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CHAPTER I 

INTRODUCTION 

Hydrocarbon synthesis and rearrangement reactions have long been a major 

interest for the process industry. Recent interest in these areas have been revived due to 

the changing market structure and current trends for feed stock supplies. As crude oil, the 

main feed stock for the hydrocarbon industry, supplies are depleted and environmental 

regulations limit or restrict access, alternate methods of feed stock production are 

warranted. 

One alternative is the pyrolysis of readily available hydrocarbons or undesired 

separation by-products. Interest in this method has increased dramatically over the past 

25 years. Barker and Wang [1] report an increase in the number of publications from 8 in 

1965 to over 160 in 1985 for pyrolysis studies This increase demonstrates the widely 

recognized potential in pyrolysis reactions. 

Pyrolysis is the cleavage of molecular bonds by energy introduction [ 19]. As 

energy is introduced to the molecules, the bonds of lower association strength begin 

cleaving. This process produces smaller stable molecules and carbon radicals [39]. It is 

the production of these radicals which is of primary interest in this research. 

Hydrocarbon radicals are the basis for chain propagation or growth. As the 

radicals are formed they seek to fill the valance electron orbitals by one of two means. 

First by molecular bonding to an available radical, or second by removing a weakly 



attached functional group from an existing hydrocarbon. These methods of reaction lead 

to the possibility for chain growth or molecular rearrangement. 

Heating of the molecules is the primary method to supply the required energy for 

pyrolysis. Several types of reactors and apparatus have been used in the past with 

reasonable success [ 1]. It is the objective of this research to investigate a new energy 

transfer technique, frequency tuned capacitive discharge reactors. The use of this type of 

reactor will hopefully allow the chain propagation that is possible in pyrolysis, but has not 

been significantly observed in other reactors. 

A disadvantage that accompanies most pyrolysis applications is the high product 

stream outlet temperatures. The required heating elevates the stream temperature to 

several hundred degrees Centigrade. A cooling mechanism is thus required. Unlike 

conventional heating, an electrically induced plasma provides energy to the electrons and 

not the nucleus ofthe molecules [35]. This behavior provokes an effective electron 

temperature, allowing pyrolysis, but maintains a reactor outlet stream temperature only 

slightly higher than ambient conditions. 

Research on alternating current silent glow discharge reactors (SGDR) began at 

Oklahoma State University (OSU) as a cooperative effort with the Naval Research 

Laboratory in 1987. Earlier research [34,40) at OSU was focused at the destruction of 

airborne hydrocarbon contaminants. This work showed the potential for the cleavage of 

molecular bonds in the hydrocarbons. The work by Piatt (34], demonstrated the cleavage 

of the carbon-hydrogen bonds in a methane system. Tsai [40] again demonstrated the 

potential in the destruction oftriethylenechloride. This work also demonstrated the effects 

of tuning the reactor by frequency variations. These variations are possibly the key to 

controlling the selectivity for bond cleavage in pyrolysis. With this work as the basis for 

the bond cleavage potential in a SGDR research in the area of pyrolysis on high purity 

hydrocarbons is warranted. 
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The economic potential for this application on an industrial basis is staggering. As 

the availability of crude oil decreases through depletion and regulation, alternate sources 

of feed stocks and fuels will be mandated. Rearrangement and synthesis of abundant 

hydrocarbon sources, such as natural gas, prove economically favorable if conversion rates 

and product controls are established. Ethylene and propylene feed stocks and liquid fuels 

are but two possibilities for products. In addition to the numerous products that are 

possible, several current reactions requiring extreme temperatures or pressures could be 

initiated at reduced costs. 

The advantages that could be realized in using a SGDR for pyrolysis are as 

follows: 

* enhanced chain propagation 

* molecular rearrangements without temperature elevation. 

* controlled bond cleavage by frequency tuning. 

* no catalysis is required within the reactor. 

* low pressure operations. 

* reduced energy requirements for. existing reactions. 

The preceding paragraphs sufficiently justify this research from an applied point of 

view. Economical justification is also seen in the potential of various products and energy 

savings of existing reactions. 

Propane was chosen as the hydrocarbon used in this research. Several factors 

influenced this choice. First is the vast amount of data concerning propane pyrolysis. 

Over 100 references are listed in one article [ 42]. Second is the relative bond strength 

between the carbon-carbon and carbon-hydrogen bonds. Finally propane is a symmetrical 

molecule. This fact allows for easier product identification and chain propagation. 
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The objectives ofthis research are as follows: 

* To build a safe and operable experimental apparatus 

* To determine the possible products of chain propagation using SGDR 

pyrolysis 

* To determine the effects of reactor tuning on product distribution 

* To assess the possible scale up criterion for SGDRs 

* To assess future possibilities for SGDR pyrolysis. 

A review ofthe literature on propane pyrolysis is given in Chapter II. The 

experimental design, safety considerations and operating procedures are given in Chapter 

III. Chapter IV details the operating conditions and observations of the various reactors 

and electrode configurations used under non-destructive test. Chapter V discusses the 

expansion of the current breakdown voltage prediction method. Chapter VI covers the 

rearrangement test and chain propagation observed under various reactor operating 

parameters. Finally Chapter VII gives a discussion of the relevant data obtained and 

possible implications for future studies. 
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CHAPTER II 

LITERATURE SURVEY 

Background Information 

Pyrolysis, in the purest sense, is the transformation of a compound into another 

substance or substances through the addition of heat alone [ 19]. This definition applies to 

the majority of pyrolytic reactions. With SGDR induced pyrolysis this definition may need 

to be broadened. The actual temperature of the fluid, in our case propane, does not 

increase substantially in the reactor. Elevation of the effective electron temperature is 

physical governing the pyrolysis. This behavior will be discussed later in this section. It is 

this "transformation by heat" that will be used to evaluate the SGDR for pyrolysis 

rearrangement reactions. 

Generalizations For Hydrocarbon Pyrolysis 

Peytral's Rule ofLeast Molecular Deformation [33] states that the transformation 

caused by heat will follow the reaction which requires the least possible deformation of the 

molecule. At high temperatures the resulting compounds will have molecular bonds nearly 

identical to those in the original compound. Several reactions supporting this postulate 

are available but lie outside the scope of this research. This postulate fails to allow for the 

prediction of where scission will occur in the hydrocarbon chain or what path is the least 
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deforming. It emphasizes that a relation between the original compound and the products 

of it's pyrolysis does exist and is often predictable. 

Bredt's Rule [7], Blanc's Rule [5] and Haber's Rule [17] address the pyrolysis of 

cyclic rings. Bredt postulates that the meta and para positioning on various cyclic acids is 

a function of the ring carbons ability to form double bonds. Blanc suggested similar trends 

in cyclic anhydrides. Haber generalizes that the carbon-carbon linkage in the cyclic rings 

as more stable than the carbon-hydrogen bonds. This is reversed in the case of aliphatic 

hydrocarbon series. 

Berthelot's Theory of Pyrogenic Reactions [ 4] is divided into three parts in an 

effort to explain the reaction mechanisms in general pyrogenic reactions. The three 

aspects to Berthelot's theory are as follows: 

1. In addition to pyrolytic reactions of decomposition, there are also reactions of 

synthesis. In the latter, there is progressive hydrogen elimination, accompanied by the 

gradual formation of complex hydrocarbons, which eventually may result in the deposition 

of carbon. 

2. The building-up and tearing-down processes are considered to limit each other. 

The long chain hydrocarbons produced decompose into smaller radicals, which recombine 

into higher chained molecules. This leads to a complicated equilibrium between an 

increasing number of hydrocarbons. 

3. These reactions occur whether the hydrocarbon is in contact with hydrogen or 

other hydrocarbons. 

Berthelot's theory met with a great deal of criticism. Haber [ 1 7] noted that at 

progressively higher temperatures graphite always appears in pyrolysis, and coke is never 

hydrogen free. Haber also criticized Berthelot's second statement in that no evidence is 

shown of an equilibrium being established due to external conditions. 

Berthelot's theory, though not concrete in all areas, does contribute to the general 

pyrolysis reaction mechanisms. The idea offormation and deformation of a numerous 
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collection of hydrocarbons within the pyrolysis reactor is based on the radical formation 

possible on all hydrocarbons. Based on this, one should see a wide range of hydrocarbons 

formed during pyrolysis. Although previous work shows that the primary products of 

propane pyrolysis to be ethylene, methane, propylene and hydrogen [9], the application of 

the SGDR may alter the products and thus Berthelot's general thoughts on formation and 

deformation may be valid. 

The ultimate in dissociation theories belongs to Nef [28]. Nef theorized that the 

original compound dissociates into an ephemeral molecule ofbivalent carbons and thus 

reacts with itself or with other neighboring substances. This mechanism would tend to 

produce short chain hydrocarbons. As the hydrocarbons were formed, pyrolysis would 

occur on these new compounds. According to Nefs Theory, these in turn would 

dissociate into the bivalent carbon molecules. Actual formation of products would be 

restricted to the outlet portion of the reaction vessel where the dissociation is quenched 

due to temperature reduction. 

Generalization Summary 

Several theories have been represented in the above paragraphs. Although no 

single theory is without flaw or explains the complex mechanisms evolved in pyrolytic 

reactions, they serve as preliminary guidelines for the application of the SGDR pyrolysis. 

In all of the generalized theories one link is common, the reactions are controlled by the 

radical production by bond scission. This fact is the underlying control for pyrolysis 

reactions. The ability to predict and control which bond or bonds dissociate will govern 

the product formation. It is one objective of this research to investigate scission control 

through the frequency tuning in a SGDR 
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Propane Pyrolysis 

The pyrolysis of propane has been studied using several reactors and techniques. 

Five different approaches that have been used previously will be discussed in this section. 

Shock-tube pyrolysis conducted by Benson [3] in the temperature range of 830-

1180 oc and atmospheric pressure showed a decomposition reaction. The products of 

ethylene, hydrogen, methane and ethylene were shown to follow two routes with 

approximately equal importance. 

C 3H8 -> C3H 6 + H2 (1) 

and 

Benson further suggest that propylene reforms to yield acetylene. This first order 

mechanism is given in Appendix A. 

(2) 

Lifshitz and Frenklach [25] conducted similar tests using a temperature range of 

800-100 oc and a pressure of 200 Torr. The reaction in this range does not suggest the 

formation of allenes from either propylene or ethylene. It is theorized that this occurs at 

temperatures in excess of 1000 °C. The proposed reaction scheme for this mechanism is 

given in Appendix A. 

Static system pyrolysis before 1960 followed approximately the same experimental 

design. A quartz vessel was used in which the temperature was controlled by a stainless 

steel block. Pease [31], Marek and McCluer [26], Paul and Marek [29],Pease and Durgan 

[32], Rice [35], Fery and Hepp [16], Dintess and Frost [13, 14], Steacie and Puddington 

[38], Hobbs and Hinshelwood [ 18], and Ingold et al. [20] all conducted experiments over 

the temperature range of 25 - 400 oc using the static system. Collectively the conclusion 

was reached that the decomposition reactions are first order. Again free radicals 

formation was the governing factor in the reaction mechanism. 
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Laidler [24] studied propane pyrolysis over the temperature range of 530-670 oc 

and at pressures up to 600 mm Hg. Conclusions again showed free radical formation was 

the controlling mechanism. In this study one new development was considered, the 

reaction order increased to 3/2 at temperatures over 650 oc Both mechanisms are given 

in Appendix A 

Propane pyrolysis utilizing photosynthesis techniques were studied by Steacie and 

Dewar [37], Darwent and Steacie [11] and Bywater and Steacie [10]. These studies were 

similar to the static system experiments with the exception that energy in the form of 

excited mercury atoms and/or light was used rather than heat. The reaction mechanism 

from the study of Bywater and Steacie [I OJ compares very similarly to previously 

proposed mechanisms. The mechanism is listed in Appendix A. 

Back and Takamuku [2] studied the decomposition ofpropane using similar 

photosynthesis techniques in the temperature range of300-400 °C Verification that the 

propyl radicals formed propylene was confirmed. The mechanism of Bywater and Steacie 

[ 1 0) was used to describe the reaction. 

Kunugi [23] studied the effects of propane pyrolysis in a tubular reactor. The 

experimental apparatus consisted of a transparent quartz tube at atmospheric pressure. 

Temperature ranges of 750-850 oc were investigated. The primary products were again 

methane, ethylene, hydrogen, propylene and ethane. Some C4 and heavier hydrocarbons 

were also produced at very low rates. The reactions previously shown in equations 1 and 

2 describe the overall reactions for this system. The decomposition rate was taken as that 

proposed by Laidler [24] at 3/2 order. The mechanism for this case is given in Appendix 

A 

Kershenbaum and Martin [22] studied non isothermal pyrolysis of propane in 

tubular reactors. Temperature ranges of 800-1000 °C were studied. This study used 

dilute propane mixtures with nitrogen in order to study the kinetics ofthe pyrolysis. The 

overall order was found to be between 1 and 1.2. This agrees well with previously 
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published results. The Laidler mechanism describes this pyrolysis and is given in Appendix 

A. 

The above tubular reactor studies fail to detail the physical situation within the 

reactor on a molecular level. This information would be of particular interest in the 

development of a SGDR theory. Egsggaard and Carlson [ 15] detail the steps of pyrolysis 

in two types of tubular reactors. Both Knudsen and Curie-point reactors were analyzed 

using a "random walk" approach of single molecules. 

In Knudsen cylindrical reactors, the inside of the reactor wall is kept at a constant 

temperature by an arbitrary means. Either electrical heating or thermal combustion 

heating is adequate on the exterior of the reactor. The material of interest is then passed 

through the reactor vessel. It is the collision of the molecules with the heated walls that 

allows pyrolysis to take place. A relationship between reactor geometry, temperature and 

molecular weight of the substance was developed to allow estimation of the collision 

frequency. It is this collision frequency which governs the pyrolysis effects. 

Curie-point reactors operate in a manner in which elements within the reactor are 

heated to the desired temperature, while the shell of the reactor remains at ambient 

temperature. In this case the molecular collisions with the elements increase the molecular 

energy to establish pyrolysis. Collisions with the exterior reactor wall deactivate the 

energy within the molecule and hinder pyrolysis. 

An effective SGDR will avoid the requirements ofthese wall or element collisions. 

Within the reactor the elevated electron temperature is throughout the volume of the 

plasma zone. Localized areas for collision are restricted to the exterior reactor walls 

where some deactivation is probable. The efficiency of a SGDR of the same volume 

should be higher than either a Knudsen or Curie-point reactor due to the difference in 

physical collision requirements. 

Plasma jet studies for propane pyrolysis by Nishimura [2 7] used an induction

coupled argon plasma jet. Two cases were studied, cocurrent and countercurrent propane 
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injection. Temperature ranges from 18,000-20,000 OK in the plasma center to 10,000-

12,000 °K on the periphery were noted. Cocurrent products were carbon, hydrogen and a 

trace of acetylene. Carbon formation on the induction coils limited the duration times for 

this case. The countercurrent cases yielded products of acetylene, ethylene, hydrogen and 

soot. This reflects back to Benson's remarks [3] concerning propylene decomposition 

into acetylene at elevated temperatures. The reaction mechanism is given in Appendix A. 

Propane Pyrolysis Summary 

It is evident that the governing factor in pyrolysis is the production of free radicals. 

Throughout the previous paragraphs this has been the common mechanism of reaction. 

The ability of selective bond scission has been shown to be the key to control product 

distribution. Previous pyrolysis methods have been limited in the variables of control to 

temperature, retention time, reactor geometry and concentration. It is an objective ofthis 

research to investigate frequency tuning of a SGDR to assist in product distribution 

control and selectivity. During this research the products of interest will be limited to 

those supporting the chain growth portion ofBethelot's theory. More specifically 

hydrocarbons with a chain length of 4 carbons or more. 

Plasma Origin And Definitions 

Plasma origins date to the beginning of time and is the most abundant form of 

matter in existence. Star formations were the first sources of plasmas but were 

unrecognized as such for millions of years. Sir William Crookes [6) is honored for the 

first scientific reference to plasmas in 1879. Crookes' reference to plasmas was as a 

"fourth state ofmatter". Crookes' tube plasma was the first manmade plasma on record. 

Later in 1928, Langmuir [6] renamed Crookes "fourth state ofmatter" plasma. 
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Two types of plasma exist, thermal induced and electrically induced. Although 

both induction methods result in plasma formation, a marked difference exist between the 

two. In thermal induction, the plasma is isothermal. That is the electron temperature and 

the neutral species temperature are equivalent. In electrically induced plasmas this is not 

the case. A difference of several orders of magnitude can exist between the negative and 

neutral species temperatures. 

A primary objective of this research is to study the effects ofthis difference on the 

pyrolysis of propane. All previous studies indicate the formation of radicals by bond 

scission as the governing mechanism of reaction. No deviation from this conclusion is 

anticipated in a SGDR. The mechanisms which govern formation of the radicals may 

possibly vary, but a detailed mechanism explanation is outside the scope of this research. 

The three possible mechanisms are: 1) direct kinetic transference from electron 

bombardment 2) vibrational effects from electrical field interference and 3) hydrogen 

removal by radical interaction. A comparison of products from the SGDR and previous 

pyrolysis applications will be given in the Conclusion section of this report. 

Tsai [ 40) developed a relationship between the reactor geometries, density of the 

gas to be ionized and the dielectrics of the arrangement. Specific details are given in the 

Non-Destructive Test section ofthis report. This predicted "break-down" voltage is 

defined as "the effective value of the voltage required to start a visible corona." 

