Buffering Capacity (BC) 
(C), and Buffer Value Index 1 BVI) (D) During 5 h of 
Incubation with Different Buffer Additions. o = 
Unbuffered Rumina! Fluid; o = Rumina! Fluid with 6. 7 g 
of a 2:1 Mixture of NaHC03 and MgO/L of Fluid. 
Vertical Bars Represent Standard Errors. 
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Figure 3. Rumina! Fluid pH (A), H + (B), Buffering Capacity (BC) (C), 
Buffer Value Index (BVI) (D) Averaged for Entire 
Incubation Interval with Different Diets. Open Bar = 
Rumina! Fluid from Cows Fed a 50:50 Grain to Forage 
Diet (DM Basis), Shaded Bar = Rumina! Fluid from~ 
Cows Fed a 60:40 Diet, and Solid Bar = Rumina! Fluid 
from Cows Fed a 70:30 Diet. Control = Rumina! Fluid 
with No Buffer; Buffer = Rumina! Fluid with 6. 7 g of a 
2:1 Mixture of NaHC03 and MgO/L of Fluid. Vertical 
Bars Represent Standard Errors. 
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intermediate for 50:50, and lowest for 60:40 grain to forage ratios; with buffer 

addition, BC also tended to decrease with increasing grain in the diet. No explanation 

for this is apparent. Herod et al. (26) also observed diet by buffer interactiom. 

classifying some compounds as good buffers when incubated with ruminal fluid from a 

low grain diet, but poor buffers when incubated with fluid from a high grain (::ct. 

Substrate Effects. Acidity at 5 h of incubation was highest for rumina! tlu:,; 

incubated with TMR, followed by grain, starch, and no substrate (Figure 4). Rumina! 

fluid BC was approximately 2.5 meq/L lower for starch than for the other substrates 

(Figure 4). No explanation for this is apparent, but the difference was very small. 

Rumina! fluid BVI was dictated primarily by differences in H + for the four substrates; 

BVI was highest for no substrate. followed by starch, grain, and TMR (F:gure 4). 

Although substrate was a ~ignificant source of variation for each measure of 

acid-base status, the buffer by st:hstrate interaction was significant for H+ and BVI 

(Table 2, Figure 5). For the unburf~red flasks, rumina! fluid acidity decreased as the 

similarity of the substrate to the source diet decreased; i.e., acidity was highest for 

TMR, followed by grain, starch, and no substrate. Addition of buffer to t!1e flasks, 

however, yielded similar effects on rumina! fluid acidity regardless of substrate 

employed. This suggests that the acid-neutralizing capacity of the buffer increased 

with the acid content of the rumina! fluid. Perhaps this is attributable to more thorough 

dissolution of the MgO portion of the buffer under acidic conditions. The response of 

rumina! fluid BVI (Figure 5) was opposite that of H+ for unbuffered flasks. but buffer 

addition elevated BVI similarly for all flasks, regardless of substrate. 
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Figure 4. Ruminal Fluid pH (A), H + (B), Buffering Capacity (BC) (C), 
and Buffer Value Index (BVI) (D) Averaged for Entire 
Incubation with Different Substrates. Open Bar = No 
Substrate, Horizontal Hatch = 6. 7 g of Purified Corn 
Starch/L of Ruminal Fluid, and Vertical Hatch = 6. 7 g of 
Grain Mix/L of Ruminal Fluid; Solid Bar = 6. 7 g of 
TMR/L of Ruminal Fluid. Vertical Bars Represent Standard 
Errors. 
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Figure 5. Ruminal Fluid pH (A), H + (B), Buffering Capacity (BC) (C), 
and Buffer Value Index (BVI) (D) Averaged for Entire 
Incubation Interval with Different Substrates and Buffer 
Additions. Open Bar = No Substrate, Horizontal Hatch = 
6.7 g of Purified Corn Starch/L of Rumina! Fluid, Vertical 
Hatch = 6. 7 g of Grain Mix/L of Rumina! Fluid, and Solid 
Bar = 6. 7 g of TMR/L of Ruminal Fluid. Control = 
Rumina! Fluid with No Buffer; Buffer = Ruminal Fluid with 
6.7 g of a 2:1 Mixture of NaHC03 and MgO/L of Fluid. 
Vertical Bars Represent Standard Errors. 
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Volatile Fatty Acids 

Diet Effects. Although the effect of diets throughout the incubation interval 

was not significant, the diet by incubation interval interaction was an imponant source 

of variation for all VFA (Table 3). Ruminal fluid acetate was highest for the diet with 

the 50:50 grain to forage ratio throughout the incubation interval (Figure 6). Acetate is 

a major end product of cellulose digestion; hence, the high acetate concentration for 

50:50 likely is the result of the high fiber content of this diet. The high initial acetate 

concentration for the 50:50 diet may be attributable to our collection of ruminal fluid 

from the cow at 2 h postfeeding; this allowed time for fiber fermentation to occur in 

vivo before we collected the fluid for in vitro incubation. Rumina! fluid propionate 

(Figure 6) displayed a pattern similar to that of acetate, except that propionate 

concentration for the 70:30 diet increased to that of the 50:50 diet by 3 h of incubation. 

Ruminal fluid acetate to propionate (A:P) ratio (Figure 6) was highest for the 50:50 

diet from 2 to 5 h of incubation; this response was attributable more to a high acetate 

concentration for 50:50 than to high propionate concentrations for the 60:40 and 70:30 

diets. Total VF A concentration was highest for the 50:50 diet throughout the 

incubation interval (Figure 6); this was unexpected, and the reason for this is unclear. 

Buffer Effects. Mean effects of buffer throughout the incubation interval on 

VFA were significant only for A:P ratio (Table 3); the A:P ratio was reduced (2.52 vs. 

2.57) by addition of buffer to the flasks. Although this reduction was small, it again 

was opposite to in vivo results in which A:P ratio typically was increased by dietary 

buffer (18). A diet by buffer interaction was significant for acetate and total VFA 

(Table 3). Addition of buffer appeared to increase acetate concentration compared with 

the unbuffered flasks in fermentation with ruminal fluid from cows fed the 50:50 diet 

but to reduce acetate for fluid from those fed 60:40 and 70:30 diets (Figure 7). This 

trend also was evident for total VFA (Figure 7); no explanation is available. The 



TABLE 3 

MEAN SQUARES FOR RUMINAL FLUID VOLATILE FATTY ACIDS 

Acetate (A) Propiona~ A:P ratio Total VFA 
Sourcea uf --Msb--- p MS p MS p MS p 

---
Main plots 
Cow 2 I, 153 .684 83.4 .653 1.1223 .435 3,020.3 .296 
P~riod 2 2,561 .494 848.5 .156 3.0342 .222 8,307.1 .133 
Diet 2 10,234 .196 575.1 .215 1.4663 .371 14,733.3 .079 
Cow by diet 2 2,497 157.2 .8631 1,269.7 

