BROILER PERFORMANCE: AN EVALUATION OF METABOLIC CONSIDERATIONS RELATED TO STRESS TOLERANCE AND TISSUE ACCRETION METHODOLOGY

Ву

KEVIN RAY McDONALD

Bachelor of Science in Agriculture

Oklahoma State University

Stillwater, Oklahoma

1989

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE
July, 1993

OKLAHOMA STATE UNIVERSITY

BROILER PERFORMANCE: AN EVALUATION OF

METABOLIC CONSIDERATIONS RELATED TO

STRESS TOLERANCE AND TISSUE

ACCRETION METHODOLOGY

Thesis Approved:

Thesis Adviser

Thesis Adviser

Thesis Adviser

The Device A

The Meehr

Thomas C. Collins

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to extend my thanks to the members of the poultry farm, especially Jim Cason, Leon Bloom, Afaf Melouk and Chris Harjo for their help and assistance in conducting my research. I would like to extend a special thanks to Chester Wiernusz, Tsegaw Belay, and Farzad Deyhim for their help in the completion of my research and the guidance they provided that helped me develop thought processes important in the achievement of my career goals. I would also like to thank my wife, Robin, and my family for their support and encouragement in finishing my graduate studies.

Thanks are extended to the members of my committee,
Drs. David Weeks, and Fred Owens, for their Valuable advice
and comments in reviewing the manuscript, and educating me
in scientific procedure. I am especially indebted to my
major advisor Dr. Robert Teeter whose diligence, patience,
and fatherly advise helped me though both the good and
difficult times during my Master's studies.

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	4
	Introduction	4
	Bird Thermobalance	4
	Management Methods Used During Heat	
	Distress	7
	Heat Distress	7
	Fasting	7
	Acclimation	8
	Classical acclimation	9
	Acclimation and Hormones	12
	Day-5 Acclimation	14
	Acclimation and Bird Mineral	
	Status	14
	Water Consumption	16
	Ration Formulation	18
	Energetic systems	19
	Fat Deposition	23
	Dietary Fat	23
	Body Fat Accretion	25
	Common Methods of Carcass Composition	
	Determination	27
	Direct Carcass Composition	_
	Determination	27
	Indirect Carcass Composition	
	Determination	28
	Respiratory Quotient	29
	Probiotics and Competitive Exclusion	30
	Lactobacillus	35
	Yeast as a Protein Source	38
	Yeast and Digestion	38
	Yeast as a Direct Fed Microbe	39
	References	42
	Not of one of the same of the	
III.	INITIAL BROODING TEMPERATURE, DAY-5 HEAT	
	DISTRESS ACCLIMATION AND FEED RESTRICTION	
	EFFECTS ON BROILER PERFORMANCE DURING HEAT	
	DISTRESS	63
	Abstract	63
		64
	Introduction	
	Materials and Methods	66
	Results and Discussion	68
	References	73

Chapter	• • • • • • • • • • • • • • • • • • • •	Page
IV.	AN EVALUATION OF BROILER GAIN COMPOSITION METHODOLOGY USING CLASSICAL AND NEW	
	APPROACHES	75
	Abstract	75
	Introduction	76
	Materials and Methods	80
	Results and Discussion	83
	References	95
v.	EFFICACY OF YEAST AS A SOURCE OF DIETARY	
	PROTEIN AND TO AMELIORATE NONSPECIFIC	
	ANTIGEN CONSEQUENCES IN BROILERS REARED	
	IN HEAT DISTRESSED AND THERMONEUTRAL	
	ENVIRONMENTS	97
	Abstract	97
	Description of Problem	
	Materials and Methods	100
	Results and Discussion	102
	References and notes	1102
	References and notes	110
VI.	SUMMARY AND CONCLUSIONS	112
APPENDI	X - PREDICTIVE EQUATIONS USING MULTIPLE	
	VARIABLE COMBINATIONS	116

LIST OF TABLES

Table		Page
	CHAPTER III	
1.	Composition of starter and grower rations used for the experiment	70
2.	Rearing ambient temperature used at different ages by different investigators	71
3.	Treatment effects on bird weight, feed consumption and survivability	72
	CHAPTER IV	
1.	Composition of diet used to feed broilers during the 16 to 42 day experimental period	88
2.	Comparative slaughter estimates of carcass weight, protein, fat and energy gain during the 16 to 42 day experiment as well as percent bird dry matter	89
3.	Comparative slaughter nitrogen, carbon and energy gain during the 16 to 42 day experimental period	90
4.	Moisture free whole bird carbon and nitrogen content and moisture and ash free ether extracted tissue and ether extract of birds completing the 28 day study	91
5.	Bird feed consumption, water consumption, gain and gain/feed ratio as well as nitrogen, carbon and energy gain estimated by a summation of intake and excretion along with ration AME and AME _n values	92
6.	Protein, fat, energy and heat production values as estimated by both direct and indirect methodologies	93

7.	Difference of Farrell and modified Farrell carbon-nitrogen balance methods and the three component equaiton technique from comparative slaughter values for protein fat, energy and heat production values 94
	CHAPTER V
1.	Composition of starter and grower rations used for experiment 1
2.	Yeast supplementation effects on body weight, feed consumption, feed efficiency, mortality adjusted feed efficiency (FEA) and survivability (Surv) of broiler chickens at 21 and 42 days posthatching
3.	Sex effects on body weight, feed consumption, feed efficiency, mortality adjusted feed efficiency (FEA) and survivability of broiler chickens at 21 and 42 days posthatching 108
4.	Dietary yeast supplementation effects on body weight, feed efficiency, and survivability of fed 1% poultry litter (Experiment 2)

LIST OF FIGURES

Figure	Page
1. Heat distress schedule for broilers	
during days 45-47	. 73

CHAPTER I

INTRODUCTION

Interactions between high ambient temperaturerelative humidity distress and reduced broiler performance
has long been recognized. During high ambient temperature
distress, bird survival and productivity are dependent on
the bird's ability to maintain homeostasis. Heat distress
is characterized, in homeotherms, by elevated body
temperature and occurs when heat production exceeds the
bird's ability to dissipate heat. The elevated body
temperature perturbs homeostasis and therby reduces growth
rate, feed efficiency and frequently survival ability.

Various management practices have been recommended to alleviate heat distress prostration in broilers. Such procedures include fasting, utilization of electrolytes in water to increase water consumption and provide needed minerals, altering calorie:protein ratio to impact heat production, feeding probiotics, and acclimation.

Acclimatizing broilers to mild heat distress has been suggested to improve bird survivability, feed efficiency, and growth rate of birds subjected to acute heat distress. The direct fed microbials have been reported to enhance growth rate, feed efficiency and survival during heat

distress when used in both the starter and grower rations.

The affect is thought to be the result of intestinal health through an improved population of gut microflora.

Todays consumer is becoming increasingly interested in the fat content of products purchased for consumption.

Therfore, it is in the poultry industries best interest to produce products that contain little fat. Factors known to influence gain composition include bird age, ration composition (Macleod, 1992; Belay and Teeter, 1992;), meal size (Lefebvre, Leanness in domestic birds), light pattern (Charles et. al., 1992) and ambient temperature. As a result, for the poultry industry to produce birds with a specific carcass composition it is becoming increasingly important that the interactive effects of ration composition, environment and age be dynamically related.

The studies reported herein were conducted to: further develop and refine the theories and hypotheses regarding broiler heat distress acclimitization, direct fed microbial application and further to develop a technique whereby bird fat and protein accretion may be determined using a short term non-invasive procedure.

References

- Belay, T., and R.G. Teeter. 1992. Caloric density and calorie protein ratio effects on broiler growth rate, survivability and carcass composition estimated by direct and indirect methods. Poultry Sci. 71: (Suppl. 1):138. (Abstr.)
- Charles, R.G., F.E. Robinson, R.T. Hardin, N.W. Yu, J. Feddes, and H.L. Classen. 1992. Growth, body composition, and plasma androgen concentration of male broiler chickens subjected to different regimens of photoperiod and light intensity. Poultry Sci. 71:1595-1605.
- Lecleercq, B., C.C. Whitehead. 1988. Leanness in Domestic Birds. Butterworth & Co. (publishers) Ltd-INRA
- Macleod, M.B. 1992 Energy and nitrogen intake expenditure and retention at 32oC in growing fowl given diets with a wide range of energy and protein contents. Br. J. Nutr. 67:195-206.

CHAPTER II

REVIEW OF LITERATURE

Introduction

In birds and other homeotherms, heat distress is characterized by an elevated body temperature occuring when heat production exceeds bird ability to dissipate heat. Heat distress occurs most frequently in tropical regions, but is also a seasonal problem in many overall regions. This review deals with the bird thermobalance, therapeutic methodologies to reduce heat distress and discuses energy systems and methods used to monitor bird gain and composition.

BIRD THERMOBALANCE

Several investigators (Howlider and Rose, 1987; Deaton et. al., 1986; DeAndrade et al., 1974, 1976, 1977; and Smith, 1972) have reported that heat distress decreased growth rate, average body weight and feed consumption. In addition Bray (1983) observed that the growth reduction of broilers kept at high temperatures was greater in males than females implying that male broilers are more susceptible to heat prostration than females.

Bird thermobalance is critical during both

thermoneutral and low as well as high ambient temperature distress periods. Bird thermobalance may be defined as the relationship between bird heat production and bird heat losses. Bird heat loss through radiation, convection and conduction may be lumped together as nonevaporative or sensible heat loss while heat loss through respiratory and cutaneous water evaporation may be referred to as evaporative or insensible heat loss. All poultry classes utilize nonevaporative heat loss (NHL) as the major means of heat dissipation when housed below and within the thermoneutral ambient temperature environments (Arieli et al., 1980; Van kampen, 1981b). Nonevaporative heat loss is more effective in thermoneutral environments because the differential between the birds body temperature and the ambient temperature is large. When birds are exposed to an increasing ambient temperature the NHL becomes less efficient and the birds must increase their evaporative cooling mechanisms to help dissipate heat.

The amount of feathering may also affect heat production in a thermoneutral environment (O'Neill et al., 1971). At a temperature of 20 C a fully feathered bird produces heat at half the rate of a naked bird, making feathered birds more efficient in feed utilization. Further thermal insulatory effectiveness of the feathers is enhanced by posturally increasing the effective surface area (Freeman, 1971).

Vasodialation during high ambient temperatures may

increase nonevaporative heat loss. The vasodilation reduces peripheral resistance to blood flow allowing more heat to be transported to peripheal tissues. This is particulally effective when vasoconstriction to the viscera shunts blood and hence heat to peripheral tissues (Bottje and Harrison, 1984). Thus increased blood flow to the comb and wattles is an important mechanism to dissipate core body heat (Michael and Harrison, 1987).

Since fowl have no sweat glands, H₂O loss via evaporation occurs through the moist respiratory tract surfaces. Inspired air which is "saturated" with water vapor at body temperature (Kerstens, 1964). Heat lost through evaporation at lower temperature represents only a fraction, of that at high temperatures, but increases dramatically to as much as 80% of the total heat loss through 26-35°C (Kerstens, 1964; Van Kampen, 1981; Wiernusz et al., 1991) Arieli et al., (1980) estimated 4 mg/Kg min°C of evaporative water loss from heat distressed birds housed at ambient temperature of above 26°C which represents an 8 fold increase over the 2-26°C temperature range.

Romijn and Lokhorst (1966), reported that at ambient temperature of 34°C and relative humidity of 40%, an adult hen dissipates over 80% of total heat by evaporative means. This was reduced to only 39% by increasing the relative humidity to 90% with the bird becoming hyperthermic.

MANAGEMENT METHODS USED DURING HEAT DISTRESS

Heat Distress

Avian species, are homeotherms and must consequently maintain deep body temperature relatively constant over a wide range of ambient temperatures (Meltzer, 1987). The deep body temperature of a mature chickens is generally higher than mammals, being in the range of 41-42 vs 38°C (Freeman, 1965). Bird heat production normally results in a thermal gradient from the warm interior (core) to the cooler surface (shell).

Fasting

Full and Mora (1973) reported that as ambient temperature approaches bird body temperature both the heat loss and energy requirement declines. As a result birds reduce nutrient intake. The result is usually seen in depressed growth rate and production. It has been reported (Squib et al., 1959: Cowan and Michie, 1978) that the growth rate depression observed in heat distressed broilers is partially related to reduced feed intake. Though birds decrease feed intake during heat distress periods it is often not enough to mazimally impact HP. During periods of rapid ambient temperature rise feed intake will remains normal for some time as a result the maximum thermogenic effect of the feed often coincides with the period of

maximum heat distress (Van Kampen, 1977). Thus the additional heat of the environment and the added heat from the feed becomes more than the bird can dissipate and heat distress symptoms occur.

Fasting has been evaluated as a management tool to combat heat distress (McCormick et al., (1979; Teeter et al., 1987a). McCormick et al., (1979), noted that fasting chicks for up to 72 hours resulted in progressively increased survival time when exposed to heat distress. Such fasting times, however are unpractical. Teeter et al., (1987a) observed that fasting broilers 6 hours prior to or during heat distress reduces heat distress mortality. This is similar to Van Kampen (1977) who reported that to be certain the thermogenic effect of feed does not coincide with highest air temperature, the last feed intake should occur at least 3-8h before maximum temperature is expected. The time feed is withdrawn prior to the onset of heat distress is very important and may be easily manipulated by the producer to reduce the effect of heat distress with out adversely affecting the birds growth and production.

ACCLIMATION

Acclimatization is defined as the physiological adjustment of an individual to a different climate, especially to a change in environmental temperature or altitude (Stedman's 1990). Under conditions of elevated

respiratory rate, a rise in body temperature, and an increase in water consumption (Deetz and Ringrouse, 1976; Sturkie, 1965). The increase in heat tolerance resulting from acclimatization is due to a decrease in body temperature, decreased insensible heat loss, decreased oxygen consumption, and increased panting rates (Sykes and Fataftah, 1986a). Researchers have attempted to use artificial acclimatization by exposing birds to an artificially induced stress prior to the onset of the naturally occurring event. As such, the acclimation represents an attempt to accustom the birds to the expected stress prior to its natural and more severe occuance. allows the bird to make necessary physiological adaptations to decrease the severity of the expected stress. obvious concern with this technique is the possibility that the expected natural stress might not occur. If this becomes the case, the producer will have decreased his profits because of the decreased weight gain associated with the birds being exposed to the artificial stress. if the natural stress does occur the producer may benefit from an increased bird survival.

Classical Acclimation

A great deal of work has been done on poultry in the area of acclimatization to high temperatures. Hutchinson and Sykes laid the ground work for the area of acclimation (in poultry) in 1953. They acclimated birds for 24 days to

4 h exposures of elevated (38°C) temperatures. Their results indicate that both control and acclimatized layers had increased body temperature (Tb) during exposure to high environmental temperature. However, the Tb of the acclimatized layers increased to a plateau, whereas the Tb of the control layers continued to increase. Similarly, Sykes and Fatafitah (1980) reported acclimatized hens Tb increased .4°C/h compared with 4.6°C/h for the controls.

Reece et. al., (1972) conducted 2 trials to assess the effect of acclimation. In the first trial (broiler type) birds were acclimated during weeks 4 - 8. At the end of the eighth week, the temperature was increased from 23.9 to 40.6°C over a 6 h period, held at 40.6°C for 2 hours and then decreased to 26.7°C. The control birds had 29% mortality while acclimated birds had a 10% mortality. Bird body weight was lower (P<.05) for the acclimated birds than the controls. However the data on the interaction between body weight and acclimation treatment indicates that acclimation, as a physiological process, is more important than body weight in determining susceptibility to heat prostration for a specific stress condition. In the second experiment, Reece reported that a 3 day exposure to high cyclic temperatures (23.9 - 35°C) gave broilers significant protection against heat prostration when compared to the control environment (21°C).

May et al (1986) conducted a trial to evaluate the effect of acclimation on bird survival during a subsequent

heat distress exposure. Control birds were held at 21°C while acclimated birds were exposed to a 24-35-24 °C (linear cycle) for 3 days. On the fourth day the temperature was gradually increased to 41°C and maintained until 50% of the control broilers died. Under these conditions only 5% of the acclimated broilers died of heat prostration. al., (1987) conducted two similar trials using the same temperatures during a 4 day acclimation period. At the end of Trial 1, total mortality was 30 % for controls and 10 % for acclimated broilers (P>.05). In Trial 2, mortality was 60 and 10% for control and acclimated broilers, respectively (P<.05). Pooling the trials resulted in acclimation significantly (P<.05) reducing mortality. The data also indicated that acclimated broiler's Tb rises upon exposure to heat, but that acclimation gives the capacity to stabilize Tb after an initial rise in contrast to the unacclimated birds.

The work of Hutchinson and Sykes (1953) and recent results have shown that acclimatization is not accompanied by increased evaporative heat loss, a situation opposite to that found in man and other sweating animals. Furthermore, there is limited capacity for increasing heat loss by vasodilation since only the lower legs and the comb offer a heat exchange surface (Van Kampen, 1984). Thus, without additional avenues of heat loss it is likely that acclimatization is achieved by reducing heat production not increased heat loss (Sykes and Fataftah, 1986b).

EI-Hadi et. al., (1980) conducted a trial using laying hens exposed to a hot climate of 38°C either intermittently (4 hours/day for 13d) or continuously (24 h/d for 12d). They monitored blood acid-base values before and after acclimatization and reported a fall in mean rectal temperature following acclimatization. Since respiratory rate, blood pH, pCO₂ and HCO₃ were the same on day one as on day 13, it was concluded that heat acclimatization is not accompanied by changes in the pattern of respiratory ventilation.

There is no clear connection between metabolic rate and heat tolerance except that it has been shown that acclimatization is accompanied by reduced metabolic rate, at acclimatization and thermoneutral temperatures (Sykes and Fataftah, 1986a). The observation (Hutchinson and Sykes, 1953) that heart rate was lower after acclimatization is also consistent with a reduced metabolic rate.

Acclimation and Hormones

It has been demonstrated that exogenous thyroid hormone admistration shortens bird survival time during heat stress (Fox, 1980; May 1982; Bowen et al., 1984). In contrast, reducing thyroid activity tends to lengthen survival time (Fox, 1980; Bowen et al., 1984). The secretion of T3 is reported to be dependent on ambient temperature (Freeman, 1983). Thus the effect of environmental temperature on thyroid activity may affect a birds ability to withstand

heat distress.

Rudas and Pethes (1984) reported reduced thyroxine (T4) concentration after exposure to 35°C for 1 hr, but triiodothyronine (T3) concentration was unchanged. They concluded conversion of T4 to T3 played a major role in the early phase of temperature acclimation. Kittok et al., (1982) observed increased sensible heat loss in adult chickens following administration of triiodothyronine (T3) or Thyroxine (T4). Oxygen consumption of chickens between 1-8 weeks of age is correlated with the circulating concentration of T3 but not T4 (Bobek et al., 1977; Klandorf et al., 1981), suggesting that T3 is the metabolically active thyroid hormone.

May et. al., 1986 reported that neither acclimation nor severe heat exposure consistently affected triiodothyronine (T3) or thyroxine (T4) concentration. They concluded that the mechanism of short-term acclimation involves endocrine or physiological responses other than changes in circulating thyroid hormone concentration. This is consistent with results reported by Bowen and Washburn (1985).

The role of the thyroid hormones in the response of heat tolerance to higher energy intakes has yet to be determined. However, metabolic rate is increased by exogenous thyroxine (Arieli and Berman, 1979) and there is a good correlation between metabolic rate and the concentration of plasma thyroid hormones (Klandorf et al., 1981: Williamson et al., 1985). The relationship between

food or energy intake and thyroid hormone activity is less well defined, but it is clear that plasma T3 concentration is reduced by fasting and rises again on refeeding (May, 1978: Harvey and Klandorf, 1983).

Day-5 Acclimation

Arjona et al (1988) conducted studies to evaluate the feasibility of acclimating chicks to heat distress on day 5 posthatching. The acclimation period consisted of holding the birds between 35-38°C for a 24 h period. Results indicated that exposure to 35.0 to 37.8°C for 8 h/day on days 44 and 45 reduced mortality (12.3% vs. .8%) for day 5 acclimated chicks compared to the control birds on days 44 and 45.

Acclimation And Bird Mineral Status

Since many body functions change during environmental stress and during acclimation to different environments (Euler, 1961; Bland, 1963; Dill et al., 1964; Leithead and Lind, 1964), blood electrolytes may also change. Huston (1977) indicated that blood potassium decreased significantly shortly after transferring birds to an increased environmental temperature of 30°C. The lowered potassium was observed as early as six hours following transfer to the 30°C environment. Deetz et. al., (1976) also reported that increasing ambient temperature decreased plasma potassium at all dietary levels. However ambient

temperature did not significantly affect the percentage of potassium in excreta or in the egg. Likewise potassium retention was not affected by temperature. Urine potassium goes up as temperature goes up at lower dietary levels of potassium. At high dietary levels (1% in the diet) of potassium, urine potassium levels were nearly equivalent. This effect may be related to urine production as Van Kampen (1981a) reported a 200% increase in urine output for laying hens exposed to heat distress.

It has been reported that decreased egg production and shell quality may be accompanied by reduced plasma calcium concentration (De Andrade et al., 1974, 1976, 1977; Smith, 1974; Wolfenson et al., 1979). Lowered concentration may be associated with reduced availability of this ion for egg formation. Other studies have suggested that blood is moved to the periphery during heat stress for evaporative cooling while the flow to core organs is reduced (De Andrade et. al., 1977; Wolfenson et al., 1978). Husseny and Creger (1981) also reported that broilers exposed to 320C ambient temperature for 42 days had lower calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc retention. Similarly Belay et al., (1993) observed reduced mineral retention for potassium, phosphorus, sulfur, sodium, zinc, selenium, molibdomin, magnesium, manganese, and copper.

Potassium chloride, NaCl and NaHCO3 drinking water supplementation has been reported to increase gain (Reece et

al., 1972; Riley et al., 1976; Teeter et al., 1985) and survivability (Branton, et al., 1986; Teeter et al., 1987b) of heat distressed broilers. The effects are correlated with increased water consumption and similar body temperature rise during heat distress (Teeter et al., 1987b). Belay, (1993) suggested that the effect is likely due to elevated evaporative cooling.

Water Consumption

A nutritional factor often overlooked during heat stress is the metabolism of water. Water consumption increases during high ambient temperatures (NRC, 1981). Smith and Teeter, (1987b) reported that increasing water consumption during heat distress increased gain when compared to control birds. In addition, temperature can have a profound affect on water consumption as elevating ambient temperature from 21 to 37°C, increased water consumption by 250% (NRC, 1981). Miller and Sunde (1975) suggested that layers are more tolerant to heat stress when provided cool drinking water. Leeson and Summers (1975) exposed layers to 35°C and offered them drinking water at either 35 or 2°C. Birds offered the cold water consumed 15% more feed and produced 10% more eggs during a 38d test period. Teeter et al. (1987b) reported that heat distressed broilers offered drinking water maintained at 15.6°C had greater growth rate compared to those offered water at higher temperatures. They suggested that cold water may

serve as heat sink enabling the bird to lower body heat load and increase its feed consumption. Also, Arad (1983) reported hydrated birds exposed to high ambient temperature (44 C) had lower metabolic heat production and higher cooling efficiency (evaporative heat loss / total heat production) than the dehydrated birds.

Teeter (1986) suggested that the increased heat distress tolerance of using electrolytes in water is not a product of the electrolyte altering the birds physiology. However, Belay and Teeter (1993) reported that increased water consumption during heat distress via drinking water electrolyte supplementation improved evaporative heat loss and Joules of heat dissipated per breath. During high ambient temperature, birds increase respiration rate (Michael and Harricon, 1987) and, as a result, a considerable quantity of water is evaporated from the mucous membrane lining of the upper respiratory tract. Thus, panting is the main route for dissipating heat during high ambient temperature distress. Indeed, heat distressed birds dissipate over 80% of heat production via evaporative cooling (Van Kampen, 1974; Wiernusz, et al., 1991).

Since water intake is correlated with feed intake, factors affecting feed consumption indirectly affect water intake (Zeigler, et al., 1971). High levels of dietary constituents such as molasses (Ross, 1960) and salt (Herrick, 1971; Teeter, 1988) are known to stimulate water consumption, presumably because urine production increases.

Ration Formulation

MacLead et al., (1979) and Wiernusz et al., (1991) demonstrated that heat production of birds exposed to heat distress is elevated with increased feed consumption. Thus feeding high calorie rations to increase nutrient intake may also increase oxygen consumption and metabolic heat production. According to Sykes and Salih (1986), even under conditions of mild heat distress an increased energy intake by birds consuming a fat fortified ration leads to reduced heat tolerance. The data also indicates that the birds had increased rectal temperature. Therefore, during heat distress, feeding high caloric density diets potentially increases the bird's heat load and mortality.

Reducing dietary protein while maintaining essential amino acids lowers ration heat increment (Waldroup et al., 1976; Baghel and Pradhan, 1989) while Sinurat and Balnave, (1985 and 1986) demonstrated that feed intake and feed efficiency of broilers in heat distress is correlated with caloric density and reduced amino acid to calorie ratio. The use of high energy rations with lower protein to form high calorie/protein ratios improves performance of heat distressed broilers since it reduces heat increment. The study of McNaughton and Reece (1984) with heat distressed broilers indicates that a high protein diet is advantageous for reducing carcass fat but can be deleterious due to higher heat increment.