This definition is only a qualitative perspective. The point at which a plasma 

becomes visible is dependent on several factors. Ambient light sources are the primary 

factor. Earlier experiments [ 19) in the absence of ambient light sources reveal the best 

conditions for plasma observation. Due to this lack of a precise definition for a visible 

plasma, the following qualitative measures were established. 

A class 1 plasma denotes the first visible signs of plasma formation in the reactor 

annulus. In class 2 formations, the plasma extends across the annulus and covers at least 

one-half the reactor circumference. Class 3 plasmas extend this area to approximately 

12 



75% ofthe available plasma generation zone. A class 4 plasma is fully developed through 

the reactor zone with no visible voids. Because plasma intensity can increase after full 

formation occurs, plasmas above a fully developed state will be classified as 4+. Although 

these are arbitrary classifications, they serve as a qualitative means for description. 

General Plasma Mechanisms 

Reactions taking place within an induced plasma are believed to follow the same 

general pyrolysis mechanisms that were discussed previously in this section. By supplying 

energy to the electrons ofthe molecules, scission, or bond separation, occurs. This bond 

cleavage results in radical production ofboth negatively and positively charges species. 

This results in most plasma reactions being first order for decomposition and second order 

for recombination reactions. 

This radical formation is not limited to the initial compound introduced in the 

reactor. In hydrocarbons carbon-carbon, carbon-hydrogen and carbon-functional group 

bonds can be cleaved in any existing compound. Two factors control the order ofbond 

cleavage, association strength and radical stability [30]. Estimation ofbond scission is 

somewhat predictable based on these factors. The order ofbond-dissociation energies is 

listed in Table I. 

The decreasing order of radical stability is tertiary radical > secondary radical > 

primary radical> methyl radical [39]. 

Hydrocarbons are normally good insulators, especially in the gas phase. However 

under the influence of a sufficient electrical field, these molecules are ionized. It is the 

ionization effects that allow the plasma formation within the SGDR. As ionization occurs 

current passes from the outer electrode through the gas in the reactor to the inner 

electrode. Details for this SGDR will be given in the Experimental Design section. 
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TABLE I 

BOND DISSOCIATION ENERGIES 
FOR A-B BONDS (KCAL/MOLE) [39] 

Component. 
A B -> H CJ Br I OH NH2 CH3 CN 

CH3- 105 85 71 57 93 85 90 122 
C2H5- 98 80 68 53 91.5 82 86 118 
i-C3H7- 95 81 68 53.5 93 82 86 NA 
t-C4H9- 93 81 67 52 93 82 84 NA 
C6H5- 1 1 1 96 80.5 65 I 11 102 102 131 
C6H5CH2- 88 72 58 48 81 71 76 NA 
CH2 CHCH2- 86 68 54 41 78 NA 81 NA 
CH3CO- 86 81 66 49 107 NA 81 NA 
C2H50- 104 NA NA NA 44 NA 83 NA 
CH2 CH- 110 90 78 NA NA NA 100 130 
H- 104.2 103.2 87.5 71.3 119 107 105 125 

Literature Survey Summary 

The literature cited in the preceding paragraphs provide sufficient background 

information for mechanisms and reactions of propane pyrolysis. Although no specific 

information on the use of a SGDR is given, the mechanisms involved are expected to be 

very similar. Radical formation by bond scission has been shown to be the controlling 

mechanism in all studies. The application of the plasma jet pyrolysis shows the 

effectiveness of high temperature plasmas for decomposition. It is an objective ofthis 

research to investigate the application of a SGDR using the mechanisms and general 

pyrolysis theories ofthis survey. 
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CHAPTER III 

EXPERIMENTAL DESIGN 

This section is devoted to the topics of experimental apparatus design, materials 

used, safety considerations, sample collection and analytical techniques used. Each topic 

will be discussed on an individual basis within this section. 

Safety Considerations 

The first step in designing this, or any, experimental apparatus is the consideration 

for safe equipment operation. This is especially important in studies involving flammable 

or explosive substances. Due to the flammability of the material used several steps to 

ensure minimal risks to persons or property were taken. These steps are listed as follows: 

I) The reactor, collection vessels, waste gas flare and material containment 

cylinders were located in an exterior explosion proofbay. 

2) Power sources and controls were located within the Hazardous Reaction 

Laboratory (HAZ LAB). This isolates the power source from the flammable material. 

3) Work performed on the test material was conducted while two persons were 

present in the HAZ LAB. 

A schematic drawing showing the location of the reaction apparatus, waste gas 

flare, flow control, containment cylinders and power/control sources is given in Figure 1. 
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Feed & Purge 
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Explosion Bay 

Figure I. Location of Experimental Equipment 

Experimental Apparatus Description 

Combustion 
Gases 

The experimental apparatus is composed of five distinct areas of concern. These 

are the power and control source, the reactor, feed gas storage and rate control, sample 

collection and waste gas incineration. Each area will be discussed separately. An 

equipment list is also provided in Table III. A schematic ofthe experimental apparatus is 

shown in Figure 3. 

The electrical system in the apparatus consisted of an AC power supply, an 

oscillator for frequency adjustment, a transformer for voltage increase, a multimeter, and a 

watt meter for total power consumption measurement. The only piece of electrical 

equipment not located within the HAZ LAB was the transformer. This was located in the 
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explosion bay. Power from the 11 OV wall outlet was passed through the adjustable AC 

power supply and frequency tuner to the transformer for voltage increase. The watt meter 

was positioned between the wall outlet and the power supply. Multimeter readings 

allowed for the monitoring of the secondary voltage potential across the reactor. 

The reactors used in this study consisted of two concentric glass cylinders to form 

an annulus for gas flow. Electrodes were placed around the outer cylinder and within the 

inner cylinder. The dielectric effects of the glass cause diffusion of the current into the 

annulus when a potential is applied. The plasma then forms within the annulus. The 

construction ofthis reactor configuration allows for complete separation ofthe gas and 

plasma flow from the electrodes. Various reactors and electrode configurations were 

used. Table II list the reactor specifications. Electrode configurations applied will be 

detailed for each study case. Figure 2 shows a schematic of the reactors used with the 

two types of electrode configurations. 

Reactor Material 

A Quartz 
B Pyrex 
c Pyrex 
D Pyrex 
E Quartz 

TABLE II. 

REACTOR SPECIFICATIONS 
FOR REACTORS USED 

I. D. O.D. Length 
Outer Tube Inner Tube 

(em) (em) (em) 

2.78 1.80 25.400 
4.80 3.00 44.132 
4.80 3.00 91.440 
4.80 3.00 I 21.25 
4.80 2.80 121.90 
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Figure 2. Lateral Cross-Section of Reactor Configurations 

Feed gas storage consisted of high pressure containment cylinders with appropriate 

regulators. This allowed for the line pressure of the feed and purge gases to be adjustable. 

Installation of a pressure fluctuation dampener was required upstream from the flow 

control. Slight changes in flow were caused by pressure fluctuations at the propane 

regulator. These fluctuations were due to the temperature drop of the propane as it 

passed through the regulator. The flow was controlled by a calibrated rotameter in line 

prior to the reactor. Calibration was done using a "bubble flow meter" to measure the 

flowrate as a function oftime. Regressional analysis on the data points yielded the 

following correlation 

Y = 9.2749X- 27.855 (3) 

Supporting calculations and data are given in Appendix B. 
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Sample collection was conducted on the assumption that products of interest could 

exist in two phases. Hydrocarbons of a chain length greater than 16 will exist as a solid at 

room temperature. Chains between 5 and 16 carbons in length exist in a liquid phase, 

while lesser chains exist as a gas. Thus two methods of sample collection were employed. 

The reactor was cleaned before and after each run to determine the material residue 

solidified within the reactor. This residue was removed from the reactor walls with 

solvent for product analysis. Liquid phase products were collected in a ice water trap. 

This cold trap allowed collection of all hydrocarbons with a chain length of 5 or greater. 

Removal of the sample vessel from the trap allowed the remaining liquid sample to be 

analyzed by gas chromatography. 

Excess gas was incinerated in a low volume flare located away from the building 

and explosion bay. Waste gas from the reactor was fed into an additional propane stream 

for incineration. Oxygen for combustion was supplied with ambient air via a natural 

convection force within the flare. 

Materials used were restricted to the feed gas, purge gas and solvent for residue 

removal. Nitrogen, used as the purge gas, was Linde Specialty Gases, dry grade, at 

99.9%. Feed gas was Linde Specialty Gases CP grade propane Stock No. UN1075, 

99.6%. Analysis for the feed gas is given in Appendix C. Solvent for residue removal was 

Fisher Analytical Grade methylene chloride, Stock# 23566. 
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ITEM 

AC Power Supply 

Oscillator 

Flow Meter 

Watt Meter 

Multimeter 

High Voltage Probe 

TABLE III 

EQUIPMENT LIST FOR 
EXPERIMENTAL APPARATUS 

Specification 

California Instruments, Model 101 TC 

California Instruments, Model 850 T 

Rotameter, Fischer & Porter Co. Model No. 1 OA6, 
32N, Tube Specifications, FP-1/8-16-G-5/448 
D009UOI 

General Electric, Model No. 3720341, Amp-5110 
Volts- I 00/200, Watts 500/1000/2000 

John Fluke Mfg. Co., Model No. 8050 A 

John Fluke Mfg. Co., Model 80K6 

High Voltage Wiring Taylor Pro-Wire, 8mm Silicone core 

Transformer 

Flare 

Jefferson Luminous Tube Transformer, Cat. No. 
721-411, Primary voltage 120V, 60Hz, Secondary 
voltage 15,000V, 60 MA, Mid Point Grounding 

Bunsen Burner, Model No. 124 
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Procedure 

The following procedure outlines the basic steps taken in the experimental runs. 

1) Sample collection vessels were placed in the apparatus. 

2) Nitrogen flow was established and connections were checked for leaks. 

3) Coolant was added to the cold trap as required. 

4) After all leaks were corrected, nitrogen was allowed to flow for 5 minutes to 

insure system purging. 

5) Propane flow was established at 10 psig line pressure. The flare was ignited. 

6) Propane was allowed to flow for 3 minutes throughout the system. 

7) Reactor was started and adjusted to desired settings. 

8) Reaction was allowed to run for a minimum of 60 minutes 

to insure steady state plasma operation and system conditions. 

9) Power to the SGDR was terminated. 

1 0) Liquid phase sample removed from the nitrogen trap. 

11) Residue within reactor removed by solvent washing. 

12) Analytical procedures were conducted on individual samples. 

This basic procedure was followed in an effort to establish experimental 

consistency within the data set. Various reactor configurations, operating conditions and 

feed flow rates are noted on Run Data Sheets. An example ofthis sheet as completed for 

run number HR.-04 is given in Appendix D. 
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Analytical Procedure 

Due to the number of possible compounds in reactions ofthis nature, individual 

component identification and compositions were not determined. Trends in production 

composition were broken into groups of components by approximate chain length and 

retention times in the liquid product. 

Gas Phase Analysis 

The main objective ofthis research was to investigate chain propagation. 

Therefore analysis of components that exist in the gas phase at room temperatures was not 

conducted. 

Liquid Phase Analysis 

Liquid phase components recovered from the cold trap, after reaching ambient 

temperature, were analyzed using gas chromatography. Gas chromatograph specifications 

are listed in Table IV. 

Several components were analyzed under these operating conditions. Retention 

times ofthese components were recorded. Table V list the component and corresponding 

retention times. 

Three groups were developed in classifYing the liquid products. Group 1 consisted 

of components whose retention times are between n-pentane and n-octane. Group 2 

retention times are between n-octane and n-decane. Group 3 retention times follow 

n-decane. This classification allows for group product distribution and the shifting of such 

groups under various reactor operating parameters 
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TABLE IV 

GAS CHROMATOGRAPH SPECIFICATIONS 
FOR LIQUID PHASE SAMPLES 

Parameter 

GC Make and Model 
Column Type and Cat.# 
Carrier Gas and Flow Rate 
Detector Type and Temp. 
Injector Temp. 
Oven Ramp Rate 

Injection Amount 

TABLE V 

Specification 

Hewlett-Packard Model # 8090A 
Alltech Cap. Cat. # 13638 

He 190 mVmin 
TCD, 250 oc 
250 oc 
Ramp A 8 oc/min 
Ramp B 250Cfmin 
1 microliter 

COMPONENT RETENTION TIMES 

Component Retention Time 

Pentane 
Hexane 1.44 to 1.48 
Heptane 2.39 to 2.41 
Octane 4.53 to 4.55 
Decane 9.39 to 9.42 
Dodecane 13.66 to 13.79 

A mixture ofthe six components, used as retention time determinates, was 

analyzed in a matrix of methylene chloride solvent. The chromatogram for this mixture is 

given in Appendix M. The separation seen allows for the detection ofvarious components 

with alternate retention times. The chromatograms of the actual liquid samples and 
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percent conversions will be given in Chapter VII. Conversions will be estimated on a 

mass basis from the collected sample. 

Solid Phase Analysis 

Residue remaining in the reactor as solid phase components were removed via 

solvent washing. The solvent containing the residue was placed in pre-weighed sample 

containers and allowed to evaporate. A net mass ofthe residue was then determined for 

conversion calculations. 

25 



CHAPTER IV 

REACTOR EVALUATIONS UNDER 
NON-DESTRUCTIVE TEST 

Previous work using SGDRs [ 12,40] characterized various reactors using non

destructive tests. Although these tests gave some general trends of the reactors, they were 

limited. Both Desai [ 12] and Tsai [ 40] limited their non-destructive observations to dry 

air only. Desai [ 12] further limited his observations to only one reactor and electrode 

configuration. Tsai , while developing a prediction model for breakdown voltage and 

frequency, did not alter the electrode configuration or effective plasma length in any 

reactor studied. It is one objective ofthis research to expand this previous work by 

altering the effective plasma length and observe the changes that result. 

Procedure 

The procedure for non-destructive test is as follows: 

1) The reactor was placed in the experimental apparatus with the desired 

electrode configuration. 

2) All required flow connections were made and checked for leakage. 

Sample collection vessels were by-passed. 

3) All electrical connections were made. 

4) Flow ofthe test fluid was established and set to desired flowrate. 
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5) Primary voltage to the reactor was set. 

6) Frequency was increased from the initial setting to the final frequency by 20 

Hz increments. 

7) Operating conditions for each frequency point were recorded. 

Reactor A 

Non-destructive test for reactor A using three test fluids and the two electrode 

configurations yielded the data collected in Tables E I through E7 listed in Appendix E. 

Figures 4, 5 and 6 graphically represent the relationship between secondary voltage and 

frequency at various primary voltages for ambient air, nitrogen and propane using a 

wrapped outer electrode configuration. Figures 7, 8 and 9 represent the data for the same 

test fluids and flow rates utilizing a mesh outer electrode configuration. 
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As frequency is altered, the secondary voltage passes through a maximum. Earlier 

work ofTsai and Desai concluded the same general trends existed, but only dry air was 

used as the test fluid. As seen in Figures 4, 5 and 6 the location for maximum secondary 

voltage varies by changing fluids. As an example, using a primary voltage of 80 volts the 

frequencies at which the maximums occur are 500-520 Hz for air, 460-480 Hz for 

nitrogen and 480-500 for propane with the mesh electrode configuration. It is evident that 

secondary voltage is a weak function ofthe physical properties of the fluid. Tsai [40] 

included this is the prediction model, but failed to show any data application due to the 

one fluid approach. 

Outer electrode configuration also effected secondary voltage. As seen in Figures 

7, 8 and 9 the rate of secondary voltage loss is decreased with the mesh outer electrode 

after the maximum was reached. This trend deviates in the highest primary voltage 

applications where a reversed effect is noted as the rate of loss is increased after the 

maximum. Secondary voltage maximums also shifted with this electrode configuration. 
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Comparison of the same fluid, reactor geometry and primary voltage show this change. 

As an example using propane and a primary voltage of 80 volts the shift is from 400-500 

Hz using the wrapped outer electrode to 380-400 with the mesh outer electrode. 

In all cases power consumption for the system increased as the maximum 

secondary voltage was approached. Power levels varied as the primary voltage was 

increased. This change in power requirement was a decrease at the lower frequencies, but 

an increase at the maximum secondary voltages. Figure I 0 displays the power 

requirements for the propane test using the mesh outer electrode configuration. All 

experiments using reactor A have similar trends. Data for the power consumption is listed 

in Table E7 in Appendix E. 
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Reactor B 

A similar approach was applied to reactor B using the same test fluids, flowrates 

and operating parameters. Figure 11 displays the data collected using ambient air and a 

wrapped outer electrode configuration. Figure 12 displays the same operating parameters 

using the mesh electrode configuration. 

The same trends seen in reactor A also were developed in reactor B when 

comparing air for both electrode configurations. Tests using nitrogen and propane were 

conducted with only the mesh electrode configuration. Figures 13 and 14 display the 

effects of frequency on secondary voltage for nitrogen and propane tests1respectively. 

Data from these test are given in Tables Fl through F4 located in Appendix F. 
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The same effects in fluid and electrode changes are seen in reactor B that were 

observed in reactor A Changes in the frequency required to obtain the maximum 

secondary voltage are again noted as functions of fluid type. electrode configuration and 

reactor geometry. 