Subplots 
Buffer 1 179 .094 2.2 .640 .2243 .031 49.4 .559 
Substrate 3 241 .Oil 39.7 .009 .0659 .249 731.7 .002 
Incubation interval 5 1263 <.001 230.7 <.001 .0943 .082 4531.8 <.001 
Buffer by substrate 3 176 .042 25.5 .060 .0008 .997 463.7 .023 
Buffer by incubation interval 5 104 .148 20.3 .080 .0272 .724 299.9 .068 
Substrate by incubation interval 15 52 .654 6.6 .833 .0312 .830 117.3 .664 
Diet by substrate 6 138 .045 23.6 .034 .0565 .316 415.2 .010 
Diet by incubation interval 10 205 <.001 50.2 <.001 .2474 <.001 452.3 .001 
Diet by buffer 2 294 .010 18.8 .160 .0055 .891 437.1 .050 
R~idual 373 64 10.2 .0478 144.4 

aMain plot variabh:s (cow, period, and did) were tested against cow by diet interaction; all other variables wt:re tested against residual error. 
bType I mean squares. 
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Figure 6. Rumina! Fluid Acetate (A), Propionate (B), Acetate to 
Propionate (A:P) Ratio (C), and Total VFA (D) During 5 
h of Incubation with Different Diets. o = Rumina! Fluid 
from Cows Fed a 50:50 Grain to Forage Diet (DM Basis), 
0 = Rumina! Fluid from Cows Fed a 60:40 Diet, and 
L::. = Rumina! Fluid from Cows Fed a 70:30 Diet. 
Vertical Bars Represent Standard Errors. 
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pattern for propionate was similar to that for total VF A. With or without buffer, the 

A: P ratio was decreased by a higher proportion of grain in the diet or as a substrate. 
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Sub<;trate Effects. Our objective was to evaluate substrates differing in degrees 

of similarity to the diets fed to cows serving as the source of ruminal fluid for our 

incubations. Substrate was a significant source of variation for all measures of VFA 

except A:P ratio (Table 3). However, the buffer by substrate interaction (Table 3) was 

significant for acetate, total VFA, and propionate (P = .06). In the unbuffered flasks, 

addition of starch or grain to the flasks increased VF A content more sharply than for 

addition of T~R (Figure 8); the opposite was true for the buffered flasks. This 

conflicts with substrate effects on H +. No explanation is apparent. All substrates 

tested in our study readily provided substrate for in vitro rumina! fermentation. 

However, because the TMR tended to produce the highest concentrations of VFA, we 

suggest that it should be used for evaluating release rates of buffers in vitro. Fluid 

containing TMR as a substrate is difficult to pipet unless the TMR has been ground 

finely enough to pass through a .5 mm screen. 

Summary 

In summary, .5 g of purified corn starch, .5 g of the grain mix consumed by the 

cow providing ruminai fluid for incubation, or .5 g of the TMR consumed by the cow 

providing rumina! fluid for incubation were added to 75 ml of ruminal euid for batch 

culture incubation; each of these substrates yielded temporal alterations in acid-base 

status of ruminal fluid that were similar to those observed in vivo. However, because 

rumina! fluid acidity tended to develop more rapidly with TMR as a substrate, we 

recommend that TMR be used as the substrate in a batch culture approach to evaluate 

ruminal buffers. Addition of .5 g of a 2:1 mixture of NaHC03 and MgO yielded an 
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increase in ruminal fluid pH similar to that observed in vivo. Based on a combination 

of handling characteristics and temporal acid generation, we suggest that donor cows be 

fed a 60:40 grain to forage ratio to provide ruminal fluid for batch culture evaluations 

of release rates of ruminal buffers. 
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Figure 8. Ruminal Fluid Acetate (A), Propionate (B), Acetate to 
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CHAPTER IV 

INFLUENCE OF DIETARY BUFFER VALUE INDEX ON THE 

RUMINAL MILIEU OF LACTATING DAIRY COWS FED 

SORGHUM SILAGE AND GRAIN 

Abstract 

The objective of this study was to evaluate the influence of dietary buffer value 

index on rumina! fluid pH, buffering capacity, and buffer value index in lactating 

cows. Three Holstein cows averaging 18 + 10 DIM were used in a 3 x 3 Latin square 

with 3-wk experimental periods. Diets contained grain: sorghum silage ratios of 50:50, 

60:40, and 70:30 (DM basis). These by analysis had buffer value indexes of -74, -41, 

and -7. These values are 250 to 400 units higher than the cumulative buffer value 

index of individual ingredients. Milk fat content tended to be highest for milk from 

cows fed the 50:50 concentrate to forage diet; milk protein production was highest for 

cows fed the 70:30 concentrate to forage diet; milk yield, 4% FCM, milk fat yield, 

protein content and milk fat content were not affected by dietary buffe:- value index. 

Dietary buffer equivalents were calculated to be only 11% of total buffering 

equivalents available to :he cow and dietary acid equivalents were only 15% of total 

acid production in the rumen. Compared to ruminal acid production and salivary 

buffering in the rumen, dietary acid and dietary buffer contributions to the acid-base 

balance of the cow are minor quantitatively. Rumina! fluid pH, hydrogen ion 



concentration, buffer value index, buffering capacity and total VFA were not 

significantly affected by dietary buffer value index. Hence, dietary acid-base status 

alone appears inadequate as a predictor of the need for adding buffers to the diet of 

lactating cows. 

Introduction 
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Because the diet may influence the rumina! milieu, recent studies have focused 

on the effect of acid-base status of the diet on acid-base status in the rumen. Jasaitis et 

al. (29) found that forages and high protein feeds had inherent buffering capacities 

(BC) three to fourfold higher than concentrates. Concentrations of total dietary cations 

and total dietary ash were correlated with BC of the diet. They suggested that 

evaluation of the pH and BC of the diet be used to predict the need for supplementing 

the diet with buffers to control acid-base balance of the rumen. 

Tucker et al. (63) developed a buffer value index (BVI) to evaluate the effects 

of buffers on ruminal fluid acid-base status; this index is related directly to BC but 

inversely to hydrogen ion concentration (H+; acidity). This index has been used to 

appraise the acid-base status of diets. Le Ruyet et al. (39) investigated the effects of 

dietary ADF and BVI of the diet on the acid-base status of the rumen. They noted that 

increasing the dietary ADF percentage increased rumina! fluid BVI, but a high dietary 

BVI inexplicably reduced rumina! fluid pH and BVI. Because these paradoxical results 

were encountered with diets containing multiple fiber sources, we decided to evaluate 

the influence of dietary BVI on rumina! fluid BVI using diets containing a single 

forage. 