Diet composition may directly or indirectly affect adipose tissue growth and fat deposition. An important factor is the effect of diet composition and texture on food intake during ad libitum feeding. Dietary manipulations favoring energy intake such as pelleting or changes in energy concentration are accompanied by an increase in fatness (Fisher and Wilson, 1974; Picard, 1981; Pesti, Whiting and Jensen, 1983). The ratios of E:P or energy to balanced amino acids are also considered important regulators of food intake and of carcass fat content (Fraps, 1943). Neupert and Harfiel (1978) reported that the carcass lipid concentration was more closely correlated with metabolizable energy density (r=0.69) than with the E:P ratio (r=0.47).

ENERGETIC SYSTEMS

The birds nutrient requirement for the desired production level and the composition of feed stuffs to be used must be known to properly feed poultry classes. The first consideration when formulating a ration is its energy content because 75 to 85% of the ration is devoted to satisfying the bird's energy requirement. Though several energetic systems are available the poultry industry uses the apparent metabolizable energy (AME) system for most ration balancing computations.

Farrell (1978) defined AME as the difference between the energy intake as feed and the energy output as excreta.

The AME is popular with the poultry industry because the chicken excretes urine and feces together making the AME system easy to apply. However, in order for a system describing the energetic content of feedstuffs to be considered reliable, values obtained using the respective assay must be reproducible (Dale and Fuller, 1986).

For a specific feedstuff at constant input, the metabolic urinary energy (Ume) varies according to tissue catabolism, tissue synthesis, and the utilization of absorbed nitrogenous compounds. The metabolic urinary energy also varies with feedstuffs, intake and nitrogen balance. Wolynetz et al. (1984) suggested that differences in AME may be large at low intakes, but that such variation decreases curvilinearly as intake increases. In addition, Sibbald (1975) demonstrated that at very low feed intakes AME values are negative because the output of metabolic plus endogenous energy exceeds the energy input.

The true metabolizable energy (TME) bioassay was developed in response to the finding that AME varies with feed intake (Sibbald, 1975, 1976). In the TME assay, fasted birds are used to provide an estimate of the endogenous and metabolic excreta energy losses. Thus the TME is calculated by taking the AME value and subtracting the value of endogenous losses (estimated by the fasted birds) which gives a more accurate value of the energy balance of the animal. Engster et al. (1981) reported that TME values proved to be better predictors of weight gain, feed intake,

and feed efficiency than conventional AME values. Dale et al., (1982) also reported that TME values more closely reflect the observed chick response to varying levels of energy density than did the corresponding AMEn (apparent metabolizable energy adjusted to zero nitrogen balance) values. It was concluded that the TME system provided a satisfactory measure of the caloric content of the feedstuffs used in experiments and also that the values obtained using the assay are applicable to broilers.

Several modifications have been suggested and adopted since the bioassay for true metabolizable energy (TME) was first described. Extension of the excreta-collection period to 48 h (Sibbald, 1978) and adjustment of TME to zero nitrogen balance (TMEn) (Shires et al., 1980; Sibbald and Morse, 1983) are two such modifications. Adjusting TME to zero nitrogen balance provides the nitrogen corrected TME or TMEn and allows us to compare animals that are gaining weight with animals that are maintaining body weight or even losing weight.

The accuracies of AME, AMEn, and TME as estimates of bioavailable energy are affected by feed intake and nitrogen retention while TMEn is not so affected (Wolynetz et al., 1984). At low levels of intake TME overestimates bioavailable energy, particularly for high-protein feedingstuffs (Wolynetz et al., 1984). TMEn however is a less variable estimate of bioavailable energy than is TME (Sibbald and Morse, 1983b). The theoretical and

experimental results indicate that TMEn is the most useful estimate of bioavailable energy for practical purposes (Wolynetz et al., 1984).

Researchers in ruminant nutrition are presently working with a energetic system called the net energy (NE) system which takes into account the heat increment of feedstuffs. Heat increment is the quantity of heat produced by an animal during fermentation in the gastrointestinal tract and during the processing and use of nutrients by the body. The heat increment is larger for proteins than for fats and utilizable carbohydrates, as it is for high as opposed to low fiber diets (Animal energetics and thermal environment chap. 8). Nitrogen corrected true metabolizable energy minus the heat increment of the ration equals the net energy of the ration. Thus, for a constant level of metabolizable energy intake, the greater the heat increment, the less the net energy available (Animal energetics and thermal environment chap. 8). The NE system offers nutritionists the ability to calculate rations on an available energy basis, referring to the energy that is available to the animal for tissue accretion and maintenance. The NE system may allow nutritionists to select a feedstuff for a ration based on its heat increment to provide, for example, heat for body temperature maintenance or maximum energy for production.

The NE system is a more useful bioassay for calculating rations than is the metabolizable energy system. However,

the NE system has its greatest advantage when a large portion of the rations energy is ultimately lost as heat. This is the case in ruminant animals where ruminal fermentation is responsible for a great deal of heat production. Monogastric animals have relatively little fermentation taking place during digestion or absorption, thus the NE system loses some of the advantages seen in the ruminant animals. However, the NE system has the potential to increase the efficiency of ration formulation and utilization, thus benefiting the producer.

FAT DEPOSITION

Dietary Fat

The poultry industry has recently become increasingly interested broiler fat accretion as it is of major consumer concern. Therefore, interest has developed in producing broilers with less total fat. This has posed a problem for producers because diets containing supplemental fat increase broilers body weights, which increase their profits, but also increase the total body fat.

Fats are the most concentrated source of available energy in poultry diets and there are several advantages to using fat in a ration. The most important of which is to increase the caloric density of the diet and subsequently improve body weight gain and feed efficiency. Waibel (1978)

attainment of a more nearly optimum available energy to amino acid balance for metabolism, resulting in an improvement of protein utilization.__The addition of fat to poultry diets is reported to increase the metabolizable energy (ME) of the diets more than expected from the additivity of the ME's of the individual ingredients (Cullen et al., 1962; Jensen et al., 1970; Sell, 1977; Sell et al., 1979; Mateos and Sell, 1980). Gomez and Polin (1974) and Sibbald and Kramer (1978) reported that fat supplementation seemed to improve the utilization of nonlipid constituents of diets.

Unfortunately, while most fats have similar gross energy values, their available energy concentrations vary widely (Cullen et al., 1962; Sibbald and Kramer, 1977). The availability and utilization of dietary fat energy is dependent on the composition of the diet (Cullen et al., 1962), the age of the bird (Whitehead and Fisher, 1975) and the level of inclusion of fat in the diet (Sibbald and Kramer, 1978).

It is well demonstrated that as the dietary fat supplementation is increased, both the amount of abdominal fat (Deaton et al., 1981) and the percent body ether extract increase (Deaton et al., 1981). Deaton reported that under moderate and high temperature regimens, as dietary fat level increased, body weight and the amount of abdominal fat increased.

It is thought that fats depresses feed intake by a

general energy-related effect. The injection of small amounts of individual long-chain fatty acids intraperitoneally (Cave, 1978), or through inclusion in the feed (Sunde, 1956; Renner and Hill, 1961), do not depress intake to a significant extent. However, some short- and medium-chain fatty acids do depress intake when given intraperitoneally (Cave, 1978) or in the diet (Cave, 1982).

Contradictory reports regarding the effect of dietary fat supplementation on body fat content exist. Many studies indicate that as dietary fat is added to the diet at the expense of carbohydrates and at constant E:P ratio, the addition has no significant effect on carcass fat (Bartov, 1979; Laurin et. al., 1985). It appears that the dietary fat effect on total body fat is dependent upon diet energy density, since fat supplementation reduced body fat when supplemented at 12.3 MJ/Kg. In contrast, supplemental fat had no effect when supplemented at a higher energy level (13.4 MJ/Kg) (Bartov, 1979). The effect of dietary fat addition was much greater on adipose tissue than on total body fat as it reduced the weight of adipose tissues at both energy levels

Body Fat Accretion

The liver is the major site for lipogenesis (Goodridge, 1968; O'Hea and Leveille, 1969) although adipose tissue and skin make minor contributions (Yeh and Leveille, 1973).

Accumulation of fat is due to hypertrophy and hyperplasia of

adipose cells. In commercial birds the number of adipose cells increases in the abdominal fat pad to about 14 weeks; beyond this time cell numbers remain constant at about 270 X 10⁶ cells per fat pad (Hood, 1982). It has been reported that the total DNA-deoxyribose content of pullet adipose tissue plateaus at 12 to 15 weeks of age (Pfaff and Austic, 1976). Hypertrophy of adipose cells, rather than hyperplasia, is more important in the determination of adiposity of the mature chicken (Hood, 1982b; March et al., 1982). Growth rate, however, can influence the number of abdominal fat pad adipose cells in the 9-week-old chicken (Hood and Pym, 1982). Nevertheless, adipose cell size remains the dominant factor which influences the size of the fat pad in young birds.

The fatty acid composition of meat is determined by the fatty acid composition of the diet the animal has consumed, as well as by de novo fatty acid synthesis (Marion et al., 1963; Schuler et al., 1971). Breed, sex, and ambient temperature have only minor effects on the fatty acid distribution pattern (Marion and Woodroof, 1965; Balnave, 1973; Otake et al., 1973). Nonruminants tend to deposit dietary fatty acids in the same form as ingested, that is, they neither saturate nor desaturate them. Ruminants on the other hand, have microoganisms that increase the saturation of the fatty acids ingested (CAST 1991). Therefore, the dietary lipids markedly influence the fatty acid composition

deposition of ruminants.

The assembled data on the lipid content of fowl indicate that both poultry and game birds contain greater amounts of unsaturated than saturated fatty acids (Fristrom and Weihrauch 1976). The total fat content of individual tissues and total edible portion increases with age (Fristrom and Weihrauch 1976). Oleic acid is the dominant fatty acid in all tissues of all birds studied (Fristrom and Weihrauch 1976). White meat of the chicken and turkey contains the least amount of fat, with the skin containing the largest amount, especially in duck and goose skin (Fristrom and Weihrauch 1976). The skin of all birds contains more fat than the flesh and is the major contributor of fat to the edible portions (Fristrom and Weihrauch 1976).

COMMON METHODS OF CARCASS COMPOSITION DETERMINATION

Direct Carcass Composition Determination

Comparative slaughter is frequently the method used to calibrate indirect calorimetry values. Carbon and nitrogen balance has been used to estimate fat and protein deposition. The comparative slaughter technique estimates energy gain by contrasting initial and final carcass weight and composition. The technique requires animals that have similar initial composition. A portion of the animals are sacrificed at the beginning of the trial and the rest at the

end of the trial following consumption of the desired feedstuffs. By comparing the initial group to the final group the retention of energy may be determined by difference. Since no two animals are exactly alike, the accuracy of this technique is strongly influenced by homogeneity of the initial population. Davidson and Mathieson (1965) reported that birds killed at the beginning of the experiment are probably representative of the remainder when very young chickens are used. When older birds are used () this assumption may be incorrect because of the wide variation existing in the fat content of individual birds (Fraps and Carlyle, 1939; Hanlan, 1939).

Indirect Carcass Composition Determination

Carcass composition can be determined using respiratory chambers and indirect calorimetry without sacrificing an animal. Energy retained and the partitioning of that energy into fat and protein can be determined in conjunction with calorimetric observations. The difference between heats of combustion of feed consumed and excreta voided plus heat produced during an experimental period constitute an estimate of retained energy (Farrell, 1974). Retained carbon vay be partitioned between ??? and fat using carbon and nitrogen balance. The partitioning is based on the assumption that fat and protein are of constant chemical composition and are the only C and N materials retained (Zaniecka, 1969). Energy balance can be partitioned into

retention (as protein or fat) or loss (as heat) using the assumption that all of the nitrogen stored is in the form of protein (N \times 6.25) with a fixed energy content of about 27.2 kJ (Fraps and Csrlyle, 1939).

The use of indirect calorimetry has the advantages of being noninvasive, requiring quick and easy laboratory assays, experimental trials of short duration, and the capability of using the same experimental animal for multiple experiments. In addition, the use of coupled C-N balance and indirect calorimetry allows us to look at body composition, fat and protein accretion while simultaneously gaining insight into the metabolic processes used during fat and protein deposition under differing environmental and nutritional regimes.

RESPIRATORY QUOTIENT

The ratio of the volume of CO2 produced to the volume of O2 consumed is defined as the respiratory quotient (RQ). The RQ can be used as an indicator of substrate catabolism (Richardson, 1929; Kleiber, 1961). Heat production can be calculated from the thermal equivalents of O2 or CO2 at a particular RQ from tables of published values (Broody, 1945).

Provided the substrates used to supply energy are carbohydrate, protein and fat, then theoretically the RQ should not be higher than 1.0 or lower than 0.70. However,

the RQ ranges above and below .80. There are a number of possible reasons why unusually low RQ's may occur. Wash outs of CO2 (Krogh, 1916) may be an explanation during short-term experiments, although this is likely to be of little significance in studies of more than 24 h in duration. The incomplete combustion of fat and the production of ketone bodies may occur in starved birds (Farrell 1974). respiratory quotients greater than 1 are usually explained by the synthesis of fat from carbohydrate when birds are fed very large amounts of food, particularly following a period of starvation (Romijn and Lokhorst, 1966).

PROBIOTICS AND COMPETITIVE EXCLUSION

Microbials are often fed to animals. The term which has commonly been used to describe these microbials is "probiotics". There are many definitions of probiotics but Fuller (1989) presented a more precise definition as "a live microbial feed supplement which beneficially affects the host animal by improving its intestinal balance".

Probiotics are bacterial or yeast in origin (Fox, 1988).

Direct fed microbials (DFM) are microbes fed to animals in feed or water to promote the establishment of an "ideal digestive tract microbial population". The animal's digestive tract must supply all factors necessary for microorganism colonization. Such factors include a

favorable temperature, a constant supply of nutrients, essential fluids and a proper pH. In this symbiotic situation the microorganisms benefit from the environment and the animal benefits by maintaining a microflora that does not cause any disease state.

Newly hatched healthy chicks have sterile gastrointestinal tracts (Jayne-Williams and Fuller, 1971). However, from the moment of hatching exogenous bacteria rapidly enter the chick and colonize the intestine. Milner and Shaffer (1952) observed day old chicks to be extremely susceptible to salmonellas that may result in chronic intestinal infection. However the susceptibility appears to decline with increasing age.

Nurmi and Rantala (1973) demonstrated that oral introduction of cecal bacterial flora from adult birds into newly hatched chicks increased the chicks' resistance to salmonella infection as well as improved bird growth rate and feed conversion (Nurmi, 1985). Nurmi and Rantala (1973) orally inoculated 1 to 2 day-old chicks with a 1:10 dilution of normal intestinal contents from healthy adult birds one day prior to oral challenge with Salmonella infantis. The inoculation reduced salmonella by 77% compared to a 100% infection rate in the controls. Their results have been confirmed in several laboratories. Today the efficacy is known as the Nurmi concept or as competitive exclusion (CE). Competitive exclusion may be defined as the inability of one population of microorganisms to establish in the gut due to

the presence of another population. Lloyd et al., (1974) suggested that alien salmonella may be excluded from essential microhabitats through competition from the rapidly developed native gut flora. In this process, the intestinal wall is a prerequisite for excluding pathogens. Salmonellas must first attach to intestinal epithelial cells in order to colonize the host (Savage, 1987). Lloyd et al. (1977) originally suggested that if paratyphoid salmonellas are to establish in the intestinal tract the organisms must compete for nutrients and suitable colonization sites in an environment which has already been made unfavorable by the stable indigenous flora. Since the newly-hatched chick may not be fully colonized by an indigenous flora less antagonism from the micro-organisms may be present, thus preferred microsites as well as nutrients may be available allowing salmonellas to invade and colonize.

Thus far investigations on the mechanism of protection by adult intestinal microflora strongly supports the theory that direct competition for the site of attachment is probably the primary mechanism of competitive exclusion.

Recent electron microscopic studies by Soerjadi et al., (1982) supports the attachment mechanism theory for competitive exclusion.

Soerjadi et al., (1978) determined that the effective component in cecal contents had bacteria-like properties in that the protective qualities could not pass through

a range of antibiotics as well as the ability to be stored aerobically and anaerobically.

Many reports have shown that pretreatment with either fresh adult intestinal contents or artificially cultured microflora significantly increase the resistance of the chick to salmonella infection; yet it does not entirely prevent infection (Barnes et al., 1980; Rigby and Pettit, 1980; Snoeyenbos et al., 1979). The pretreatment of one day old chicks does provide a significant reduction in the numbers of salmonellas colonizing any location of the chick alimentary tract (Reid and Barnum, 1983; Soerjadi et al., 1981). Pretreated birds also have decreased mortality rates from salmonella infection (Rigby and Pettit, 1980; Raevuori et al., 1978 and Lloyd et al., 1977). Snoeyenbos et al., (1979) demonstrated that chickens remained resistant to challenge up to 11 weeks post-treatment.

Miles et al. (1981b) conducted two experiments on Bobwhite quail and indicated that no significant differences existed in growth, feed efficiency of mortality when quail fed the DFM were compared to those fed the unsupplemented control diet. Whereas Crawford (1979) reported results from nine trials with commercial egg-type layers. Overall egg production and kilograms of feed required to produce a dozen eggs were both improved for the DFM groups compared to the control groups.

Meynell (1963) and Bonhoff et al. (1964) demonstrated that volatile fatty acids (VFA) produced by the metabolism

of anaerobes in the caeca of mice could inhibit salmonellas when tested at concentrations normally found. VFA apparently exert inhibitory activity in the undissociated state, thus inhibition is greater if the pH is less than 6.0. Barnes et al. (1979) found that the cecal flora of the hatching chick produced a VFA concentration that was too low and the pH too high to prevent the multiplication of any salmonellas reaching the caecum. A rapid increase in the VFA and a decrease in the pH of the caeca occurs during the first 7 days of life. As non-sporeforming anaerobes are a main source of VFA in the caeca and their populations are at a minimum during the first days of life, the protective effect of adult intestinal flora with high concentrations of anaerobes can be realized (Impey, et al., 1982).

In anaerobic culture, with various combinations of VFA, Barnes et al., (1979) found that complete inhibition of S. typhimurium was obtained when the pH was in the medium region of 5.5. But a pH value of 6.0 afforded only temporary salmonella growth inhibition. The pH of intestinal contents of older birds has been found to be consistently above 6.0 (Farmer, 1943)

Bailey (1987) reviewed all of the factors affecting microbial competitive exclusion in poultry and concluded that the production of volatile fatty acids was less important than the physical occupation of intestinal sites to which bacteria might attach and colonize.

Lactobacillus

Several workers have proposed that Lactobacillus is the protecting organism and day old chicks, which are most susceptible to salmonellas, have low populations of lactobacilli in the crop and caeca (Barnes et al., 1972 and 1980; Mead and Adams, 1975). Lactobacillus sp. have been reported to have an inhibitory effect on E. coli multiplication in the chicken gut (Fuller, 1977 and 1978). Lactobacillus (spp.) are capable of producing large amounts of lactate from simple carbohydrates and concomitantly can withstand high degrees of acidity which is usually fatal to other bacteria.

In vivo studies using lactobacillus cultures for pretreatment have not been successful in protecting chicks from salmonella colonization of the intestinal tract (Barnes et al., 1980; Soerjadi et al., 1981). Adder and DaNassa (1980) reported that feeding a lactobacillus culture to chicks resulted in an improvement in body weights and reduced the occurrence of pasted vents. Protection against salmonella infection has not been obtained in conventionally reared chicks pretreated with lactobacilli isolated from the caeca of adult fowls (Adler and DaMassa, 1980). Even a Lactobacillus species isolated from a microflora known to be consistently salmonella-protective has not proven to be protective (Barnes et al., 1980; Soerjadi et al., 1981; Watkins and Miller, 1983). According to Leeson and Major

(1990), a healthy animal has a preponderance of lactic acidproducing bacteria. These authors stated that it is only
under a situation of "stress", when coliforms often increase
in numbers, that a DFM will be of measurable benefit.

There is increasing evidence that optimal protection against salmonella requires the use of relatively complex bacterial mixtures when treating newly hatched birds. The product developed by Nurmi and his colleagues appears to contain strains belonging to at least seven bacterial genera (Nurmi, 1985). A mixture containing 23 strains was described by Barnes et al. (1980) but was subsequently found to provide less consistent protection for experimental groups of chicks than the same mixture supplemented with a further 25 strains (Impey et al., 1982).

Mead and Impey (1986) reported that only a few lactobacilli, whether administered alone or included in mixtures, have been considered as potentially protective. Dilworth and Day (1978) conducted experiments designed to evaluate two lactobacillus cultures as supplements in broiler diets. Adding the DFM to the diet resulted in a significant improvement in growth and feed efficiency.

Damron et al. (1981) reported results from two
experiments which were each conducted for 112 days. Broad
breasted Large White turkey hens were housed individually in
wire cages in experiment 1. In experiment 2, floor pens
that contained 5 hens each were used. Each diet was fed to
5 replicate pens. Treatments consisted of a control corn-

soybean meal diet and a similar diet containing 625 mg of a DFM per kg of diet. The DFM used in the experiments was a mixed lactobacillus culture. Egg production, egg specific gravity, daily feed intake, body weight change, fertility and hatchability were not influenced by the addition of DFM to the diet in either experiment.

Al-Zubaidy and Sullivan (1977) using Large White female turkeys on diets containing a live culture of lactic acid-producing bacteria. The DFM fed birds had increase gains at 4,8, and 12 weeks of age compared to nontreated turkeys.

Han et al., (1984a,b) studied the effect of supplementing broilers with lactobacillus sporagenes, an aerobic sporeformer, and Clostridium butyricum. These DFM's significantly improved weight gain and feed conversion of broilers. Both of these microorganisms suppressed the counts of staphylococci and coliforms in the birds.

Fethiere and Miles (1987) reported that feeding a DFM consisting of Lactobacillus acidophilus and other lactobacilli did not influence the body weight of broilers housed in battery cages.

Burkett et al., (1977) supplemented a control broiler diet with a lactobacillus, a yeast, or a combination of lactobacillus and yeast. Birds were raised under commercial conditions. After four weeks, birds fed the DFM had better feed efficiency. At 8 weeks no significant differences in body weight gain among treatment groups were found. However birds fed the combination of lactobacillus and yeast had

greater pigmentation and fat deposition.

Arends et al. (1981) administered a strain of Lactobacillus acidophilus via the drinking water to broilers which were housed under commercial conditions. In the four trials conducted, an average improvement in weight gain of 25.5g and feed conversion of .0635 points was observed in the birds fed the DFM.

Yeast as a Protein Source

Yeast contains 57-65% crude protein, has a digestibility of 83-86%, and an ME value of 2.85-3.38 Kcal/g on a dry matter basis. Yeast is an excellent source of protein, energy and phosphorous for poultry, but the levels of sulphur amino acids and vitamin B12 is low, resembling that of soybean meal. When yeast was fed to chicks as the only dietary source of protein, sulphur-containing amino acids were found to be the first limiting amino acids, followed by arginine and phenylalanine (Tajina et al. 1971). In the first hatchability test in this experiment a surprising result was that hatchability of the eggs on the diet containing yeast was lower than 50%. Most of the chicks died in the shell before hatching due to a dietary deficiency of vitamin B12.

Yeast and Digestion

It is known that certain emulsifying agents increase

and chicks (Fedde et al., 1960).

The Oklahoma Agricultural Experiment station indicated that when yeast culture was added to rations fed to growing turkeys there was an increased growth rate. It was postulated that the increased growth might have resulted from improved fat digestion due to yeast culture lipase activity.

Five experiments were conducted to test the effect of .yeast culture and lecithin on the fat digestibility in rations fed to laying hens. Corn oil, tallow and sifteen were the three types of fat added to the rations in various experiments. The results indicate that yeast culture and lecithin had beneficial effects upon the digestibility of tallow, both separately and in combination. In the rations which contained corn oil, there was no effect on fat digestibility due to yeast culture (Tonkinson et. al., 1965).

Kim et al., (1988) fed diets containing 10% moldy corn supplemented with either proprionic acid or a DFM to broilers and reported that the digestibility of crude fat in the moldy-corn diet was increased significantly in the presence of DFM. The digestibility of crude protein tended to be higher for the diets containing the DFM than those not containing the DFM.

Yeast as a Direct Fed Microbe

Nelson et al., (1971) demonstrated that a mold-produced

phytase enzyme can cause in vivo hydrolysis of phytate phosphorus. The use of a live yeast culture (LYC) has been reported to free 75 to 80% of phytate phosphorous within 4 h in vitro (Thayer and Jackson, 1975). Thayer et al. (1978) reported an improvement in egg production, egg weight, and hatchability for turkey hens fed diets containing 2.5% LYC. Day et al., (1987) reported the addition of .25 or .50% LYC to layer hen diets containing either .40 or .60% TP did not exert any beneficial effects on performance. Guevara (1977) observed an adverse effect of dietary yeast on the performance of growing broiler chicks. He also observed the poorest broiler performance with diets containing the lowest available phosphorus level (.25%) and the highest yeast level (3.0%).

Thayer and Jackson (1975) concluded that using a live yeast culture was an efficient way of utilizing phytate phosphorus through the synthesis, of phytase which resulted in hydrolyzing the phytate phosphorus in the digestive tract. In addition, Thayer et al. (1978) studied the efficiency of utilization of dietary phosphorus by caged turkey breeder hens when fed diets supplemented with a live yeast culture. The overall results indicated that the efficiency with which dietary phosphorus was utilized by turkey breeder hens was significantly increased by the addition of the LYC to the diet.