Power consumption also followed the same trends as in reactor A. Increases in 

required power is evident near the maximum secondary voltages. Figure 15 displays the 

power requirements using propane with a mesh outer electrode configuration. 
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Reactor C 

900 

Reactor C has the same geometry as reactor B, but is increased in length. An 

effective plasma length of36 inches can be observed with this reactor. Figures 16, 17 and 

18 display the effects of frequency on secondary voltage for reactor C using a mesh outer 

electrode configuration on air, nitrogen and propane, respectively. Power consumption 

again follows the general trends as seen in reactors A and B. Figure 19 displays the data 

from the propane analysis. Data from these analysis are given in Table G I through G4 in 

Appendix G. 

In addition to the runs for reactor characterization, reactor C was also used to 

study the effects of plasma zone lengths on secondary voltage and power requirements. 

This reactor was chosen due to the 36 inch available zone length and geometry similarities 

to reactor B. Details concerning trends caused by this variable will be discussed at the end 

ofthis section. 
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Trends in the power requirements for reactor C follow those previously observed. 

Comparisons ofFigures 10, 15 and 19 all show that maximum power requirements are at 

the maximum secondary voltages. This trend holds for all reactors, electrode 

configurations and fluids studied. 

Trends in the secondary voltage follow the same basic pattern in all reactors. In 

reactor A, B and C a maximum is reached at or through a narrow range of controlled 

frequencies. This maximum then decreases as the frequency deviates from the optimum. 

Although this decrease is seen in all applications, the rate varies as outer electrode 

configuration was altered. Comparison of Figures 4 & 7, 5 & 8 and 6 & 9 show the 

application of the mesh configuration slows the rate of secondary voltage loss when all 

other variables were held constant. This lengthening of the optimum frequency range will 

allow a more detailed study of frequency effects on bond cleavage in the rearrangement 

tests. 

By applying a least squares fit to the data after the maximum secondary voltage, a 

statistical comparison ofthe rate losses was obtained. This method is not intended to fit 

the data, but allows comparison. Table VI gives these calculated rates for reactor A 

configurations. Supporting data are given in Appendix H 

It is also noted that as the electrode configuration was changed, maximum 

secondary voltages decreased. This effect may be contributed to the increase in plasma 

volume within the reactor. In applications using the wrapped electrode configuration the 

visible plasma was confined to the areas extending from the outer electrode to the inner 

mesh electrode. This produced a spiral shaped plasma within the reactor annulus. 

Applications of the mesh outer electrode configuration eliminated this effect. Mesh outer 

electrode configurations produced a fully developed plasma volume within the annulus It 

is believed that this increase in plasma volume is responsible for the secondary voltage 

decrease. As required plasma volume is increased, by increases in the outer electrode 

surface area, the volume of gas being ionized also increases. This increases the 
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capacitance of the reactor. Details will be discussed in the model modification section. 

Table VII show a comparison of the secondary voltages for reactor A at various primary 

voltages using the two outer electrode configurations. Reactor B shows the same trend 

for air. Data for this comparison is given in Appendix H. 

Fluid 

Air 
Air 
N2 
N2 
C3H8 
C3H8 
Air 
Air 
N2 
N2 
C3H8 
C3H8 

TABLE VI 

COMPARISON OF SECONDARY VOLTAGE 
LOSS RATE FOR REACTOR A 

Primary Voltage Frequency Electrode 
(Volts) (Hz) Configuration 

40 640-800 wrapped wire 
40 640-800 wire mesh 
40 660-800 wrapped wire 
40 660-800 wire mesh 

40 680-800 wrapped wire 
40 620-800 wire mesh 
70 580-800 wrapped wire 
70 500-800 wire mesh 
70 540-800 wrapped wire 
70 480-800 wire mesh 
70 560-800 wrapped wire 
70 420-860 wire mesh 
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Rate Loss 
(6SV/AFreq.) 

0.014 
0.0028 
0.019 
0.00065 

0.021 
0.0031 
0.010 
0.0046 
0.010 
0.0051 
0.0055 
0.0058 



TABLE VII 

COMPARISON OF SECONDARY VOLTAGES 
FOR REACTOR A AT V ARlO US PRIMARY 

VOLT AGES AND ELECTRODE 
CONFIGURATIONS 

Fluid Primary Voltage Frequency Electrode Secondary Voltage 
(Volts) (Hz) Configuration (kV) 

Air 30 680 wrapped wire 9.4 
Air 30 720 mesh electrode 9.0 
Air 40 660 wrapped wire 11.0 
Air 40 640 mesh electrode 9.4 
Air 50 620 wrapped wire 12.2 
Air 50 600 mesh electrode 10.2 
Air 60 600 wrapped wire 13.2 
Air 60 540 mesh electrode 10.6 
Air 70 560 wrapped wire 14.4 
Air 70 500 mesh electrode 11.4 
Air 80 500 wrapped wire 15.4 
Air 80 420 mesh electrode 14.6 

It is these deviations that warrant the further investigation of Tsai's [ 40] prediction 

model. Under the current model, Tsai uses a relationship between the dielectric constants 

ofthe reactor walls and gas and reactor geometry. Equation (4) shows this predicted 

relationship as: 

where Vb =Predicted Breakdown Voltage, kV 

Kg = dielectric constant of the reactor walls 

Ka =dielectric constant ofthe gas in the annulus 
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Pr =relative density of gas in the annulus, g/cmJ 

Di =corresponding diameters as shown in Figure 20., em 

r-~~--------03 

r---)~--~~-------02 

~--~~~r_-~++----~--------01 

Figure 20 Cross-section View ofReactor Annulus 

Although this model predicts the breakdown voltage for the reactors in Tsai's 

studies, the effects of plasma length in the reactors were not considered. This effect is one 

objective of this research and will be observed in applications of reactor Cas discussed. 

The changes in operational parameters have shown to produce similar effects on all 

the reactors observed. This observation is the basis for studying the effects of plasma 

zone length using only one reactor diameter ratio. It has also been shown from the 

previous non-destructive operations that the application of the copper mesh electrode 

provides plasma formation in a more uniform manner. Therefore, only reactor C with a 

copper mesh outer electrode configuration will be used in the observation oflength 

effects. 
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Length Effects on Plasma Formation 

Effects which are caused by the length of the plasma were studied in the following 

manner. By varying the effective lengths of the outer electrode and holding all other 

variables constant, the effects oflength are isolated. Initially one wrap of 12 gauge wire 

was used as an outer electrode. The range of operating frequencies and primary voltages 

were reproduced as in the non-destructive testing. Secondary voltage and power 

requirements were recorded for each condition. The length of the outer electrode was 

then increased and the procedure repeated. Five lengths were used for data collection. 

Figures 21 through 25 display the effects ofvarying the outer electrode length on 

secondary voltage at various primary voltages and frequencies. Tables ll through IS in 

Appendix I list the collected data. 
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The trends seen in experiments using these reactor configurations follow those 

seen in the non-destructive test for reactors A, B and C. Secondary voltage reaches a 

maximum at some specific frequency for each primary voltage tested. Comparison of 

Figures 21 through 25 show a deviation in this location and maximum value that is 

dependent on plasma zone length only. As the plasma zone length was increased, 

secondary voltage decreased and maximum location was shifted to a lower frequency. 

This trend holds for all cases except at a primary voltage of 30 V where plasma formation 

was difficult to establish. Figures 26 through 33 display these effects. Collected data are 

listed in Tables 16 through 113 in Appendix I. 
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The data collected is sufficient to establish the need for modifications in the 

prediction model. Prediction ofthe required breakdown voltage using Tasi's model will 

not allow for length deviations. Further problems arise from the definition ofbreakdown 

voltage. The actual magnitude of the visual plasma is not defined. The first visual plasma, 

class 1 by definition, occurs at a much lower secondary voltage than a fully developed 

plasma, class 4 by definition. Modification of this model will be in an effort to relate 

plasma length, reactor geometry and required dielectric values to the development of the 

first visible class 4 plasma in each reactor geometry. 

Chapter V details the model modification. 
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CHAPTERV 

MODEL MODIFICATIONS 

Examination ofFigures 26 through 33 revel the length effects in the required 

breakdown voltage. As the length was increased the secondary voltage decreased for the 

formation of a class four plasma. Tsai failed to investigate this variable in his prediction 

model. The prediction model, equation 4, was applied to the reactors used in Tsai's 

research [ 40] with acceptable results. Deviation ranged from 0.1 to 9.2% in the reactors 

studied. Development of a more accurate prediction method for the formation of a class 

four plasma was required after application of the previous model to reactors used in this 

portion of study. Deviation between the predicted values and those experimentally 

obtained, using equation 4, are listed in Table VIII. 

This data shows that as the length decreases from the value used in Tsai's research 

the deviation increases. This trend can be explained by examination ofthe capacitance of 

the reactors. 

In general, capacitors consist of charged plates separated by a dielectric. Figure 34 

displays the typical capacitor arrangement using two flat plates. 
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TABLE VIII 

DEVIATIONS OF PREDICTED BREAKTHROUGH 
VOLT AGES AS COMPARED TO 

EXPERIMENTAL VALUES 

Reactor Configuration 
(mesh outer electrodes) 

Reactor B, 44.13 em 
Recator C, 0.1 em 
Reactor C, 6.35, em 
Reactor C, 16.51 em 
Reactor C, 31.75 em 
Reactor C, 44.13 em 
Reactor E, 44.13 em 

Charged Plate 
(+) 

Predicted Value Experimental Value Deviation 
(kV) 

13.22 
13.22 
13.22 
13.22 
13.22 
13.22 
14.34 

Dielectric 
Medium 

(kV) 

13.2 
18.4 
15.2 
14.6 
13.6 
13.2 
14.4 

(%) 

0.0 
28.2 
13.1 
9.5 
2.9 
0.0 

0.05 

Charged Plate 
( - ) 

Figure 34. Typical Plate Type Capacitor 
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Kantor [21] develops the governing equation for capacitance calculation of plate 

type capacitor as: 

(5) 

where C = Capacitance, Farads 

K, = Dielectric constant of substance between plates 

e0 = The permittivity offree space, 8.85 xlo-12 Farads/meter 

A= Area of plates, m 

d = Distance between plates, m 

This equation is the basis ofthe reactor capacitance estimation. 

Two factors were considered in the derivation for reactor capacitance estimation. 

First three dielectrics were used. The two reactor walls and the fluid in the annulus. 

Second was the tubular shape of the reactor. For composite dielectric layers the total 

value is sum ofthe dielectric contributions. Using equation 5 as the basis the following 

derivation was completed. 

For a cylinder 

A= n:DL (6) 

on each surface. Thus the surface area changes as it travels through the dielectric. A 

more correct area of consideration would be substituting the log-mean diameter into 

equation 6. This is given by 

D =Do-D, 
In D 

In ___Q_ 

D, 

(7) 

where D0 and Di are the outside and inside diameters ofthe cylindrical dielectric 

layer, respectively. 
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thus equation 6 becomes 

(8) 

d is the effective distance between the plates. This distance between two 

concentric cylindrical electrodes is determined by the difference ofthe diameters. Thus 

d=D -D 
0 I 

(9) 

and equation 5 is now written as 

[ D -D l c = & TrLK 0 I 
o e D 

ln-o 
D, 

(10) 

This allows calculation of the capacitance for a cylindrical shaped capacitor. In the 

reactor geometry three layers exist with varying dielectric constants. The interface of 

these dielectric layers act as an effective conducting medium between each dielectric. It is 

therefore possible to estimate the effective capacitance of the reactor as three cylindrical 

capacitors in series. Total effective capacitance is thus summed as 

(11) 

Substituting equation 1 0 for each layer into equation 11 the total effective capacitance is 

estimated by 
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(12) 

where C1 = Total effective capacitance, Farads 

eo= Permittivity offree space, 8.85 xi0-12 Farads/meter 

L = Length of plasma zone in meters 

K, = Dielectric constant of substance in layer i 

D, = Respective diameters of dielectric layer i 

This relationship was then applied to the various reactor geometries listed in Table 

IL Table IX list the calculated capacitance of each geometry. 

Brotherton [8] relates the effects of capacitance on resistance by the relation 

g 
R=r+-,-, w-e- (13) 

where R = Total effective resistance, ohms 

g = Empirical constant based on capacitor geometry 

w = Frequency, Hz 

C =Total capacitance, Farads 

r = Resistance of leads and conductors, ohms 

This relation shows the logarithmic effects of capacitance on resistance. This 

change in resistance directly alters the voltage across the reactor. Ohm's Law [8] shows 

this change as 

V=IR (14) 

Because ofthe low current through the transformer, 0.62 rnA, the resistance 

changes have the controlling effects on voltage. 
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In the reactors studied the length changes were responsible for the changes 

in capacitance. Thus the changes in length altered the resistance of the reactor. 

Surprisingly as the length was increased the resistance decreases exponentially. This 

accounts for the increases in required secondary voltage as the length deceased. Figure 34 

shows the logarithmic effects of length on secondary voltages for class 4 plasma 

development 
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Inspection of the prediction model in equation 4 reveals a close comparison to the 

capacitance relation of equation 13. Correction values were determined from the 

experimental secondary voltages and the predicted values from equation 4. These 

correction values were then plotted against the length of each plasma for an empirical 

development correction. Table CurveTM [40] was incorporated for this procedure. 

Appendix J contains the plotted data and statistical information from this application. The 

results lead to a correction of equation 4 for length changes as 
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where Vb =Predicted "Breakdown Voltage," kV 

x = Length of the plasma formation zone, em 

All other variables remain as in equation 4. 

This modified model allows more accurate prediction of the required secondary 

voltages in class 4 formations with zones up to 45 em. It is not recommended for 

application outside the configurations of a mesh or solid outer electrode. Lengths of the 

application are also limited to those observed. 

TABLE IX 

CALCULATED CAPACITANCE OF REACTORS 
USING EQUATION 11 

Reactor Configuration 

Reactor A, mesh outer 
Reactor B, mesh outer 
Reactor C, mesh outer 
Reactor C, one wrap 
Reactor C, 6.35 em 
Reactor C, 16.51 em 
Reactor C, 31.75 em 
Reactor C, 44.13 em 
Reactor D, mesh outer 
Reactor E, mesh outer 
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Capacitance ( 1 07 ) 

(Farads) 

15.4 
24.8 
51.5 
0.056 
3.57 
4.68 
17.9 
24.8 
68.6 
68.6 



CHAPTER VI 

DESTRUCTIVE TEST 

The main thrust of this research is the investigation of SGDR applications to 

propane pyrolysis. It is predicted this application will result in the production of various 

hydrocarbons due to chain length alterations and various isomer formations during radical 

controlled rearrangements. Chain propagation to the liquid phase components is the major 

area of interest. 

Due to the qualitative nature of this research, visual observations describe 

currently unexplained phenomena. These observations are detailed through the chapter. 

Initial Observations 

The first trials were an effort to investigate the transfer of energy by means of the 

SGDR. Piatt [34] and Tsai [ 40] both demonstrated the ability of a SGDR to aid in the 

oxidation of hydrocarbons, however radical formation of a pure substance was not 

investigated. This lack of application warranted a short preliminary study. 

Using reactor A, three rearrangement experiments were conducted. See Appendix 

K for operation parameters of runs HR-004, HR-005 and HR-006. In these preliminary 

test no liquid sample collection was attempted. Samples ofthe gas phase product were 

collected in stainless steel sample bombs and analyzed. Analysis ofthe individual samples 

was conducted by Phillips Analytical Services in Bartesville, OK. Analytical specifications 
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are unavailable. Results, listed in Appendix K, show the products as a mixture of various 

hydrocarbons ranging in size to above a six carbon length compound. This preliminary 

investigation confirmed the possibilities of chain propagation and rearrangement using a 

SGDR. 

The corona formed during these initial test appeared as a blue tint. No noticeable 

extended chain hydrocarbons were seen condensing along the reactor walls. After run 

HR-006 was completed, visual inspection of the reactor showed slight deposits of residue 

along the reactor walls. No sample was obtained. 

Initial Rearrangement Test 

Reactors B, C, and D were used in the initial detailed study, but failed during 

operation. Reactor D was operable for experimental runs HR-015 and HR-016. 

Investigation in the cause of these failures reveled a weakness in the physical properties of 

Pyrex for these applications. As the runs were longer in duration than the non-destructive 

test, heating of the reactor walls were more pronounced. This heating was restricted to 

the plasma zone. Expansion of the reactor in the zone due to heating was greater than the 

expansion of the non-effective zone causing thermal stresses in the reactor walls. As these 

stress fractures would widen under heating, a reduction in the dielectric effects occurred in 

that area. This in turn increased the plasma strength causing extreme temperatures at 

point locations in the reactor walls. Pin holes in the reactor walls normal to the surface of 

the wall resulted from thermal decomposition of the Pyrex Similar observations were 

seen in earlier tests [ 12] under higher pressures in various Pyrex reactors. 

Experimental runs HR-0 15 and HR-0 16 yielded the first collectable liquid sample. 

Operating parameters are listed in Appendix K. Plasma location was altered between the 

two runs and is shown in Figure 36. This had significant effects from both a qualitative 

visual observation and a quantitative sample analysis. 
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Plasma Zone 

Figure 36. Plasma Zone Orientation 

Visual observations for run HR-0 15, reactor geometry in Figure 36 A. noted the 

formation of an aerosol within the annulus of the reactor. This formation developed above 

the reactor zone. The turbulence of the plasma was also demonstrated by the back mixing 

effects in the aerosol. Residue collection on the reactor walls was also seen in this run for 

the first time. Liquid phase hydrocarbon formation condensed on the reactor annulus 

above the plasma zone. Gravity effects caused the liquid phase to be returned to the 

plasma zone where vaporization appeared to occur. Small amounts of liquid were seen 

condensing in the area below the plasma zone. Again a blue tint plasma was visible at the 

beginning of the run. This tint changed to a very faint greenish tint at the inner annulus 

boundary. 