The objective of our study was to examine the influence of dietary BVI on the 

rumina! environment of cows consuming these diets. Various dietary BVI were 
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achieved by altering the ratio of sorghum silage to corn grain in the diet. Well 

fermented silage, with a pH of 4, should immediately depress ruminal fluid pH. 

Supplemented grain should depress ruminal fluid pH for several hours post-feeding due 

to starch fermentation. 

Materials and Methods 

Animals. Feeding. and Experimental DesigQ 

Three ruminally-cannulated Holstein cows (653 ± 13 kg) were used in a 3 x 3 

Latin square with 3-wk experimental periods. Animals were housed individually in 

pens and had free access to dirt exercise lots; cows were milked twice daily (0300 and 

1500 h). Diets were TMR (Table 4) with analyzed BVI of -74, -41, and -7. These 

diets, containing concentrate and sorghum silage (70:30, 60:40, or 50:50 ratio, DM 

basis), were fed twice daily (0550 and 1750 h). Orts were recorded daily. Samples of 

the TMR were collected weekly and frozen for subsequent nutrient analyses at a 

commercial laboratory (Northeastern DHIA, Ithaca, NY). Period three was extended 

by two weeks to allow time for the cow consuming the 60:40 diet to recover from 

mastitis. Effects of diet on milk yield and milk composition were difficult to detect 

due to depressed feed intake and milk production by this cow. 

Diet Formulation and BVI Determination of Feedstuffs 

Sorghum silage, two concentrates (ground shelled corn and soybean meal), and 

four mineral sources (limestone, dicalcium phosphate, trace mineralized salt, double 
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TABLE 4 

INGREDIENT AND NUTRIENT COMPOSITIOf\ OF DIETS (DM BASIS) WITH 
DIFFERENT BUFFER VALUE INDEX VALUES 

Ingredients 

Ingredient 
Forage sorghum, silage 
Ground shelled corn 
Soybean meal, 44% CP 
Limestone 
Dicalcium phosphate 
Dynamate®b 
Trace mineralized salt 
Vitamin A premix~ 
Vitamin E prernix0 

Nutriente 
DM 
CP 
NEL, Meal/kg 
ADF 
NDF 
Ca 
p 

Mg 
s 
K 
Na 
Cl 

pH 
H+, neqiL 
BCf meq/L of solution containing 

16.7 g of feed DM 
BCg, meq/kg of DM 
BVI, calculated 
BVI, analyzed 

aarain to fora!!e ratio. 

50:50 

50.01 
23.44 
23.95 

.75 

.91 

.39 

.53 

.01 

.01 

38.8 
14.6 

1.43 
22.9 
32.8 

.59 

.32 

.32 

.26 
1.31 

.20 

.41 

4.76 
17,538 

4.67 
280.2 

-487.7 
-74.5 

Dieta 
60:40 

%) 

40.03 
34.45 
22.87 

.91 

.88 

.36 

.49 

.01 

.01 

40.9 
16.0 

1.58 
19.2 
28.2 

.73 

.46 

.31 

.28 
1.27 

.20 

.38 

4.85 
14,125 

3.67 
220.2 

-377.4 
-40.5 

bnouble sulfa~e of potassium and magnesium, Pitman-Moore, Inc. Mundelein, IL. 
csupplied 30.000,000 IU of Vitamin A per kg of premix. 
dsupplied 500,000 IU of Vitamin E per kg of premix. 
eAnalyzed nutrient content except for NEL, which was estimated from ADF. 
fBuffering capacity. 
gBuffer value index. 

70:30 

30.02 
44.66 
22.58 

1.06 
.82 
.41 
.43 
.01 
.01 

48.0 
16.5 

1.65 
15.5 
23.7 

.75 

.47 

.31 

.30 
1.22 
.20 
.34 

4.97 
10.715 

3.00 
180.0 

-265.6 
-6.6 
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sulfate of Mg and K) were combined to prepare three diets (Table 4). To facilitate diet 

formulation, the nutrient content of the sorghum silage was determined prior to 

feeding; tabular nutrient contents (47) were utilized for concentrate and mineral 

supplements. Dry matter content of sorghum silage, determined weekly via toluene 

distillation, was utilized to maintain a constant ratio of ingredients and nutrients in diet 

DM. The BVI calculations for the T:viR were determined from individual feedstuffs 

using the procedures detailed by Le Ruyet et al. (39). 

Sample Col!ection. Incubation and Analysis 

The frrst 2 wk of each experimental period were utilized for adaptation; feed 

intake, milk yield, and milk composition were calculated from the last week of each 

period. Milk yield was measured daily throughout the study; milk samples were 

collected weekly during consecutive p.m. and a.m. milkings for analysis of fat, 

protein, lactose, and SNF content via infrared spectrophotometry (Multispec 2, 

~ultispec Limited, Wheldrake, York, Engl.). Milk component concentrations were 

calculated as weighted averages according to the average a.m. and p.m. milk yield for 

the week. 

Rumina! fluid (150 ml) was collected on d 13 of each period from the ventral 

sac of the rumen with an electric vacuum pump immediately before the 0550 h feeding, 

and everv 30 min thereafter for 12 h. However, the 9.5 h sample during period two 

was missed for all cows. After being filtered through four layers of cheesecloth, 100 

ml of rumina! fluid was transferred to a polyethylene snap-cap vial for immediate 

analysis of acid-base status. An additional 5-ml aliquot of rumina! fluid was dispensed 

into a polyethylene snap-cap tube containing 50 mg crystalline metaphosphoric acid; 

this mixture was frozen for VFA analysis by GLC (AutoSystem GC; Perkin-Elmer, 



Norwalk, CT). Ruminal fluid pH, determined with a pH meter (model 950 pH-ion 

analyzer; Fisher Scientific, Pittsburgh, PA), was recorded following 30 s of 

equilibration. The BC, defined as the resistance to change in pH from 7 to 5, was 

determined by titrating a 30-ml aliquot of ruminal fluid with continuous stirring from 
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its initial pH to a pH of 5 with IN HCl and titrating an additional 30-ml aliquot from 

its initial pH to a pH of 7 with IN NaOH. If the initial pH was higher than 7, we 

recorded only the volume of acid required to reduce the pH from 7 to 5. Buffering 

capacity was converted to meq/L as follows: BC = ((ml IN HCL) + (ml IN NaOH)) 

x 103/30. The BVI of the ruminal fluid was calculated according to the formula of 

Tucker et al. (63) as: BVI = (({(antilog 10(-STPH)) - (antilog 10(-SAPH))) I 

(antilog10(-STPH)) + ((SABC- STBC) I STBC)) x 10) + 100, where STPH = a 

standard pH of 6, SAPH = the ruminal fluid sample pH, SABC = the ruminal fluid 

sample BC (milliequivalents/L) and STBC = a standard buffering capacity of 50 

meq/L. 