Based on the literature reviewed, competitive exclusion appears to have many advantages. It provides a safe

innocuous method of protecting susceptible chicks and poults from salmonella infection and other enteric pathogens as well as in some cases increased growth, egg production, and survivability. Competitive exclusion also offers producers a means of increasing production naturally, instead of using antibiotics, which will be more readily accepted by the consumer. However the effectiveness of CE to benefit an animal seems to be related to mixtures of DFM as in most cases a single strain of bacteria is ineffective in producing beneficial effects for the animal. This leads of to believe that more research is needed in the area of CE to find products that will yield optimal benefit at reasonable prices to the producer.

REFERENCES

- Adler, H.E. and DaMassa, A.J. (1980) Effect of ingested lactobacilli on Salmonella infantis and Escherichia coli and on intestinal flora, pasted vents, and chick growth. Avian Diseases, 24(4):868-878.
- Al-Zubaidy, S.S. and Sullivan, T.W. (1977) Antibiotics, probiotics and high-level copper in turkey diets. Poultry Science, 56:1692(Abstract).
- Arad, Z. and J. Marder, 1983. Acid-base regulation during thermal panting in the fowl (Gallus Domesticus): Comparison between breeds. Comp. Biochem. Pysiol. 74a:125-130.
- Arad, Z., 1983. Thermoregulation and acid-base status in the panting dehydrated fowl. Journal of applied Physiology, 54:234-243.
- Arad, Z., J. Marder, and M. Soller, 1981. Effect of Gradual Acclimation to Temperatures up to 44°C on Productive Performance of the Desert Bedouin Fowl, the Commercial White Leghorn and the two Reciprocal Crossbreds. British Poultry Science, 22:511-520.
- Arends, L.G., Porubcan, R., and Gulstrom. T. (1981)
 Influence of Lactobacillus acidophilus administered via
 the drinking water on broiler performance. Poultry
 Science, 60:1617(Abstract).
- Argutinsly, P. 1894. Pflug. Arch. ges. Physiol. 55, 345.
- Arieli, A., A. Meltzer and A. Berman, 1980. The thermoneutral temperature zone and seasonal acclimation in the hen. Br. Poult. Sci. 21:471-478.
- Arieli, A., and A. Berman, 1979. The effect of thyroxine on thermoregulation in the mature domestic fowl. Journal of Thermal Biology, 4:247-249.
- Arjona, A.A., D.M. Denbow and W.D. Weaver Jr, 1988. Effect of heat stress early in life on mortality of broilers exposed to high environmental temperature just prior to marketing. Poultry Sci. 67:226-231.

- Augur, V., H.S. Rollman and H.I. Deuel, Jr., 1947. The effect of crude lecithin on coefficient of digestibility and the rate of absorption of fat. J. Nutrtion, 33:177-186.
- Bacon, W.L., A.H. Cantor, and M.A. Coleman 1981. Effect of dietary energy environment and sex of market broilers on lipoprotein composition. Poultry Science 60:1282-1286.
- Baghel, R.P.S., and K. Pradhan, 1989. Energy, protein and limiting amino acid requirements of broilers at very high ambient temperature. Brit. Poultry Sci. 30:295-304.
- Bailey, J.S. (1987) Factors affecting microbial competitive exclusion in poultry. OVERVIEW-outstanding symposia in food science and technology. Food Technology, July:88-92.
- Balvave, D.: The influence of environmental temperature on the fatty acid composition of liver and carcass lipids in the young male chicks fed on equalized and ad libitum intakes. Comp. Biochem. Physiol. A. Comp. Physiol. 44:1075, 1973.
- Barnes, E.M., C.S. Impey, and D.M. Cooper, 1980.

 Manipulation of the crop and intestinal flora of the newly hatched chick. Am. J. Clin. Nutr. 33:2426-2433.
- Barnes, E.M., Impey, C.S., and Stevens, B.J.H. (1979)
 Factors affecting the incidence and anti-sa; monella
 activity of the anaerobic caecal flora of the young
 chick. Journal of Hygiene. 82:263.
- Barnes, E.M. and C.S. Impey, 1972. Some properties of the nonsporing anaerobes from puoltry caeca. J. Appl. Bacteriol. 35(2):241-251.
- Bartov, I. 1979. Nutritional factors affecting quantity and quality of carcass fat in chickens. Fed. Proc. Fed. Am. Soc. Exp. Biol. Bethesda, Md., The Federation. 38(12):2627-2630.
- Belay, T. and R.G. Teeter, 1993. Broiler water balance and thermobalance during thermoneutral and high ambient temperature exposure. Poultry Sci. 72:116-124.
- Bland, John H., 1963. Clinical Metabolism of body Water and Electrolytes, W.B. Saunders Co., Philadelphia, Pennsylvania, p10-53.

- Blaxter, K.L. and J.A.F.Rook 1952. The Heat of Combustion of the Tissues of Cattle in Relation to their Chemical Composition.
- Bobek, S., M., Jastrzebski and M. Pietras, 1977. Agerelated to changes in oxygen consumption and plasma thyroid hormone concentration in the young chicken. Gen. Comp. Endocrinology. 31:169-174.
- Bohnhoff, M., Miller, C.P., and Martin, W.R. (1964)
 Resistance of the mouse's intestinal tract to
 experimental Salmonella infection. I. Factors which
 interfere with the initiation of infection by oral
 inoculation. Journal of Experimental Medicine, 20:805.
- Bottje, W.G. and P.C. Harrison, 1984. Mean celiac blood flow (MBF) and cardiovascular response to alpha adrenergic blockade or elevated ambient CO2 (%CO2) during accute heat stress. Poultry Sci. 63:68-69.(abst)
- Bottje, W.G. and P.C. Harrison, 1985. The effect of tap water, carbonated water, sodium bicarbonate and calcium chloride on blood acid-base balance in cockerels subjected to heat stress. Poult. Sci. 64:107-113.
- Bottje, W.G., and P.C. Harrison, 1985. Eddect of tap water, carbonated water, sodium bicarbonate, and calcium chloride on blood acid-base balance in cockerels subjected to heat stress. Poultry Sci. 64:107-113.
- Bowen, S.J., and K.W. Washburn, 1985. Thyroid and adrenal response to heat stress in chickens and quail differing in heat tolerance. Poultry Sci. 64:149-154.
- Bowen, S.J., K.W. Washburn, and T.M. Huston 1984.
 Involvement of the thyroid gland in the response of young chickens to heat stress. Poultry Sci. 63:66-69.
- Branton, S.L., F.N. Reece, and J.W. Deaton, 1986. Use of ammonium chloride and sodium bicarbonate in acute heat exposure of broilers. Poultry Sci. 65:1659-1663.
- Bray, T.S., 1983. Broilrs-- Why temperature is important. Gleadthorpe Experimental Husbandry Farm Poultry Booklet, No. 10, pp.10-21 (London, Ministry of Agriculture, Fisheries and Food.).
- Brody, S. 1945. Bioenergetics and Growth. New York, Reinhold.

- Burkett, R.F., Thayer R.H., and Morrison, R.D. (1977)
 Supplementing market broiler rations with lactobacillus
 and live yeast cultures. Animal Science Agricultural
 Research Report. Oklahoma State University and USDA,
 USA.
- Burlacu, G., I. Dumitra and M. Baltic, 1970a. Efficiency of the utilization of the energy of casein in fowls. J. Agric. Sci. (Cambridge) 75:207-211.
- Burlacu, G., I. Dumitra and M. Baltic, 1970a. Efficiency of the utilization of the energy of casein fowls. J. Agric. Sci. (Cambridge) 75:207-211.
- Burlacu, G., M. Baltic and M. Peraschiv, 1970b. Efficiency of food energy utilization in growing chickens. in: Energy Metabolism of Farm Animals pp. 209-212. A. Schurch and C. Wenk ed. Juris Verlag, Zurich
- Burlacu, G., M. Baltic, and M. Peraschiv, 1970b. Efficiency of food energy utilization in growing chickens. In: Energy Metabolism of Farm Animals. PP 209-212. A. Schurch and C. Wenk Ed. Juris Verlag, Zurich.
- Cahaner, A., Z Nitsan, and I. Nir, 1986. Weight and fat content of adipose and non adipose tissue in broilers selected for and against abdomenal adipose tissue. Poultry Sci. 65: 215-222.
- Cave, N.A.G. 1982. Effect of dietary short- and medium-chain fatty acids on feed intake by chicks. Poultry Sci. Champagne, Ill., Poultry Science Association. 61(6):1147-1153.
- Cerniglia, G.J., J.A. Hebert and A.B. Watts, 1983. The effect of constant ambient temperature and ration on the performance of sexed broilers. Poultry Sci. 62:746-754.
- Charles, O.W. and S. Duke, 1981. Teh productive response of leghorn hens to temperature and phosphorus level. Poultry Sci. 60:1638 (abstr).
- Chwalibog, A. and Eggum, 1989. Effect of temperature on performance, heat production, evaporative heat loss and body composition in chickens. Arch. Geflugeld. 53: 179-184.
- Cowan, P.J., and W. Michie, 1978. Environmental temperature and broiler performance: the use of diets containing increased amounts of protein. British Poultry Science, 19:601-605.

- Crawford, J.S. (1979) "Probiotics" in animal nutrition.
 Proceedings 1979 Arkansas Nutrition Conference, pp.4555, USA.
- Cullen, M.P., O.G. Rasmussen, and O.H.M. Wilder, 1962.

 Metabolizable energy value and utilization of different
 types and grades of fat by the chick. Poultry Sci.
 41:360-367.
- Dacke, C.G., V.J. Musacchia, W.A. Volkert, and A.D. Kenny, 1973. Cyclical fluctuations in the levels of blood calcium, pH and pCO₂ in Japanese quail Comparative Biochemistry and Physiology, 44A:1267-1275.
- Dale, N.M. and H.L. Fuller, 1980 Effect of diet composition on feed intake and growth of chicks under heat stress. Poultry Science 59:1434-1441.
- Dale, N.M., and H.L. Fuller, 1982. Applicability of the True Metabolizable Energy System in Practical Feed Formulation. Poultry Sci. 61:351-356.
- Dale, N.M., and H.L. Fuller, 1986. Repeatability of True Metabolizable Energy Versus Nitrogen Corrected True Metabolizable Energy Values. Poultry Sci. 65:352-354.
- Damron, B.L., Wilson, H.R., Voiltle, R.A., and Harms, R.H. (1981) A mixed lactobacillus culture in the diet of Broad Breasted Large White turkey hens. Poultry Science, 60:1350-1351.
- Davenport, H.W., 1978. A digest of digestion. 2nd ed., Year Bood Med. Publ., inc., Chicago, IL.
- Davidson, J. and J. Mathieson, 1965. Observations on the utilization of dietary energy by medium- and fast-growing strains of cockerels and on their arginine and methionine requirements. Br. Poult. Sci. 6:225-233.
- Davidson, J. and R.B. Willialms, 1968. A note on the estimation of nitrogen retention in chicks by body analysis and balance methods. Br. J. Nutr., 22: 291-295.
- Day, E.J., B.C. Dilworth, and S. Omar, 1987. Effect of varying levels of phosphorus and live yeast culture in caged layer diets. Poultry Sci., 66:1402-1410.
- DeAndrade, A.N., J.C. Rogler, and W.R. Featherston, 1974. Effects of heat stress and diet on shell quality and performance of laying hens. Poultry Science, 53:1916-1917.

- DeAndrade, A.N., J.C. Rogler, and W.R. Featherston, 1976. Influence of constant elevated temperature and diet on egg production and shell quality. Poultry Science, 55:685-693.
- DeAndrade, A.N., J.C. Rogler, W.R. Featherston, and C.W. Alliston, 1977. Interrelationships between diet and elevated temperature (cyclic and constant) on egg production and shell quality. Poultry Science, 56:1178-1188.
- Deaton, J.W., F.N. Reece, S.L. Branton, and J.D. May, 1986. High Environmental Temperature and Broiler Livability. Poultry Science 65:1268-1269.
- Deaton, J.W., J.L. McNaughton, F.N. Reece, and B.D. Lott, 1981. Abdominal Fat of Broilers an Influenced by Dietary Level of Animal Fat. Poultry Sci. 60:1250-1253.
- Deetz, L.E., and R.C. Ringrose, 1976. Effect of Heat Stress on the Potassium Requirement of the Hen. Poultry Science 55:1765-1770.
- Deighton, T. and J.C.D. Hutchison, 1940b. Studies on the metabolism of fowls. III. The determination of the comparative net energy of Sussex ground oats and white maize meal for fattening cockerels. J. Agric. Sci., Camb., 30: 463-484.
- Dill, D.B., E.F. Adolph, and C.G. Wilber eds., 1964. Handbook of Physiology. Adaptation to the Environment. Am. Physiol. Soc., Washington, D.C.
- Dilworth, B.C and Day, E.J. (1978) Lactobacillus culture in broiler diets. Poultry Science, 57:1101(Abstract).
- Duke, G.E., and O.A. Evanson, 1972. Inhibition of gastric morility by duodenal contents in turkeys. Poultry Sci. 51:1625-1636.
- EI-Hadi, H.M., and A.H. Sykes, 1980. Heat acclimatization and blood acid-base balance in the laying hen. Arch. Geflugelk. 44:264-266.
- Engster, H.M., D.C. Snetsinger, and J.W. Kessler, 1981.

 Commercial application of the TME system. Proc. 3rd

 European Symp. Poultry Nutr. Look up again
- Euler, E. Von, 1961. Physiology and pharmacology of temperature regulation. Pharmacol. Rev. B:361-398.

- Farrell, D.J., 1974. General principles and assumptions of calorimetry. in: Energy Requirements of Poultry, pp. 1-24, T.R. Morris and B.M. Freeman, British Poultry Science Ltd, Edinburgh.
- Farrell, D.J., 1978. Rapid determination of metabolizable energy of foods using cockerels. Br. Poult. Sci. 19:303-308.
- Fedde, M.R., P.E. Waibel and R.E. Burger, 1960. Factors affecting the absorbability of certain dietary fats in the chick. J. Nurtituin, 70:447-452.
- Fethiere, R. and Miles, R.D. (1987) Intestinal tract weight of chicks fed an antibiotic and probiotic. Nutrition Reports International, 36(6):1305-1309.
- Fisher, C. and B.J. Wilson, 1974. Response to dietary energy concentration by growing chickens. In: JEnergy requirements of poultry. Edit. Morris, T.R. Freeman, B.M., Brit. Poultry Sci. Ltd. ppl 151-184.
- Fox, S.M. (1988) Probiotics: Intestinal inoculants for production animals. Veterinary Medicine, 83(8):806-830.
- Fox, T.W., 1980. The effects of thiouracil and thyroxine on resistance to heat stress. Poultry Sci. 59:2391-2396.
- Fraps, G.S. and E.C. Carlyle, 1939. The utilization pf the energy of feed by growing chickens. Bull. Tex. Agric. Exp. Stn. 571.
- Fraps, G.S., 1943. Relation of protein, fat and energy of the ration to the composition of chickens. Poultry Sci. 22:421.
- Freeman, B.M., 1965. The relationship between oxygen consumption, body temperature and surface area in the hacking and young chick. Brit. Poultry Sci. 6:67-72.
- Freeman, B.M., 1971. Body temperature and thermoregulation. In: Physiology and Biochemistry of the Domestic Fowl. Vol.II. JEd. Academic Press Inc. London, pp.1115-1151.
- Freeman, B.M., 1983. Energy metabolism In: Physiology and Biochemistry of the Domestic Fowl. Vol. 4, B.M. Freeman, Edit., London, Academic Press, pp. 137-377.
- Freeman, B.M., 1984. Physiology and Biochemistry of the Domestic Fowl. Academic Press Inc., London.

- Freeman, B.M., 1984. Physiology and Biochemistry of the Domestic Fowl. Vol.5. Academic Press Inc. Florida, pp.229-270.
- Fristrom, G.A., and J.L. Weihrauch, 1976. Comprehensive evaluation of fatty acids in foods. J. Am. Diet Assoc, 69 (5):517-522.
- Fuller, H.L. and Mora, 1973. Effect of heat increment of the diet on feed intake and growth of chicks under heat stress. Proc. Cornell Nutr. conf.
- Fuller, R. (1989) Probiotics in man and animals. A review. Journal of Applied Bacteriology, 66:365-378.
- Fuller, R. (1977) The importance of lactobacilli in maintaining normal microbial balance in the crop. British Poultry Science, 18:85-94.
- Fuller, R. (1978) Epithelial attachment and other factors controlling the colonization of the intestine of gnotobiotic chickens by lactobacilli. Journal of Applied Bacteriology, 45:389-395.
- Garlich, J.D. and C.C.Mccormick, 1981. Interrelationships between environmental temperature and nutritional status of chicks. Federation Proceedings 40:73-76.
- Gomez, M.X., and D. Polin, 1974. Influence of cholic acid on the utilization of fats in the growing chicken. Poultry Sci. 53:773-781.
- Goodridge, A.G., 1968. Conversion of [U-14C]-glucose into carbon dioxide, glycogen, cholesterol and fatty acids in liver slices from embryonic and growing chicks. Biochemistry Journal 108:655.
- Griminger, P., and H. Fisher, 1963. Fructose utilization in the growing chicken. Poultry Sci. 42:1471-1497.
- Guevara, V.R., 1977. Phosphorus utilization by broilers as affected by yeast culture. M.S. Thesis. Mississippi State Univ., Mississippi State, MS.
- Guyton, A.C., 1977. Basic human physiology. W.B. Saunders Company, Philadelphia, PA.
- Halloran, H.R., and I.R. Sibbald, 1979. Metabolizable energy values of fats measured by several procedures. Poultry Sci. 58:1299-1307.
- Han, I.K, Lee, S.C., Lee, J.H., Kim, J.D., Jung, P.K., and Lee, J.C. (1984b) Studies on the growth promoting effects of probiotics. II. The effects of Clostridum

- Butryrcum ID on the performance and the changes in the microbial flora of the feces and intestinal contents of the broiler chicks. Korean Journal of Animal Science, 26:158-165.
- Han, I.K., Lee, S.C., Lee, J.H., Lee, K.K., and Lee, J.C. (1984a) Studies on the growth promoting effects of probiotics. I. The effects of Lactobacillus sporogenes in the growing performance and the change in microbial flora of the feces and intestinal contents of the broiler chicks. Korean Journal of Animal Science, 26:150-157.
- Hanlen, E.T., 1939. Some observations on the normal variations in composition of Light Sussex cockerels. J. Agric. Sci. (Cambridge) 28:379-392.
- Harvey, S., and H. Klandorf, 1983. Reduced adrenocortical function and increased thyroid function in fasted and refed chickens. Journal of Endocrinology, 98:129-135.
- Herrick, J.B., 1971. Water quality for livestock and poultry. Feedstuffs. 43:28-35.
- Heywang, B.W., 1938. Effect of some factors on the body temperature of hens. Poultry Science 17:317-323.
- Hill, F.W., and D.L. Anderson, 1958. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 64:587-603.
- Hood, R.L., 1982. The cellular basis for growth of the abdominal fat pad in broiler-type chickens. Poultry Sci. 61:117.
- Hood, R.L., and R.A.E. Pym, 1982. Correlated responses for lipogenesis and adipose tissue cellularity in chickens selected for body weight gain, food consumption, and food conversion efficiency. Poultry Sci. 61:122.
- Howlider, M.A.R., and S.P. Rose, 1987. Temprature and the growth of broilers. World's Poultry Science Journal, 43:228-237.
- Hunt, J.R. and K. Simkiss, 1967. Acute respiratory acidosis in the domestic fowl. Comparative Biochemistry and Physiology, 21:223-230.
- Husseing, O.El., and C.R. Creger, 1981. Effect of ambient temperature on mineral retention and balance of the broiler chicks. Poultry Sci. 60:1651 (suppl).

- Huston Till M. 1977. The effect of Environmental Temperature on Potassium Concentrations in the Blood of the Domestic Fowl.
- Hutchinson, J.C.D., 1954. Heat regulation in birds. In:Progress in the physiology of Farm Animals, 299-358. Ed. J. Hammond, Butterworth, London.
- Hutchinson, J.C.D., and A.H. Sykes, 1953. Physiological acclimatization of fowls to a hot environment. J. Agric. Sci., Camb. 43:294-322.
- Igene, J.O., A.M. Pearson, and J.I. Gray, 1981. Effects of length of frozen storage, cooking and holding temperatures upon component phospholipids and the fatty acid composition of meat triglycerides and phospholipids. Food Chem. 7:289-303.
- Igene, J.O., A.M. Pearson, L.R. Dugan Jr., and J.F. Price, 1980. Role of triglycerides and phospholipids on development of rancidity in model meat systems during frozen storage. Food Chem. 5:263-276.
- Igene, J.O., A.M. Pearson, R.A. Merkel, and T.H. Coleman, 1979. Effect of frozen storage time cooking and holding temperature upon extractable lipids and TBA values of beef and chicken. J. Anim. Sci. 49:701-707.
- Impey, C.S., Mead, G.C., and George, S.M. (1982)
 Competitive exclusion of salmonella from the chick
 cecum using a defined mixture of bacterial isolates
 from the cecal microflora of an adult bird. Journal of
 Hygiene, 89:479-490.
- Jayne-Williams, D.J. and R. Fuller, 1971. The influence of the intestinal microflora on nutrition. In Bell, David James, Physiology and Biochemistry of the Domestic Fowl, 1:73-92.
- Jensen, D.S., G.W. Schumaier, and J.D. Latshaw, 1970. Extracaloric effect of dietary fat for developing turkeys as influenced by calorie: protein ratio. Poultry Sci. 49:1697-1704.
- Kerstens, R., 1964. Investigation of the production of heat and water vapour and the influence of environment on the growth rate of broiler chicks. Funki, information, Funki, Ltd. Aarhus, Denmark.
- Kim, C.J., Namkung, H., An, M.S., and Paik, I.K. (1988) Supplementation of probiotics to the broiler diets containing moldy corn. Korea Journal of Animal Sciences, 30(9):542-548.
- Kittok, R.J., T.J. Greninger, J.A., de Shazer, S.R. Lowry

- and F.B. Mather, 1982. Metabolic responses of the rooster after exogenous thyroid hormones. Poultry Sci. 61:1748-1752.
- Klandorf, H., P.J. Sharp, and M. MacLeod, 1981. The relationship between heat production and concentrations of plasma thyroid hormones in the domestic hen. General and Comparative Endocrinology, 45:513-520.
- Kleiber, M. 1961. The Fire of Life. John Wiley and Sons, Inc., New York.
- Krogh, A. 1919. The Respiratory Exchange of Animals and Man. London, Longmans Green and Co.
- Laurin, D.E., S.P. Touchburn, E.R. Chavez, and C.W. Chan, 1985. Effect of dietary fat supplementation on the carcass composition of three genetic lines of broilers. Poultry Sci. 64: 2131-2135.
- Leeson, J.D. Summers, and E.T. Jr. Moran, 1976. Avian water metabolism-A Review. Would's Poultry Science Journal 32:185-195.
- Leeson, S. and Major, D. (1990) As biotechnology gains momentum canadian researchers study need for feed criteria. Feedstuffs (April 16):23-30.
- Leeson, S., 1986. Nutritional considerations of poultry during heat stress. World's Poultry Sci. J. 42:69-81.
- Leeson, S., J.D. Summers, and H.S. Bayley, 1975. Influence of diet on energy metabolism of laying hens at an elevated environmental temperature. 59th Annual Meeting. FASEB. Atlantic City. N.J.
- Leithead, C.S., and A.R. Lind, 1964. Heat Stress and Heat Disorders. F.A. Davis Co., Philadelphia, Pennsylvania.
- Leszczynski, D.E. and F.A. Kummerow, 1985. Total Lipids, Fat Composition, and Malonaldehyde Concentration in Chicken Liver, Heart, Adipose Tissue, and Plasma. Poultry Sci. 64:469-475.
- Lloyd, A.B., R.B. Cumming, and R.D. Kent, 1977. Prevention of Salmonella typhimurium infection in poultry by pretreatment of chickens and poults with intestinal extracts. Aust. Vet. J, 53(2):82-87.
- Lloyd, A.B., Cumming, R.B., and Kent, R.D. (1974)
 Competitive exclusion as exemplified by Salmonella
 typhimurium. In Proc. of 1974 Australasian Poultry
 Science Convention, Hobart, Australia, pp 185. World's
 poultry Science Association, Australian Branch, Hobart,
 Australia.

- MacLead, M., S.G. Tullett, and T.R. Jewitt, 1979. Effect of food intake regulation on the energy metabolism of hens and cockerells of a laying strain. Brit. Poultry Sci. 20:521-531.
- MacLeod, M.G., S.G. Tullett and T.R. Jewitt, 1979. Effects of food intake regulation on the energy metabolism of hens and cockerels of a layer strain. Br. Poult. Sci. 20:521-531.
- March, B.E., C. MacMillan, and S. Chu, 1984.