Sample collection in the liquid cold trap yielded a collection amount of0.05 g. GC 

analysis of the collected sample showed a distribution of98.068% less than Cg, 1.091% 
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between Cg and C10 and 0.843% greater than CJO. Sample chromatogram is listed in 

Appendix M. 

Zone location to that in Figure 36 B was used for run HR-016. This altered both 

visual effects and quantitative results. The formation of the aerosol shifted to the area 

below the plasma zone. This had two positive effects on the reaction. The first was the 

elimination of the backmixing effects. This elimination allowed the complete formation of 

a compound without re-exposure to the destruction zone. Second was the allowance of 

the liquid residue to move away from the plasma zone. This allowed for the residue to 

remain in the liquid phase during the run. Again the tint of the plasma was initially blue, 

changing to a greenish tint along the walls. This was more evident in this run. 

Sample collection netted 0.09 g ofliquid. GC analysis yielded the following 

distribution. Less than Cg 72.691%, between C8 and C10 27.198% and 0.111% greater 

than C10. Sample chromatograph is given in Appendix M. 

Conversion for each test is based on the procedure given in the experimental 

section ofthis report. Run HR-015 yielded 0.50% while run HR-016 yielded 0.91% 

conversion to liquid product. 

Rearrangement Test Using Reactor E 

Reactor E was used for the remaining rearrangement test and showed no visible 

signs of stress or thermal failure. The location of the plasma zone was placed as that in 

Figure 36 B. Three distinct series of runs were made to evaluate the effects of the 

adjustable parameters. These parameters were secondary voltage, frequency and retention 

time of the fluid in the plasma zone. It is a major objective of these studies to see the 

effects of frequency control on both product conversion and distribution. 
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Secondary Voltage Effects 

Effects of secondary voltage were isolated by holding both frequency and retention 

time constant while adjusting primary voltage. Five secondary voltages were used to 

establish trends in operational changes. Individual run data is listed in Appendix L in 

Table LI. Table LII in Appendix L list the analysis results of the samples in relation to the 

applied secondary voltages. Chromatographs for this series are given in Appendix M. 

Figure 36 graphically displays this data. 
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Figure 3 7. Effects of Secondary Voltage on Product Distribution 
Frequency 310 Hz, Flow 64.89 ml/min 

As seen in Figure 3 7, alterations of secondary voltage cause shifts in group 

contribution. The shift in the amount of product to higher molecular weight compounds 

at the lowest and highest applied secondary voltages can be described in an energy 

comparison. At lower settings the available energy to cleave molecular bonds decreases. 

This decrease causes a bond selectivity process to begin. Higher chained and branched 

hydrocarbons require less energy for bond separation than smaller n-chained compounds. 

Therefore more large radicals are produced. As the concentration ofthese larger radicals 

increase the probability of long chain coupling is enhanced. 
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At the other extreme, the highest secondary voltage, the energy in the system is 

sufficient to sustain heavier compounds from reaching the reactor walls. This creates a 

carry-over effect forcing larger chained compounds further down the reactor. Some 

possibly reach the end of the reactor to the collection trap. It is also possible that a these 

high energy levels compound radicals are formed. A compound propyl radical is shown in 

Figure 38. This type offormation would then react very aggressively at both ends, thus 

enhancing chain propagation. 

(j) 
• 

• 

Figure 38. Compound Propyl Radical 

(j) 
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• 

Total sample amounts collected for the low and high secondary voltages vary only 0.01 

gram in favor of the lower setting. 

Visual observations during this series oftests revealed an increases in the intensity 

of green tint in the reactor. This can be attributed to the increased carbon-carbon bond 

cleavage taking place. Other visual effects were an increase in the amount of aerosol 

production at the intermediate voltages when compared to the low and high operations. 

This aids in substantiating the proposed reasoning for group shifting. 
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Residence Time Effects on Group Distribution 

Effects of residence time on product distribution follow a predictable pattern. As 

the residence time is decreased, the total energy transfer to the molecules is not sufficient 

to enhance bond cleavage thus a minimum time is required. Residence times below this 

value will result in very limited amounts ofliquid phase products being produced. 

Increasing residence time would also cause a shift in the amount ofliquid phase product 

due to an over propagation of chain length. This would be characterized by increasing 

solid residue along the reactor wall. 

Four tests were conducted to evaluated the proposed effects. Table LI in 

Appendix L list the operation parameters for the individual runs. Table LII in Appendix 

list the sample analysis results. Chromatograms for this series are given in Appendix M. 

Figure 39 and 40 displays these graphically. 
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Figure 39. Comparison ofFlowrates on Group Contribution 
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Figure 40. Comparison ofFlowrates on Group Contribution 

Effects from altering residence time follow the expected trends. Visual 

observations also aided in studying the effects. At the upper flowrate, no aerosol was 

visible within the annulus. At the lowest flowrate two observations were noted: l) the 

extreme collection of residue on the reactor walls and 2) the color change from the 

previously observed green tint to a pink coloration along the walls. 

Total conversion to liquid phase samples deviated from the moderate flowrate as 

expected. The highest conversion of6.09% was bonded by the extremes of2.02% and 

2. 72% at the lower and upper flowrates respectively. 

Frequency Effects on Group Distribution 

The last variable in the operation parameters is of the greatest interest in this 

research. By changing the frequency and causing shifts in the group distribution a new 

technique for hydrocarbon reaction control is opened. 

Five test were conducted at a constant flowrate and secondary voltage while 

frequency was altered. The minimum, maximum and optimum frequencies were located 
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for this geometry and used as reference frequencies. Two additional settings were then 

chosen between the optimum and the end points of operation. Table LI in Appendix L list 

the operation parameters for the series test. Analysis of individual samples is listed in 

Table LII also in Appendix L. Chromatograms for this series are given in Appendix M. 

Figure 41 graphically displays these effects. 
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Figure 41 dramatically displays the trends seen in product distribution as frequency 

was altered. As frequency was increased, contribution to total composition was altered by 

a decreasing value for Group 1 and an increasing value for Group 2. Group 3 does not 

show a clear trend at this time. The lowest frequency of 21 0 Hz yielded no liquid phase 

product. 

Conversions were also effected by the frequency changes. The highest conversion 

of 6.09% was established at 310Hz. Deviation from this frequency in either direction 

lowered the total conversion to liquid phase components. 

The visual observations during this series were similar to those of previous runs. 

The initial color of the plasma formation carried a blue tint changing to a greenish tint 
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along the reactor walls during operation. One key observation was the formation of a 

plasma at the minimum frequency setting with no liquid product collected. During this 

test the production ofthe aerosol was not visible, nor was any residue seen collecting on 

the reactor walls. This change from previous test suggest two possible explanations. First 

the reactions within the plasma are limited to only gas phase products, or no reactions 

were present The formation ofthe plasma carried no green tint during operation. It is 

therefore possible that the plasma formation is visible only by electron transfers from 

elevated energy shells back to their ground state yielding energy releases in the form of 

photons. 

Conversion Results From Residue Production 

Component analysis of residue in the reactor was unable to be accomplished due to 

limited analytical capabilities currently available through the Chemical Engineering 

Department. Thus only an estimated total conversion for all test was calculated. A 

conversion of 5.56% to the solid phase was obtained. 

SUMMARY 

From the experimental data collected changes in frequency, secondary voltage and 

residence time all effected the product distribution. The most significant trend is the effect 

of frequency variation to group contribution for the liquid phase. Although total 

conversion to liquid phase components is small, trends were observed to establish product 

control. By controlling the residence time, secondary voltage and frequency a narrow 

band of products should be feasible. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

It has been shown that several distinct facts can be concluded from the data 

collection and analysis in this study. These are listed in Table XI and will be discussed on 

an individual basis. Like wise several recommendations for further research and 

improvements on methods used in this study are listed in Table XII and are discussed 

individually. 

TABLE XI 

CONCLUSIONS FROM PROPANE PYROLYSIS 
USING A SGDR FOR ENERGY TRANSFER 

Numerical Assignment Brief Description 

2 

3 

Prediction of required secondary voltage is a 
function of reactor capacitance. 

Hydrocarbon pyrolysis is possible utilizing a SGDR 
for energy transfer. 

Product distribution is controlled by secondary 
voltage, residence time and frequency. 
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TABLE XII 

RECOMMENDATIONS FOR FUTURE 
RESEARCH 

Numerical Assignment 

2 

3 
4 

5 
6 

Brief Description 

Reduction of reactor energy losses to the 
atmosphere. 

Development of prediction method as function of 
sine wave and primary voltage. 

Alternate arrangements of power source 
Effects of decreasing plasma strength throughout 

plasma zone. 
Complete sample group analysis 
Accurate analysis of fluid in the annulus. 

Prediction of the required secondary voltage to establish a class 4 plasma is a 

function of the capacitance in the reactor. As the capacitance was increased, due to length 

increases, the resistance of the reactor decreased exponentially This decrease was seen in 

the changes required to establish the corona in various reactor zone lengths. 

Pyrolysis of hydrocarbons using a SGDR was evident through the various test 

conducted. Although conversions to the liquid phase components were small, sufficient 

sample collections were made to provide analysis. This analysis showed qualitatively that 

rearrangement was present and controllable. This strengthen Bethelot's theory of 

equilibrium [ 4] in pyrolytic reactions If some type of equilibrium was not reached, then 

according to Nef [28] only short chain products would have been produced. Likewise 

Peytral's rearrangement theory of similarity [33] does not seem conclusive. By inspecting 

the GC analysis of samples taken, it is seen that some isomerization and multiple bond 

formation had to occur. This is demonstrated by the multiple peaks between the standard 

component retention times. 
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Perhaps the most dramatic conclusion is the control of pyrolytic reactions in a 

SGDR. As proved in the data analysis secondary voltage, retention time and frequency 

play important roles in product distribution. Energy transfer rates and residence time can 

also be altered in thermally induced pyrolysis, thus secondary voltage and residence times 

in this research offer no breakthrough in distribution control. Frequency alterations do 

offer an alternative control variable. This variable has shown to be bond selective by 

changing product distribution. As the frequency increases it is theorized that cleavage of 

the tertiary and secondary carbon-carbon bonds are preferred. The shift to higher chained 

and more complex hydrocarbons in the collected liquid sample support this hypothesis. 

Recommendations to reduce the energy losses come from observing the formation 

of coronas along the outer electrodes and leads. A possible solution is to immerse the 

reactor in a liquid dielectric. Transformer oil available from various sources could provide 

the addition insulation for exterior corona quenching. 

Development of the sine wave formation and primary voltage prediction theory 

arises from the observation that at lower primary voltages an increased frequency was 

required to initiate the corona. Because energy to the system is the integral ofthe sine 

wave formed over the frequency, total energy estimation is possible. By definition 

capacitance in the availability to store energy. It is logical that once the capacitance ofthe 

reactor is exceeded then the excess energy is used for ionization of the fluid within the 

reactor. 

This leads to the next recommendation of power supply. If the relation between 

capacitance and total energy is valid then phasing the power supply would aid in corona 

formation. In the current system peak voltages, for the same current sign, are reached 

every 360 degrees. By rearrangement ofthe power supply to three phase coupling then 

the peaks would be obtained every 120 degrees. The area under the sine curve would be 

increased for the same frequency and primary voltage. Corona formation should then be 

produced at a lower primary voltage and frequency than currently available. 
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Decreasing plasma strength along the reactor length could possibly increase the 

conversion to more complex hydrocarbon chains in the following manner. As the energy 

transfer is decreased the higher association bonds are less effected. This shifts the bond 

cleavage to lower associated bonds which are located in the more complex and branched 

chains. More branched radicals increase the probability of chain propagation. 

Complete analysis of all phases are required to fully understand the effects of 

SGDR applications for several reasons. The conversion of propane to ethylene and 

propylene is a desired reaction. Both are used as feed stocks in plastics production. This 

may prove to be more economically feasible than production to liquid products. Residue 

in the reactor is undetermined in this study. It is desired to evaluate this product for 

similar reasons. 

The last recommendation is a complete analysis of the gas phase directly from an 

operational SGDR. Equilibrium could be investigated at various operating parameters by 

analysis ofthe reacting phase. Shifts in frequency could then be examined immediately for 

possible trends in equilibrium shifts. 
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APPENDIX A 

REACTION MECHANISIMS 
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1) 

2) 

3) 

4) 

5) 

7) 

8) 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

FIRST ORDER MECHANISM AS 
PROPOSED BY BENSON (3) 

C3H8 ~ CH3 • +C2H 5 • 

C3H8~C3H7 •+H• 

CH3 •+C3H8~C3H7 •+CH4 

C3H7 ----+C2H 4 + CH3 • 

~H7 ----+C3H 6 +H • 

H•+C3H6~<;H4 +CH3 • 

C3H6 ~<;H4 

FIRST ORDER MECHANISIM AS 
PROPOSED BY LIFSHITZ [25] 

~H8 ---+<;H5 • +CH3 • 

H • +C3H8---+~:C3H 7 • +CH4 

H • +C3H8---+~:C3H 7 • +H 2 

'-C3H 7 •---+C2H4 +CH3 • 

n_C3H 7 •---+C2H4 +CH3 • 

•-c3H 7 •---+ H • +C3H6 

n-C3H7 •----+H •+C3H6 

C2 H5 •----+ C2H4 + H • 

CH3 •+CH3 ·~C2H6 
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1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

FIRST ORDER MECHAN1SIM AS 
PROPOSED BY LAIDLER [24] 

C3H8 ---+CH3 •+C2Hs • 

X +C3H 8 ---+CH3 • +<;H5 • +X• 

C2H5 •+C3Hs---+~H6 +C3H1• 

H•+C3H 8 ---+H2 +C3H 7 • 

CH 3 •+C3H 8 ----+CH4 +C3H 7 • 

C3H 7 • ----+CH 3 •+C~H4 

C3H 7 •---+ H • +C3H 6 

CH 3 • +C3H 7 •n ---+CH 4 +C3H6 

CH 3 •+CH 3 •--+CzH6 

or 

1.2-1.3 ORDER MECHAN1SIM AS 
PROPOSED BY BYWATER AND STEACIE [10] 

Hg(1 So> + hv ____.. HgePI > 

HgePI) + C3Hs ---+C3H7 • +H • +HgeSo) 

H • +C3H8 ----+ H 2 + C3H 7 • 

2C3H7 ----J>C3H6 +C3H8 

H • +C3H 6 ----+C3H 7 • 

C3H 7 •----+ C3H6 + H • 

C3H 7 •--+C2H 4 +CH 3 • 

CH3 •+C3H 1 ----+CH4 +C3H 7 • 
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FOR FLOWMETER 
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The procedure for calibration of the rotameter is summarized for familiarity. 

A bubble flowmeter was used to measure the volume of fluid passing through the 

rotameter in a set period of time. Measurements were taken at 8 rotameter settings. The 

recorded time and measured volume were then used to calculate the actual volumetric 

flow rate of the fluid. Table BI list the collected data and calculated flowrates. 

TABLEBI 

DATA FOR REGRESSIONAL ANALYSIS 

Rotameter Setting Volume Measured Time Measured Calculated Flowrate 
(cc) (sec) (cc/min) 

0 0 0 0.0 
5.0 10.0 30.51 19.66 
5.0 10.0 30.53 19.65 
5.0 10.0 30.34 19.78 
5.0 10.0 32.40 18.52 
5.0 10.0 31.28 19.18 
5.0 10.0 31.35 19.14 
5.0 10.0 31.63 18.97 
5.0 10.0 31.77 18.88 
5.0 10.0 32.09 18.70 
10.0 10.0 11.97 50.12 
10.0 10.0 11.90 50.42 
10.0 10.0 11.82 50.76 
10.0 20.0 23.46 51.15 
10.0 20.0 23.64 50.76 
10.0 20.0 23.27 51.57 
10.0 20.0 23.63 50.78 
10.0 30.0 35.38 50.88 
10.0 30.0 35.20 51.34 
10.0 40.0 47.16 50.89 
15.0 10.0 6.21 96.62 
15.0 10.0 6.26 95.85 
15.0 10.0 6.19 96.90 
15.0 20.0 12.34 97.24 
15.0 20.0 12.41 96.70 
15.0 20.0 12.41 96.70 
15.0 30.0 18.70 96.26 
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TABLEBI 
(continued) 

Rotameter Setting Volume Measured Time Measured Calculated Flowrate 
(cc) (sec) (cclmin) 

15.0 30.0 18.52 97.19 
15.0 30.0 18.49 97.35 
15.0 40.0 24.77 96.89 
20.0 20.0 8.22 145.98 
20.0 20.0 8.16 147.06 
20.0 20.0 8.26 145.28 
20.0 30.0 12.28 146.58 
20.0 30.0 12.26 146.82 
20.0 30.0 12.27 146.70 
20.0 30.0 12.27 146.70 
20.0 40.0 16.45 145.90 
20.0 40.0 16.34 146.88 
20.0 40.0 16.20 148.15 
20.0 40.0 16.26 147.60 
25.0 30.0 8.93 201.56 
25.0 30.0 9.00 200.00 
25.0 30.0 8.88 202.70 
25.0 40.0 11.83 202.87 
25.0 40.0 11.88 202.02 
25.0 40.0 11.69 205.30 
25.0 50.0 14.77 203.11 
25.0 50.0 15.03 199.60 
25.0 50.0 14.99 200.13 
25.0 50.0 14.94 200.80 
30.0 40.0 9.60 250.00 
30.0 40.0 9.55 251.31 
30.0 40.0 9.56 251.05 
30.0 50.0 12.07 248.55 
30.0 50.0 12.01 249.79 
30.0 50.0 12.01 249.79 
30.0 60.0 14.27 252.28 
30.0 60.0 14.31 251.57 
30.0 60.0 14.25 252.63 
30.0 60.0 14.36 250.70 
40.0 30.0 5.24 343.51 

40.0 30.0 5.18 347.49 

40.0 30.0 5.13 350.88 

40.0 40.0 6.91 347.32 
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TABLE BI 
(continued) 

Rotameter Setting Volume Measured Time Measured Calculated Flowrate 
(cc) (sec) (cc/min) 

40.0 40.0 6.87 349.34 
40.0 40.0 7.06 339.94 
40.0 40.0 6.86 349.85 
40.0 50.0 8.74 343.25 
40.0 50.0 8.75 342.86 
40.0 60.0 10.47 343.84 
50.0 50.0 6.79 441.83 
50.0 50.0 6.70 447.76 
50.0 50.0 6.75 444.44 
50.0 60.0 8.07 446.10 
50.0 60.0 8.10 444.44 
50.0 60.0 8.06 446.65 
50.0 60.0 8.02 448.88 
50.0 70.0 9.38 447.76 
50.0 70.0 9.47 443.50 
50.0 70.0 9.35 449.20 

A linear regression analysis on this data yielded the correlation: 

Y = 9.274X- 27.855 

The correlation coefficient for this regression is calculated to be 0. 996 I 8. Figure B I 

displays this graphically. 
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ANALYSIS OF PROPANE 
FEEDSTOCK 
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Analysis ofthe feed stock was conducted by Phillips Petroleum Company. 