Statistical Analysis 

Ruminal fluid data were analyzed via general linear models ANOV A of SAS 

(55) with the following model: 

y hijk = u + Ch -i- pi + Bj + CBhj + Sk + BSjk + Ehijk' 

where 

Y = dependent variable, 

u =mean, 

c = cow (h = l' 2, 3), 

p =period (i = 1, 2, 3), 

B = BVI content of the diet G = 1, 2, 3), 
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S = sampling time (k = 0, .5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 

6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0), and 

E = residual error. 

Main plot variables were tested by the cow by diet interaction; sub-plot variables were 

tested using residual error. Milk data were analyzed via the following model: 

Yh .. = u + Ch + p. ~ B. + Eh··· lJ 1 J IJ 

Linear and quadratic contrasts were employed to evaluate dietary BVI effects on milk 

and rumina! fluid variables. Statistical significance was declared at P < .05 unless 

noted otherwise. 

Results and Discussion 

Performance 

Milk yield tended to increase as dietary grain, and thus energy density of the 

diet, was increased (Table 5). This supports the results of Le Ruyet et al. (39) . 

Although the mean effect of diet was not significant, milk protein yield increased 

linearly (P< .06) with increasing concentrate to forage ratio. Higher starch diets 

tended to decrease the acetate:propionate ratio (Figure 9). Thomas and Martin (61) 

reported that ruminal propionate concentration and milk protein synthesis were 

correlated positively. Thus, the increase in milk protein concentration may be in 

response to an increase in the supply of energy and propionate. Performance responses 

may have been compromised by mastitis in one cow at the beginning of period three. 
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TABLE 5 

LEAST SQUARES MEANS FOR DAILY DRY MATTER INTAKE, AND YIELD 
AND COMPOSITION OF MILK FROM COWS FED DIETS CONTAINING 

GRAIN:FORAGE AT 50:50, 60:40, AND 70:30. 

Diet 
50:50 60:40 70:30 

DMI, kg 20.0 19.8 24.3 
NEL, Meal 28.6 31.3 40.1 
Milk yield, kg 34.4 35.S 38.0 
4% FCM, kg 32.7 33.5 35.3 
Milk/!'{EL, kg/Meal 1.20 1.14 .96 
Milk fat, % 3.72 3.53 3.54 
Milk fat, kg 1.26 1.28 1.34 
Milk protein, % 3.11 3.22 3.29 
Milk protein, kg 1.07 1.14 1.25 
Lactose, % 4.98 4.33 5.12 
Lactose, kg 1.71 1.60 1.95 
Milk SNF, % 8.77 8.23 9.06 
Milk SNF, kg 3.01 2.98 3.44 

aL = Linear response to dietary buffer value index. 
bp > .10. 

SE 

1.9 
3.0 
1.6 
2.5 

.06 

.26 

.13 

.07 

.03 

.39 

.19 

.31 

.23 

Effecta p 

Nsb 
NS 
NS 
NS 
NS 
NS 
NS 
NS 
L .056 
NS 
~s 
)l"S 
NS 
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Figure 9. Rumina! Fluid Acetate:Propionate Ratio for 12 h 
Postfeeding as Affected by Dietary Concentrate:Forage 
Ratios: 50:50, (o); 60:40, (A); 70:30, (o). Vertical 
Bars Represent Standard Errors. 
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Dietary Acid-Base Status 

Analyzed dietary BVI were markedly lower than BVI values calculated from 

individual diet components (Table 4), but tended to decrease as the proportion of silage 

in the diet increased. Le Ruyet et al. (39) found similar relationships between 

calculated and analyzed dietary BVI. However, they (39) used alfalfa hay in their 

formulations, which may have allowed individual ingredients in the TMR to segregate. 

In addition, their samples were frozen for 4 mo before analysis. Our analyses were 

conducted after the samples were refrigerated for 5 h. More study is required to 

determine the influence of mixing, freezing or refrigerating, and storage time on the 

relationship between individual ingredient and total dietary H+ and BC. Individual 

dietary ingredients with a low pH correspondingly had calculated BVI which were low. 

BVI was much higher when analyzed than calculated from individual ingredients, 

indicating that BVI values are not additive. The overestimate from summing 

ingredients was greater for diets containing more silage. Ignoring the BC, except in 

the pH range of 5.0 to 7.0, may be responsible for this discrepancy. 

In the present study, the 50:50 diet had the lowest calculated and analyzed BVI. 

Because sorghum silage is acidic, diets containing larger quantities of sorghum silage 

have lower calculated and analyzed BVI. 

Rumina! Acid-Base Status 

Jasaitis et al. (29) suggested that dietary acid-base status may affect rumina! 

acid-base status. Because silage is an acidic feed, high silage diets should depress 

ruminal fluid pH soon after consumption. Rumina! fluid pH of cows fed the 50:50 diet 

decreased from 7 to 6.4 (increase of 298 nM in H +) within .5 h after feeding (Figure 
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10). High concentrate diets should yield a higher initial pH until starch fermentation 

begins. The rumina! pH of cows fed the 70:30 decreased from an initial pH of 6. 7 to 

6.4 within .5 h after feeding. This initial response likely is attributable to the 

consumption of silage; however, pH continued to decrease due to starch fermentation. 

The pH of all three diets increased slightly from 2.5 h to 4 h postfeeding but decreased 

again from 4 h to 8.5 h postfeeding. 

Sampling time was an important source of variation for rumina! fluid pH, H +, 

BC and BVI (Table 6). The diet by sampling time interaction was not significant. 

Denton (14) demonstrated that routine activities that precede feeding may increase 

salivary flow. The cows in this trial were milked 9 h postfeeding. At this time, 

rumina! fluid pH increased .7 units for the 70:30 diet and .5 units for the 60:40 diet 

(Figure 10). An increased secretion of salivary buffer may explain this increase in pH 

because VFA concentration in ruminal fluid did not decrease during this period (Figure 

10). Salivary secretion should increase ruminal fluid BC; this was detected for two of 

the diets (Figure 11). Le Ruyet et al. (39) showed that a decrease in H+ increased 

BVI. An increase in BC from saliva production also will increase BVI of the rumen. 

The impact of rumina! VF A production and salivary buffer secretion on ruminal 

fluid acid-base status may be more important than dietary BVI. Salivary flow into the 

rumen is a function of DMI and dietary DM content. Higher dietary forage increases 

salivary NaHC03 production (18), while increased dietary grain decreases the flow 

rate of saliva and the pH of ruminal fluid. Total equivalents of BC available to 

neutralize dietary and ruminal acid would be dependent on BC of the diet and total 

salivary buffer secretion. If we assume that half of the dietary DM was fermented in 

the rumen to VFA at ratios equivalent to those found in the rumen (60:28: 12; Figure 

12), 50 to 60 moles of acid would be produced in the rumen. This compares with only 

8 moles of acid present in the silage consumed. Thus, the contribution of diet to total 

rumina! acid is approximately 15% (Table 7). 
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Figure 10. Ruminal Fluid pH (A) and H + (B) for 12 h Postfeeding as 
Affected by Dietary Concentrate:Forage Ratio: 50:50, (o); 
60:40, (~); 70:30, (o). Vertical Bars Represent Standard 
Errors. 