 Characteristics of adipose tissue growth in broilertype chickens to 22 weeks of age and the effect of
 dietary protein and lipid. Poultry Sci. 63:2206-2216.
- March, B.E., S. Chu, and C. Macmillan, 1982. The effects of feed intake on adipocytes in the abdominal fat pad of mature broiler-type female chickens. Poultry Sci 61:1137.
- Marder, J., Z. Arad, and M. Gafni, 1974. The effect of high ambient temperatures on acid-base balance of panting bedouin fowl (Gallus Domesticus). Physiol. Zool. 47:180-189.
- Marion, J.E., and Woodroof, J.G.: Lipid fractions of chicken broiler tissues and their fatty acid composition. J. Food Sci. 30:38,1965.
- Marion, J.E., and Woodroof, J.G.: The fatty acid composition of breast, thigh and skin tissues of chicken broilers as influenced by dietary fats. Poultry Sci. 42:1202, 1963.
- Mateos, G.G., and J.L. Sell, 1980. True and apparent metabolizable energy value of fat for laying hens: Influence of level of use. Poultry Sci 59:369-373.
- May, J.D., J.W. Deaton, and S.L. Branton, 1986. Rectal temperatures of acclimated broilers during heat stress. Poultry Sci. 65(suppl. 1):90.
- May, J.D., J.W. Deaton, F.N. Reece, and S.L. Branton, 1986. Effect of Acclimation and Heat Stress on Thyroid Hormone Concentration. Poultry Sci. 65:1211-1213.
- May, J.D., 1982. Effect of dietary thyroid hormone on survival time during heat stress. Poultry Sci. 61:706-709.
- May, J.D., J.W. Deaton, and S.L. Branton, 1987. Body Temperature of Acclimated Broilers During Exposure to High Temperature. Poultry Sci. 66:378-380.

- May. J.D. 1978. Effect of fasting on T3 and T4 concentrations in chicken serum. General and Comparative Endocrinology, 34:323-327.
- McCormick, C.C., J.D. Garlich and F.W. Edens, 1979.
 Fasting and diet affect the tolerance of young chickens exposed to acute heat stress. Journal of Nutrition. 109:1797-1089.
- McNaughton, J.L., and F.N. Reece, 1984. Response of broiler chickens to dietary energy and lysine levels in warm environment. Pouultry Sci. 63:1170-1174.
- Mead, G.C., and B.W. Adams, 1975. Some observations on the caecal microflora of the chick during the first two weeks of life. Br. Poult. Sci. 16:169-176.
- Mead, G.C., Impey, C.S. (1986) Current progress in reducing Salmonella colonization of poultry by "competitive exclusion". Journal of Applied Bacteriology Symposium Supplement, 67-75.
- Melton, S.L., 1983. Methodology for following lipid oxidation in muscle foods. Food Technol. 37:105-111,116.
- Meltzer, A., 1987. Acclimation to ambient temperature and nutritional consequences. World Poultry Sci. 43:33-.
- Michael, J.D. and P.C. Harrison, 1987. Heart rate, blood pressure, cardiac output and total peripheral resistance of single comb White Leghorn hens during acute exposure to 35 C ambient temperature. Poult. Sci. 66:541-547.
- Mickleberry, W.C., J.C. Rogler, and W.F. Stadelman, 1966.

 The influence of dietary fat and environmental temperature upon chick growth and carcase composition. Poultry Science 45:313-321.
- Miles, R.D., H.R. Wilson, A.S. Arafa, E.C. Coligado, and D.R. Ingram, 1981b. The performance of Bobwhite quail fed diets containing lactobacillus. Poultry Sci., 60:894-896.
- Miller, P.C., and M.L. Sunde, 1975. The effects of precise constant and cyclic environments on shell quality and other lay performance factors with leghorn pullets. Poultry Science 54:36-46.
- Mitchell, H.H. and W.T. Haines, 1927. The basal metabolism of mature chickens and the net-energy value of corn. J. Agric.Res., 34: 927-943.

- Monson, W.J., L.S. Dietrich, and C.A. Elvehjem, 1950. Studies on the effect of different carbohydrates on chick growth. Proc. Soc. Exp. Biol. Med. 75:256-259.
- Nelson, T.S., T.R. Shieh, R.J. Wodzinski, and J.H. Ware, 1971. Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 10:1289-1293.
- Neupert, B. and W. Hartfiel, 1978. Fattening performance and carcass composition of broilers as a function of broiler strain and feed composition. Arch-Gefluegelkd, 42(4):150-158.
- NRC. 1981. Effect of environment on nutrient requirements of domestic animals. National Academy of Sciences, Washington, D.C.
- Nurmi, E. (1985) A review of competitive exclusion in poultry restricting intestinal colonization by salmonella and some other enteric bacterial pathogens. Proceedings of the International Symposium on Salmonella, New Orleans, pp. 64-71, University of Pennsylvania: American Association of Avian Pathologists.
- Nurmi, E. and Rantala, M. (1973) New aspects of salmonella infection in broiler production. Nature, 241:210-211.
- O'Hea, E.K. and G.A. Leveille, 1969. Lipid biosynthesis and transport in the domestic chick (*Gallus domesticus*). Comparative Biochemistry and Physiology. 30:149.
- O'Neill, S.J.B., D. Balnave and N. Jackson, 1971. The influence of feathering and environmental temperature on the heat production and efficiency of utilization of metabolizable energy by the mature cockerel. J. Agric. Sci. (Cambridge) 77:293-305.
- Otake, Y., Nakazato, T., Watanuma, K., Yoshie, T., Saito, K., and Tanabe, S.: Effect of barley in broiler diet on the fatty acid composition of lipids in its muscles. Jap. J Zootech. Sci. 44:275, 1973.
- Pearson, A.M., J.I. Gray, A.M. Wolzak, and N.A. Horenstein, 1983. Safety implications of oxidized lipids in muscle foods. Food Technol. 37:121-129.
- Pfaff, F.E. Jr., and R.E. Austic, 1976. Influence of diet on development of the abdominal fat pad in the pullet. Journal of Nutr. 106:443.
- Rao, P.V., and D.R. Clandinin, 1970. Effect of method of determination on the metabolizable energy of rapeseed mead. Poultry Sci. 49:1069-1079.

- Reece, F.N. and J.L. McMaughton, 1982. Effects of dietary nutrient density on broiler performance at low moderate environmental temperatures. Poultry Science 61:2208-2211.
- Reece, F.N., J.W. Deaton, and L.F. Kubena, 1972. Effects of high temprature and humidity on heat prostration of broiler chickens. Poultry Sci. 51:2021-2025.

REFERENCES

- Reid, C.R. and D.A. Barnum, 1983. Evaluation of turkey cecal microflora in protecting day-old poults from Salmonella typhimurium challenge. Avian Dis., 27(3):632-643.
- Renner, R. and F.W. Hill, 1961a. Factors affecting the absorbability of strurated fatty acids in the chick. J. Nutr. 74:254-258.
- Richardson, H.B. 1929. The Respiratory Quotient. Physiol. Rev. 9: 61-125.
- Rigby, C.E. and J.R. Pettit, 1980. Observations on competitive exclusion for preventing Salmonella typhimurium infection of broiler chickens. Avian Dis., 24(3):604-615.
- Robinson, K.W., and D.H.K. Lee, 1947. The effect of the nutritional plane upon the reactions of animals to heat. J. Anim. Sci. 6:182-194.
- Romijn, C. and W. Lokhorst, 1966. Heat regulation and energy metabolism in the domestic fowl. in:
 Physiology of the Domestic Fowl, pp.211-227. C. Horton-Smith and E.C. Edinburgh ed. Oliver and Boyd, Edinburgh.
- Rose, S.P. and W. Michie, 1987. Environmental temperature and dietary protein concentrating for growing turkey. Brit. Poultry Sci. 28: 213-218.
- Ross, E., 1960. The effect of water reastriction on chicks fed different levels of molasses. Poultry Sci. 39:999-1009.
- Rudas, P., and G. Pethes, 1984. The importance of the peripheral thyroid hormone deiodination in adaption to abient temperature in the chichen (Gallus domesticus). Comp. Biochem. Physiol. 77:567-571.
- Savage, D.C., 1987. Factors influencing biocontrol of bacterial pathogens in the intestine. Food Techol. 41(7):82-87.

- Schneider, W., 1959. Die Bestimmung der Kihlenstoffgehalte von biologischen Substanzen mit hilfe eines registrierenden leitfahigkeitsmeBgerates. Landw. Forschung. Bd. 12, Heft 3, p. 214.
- Schuler, G.A., and Essary, E.O.: Fatty acid composition of lipids from broilers fed saturated and unsaturated fats. J. Food Sci. 36:431, 1971.
- Sell, J.L., 1977. Response of laying hens to the extracaloric effect of fat. Feedstuffs 49(17):20-22.
- Sell, J.L., L.G. Tenesaca, and G.L. Bales, 1979. Influence of dietary fat on energy utilization by laying hens. Poultry Sci. 58:900-905.
- Shannon, D.W.F. and W.O. Brown, 1969. Calorimetric studies on the effect of dietary energy source and environmental temperature on the metabolic efficiency of energy utilization by mature Light Sussex cockerels. J. Agric. Sci. (Cambridge) 72:479-489.
- Shires, A., A.R. Robblee, R.T. Hardin, and D.R. Clandinin, 1980. Effect of the age of chickens on the true metabolizable energy values of feed ingredients. Poultry Sci. 59:396-403.
- Sibbald, I.R., 1975. The effect of level of feed intake on metabolizable energy values measured with adult roosters. Poultry Sci. 54:1990-1997.
- Sibbald, I.R., 1976. A bioassay for true metabolizable energy in feedingstuffs. Poultry Sci. 55:303-308.
- Sibbald, I.R., 1978. The effect of the duration of the time interval between assays on true metabolizable energy values measured with adult roosters. Poultry Sci 57:455-460.
- Sibbald, I.R., 1978. The true metabolizable energy values of mixtures of tallow with either soybean oil or lard. Poultry Sci. 55:303-308.
- Sibbald, I.R., 1980. The passage of oat and other feed residues through the adult cockerel. Poultry Sci. 59:2136-2144.
- Sibbald, I.R., and J.K.G. Kramer, 1977. The true metabolizable energy values of fats and fat mixtures. Poultry Sci. 56:2079-2086.

- Sibbald, I.R., and J.K.G. Kramer, 1978. The effect of the basal diet on the true metabolizable energy value of fat. Poultry Sci. 57:685-691.
- Sibbald, I.R., and K. Price, 1977. The effects of level of dietary inclusion and of calcium on the true metabolizable energy values of fats. Poultry Sci. 56:2070-2078.
- Sibbald, I.R., and P.M. Morse, 1983. Effects of the nitrogen correction and of feed intake on true metabolizable energy values. Poultry Sci. 62138-142.
- Sibbald, I.R., and P.M. Morse, 1983b. Provision of supplemental feed and the application of a nitrogen correction in bioassays for true metabolizable energy. Poultry Sci. 62:1587-1605.
- Siegel, H.S., 1968. Adaption in poultry. In: Adaptation of Domestic Animals, 292-309. Ed. E.S.E. Hafez, Lea and Febiger, Philadelphia.
- Simkiss, K., 1969. Intracellular pH during calcification.
 A study of the avian shell gland. Biochemical Journal, 111:647-652.
- Sinurat, A.P. and D. Balnave, 1985. Effect of dietary amino acids and metabolizable energy on the performance of broilers kept at high temperatures. Brit. Poultry Sci. 26:117-128.
- Sinurat, A.P. and D. Balnave, 1986. Free-choice feeding of broilers at high temperatures. Brit. Poultry Sci. 27:577-584.
- Smith, A.J., 1972. Some nutritional problems associated with egg production at high environmental temperatures. Rhodesian Journal of Agricultural Research, 10:31-40.
- Smith, A.J., 1973. Some effects of high environmental temperatures on the productivity of laying hens (a review). Tropical Animal Health and Production, 5:259-271.
- Smith, A.J., 1974. Changes in the average weight and shell thickness of eggs produced by hens exposed to high environmental temperatures (a review). Tropical Animal Health and Production, 6:237-244.
- Snoeyenbos, G.H., Weinack, O.M., and Smyser, C.F. (1979)
 Further studies on competitive exclusion for
 controlling salmonella in chickens. Avian Diseases,
 23:904-914.

- Soerjadi, A.S., R. Rufner, G.H. Snoeyenbos, and O.M. Weinack, 1982. Adherence of salmonellae and native gut microflora to the gastrointestinal mucosa of chicks. Avian Dis., 26(3):576-584.
- Soerjadi, A.S., Stehamn, S.M., Snoeyenbos, G.H., Weinack, O.M., and Smyser, C.F. (1981) The influence of lactobacilli on the competitive exclusion of paratyphoid salmonella in chickens. Avian Diseases, 25(4):1027-1033.
- Squibb, R.L., M.A. Guyman, and N.S. Scrimshaw, 1959.
 Growth and blood constituents of immature New Hampshire fowl exposed to a constant temperature of 99.0°F for 7 days. Poultry Sci. 38: 220-221.
- Stokstad, E.L.R., T.M. Jukes, and W.L. Williams, 1953.
 Growth-promoting effect of Aureomycin on various types of diets. Poultry Sci. 32:1054-1058.
- Sturkie, P.D. 1965. Avian Physiology, 2nd ed. Ithaca Cornell University Press.
- Sykes, A.H. and F.I.M. Salih, 1986. Effect of changes in dietary energy intake and environmental temperature on heat tolerance in the fowl. Br Poult Sci 27:687-693.
- Sykes, A.H., and A.A. Fatahitah, 1980. Dietary modification of heat acclimation in the fowl. Proc. Nutr. Sco. 39:81A.
- Sykes, A.H., and A.R.A. Fataftah, 1986a. Acclimatisation of the fowl to intermittent acute heat stress. Br. Poult. Sci. 27:289-300.
- Sykes, A.H., and A.R.A. Fataftah, 1986b. Effect of a change in environmental temperature on heat tolerance in laying fowl. British Poultry Sci. 27:307-316.
- Tajima, M., K. Totsuka, H. Kinoshita, H. Shoji, and K. Aso, 1971. Amino acid supplementation of hydrocarbon yeast chick diet. Japan. Poultry. Sci. 8:21.
- Teeter, R.G., M.O. Smith, C.W. Mittelstadt, 1987b. Effect of drinking water temperature and salt addition on body temperature and growth rate of broilers exposed to cycling temperature stress. Poultry Sci. 66:185 (abst).
- Teeter, R.G., 1988. Enhancing broiler productivity during chronic and acute heat stress. In Nutrition update.

 April Vol 6 Num 1.

- Teeter, R.G., M.O. Smith, F.N. Owens, S.C. Arp, S. Sangiah and J.E. Breazile, 1985. Chronic heat stress and respiratory alkalosis: Occurrence and treatment in broiler chicks. Poult. Sci. 64:1060-1064.
- Teeter, R.G., M.O. Smith, F.N. Owens, S.C.Arp., S. Sangia, and J.E. Breazil, 1985. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poultry Sci. 64:1060-1064.
- Teeter, R.G., M.O. Smith, S. Sangiah and F.B. Mather, 1987a. Effects of feed intake and fasting duration upon body temperature and survival of thermostressed broilers. Nutrition Reports International 35:No.3:531-537.
- Thayer, R.H. and Jackson, C.D. (1975) Improving phytate phosphorus utilization by poultry with live yeast cultrue. Animal Sciences and Industry Research Report, Oklahoma Agricultural Experiment Station, Oklahoma State University and USDA, USA.
- Thayer, R.H., Burkitt, R.F., Morrison, R.D., and Murray, E.E. (1978) Efficiency of utilization of dietary phosphorus by caged turkey breeder hens when fed rations supplemented with live yeast culture. Animal Science Research Report Agricultural Experiment Station, Oklahoma State University and USDA, USA.
- Titus, H.W., 1956. Energy values of feedingstuffs for poultry. Pages 10-14 in Proc. Semi-Annu. Mtg., Nutr. Counc., Am. Feed Manuf. Assoc.
- Titus, H.W., A.L. Mehring, Jr., D. Johnson, Jr., L.L. Nesbitt and T. Tomsa, 1959. An evaluation of M.C.F. (Micro-Cel-Fat), a new type of fat product. Poultry Sci. 38:1114-1119.
- Tonkinson, L.V., Gleaves, E.W., Dunkelgod, K.E. (1965) Fatty Acid Digestibility in Laying Hens Fed Yeast Culture. Poultry Sci, 44:159-164.
- Tuckey, R., B.E. March and J. Biely, 1958. Diet and the rate of food passage in the growing chick. Poultry Sci. 37:786-792.
- Van Kampen, M, 1974. Physical factors affecting energy expenditure. In: Energy requirement of poultry, Ed. Morris, T.R. and Freeman, B.M. Edinburgh, British Poultry Science Ltd. pp. 47-59.

- Van Kampen, M., 1974. Physical factors affecting energy expenditure. in: Energy Requirements of Poultry, pp. 47-59, T.R. Morris and B.M. Freeman, Br. Poult. Sci. Ltd, Edinburgh.
- Van Kampen, M., 1977. Effects of feed restriction on heat production, body temperature and respiratory evaporation in the White Leghorn hen on a "tropical" day. Tijdschrift voor Diergeneeskunde 102:504-514.
- Van Kampen, M., 1981. Water balance of colostimized and non-colostomized hens at different ambient temperatures. Br. Poult. Sci. 22:17-23.
- Van Kampen, M., 1981a. Water balance of colostomized and non-colostomized hens at different ambient temperatures. Brit. Poultry Sci. 22:17-23.
- Van Kampen, M., 1981b. Water balance of colostomized and non-colostomized hens at different ambient temperatures. Brti. Poultry Sci. 22:17-23.
- Van Kampen, M., 1984. Physiological responses of poultry to ambient temperature. Archiv fur Experimental Veterinarmedezin, 38:384-391.
- Waibel, P.E., 1978. Studies on protein and energy requirements of turkeys during the growing period. Pages 143-154 in Proc. 39th Minnesota Nutr. Conf., Univ. Minnesota, St. Paul, MN.
- Waldroup, P.W., R.J. Mitchell, J.R. Payne, and K.R. Hazen, 1976. Performance of chicks fed diets formulated to minimize excess levels of essential amino acids. Poultry Sci. 55:243-253.
- Washburn, J.W., R. Reavey, and G.M. Renwick, 1980.
 Relationship of strain variation and feed restrection to variation in blood pressure and response to heat stress. Poultry Science 59:2586-2588.
- Watkins, B.A. and Kratzer, F.H. (1983) Effect of oral dosing of lactobacillus strains on gut colonization and liver biotin in broiler chicks. Poultry Science, 50:1022-1029.
- Whitehead, C.C., and C. Fisher, 1975. The utilization of various fats by turkeys of different ages. Brit. Poultry Sci. 16:481-485.

- Wiernusz, C.J., T. Belay, C.O. Harjo, and R.G. Teeter, 1991. Acclimation and feeding effects on heat kistressed broiler thermobalance. Poultry Science (Summitted for publication).
- Williamson, R.A., B. Misson, and T.F. Davison, 1985. The effect of exposure to 40 C on the heat production and the serum concentrations of triiodothyronine thyroxine and corticosterone in immature domestic fowl. General and Comparative Endocinology, 60:178-186.
- Wilson, W.O., 1948. Some effects of increasing environmental temperature on pullets. Poultry Sci. 27:813-817.
- Wolfenson, D., A. Berman, Y.F. Frei, and N. Snapir, 1978.

 Measurement of blood flow distribution by radioactive microspheres in the laying hen (Gallus domesticus).

 Comparative Biochemistry and Physiology, 61A:549-554.
- Wolfenson, D., Y.F. Frei, N. Snapir, and A. Berman, 1979. Effect of diurnal or nocturnal heat stress on egg formation. British Poultry Science, 20:167-174.
- Wolynetz, M.S., and I.R. Sibbald, 1984. Relationships between apparent and true metabolizable energy and the effects of a nitrogen correction. Poultry Sci. 63:1386-1399.
- Yeh, S.C., and G.A. Leveille, 1973. Significance of skin as a site of fatty acid and cholesterol synthesis in the chick. Proceedings of the Society for Experimental Biology and Medicine 142:115.
- Zaniecka, G. 1969. Calorific value of protein abd fat of the chicken's body. In: Energy Metabolism of Farm Animals, p. 407. Eds. Blaxter, K.L., Kielanowski, J. and Thorbek, G. Newcastl upon Tyne, Oriel Press.

CHAPTER III

INITIAL BROODING TEMPERATURE, DAY-5 HEAT DISTRESS

ACCLIMATION AND FEED RESTRICTION EFFECTS ON

BROILER PERFORMANCE DURING HEAT DISTRESS

McDonald, K., T. Belay, F. Deyhim and R.G. Teeter,

Animal Science Department, Oklahoma State University

Stillwater, Ok. 74078

ABSTRACT

One study utilizing 1,280 male Cobb x Cobb broilers was conducted to evaluate relationships between initial brooding temperature and the day-5 acclimation procedure on bird weight yield during simulated summer heat distress. Feed restriction was used as a positive control in the low brooding temperature group. Birds were housed initially at either 29.5°C or 35°C with ambient temperature reduced such that at 3 weeks posthatching all birds were housed at 24°C. Acclimation at five days posthatching consisted of exposing birds to 35-38°C for 24 hours. On day 38 chicks were randomly assigned to grower batteries housed within an

environmental chamber and exposed to a simulated summer heat distress. Feeders for the feed restricted group were covered 6 hours prior to heat distress initiation. Feed restricted birds had higher (P<.01) survivability (98%) than both the cool (87.7%) and warm (69.3%) brooded birds with the brooded birds having greater (P<.05) survivability than the warm. Bird live weight was 3.6% greater (P<.05) for the cool brooded birds. In this study the day-5 heat distress acclimation procedure failed (P=.89) to impact bird survival during heat distress at 45 days posthatching. (Key Word: acclimation, heat distress, broilers, fasting,

INTRODUCTION

survivability)

Broiler acclimatization to heat distress may be defined as physiological adaptations made to maintain homeostasis during a high ambient temperature distress. The process has been studied since the early 1950's when Hutchinson and Sykes (1953) reported that birds acclimated for 24 days at 38°C (4 hrs/day) exhibited increased heat tolerance when exposed to 42°C. Similarly, Reece et al. (1972) and May et al. (1986) observed that prior exposure to elevated ambient temperatures increased bird survivability during subsequent acute heat distress exposure.

Though the precise mode of action of acclimation and time frame required to produce a beneficial effect are not known, many parameters have been evaluated. Heat distress acclimatization has been suggested to occur through a

reduction in bird heat production rather than an increased heat loss (Sykes and Fataftah, 1986, Wiernusz et al. 1991). May et al. (1986) reported that acclimation had no effect on T3 or T4 levels and speculated that any thyroid hormone involvement must be within the tissue. In a subsequent study, May et al. (1987) observed that heat distress acclimation reduced bird mortality and body temperature rise during subsequent exposure to high ambient temperature. Birds acclimated to heat distress naturally reduce their feed intake (Squibb 1959). The reduced feed consumption, however, only accounts for 50% of acclimation effects on lowering body temperature as indicated by pair feeding acclimated and nonacclimated birds subjected to acute heat distress (Teeter, 1988).

Fasting broilers has been demonstrated to reduce heat distress induced prostration (McCormick et al., 1979; Teeter et al., 1987) and is widely used in Central and South America. Indeed ambient temperature has an additive effect on bird body temperature. Removing feed prior to heat distress reduces bird heat production (Teeter et al., 1987).

A novel approach to inducing heat distress acclimation effects has been proposed by Arjona et al. (1988). The approach, termed the day-5 acclimation procedure, involves exposing chicks to heat distress (35-37.8°C) on day five posthatching for 24 hours followed by normal management practices. Arjona reported that the technique increased (P<.05) bird yield by enhancing survivability from 87.7 to

99.2% when the birds were subsequently exposed to acute heat distress on days 44 and 45 posthatching. However, the day-5 acclimation temperature overlaps with brooding temperature recommended by the Cobb brooding manual suggesting that the effect could be an artifact of cool brooding. In addition, Arjona increased the ambient temperature from 24°C to 35°C over a 1 hour time frame which is not consistent with a typical heat distress occurrence.

The objective of our study was to evaluate the applicability of the day-5 acclimation procedure to increase live weight yield under a more normal ambient temperature curve and also to evaluate its interaction with brooding temperature of birds reared under low brooding temperatures and to further utilize feed restriction as a positive control.

MATERIALS AND METHODS

In experiment one, twelve hundred and eighty Cobb x

Cobb broilers were placed at hatching in grower batteries
housed within 2 environmental chambers. Both feed (Table 1)
and water were available for ad libitum consumption.

Environmental chamber facilities and general procedures have
been described by Smith (1983). The chamber temperature was
adjusted (Table 2) to provide brooding temperatures
mimicking either the Cobb brooding manual (warm) or Arjona
(cool) (1988). Treatments within brooding environment
consisted of both control and day-5 acclimated birds. In

addition, one group of fasted birds was included in the cool brooding temperature to serve as a positive control.

Treatment groups consisted of 32 compartments of 8 birds per compartment for a total of 256 birds per treatment.

The day-5 acclimation was accomplished by exposing birds to 36.5°C for 24 hours, mimicking Arjona (1988).

On day 21 the two brooding temperatures converged at 24°C and the birds, toe web notched by treatment, were combined in a common pen and reared at 24°C to day 38. On day 38 birds were resorted by treatment and transferred to grower batteries in the environmental chamber. Following a 7 day adjustment to the chamber environment, the ambient temperature was increased from 24°C to 35°C mimicking Arjona with the exception that a 6 hour time interval was used to reach the peak temperature in contrast to 1 hour used by Arjona. Relative humidity was maintained at 50%. Feed intake was not determined until two days before the initiation of the heat distress. The feeders for treatment 3 were covered 6 hours prior to heat distress to initiate the fasting period thus influencing the feed consumption values.

During the heat distress period the birds were maintained at 35.0°C for one hour and then the temperature was reduced to 24.0°C over the next 4 hours. The temperature was held high for only one hour because the birds were exhibiting extreme heat distress and were beginning to show signs of phase II breathing. The process

was repeated on days 46 and 47. The heat cycle for days 45-47 are shown in Figure 2.