Specific procedures for the gas phase analysis were left to the discretion of the analytical 

personnel at that facility. The following percentages listed in Table C 1 reflect the details 

ofthat analysis. 

TABLECl 

PERCENTAGESOFCOMWONENTSFOUND 
IN PROPANE FEED STOCK 

Component 

Ethane & Ethylene 
Isobutane 
Air. Hz and Methane 
Propane 
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Percent Composition 

0.266 
0.076 
0.000 

99.658 

Totals I 00.00 



APPENDIX D 
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REARRANGEMENT TESTING 

86 



PLASMA REACTOR HYDROCARBON REARRANGE.MENT RUN DATA 

Run ID. Number: HR.-004 
Date: 6-28-93 
Ambient Temperature: 31.5 C 

Reactor Data: 
Inner Electrode: 

Outer Electrode: 

Length 25 em 
Material: Copper mesh 
Length 25.4 em 
Material: Copper mesh 

Effective Plasma Length: 25.4 em 
Inner Diameter (D2): 1.80 em 
Outer Diameter (D3): 2.78 em 
Gap Length: 0.490 em 
Plasma Formation Volume: 89.5 cm3 
Operating Conditions: 
Primary Voltage: 40 V 
Frequency: 620Hz 
Secondary Voltage: 3. 0 k V 
Fluid Used: Propane 
Flowrate: 1 0 setting; 65 eel min 

Comments: 
Using reactor A with mesh outer electrode, from non-destructive test data 

with this configuration max secondary voltage @ 620 Hz. Will try to optimize around this 
setting. 
C3H8 flow started at 8:43 pm 
Plasma started at 8:45pm, Sec. Volt 3.4, smooth plasma, class 3. 7 
Time Secondary Voltage Power 
8:50 3.1 63 
8:55 3.0 63 
9:00 2.9 63 
9:05 2.9 63 
9:10 2.95 63 
9:15 3.0 63 
Samples collected at 9:15, small amount ofliquid located in bottom of reactor. Will 
analyze with reactor residue. Removed reactor residue with acetone and placed in clean 
sample vile. Analysis not performed. 
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EXPERIMENTAL DATA FOR 
NON-DESTRUCTIVE TEST 

IN REACTOR A 

88 



TABLE El 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 4 

Reactor A with wrapped outer electrode configuration 
Ambient Air 
Temperature 9 oc 
Reactor Volume: 87.5 cm3 

PRIM. VOLT 30 40 so 60 70 
FREQUENCY SC. VOLT SC. VOLT SC. VOLT SC. VOLT SC.VOLT 

200 2.8 3.6 4.4 5.2 6 
220 2.8 3.6 4.4 5.2 6.2 
240 2.8 3.6 4.4 5.3 6.2 
260 2.9 3.8 4.5 5.4 6.3 
280 3 3.8 4.6 5.6 6.4 
300 3 3.9 4.8 5.6 3.8 
320 3.1 4 4.8 5.8 7 
340 3.2 4.2 5.1 6 7.6 
360 3.3 4.2 5.2 6.4 8 
380 3.4 4.4 5.4 6.8 8.5 
400 3.5 4.6 5.6 7.2 9.2 
420 3.6 4.8 5.9 7.8 10 
440 3.8 5 6.4 8.6 10.1 
460 4 5.2 6.8 8.4 11.9 
480 4.2 5.25 7.6 10.3 12.9 
500 4.4 5.8 8.4 I 1.2 13.6 
520 4.7 6.4 9.4 12.2 14 
540 5 7.1 10.4 12.6 14.2 
560 5.4 8.2 11.2 12.8 14.2 
580 5.8 9.4 11.8 13.2 14.2 
600 6.4 10.1 12 13.2 14.2 
620 7.4 10.8 12.2 13.2 13.8 
640 8.3 II 11.8 13 13.8 

660 9.1 10.09 11.8 13 13.5 

680 9.4 10.4 11.6 12.6 13 

700 9.3 10.6 11.4 12.4 13 

720 8.8 10.1 I I 12 12.7 

740 7.8 9.3 10.4 11.5 12.2 

760 7 8.8 10 10.8 11.7 

780 6 7.6 9.2 10.2 10.5 

800 5.2 6.4 8 9 9.4 
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80 
SC. VOLT 

7.2 
7.3 
7.4 
7.6 
7.8 
8.2 
8.6 

9 
9.6 

10.4 
11.2 
12.2 
13.4 
14.4 
15.2 
I 5.4 
15.4 
15.2 

IS 
14.6 
14.3 
14.2 

14 
13.6 
13.4 
13.4 
12.6 
12.4 
I 1.8 
10.8 
9.8 



TABLEE2 

EXPERIMENTAL OAT A CORRESPONDING 
TO FIGURE 5 

Reactor A with wrapped outer electrode configuration 
Nitrogen with flowrate of 1 0 setting, 65 cc3 /min 
Temperature 9 oc 
Reactor Volume: 87.5 cm3 

PR1M. VOLT 30 40 50 60 70 80 
FREQUENCY Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT 

200 2.8 3.6 4.4 5.2 6.2 7.4 
220 2.8 3.8 4.4 5.4 6.2 7.4 
240 2.9 3.8 4.5 5.4 6.4 7.5 
260 3 3.8 4.6 57 6.4 7.6 
280 3 3.8 4.7 5.6 6.5 7.8 
300 3 4 4.8 2.6 6.8 8.2 
320 3.1 4 4.9 5.8 7 8.6 
340 3.2 4.2 5 6 7.4 9.1 
360 3.3 4.4 5.2 6.3 7.8 9.8 
380 3.4 4.4 5.4 6.6 8.2 10.6 
400 3.6 4.6 5.6 7 8.8 I 1.8 
420 3.6 4.8 5.8 7.6 9.6 13.2 
440 3.8 5 6.2 8.2 10.6 14.4 
460 4 5.2 6.6 8.8 11.8 15.2 
480 4.2 5.5 7.2 9.8 13 15.2 
500 4.4 5.8 8 II 14.1 I 5 
520 4.7 6.4 9 12.2 14.6 14.6 
540 5 7.2 10.2 13.4 14.7 14 
560 5.4 8.2 I 1.8 14 14.4 13.6 
580 5.8 9.6 13 14.2 14 13 
600 6.6 11 13.6 14.1 13.6 12.6 
620 7.4 12.4 13.8 13.8 13.2 12.2 
640 2 13.2 13.4 13.4 12.8 1 1.8 
660 8.8 13.4 13.2 13 12.4 11.6 
680 9 13.4 12.9 12.8 12 I 12 
700 8.8 13 12.4 12.3 11.8 10.8 
720 8.4 12.6 12 12 11.4 10.6 

740 7.8 I 18 11.6 11.4 Ill 10.2 
760 7 10.8 10.8 10.8 \0.5 9.8 

780 6 9.4 I 0.1 10.1 9.8 9.3 

800 5.3 8 9.2 9.4 9 8.6 
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TABLE E3 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE6 

Reactor A with wrapped outer electrode configuration 
Propane with flowrate of 10 setting, 65 cc3 /min 
Temperature 9 oc 
Reactor Volume: 87.5 cm3 

PRIM. VOLT 30 40 so 60 70 80 90 100 
FREQUENCY Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT S.:. VOLT Sc. VOLT Sc. VOLT 

200 2.8 3.6 4.4 5.1 6 7 8.4 5 
220 2.8 3.6 4.4 5.2 6 7 8.6 .5 
240 2.8 3.6 4.4 5.2 6.1 7.2 8.7 .5.1 
260 2.8 3.7 4 . .5 .5 . .5 6.2 7.2 8.8 5.2 
280 2.9 3.8 4.6 .5.4 6.4 7.4 9 .5 . .5 
300 3 3.8 4.8 .5.6 6.6 7.8 9.4 .5.9 
320 3 4 4.8 5.7 6.8 8.2 9.7 6.4 

340 3.2 4 4.9 5.8 7.2 8.6 I 0.4 7 I 
360 3.2 4.2 5.1 6 7.5 9 11.2 8 
380 3.2 4.4 .5.2 6.4 8 9.6 12.2 8.9 

400 3.4 4.5 5.4 6.8 8.6 10.2 13.8 9 
420 3.6 4.6 5.7 7.2 9 11.4 1.5.4 8.7 

440 3.6 4.8 6 7.8 9.8 12.8 16.2 8 . .5 
460 3.9 s 6.4 8.4 10.8 14.2 16.4 8.35 

480 4 5.4 6.9 9.2 12.4 15 15.4 8.1.5 
.500 4.2 5.6 7.6 10.2 13.8 IS I 5 7.9 

.520 4.4 6.1 8 . .5 11.6 14.4 14.8 14.8 7.7 

540 4.8 6.8 9.6 13.2 14.4 14.8 14.4 7 . .5 
560 .5.2 7.6 II 13.9 14.4 14.4 14 7.4 

580 5.6 8.8 12.6 14.2 14 14.2 15 6 7.2 

600 6.2 10.4 13.3 14.2 13.9 14 15.4 7.1 

620 7.2 12 13.6 13.9 13.4 13.8 13 7 

640 8.2 13 13.8 13.6 13.3 13.4 12.8 6.9 

660 9.4 13.6 13.9 13.4 13 13.2 12.6 6.8 

680 10 13.8 13.6 13.1 13 13 12.4 6.8 

700 10.2 13.6 13.2 13 12.8 12.8 12.2 6.7 

720 10 13.2 12.8 12.6 12.6 12.6 12 6.6 

740 9.2 12.6 12.6 12.4 12.2 12.4 11.8 6.4 

760 8.2 11.6 12 12 11.8 12 11.6 6.2 

780 7.2 10.2 11.4 11.6 11.4 11.4 II 5.7 

800 6.2 8.8 11 . .5 10.8 10.6 10.8 10.4 s.s 
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TABLE E4 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 7 

Reactor A with mesh outer electrode configuration 
Ambient Air 
Temperature 21 oc 
Reactor Volume: 87.5 cm3 

PRIM. VOLT 30 40 50 60 70 80 
FREQUENCY Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT Sc. VOLT 

200 2.4 3.2 4 4.8 5.6 7 
220 2.5 3.4 4 4.8 5.6 6.8 
240 2.6 3.4 4 4.8 5.6 6.6 
260 2.6 3.4 4 4.8 5.6 6.6 
280 2.6 3.4 4.2 4.8 5.8 6.8 
300 2.6 3.4 4.2 5 5.8 7 
320 2.6 3.5 4.3 5.2 6 7.4 
340 2.8 3.6 4.4 5.2 6.4 8 
360 2.8 3.6 4.5 5.4 6.6 8.8 
380 2.8 3.8 4.6 5.6 7.2 10 
400 3 4 4.8 6 8 11.4 
420 3 4 5 6.3 9 14.6 
440 3.2 4.2 5.4 6.8 10 13.6 
460 3.3 4.4 5.6 7.4 10.6 12.4 
480 3.7 4.6 6 8.8 10.7 11.4 
500 3.6 4.8 6.4 9.6 10.8 11.6 
520 3.8 5.2 7.2 10.2 II 9.8 
540 4 5.6 8.6 10.6 10.8 9.4 
560 4.4 6.2 9.4 10.6 10.6 8.8 
580 4.8 7.4 10 10.6 10.2 8.4 
600 5.2 8.6 10.2 10.6 9.9 8 
620 6 9.2 10.3 10.6 9.6 7.8 
640 7 9.4 10 10.6 9.4 
660 7.8 9.2 10 10.4 9.6 
680 8.4 9.2 10 10.2 9.6 
700 8.8 9 10 10 9 
720 9 9 4.9 10 9 
740 9 9 9.8 9.8 8.8 
760 9 9 9.8 9.6 8.8 
780 8.8 9 9.8 9.6 8.6 

800 8.7 8.8 9.8 9.6 8.6 
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TABLE ES 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 8 

Reactor A with mesh outer electrode configuration 
Nitrogen with flowrate set at I 0 setting 
Temperature 21 oc 
Reactor Volume: 87.5 cm3 

PRIM. VOLT 30 40 50 60 70 80 
FREQUENCY SE. VOLT SE. VOLT SE. VOLT SE. VOLT SE. VOLT SE. VOLT 

200 2.4 3.2 3.8 4.6 5.6 7 2 
220 2.4 3.2 4 4.8 5.6 7 
240 2.4 3.2 4 4.8 5.6 7.2 
260 2.4 3.2 4 4.8 5.6 7.6 
280 2.4 3.2 4 4.8 5.6 8.4 
300 2.6 3.4 4.2 5 5.8 10.8 
320 2.6 3.4 4.2 5.2 6 11.2 
340 2.6 3.5 4.4 5.2 6.4 13.4 
360 2.6 3.6 4.4 5.4 6.8 15.6 
380 2.8 3.8 4.6 5.6 7.2 16.2 
400 2.8 3.9 4.8 6 8 15.8 
420 3 4 5 6.4 9 14.8 
440 3 4.2 5.4 6.8 10 13.8 
460 3.2 4.4 5.6 7.4 II 13 

480 3.4 4.6 6.2 8.4 11.4 11.8 
500 3.6 5 6.8 9.6 11.2 11.8 
520 3.8 5.2 7.6 10.8 9.8 10.2 
540 4 5.8 8.8 11.4 9.2 9.6 
560 4.2 6.8 10 11.6 9 8.8 
580 4.6 8 II 11.6 8.8 8.4 
600 5.2 9.2 11.2 11.4 8.4 8 

620 6 10 11.2 11.4 8.3 7.9 
640 7.2 10.2 II 11.4 8.3 7.6 

660 8.6 10.3 II 11.4 8.2 7.6 

680 9.2 10.3 10.9 11.4 8 7.4 

700 9.6 10.3 10.7 11.3 8 7.2 

720 9.6 10.2 10.4 11.2 7.8 7.2 

740 9.5 10.2 10.3 11.2 8 2 

760 9.7 10.2 10.1 I I 8 7 

780 9.2 10.2 9.8 II 7.8 7 

800 9 10.1 9.4 II 7.8 7 
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TABLEE6 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 9 

Reactor A with mesh outer electrode configuration 
Propane flowrate set at I 0 setting Temperature 21 oc Reactor Volume: 87.5 cm3 

PRIM. VOLT 30 40 50 60 70 80 
FREQUENCY SE. VOLT SE.VOLT SE.VOLT SE.VOLT SE. VOLT SE.VOLT 

200 2.4 3.2 3.8 4.6 6 7 
220 2.4 3.2 4 4.6 5.9 6.8 
240 2.4 3.2 4 4.6 5.6 6.8 
260 2.4 3.2 4 4.7 5.6 7 
280 2.4 3.2 4 4.8 5.6 7.6 
300 2.6 3.2 4.1 4.8 5.8 8.7 
320 2.6 3.4 4.2 5.2 6 10.4 
340 2.6 3.4 4.4 5.2 6.4 14.2 
360 2.7 3.7 4.4 5.2 8.4 19.8 
380 2.8 3.6 4.6 5.4 10.8 18.4 
400 2.9 3.8 4.8 5.8 12.4 18.2 
420 3 4 s 6.4 12.4 15.4 
440 3.2 4.1 5.6 7.4 11.6 13.8 
460 3.3 4.3 5.4 8.4 10.8 12.3 
480 3.4 4.5 6 9 10.2 11.2 
500 3.6 4.8 7 9 9.4 10.2 
520 3.8 S.J 7.8 8.6 8.8 8.7 
540 4.2 5.6 8.2 8.4 8.4 8.6 
560 4.4 6.2 8.4 8 8 8 
580 4.4 7.6 8.3 7.8 7.6 7.6 