TABLE 6 

MEAN SQUARES FOR !NDICATORS OF RUMINAL FLUID ACID-BASE STATUS 

:QH __H+. neg/L sec --
BVId --

Sourcea df Msb p MS p MS p MS p 

Cow 2 .467 .855 1,413,574 .794 206.8 .359 212.7 .757 
Period 2 1.170 .702 2,627,157 .675 81.7 .586 258.1 .719 
Diet 2 2.074 .570 4,961,807 .524 116.8 .498 584.7 .531 
Cow by diet 2 2.751 5,458,775 115.7 661.6 
Sampling time 24 .464 <.001 603,768 .003 74.1 .002 80.9 <.001 
Diet by sampling time 48 .041 .980 186,528 .943 29.8 .673 19.4 .941 
Residual 141 .069 277,464 33.5 28.8 

aMain plot variables (cow, period, and diet) were tested by the cow by diet interaction; sub-plot variables were tested by the 
residual error. 

bType I mean squares. 
CBuffering capacity. 
dBuffer value index. 
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Figure 12. Rumina! Fluid VFA Concentrations for 12 h Postfeeding as Affected 
by Dietary Concentrate:Forage Ratio: 50:50, (o); 60:40, (6.); 
70:30, (o). Vertical Bars Represent Standard Errors. 
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TABLE 7 

ESTIMATES OF TOTAL ACID EQUIVALENTS AND BUFFERING CAPACITY 
(BC) FROM THE DIET, RUMEN, AND SALIVA 

Dieta 
Rumenb 
Salivary NaHC03c 

Acid BC 
-----~mol)-----

8 
55 

5 

42 

a Dietary acid calculated from lactic acid content ( 10%) of sorghum silage; dietary 
BC calculated from analyzed BC of diets and DMI of test cows. 

bRuminai acidity calculated assuming fermentation of 50% of DMI into VF A. 
CFrom Erdman (18). 
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Rumina! fluid volume can be estimated from feed intake as a percentage of BW 

(9). Total amount of BC in the rumen at any time can be calculated from rumina! 

volume and rumina! BC. Based on these values (100 to 150 liters) and mean BC (58 

meq/L), BC in the rumen at any time is about 7.25 eq compared to the BC provided in 

the diet of 4 to 6 eq/d. Absorption and outflow of buffers is continuous; thus, the total 

amount of BC in the rumen during 1 day exceeds the BC present at a given time. 

Cassida (8) estimated total salivation of 308 L/d and 284 Lid for cows consuming hay 

crop silage and corn silage based diets, respectively. Erdman (18) estimated total 

salivary NaHC03 equivalents to be 3,517 g/d for 50:50 concentrate:forage diets. The 

contribution of the diet to total buffer in the rumen is approximately 11% of BC in the 

rumen (Table 7). 

According to these estimates, total rumina! and dietary buffering equivalents are 

inadequate to neutralize total rumina! acid production. Dietary NaHC03 buffer 

supplements at the current industry recommendation of 113 to 227 g per cow per day 

would provide 1. 3 to 2. 7 equivalents of additional BC. This equals 3 to 6% of 

estimated rumina! BC. Although this is a minor portion of total DC, dietary NaHC03 

has repeatedly increased rumina! fluid pH (18) and OM intake (59, 60). However, 

supplementation of corn silage with 4% NaHC03 (DM basis, 4.2 equivalents) prior to 

feeding increased OM intake by 1.2 kg/d (60). Neutralizing high silage diets to a pH 

of 5 to 6 may be optimum. Development of a multi-element buffer to increase pH of 

acidic diets would be necessary to avoid excessive mineral concentrations in the diet. 

Volatile Fattv Acids 

Sampling time effects were significant for rumina! fluid concentrations of 

acetate, propionate, butyrate, valerate, total VF A and the acetate: propionate ratio 
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(Table 8). Butyrate concentration was highest for the 70:30 diet (Figure 13). Period 

variation also was significant for butyrate, isovalerate, and total VF A concentrations. 

The 50:50 diet did not produce the highest acetate concentration (Figure 14), which 

contrasts with the concept that high fiber diets should yield the highest amount of 

acetate because of digestion of cellulose. Rapid digestion of starch to propionate 

occurs several hours after a meal. Propionate concentrations tended to decrease more 

rapidly with time postfeeding, especially after 6.5 h, for the 50:50 diet than for the 

60:40 and 70:30 diets (Figure 14). 

Summary 

The analyzed BVI of the three TMR were higher than BVI calculated from 

individual ingredient values. ~!ilk protein yield by cows was 8.8% and 14.4% greater 

for those fed the 70:30 rather than the 60:40 and 50:50 diets, respectively, due to 

increased energy content and, presumably, greater propionate production. Milk yield, 

milk fat content, milk fat production and milk protein content were not affected by the 

BVI of the diets tested. Ruminal fluid acid-base status was not affected significantly by 

dietary BVI levels. Dietary buffer equivalents calculated to be only 11% of total 

buffering equivalents available to the cow and dietary acid equivalents were only 15% 

of total acid in the rumen. Ruminal fluid pH, H+, BVI, BC and total VFA were not 

significantly affected by BVI. Hence, the dietary acid-base status alone is inadequate 

as a predictor of the need for buffers in the diet of lactating cows fed sorghum silage­

based diets. 



TABLE 8 

MEAN SQUARES FOR RUMINAL FLUID VOLATILE FATTY ACIDS 

----·----

Acetate (A). mmol/L Prqpi9119te (P). mmol/1, A:P Ratio ~sohut::trate, mmol/L 
Sourcea df Msb p MS p MS p MS p 

--
Cow 2 228.1 .651 142.8 .823 .5246 .910 1.043 .746 
Period 2 1231.9 .257 2960.0 .183 11.6404 .312 27.135 .101 
Diet 2 198.7 .682 342.8 .659 2.1737 .709 .823 .788 
Cow by diet 2 425.3 661.7 5.2891 3.055 
Sampling time 24 265.1 < .001 116.5 < .001 .3019 <.001 .381 .108 
Diet by sampling time 48 60.9 .913 26.0 .341 .1102 .074 .184 .924 
Residual 141 85.6 23.8 .0796 .266 

aMain plot variables (cow, period,and diet) were tested by the cow by diet interaction; sub-plot variables were tested by the 
residual error. 

bType I mean squares. 