Upon completion of the experiment, the data was evaluated using the general linear model procedure of the statistical analysis system (SAS, 1985). When a significant F statistic was detected, means were separated using least square analysis of variance (Steel and Torrie, 1960).

RESULTS AND DISCUSSION

Brooding temperature and acclimation effects on day 43 posthatching, live weight gain and yield, and survivability are displayed in Table 3. Brooding chicks at the higher ambient temperature reduced (P<.01) live weight gain by 3.6%. The day-5 acclimation procedure did not improve (P<.01) live weight gain within brooding environment. No interaction was detected between day-5 acclimation and brooding temperature. Feed consumption per metabolic body weight for days 42 and 43 was similar for all treatments with the exception of the birds fasted 6 hours prior to heat distress which were lower (P<.05; table 2). During the acute heat distress phase bird survivability for fasted birds was increased (P<.05) 98.0% over all other treatments. The cool and warm brooded acclimated and nonacclimated survivability were similar (P>.1). However, the cool brooded birds exhibited greater (P<.01) survivability than the warm brooded birds (Table 2).

This cool brooding effect may be related to the lack of

a temperature gradient in our warm brooding environment. The Cobb manual suggests a 32.5°C to 35°C temperature should be maintained directly under the brooder allowing a declining temperature gradient to the edge of the room. This allows the birds to find their own comfort zone during brooding. In our experiment the room temperature for the warm brooded birds was strictly held with no temperature gradient, while the cool brooded birds were brooded according to Arjona. The warm brooding in our experiment was a stress on the chicks and may account for the decrease in live weight gain and survivability in the warm verses cool brooded birds.

Based on the data reported herein it is concluded that the day-5 posthatching acclimation technique does not benefit the birds in terms of coping with heat distress later in life. Feed restriction 6 hours prior to heat distress has a beneficial effect on survivability while not reducing live weight gain significantly.

Table 1. Composition of grower ration used for the experiment

Ingredients	Percent	
Ground corn	59.80	
Soybean meal (44%)	36.00	
Dicalcium phosphate	2.35	
Calcium carbonate	.90	
Sodium chloride	.50	
Vitamin mix ¹	.25	
D-methionine	.10	
Trace mineral mix ²	.10	
Total	100.00	
Calculated Analysis:		
ME Kcal/Kg	3137	
Crude protein (%)	21.1	
- , ,		

 $^{^1\}text{Mix}$ supplied per kilogram of diet: vitamin A, 14,109 I.U.; cholicalciferol, 5291 I.U.; vitamin E, 47.62 I.U.; vitamin B₁₂, .014 mg; riboflavin, 8.82 mg; niacin, 26.5 mg; d-pantothenic acid, 28.2 mg; choline, 705.5 mg; menadione, 1.16 mg; folic acid, 1.176 mg; pyridoxine, 3.52 mg; thiamine, 3.52 mg; d-biotin, .176 mg.

²Mix supplied per kilogram of diet: Ca, 160 mg; Zn, 100 mg; Mn, 120 mg; Fe, 75 mg; Cu, 10 mg; Iodine, 2.5 mg.

Table 2. Rearing ambient temperature used at different ages by different investigators.

			McDonald					
Age (weeks)	Arjona	Cobb	Warm	Cool				
1	29.4	35.0	35.0	29.4				
2	27.7	32.2	32.0	27.7				
3	26.0	29.4	28.0	26.0				
4	24.3	26.6	24.0	24.0				
5	22.6	23.9	24.0	24.0				
6	20.9	21.1	24.0	24.0				

Table 3. Treatment effects on bird weight, feed consumption and survivability.

	Treatment									
Variables	Cool		Fasted	Warm						
Body WT, (g)	1380 ^a 3.9 ^{ab}	1391 ^a	1375 ^b	1326 ^b	1338 ^b					
Feed/MBW, (g) Surv., %	87.5 ^b	87.9 ^b	98.0 ^a	67.5 ^C	71.0 ^C					

a-c Means within a row with unlike superscript differ (P<.05)



Figure 1. Heat Distress schedule for broilers during days 45 -47

REFERENCES

- Arjona, A.A., D.M. Denbow and W.D. Weaver Jr, 1988. Effect of heat stress early in life on mortality of broilers exposed to high environmental temperature just prior to marketing. Poultry Sci. 67:226-231.
- Hutchinson, J.C.D. and A.H. Sykes, 1953. Physiological acclimation of fowls to hot humid environment. J. Agric. Sci. 43:294-322.
- Reece, F.N., J.W. Deaton and L.F. Kubena, 1972. Effects of high temperature and humidity on heat prostration of broiler chickens. Poultry Sci. 51:2021-2025.
- May, J.D., J.W. Deaton, F.N. Reece and S.L. Branton, 1986. Effect of acclimation and heat stress on thyroid hormone concentration. Poultry Sci. 65:1211-1213.
- May, J.D., J.W. Deaton, F.N. and S.L. Branton, 1987. Body temperature of acclimated broilers during exposure to high temperature. Poultry Sci. 66:378-380.
- McCormick, C.C., J.D. Garlich and F.W. Edens, 1979. Fasting and diet affect the tolerance of young chickens exposed to acute heat stress. Journal of Nutrition. 109:1797-1089.
- Teeter, R.G., 1988. Enhancing broiler productivity during chronic and acute heat stress. In Nutrition update.

 April Vol 6 Num 1.
- Teeter, R.G., M.O. Smith, S. Sangiah and F.B. Mather, 1987. Effects of feed intake and fasting duration upon body temperature and survival of thermostressed broilers. Nutrition Reports International 35:No.3:531-537.
- SAS. 1985. SAS User's Guide. Statistical Analysis System Inst., Inc., Cary, NC.
- Squibb, R.L., M.A. Guyman, and N.S. Scrimshaw, 1959. Growth and blood constituents of immature New Hampshire fowl exposed to a constant temperature of 99.0°F for 7 days. Poultry Sci. 38: 220-221.
- Steel, R.D.G., and J.H. Torrie, 1960 Principles and Procedures of Statistics. McGraw-Hill Book Co., NY.

CHAPTER IV

AN EVALUATION OF BROILER GAIN COMPOSITION METHODOLOGY USING CLASSICAL AND NEW APPROACHES

McDonald, K.R, and R.G. Teeter,

Animal Science Department, Oklahoma State University

Stillwater, Ok. 74078

ABSTRACT

One study was conducted to validate classical carbon-nitrogen (CNB) and indirect calorimetry for ability to predict protein, fat and energy gain as well as heat production (HP). Further, the study sought to relate a number of variables including N retention, total C retention, energy retention, respiratory quotient, CO_2 production, C consumption, O_2 , Me, and ME_n consumption as well as heat production with gain composition. Composition of tissue gain, quantified by comparative slaughter (CS), was used as the reference standard to judge accuracy and as the basis for the additional modeling. Tissue carbon(C) and nitrogen (N) in broiler protein and fat tissue was

determined to be 52.96, 15.85, 77.1, and 0.2%, respectively, which differed slightly from classical values. During the study, birds gained 388g dry matter as 239g protein, 119g fat and 30g ash. Energy gain averaged 2,455 Kcal with 4,713 Kcal being dissipated as heat. The CNB system, using classical composition values for C and N, yielded 228g protein, 124g fat and 2,478 Kcal energy, while CNB using revised values yielded protein fat and energy gain estimates of 244g, 122g and 2,514 Kcal, respectively. Over 1,925 equations, composed of 1 to 9 components, were formed via the various variable combinations. The best 3 (and up) component equations appeared more quantitative than the classical or revised CNB with protein, fat, and energy gain predicted at 239g, 119g and 2455 Kcal, respectively and 4,656 Kcal heat production. Utilization of the proposed relationships should enable gain composition studies to be dynamically related with narrow age ranges.

INTRODUCTION

Nutrition studies frequently necessitate that composition of gain, accrued as protein and fat, be defined in short duration age dependent functions. This is becoming more important due to consumer demand for high protein-low fat products and the tendancy of birds to gain more fat as they age (Frostrom and Weihrauch, 1976). Other factors known to influence fat gain include, ration composition

(Hardy and Denman, 1975; Macleod, 1992; Belay and Teeter, 1992), meal size (Lefebvre, Leanness in domestic birds), light pattern (Charles et. al., 1992) and ambient temperature. Considerable margin does indeed exist for lowering broiler carcass fat as such carcasses typically range from 38 to 50% fat (Jackson et al., 1982). For the poultry industry to produce birds with progessivly less carcass fat it is imperative that the interactive effects of ration composition, environment and age be dynamically related in short time intervals.

The determination of gain composition, partitioned by growth curve segment, has classically been estimated using comparative slaughter techniques (Davidson et al., 1964).

Comparative slaughter procedures utilize differences between bird initial and final carcass composition to partition gain, during the feeding period specified, into its various components. The feeding period must be long enough to make initial carcass composition variability small, relative to tissue gains, or considerable error will result. Bird composition variability increases with age, averaging about 20% at 4 weeks (Davidson and Mathieson, 1965), making gain composition estimates uncertain. Consequently, progressive day to day changes in carcass tissue gain have not been studied.

Carcass composition determination classically involves processing and grinding birds to yield samples which are then analyzed for nitrogen and fat content by a process that

is laborious, time consuming and expensive. Alternatively, indirect methodologies to estimate carcass composition have been proposed including specific gravity (Fortin and Chambers, 1981; Chambers and Fortin, 1984) and carcass dry matter (Hulan et. al., 1983). The disadvantage of these techniques is that the bird is destroyed making it necessary to utilize many birds. Other indirect procedures, not requiring bird sacrifice, include total serum triglyceride and impedance (Harter-Dennis et al. 1992). However, correlations of these methods with carcass fat are typically low.

An indirect method for estomating gain composition with better accuracy uses carbon-nitrogen balance (CNB) to estimate protein and fat accretion rate (Blaxter, 1967; Farrell, 1974). Though the CNB system is labor intensive and costly, it has the advantage of not requiring bird sacrifice thereby enabling multiple observations on the same bird over time under a variety of nutritional and/or environmental conditions.

The CNB technique is based on the assumptions that carcass protein contains 16% N and that protein and fat contain 52 and 76.7% C, respectively. Carbon and nitrogen gain are tallied by summing nitrogen mass balance of intake minus losses in excreta and respiratory gases. Once the quantity of C and N gain is known, fat and protein accretion are predicted as: nitrogen retention (g) x 6.25 = protein gain (in grams); 2) protein gain x 0.52 = carbon retention

as protein; 3) total carbon gain - carbon retained as protein = carbon retained as fat; 4)grams fat retained = carbon retained as fat / 76.7 (Blaxter et. al., 1967; Farrell, 1974; McDonald et. al., 1988). However, data substantiating the C and N tissue content, as well as estimate comparisons with comparative slaughter for validation are extremely limited. Other variables, in addition to CNB, that might also be useful in predicting gain composition either alone, or in combinations include energy retention, repiratory quotent, CO₂ production, C intake, O₂, ME and ME_n consumption and heat production. However, no comparitive slaughter data has been utilized to relate combinations of these variables with gain composition.

The objective of the study described herein was to add additional validation to the CNB system by direct comparison with CS data and by establishing the nitrogen and carbon content of isolated protein and fat. Further, objectives of this study include relating the 16 to 42 day posthatching comparative slaughter data with all combinations of variables including C, N, and energy retention, repiratory quotent, CO₂ production and C, O₂, ME and ME_n consumption and heat production with CS protein, fat and energy gain and heat production estimates so that new methodologies might be proposed.

MATERIALS AND METHODS

GENERAL: Twenty four Cobb x Cobb male broiler chicks were brooded as specified by Cobb-Vantress (1987) to day 16 posthatching. On day 16 all birds were deprived of feed and water for 16h and weighed to the nearest gram. Twelve birds were selected at random from the fasted population, sacrificed by cervical dislocation, placed in Ziplock freezer bags, and frozen for later analysis. The remaining birds were randomly allocated to 12 individual respiratory chambers, described in detail by Belay and Teeter (1992) with the exception that 20% of the air exiting the respiratory chambers was diverted through a 71.5% sulfuric The acid trap was utilized to estimate NH3 lost acid trap. to the atmosphere during the trial. Feed (table 1) and water were continuously provided for ad libitum consumption. Excreta was collected in fecal trays, collected every 2 days to day 30 and daily from day 30 to the end of the trial. All collected excreta was placed in ziplock bags and frozen for later analysis. On day 42, birds were individually weighed, sacrificed by servical dislocation and placed in plastic bags for freezing at -20 C untill analysis. Feed and water consumption measurments were recorded daily (table 5).

BIRD HOMOGENATION: A preleminary test was conducted to determine if nitrogen would be lost from samples autoclaved at 240°C and 11 psi. Minced broiler breast meat was

anaylzed for N in unautoclaved and autoclaved forms using a micro Kjeldahl procedure (Karasawa, 1989). Results indicated that the autoclaving did not impact (P=.70) tissue N with both samples containing 14.1% N on a dry matter basis. Thus, when tissue samples are autoclaved at 240°F and 11 psi for 24 hours there should be no nitrogen loss. However, in other tests samples that were autoclaved under sterilization conditions (240°C, 11psi) for 24 hrs exhibited 5% N loss.

Carcasses of initial and final slaughter groups were homogenized for laboratory assays as follows: birds were removed from the freezer, feathers on the frozen birds were cut into approximately one quarter inch lengths, birds and feathers were placed in individual 7" X 11" autoclave safe plastic pans covered with aluminum foil weighed and autoclaved (240°F, 11 psi) for 24 hours. Following autoclaving the pans plus birds were reweighed, the tissue homogenized and divided into 2 sample bags for refreezing or analysis. Collected excreta was composited and homogenized without autoclaving as described for the carcasses.

LABORATORY ASSAYS: Carcass, feed, and fecal samples were analyzed for N, fat, energy, ash, (AOAC, 1990), and C (Harjo, 1993). In order to estimate the C and N content of bird proteinaceous and lipid components, bird tissues fractionated by ether extraction into proteinaious and lipid fractions were also analyzed for carbon, nitrogen and ash

content. In all cases, a minimum of six subsamples were used in laboratory tests.

Ration AMEn and NE were computed as described by Wolynetz and Sibbald (1989). Bird heat production was estimated using the comparative slaughter data by determining AME consumtion and subtracting the bird energy gain and by using liters of O_2 consumed and liters of CO_2 produced as described by Brouwer (1965): HP = 16.18 (O_2) consumption + 5.02 (CO_2) production.

STATISTICAL ANALYSIS: Data were subjected to ANOVA using general-linear-models (GLM) procedure of Statistical Analysis System (SAS Institute, 1985). When a significant F statistic was indicated, means were separated using Duncan's multiple range test (Steel and Torrie, 1960). Gas response variables, including O2 consumption and CO2 production were regressed against time utilizing SAS (SAS, 1995) such that time dependent polynomial equations could be used to describe the data. Bird response variables were then quantified by integrating the polynomial equations under specific time constraints created by the opening of respiratory chambers to either feed birds or collect excrement. All resulting data and integrated values were analyzed by analysis of variance using Proc GLM (Steel and Torrie, 1960).

RESULTS AND DISCUSSION

Bird growth rate and feed efficiency (table 5) differed slightly from that projected by the NRC (1984) for 42 day old birds at 1,535 vs 1,690 g gain and .64 vs .56 gain/feed ratio. The determined gross, AME, AMEn and NE values (Kcal/Kg dry matter) for the test ration are 3,114 and 1,129 respectivly. Dietary AMEn at 3.114 deviated slightly from that estimated using tabular values. The efficiency of AMEn utilization (NE/AMEn) averaged 36% which falls in the range of values reported by Jackson et al. (1982; 28.2%), MacLeod (1990; 34-55%) and DeGroote (1974; 35.5%). Differences in efficiency of AMEn use and gain may be due to bird strain or depressed feed consumption while the gain/feed ratio is likely a combination of strain and reduced energy needed for activity.

Homogenized tissues of the 42 day old birds averaged 67.6, 20.1, 9.6 and 2.6% moisture, protein, fat and ash, respectively accounting for 99.9% total mass. Similarly, component summation for the initial slaughter group at 70.9, 18.7, 7.5 and 2.9% for the moisture protein, fat and ash fractions, respectively, totaled 100.03% of dry matter. Since analet summation accounted for nearly all of bird tissue mass, it may be assumed that the carbohydrate (CHO) contribution to total fasted bird weight mass was negligible. Evidently the fasting periods employed were sufficient to enable the bulk of the CHO to be oxidized.

Bird weight gain partitioned into protein, fat, and energy fractions for individual birds is shown in table 2. The fractions varied considerably among birds with total weight ranging from 985 to 1,307g, protein gain from 195 to 265g, fat gain from 64.4 to 154.1g and energy gain from 2,089 to 2,772 Kcal. Correlation coefficients between bird weight gain with protein, fat, ash and energy were $r^2 = 0.83$, $r^2 = 0.32$, $r^2 = 0.74$, and $r^2 = 0.69$, respectively. Carcass dry matter averaged 29.1% for the initial carcass composition and 32.4% for birds at the conclusion of the trial. Carcass fat content and dry matter of the final slaughter group were well correlated at $r^2 = 0.82$ adding credence to dry matter use as a means to predict carcass fat. In contrast, the initial slaughter group had uniform composition indicating that this was a good age to begin the study.

Tissue carbon and nitrogen composition were determined for whole, ether extracted, and ether extract fractions (table 4). Whole tissue averaged 59.4% C and 10.51% N and 2.58% ash. The ether extracted fraction contained 13.8% ash and 45.12% C per unit dry matter, or 52.96% C on an ash free basis. The 52.96% value used to estimate protein carbon is similar to data reported by Farell (1974) at 52.0% and Argutinsky (1894) at 52.33%. The N content of this protein fraction averaged 15.85%, similar to the 16.0% used for most species (Argutinsky, 1894; Blaxter, 1967; Farrell 1974). The ether extract contained 77.7% C and only 0.2% N. Based on these determined tissue composition values, Blaxter's

(1967) CNB system would be modified as follows:

- 1) protein gain (g) = nitrogen retention x 6.69
- 2) protein C gain (g) = protein gain x 0.5296
- 4) fat gain (g) = carbon retained as fat / 77.1

Overall N, C and energy gains, determined by CS are listed in table 3 with N, C and energy averaging 36.4g, 213.7g and 2455 Kcal per bird. This compares very closely with values of 35.8, 221.5g and 2455 Kcal/Kg (table 5) obtained by summing intake with excreta and respiratory losses. Total liters O₂ consumed and CO₂ produced, RQ and AME and AME_n for individual birds are also listed in table 5.

A summary of possible variable combinations in predictive equations, composed of 1 to 6 variables, for protein, fat and energy gain as well as HP is presented in the appendix. The best of the three component equations for protein, fat, energy and heat production are:

grams protein gain = $CO_2*0.14570 + ME*0.82240 + ME_n*-0.84025$

grams fat gain = $CO_2*1.37157 + O_2*-1.22718 + E_{gain}*0.08535$

Kcal energy gain = $N_{gain}*-2.1212 + C_{gain}*12.2063 + RQ*-93.65$

Kcal heat production = $T_{carb}*7.3699 + CO_2*4.77736 + COMPF*-58608$

To test Farrell's CNB approach and the revised CNB version proposed herein, as well as the best of the three component

models for accuracy, CS birds were separated into the top and bottom six values for protein, fat and energy gains and HP. Composition of birds within the two groups was then estimated using the three predictive methods. The estimates along with appropriate CS values were merged into common data sets and evaluated by AOV for technique and technique x group interactions.

The CS and three component equations reported herein agree very closely for the variables tested. The three component equations separated the high and low CS groups at similar values. The two techniques agree so closely that it can be concluded that the two methods may be used interchangeably. However, it is recognized that a better test would utilize independent data sets. All four techniques separated the protein, fat and HP groups with the three component equations being the most accurate when compared to results from CS (table 7). However, the modified CNB was better (P<.01) than the Farrell CNB technique for protein gain. But, the Farrell CNB technique did a better (P<.01) job predicting energy gain compared to the modified version. The three component technique estimated protein gain better (P<.01) than the Farrell CNB method, but was not different from the modified version. There was no significant difference between the four techniques for fat gain.

The deviation of predicted from CS values (table 7)

data better than the CNB approach, and that the revised CNB estimates are similar to CNB for fat and HP. However, before conclusion related to the three component model may be finalized, it is necessary to utilize independent data sets.

In summary, the data presented herein has been used to validate and revise Blaxter's (1967) CNB system and further to propose over 1,900 predictive equations to estimate either protein, fat and energy gain or heat production of growing broilers. Based on the standard errors of predicted equations, the revised Blaxter procedure proposed herein predicted the protein gain more accurately than did the classical method, although no advantage was observed for fat and energy gain or HP. The three component and higher models resulted in estimates that better fit the CS data. It is anticipated that the large number of predictive equations provided will assist researchers, depending on available facilities, in dynamically evaluating short term age, diet and environmental effects on gain composition and energetic efficiency.

Table 1. Composition of diet used to feed broilers during the 16 to 42 day experimental period

Ingredient	Percent
Corn	48.58
Soy bean meal (48.5%)	42.57
Fat	5.51
Dical	2.00
Limestone	0.60
Vitamin mix ¹	0.25
Salt	0.20
Methionine (99%)	0.15
Trace mineral mix ²	0.10
Coban	0.04
Total	100.00
Metabolizable energy (Kcal/Kg)	3076
Crude Protein (%)	25
Lysine	1.46
Methionine and cystine	0.93
Phosphorus	0.77

 $^{^1}$ Mix contained Vit A, 3,968,280 I.U.; Vit D $_3$, 1,102,300 I.U.; Vit E, 13,228 I.U.; Vit B $_{12}$, 7.9 mg; Riboflavin, 2,646 mg; Niacin. 17,637 mg; d-Pantothenic Acid. 4,409 mg; Choline, 200,178 mg; Menadione, 728 mg; Folic Acid, 441 mg; Pyridoxine. 1.587 mg; Thiamine, 794 mg; d-Biotin, 44 mg per Kg.