600 5.3 8.2 8 7.6 7.2 7.2 
620 6.2 8.4 7.8 7.4 7 7 
640 7.4 8.1 7.8 7.2 6.8 6.8 

660 8 8 7.6 7 6.6 6.6 
680 8.6 7.8 7.4 7 6.4 6.4 

700 8.6 7.7 7.4 6.8 6.4 6.2 

720 8.2 7.6 7.2 6.8 6.4 6.2 

740 8 7.4 7.2 6.8 6.4 6.2 

760 7.8 7.4 7.2 6.6 6.2 6.2 

780 7.6 7.4 7.2 6.6 6.4 6.2 

800 7.4 7.2 7.2 6.6 6.4 6.4 

820 7 7.2 7.2 6.8 6.6 6.4 

840 6.6 7.2 7.2 6.8 6.6 6.6 

860 6.2 7 7.2 6.8 6.8 6.8 

880 5.4 6.8 7.1 6.8 6.8 6.8 

900 4.4 6.4 7 6.8 6.8 6.8 

920 6.6 6.4 6.6 6.6 

940 6 6 6 6.2 

980 4.4 4.4 4.4 4.4 
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TABLE E7 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 10 

Reactor A with mesh outer electrode configuration 
Propane flowrate set at I 0 setting Temperature 21 oc Reactor Volume: 87.5 cm3 

PRIM. VOLT 30 40 50 60 70 80 
FREQUENCY POWER POWER POWER POWER POWER POWER 

200 75 72 68 66 65 65 
220 76 72 68 66 65 65 
240 76 72 68 66 65 65 
260 76 72 68 66 65 65 
280 76 72 68 66 65 65 
300 76 72 68 66 66 65 
320 76 70 68 66 66 74 
340 76 70 68 65 66 100 
360 76 70 68 65 75 130 
380 76 69 68 65 85 135 
400 76 69 68 65 100 140 
420 75 69 68 65 105 145 
440 75 69 67 65 107 145 
460 75 69 66 70 107 143 
480 75 69 66 75 107 135 
500 76 69 66 80 108 128 
520 74 69 68 80 108 125 
540 74 69 68 80 108 120 
560 74 69 68 80 106 118 
580 73 69 70 80 106 115 
600 73 69 70 80 105 110 
620 73 69 70 80 105 108 
640 73 70 71 80 105 105 
660 73 70 71 80 104 104 
680 73 70 71 80 100 102 
700 73 70 71 80 97 100 
720 73 70 72 80 95 102 
740 72 70 72 80 95 98 
760 72 70 73 80 95 95 
780 72 70 73 80 93 94 

800 73 70 73 80 90 94 

820 74 70 73 80 90 94 

840 74 70 73 80 89 94 

860 73 70 74 80 89 90 

880 73 70 74 80 91 89 

900 73 70 74 80 95 86 

920 74 80 90 86 

940 74 80 90 85 

980 75 80 90 83 
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EXPERIMENTAL DATA FOR 
NON-DESTRUCTIVE TEST IN 

REACTORB 
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TABLE Fl 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE 11 

Reactor B with wrapped outer electrode configuration 
Ambient Air 
Temperature 24 oc 

PRIM. VOLT 30 60 80 90 105 
FREQUENCY SC.VOLT SC.VOLT SC.VOLT SC.VOLT SC.VOLT 

300 2.8 5.6 8.2 9.8 12.4 
320 2.8 5.8 8.6 10.4 13 
340 3 6 9.2 11.2 14 
360 3 6.4 9.8 12 15 
380 3.2 7 10.8 13 16.2 
400 3.4 7.6 11.6 14.4 18 
420 3.6 8.2 13 16.8 10 
440 3.8 9.6 14.4 17.6 11 
460 4 10.4 16.2 19.8 23 
480 4.2 11.8 18.6 21.6 23 
500 4.6 13.8 20.2 22 22.4 
520 5.2 16.4 21 22.4 22.2 
540 5.8 19.2 21.6 22 21.6 
560 7 19.6 21.6 22 21 
580 8.4 19.8 21 21.8 20.8 
600 9.6 19.6 21 21.2 20.4 

620 10.4 19.6 20.8 20.8 20.2 
640 10.4 19.2 20.6 20.8 19.8 

660 9.6 18.6 20 19.8 19.8 

680 8.6 17.6 19.4 19.2 19.2 

700 3.4 15.2 18.4 18.8 18.8 

720 7.2 13.4 17.6 17.8 18 

740 6.2 11.6 15.2 16.4 17 

760 4.3 9.2 13.2 14.8 15.8 

780 4.2 8.2 11.2 12.6 14.4 

800 3.8 6.8 9.6 10.6 12.4 
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120 
SC.VOLT 

7.5 
7.9 
8.5 
9.2 

10.3 
11.1 
11.4 
11.5 
11.7 
11.6 

11.35 
11.3 



TABLE F2 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE 12 

Reactor B with mesh outer electrode configuration 
Ambient Air Temperature 28 oc 

PRIM. VOLT 50 70 80 90 100 
FREQUENCY SC.VOLT SC.VOLT SC.VOLT SC.VOLT SC.VOLT 

300 4.6 6.4 7.6 9 10.8 
320 4.6 6.8 8 9.6 11.4 
340 4.8 7.3 8.6 10.6 12.2 
360 5.2 7.9 9.6 11.8 13.2 
380 5.4 8.6 10 12 15 
400 5.8 9.2 II 13.2 18.2 

420 6.2 10.2 12 14.8 18 

440 7 11.4 14 17 18.4 

460 7.9 13 16.8 17.4 18.2 

480 9.2 14.8 17.6 17.4 18 

500 10.6 16.6 17.4 17 17.8 

520 12 16.6 17.4 17 17.6 

540 14.8 16.6 16.6 16.4 17.6 

560 14.9 16.6 15.8 16.2 17.6 

580 14.8 16.6 15 15.8 17.6 

600 14.8 16.2 13.8 15.2 16 

620 14.6 14.9 13.4 14.8 15.4 

640 14.4 14.8 13 15 14.8 

660 14.2 14.6 12.6 15 14.2 

680 14 14.3 12.4 14.2 13.6 

700 13 14 12.2 14.2 12.6 

720 12.6 13.8 12 14.2 12.2 

740 12.6 13.6 11.8 14.2 11.8 

760 12.2 13.5 11.8 14 11.6 

780 10.6 13.2 11.8 14 11.4 

800 9 13 11.8 13.7 11.6 

820 7.6 12 11.8 13.4 11.3 

840 6.6 10.6 11.6 13.2 11.2 

860 5.8 9.4 11 12.6 11.2 

880 5 8.4 10 11.6 11.2 

900 3.8 7.2 8.8 10.4 I 1 
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TABLE F3 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 13 

Reactor B with mesh outer electrode configuration 
Nitrogen at flowrate of 1 0 setting 
Temperature 28 oc 

PRIM. VOLT 50 70 80 90 100 

FREQUENCY SC. VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT 
300 4.2 6 7.2 8.6 10 

320 4.4 6.2 7.6 9 10.6 

340 4.6 6.6 8 9.6 13 

360 4.8 7 8.6 10.2 13.8 
380 5 7.5 9.2 II 14.2 

400 5.2 8.2 10.2 13.6 14.2 

420 5.4 8.8 12 14 13.4 

440 5.8 9.8 13.6 14 13.6 

460 6.4 II 14 13.6 13.4 

480 7.2 13.6 14 13.4 13 

500 8.4 14.3 13.8 13.2 12.8 

520 8.8 14.4 13.4 13 12.6 

540 12 13.8 13.2 12.8 12.4 

560 14.2 13.6 13.1 12.6 12.4 

580 14.7 I 3.4 13 12.6 12.2 

600 13.6 13.2 12.8 12.4 12 

620 I 3.4 13 12.6 12.2 11.8 

640 13.2 12.8 I 2.4 12 I 1.8 

660 13 12.6 12.4 11.9 I 1.6 

680 12.8 12.4 12.2 11.8 11.6 

700 12.8 12.2 12 11.8 11.4 

720 12.5 12.2 12 11.6 11.4 

740 12.3 12 11.8 I 1.4 11.4 

760 12.2 11.8 11.8 11.4 11.4 

780 11.8 11.8 11.6 11.4 11.4 

800 11.2 1 I .6 11.6 11.4 I 1.6 

820 9.6 I 1.6 I 1.6 11.4 11.6 

840 8.2 I 1.5 11.5 11.4 11.4 

860 7.2 10.6 I I .4 11.4 I 1.4 

880 6.2 9.4 I 1 11.2 I 1.4 

900 5.4 8.2 9.8 11.4 11.2 

99 

110 

SC. VOLT 
11.8 

12.8 

14 

14.9 
16.8 

17 
16.6 
16.2 

15.6 
15.2 
12.6 
12.2 

12 
11.6 
I 1.4 

I 1.2 

I I 
10.8 
10.6 

10.6 
10.4 
10.4 
10.4 

10.4 

10.4 

10.4 
10.6 

10.6 
10.8 

II 
I I 



TABLE F4 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE 14 

Reactor B with mesh outer electronde configuration 
Nitrogen at flowrate of 10 setting 
Temperature 28 oc 

PRIM. VOLT 50 70 80 90 100 
FREQUENCY SC.VOLT SC. VOLT SC.VOLT SC.VOLT SC. VOLT 

300 4.2 6 7.2 8.6 10.2 
320 4.2 6.2 7.6 9 13.2 
340 4.4 6.6 8 9.6 13.2 
360 4.6 7 8.6 I 0.2 13 
380 4.8 7.4 9.2 II 12.4 
400 5 8.2 I I 12.4 12.2 
420 5.2 8.8 10.8 1 2. I I 1.8 
440 5.6 9.8 10.6 11.7 11.6 
460 6.2 10.6 I 0.4 I 1.2 I 1.4 
480 7 10.4 10.2 I I II 
500 8.2 10 10 10.4 1 I 
520 9.6 9.4 9.8 10.6 10.6 
540 11.6 9.2 9.6 10.4 10.5 
560 115 9 9.4 10.2 10.2 

580 10.8 8.8 9.4 10 10.2 

600 10 8.8 9.2 9.9 10 

620 9.4 8.8 9.6 9.8 10 

640 9.2 8.6 9 9.6 9.8 
660 9 8.6 9 9.5 9.8 

680 9 8.6 8.9 9.4 9.6 

700 8.8 8.4 8.9 9.4 9.6 

720 8.6 8.4 8.8 9.2 9.6 

740 8.6 8.2 8.6 9.4 9.6 

760 8.6 8.2 8.6 9.4 9.6 

780 8.6 8.2 8.6 9.4 9.6 

800 8.6 8.4 8.7 9.3 9.8 

820 8 8.4 8.8 9.3 9.8 

840 7.6 8.5 8.8 9.7 10 

860 6.4 8.6 8.8 9.6 10 

880 5.6 9.2 9 9.6 10 

900 4.8 8.1 8.8 9.6 10 

920 8.4 10 9.8 

940 7.4 8.6 9.8 

960 8.2 

100 



TABLE FS 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 15 

Reactor B with mesh outer electronde configuration 
Nitrogen at flowrate of 1 0 setting 
Temperature 28 oc 

PRIM. VOLT 50 70 80 90 
FREQUENCY POWER POWER POWER POWER 

300 65 55 55 55 
320 65 55 54 55 
340 64 55 55 54 
360 62 54 55 54 
380 60 54 55 54 
400 60 55 95 105 
420 59 55 100 110 
440 59 55 100 I I 0 
460 60 81 100 I I 0 
480 60 90 100 I I 0 
500 60 90 100 I I 0 
520 60 92 100 I I 0 
540 74 92 100 110 
560 77 92 100 II 0 
580 80 92 100 II 0 
600 80 92 100 II 0 
620 80 92 100 I I 0 
640 80 92 IOO I I 0 
660 80 92 IOO II 0 
680 80 92 100 110 
700 80 92 100 106 
720 80 92 100 104 
740 80 92 100 103 
760 80 92 100 I02 
780 80 92 96 100 

800 80 92 95 96 

820 80 92 95 96 

840 80 88 95 95 

860 80 86 94 94 

880 76 85 94 90 

900 74 83 95 90 

920 93 89 

940 93 86 

960 

101 

100 
POWER 

55 
115 
123 
125 
125 
125 
125 
125 
I25 
125 
125 
126 
126 
I25 
I25 
125 
125 
125 
125 
116 
II 0 
107 
105 
105 
103 
100 
100 
100 
98 
95 
95 
92 
92 
92 



APPENDIX G 

EXPERIMENTAL DATA FOR 
NON-DESTRUCTIVE TEST 

IN REACTORC 
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TABLE Gl 

EXPERI.I\1ENTAL DATA CORRESPONDING 
TO FIGURE 16 

Reactor C with mesh outer electrode configuration 
Ambient Air 
Temperature 30.5 oc 

PRIM. VOLT 50 70 80 90 IOO 
FREQUENCY SC. VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT 

300 5 7.8 9.2 II I3 
320 5.2 8.6 10.2 12.2 15.3 
340 5.6 9.6 11.6 17.6 17.2 

360 6.2 1 1 13.2 16.8 17.6 

380 7.2 12.8 15.4 17.2 17.6 
400 8.6 15.4 17.8 17.6 I7 
420 10.6 17.8 18.2 17.8 16.6 

440 13.6 18.2 I8.3 17.8 16.2 

460 15 18 I8.5 17.8 16 

480 16.2 17.6 18 I8 15.6 

500 17 17.2 17.6 18 15.4 

520 17 I6.6 I7.6 17.9 I5.2 

540 I6.6 16 17.2 17.8 15.2 

560 I6 16 16.6 17.6 14.8 

580 15.8 16 18.2 17.6 14.6 

600 15 15.2 17.6 17.4 14.2 

620 12.2 14.4 15.4 16.6 14.2 

640 10 13.8 14.8 16.6 14 

660 8.2 12.8 14.8 16.4 I3.8 

680 6.6 10.8 12.8 14.6 13.6 

700 5.6 9.4 1I 12.6 I3.4 

720 5.2 8 9.6 10.8 12.8 

740 6.8 8.2 9.6 11.4 

760 6 7.2 8.6 10.2 

780 6.4 7.6 9 

800 5.8 6.8 8.2 

820 6.2 7.6 

840 5.8 7 

860 6.4 

880 6 
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TABLEG2 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 17 

Reactor C with mesh outer electrode configuration 
Nitrogen at flowrate of 1 0 setting 
Temperature 3 0. 5 oc 

PRIM. VOLT 50 70 80 90 IOO 
FREQUENCY SC. VOLT SC.VOLT SC. VOLT SC.VOLT SC. VOLT 

300 5.2 7.6 9.4 Il.2 I4.8 
320 5.2 8.4 I0.3 I2.4 14 
340 5.6 4.6 55.6 14 I3.4 

360 6.2 10.8 13.2 I5.9 I2.8 

380 7 12.6 15.4 17.6 12.6 

400 8.4 15 l8.I 18 12.2 

420 10.3 17.6 18.8 I7.8 Il.9 

440 13 18 18.8 17.6 55.6 

460 I5.6 I8.6 I9 16.4 II.4 

480 I6.9 I8.6 19 13.2 Il.2 

500 17.5 I8.8 I8.3 I2.6 Il.2 

520 17.6 I8.6 18.4 I2.4 I I 

540 17.2 19.6 17.8 I2 II 

560 I7.5 18.3 I7.4 Il.8 II 

580 I6.8 I7.6 16.6 11.6 II 

600 I5.9 I7.6 16.6 Il.6 10.8 

620 13 I7.3 16.2 11.4 10.8 

640 I0.6 15.2 15.6 Il.4 1I 

660 8.8 13 I4.4 Il.6 II 

680 7.2 II I2.4 11.9 I0.2 

700 6 9.4 I 0.4 Il.8 11.4 

720 5 8 9.4 Il.4 Il.6 

740 7 8.2 IO Il.6 

760 6 7.2 8.8 I0.4 

780 5.4 6.4 7.8 9.4 

800 5.8 7.2 8.6 

820 6.4 7.8 

840 6 7.2 

860 6.6 

880 6.2 

900 5.6 
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TABLE G3 

EXPERIMENTAL OAT A CORRESPONDING 
TO FIGURE 18 

Reactor C with mesh outer electrode configuration 
Propane at flowrate of 10 setting 
Temperature 30.5 oc 

PRIM. VOLT so 70 80 90 IOO II 0 
FREQUENCY SC.VOLT SC. VOLT SC.VOLT SC.VOLT sc VOLT SC. VOLT 

300 4.8 7.4 9 I I 12.6 13.2 
320 5.2 8.2 10 I I .4 12.6 12.2 
340 5.6 9.2 11.2 1 I 12.2 11.8 
360 6 10.4 10.6 10.8 I I 11.4 
380 7 10.4 10.2 10.6 10.8 11.2 
400 8.4 10 10 I 0.2 104 I I 
420 10.2 9.8 9.8 10.2 10.2 I I 
440 13.2 9.6 9.6 10 I0.2 10.8 
460 I 0.4 9.6 9.6 9.8 10.2 10.8 
480 I 0.3 9.4 9.4 9.7 10 10.6 