0\ 
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TABLE 8 (Continued) 

-----

Butyrate, mmoi/L Isovalerate, mmol/1. Valerate, mmol/L Total VFA~ mmol/L 
Sourcea df Msb P MS p MS p MS p 

Cow 2 10.02 .261 3.830 .372 2.975 .804 798 .331 
Period 2 152.24 .023 54.085 .040 105.576 .104 12,078 .032 
Diet 2 77.70 .044 .105 .956 3.041 .801 1640 .194 
Cow by diet 2 3.54 2.266 12.233 395 
Sampling time 24 22.83 < .001 .219 .583 1.186 .018 861 <.001 
Diet by sampling time 48 3.00 .675 .209 .706 .686 .409 227 .299 
Residual 141 3.37 .240 .656 202 

aMain plot variables (cow, period and diet) were tested by the cow by diet interaction; sub-plot variables were tested by the 
residual error. 

bType I mean squares. 

0\ 
0\ 
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Figure 13. Rumina! Fluid Butyrate Concentrations for 12 h Postfeeding as 
Affected by Dietary Concentrate:Forage Ratio: 50:50, (O); 
60:40, (~); 70:30, (0). Vertical Bars Represent Standard Errors. 
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Figure 14. Rumina! Fluid Acetate (A) and Propionate (B) 
Concentrations for 12 h Postfeeding as Affected by 
Dietary Concentrate:Forage Ratio: 50:50, (O); 60:40, 
(.6); 70:30, (0). Vertical Bars Represent Standard 
Errors. 

68 



CHAPTER V 

EFFECTS OF CALCIUM CHLORIDE ON PREPARTUM UDDER 

EDEMA AND PLASMA AND URINE ELECTROLYTES 

IN HOLSTEIN HEIFERS 

Abstract 

Twenty six nulliparous Holstein heifers, blocked according to pedigree estimate 

of breeding value, were used to examine the effects of feeding CaCl2 prepartum on 

udder edema and plasma and urine electrolytes. Heifers were assigned to diets 

containing either 1.5% CaCl2 (DM basis) or 2.2% limestone. Diets were formulated 

to be identical, except for the calcium source. Severity of udder edema was evaluated 

independently by two people on a daily basis throughout the experiment utilizing a 10-

point rating system (0 = no edema, 10 = severe edema). Udder edema and body 

weight were not affected significantly by the addition of CaCl2. Dry matter intake 

tended to be lower throughout the prepartum period for heifers consuming the CaCl2 

diet than for heifers consuming the control diet. Plasma creatinine tended to be higher 

during the last two weeks prepartum and urine creatinine tended to be lower for heifers 

consuming CaCl2, possibly indicating dehydration of extracellular fluid. Calcium 

chloride significantly increased urine calcium and chloride and plasma chloride, while 

decreasing urine pH and blood pH, HC03-, and PC02. This would suggest that 

feeding CaCl2 at 1.5% of DM may help prevent parturient paresis. 
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Introduction 

Udder edema can be costly to dairy producers. By increasing the strain on the 

supporting ligaments, edema may lead to pendulous udders and increased incidence of 

injury and mastitis. This may lead to premature culling of genetically superior animals 

and increased likelihood of antibiotic residues in the milk from the treatment of 

mastitis. With the new antibiotic residue laws beginning to be strictly enforced, 

preventive treatment programs need to be developed. 

Feeding calcium chloride has been shown to reduce slightly the severity of 

edema in nulliparous heifers (41). Because calcium chloride also lowers the dietary 

cation-anion balance, it also may prove beneficial in decreasing the incidence of milk 

fever. Lema et al. (41) fed calcium chloride for three weeks prepartum, but they did 

not measure changes in blood and urine constituents. The objective of the present 

study was to examine the effect of feeding calcium chloride for three weeks prepartum 

on udder edema and blood and urine mineral concentrations in nulliparous heifers. 

Materi;.tls and Methods 

Animals. Feeding. and Experimental Design 

Twenty six nulliparous Holstein heifers averaging 592 ± 14 kg BW, blocked 

according to pedigree estimate of breeding value obtained from DHI records, were 

assigned to a diet containing either 2.2% limestone (control) or 1.5% CaCl2 (Table 9). 

All heifers were fed the control diet beginning 28 d before their predicted calving 

dates. Beginning 21 d prepartum, thirteen heifers were fed the experimental diet. 

Diets consisted of sorghum silage and grain and were formulated to be identical except 



TABLE 9 

INGREDIENT AND NUTRIENT CO:\.IPOSITION OF DIETsa 

Ingredient 
Sorghum silage 
Shelled com, ground 
Soybean meal, 44% 
Trace mineralized saltb 
IMC DynamateC 
Limestone 
CaCl2, 78% 

Analyzed nutrient composition 
DM 
CP 
NEL, Mcal/kgd 
ADF 
NDF 
Ca 
p 

Mg 
K 
s 
Na 
Cl 

meq(Na + K) - (Cl + S)/ 
100g diet DM 

meq(Na + K) - (Cl)/ 
lOOg diet DM 

Control 

61.18 
25.44 
10.72 

.19 

.28 
2.19 

38.6 
12.5 

1.52 
24.8 
39.1 

1.05 
.26 
.34 
.95 
.23 
.09 
.32 

4.9 

19.3 

61.61 
25.61 
10.79 

.19 

.29 

1.51 

36.7 
11.6 

1.50 
26.5 
39.9 

.77 

.23 

.33 

.95 

.23 

.09 
1.29 

-22.4 

-8.1 

apercent drv matter basis, unless indicated. 
bcontained-92% NaCl, .250% Mn, .200% Fe .. 033% Cu, .007% I, .005% Zn, and 

.0025% Co. 
cnouble sulfate of potassium and magnesium, Pitman-Moore, Inc., Mundelein, IL. 
dEstimated. 
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for the calcium source. However, analysis indicated :hat the control diet contained 

1.05% Ca compared to .77% for the CaCl2 diet (Table 9). Heifers were fed 

individually at 0200 and 1400 hand arts were recorded daily. Dry matter content of 

sorghum silage was determined weekly via toluene distillation to maintain a constant 

ratio of ingredients in the diet DM. Samples of the TMR were obtained weekly and 

frozen for subsequent nutrient analysis at a commercial laboratory (North East DinA, 

Ithaca, ~Y). Udder edema was scored daily by two people using a ten point rating 

system (0 = no edema, 10 = severe edema) developed by Tucker et al. (65). The 

average of the edema scores was used for analysis. Body weights and body condition 

scores were recorded weekly. 