 $^{^2}$ Mix contained Manganese. 12.0%; Zinc, 10.0%; Iron, 7.5%; Copper,1.0%; Iodine, .25%; Calcium, 13.5%

Table 2. Comparative slaughter estimates of carcass weight, protein, fat and energy gains during the 16 to 42 day experiment as well as percent bird dry matter

		Bird Number												
	1	2	3	4	5	6	7	8	9	10	11	12	****	
													MEAN	SEM
Carcass weight (g)														
Initial	227	247	211	204	245	208	216	215	228	213	231	223	222.3	4.0
Final	1368	1364	1329	1422	1508	1455	1439	1196	1305	1612	1500	1464	1414	31.6
Gain ⁴	1190	1108	1156	1227	1248	1168	1238	985	1100	1232	1307	1243	1184	25.1
Carcass protein (g) 1														
Initial	45.2	49.2	42.0	40.6	48.8	41.4	43.0	42.8	45.4	42.4	46.0	44.4	44.3	.79
Final	279.7	299.3	282.7	297.3	292.2	282.2	309.1	245.2	271.5	282.8	310.4	303.8	288.0	5.3
Gain ⁴	234	250	234	253	234	233	261	195	218	240	265	250	238.9	5.5
Carcass fat (g) ²														
Initial	17.1	18.6	15.9	15.4	18.5	15.7	16.3	16.2	17.2	16.1	17.4	16.8	16.8	.3
Final	125.5	83.1	128.2	134.1	172.6	138.3	147.5	129.1	161.6	148.9	151.8	109.1	135.8	6.9
Gain ⁴	108.4	64.4	112.2	118.7	154.1	122.6	131.3	112.8	144.4	132.9	134.4	92.3	119.1	6.9
Carcass energy (kcal) ³														
Initial	402.7	438.1	374.3	361.9	434.6	369.0	383.1	381.4	404.4	377.8	409.7	395.6	394.4	7.1
Final	2821	2527	2819	2941	3207	2780	3022	2486	2949	2945	3056	2638	2849	62.4
Gain 4	2419	2089	2445	2579	2772	2411	2639	2105	2545	2568	2646	2243	2455	62.3
Initial carcass (dm)	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	29.0	***	
Final carcass (dm)	32.1	30.6	32.9	32.6	32.0	31.1	34.0	33.1	35.0	28.9	33.3	30.4	32.2	.45

Grams protein in initial carcass = grams nitrogen in carcass x 6.69
Grams protein in final carcass = bird dry matter gain - fat gain - ash gain

Grams fat in initial carcass = grams bird dry matter x (% carcass fat / 100)
Grams fat in final carcass = ((% carcass fat / 100) x (bird weight x (bird dry matter / 100)))

Grams energy in initial carcass = grams bird dry matter x (Kcal carcass energy / 1000)
Grams energy in final carcass = ((Kcal carcass energy / 1000) x (bird weight x (bird dry matter / 100)))

⁴ Gain = final - initial

Table 3. Comparative slaughter estimates of nitrogen, carbon and energy gains during the 16 to 42 day experimental period

						Bird	Number							
	1	2	3	4	5	6	7	8	9	10	11	12	_	
													MEAN	SEM
Initial weight	227	247	211	204	245	208	216	215	228	213	231	223	222	4.0
Final weight	1368	1364	1329	1422	1508	1455	1439	1196	1305	1612	1500	1464	1414	31.6
Nitrogen (g) 1														
Initial	6.8	7.4	6.3	6.1	7.3	6.2	6.4	6.4	6.8	6.3	6.9	6.6	6.6	.11
Final	41.8	44.7	42.3	44.4	43.7	42.2	46.2	36.7	40.6	42.3	46.4	45.4	43.0	.78
Gain ⁴	35.1	37.4	36.0	38.4	36.4	36.0	39.8	30.0	33.8	35.9	39.5	38.8	36.4	.75
Carbon (g) ²														
Initial	35.2	38.3	32.7	31.6	38.0	32.2	33.5	33.3	35.3	33.0	35.8	34.5	34.4	.61
Final	245.8	223.0	245.5	258.1	278.1	241.4	263.4	216.8	255.1	255.6	263,3	231.5	248.1	5.14
Gain ⁴	210.7	184.7	212.8	226,5	240.2	209.2	230 .0	183.5	219.7	222.6	227.5	196.9	213.7	5.14
Energy (Kcal) ³														
Initial	402.7	438.1	374.3	361.9	434.6	368.9	383.1	381.4	404.4	377.8	409.7	395.6	394.4	7.07
Final	2821	2527	2819	2941	3207	2780	3022	2486	2949	2945	3056	2638	2849	62.4
Gain ⁴	2419	2089	2445	2579	2772	2411	2639	2105	2545	2568	2646	2243	2455	62.27

¹ Initial nitrogen = initial bird grams dry matter x (9.88 / 100) Final nitrogen = ((% tissue nitrogen dry matter/ 100) x (bird weight x (% tissue dry matter of a wet sample / 100)))

² Initial carbon = initial bird grams dry matter x (51.4 / 100) Final carbon = ((% bird carbon dry matter/ 100) x (bird weight x (% tissue dry matter of a wet sample / 100)))

³ Initial energy = initial bird grams dry matter x (5885.18 / 1000) Final energy = ((% bird energy dry matter / 1000) x (bird weight x (% tissue dry matter of a wet sample / 100)))

⁴ Gains = final - initial

Table 4. Moisture free whole bird carbon and nitrogen content and moisture and ash free ether extracted tissue and ether extract of birds completing the 28 day study

						Bird	l Number	•					_	
	ì	2	3	4	5	6	7	8	9	10	11	12		
													Mean	SEM
Vhole carcass 1														
Carbon (%)	61.0	58.8	61.1	60.6	61.2	58.5	58.5	59.2	60.1	593	57.0	57.5	59.40	0.41
Nitrogen (%)	10.9	12.4	11.0	10.8	9.6	10.2	10.3	10.0	9.6	9.9	10.0	11.3	10.51	0.24
ther extracted tissue 2														
Carbon (%)	52.9	53.4	52.9	52.5	53.6	52.6	52.2	53.6	52.5	53.5	52.7	53.3	52.96	0.14
Nitrogen (%)	15.5	15.9	15.9	15.7	16.0	15.7	15.6	16.3	16.0	15.9	15.9	15.8	15.85	0.06
Ether extract ³														
Carbon (%)	80.0	79.9	79.5	78.9	74.3	70.6	71.6	69.9	72.9	71.0	65.3	68.9	73.56	1.4
Nitrogen (%)	0	0	0	0	0	0	0	0	0	0	0	0		

^{1 %} Carbon = tissue carbon / ((% tissue dry matter - % tissue ash) / 100)

[%] Nitrogen = % tissue dry matter nitrogen / ((% tissue dry matter - % tissue ash) / 100)

^{2 %} Carbon = ether extracted carbon / ((% extracted tissue dry matter - % extracted tissue ash) / 100)

[%] Nitrogen = % extracted tissue dry matter nitrogen / ((% extracted tissue dry matter - % extracted tissue ash) / 100)

^{3 %} Carbon = (((nitrogen gain x 6.69) x 0.5231) / ((grams bird dry matter - total bird ash / grams bird dry matter)))

Table 5. Bird feed consumption, water consumption, gain and gain/feed ratio as well as nitrogen, caarbon and energy gain estimated by a summation of intake and excretion along with ration AME and AMEn values

					Bird N	lumber								
	1	2	3	4	5	6	7	8	9	10	11	12	– Mean	SEM
(mitial susiabt (a)	227	247	211	204	245	208	216	215	228	213	231	223	222	4.0
initial weight (g)			1329		1508	208 1455	1439	1196	1305	1612	1500	1464	1414	
Final weight (g)	1368	1364		1422										31.6 47.5
Feed cons (g dm)	2511	2328	2238	2463	2595	2288	2475	2041	2312	2550	2787	2381	2397	
Water cons (mL)	5640	4800	4670	6390	6180	4930	6355	5290	5760	6070	6810	5940	5736	198.2
Gain (g)	1190	1108	1156	1227	1248	1168	1238	985	1100	1232	1307	1243	1184	25.1
Gain/Feed	.47	.48	.52	.50	.48	.51	.50	.48	.48	.48	.51	.52	.49	0.018
NITROGEN ¹														
Intake (g)	92.7	85.9	82.6	90.9	95.7	84.4	91.3	75.3	85.3	94.1	95.5	87.9	88.5	1.8
Excreta (g)	58.3	50.5	50.5	46.1	63.4	50.0	49.5	46.8	56.3	58.5	56.9	45.3	52.7	1.6
Respiratory (g)	0	0	0	0	0	0	0	0	0	0	0	0	******	
Gain (g)	34.4	35.4	32.1	44.8	32.3	34.4	41.8	28.5	29.0	35.6	38.6	42.6	35.8	1.51
CARBON ²														
Intake (g)	1015	941	904	996	1049	925	1000	825	935	1031	1046	963	969.1	19.2
Excreta (g)	355.5	318.7	310.3	303.8	369.1	322.4	303.6	304.4	310.1	348.9	343.2	296.3	323.9	6.9
Respiratory (g)	442.5	424.8	379.6	447.7	450.6	392.3	444.5	327.8	405.9	464.6	474.1	4309	423.8	11.92
Gain (g)	217.0	197.5	214.1	244.5	229.3	210.3	251.9	192.8	219.0	217.5	228.7	235.8	221.5	5.1
ENERGY 3														
Intake (Kcal)	10974	10177	9779	10766	11340	9999	10815	8922	10104	11145	11308	10408	10478	207.6
Excreta (Kcal)	3676	3230	3104	3130	3745	3320	3113	3090	3151	3588	3528	3044	3310	73.5
Respiratory (Kcal)	4857	4725	4217	4929	4919	4293	4856	3584	4431	5067	5183	4780	4653	129.5
Gain (Kcal)	2419	2089	2445	2579	2772	2411	2639	2105	2545	2568	2646	2243	2455	62.3
O ₂ Consumption (L)	999.6	975.7	870.5	1015.4	1010.9	882.9	998.4	737.0	910.8	1041.3	10656	986.5	957.9	26.6.
CO ₂ Consumption (L)	826.1	793.0	708.6	835.7	841.2	732.4	829.7	612.0	757.8	867.3	885.1	804.4	791.1	22.2
	0.83	0.81	0.81	0.82	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.82	0.83	0.002
Respiratory Quotient AME (dm) ⁴	3.2	3.2	3.2	3.4	3.2	3.2	3.4	3.1	3.3	3.2	3.3	3.4	3.25	0.032
AMEn (dm) 5	3.0	3.1	3.1	3.2	3.1	3.0	3.2	3.0	3.1	3.1	3.1	3.2	3.12	0.02

¹ Nitrogen gain = grams nitrogen consumed - grams nitrogen excreted - nitrogen lost during respiration

² Carbon gain = grams carbon consumed - grams carbon excreted - carbon lost as CO₂

³ Energy gain = Kcal energy consumed - Kcal energy excreted - energy lost as heat
4 AME (dm) = (energy intake - fecal energy) / dry matter intake

⁵ AMEn (dm) = (energy intake - fecal energy- $(8.22 \times \text{nitrogen gain})$)/ dry matter intake

Table 6. Protein, fat, energy and heat production values as estimated by both direct and indirect methodologies

	Trea	itments	
	Low Group	High Group	SEM
Carcass protein gain (g) ²			
Comp slaughter	226.9	255.7	5.51
Farrell	217.3	242.2	4.79
Modified Farrell	232.6	259.3	5.1
3-variable equation	227.5	255.0	5.4
Carcass fat gain (g) ³			
Comp slaughter	101.5	136.1	6.9
Fartell	111.6	136.8	6.1
Modified Farrell	118.1	125.5	4.6
3-variable equation	102.1	136.1	6.7
Carcass energy gain (Kcal) ⁴			
Comp slaughter	2285.1	2624.7	62.3
Farreli	2308.0	2648.5	62.3
Modified Farrell	2390.0	2639.6	52.7
3-variable equation	2286.3	2623.6	62.0
Carcass heat prod (Kcal) 5			
Comp slaughter	4158.8	4990.6	129.6
Farrell	4131.3	4914.5	129.5
Modified Farrell	4178	4978	130.5
3-variable equation	4156.4	4906.6	123.1

Birds for each category were separated into the lowest and highest six birds based on comparative slaughter values so that the ability of predictive equations to separate treatment means could be judged.

Farrell = nitrogen gain $\times 6.25$

Modified Farrell = nitrogen gain x 6.69

3-variable equation = $(0.1457 \times CO_2) + (0.8224 \times AME \text{ consumption}) - (0.84025 \times AME \text{ consumption})$

Farrell = (carbon gain - ((nitrogen gain $\times 6.25$) $\times 0.52$)) / 0.767

Modified Farrell = (total bird carbon - % carbon in protein) / 0.77

3-variable equation = $(1.37157 \times CO2) \cdot (1.22718 \times O2) + (0.08535 \times energy gain)$

Farrell = $(51.83 \times \text{carbon gain} - 19.38 \times \text{nitrogen gain})/4.184$

Modified Farrell = energy intake - fecal energy - heat production

3-variable equation = -2.1212 x bird nitrogen gain + 12.2063 x carbon gain - 93.65 x respiratory quotient

5 Comp. slaughter = apparent metabolizable energy consumption Kcal - energy gain Kcal

Farrell = $(16.18 \times O2 + 5.02 \times CO2)/4.184$

Modified Farrell = $(12.2472 \times O2) + (-8.87268 \times CO2)$

3-variable equation = 7.36988 x carbon gain + 4.77736 x CO2 pod. - 5.8608 x (total bird fat - initial bird fat)

² Comp slaughter = bird dry matter - fat gain - ash gain

³ Comp. slaughter = total bird gram fat - grams fat in initial birds

⁴ Comp. slaughter = total bird Kcal energy - Kcal energy in initial birds

Table 7. Difference of Farrell and modified Farrell carbon-nitrogen balance methods and the three component equation technique from comparative slaughter values for protein, fat, energy and heat production values

	Deviation from CS values 1.2									
	Protein (g)	Fat (g)	Heat prod (Kcal)	Energy (Kcal)						
Farrell	11.3 a	5.2	59.1	23.3 b						
Modified Farrell	4.8 b	2.8	1.4	59.4 a						
3-component equation	0.01 ^c	0.07	56.7	0.03 c						

¹ The difference between CS values and the specified method appear in the table

² Values within a column with unlike superscripts differ (P<.01)

REFERENCES

- Argutinsly, P. 1894. Pflug. Arch. ges. Physiol. 55, 345.
- Belay, T., and R.G. Teeter. 1992. Caloric density and calorie protein ratio effects on broiler growth rate, survivability and carcass composition estimated by direct and indirect methods. Poultry Sci. 71: (Suppl. 1):138. (Abstr.)
- Blaxter, K.L. (1967). Nutrition balance techniques and their limitations. Proc. Nutr. Soc., 26:86-96.
- Brouwer, E. 1965. Report of sub-committee on constants and factors. Energy Metabolism, pp.441-443. Edit. Blaxter, K.L. London, Academic Press.
- Chambers, J.R. and a. Fortin. 1984. Live body carcass measurements as predictors of chemical composition of carcasses of male broiler chickens. Poultry Sci. 63:2187-2196.
- Chambers, J.R. and A. Fortin. 1984. Live body carcass measurements as predictors of chemical composition of carcasses of male broiler chickens. Poultry Sci. 63:2187-2196.
- Charles, R.G., F.E. Robinson, R.T. Hardin, M.W. Yu, J. Feddes, and H.L. Classen. 1992. Growth, body composition, and plasma androgen concentration of male broiler chickens subjected to different reqimens of photoperiod and light intensity. Poultry Sci. 71:1595-1605.
- Cobb-Vantress, Inc., 1987. Broiler Manual. Cobb-Vantress, Inc., P.O. Box 249, Siloam Springs, Ar 72761.
- Davidson, J., Mathieson, J., Williams, R.B. and Boyne, A. W. 1964. Effects of animal fat and of low ratios of protein to metabolizable energy of the utilization of dietary energy by medium and fast-growing strains of poultry. J. Sci. Fd Agric., 15:316-325.
- De Groote, G., 1974. A comparison of a new net energy system with the metabolisable energy system in broiler diet formulation, performance and profitability. Br. Poult. Sci. 15:75-95.
- Farrell, D.J., 1974. General principles and assumptions of calorimetry. in: Energy Requirements of Poultry, pp. 1-24, T.R. Morris and B.M. Freeman, British Poultry Science Ltd, Edinburgh.

- Fortin, A. and J.R. Chambers. 1981. Specific gravity of the carcass and of its parts as predictors of carcass composition in broiler chickens. Poultry Sci. 60:2454-2462.
- Fristrom, G.a., and J.L. Weihrauch. 1976. Comprehensive evaluation of fatty acids in food. J-Am-Diet-Assoc. 69(5):517-522.
- Harjo, C. 1993. unpublished.
- Harter-Dennis, J.M., M. Nowcombe, and T. Mollett. 1992.
 Use of bioelectrical impedance analysis to predict fat
 free mass and percent body fat in broiler chickens.
 Poultry Sci. 71: (Suppl. 1):38. (Abstr.)
- Hulan, H.W., F.G., Prougfoot, and D.M. Nash. 1983. The effects of different dietary fat sources on general preformance and carcass fatty acid composition of broiler chickens. Poultry Sci. 63:324-332.
- Jackson, S., J.D. Summers, and S. Leeson, 1982. Effect of dietary protein and energy on broiler carcass composition and efficiency of nutrient utilization. Poultry Sci. 61:2224-2231.
- Karasawa, Y, 1989. Effect of colostomy on nitrogen nutrition in the chicken fed low protein diet plus urea. J. Nutr. 119:1388-1391.
- Macleod, M.B. 1990. Energy and nitrogen intake, expenditure and retention at 20°C in growing fowl given diets with a wide range of energy and protein contents. Br. J. Nutr. 64:625-637.
- Macleod, M.B. 1992. Energy and nitrogen intake expenditure and retention at 32°C in growing fowl given diets with a wide range of energy and protein contents. Br. J. Nutr. 67:195-206.
- NRC. 1984. Effect of environment on nutrient requirements of domestic animals. National Academy of Sciences, Washington, D.C.
- SAS. 1985. SAS User's Guide. Statistical Analysis System Inst., Inc., Cary, NC.
- Steel, R.D.G., and J.H. Torrie, 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., NY.
- Wolynetz, M.S., and I.R. Sibbald. 1989. Precision of bioasays for apparent and true metabolizable energy adjusted to zero nitrogen balance. Poultry Sci. 68:124-135.

CHAPTER V

EFFICACY OF YEAST AS A SOURCE OF DIETARY PROTEIN

AND TO AMELIORATE NONSPECIFIC ANTIGEN CONSEQUENCES

IN BROILERS REARED IN HEAT DISSTRESSED AND

THERMONEUTRAL ENVIRONMENTS

McDonald, K.R, F. Deyhim and R.G. Teeter,

Animal Science Department, Oklahoma State University

Stillwater, OK. 74078

ABSTRACT

Two experiments were conducted to evaluate the efficacy of supplemental dietary yeast on body weight, feed efficiency and survivability of male and female broilers reared in thermoneutral (TN, 24 C) and heat distress (HD, 24 -35 C) environments. In Experiment 1, at TN environment, irrespective of sex, yeast substitution for soybean meal linearly increased (P<.01) chicks body weight and numerically improved (P>.1) feed consumption and feed efficiency. In Experiment 2, HD decreased (P<.05) body weight, feed efficiency and survivability. Irrespective of environment, when the grower diet was supplemented with 0 or

1% poultry litter, yeast supplementation numerically (P>.1) improved body weight, survival rate, and increased feed efficiency (P = .062). In conclusion, yeast substitution for soybean meal improved bird growth rate and when supplemented to the complete ration it improved survival rate.

Key words: yeast, broilers, heat distress, litter

DESCRIPTION OF PROBLEM

Direct fed microbials (DFM) have been included in feed or water to enhance gastrointestinal tract health (Hutchinson et al., 1991). The term "probiotics" is frequently used to describe these microbials (Fuller, 1989).

Bird responses to DFM is controversial. Miles et al. (1981b) was not able to observe DFM effects on growth, feed efficiency, or mortality in quail. Burkett et al.(1977), however, reported that in broilers yeast supplementation improved feed efficiency during the first four weeks posthatching. Guevara (1977) reported that increased dietary supplemental yeast level lowers growth rate and feed utilization in broilers. Plavnik and Scott (1980) reported in one experiment that brewer's yeast at a 10% level has no effects on body weight or efficiency of feed utilization of broilers, while in the second experiment, they observed that dietary supplemented brewer yeast at 2.5, 5%, or 10% level increased growth and feed efficiency in chicks raised at 32°C environmental temperature. Elbert et al. (1987)

reported that caged layer performance was not effected when birds were fed .25 or .50% dietary yeast. Thayer et al. (1978) reported an improvement in egg production, egg weight, and hatchability in turkeys fed diets containing 2.5% yeast. The discrepancy in results may have been due to the level of dietary yeast used.

Poultry litter effects on broiler performance, like DFM, is also controversial. Flegal and Zindel (1970a; 1970b) reported an inverse relationship between increased dietary poultry waste and broiler's weight gain, feed efficiency and egg production. In contrast, Lee and Blair (1972; 1973) observed improved weight gain and feed efficiency in broilers and increased egg weight and egg mass in layers fed poultry litter. However, Trakulchang and Balloun (1975) reported that feeding 10 and 20% poultry waste does not affect broiler weight gain and feed efficiency. Coon et al. (1978) also reported no weight gain, feed efficiency, and feed consumption effects when poultry waste ranging from 2.5 to 7.5% was included in broiler diets. The objective of this study was to: 1) evaluate yeast (Pichia pastoris) substitution effects for soybean meal and 2) evaluate Diamond V Mills dried yeast culture efficacy on growth, feed efficiency and survivability of broilers during thermoneutral and heat distress environments.

MATERIAL AND METHODS

Experiment 1

An experiment utilizing one thousand Tatum x Tatum broiler males and females was conducted to evaluate efficacy of Pichia pastoris yeast as a partial protein substitute. Treatments (trt) evaluated included: 1. basal ration with 0% yeast; 2. basal ration plus 2.5% dietary yeast; 3. basal ration plus 5% dietary yeast; 4. basal ration plus 10% dietary yeast. Each trt was replicated 10 times such that there were 25 birds per replication, five of which were female. Birds received their respective trt starting on Day 1 posthatching. Starter (1-21 days) and grower diets (21-42 days) were formulated to be isocaloric, isonotrogenous, and isosulfarrous while exceeding National Research Council (NRC, 1984) recommendations. Feed (Table 1.) and water were provided for ad libitum consumption. Weight gain, feed consumption, feed efficiency and survivability were determined per pen at 21 and 42 days posthatching. Feed efficiency was adjusted for mortality by weighing birds that died and adding the weight to the appropriate pen weight.

Data were analyzed for yeast, sex and block main effects and interactions using analysis of variance in the General Linear Models (GLM) procedure of SAS (SAS Institute, 1985). When significant differences were noted for the F statistics, means were separated using Duncan's (1955) multiple range test.

Experiment 2

A total of 1,296 Cobb x Cobb male broilers were randomly divided at hatching into 3 groups and fed diets composed of: 1. basal corn-soy diet; 2. as 1 plus .25% yeast supplementation; and 3. as 1 plus 1.25% supplemented yeast (Saccharomyces cerevisiae obtained from Diamond V Mills) . Birds were reared in floor pens and fed the starter ration to 28 days posthatching with feed and water available for ad libitum consumption. On day 28 birds were switched to a similarly fortified finisher diet (Table 1), with 1% rice hulls or 1% poultry litter, and transferred to 61 X 82 grower batteries for thermoneutral (TN, 24 C) and cyclic temperature (24 - 37 C) heat-distressed (HD) exposure. Days 28 through 30 posthatch were used to adjust birds to chamber surroundings with ambient temperature maintained at 24 C. Following the 2 day acclimation period to environmental chambers the chicks were fasted overnight and their individual body weights recorded

The six trt groups consisted of twelve replicates of six birds per replicate randomly assigned to TN and 24 replicates of six birds per replicate assigned to HD. On day 30 the ambient temperature of the environmental chamber designated for HD was increased such that by Day 32 the chamber provided 6 h daily in excess of 32 C peaking at 35 to 37 C and environmental chamber designated for TN was maintained at 24 C.

Variables evaluated at day 49 included final body

weight, feed efficiency, feed efficiency adjusted for mortality, and survivability. Data were subjected to ANOVA using general-linear-models (GLM) procedure of Statistical Analysis system (SAS Institute, 1985). When a significant F statistic was indicated for treatment, environment, or interactions means were separated using Duncan's multiple range test (Steel and Torrie, 1960).

RESULTS AND DISCUSSION

Experiment 1.

The data are presented on Table 2 and 3. Since there were no trt by sex interactions observed, the data were pooled. As expected no block effects for any of the production parameters were observed.

At 21 and 42 days posthatching, there was a sex effect (P<.05) on body weight and feed consumption being higher for males than females. At 21 and 42 days of age, birds fed 10% dietary yeast had greater (P<.05) body weight while there was a numerical improvement in body weight with 2.5 and 5% dietary supplemented yeast as compared with the control group.

At 21 days of age, feed consumption numerically increased as dietary yeast was elevated. While, at Day 42 posthatching, there was a numerical but non-significant decrease in feed consumption as dietary percentage yeast increased.

There was no sex effects associated with feed efficiency adjusted for mortality at either 21 or 42 days of

age. At Day 21 posthatching, feed efficiency adjusted for mortality was improved with increased yeast supplementation trt (1 vs. 3) or trt (1 vs. 4) and there was no significant feed efficiency effects for trt 2 (2.5% yeast) compared with trt 1 (0% yeast).

At 42 days of age, feed efficiency was not influenced with 2.5 and 5% yeast supplementation. While, feed efficiency increased (P<.05) with 10% yeast supplementation as compared with control group. However, total feed efficiency adjusted for mortality numerically improved with yeast supplementation. No survivability differences between two sex noted at either 21 and 42 days posthatching. At Day 21 posthatching, survivability was noted different among trt investigated. At 42 days of age, 2.5, 5, and 10% supplemental yeast did not influence survival percentage. Experiment 2.

Compared to the thermoneutral chamber, exposing control birds to heat distress reduced (P<.05) final bird weight 6% (1975 vs 1856g), efficiency of gain unadjusted for survivability ability (.50 vs .47) and bird survivability 12.7% (94 vs 82%). The reduced bird survivability resulted in a 3.5% increase in the feed consumption attributed to each bird surviving the study. Adjusting feed efficiency for survivability by including the weight gain of birds dying of heat prostration improved feed efficiency of heat distressed birds to .49 which did not differ from the thermoneutral controls. Overall the environmental impact

upon growth rate and feed efficiency if typical of what might be encountered by poultry producers.

Several main effects and interactions were significant for litter and yeast addition to the basal ration. Overall, litter addition to the basal ration reduced (P<.01) final bird weight by 4.9% (Table 1). However, the litter suppression was more apparent in the thermoneutral environment (6%) than the heat distressed (2%) where performance was already suppressed. Litter effects on the feed consumption, feed efficiency and survival were not significant. Yeast supplementation numerically increased final bird weight from 1848 to 1884 and 1872g for the 0, .25 and 1.25% inclusion levels, respectively. The response was consistent across litter and temperature criteria. Yeast supplementing main effects, averaged across both litter and temperature treatments, resulted in feed efficiency increasing from .475 to .490 (P=.062) for the 1.25% supplementation level with the .25% level being intermediate. The yeast X litter interaction for feed efficiency borderlined on significance (P=.15) with the data suggesting that the yeast is more efficacious in birds consuming litter as the product hat a 5% improvement in litter fortified rations and just .6% in rations without litter.

Neither the main affect for yeast culture or litter on bird survivability was significant (P>.02). However, the interaction between yeast and litter supplementation for bird survivability was significant (P=.078). Within the thermoneutral environment yeast supplementation numerically improved bird survivability consistently within litter fortification averaging 90.7, 96.5 and 95.4% for the 0, .25 and 1.25% levels, respectively. Within the heat distressed environment, without litter, yeast supplementation had no impact on the temperature suppressed survivability. Within the heat distressed litter fortified groups yeast supplementation linearly improved survivability at 73.5, 79.2 and 84.4% for the 0, .25 and 1.25% fortification levels, respectively (Table 2). The bird survivability response was significant (P<.01) for the 73.5 vs 84.4 contrast. This affect fits with our hypothesis that increased immune challenge during heat distress will increase heat production and thereby elevate bird mortality.

Table 1. Composition of starter and grower rations used for experiment 1.