500 I 0.1 9.4 9.3 9.7 10 10.6 
520 10 9.4 9.2 9.6 10 I 0.4 
540 10 9.4 9.2 9.6 9.8 10.4 
560 10 9.6 9.2 9.6 10 10.4 

580 9.8 9.2 9.2 9.6 9.8 10.6 

600 9.8 9.2 9.3 9.6 10 10.6 

620 9.6 9.4 9.7 9.8 10 10.6 

640 9.6 9.4 9.3 9.8 10.2 10.6 

660 9.4 9.4 9.2 9.8 10.2 10.6 

680 7.6 9.6 9.4 9.8 10.2 10.6 

700 6.2 10 9.4 9.8 10.4 I I 

720 5.4 8.4 10 9.6 10.2 I I 

740 7.2 8.8 10.4 10.2 II 

760 6.4 7.6 9.2 10.6 11.8 

780 5.6 6.8 8.2 9.4 10.6 

800 6 7.2 8.6 9.6 

820 6.6 7.8 8.8 

840 6 7.2 8.2 

860 7.6 

880 7 
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TABLE G4 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 19 

Reactor C with mesh outer electrode configuration 
Propane at flowrate of 1 0 setting 
Temperature 30.5 oc 

PRIM. VOLT 50 70 80 90 100 110 
FREQUENCY POWER POWER POWER POWER POWER POWER 

300 65 60 60 60 155 167 
320 62 69 60 132 155 167 
340 62 60 61 133 156 167 
360 62 60 120 133 156 167 
380 62 106 120 133 156 167 
400 62 106 120 132 156 163 
420 63 108 120 132 153 160 
440 74 108 120 132 150 157 
460 94 108 120 132 145 154 
480 94 108 119 132 143 152 
500 95 108 119 130 140 146 
520 95 108 119 128 137 144 
540 95 108 119 125 138 142 
560 95 108 119 125 135 136 
580 94 108 119 125 128 135 
600 94 108 119 122 125 130 
620 94 108 116 119 125 130 
640 94 106 Ill 116 123 125 
660 94 105 109 115 120 125 
680 94 105 107 112 116 123 
700 94 103 lOS 110 115 120 
720 88 101 105 107 113 116 
740 85 95 100 105 110 114 
760 90 95 100 108 114 
780 82 92 96 103 106 

800 82 94 99 103 
820 92 96 100 

840 86 93 95 

860 95 

880 88 
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APPENDIX H 

SUPPORTING DATA FOR 
SECONDARY VOLTAGE LOSS 

RATE IN REACTORS 
A&B 
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TABLEH 1 

SUPPORTING DATA FOR 
LINEAR REGESSION 

ANALYSIS 

Fluid: Air 
Primary Voltage: 40 Volts 
Electrode Configuration 

Sec. Voltage 
Frequency wrap mesh 

640 I I 9.4 
660 10.9 9.2 
680 10.8 9.2 
700 10.6 9 
720 10.1 9 

740 9.3 9 

760 8.8 9 

780 7.6 9 

800 6.4 8.8 

Fluid: Nitrogen 
Primary Voltage: 40 Volts 
Electrode Configuration 

Sec. Voltage 

Frequency wrap mesh 
660 13.4 10.3 

680 13.4 10.3 
700 13 10.3 
720 12.6 10.2 

740 11.8 10.2 

760 10.1 10.2 

780 9.2 10.2 

800 8 10.1 

Fluid: Propane 
Primary Voltage: 40 Volts 

Electrode Configuration 
Sec. Voltage 

Frequency wrap mesh 

620 8.4 

640 8.1 

660 8 

680 13.8 7.8 

700 13.6 7.7 

720 13.2 7.6 

740 12.6 7.4 

760 11.6 7.4 

780 10.2 7.4 

800 8.8 7.2 
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Fluid: Air 

TABLEH 1 
(continued) 

Primary Voltage: 70 Volts 
Electrode Configuration 

Sec. Voltage 
Frequency wrap mesh 

500 
520 
540 
560 
580 14.4 
600 14.2 
620 13.8 
640 13.8 
660 13.7 
680 13.2 
700 13 
720 12.7 
740 12.2 
760 11.4 
780 10.3 
800 9.4 

Fluid: Nitrogen 
Primary Voltage: 70 Volts 
Electrode Configuration 

Sec. Voltage 
Frequency wrap mesh 

480 
500 
520 
540 14.7 
560 14.4 
580 14.2 
600 13.6 
620 13.2 
640 12.8 
660 12.4 
680 12 
700 11.8 
720 11.4 
740 1 1.1 
760 I 0.5 
780 9.8 
800 9 
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11 .4 
I I 

10.8 
10.6 
I 0 .I 
9.9 
9.8 
9.4 
9.2 
9.2 

9 
9 

8.8 
8.8 
8.6 
8.6 

II .4 
11.2 
9.2 
9.2 

9 
8.8 
8.4 
8.3 
8.3 
8.2 

8 
8 

7.8 

8 
8 

7.7 
7.8 



APPENDIX I 

EXPERIMENTAL DATA FOR 
LENGTH EFFECTS IN 

REACTORC 
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TABLE II 

EXPERThffiNTAL DATA CORRESPONDING 
TOFIGURE21 

Outer Electrode: One Wrap of 12 Gauge Wire 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

PRIM. VOLT 30 40 50 60 70 
FREQUENCY SC. VOLT SC.VOLT SC. VOLT SC. VOLT SC. VOLT 

300 2.4 3.2 3.8 4.6 5.4 
320 2.4 3.2 3.8 4.6 5.4 
340 2.4 3.2 3.8 4.6 54 
360 2.5 3.2 3.9 4.8 5.4 
380 2.6 3.2 4 4.8 5.6 
400 2.6 3.4 4 4.9 5.8 
420 2.6 3.4 4.2 5 5.9 
440 2.7 3.4 4.2 5 6 
460 2.8 3.5 4.3 5.2 6.2 
480 2.8 3.6 4.4 5.4 6.6 
500 2.8 3.7 4.5 5.6 6.8 
520 2.9 3.8 4.6 5.8 7.2 
540 3 4 4.8 6 7.6 
560 3 4 5 6.4 8.2 
580 3.2 4.2 5.1 6.8 8.6 
600 3.2 4.5 5.3 7.2 9.4 
620 3.4 4.4 5.6 7.8 lO 

640 3.5 4.6 6 8.6 10.8 

660 3.6 4.5 6.6 9.4 11.8 
680 3.8 5.2 7.4 10.4 13 
700 4.1 5.6 8.2 114 14.4 

720 2.4 6.4 9.2 12.8 16.2 

740 2.6 7.2 10.4 14.4 17.5 

760 5 8.2 12 15.4 18.4 

780 5.6 9.6 13.6 16.1 18.6 

800 6.6 11.2 13.8 16.2 17.6 

820 7.8 11.5 15 15.8 17 

840 9 12.5 14.6 15.3 16.2 

860 9.8 12.9 14.4 15.1 15.7 

880 9.8 12.9 14 14.9 13.9 

900 10 13.2 14.2 15.4 13.4 

920 9.8 13 15.6 16.5 13.4 

940 9.4 13.2 15.6 16.2 14.2 

Ill 

80 
SC VOLT 

6.2 
6.2 
6.3 
6.4 
6.6 

7 
7.2 
7.4 
7.6 

8 
8.6 
8.8 
9.4 
lO 

10.6 
11.4 
12.4 
13.7 
14.6 

16 
17.6 
19.4 
19.6 

19 
18.4 
17.6 
16.2 
15.6 
14.2 
13.6 
13.4 
13.6 
14.2 



TABLE 12 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE22 

Outer Electrode: Wire Mesh 2.5" 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

PRIM. VOLT 30 40 50 60 70 80 
FREQUENCY SC. VOLT SC. VOLT SC.VOLT SC. VOLT SC. VOLT SC. VOLT 

300 2.5 3.2 3.9 4.8 5.4 6.4 
320 2.6 3.2 4 4.8 5.6 6.4 
340 2.6 3.4 4 4.8 5.6 6.6 
360 2.6 3.4 4.2 s 5.8 6.8 
380 2.6 3.4 4.2 5 6 7 
400 2.8 3.6 4.4 5.2 6.2 7.6 
420 2.8 3.6 4.4 5.4 6.2 7.6 
440 2.8 3.7 4.6 5.4 6.6 8 
460 2.8 3.8 4.6 5.6 7 8.4 
480 3 3.8 4.8 5.8 7.2 8.8 
500 3 4 5 6 7.8 9.4 
520 3.2 4.2 5.2 6.4 8.2 10 
540 3.2 4.2 5.2 6.8 8.8 10.8 
560 3.4 4.5 5.6 7.4 9.6 11.6 
580 3.5 4.6 6 8 I 0.4 12.6 
600 3.6 5 6.4 8.8 11.8 14 
620 3.8 5.2 7.2 9.8 12.6 15.4 
640 4 5.6 8 I I 14 14.2 
660 4.4 6.2 9 12.4 15.8 13.8 

680 4.6 7.2 10.4 14 13.6 13 

700 5 8.4 12 13.4 13 12.6 

720 5.6 9.8 14 13.2 12.4 12 
740 6.8 11.4 16.4 13 11.8 11.6 

760 8.2 13.4 12.2 12.6 11.4 II 

780 9.6 I I 12.2 12 I I 10.6 

800 10.6 10.8 11.8 11.4 10.6 10.2 

820 1 1 10.8 11.6 II 10.2 9.6 

840 10.6 10.4 11.2 10.4 9.6 9.4 

860 9.8 10.4 II 10 9.2 9 

880 8.6 12 10.6 9.8 9 8.8 

900 7.4 10.3 10.6 9.6 9 8.6 

920 6.6 9.6 11.8 9.8 9.2 8.8 

940 5.8 8.6 I I 10.2 9.6 9.2 
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TABLE I3 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 23 

Outer Electrode: Wire Mesh 6.5" 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

PRIM. VOLT 30 40 so 60 70 80 90 100 
FREQUENCY SC. VOLT SC. VOLT SC.VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT 

300 2.4 3.2 4 4.8 5.4 6.6 7.8 4.6 

320 2.6 3.2 4 4.8 5.6 6.8 8 4.8 

340 2.6 3.4 4.2 5 5.8 7 8.4 5 

360 2.6 3.4 4.2 5.2 6 7.2 8.8 7.3 
380 2.8 3.6 4.4 5.2 6.2 7.6 9.2 7.8 

400 2.8 3.6 4.8 5.4 6.8 8 9.8 7.2 
420 2.8 3.8 4.6 5.6 6.8 8.4 10.4 7 

440 3 3.8 4.8 5.8 7.2 9 II 6.7 

460 3 4 5 6 7.6 9.6 13.6 6.3 

480 3.2 4.2 5.2 6.6 8.2 10.4 13.2 6 

soo 3.2 4.4 5.4 7 9 11.2 12.6 5.7 

520 3.4 4.6 5.8 7.6 9.8 13.4 12.2 5.5 

540 3.6 4.8 6.2 8.4 10.4 12.8 11.8 5.3 

S60 3.8 5.2 7 9.4 12.2 12 II 5.1 

580 4 5.6 7.8 10.6 13.6 I 1.6 10.6 4.9 

600 4.4 6.4 9 12.2 13.8 II 10.2 4.7 

620 4.8 7.4 10.6 13.6 13.6 10.8 10 4.6 

640 5.2 8.8 12.2 14.2 12.6 10.4 9.6 4.4 

660 6.4 10.1 12.4 14.4 12.4 10.2 9.2 4.3 

680 7.8 I 0.5 13.2 14 I 1.8 10 9 4.1 

700 9.4 11.2 13.2 13.8 I 1.4 9.6 8.6 4 

720 9.6 11.4 13.2 I 3.4 I I 9.7 8.4 3.9 

740 9.8 11.2 13 13.2 10.4 9.2 8.2 3.8 

760 9.6 II 12.6 12.4 10 9 8 3.7 

780 9.4 10.4 12 11.8 9.8 8.8 7.8 3.5 

800 9 10.4 11.6 11.4 9.4 8.4 7.4 3.5 

820 8.4 9.6 11.2 II 9 8.2 72 3.3 

840 7.8 10.8 10.4 10.2 8.8 8 7 3.2 

860 6.4 9.4 11.8 10.2 8.6 7.8 7 3.2 

880 s 7.6 10.2 I 1.6 8.2 7.6 6.8 3.1 

900 4.4 6.6 8.6 10 7.8 7.4 6.6 

920 7.2 8.6 7.8 7.4 6.6 

940 6.2 7.6 7.8 7.6 
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TABLE 14 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 24 

Outer Electrode: Wire Mesh 12.5" 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

PRIM. VOLT 30 40 so 60 70 80 90 100 
FREQUENCY SC. VOLT SC.VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT SC. VOLT 

300 2.5 3.4 4.2 5 5.8 7 8.4 9.8 
320 2.6 3.4 4.4 5.2 6 7.4 8.8 10.4 
340 2.6 3.6 4.4 S.2 6.4 7.8 9.2 13.6 

360 2.8 3.6 4.6 5.5 6.6 8.2 9.8 12.8 

380 2.8 3.8 4.8 5.8 7.1 8.6 10.6 12.4 

400 3 4 S.2 6 7.6 9.2 11.8 11.8 

420 3 4.2 S.2 6.4 8.2 10 11.4 11.4 
440 3.2 4.4 5.4 7 9 II II 10.8 

460 3.4 4.6 5.8 7.6 9.8 10.8 10.6 10.2 

480 3.6 4.8 6.4 8.5 11 10.4 10.2 10 

500 4 5.2 7.2 10 10.2 10 9.8 9.8 

520 4.2 5.6 8.2 10 9.8 9.8 9.6 9.4 

540 4.4 6.6 9.6 9.6 9.6 9.4 9.4 9.2 

560 s 7.8 11.2 9.4 9.2 9.2 9.2 9 

580 5.6 9.2 13.6 9.2 9.2 9 8.8 8.6 

600 6.8 11.4 9.6 9 9 8.8 8.6 8.4 

620 8.4 9.6 9.2 8.8 8 8.6 8.4 8.2 

640 10 9.2 9.2 8.6 8.4 8.4 8.2 8.2 

660 11.6 9 9 8.6 8.4 8.2 8 8 

680 12.2 8.8 8.8 8.4 8.1 8.2 8 7.8 

700 11.8 8.8 8.6 8.4 8 7.8 7.8 7.6 

720 10.8 8.6 8.6 8 7.8 7.8 7.6 7.6 

740 9.4 8.6 8.4 8 7.8 7.6 7.6 7.4 

760 7.8 8.2 8.2 7.8 7.6 7.6 7.4 7.4 

780 6.4 8 8 7.6 7.6 7.4 7.4 7.4 

800 5.2 8 7.9 7.4 7.4 7.4 7.2 7.2 

820 6.6 7.6 7.4 7.4 7.2 7.2 7.2 

840 5.4 7.2 7.2 7.2 7.2 7 7 

860 6.2 7.8 7 7.2 7 7 

880 6.6 6.8 7 

900 6.8 

114 



TABLE 15 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 25 

Outer Electrode: Wire Mesh 17.375" 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

PRIM. VOLT 50 60 70 80 
FREQUENCY SC. VOLT SC. VOLT SC. VOLT SC. VOLT 

140 
160 
180 
200 
220 
240 
260 
280 
300 4.4 .5.2 6.2 7.4 

320 4.6 5.4 6.4 8 
340 4.8 5.6 6.8 8.4 

360 4.8 5.9 7.4 9 

380 .5.2 6.4 8 9.8 

400 .5.6 7.2 9.6 II 

420 6 7.6 10.4 10.6 

440 6.6 8.4 10.4 10.4 

460 7.2 9.6 10.2 10.2 

480 8.6 II 10.2 10.2 

500 9.4 10.2 10 10 

.520 9.4 9.8 9.6 9.6 

540 9.4 9.6 9.4 9.4 

.560 9.2 9.4 9.2 9.2 

580 9 9.4 9 9 

600 9 9.2 8.8 8.8 

620 8.6 9 8.6 8.8 

640 8.6 8.8 8.6 8.6 

660 8.4 8.6 8.4 8.4 

680 8.4 8.6 8.4 8.4 

700 8.2 8.6 8.2 8.2 

720 8.2 8.4 

740 8 8.4 

760 8 8.3 

780 8 8.2 

800 6.6 8.8 

820 7.6 

840 6.4 
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90 100 
SC.VOLT SC.VOLT 

9 10.3 
9.4 11.2 
10 12.6 

10.8 12.2 

11.6 11.8 
11.2 11.4 
10.8 11.2 
10.6 10.8 
10.4 10.6 

10 10.4 
9.8 10 
9.6 9.8 
9.4 9.6 

9.2 9.4 
9.2 9.2 
9.2 9.2 
8.8 
8.6 
8.6 
8.4 
8.4 

110 liS 
SC. VOLT SC. VOLT 

s.s 
5.3 
.5 . .5 

10.6 .5.8 
11.6 6.6 
13.2 7.4 
14.8 7.6 
14.6 7.4 

14 7.1 
13.4 6.8 

13 6.5 
12.6 6.3 

12 6.1 
11.6 5.9 
11.4 5.1 

II .5.6 
10.8 5.4 

10.6 5.3 
10.4 .5.2 

10 5.1 
10 5 



TABLE 16 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 26 

Various Lengths at 30 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length I wrap 2.5" 6.5" 12.5" 
Freq. 