Sample Collection and Analysis 

Blood and urine samples were collected weekly at 28, 21, 14, and 7 d 

prepartum, and within 12 h after calving. Blood (10 ml) was obtained via jugular 

venipuncture and transferred to two evacuated glass tubes containing Li heparin and 

placed immediately on crushed ice. One tube was used for analysis of blood pH, p02, 

and pC02 (model 1304; Instrumentation Laboratory, Lexington, MA). The other tube 

was centrifuged and plasma was collected for mineral anaiysis. Urine, collected in 

polyethylene vials via manual stimulation of the vulva, was placed on crushed ice and 

pH was measured within 2 h (model 950 pH-ion analyzer; Fisher Scientific, Pittsburgh, 

PA). Raw urine was analyzed for P and Cl content, and a 3 ml aliquot was acidified 

with 90 ,ul of concentrated HCl. Blood plasma and urine were analyzed for creatinine 

content (creatinine procedure Number 555-colorimetric; Sigma, St. Louis, MO) via 

spectrophotometry (Spectronic 21D; Milton Roy, Rochester, NY), Ca and ~vfg content 

via atomic absorption spectrophotometry (model 4000; Perkin-Elmer, Norwalk, CT), 
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Cl via potentiometric titration (Haake-Buchler Instruments, Saddli.:brook, NJ), and 

inorganic P (inorganic P procedure Number 360-UV; Sigma Diagnostics, St. Louis, 

MO) via spectrophotometry (Response; Gilford Syste:ns, Oberlin, OH). 

Statistical analysis 

Data were analyzed via SAS General Linear Models (55) with the following 

model: 

y gh = fJ. + Bg -i- Dh + Egh• 

where 

Y = dependent variable, 

p. = mean, 

B = block (g = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), 

D = diet (h = 1, 2), and 

E = residual error. 

Statistical significance was declared at P < .05 unless noted otherwise. Udder edema 

was averaged by week prepartum, using udder edema score on d 22 prepartum as a 

covariate. Dry matter intake also was averaged by week prepartum. 

Results and Discussion 

Performance 

Body weight was not significantly affected by the addition of calcium chloride 

to prepartum diets of Holstein heifers (Table 1 0). Dry matter intake averaged 7.5% 



lower for heifers consuming CaCl2 than for heifers receiving the control diet (Figure 

15, Table 10). The addition of CaCI2 may decrease the palatability oi the diet, 

reducing DMI (7, 41). Feeding a negative DCAB dil.!t depressed feed intake by 7% 

when compared to a positive DCAB diet (64). In another study (41), DMI increased 

after removal of an acid ingredient. Milk production and energy output during the 

early postpartum period generally exceeds energy intake because DMI is not 

maximized. Depressing DMI prepartum by feeding a negative DCAB diet may help 

increase postpartum DMI, which may increase peak milk yield. 
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Feeding a negative DCAB may result in metabolic acidosis (75). As blood pH 

decreases, H+ concentration increases. Blood HC03- combines with H+ to buffer the 

excess acid, decreasing blood HC03- content. Blood HC03- was significantly lower 

throughout the prepartum period for heifers receiving the CaCl2 diet (Table 11). 

Tucker et al. (68) reported that blood HC03- decreased as CaCl2 in the diet was 

increased from 1.0 to 1.5%. The decrease in HC03- due to decreasing DCAB is 

supported by other studies (64, 67). As HC03- decreases, the respiratory and renal 

systems attempt to minimize the change in the pC02/HC03- ratio (51). Even though 

respiration rate was not measured in our study, pC02 levels should be decreased by 

increased ventilation. Blood pC02 concentrations tended to be lower throughout the 

entire trial for heifers consuming CaCl2; differences were significant three weeks 

prepartum and at calving (Table 11). This agrees with Tucker et al. (67, 68). 

The addition of CaCl2 to prepartum diets did not significantly reduce the 

severity of udder edema (Table 10, Figure 16). Development of edema appeared to be 

retarded during the first week of feeding CaCl2. However, edema scores increased 

rapidly afterwards. This agrees with Lema et al. (41). Renal excretion of calcium and 

sodium is very similar; that is, calcium excretion increases urine volume. Plasma 

volume also should decrease, resulting in a decrease in plasma hydrostatic pressure and 

net absorption of interstitial fluid. If the effects of CaCl2 last only a few days, 
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TABLE 10 

LEAST SQUARES MEA~S FOR BODY WEIGHT, DRY MATTER L"'TAKE 
(DMI), AND UDDER EDEMA SCORES FOR 3 WEEKS PREPARTUM 

AND AT CALVING FOR HEIFERS CONSUMING LIMESTONE 
(CONTROL) OR CaCl2 DIETS 

Week Control CaCl2 SE p 

Body weight, kg -3 593.3 597.3 15.6 .860 
-2 598.6 601.8 14.7 .882 
-1 586.5 603.5 17.4 .503 
0 540.0 565.2 20.3 .398 

DMI, kg/d -3 9.33 9.06 .60 .755 
-2 8.82 7.43 .41 .032 
-1 6.69 6.61 .68 .934 
0 6.10 5.17 .85 .453 

Udder edema -3 3.20 2.60 .45 .379 
-2 4.37 3.98 .40 .500 
-1 5.46 5.06 .31 .383 
0 5.38 5.16 .31 .614 
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Figure 15. Least Squares Mean Dry Matter Intake (DMI) for 
Heifers Consuming CaC12 ( ... ) or Limestone 
(--). 
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T:\BI .E 1: 

LEAST SQUARES MEA!\S FOR BLOOD AND CRIN"'E ACID-BASE STATUS AND 
ELECTROLYTES FOR 3 WEEKS PREPARTUM AJ'...TI AT CALVING FOR 

HEIFERS C00JSUMING LirvlEST00lE (CONTROL) OR CaCl2 DIETS 

Week Control CaCI2 SE p 

Blood pH -3 7.420 7.385 .009 .019 
-2 7.435 7.365 .005 <.001 
-1 7.433 7.393 .008 .005 
0 7.449 7.424 .008 .063 

Blood HC03-, mm Hg -3 28.6 24.5 .602 < .001 
-2 27.9 22.5 .614 < .001 
-1 28.1 24.8 .960 .031 
0 30.7 27.1 .781 .007 

Blood pC02, mm Hg -3 45.7 42.1 .7 .004 
-2 43.0 40.7 .9 .075 
-1 43.5 41.7 .9 .180 
0 45.6 42.6 :8 .019 

Blood p02, mm Hg -3 30.4 30.3 .9 .948 
-2 31.6 33.8 .7 .505 
-1 32.1 33.9 1.8 .505 
0 38.0 34.7 2.0 .263 

Urine pH -3 8.18 6.61 .26 .001 
-2 8.03 5.74 .16 < .001 
-1 7.94 5.81 .15 < .001 
0 7.43 6.27 .19 .082 

Plasma creatinine, mg/L -3 15.26 15.13 .47 .847 
-2 16.04 16.84 .46 .242 
-1 16.21 18.08 .53 .029 
0 16.48 18.65 .65 .036 