8800

4000

2160

			Dictar	y Yeast Supp	olementatio	n (%)		
		0		2.5		5		_10
Ingredient	Starter	Grower	Starter	Grower	Starter	Grower	Starter	Grower
Ground corn	54.20	64.60	54.20	64.60	54.20	64.60	54.20	64.60
Soybean meal	29.56	24.01	19.63	36.75	29.85	24.38	34.41	37.82
Animal fat	2.00		2.23	0.23	2.46	0.46	2.92	0.92
Dical 1	2.15	2.15	2.15	2.15	2.15	2.15	2.15	2.15
Limestone	1.10	1.10	1.10	1.10	1.10	1.10	1.10	1.10
Salt	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
Vit. mix . ²	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
D-L-meth	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Trace min. ³	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Yeast			2.50	2.50	2.50	2.50	2.50	2.50
Glutamic acid	0.96	0.76	0.72	0.74	0.48	0.65		
Urea		0.14	0.10		0.07			
Polyethylene	******		0.01	0.05	0.02		0.60	
Rumensin	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
		MEn	(Kcal/Kg	<u>;</u>)	Crude Pr	rotein		
Corn		3350			8.8			
Soybean meal		2440			48.5			

9.52 (60% N)

61.4

Glutamic acid

Fat

Yeast

Dical = Dicalcium phosphate
 Vit. mix = Vitamin
 Trace min. = Trace mineral mix

Table 2. Yeast supplementation effects on body weight, feed consumption, feed efficiency, mortality adjusted feed efficiency (FEA) and survivability (Surv) of broiler chickens at 21 and 42 days posthatching.

		DIETARY YEAST (%) SUPPLEMENTATION	
Variables	0	2.5	5	10
Body weight (g)	***************************************			
Day 21	622 ± 6.5b	638 ± 6.5ab	640 ± 6.5ab	654 ± 6.5a
Day 42	1660 ± 14.9b	1681 ± 14.9b	1701 ± 14.9ab	1741 ± 14.9a
Feed Cons (g)				
Day 21	861 ± 10.2	885 ± 10.2	875 ± 10.2	887 ± 10.2
Day 42	2367 ± 38.7	2362 ± 38.7	2342 ± 38.7	2343 ± 38.7
FEA				
Day 21	.73 ± .01ab	.725 ± .01b	.747 ± .01ab	.749 ± .01a
Day 42	.513 ± .01b	.516 ± .01b	.521 ± .01ab	.536 ± .01a
Surv (%)				
Day 21	97	98	95	96
Day 42	96a	96a	90b	94ab

Table 3. Sex effects on body weight, feed consumption, feed efficiency, mortality adjusted feed efficiency (FEA) and survivability of broiler chickens at 21 and 42 days posthatching.

Variables	Male	Female
Body weight (g)		
Day 21	682 ± 4.57a	595 ± 4.57b
Day 42	$1834 \pm 10.54a$	1558 ± 10.54b
Feed cons (g)		
Day 21	929 ± 7.2a	824 ± 7.2b
Day 42	$2543 \pm 27.3a$	2164 ± 27.3b
FEA		
Day 21	.74 ± .01	.73 ± .01
Day 42	.54 ± .01	$.53 \pm .01$
Surv (%)		
Day 21	97	96
Day 42 96a	93	95

Neither the main affect of yeast culture or litter on bird survival was significant (P>.2). A significant yeast X litter interaction was detected for bird survivability (P=.078).

Table 4. Dietary yeast supplementation effects on body weight, feed efficiency, and survivability of fed 1% poultry litter (Experiment 2).

		Treatment			
	Basal diet	.25 % yeast	1.25 % yeast	Mean	Pooled SE
Body weight (g) Rice hull Poultry litter	1893 ^X 1804 ^Y	1909 1858	1918 ^X 1825 ^Y	 1907 ^X 1829 ^Y	
Mean	1848	1884	1872		12.26
Feed efficiency Rice hull Poultry litter	.49 ^x .46 ^{by}	.48 .49 ^a	.50 .49 ^a	.49 .48	.01
Mean	.48	.49	.50		.01
Survivability (%) Rice hull Poultry litter	88 ^x 82 ^{by}	87 88 ^a	88 90 ^a	88 87	1.3
Mean	85 ^b	87 ^{ab}	89 ^a		1.3

a, b Means within a row with no common superscripts are significantly different (P<.05). x, Y Means within column with no common superscripts are significantly different (P<.05).

REFERENCES AND NOTES

- Burkett, R.F., Thayer R.H., and Morrison, R.D., 1977.
 Supplementing market broiler rations with lactobacillus and live yeast cultures. Animal Science Agricultural Research Report. Oklahoma State University and USDA, USA.
- Coon, C. N., J. P. Nordheim, D. C. McFarland, and D. E. Gould, 1978. Nutritional quality of processed poultry waste for broilers. Poultry Sci. 57:1002-1007.
- Flegal, C. J., and H. C. Zindel, 1970a. The utilization of poultry waste as a feed stuff for a growing chicks.
 Michigan State Univ. Agr. Expt. Res. Rep. 117:21-28.
- Flegal, C. J., and H. C. Zindel, 1970b. The result of feeding dried poultry waste to laying hens on egg production and feed conversion. Michigan State Univ. Agr. Expt. Res. Rep. 117:29-30.
- Fuller, R. (1989) Probiotics in man and animals. A review. Journal of Applied Bacteriology, 66:365-378.
- Guevara, V. R., 1977. phosphoreous utilization by broilers as affected by yeast culture. M.S. Thesis. Mississippi State Univ., Mississippi State, MS.
- Lee, D. J. W., and Blair, 1972. Effects on chick growth of adding various non-protein nitrogen sources or dried autoclaved poultry manure to diets containing crystalline essential amino acid. Br. Poultry Sci. 13:243-249.
- Lee, D. J. W., and Blair, 1973. Growth of broilers fed on diets containing dried poultry manure. Br. Poultry Sci. 14:379-388.
- Miles, R. D., H. R. Wilson, A. S. Arafa, E. C. Coligado, and D. R. Ingram, 1981b. The performance of bobwhite quail fed diets containing lactobacillus. Poultry Sci. 60:894-896.

- Plavink, I., and M. L. Scott, 1980. Effects of additional vitamins, minerals, or brewer's yeast upon leg weaknesses in broiler chickens. Poultry Sci. 59:459-464.
- Takulchang, N., and S. L. Balloun, 1975. Use of dried poultry waste in diets for chickens. Poultry Sci. 54:609-614.
- Thayer, R.H., Burkitt, R.F., Morrison, R.D., and Murray, E. E., 1978. Efficiency of utilization of dietary phosphorus by caged turkey breeder hens when fed rations supplemented with live yeast culture. Animal Science Research Report MP-103. Oklahoma State Univ., Stillwater, OK,

CHAPTER VI

SUMMARY AND CONCLUSIONS

The interaction between high ambient temperaturerelative humidity distress and reduced broiler performance has long been recognized. The problem of reduced growth rate, feed efficiency and survival is compromised due to the combination of environmental heat and metabolic heat production. Various management practices have been recommended to aleviate heat distress prostration in broilers. Acclimatizing birds to heat disstress has been sugested to improve bird survivability, feed efficientcy, and growth rate, when subjected to acute heat distress as compared to non-acclimated birds. In addition, direct fed microbials have been reported to enhance growth rate, feed efficiency and survival during heat distress when used in rations both the starter and grower rations. The affect is believed to be a result of increased intestinal health through development and establishment of a population of beneficial microflora in the gut. Nutrition studies frequently necessitate that composition of gain, accrued as protein and fat, be defined in short duration-age dependent functions. There are numerous methods to determine compostion but none are without assumptions that make them

less than appealing. Thus a study was conducted to develop/modify and validate a method to determine gain composition while eleminating needless assumptions.

The first study, was conducted to (1) evaluate the ability of the day-5 posthatching acclimation technique to licrease live weight gain (2) determine if the day-5 acclimation technique has an interaction effect on cool and warm brooding temperatures and (3) to use a 6h fasting technique as a positive control to test the intensity of the heat distress. The results of the study indicated that brooding chicks at the higher ambient temperature reduced live weight gain, while the feed effencincy was similar for both the brooding and acclimation treatments (trts). However, the cool brooded trts had a better survivablity than the warm brooded trts which may be explaned by the fact that the warm brooded birds were induring a heat distress due to their brooding environment as shown by the reduced growth rate. Note the fasted trt had the highest survivability while maintaining a similar feed effencicy and body weight. These results indicate that the day-5 posthatching acclimation technique does not benefit the birds when heat distress is incured, while fasting birds 6h prior to heat distress exposure will beneficially affect bird survivability without reducing weight gain.

The second study was conducted to validate a carbon and Nitrogen technique by direct comparison with comparative slaughter by establishing the nitrogen and corbon content of

isolated protein and fat. In addition, it was a objective to relate comparative slaughter data with all combinations of variables including C, N, and energy retention, repiratory quotent, CO2 production and C, O2, ME and MEn comsumption and heat production. Tissue C and N in broiler protein and fat was determined to be 52.96, 15.85, 77.1 and .2% respectively which differed slightly from classical values. Over 1925 equations, composed of 1-9 components were formed via various variable combinations. The best 3 components equations appeared more quantitative than the classical or revised CNB with protein, fat, and energy gain predicted at 239, 119, and 2455, respectively and 4,656 Kcal heat production. Utilization of the proposed relationships should enable gain composition studies to be dynamically related with narrow age ranges.

The third study had two experiments the first was conducted to evaluate the effects of substituting yeast (<u>Pichia pastoris</u>) for soybean meal; the second experiments was conducted to evaluate Diamond V Mills dried yeast culture for efficacy to increase growth, feed efficiency and survivability of broilers during thermoneutral and heat distress environments. The results of experiment 1 indicated that yeast (<u>Pichia pastoris</u>) supplementation increased body weight at a 10% inclusion level but only numarically improved body weight at 2.5 and 5% levels. Feed efficiency followed a similar patter as body weight as only yeast inclusion at the 10% level resulted in an improvement.

However, there was no improvment on survivability with any of the yeast inclusion levels.

The results of experiment two indicated that the addition of poultry litter to the basal ration as a nonspecific antigen reduced the final bird weight of those birds recieving the ration. While the litter effects on feed consumption, feed efficiency and survival were not significant. Yeast supplementation numerically increased final bird weight across litter and temperature criteria. Yeast also numerically improved (within the thermoneutral environment) bird survivability consistently within litter fortification with the highest inclusion level providing the best survivalability. Within the heat distress environment yeast improved bird survivability for those treatments that consumed the poultry litter but had no effect on the other treatments. The results reported suggest that yeast can be substituted for soybean meal without decreasing productivity. In addition it is suggested that yeast supplemented to broiler rations has a benificial effect when the birds immunologically challenged during an acute heat distress.

APPENDIX

PREDICTIVE EQUATIONS FOR MULTIPLE

VARIABLE COMBINATIONS

total fat gain predictive equations

OBS	_RMSE_	_MIADNA_	_CGAIN_	_RQ_	_co2_	_02_	_MECON_	_mencon_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
151	7.0952			-16.741		-0.03314			0.11822	-0.52546	4	0.99743	47.178
152	7.0978	0.46686						-0.00548	0.12095	-0.65645	4	0.99743	47.216
153	7.0979	0.46885	•				-0.00552		0.12104	-0.64980	4	0.99743	47.218
154	7.1016		•			-0.06689	•	0.00931	0.10815	-0.61207	4	0.99743	47.273
155	7.1051	•				-0.06453	0.00886		0.10836	-0.62178	4	0.99743	47.324
156	7.1135		-5.97737			-0.16630	0.01312		0.59541		4	0.99742	47.448
157	7.1151					-0.13473	-0.48478	0.50357	0.10766		4	0.99742	47.472
158	7.1681	0.36113			-0.01702				0.11592	-0.69027	4	0.99738	49.255
159	7.2020	0.33181	•	-4.197	•	•			0.11471	-0.71534	4	0.99735	48.761
160	7.2142			-12.171				-0.00414	0.11892	-0.56245	4	0.99735	48.943
161	7.2160			-12.031			-0.00410		0.11889	-0.55856	4	0.99734	48.970
162	7.2211		•	-13.871	-0.02186				0.11678	-0.58110	4	0.99734	49.046
163	7.2251	0.10778	-5.41416			-0.10559			0.55943		4	0.99734	49.107
164	7.2407						0.08938	-0.09246	0.11495	-0.70586	4	0.99733	49.340
165	7.2516				0.00623			-0.00463	0.11681	-0.58893	4	0.99732	49.504
166	7.2531				0.00444		-0.00432		0.11668	-0.58516	4	0.99732	49.526
167	7.4677	0.53985				•	-0.48151	0.47040	0.13045		4	0.99716	52.800
168	7.5546		-5.15810	-26.870	-0.11645				0.54405		4	0.99709	54.153
169	7.5578		•		-0.06814		-0.46560	0.46864	0.11876		4	0.99709	54.204
170	7.6387			-7.9190			-0.40302	0.39393	0.12576		4	0.99702	55.478
171	7.7178		-5.36418		~0.08581		-0.00538		0.55881		4	0.99696	56.737
172	7.7358		-5.90455		-0.12941			0.00200	0.59860		4	0.99695	57.026
173	7.7374	0.02979	-5.82278		-0.11896				0.59328		4	0.99695	57.051
174	7.7601		-4.09021	-19.3104			-0.01834		0.46457		4	0.99693	57.416
175	7.7603	0.37579	-4.89993	•			-0.02141		0.53207		4	0.99693	57.420
176	7.7608	-1.94732			1.64060	-1.75973		0.08394			4	0.99693	57.427
177	7.7704	-2.01846	•		1.74098	-1.82967	0.07906		•		4	0.99692	57.582
178	7.8932		-4.20584	-21.3160	•			-0.01863	0.47390		4	0.99682	59.576
179	7.9489	0.28968	-4.98683		•			-0.02114	0.53752		4	0.99678	60.489
180	8.3561		1.28980	•		-0.13131	-0.53563	0.55451	•	•	4	0.99644	67.371
181	8.3617		1.42004	-20.3897		-0.02852		•		-0.58670	4	0.99643	67.469
182	8.4085	•	1.29513			-0.05699		0.00838	•	-0.67198	4	0.99639	68.281
183	8.4123		1.29907		•	-0.05411	0.00779			-0.67990	4	0.99639	68.348
184	8.4343		1.43058	-16.7276				-0.00372	•	-0.61616	4	0.99637	68.732
185	8.4348	•	1.43078	-16.6279			-0.00372		•	-0.61199	4	0.99637	68.740
186	8.4422	0.09295	1.37562		•	-0.02179				-0.65808	4	0.99636	68.870
187	8.4546		1.43201		0.04378			-0.01025	•	-0.63228	4	0.99635	69.088
188	8.4574	•	1.43023		0.04091		-0.00979		•	-0.62216	4	0.99635	69.136
189	B.4614	•	1.39422	-16.5120	-0.01253	•		,		~0.64984	4	0.99635	69.206
190	8.4775	0.01671	1.37387	-13.6614	•					-0.68549	4	0.99633	69.490
191	8.4785	0.15820	1.40284		•		-0.00349			-0.67489	4	0.99633	69.507
192	8.4789	0.15659	1.40172		•		•	-0.00344		-0.67937	4	0.99633	69.514
193	8.4937		1.38813			•	-0.02046	0.01745		-0.63075	4	0.99632	69.774
194	8.5108	0.09525	1.35771		-0.00595			•		-0.71013	4	0.99631	70.077
195	8.7298	-0.82144		-64.5011		-0.10021			0.12130		4	0.99611	73.989
196	8.7328	0.24286	1.52778			•	-0.50762	0.49830			4	0.99611	74.043
197	8.7406	•	1.52330	-11.5678			-0.45449	0.44565	•		4	0.99610	74.184
198	8.7453		1.45762	•	-0.03576		-0.50150	0.49948			4	0.99610	74.270
199	9.1069	-0.47262	•	-52.9181	•		-0.02091		0.13426		4	0.99577	80.961
200	9.1549		•	-42.3899	0.06942		-0.03535		0.14363		4	0.99573	81.870

total fat gain predictive equations

OBS	_RIGE_	_angain_	_CGAIN_	_RQ_	_co2_	_02_	_MCCON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
201	9.2025	•		-57.4442		~0.04604	-0.01735		0.13648		4	0.99568	82.775
202	9.2395	-0.56530	•	-56.2895				-0.02056	0.13323		4	0.99565	83.483
203	9.3014	-1.00257	•	-70.7308	-0.10632			•	0.12120		4	0.99559	84.671
204	9.3293			-63.4369		-0.07419		-0.01245	0.13365		4	0.99556	85.210
205	9.4036			-49.2343	0.05488			-0.03441	0.14366		4	0.99549	86.653
206	9.5150	0.06228	•		0.13086		-0.04683		0.14225		4	0.99538	88.837
207	9.6325	-0.98187	-4.61424	-40.6940					0.47816		4	0.99527	91.169
208	9.7418	-1.10954	1.45215	-72.7126		-0.09543			•		4	0.99516	93.363
209	9.7476	-0.61794	•			-0.04574	-0.01515		0.11972		4	0.99515	93.481
210	9.8276	-0.93886	•			-0.10462		-0.00170	0.10790		4	0.99507	95.104
211	9.8738	-0.21581	•		0.09726	•		-0.04141	0.13627		4	0.99503	96.049
212	10.1448	-0.84004	1.59214	-63.6989			-0.01931				4	0.99475	101.670
213	10.1964		•		1.84383	-1.88493	0.07837		•	-0.40177	4	0.99470	102.758
214	10.2538	-0.92631	1.57976	-66.7772		•		-0.01895			4	0.99464	103.976
215	10.2768				1.02827	-1.88193		0.07994		-0.30942	4	0.99461	104.465
216	10.2964	-1.30551	1.44230	-78.6684	-0.09779						4	0.99459	104.883
217	10.3206		1.79963	-46.5824	0.12260		-0.04519	•			4	0.99457	105.399
218	10.5312				1.90687	-1.96995	-0.17170	0.25158			4	0.99434	109.952
219	10.5771		1.69326	-64.8430		-0.02572	-0.02295				4	0.99429	110.956
220	10.6061			24.0064	2.21455	-2.16458	•	0.06124			4	0.99426	111.593
221	10.6247		1.80171	-54.3930	0.10866			-0.04468			4	0.99424	112.001
222	10.6867	-0.22928	1.70129		0.15653		-0.05021				4	0.99418	113.370
223	10.7436		1.64890	-71.6004		-0.05941		-0.01706			4	0.99411	114.634
224	10.7734	•	•	23.3822	2.30407	-2.22405	0.05682	•			4	0.99408	115.299
225	10.9199	-1.40289	1.16038			-0.14190		0.00839			Ä	0.99392	118.593
226	10.9213	-1.08118	1.32595			-0.07306	-0.00770			•	4	0.99392	118.624
227	11.0417	-0.53456	1.61388		0.11573			-0.04338			4	0.99378	121.365
228	11.8847	-2.40330		•		-0.55399	-0.47722	0.60517			4	0.99280	141.398
229	12.0400	-3.71480		-99.690		-0.63556		0.13732			4	0.99261	145.250
230	12.1633	-2.40015				-0.49106		0.11818		-0.56983	4	0.99245	148.341
231	12.2637	-2.38664				-0.47373	0.11565			-0.71362	4	0.99233	150.884
232	12.5449	-4.02065	•	-113.801		-0.63468	0.13462			•	4	0.99197	158.114
233	13.9013	-0.28728		124.050	2.59048	-2.11146					4	0.99014	195.295
234	13.9515		•	123.079	2.66067	-2.18222		•		0.01155	4	0.99007	196.744
235	14.5664		•	42.029	•	-0.53131	-0.88115	1.00594			4	0.98918	214.919
236	14.7250			33.923		-0.42201		0.10992		-1.08675	4	0.98894	219.733
237	14.7518					-0.53576	-0.54104	0.66912		-0.35801	Ä	0.98890	220.553
238	14.7858			33,356		-0.40692	0.10774			-1.21754	Ä	0.98885	221.593
239	14.8316	-2.46281	-		-0.49844			0.11495		-0.78622	Ā	0.98878	222.999
240	14.8536	-2.44302	_		-0.47719		0.11216			-0.91999	4	0.98875	223.678
241	14.8562	-2.61491		•	-0.61474	· ·	-0.63503	0.76450	-	,	4	0.98874	223.757
242	15.6399	-1.48606			2.96655	-2.46169	,		•	0.76550	Ā	0.98752	248.527
243	16.0719	-4.27950		-97.373	-0.66506			0.12796			4	0.98683	262.726
244	16.5539	-1.99729	·				1.72952	-1.67755	· ·	-2.86374	Ä	0.98602	279.026
245	16.6604	-4.49894		-104.054	-0.63635	•	0.12132		•		4	0.98584	282.694
246	16.7425	,	·	64.182	-0.33542	•	0.09367	-	•	-1.42270	-	0.98570	285.537
247	16.7454		·	64.964	-0.35105	•		0.09568	•	-1.31425	i	0.98570	285.636
248	17.1460	-		70.976	-0.53391	•	-1.08342	1.20095	•	-1.31423	4	0.98501	299.708
249	17.1847	•			-0.39167	•	0.30999	-0.20541	•	-1.60035	ā	0.98494	301.086
250	17.3526	•		79.464		•	1.21814	-1.16927	•	-2.73641	4	0.98464	307.097
		-	-		•	•			•		-	- · · · · · ·	

total fat gain predictive equations

	2010										_		
OBS	_RMSE_	_angain_	_CGAIN_	_RQ_	_CO2_	_02_	_MECON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_rsq_	_CP_
251	17.7507	-1.19507		95.029			0.04982			-1.14549	4	0.98393	321.581
252	17.8339	-1.17575	•	97 . 674	•	•	•	0.04955	•	-1.08728	4	0.98378	324.649
253	19.4956	-1.77886		95.618		•	-0.61718	0.65921	•		4	0.98061	388.940
254	21.5198	-0.40321	•	184.903	0.24921	•	•	•	•	-0.90517	4	0.97638	474.994
255	22.7163	-0.51059	•	191.648		0.18208	•		•	-0.81710	4	0.97368	529.852
256	4.1759		-1.74459	•	0.84409	-0.74887	•	•	0.24129	-0.21339	5	0.99921	13.066
257	4.2338	1.50975	-5.60426	49.908	•	•	•	•	0.57339	-0.77975	5	0.99919	13.514
258	4.2509	•	-5.16308	•	•	-0.20839	0.04162	•	0.50998	-0.53733	5	0.99918	13.648
259	4.2646	•	-5.13211	•	•	-0.21306	•	0.04223	0.50754	-0.49659	5	0.99918	13.756
260	4.5321	•	•	•	1.07103	-0.98160	0.01016	•	0.08524	~0.29325	5	0.99907	15.924
261	4.5482	•	. •	•	1.06777	-0.97772	•	0.00977	0.08572	-0.27910	5	0.99906	16.058
262	4.5922	•	-2.84731		1.04916	-1.02432		0.01506	0.31577	•	5	0.99904	16.429
263	4.6231		-4.98684			-0.25937	-0.37267	0.42007	0.49659		5	0.99903	16.691
264	4.6504	0.12531	•	•	1.05523	-0.92603	•	•	0.09374	-0.26516	5	0.99902	16.925
265	4.6687	•	•	-2.374	1.06210	-0. 9 3257			0.09338	-0.23101	5	0.99901	17.081
266	4.6818		-2.63829	•	1.07591	-1.02856	0.01093	•	0.30084		5	0.99901	17.195
267	4.6885	1.07000	-4.55450		•	-0.03521	•		0.49635	-0.54781	5	0.99900	17.252
268	4.7921	1.08967	-4.63496	•	-0.03527	•			0.50330	-0.57467	5	0.99896	18.157
269	4.8015		-1.87927	-7.391	1.06726	-0.96790	•	•	0.24828		5	0.99895	18.240
270	4.9250	-0.01562	-1.96387	•	1.08513	-0.98236	•	•	0.25328	•	5	0.99894	18.448
271	4.9316			•	1.09309	-1.02053	-0.17 9 27	0.18986	0.08669		5	0.99890	19.407
272	4.9588	1.12640	-4.41082		•	•		-0.00411	0.48606	-0.60218	5	0.99889	19.655
273	4.9679	1.12337	-4.40700	•		•	-0.00394	•	0.48558	-0.59994	5	0.99888	19.738
274	5.0529	•	-5.26981		-0.20072	•	0.03443		0.52748	-0.5767B	5	0.99884	20.523
275	5.0719		-5.25207		-0.20516			0.03490	0.52623	-0.53546	5	0.99883	20.700
276	5.1186	-0.29059	•	-16.644	1.23478	-1.10199	•	. •	0.09040	•	5	0.99881	21.138
277	5.1239	-0.55221	•	•	1.33191	-1.23935		0.01324	0.07390	•	5	0.99881	21.189
278	5.1659	-0.51569	-		1.34192	-1.23604	0.01029		0.07585	•	5	0.99879	21.587
279	5.2716		•	-17.534	1.30192	-1.17628		0.00163	0.08924	•	5	0.99874	22.603
280	5.2749	•		-16.667	1.29643	-1.16384	0.00002		0.09037		5	0.99874	22.635
281	5.32711	•	1.00963	•	1.23278	-1.10330	0.00710		•	-0.27634	5	0.99871	23.1451
282	5.33721	•	1.01639		1.23099	-1.09972		0.00652		-0.26531	5	0.99871	23.2443
283	5.34984		-4.49539	•			0.66762	-0.66317	0.47166	-1.29226	5	0.99870	23.3686
284	5.36738	-0.10173	1.06615		1.24014	-1.08020	•	•	•	-0.21558	5	0.99869	23.5419
285 286	5.37142 5.51617	•	1.08726	-4.7642	1.22704	-1.07055				-0.22864	5	0.99869	23.5818
_			-5.28382		-0.27290		-0.42032	0.46214	0.53061	•	5	0.99862	25.0337
287	5.57289	-0.43885	1.05906	-19.6538	1.35372	-1.19667	•		•	•	5	0.99859	25.6132
288 289	5.60099	-0.69913	0.83835	•	1.44420	-1.33495		0.01474	•	•	5	0.99858	25.9025
289	5.63540 5.66356	-0.67512	0.85712		1.45914	-1.33718	0.01209		•	•	5	0.99856	26.2597
		•	1.02947		1.26552	-1.14749	-0.16401	0.17077			5	0.99855	26.5518
291	5.82419	•	-3.56425	5.9615		-0.03118		•	0.40763	-0.39792	5	0.99846	28.2519
292	5.88468	•	1.07944	-17.0871	1.44182	-1.26991	-0.00303		•	•	5	0.99843	28.9045
293	5.89240	•	1.06643	-17.9544	1.45004	-1.28373	•	-0.00168			5	0.99843	28.9882
294	5.93177	•	-3.62575	7.9150	-0.02631	•		•	0.41206	-0.43304	5	0.99840	29.4171
295	6.04439	•	-3.60946	13.2589	•	•	0.00045		0.40660	-0.51053	5	0.99834	30.6598
296	6.04508		-3.60013	13.0807	•	•		0.00024	0.40610	-0.50654	5	0.99834	30.6674
297	6.20140	1.01815	-3.92313		•	•	-0.40067	0.38993	0.45399	•	5	0.99826	32.4311
298	6.94631	•	-3.27714	10.1897	•		-0.32882	0.32254	0.38799	•	5	0.99781	41.4543
299	7.06589		-5.83653	-30.4235	•	-0.22141	•	0.02572	0.58119	•	5	0.99774	42.9981
300	7.23641	-0.41034	-6.14540	-	•	-0.24160	•	0.03222	0.59358	•	5	0.99763	45.2450