300 4.8 5 4.8 5 
320 4.8 5.2 5.2 5.2 
340 4.8 5.2 5.2 5.2 
360 5 5.2 5.2 5.6 
380 5.2 5.2 5.6 5.6 
400 5.2 5.6 5.6 6 
420 5.2 5.6 5.6 6 
440 5.4 5.6 6 6.4 
460 5.6 5.6 6 6.8 
480 5.6 6 6.4 7.2 
500 5.6 6 6.4 8 
520 5.8 6.4 6.8 8.2 
540 6 6.4 7.2 8.8 
560 6 7.2 7.8 10 
580 6.4 7.4 8 I 1.2 
600 6.4 7.2 8.8 I 3.6 
620 6.8 7.6 9.6 16.8 
640 7 8 10.4 20 
660 7.2 8.8 I 2.8 23.2 
680 7.6 9.2 15.8 24.4 
700 8.1 10 18.4 23.6 
720 8.8 11.2 I 9.6 21.6 
740 9.2 13.6 19.6 18.8 
760 10 16.2 I 9.2 15.6 
780 ] 1.2 19.2 18.8 I 2.8 
800 13.2 21.2 18 10.4 
820 15.6 22 19.8 
840 18 22.8 15.6 
860 19.6 193.6 12.8 
880 19.6 17.2 10 
900 20 15.4 8.8 
920 19.6 13.2 
940 ) 8.8 ) 1.6 
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TABLE 17 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE27 

Various Lengths at 40 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length I wrap 2.5" 6.5" 12.5" 
Freq. 

300 6.4 6.4 6.2 6.8 

320 6.4 6.4 6.2 6.8 

340 6.4 6.8 6.8 7.2 

360 6.4 6.8 6.8 7.2 

380 6.4 6.8 7.2 7.6 
400 6.8 7.2 7.2 8 

420 6.8 7.2 7.6 8.4 

440 6.8 7.4 7.6 8.8 

460 7 7.6 8 9.2 

480 7.2 7.6 8.4 9.6 

500 7.4 8 8.8 10.4 

520 7.6 8.4 9.2 11.2 

540 8 8.4 9.6 13.2 

560 8 9 I 0.4 15.8 

580 8.4 9.2 6 18.4 

600 8.6 10 12.8 18.8 

620 8.8 I 0.4 14.8 19.2 

640 9.2 11.2 17.6 18.4 

660 9.8 12.4 21 18 

680 10.4 14.4 21 17.6 

700 11.2 16.8 22.4 17.6 

720 12.8 19.6 22.4 17.2 

740 14.4 23.4 22.4 17.2 

760 16.4 23.6 22 16.4 

780 19.2 22 20.8 16 

800 22.4 21.6 20.8 16 

820 23 21.6 19.2 13.2 

840 24.6 20.8 19.6 10.8 

860 25 20.8 18.4 

880 25.8 24 15.2 

900 25.4 21.2 13.2 

920 26 19.2 

940 26.4 19.2 
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TABLE 18 

EXPERIMENTAL DATA CORRESPONDING 
TOFIGURE28 

Various Lengths at 50 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length lwap 2.5" 6.5" 12.5" 17.75" 
Freq. 

300 3.8 3.9 4 4.2 4.4 
320 3.8 4 4 4.4 43 
340 3.8 4 4.2 4.4 4.8 
360 3.9 4.2 4.2 4.6 4.8 
380 4 4.2 4.4 4.8 5.2 
400 4 4.4 4.8 5.2 5.6 
420 4.2 4.4 4.6 5.2 6 
440 4.2 4.6 4.8 5.4 6.6 
460 4.3 4.6 5 5.8 7.4 
480 4.4 4.8 5.2 6.4 8.6 
500 4.5 5 5.4 7.2 9.4 
520 4.6 5.2 5.8 8.2 9.4 

540 4.8 5.2 6.2 9.6 9.4 

560 5 5.6 7 I 1.2 9.2 

580 5.1 6 7.8 11.6 9 

600 5.3 6.4 9 9.6 9 

620 5.6 7.2 10.6 9.2 8.6 

640 6 8 12.2 9.2 8.6 

660 6.6 9 12.2 9 8.4 

680 7.4 10.4 13.2 8.8 8.4 

700 8.2 12 13.2 8.6 8.2 

720 9.2 14 13.2 8.6 8.2 

740 10.4 14.2 13 8.4 8 

760 12 12.2 12.6 8.2 8 

780 13.6 12.2 12 8 8 

800 13.8 11.8 11.6 7.9 6.6 

820 15 11.6 11.2 7.6 

840 14.6 11.2 11.4 7.2 
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TABLEI9 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 29 

Various Lengths at 60 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length I wrap 2.5" 6.5" 12.5" 17.75" 
Freq. 

300 4.6 4.8 4.8 5 5.2 
320 4.6 4.8 4.8 5.2 5.4 
340 4.6 4.8 5 5.2 5.6 
360 4.8 5 5.2 5.5 5.9 
380 4.8 5 5.2 5.8 6.4 
400 4.9 5.2 5.4 6 7.2 
420 5 5.4 5.6 6.4 7.6 
440 5 5.4 5.8 7 8.4 
460 5.2 5.6 6 7.6 9.6 
480 5.4 5.9 6.6 8.6 I I 
500 5.6 6 7 10 10.2 
520 5.8 6.4 7.6 10 9.8 
540 6 6.8 8.4 9.6 9.6 

560 6.4 7.4 8.7 9.4 9.4 

580 6.8 8 10.6 9.2 9.4 

600 7.2 8.8 12.2 9 9.2 

620 7.8 9.8 13.6 8.8 9 

640 8.6 I I 14 2 8.6 8.8 

660 9.4 12.8 14.4 8.6 8.6 

680 10.4 14 14 8.4 8.6 

700 I 1 .4 13.4 13.8 8.2 8.4 

720 12.8 13.2 13.4 8 8.4 

740 14.4 13 13.2 8 8.3 

760 15.4 12.6 12.4 7.8 8.2 

780 16 12 11.8 7.6 8.2 

800 16.2 I 1.4 11.4 7.4 8.1 

820 15.8 I I 1 I 7.4 7.6 

840 15.3 10.4 10.2 7.2 7.6 

860 15.1 10 10.2 7.8 

880 14.9 9.8 11.6 6.6 

900 15.4 9.6 10 

920 15.5 9.8 8.6 

940 16.2 10.2 7.6 
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TABLE 110 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 30 

Various Lengths at 70 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length 1 wrap 2.5" 6.5" 1 2.5" 1 7.75" 
Freq. 

300 5.4 5.4 5.4 5.8 6.2 
320 5.4 5.6 5.6 6 6.4 
340 5.4 5.6 5.8 6.4 6.8 
360 5.4 5.8 6 6.6 7.4 
380 5.6 6 6.2 7.1 8 
400 5.8 6.2 6.8 7.6 9.6 
420 5.9 6.4 6.8 8.2 l 0.4 
440 6 6.6 7.2 9 10.4 
460 6.2 7 7.6 9.8 10.2 
480 6.6 7.2 8.2 I l l 0.2 
500 6.8 7.8 9 10.2 10 

520 7.2 8.2 9.8 9.8 9.6 
540 7.6 8.8 10.8 9.6 9.7 

560 8.2 9.6 I 2.2 9.2 9.2 

580 8.6 l 0.4 13.6 9.2 9 

600 9.4 11.8 13.8 9 8.8 

620 10 12.6 13.6 8.8 8.6 

640 10.8 14 12.6 8.4 8.6 

660 11.8 15.8 12.4 8.4 8.2 

680 I3 I3.6 11.8 8.2 8.2 

700 14.4 13 11.4 8 8.2 

720 I6.2 12.4 I I 7.8 

740 18 11.8 I 0.4 7.8 

760 18.4 1 I .4 IO 7.6 

780 I8.6 I I 98 7.6 

800 I7.6 I0.6 9.4 7.4 

820 I7 10.2 9 7.4 

840 16.2 9.6 8.8 7.2 

860 15.4 9.2 8.6 7 

880 13.9 9 8.1 6.8 

900 I 3.4 9 7.8 

920 I3.4 9.2 7.8 

940 14.2 9.6 7.8 

120 



TABLE Ill 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 31 

Various Lengths at 80 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length 1 wrap 2.5" 6.5" I2.5" I7.75" 
Freq. 

300 6.2 6.4 6.6 7 7.4 
320 6.2 6.4 6.8 7.4 8 
340 6.3 6.6 7 7.8 8.4 
360 6.4 6.8 7.2 8.2 9 
380 6.6 7 7.6 8.6 9.8 
400 7 7.6 8 9.2 I I 

420 7.2 7.6 8.4 10 10.6 
440 7.4 8 9 II 10.4 
460 7.6 8.4 9.6 I0.8 10.2 
480 8 8.8 I 0.4 10.4 10.2 
500 8.6 9.4 I 1.2 IO 10 
520 8.8 10 I 3.4 9.8 9.6 
540 9.4 10.8 12.8 9.4 9.4 

560 IO 11.6 12 9.2 9.2 

580 I0.6 12.6 I 1.6 9 9 

600 I 1.4 14 II 8.8 8.8 

620 I2.4 15.4 10.8 8.6 83.8 

640 13.4 14.2 I 0.4 8.4 8.6 

660 14.6 13.6 10.2 8.2 8.4 

680 16 13 10 8.2 8.4 

700 I7.6 I2.6 9.6 7.9 8.2 

720 19.4 12 9.4 7.9 

740 I9.6 Il.6 9.2 7.6 

760 19 I I 9 7.6 

780 I8.4 10.6 8.8 7.4 

800 17.6 10.2 8.4 7.4 

820 16.2 9.6 8.2 7.2 

840 I 5.2 9.4 8 7.2 

860 I4.4 9 7.8 7.2 

880 13.6 8.8 8.6 7 

900 I3.4 8.6 7.4 6.8 

920 13.6 8.8 7.4 

940 14.2 9.2 7.6 
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TABLE 112 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 32 

Various Lengths at 90 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length 6.5" 12.5" 17.75" 
Freq. 

300 7.8 8.4 9 
320 8 8.8 9.4 
340 8.4 9.2 10 
360 8.8 9.8 I0.4 
380 9.2 I0.6 Il.6 
400 9.8 I1.8 Il.2 
420 10.4 11.4 11.8 
440 II I1 Il.6 
460 13.6 10.6 10.2 
480 13.2 10.2 IO 
500 12.6 9.8 9.8 
520 12.2 9.6 9.6 
540 11.8 9.4 9.4 
560 11 9.2 9.2 
580 I0.6 8.8 9.2 
600 10.2 8.6 9.2 
620 10 8.4 8.8 
640 9.6 8.4 8.6 
660 9.2 8 8.6 
680 9 8 8.4 
700 8.6 7.8 8.4 
720 8.4 7.6 
740 8.2 7.6 
760 8 7.4 
780 7.8 7.4 

800 7.4 7.2 
820 7.2 7.2 
840 7 7 
860 7 7 
880 6.8 
900 6.6 
920 6.6 
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TABLE 113 

EXPERIMENTAL DATA CORRESPONDING 
TO FIGURE 33 

Various Lengths at 100 Volts Primary Voltage 
Fluid: Nitrogen 
Temperature: 30.5 oc 
Pressure: 10 psig 

Length 6.5" 12.5" 17.75" 
Freq. 

300 9.2 9.8 10.6 
320 9.6 10.4 11.2 
340 10 13.6 12.6 
360 14.6 12.8 12.1 
380 15.6 12.4 11.8 
400 14.4 11.8 11.4 
420 14 11.4 11.2 
440 13.4 10.8 10.8 
460 12.6 10.4 10.6 
480 12 10 10.4 
500 11.4 9.8 10 
520 11 9.4 9.8 
540 10.6 9.2 9.6 
560 10.2 9 9.4 
580 9.8 8.6 9.2 
600 9.4 8.4 9.2 
620 9.2 8.2 
640 8.8 8.2 
660 8.6 8 
680 8.2 7.8 
700 8 7.6 
720 7.8 7.4 
740 7.6 7.4 
760 7.2 7.4 
780 7 7.2 
800 7 7.2 
820 6.6 7 
840 6.4 7 
860 6.4 
880 6.2 
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APPENDIX J 

STATISTICAL DATA FROM 
TABLECURVE ANALYSIS 
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Numeric Summary 

TABLEn 

STATISTICAL DATA FROM 
TABLECURVE ANALYSIS 

Rank 1387 Eqn 54 1/y=a+bx0·5 

OF Adj r2 Fit Std Err F-value r2 Coef Oet 
0.9925242061 0.9850484122 0.0157594678 398.29517114 

Parm Value Std Error t-value 95% Confidence Limits 
a 0.709079220 0.007932651 89.38742563 0.684021262 0.734137178 
b 0.046329084 0.002242994 20.65501938 0.039243829 OJ053414338 

Area Xmin-XmaxArea Precision 
48.454303440 1.168094e-09 
Function min X-Value 
0.9834270716 44.132000000 
1st Oeriv min X-Value 
-0.139852620 0.1 000001133 
2nd Deriv min X-Value 
6.133608e-05 44.132000000 

Soln Vector Covar Matrix 
Direct LUOecomp 

Function max 
1.3817311933 
1st Deriv max 
-0.003372339 
2nd Oeriv max 
0. 7275729696 

r2 Coef Oet OF Adj r2 Fit Std Err 
0.9925242061 0.9850484122 0.0157594678 

X-Value 
0.1 000001133 
X-Value 
44.132000000 
X-Value 
0.1000001133 

Source Sum of Squares OF Mean Square F 
398.295 Regr 0.098920918 1 0.098920918 

Error 0.00074508248 3 0.00024836083 
Total 0.099666 4 

X Variable: 
Xmin: 

Xmean: 
X@Ymin: 

Y Variable: 
Ymin: 
Ymean: 
Y@Xmin: 

0.1000000000 Xmax: 44.132000000 Xrange: 44.032000000 
19.768400000 Xstd: 18.129122505 Xmedian: 16.510000000 
44.132000000 X@Ymax:0.1000000000 X@Yrange:44.032000000 

1.0000000000 Ymax: 1.3920000000 Yrange: 0.3920000000 
1.1440000000 Ystd: 0.1578496120 Ymedian: 1.1040000000 
1.3920000000 Y@Xmax:1.0000000000 Y@Xrange!>.3920000000 
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APPENDIXK 

OPERATION PARAMETERS AND ANALYSIS 
OF PRELIMINARY RUNS 
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TABLE Kl 

OPERATION PARAMETERS 

Run# S.V. Flow Rate Frequency Reactor Length 
(kV) (ml/min) (Hz) (em) 

HR-004 6.00 69.8 620 A 27.5 
HR-005 8.00 69.8 480 A 27.5 
HR-006 15.8 69.8 380 A 27.5 
HR-015 18.5 1 69.8 540 D 45.09 
HR-016 19.4 l 69.8 540 D 45.09 

1. Average oftotal run variations. 
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Run# 

04 

05 

06 

TABLE K2 

ANALYSIS OF PRELIMINARY SAMPLES 
04, 05, AND 06 

Component 

Methane, H2, Air 
Ethane, Ethylene 
Propane 
Isobutane 

Methane, H2, Air 
Ethane, Ethylene 
Carbon Dioxide 
Propane 
Propylene 
I so butane 
N-Butane 
I so pentane 
N-Pentane 

Methane, H2, Air 
Ethane, Ethylene 
Carbon Dioxide 
Propane 
Propylene 
lsobutane 
N-Butane 
1-Butene 
lsopentane 
N-Pentane 
1-Pentene 
C6 and Heavier 
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% 

0.000 
0.266 

99.658 
0.076 

0.000 
2.139 
0.124 

94.272 
1.166 
0.730 
0.689 
0.579 
0.302 

0.000 
3.871 
0.000 

88.670 
I. 712 
1.255 
1.177 
0.237 
0.959 
0 . .492 
0.070 
1.556 



Run# 

015 
016 

TABLE K3 

ANALYSIS OF PRELIMINARY SAMPLES 
015AND016 

Groupl 
% 

98.068 
72.691 
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Group 2 
% 

0.1091 
27.198 

Group 3 
% 

0.843 
0.111 



APPENDIX L 

OPERATION PARAMETERS AND ANALYSIS 
OF DESTRUCTIVE TEST 
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TABLEL1 

OPERATION PARAMETERS OF 
DESTRUCTIVE TEST 

Run# S.V. Frequency Flowrate Temp. 
(kV) (Hz) (mllmin) (Of) 

01 19.2 310 68.9 68 
02 20.0 310 68.9 62 
03 18.0 310 68.9 58 
04 17.0 310 68.9 48 
05 21.6 310 68.9 50 
06 19.2 260 68.9 60 
07 19.2 210 68.9 58 
08 19.2 327 68.9 56 
09 19.2 280 68.9 56 
10 19.2 280 34.45 56 
11 19.2 280 129.6 52 
12 19.2 280 1 l 1.3 52 
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TABLEL2 

ANALYSIS SUMMARY OF 
DESTRUCTION TEST 

Run# Group 1 Group 2 Group3 Amt. 
% % % (g) 

01 51.994 44.801 3.205 0.59 
02 47.088 47.464 5.454 0.35 
03 59.477 37.347 3.190 0.25 
04 40.153 52.260 7.592 0.19 
05 25.071 54.191 16.680 0.18 
06 97.997 2.003 0.000 0.33 
07 0.000 0.000 0.000 0.00 
08 38.631 SO. 182 11.189 0.29 
09 73.360 18.173 8.472 0.46 
10 38.178 41.953 17.518 0.20 
11 0.000 0.000 0.000 0.00 
12 30.109 38.812 31.021 0.27 
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APPENDIX M 

ANALYTICAL CHROMA TOG RAMS 
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Figure MI. Run# HR·OIS 
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