Urine creatinine, mg/L -3 1343 1177 154 .464 
-2 1768 1246 128 .014 
-1 2179 1616 190 .058 
0 1293 947 208 .269 
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TABLE 11 (Continued) 

Week Control CaCl2 SE p 

Plasma phosphorus, mg/L -3 61.95 58.00 1.35 .064 
-2 60.83 60.17 1.40 .746 

60.76 65.93 3.39 .302 
0 60.03 59.50 22.61 .893 

Urine phosphorus, mg/La -3 55.53 37.24 18.21 .493 
-2 50.57 14.89 15.11 .121 
-1 47.99 14.91 14.87 .142 
0 188.91 33.51 63.95 .118 

Plasma calcium, meq/L -3 4.93 4.85 .05 .252 
-2 4.88 4.86 .07 .831 
-1 4.75 4.77 .05 .830 
0 4.56 4.46 .07 .221 

Urine calcium, meq/L -3 3.66 18.17 2.577 .002 
-2 3.44 16.79 1.653 <.001 
-1 2.12 8.83 1.002 <.001 
0 3.25 6.56 1.652 .190 

Plasma magnesium, meq/L -3 1.96 1.86 .040 .103 
-2 2.48 1.95 .271 .187 
-1 1.88 1.89 .058 .868 
0 1.95 1.91 .085 .753 

Urine magnesium, meq/L -3 67.0 69.1 7.8 .847 
-2 50.7 41.7 4.3 .171 
-1 35.8 31.1 2.5 .207 
0 84.0 30.6 25.1 .165 

Plasma chloride, meq/L -3 105.8 110.8 .9 .002 
-2 107.4 114.1 .4 < .001 
-1 109.9 113.3 .8 .012 
0 107.5 109.4 1.2 .280 

Urine chloride, meq/L -3 68.3 180.6 20.3 .002 
-2 50.4 153.3 11.8 <.001 
-1 39.0 100.5 13.6 .008 
0 69.9 116.7 21.3 .159 



TABLE 11 (Continued) 

Week Control CaCI2 SE 
Plasma sodium, meq/L -3 151.40 141.62 3.5 

-2 153.20 146.59 2.7 
-1 156.56 145.63 4.0 
0 146.27 142.18 2.6 

Urine sodium, meq/L -3 9.29 22.96 4.4 
,.., 

8.19 17.41 3.0 -L. 

-1 11.53 8.93 5.3 
0 35.68 16.01 11.3 

Plasma potassium, meq/L -3 4.74 4.55 .10 
-2 4.77 4.69 .09 
-1 4.96 4.63 .14 
0 4.22 4.40 .15 

Urine potassium, meq/L -3 209.6 222.7 33.2 
-2 148.8 130.6 14.9 
-1 116.2 106.0 18:2 
0 117.2 126.5 18.7 

Plasma DCAB, meq/L -3 50.3 35.3 3.38 
-2 50.5 37.1 2.89 
-1 51.7 37.0 4.28 
0 43.0 37.1 2.83 

Urine DCAB, meq/L -3 150.6 65.0 25.2 
-2 106.6 -5.3 7.75 
-1 88.7 14.4 24.8 
0 81.8 41.0 20.0 

aurine mineral concentrations expressed as: 
(((urine mineral concentration (meq/L))/(ur:ne creatinine concentration 
(mgiL)))* 1000. 
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p 

.077 

.110 

.075 

.289 

.051 

.048 

.736 

.251 

.195 

.532 

.117 

.403 

.785 

.404 

.698 

.734 

.009 

.006 

.032 

.169 

.035 
< .001 

.056 

.188 
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Figure 16. Least Squares Mean Prepartum Edema Scores 
(0 = No Edema, 10 = Severe Edema) for 
Heifers Consuming CaC12 ( ... ) or 
Limestone ( --). 
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removal for a short period of time and refeeding may prove more useful for controlling 

udder edema than feeding CaCl2 for an entire three week period. 

Mineral Interactions 

Addition of CaCl2 significantly reduced urine pH throughout the prepartum 

period (Table 11). This agrees with Tucker et al. (67, 68). Plasma creatinine 

concentrations tended to increase as the expected calving date approached for heifers 

consuming CaCl2. Creatinine concentrations in urine tended to be lower throughout 

the prepartum period for heifers consuming CaCl2 (Table 11) and were significantly 

lower at two and one weeks prepartum (P < .06). Because the excretion rate of 

creatinine must equal the production rate of creatinine, the increased plasma creatinine 

concentrations may indicate a decrease in plasma volume, while the decreased urine 

creatinine concentrations would indicate an increase in urine output. A decrease in 

plasma volume would lower blood hydrostatic pressure and increase blood osmotic 

pressure, which should increase net absorption of extracellular fluid. The decreased 

urine creatinine concentrations and increased plasma creatinine concentrations suggest 

that CaCl2 does possess diuretic properties, even though udcer edema scores were not 

significantly affected. Plasma magnesium and phosphorus and urine magnesium and 

phosphorus concentrations were not affected by supplemental CaCl2 (Table 11). 

Plasma and urine chloride concentrations were higher (P < .05) for heifers consuming 

CaCl2 (Table 11). Chloride is absorbed from the intestines in association with sodium 

and also in exchange for HC03- (35). Chloride often is excreted in association with 

sodium. Plasma sodium tended to be lower for heifers consuming the CaCl2 diet 

throughout the trial (Table 11). Because calcium and sodium excretion are similar, an 

increase in urine calcium would increase urine chloride. Urine sodium and calcium 
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levels decreased as parturition approached; urine chloride excretion also decreased 

during this interval (Table 11). The increased plasma and urine chloride concentrations 

was the primary reason plasma and urine DCAB was lower for heifers consuming 

CaCl2. Plasma DCAB was not correlated with udder edema scores, however. Plasma 

calcium levels were not affected by diet; however, urine calcium levels were 

significantly increased throughout the prepartum period by the low DCAB. Calcium 

absorption from the intestine has increased when feeding negative DCAB (43), while 

the incidence of milk fever has been reduced (7). In response to a negative DCAB 

diet, calcium is mobilized from bone which should help prevent the occurrence of milk 

fever (7). Increased excretion of calcium in our study may be in response to increased 

calcium absorption from the i:nestines as well as mobilization of calcium from bone. 

Summary 

Addition of 1.5% CaCl2 did not significantly reduce the development of udder 

edema. Dry matter intake tended to be lower for heifers consuming the CaCl2 diet. 

Plasma creatinine tended to be higher and urine creatinine tended to be lower for 

heifers consuming CaCl2, possibly indicating dehydration of extracellular t1uid. 

Plasma calcium was not affected by treatment. Increased concentrations of calcium in 

urine may be a result of increased intestinal absorption and mobilization of bone. 

Hence, feeding CaCl2 at 1.5% of DM may be helpful in preventing parturient paresis. 
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