					total fa	it gain pred	total fat gain predictive equations	lons					
SB 0	ROGSE	ANGAIN	CGAIN	g'	1 60 1	102	MECON	MENCON	EGALIN	COMPR	۵į	250 1	8
301	7.28845	•	-5.52680	-30.1877		-0.18351	0.01701		0.56168		150	0.99759	45.9414
302	7.42591			-20.1837		-0.08215	•	0.01139	0.11066	-0.56682	'n	0.99750	47.8049
303	7.42911		•	-20.2600		-0.07987	0.01098	٠	0.11083	-0.57930	ĸ	0.99750	47.8487
304	7.43914	0.68314	•		0.06611			-0.01722	0.12857	-0.64894	ĸ	0.99749	47.9860
302	7.44876	0.66879			0.06031	•	-0.01624	•	0.12812	-0.63080	50	0.99748	48.1180
906	7.46051	0.29403	•	-11.6605		-0.03167			0.11882	-0.59920	ĸ	0.99748	48.2794
207	7.47897			-16.4253		-0.14248	-0.45327	0.47296	0.10984	•	s ∩	0.99746	48.5321
906	7.48611		•			-0.09968	-0.22926	0.24355	0.10761	-0.33072	ın	0.99746	48 . 6319
2 .	7.40912	0.29/40				-0.04104		0.00313	0.11426	-0.64526	5 0	0.99746	48.6734
7	10049.7	0.30474	. ,			-0.03921	0.00272		0.11456	-0.64857	.	0.99746	49.6858
777	97TOC /	0.03224	14. /3068	-24.1241		-0.10201			0.50946		1 0	0.99745	48.8414
716	7 51879	0.43557	-3.890E/	9070		-0.18521	0.01838		0.58325	. 6	ın ı	0.99744	49.0471
314	7.51953	0 44844				•	. 0	-0.00362	0.12194	10.03/20	n w	44/40.0	49.0837
315	7.52824	0.46430				•	-0.00364	-0.01221	0.12199	-0.63123	n u	0.99744	49.0940
316	7.54261	0.08892		•		-0 12784	-0.49160	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1005	7. 100 .		0.99743	40 4141
317	7.50575	0.31455		-8.4741	-0.02032				0.11743	-0.65864		0.00730	50.0155
310	7.61540			-16.2064		•	0 16012	-0.16348	0 11740	78872		75700	A 4308
319	7.64891				0.05012		0.24628	-0.25666	0.11673	-0 87581		25.00.0	50.00
320	7.65098			-12.7299	-0.00583			-0 00320	0 11856	-0 56435		200.0	50.555
321	7.65220			-12.7936	-0.00757		-0.00289		0.11842	-0 56233		75700	\$0 946.A
322	7.90347	0.45825			-0.03134		-0.49318	0.48786	0.12699		•	0.99717	54.5495
323	7.91047	-2.30820		-39.3040	1.59926	-1.76727	0.09232				•	0.99716	54.6515
324	7.91902	0.55907	٠	2.7891			-0.48969	0.47861	0.13014		· s o	0.99716	54.7762
325	7.98158			-12.1566	-0.07569		-0.44457	0.44842	0.12047		ĸ	0.99711	55.6926
326	7.99065		-5.52408	-28.8497	-0.15141			0.00609	0.57080	•	ĸ	0.99711	55.8261
327	8.01052	-0.05162	-5.05437	-27.3714	-0.11455				0.53533		so	0.99709	56.1190
328	8.01163		-5.07329	-26.3083	-0.10875		-0.00129		0.53778		ĸ	0.99709	56.1354
329	8.02577	-2.15583		-30.1537	1.52161	-1.70355	•	0.09451			ιn	0.9970B	56.3443
330	8.16278	-1.90698			1.64125	-1.74868	0.08278	•	•	-0.12287	50	0.99698	58.3878
331	9.16302	0.20635	-5.40436		-0.06726		-0.00974	•	0.56605		s	0.9969B	58.3915
332	8.1/331	0.29818	-4.50500	-15.3357			-0.02055		0.50146		.	0.99697	58.5462
7 6	W . 40 0 0 0	-0.0027	-5.80380		-0.12966			0.00206	8486	•	6 0	0.99695	59.0258
,	0.2230	-1 92367	•		1.68003	-1.78750	0.03159	0.05046			vn 1	0.99693	59.3045
77	0 34513	0 20231	. 4 40.66	. 0	10079.1	C/78/ .T-	-	0.08468		-0.02506	n 1	0.99693	59.3739
337	R 7947		1 12277	-17 076	•	-0 13021	. 0	-0.02018	4044 · O		n w	# # # # # # # # # # # # # # # # # # #	1191.19
338	8.8075		1.33463	-22.594		-0.07194		0.01018		-0.62125	n un	0.99648	68 469
339	8.8114		1.33784	-22.638		-0.06923	0.00965			-0.63173	ı MT	0.99648	68.532
340	8.8296	-0.26899	1.21931			-0.15327	-0.51293	0.53748			10	0.99647	68.827
341	8.8324		1.28811	٠		-0.10477	-0.33920	0.35473		-0.25459	ĸ	0.99646	68.873
342	8.8685	-0.02693	1.41962	-20.892	•	-0.02869	•			-0.57986	ĸ	0.99643	69.461
343	8.8848	0.42089	1.52340	٠	0.08387		٠	-0.01857		-0.67088	ĸ	0.99642	69.728
344	8.8921	0.40729	1.51800	•	0.07788	-	-0.01757			-0.65093	5 0	0.99642	69.848
343	8.9142	-0.10080	1.26927	•		-0.06627		0.01059		-0.65987	ĸ	0.99640	70.210
346	9.9195	-0.08457	1.27758	٠	٠	-0.06157	0.00959			-0.67187	w	0.99639	70.297
347	8.9251		1.45823	-14.128	0.03185	•		-0.00896		-0.60470	ın	0.99639	70.390
	6.9282		1.45612	-14.126	0.02901	•	-0.00849	. ,		-0.59634	6 0 1	0.99639	70.439
9 6	8.9326 8.9428		1.43099	953	0.08658	•	0.24057	-0.25642		-0.91353	וחו	0.99638	70.513
3			70006.1	6/c.cT-				-0.00394	•	-0.63004	n	0.99637	70.673

total fat gain predictive equations

OBS	PMSE	angain	CGAIN	_RQ_	_C02_	_02_	MECON	MENCON	egain	COMPP	_P_	R5Q_	_CP_
700			_can									x_	_
351	8.9426	0.07847	1.43651	-15.451	•	•	-0.00396			-0.62579	5	0.99637	70.678
352	8.9428	•	1.42362	-17.901	•	•	0.05132	-0.05476		-0.67841	5	0.99637	70.681
353	8.9746	0.00171	1.39425	-16.480	-0.01252	•	•	•	•	-0.65027	5	0.99635	71.206
354	8.9801	-1.40769	•	-79.831	•	-0.22571	•	0.03019	0.09949	•	5	0.99634	71.297
355	8.9898	0.17598	1.41452	•	•	•	-0.05326	0.04939	•	-0.61462	5	0.99634	71.457
356	9.1431	-1.25382		-77.021	•	-0.18374	0.01967	•	0.10699		5	0.99621	74.018
357	9.2395	•	1.48309	-13.452	-0.04270	•	-0.47804	0.47661	•	•	5	0.99613	75.651
358	9.2517	0.19055	1.53971	-7.7 9 0	•	•	-0.48518	0.47571			5	0.99612	75.859
359	9.2578	0.19561	1.50189	•	-0.01862	•	-0.51393	0.50808		•	5	0.99611	75.962
360	9.6535	-0.38718	•	-49.718	0.02207	•	-0.02486		0.13636	•	5	0.99578	82.856
361	9.7905	-0.66509	•	-59.840	-0.02869	. •	•	-0.01532	0.13046		5	0.99565	85.310
362	9.8971	-1.82840	1.09539	-90.074		-0.26300	•	0.04030	•	•	5	0.99556	87.245
363	10.0996	-1.71640	1.18676	-89.360		-0.22188	0.02976		•	•	5	0.99538	90.976
364	10.2166	•	•	• _	2.15096	-1.97409	1.17776	-1.12723	•	-1.63874	5	0.99527	93.165
365	10.5390	•	•	37.709	1.85317	-1.84753	0.06975	•		-0.45386	5	0.99496	99.331
366	10.6072		•	38.922	1.83961	-1.84362	•	0.07087		-0.37372	5	0.99490	100.659
367	10.7530	-0.74161	1.62388	-60.168	0.02645	•	-0.02407	•	•	•	5	0.99476	103.529
368	10.8686	-1.01677	1.54654	-69.823	-0.02720	•	•	-0.01394	•	•	5	0.99464	105.831
369	10.9254	•	•	36.474	1.89381	-1.92343	-0.23111	0.30424	•	•	5	0.99459	106.972
370	12.2349	-2.92844	•	-57.322	•	-0.60772	-0.31638	0.45442	•	•	5	0.99321	134.914
371	12.4140	-3.03088		-65.778	•	-0.57801		0.13326	•	-0.33357	5	0.99301	138.980
372	12.5212	-3.01914		-66.138	•	-0.55934	0.13056		•	-0.49503	5	0.99289	141.443
373	12.5286	-2.49787	•	*		-0.60631	-0.84916	0.98377	•	0.49850	5	0.99288	141.615
374	14.6955	-0.51344	•	112.247	2.66080	-2.18686				0.14414	5	0.99021	195.964
375	15.4308	•	•	40.820	. •	-0.50396	-0.67196	0.79329	•	-0.26827	5	0.98920	216.372
376	15.6636	-2.74107	•	-27.620	-0.54513	•		0.12219	•	-0.702 91	5	0.98888	223.043
377	15.6844	-2.88680	•	-28.650	-0.65039	•	-0.56525	0.70064	•	•	5	0.98885	223.642
378	15.6867	-2.72111	•	-27.723	-0.52279	•	0.11927	•	•	-0.84493	5	0.98884	223.710
379	15.7088	-2.50811	•	•	-0.54621	•	-0.26106	0.38223	•	-0.47317	5	0.98881	224.349
380	17.4773	-1.74646	•	29.540	. •	•	1.53779	-1.48722	•	-2.72264	5	0.98615	278.419
381	17.7581			64.119	-0.33401		0.10195	-0.00847		-1.43227	5	0.98570	287.536
382	3.2613	•	-3.41394	•	0.64646	-0.71319	0.03131		0.35996	-0.36765	6	0.99958	7.574
383	3.3279	•	-3.38539	•	0.64024	-0.70945	•	0.03130	0.35816	-0.32965	6	0.99956	7.928
364	3.9537		-3.34302	•	0.65063	-0.74553	-0.22778	0.26087	0.35591	. •	6	0.99938	11.601
385	3.9773	0.64794	-2.78091	•	0.65545	-0.59022			0.33421	-0.34996	6	0.99937	11.753
386	4.1682			•	1.29616	-1.06756	0.73416	-0.74021	0.08265	-1.10982	6	0.99931	13.006
387	4.2392	0.56425	-5.30482	•	•	-0.16545	0.03115		0.53248	-0.58460	6	0.99929	13.487
388	4.2639	0.56003	-5.27230		•	-0.16838	•	0.03148	0.52996	-0.54567	6	0.99928	13.657
389	4.3481	1.46652	-5.52766	43.808		-0.02275	•		0.57008	-0.69546	6	0.99925	14.241
390	4.4109	1.49291	-5.61076	45.459	-0.02144	. •		•	0.57679	-0.72001	6	0.99923	14.684
391	4.4453	. •	-1.82697	6.320	0.84452	-0.74731	•	• • • • • • • • • • • • • • • • • • • •	0.24682	-0.22596	6	0.99922	14.930
392	4.4745	1.54571	-5.54060	48.413	•	•		-0.00267	0.57162	-0.74189	6	0.99921	15.140
393	4.47962	1.54478	-5.54141	48.5494			-0.00255		0.57155	-0.74094	6	0.99920	15.1769
394	4.53139	•	-5.21460		•	-0.19657	0.13178	-0.09187	0.51427	-0.64629	6	0.99919	15.5530
395	4.54001		-5.19999	3.0643	•	-0.20710	0.04154		0.51248	-0.54315	6	0.99918	15.6160
396	4.54455	1.03705	-5.29449		•		0.58593	-0.58539	0.54818	-1.30456	6	0.99918	15.6493
397	4.55342		-5.17462	3.4797		-0.21164	•	0.04215	0.51042	-0.49335	6	0.99918	15.7144
398	4.73327	-0.40750	-2.63818	•	1.04883	-1.05699		0.02462	0.28962		6	0.99911	17.0608
399	4.78948	0.81454	-5.41932	•	-0.13950	•	0.02102		0.55307	-0.63212	6	0.99909	17.4923
400	4.81320	0.81809	-5.39033		-0.13901			0.02087	0.55110	-0.60592	6	0.99908	17.6759

total fat gain predictive equations

OBS	_mce_	_ANGAIN_	_cgain_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
401	4.82799	-0.14183			1.08481	-1.00519	0.01303		0.08206	-0.27656	6	0.99908	17.7909
402	4.82968			-5.8338	1.06124	-0.97764	0.01076		0.08616	-0.28402	6	0.99907	17.8040
403	4.84056		-2.74578	-12.0100	1.01808	-1.00527		0.01652	0.30946		6	0.99907	17.8988
404	4.84690	0.32439	-5.06957	•		-0.23631	-0.39568	0.43701	0.50986		6	0.99907	17.9383
405	4.84840			-5.5499	1.05828	-0.97382		0.01034	0.08661	-0.26962	6	0.99907	17.9500
406	4.84936	-0.12419			1.07906	-0.99814		0.01236	0.08293	-0.26172	6	0.99907	17.9576
407	4.87214	-0.37270	-2.45533		1.08944	-1.07022	0.01948		0.27730		6	0.99906	18.1361
408	4.93391		-5.03591	4.4759		-0.25849	-0.38015	0.42759	0.49982		6	0.99903	18.6244
409	4.93961		-2.54932	-11.9343	1.04718	-1.01234	0.01253		0.29536		6	0.99903	18.6697
410	4.97145	0.12352	•	-0.3378	1.05480	-0.92577			0.09381	-0.26401	6	0.99902	18.9241
411	5.03532		0.97893		1.46824	-1.19002	0.78560	-0.79599		-1.15364	6	0.99899	19.4394
412	5.13076	-0.03804	-1.80340	-7.7635	1.06845	-0.96773		•	0.24191	•	6	0.99896	20.2215
413	5.13594	-0.75816		-29.3698	1.21664	-1.18570	•	0.02368	0.07375		6	0.99895	20.2644
414	5.18060	-0.77527	•	-30.5117	1.24111	-1.20129	0.02217		0.07410		6	0.99894	20.6359
415	5.19528	-0.30459		•	1.12377	-1.06899	-0.14734	0.16385	0.07970		6	0.99893	20.7587
416	5.24642		•	-7.9357	1.08450	-1.01731	-0.16645	0.17753	0.08791		6	0.99891	21.1891
417	5.33381		-5.26681	•	-0.15626		0.27771	-0.24918	0.52730	-0.85994	6	0.99887	21.9345
418	5.39058	•	-5.32743	5.3517	-0.19794		0.03425		0.53124	-0.58624	6	0.99885	22.4253
419	5.40952	•	-5.31440	5.6814	-0.20229		•	0.03473	0.53031	-0.54580	6	0.99884	22.5902
420	5.57981	-0.38718	0.90621	•	1.25424	-1.15569	0.01530	•		-0.23256	6	0.99877	24.0898
421	5.59072	0.60161	-5.39658	•	-0.22896	•	-0.45557	0.48723	0.55020		6	0.99876	24.1970
422	5.60091	-0.37023	0.91731	•	1.24911	-1.14916	•	0.01459	•	-0.21485	6	0.99876	24.2890
423	5.61343	-0.91336	0.84372	-32.1375	1.31612	-1.27235		0.02556	•	•	6	0.99875	24.4021
424	5.63387	-0.94924	0.84196	-33.9635	1.34166	-1.29197	0.02473	•	•		6	0.99874	24.5875
425	5.67842	•	1.02325	-6.5982	1.22291	-1.09930	0.00765		•	-0.26553	6	0.99872	24.9937
426	5.69038	•	1.02971	-6.3627	1.22131	-1.09573		0.00704		-0.25422	6	0.99872	25.1034
427	5.71603		-4.52699	2.9803			0.65868	-0.65412	0.47372	-1.28721	6	0.99870	25.3393
428	5.71926	-0.14266	1.08378	-7.3657	1.23166	-1.07539			•	-0.19103	6	0.99870	25.3690
429	5.03901	-0.52662	0.88438		1.29495	-1.21412	-0.11094	0.12851		•	6	0.99865	26.4923
430	5.88241	•	-5.35336	6.4569	-0.27159		-0.43089	0.47280	0.53512	•	6	0.99863	26.8949
431	6.02524		1.04696	-9.1519	1.25727	-1.14438	-0.14897	0.15610		•	6	0.99856	28.2660
432	6.08947	1.44814	-4.82367	46.4722	•		-0.51828	0.50818	0.52306		6	0.99853	28.8932
433	7.22631	-0.73527	-5.25433	-42.2797	•	-0.28587		0.04419	0.51870	•	6	0.99793	41.0966
434	7.59234	-0.62700 0.80445	-5.11313	-42.0174		-0.24208	0.03295	-0.45120	0.51510 0.13054		6	0.99771	45.4692
435	7.82253		•	10 1017	0.15194	-0.10400	0.42190	0.17868	0.11003	-1.15277 -0.37010	6	0.99757	48.3297 49.4915
436	7.91411	0.05303	•	-18.1917	•	-0.10409 -0.07656	-0.16394	0.01015	0.11159		6	0.99752 0.99750	49.7919
437 438	7.93761 7.94050	0.06501	•	-18.8938 -18.6633	•	-0.07326	0.00950		0.11195	-0.57563 -0.58837	6	0.99750	49.8288
439	7.94609	0.75067	•	5.8242	0.07755			-0.01912	0.12894	-0.66612	6	0.99750	49.9004
440	7.95742	0.73048	•	5.3593	0.07750	:	-0.01794	-0.01912	0.12844	-0.64457	6	0.99749	50.0456
441	7.97551	0.23583	•	3.3393		-0.07297	-0.10594	0.19428	0.11256	-0.41033	6	0.99748	50.2780
442	7.98665	-0.14665	•	-20.0134	•	-0.15553	-0.43514	0.45799	0.10723	-0.41033	6	0.99747	50.4213
443	8.03457	0.40791	•	-7.7104	•		0.05047	-0.05575	0.12126	-0.69343	6	0.99744	51.0403
444	8.11534		•	-7.7104 -15.3551	0.04426		0.03047	-0.30475	0.11125	-0.90406	6	0.99739	52.0917
445	8.43770	-2.38556	•	-43.7400	1.64880	-1.80557	0.14486	-0.05426	0.11883		6	0.99718	56.3934
446	8.44887	0.44468	•	-1.2613	-0.03321	£.3033/	-0.49019	0.48519	0.12692	•	6	0.99717	56.5455
447	8.45570	-2.28787	•	-38.3015	1.59130	-1.75945	0.09241	. 46319		-0.01427	6	0.99716	56.6386
448	8.47800	-1.78126	•	-36.3013	1.82685	-1.80766	0.69904	-0.63217	•	-0.83497	6	0.99715	56.9430
449	8.5023	-0.27489	-5.38416	-33.7496	-0.18072			0.01295	0.55452	-0.63491	6	0.99713	57.276
450	8.5408	-2.29576		-37.3328	1.56872	-1.75245	•	0.09430		0.09179	6	0.99711	57.805
			•				•		•		-		

total fat gain predictive equations

OBS	_PMS R_	_ANGAIN_	_CGAIN_	_RQ_	_co2_	_02_	_MECON_	_mencon_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
451	8.5636	-0.05003	-5.05235	-27.3214	-0.11414		-0.00008		0.53521		6	0.99709	
452	9.2542	-0.63425	1.18451	-33.2220		-0.19585	-0.41869	0.45205	0.33321	•	6	0.99660	58.119 68.038
453	9.3254	-0.52045	1.22276	-34.9770		-0.12807		0.02255	•	~0.53094	6	0.99655	69.105
454	9.3364	-0.49810	1.23179	-34.6139		-0.12115	0.02119		•	-0.55897	6	0.99654	69.105 69.270
455	9.3584		1.32329	-19.3251	•	-0.10806	-0.27171	0.28736	•	-0.29425	6	0.99653	
456	9.4218	0.52022	1.54347	,	0.15623		0.35355	-0.38231	•	-1.09333	6	0.99648	69.603 70.563
457	9.4233	-0.20718	1.23426			-0.12864	-0.37319	0.39397	•	-0.18787	6	0.99648	70.565
458	9.4872		1.46186	-16.7572	0.08183		0.29344	-0.30899	•	-0.94263	6	0.99643	71.559
459	9.4936	0.36220	1.52044	-5.2678	0.07383		,	-0.01693	•	-0.65522	6	0.99642	71.657
460	9.5008	0.34491	1.51489	-5.6373	0.06747		-0.01586		•	-0.63622	6	0.99642	71.768
461	9.5584	0.05804	1.42988	-16.6704			0.03557	-0.03926	•	-0.66982	6	0.99638	72.652
4 62	9.8753	0.07579	1.49676	-11.6147	-0.03511		-0.48606	0.48307	· ·		6	0.99613	77.617
463	10.7473			28.7447	2.12934	-1.93723	1.06829	-1.02173		-1.56267	6	0.99542	92.113
464	12.9736	-3.04860		-58.8857		-0.66774	-0.72824	0.87402		0.55789	6	0.99332	134.686
465	16.7257	-2.77307		-26.7566	-0.58659		-0.23457	0.36213		-0.42423	6	0.98890	224.520
466	2.7480		-3.17047	•	0.86418	-0.80389	0.63258	-0.61628	0.33822	-1.04136	7	0.99974	6.218
467	3.4543	0.23302	-3.59449		0.60136	-0.66024	0.02770		0.37972	-0.39900	7	0.99959	9.245
469	3.5110		-3.45989	4.0620	0.64756	-0.71234	0.03118		0.36302	-0.37507	7	0.99958	9.518
469	3.5223	0.24281	-3.56998	•	0.59487	-0.65490		0.02741	0.37847	-0.36639	7	0.99958	9.573
470	3.5013		-3.43607	4.3981	0.64137	-0.70853		0.03117	0.36153	-0.33792	7	0.99956	9.862
471	3.8499	1.00384	-3.76859	32.1032	0.55399	-0.49518			0.41334	-0.48878	7	0.99950	11.241
472	4.2664	•	-3.37599	2.6682	0.64915	-0.74390	-0.23257	0.26571	0.35915		7	0.99938	13.578
473	4.2701	0.01831	-3.35704		0.64693	-0.74146	-0.22990	0.26273	0.35746	4	7	0.99938	13.599
474	4.2811	0.96077	-5.75563	29.1534		-0.12299	0.02298		0.57207	-0.67321	7	0.99938	13.664
475	4.3025	0.96459	-5.73404	29.5011		-0.12407		0.02299	0.57054	-0.64568	7	0.99937	13.791
476	4.3356	1.38767	-5.96735	37.9876	•		0.44428	-0.44373	0.60030	-1.24430	7	0.99936	13.989
477	4.4256		•	-11.7370	1.28710	-1.06364	0.76957	-0.77519	0.08438	-1.12879	7	0.99933	14.533
478	4.4800	0.65937	-5.46659	•		-0.12657	0.27063	-0.24584	0.54775	-0.88412	7	0.99932	14.868
479	4.5009	0.03668		•	1.29456	-1.06221	0.73972	-0.74665	0.08345	-1.12024	7	0.99931	14.998
480	4.6452	1.27920	-5.92651	39.1810	-0.08264		0.01208		0.59522	-0.73293	7	0.99927	15.910
481	4.6608	1.29033	-5.90479	39.6195	-0.08081			0.01159	0.59389	-0.71869	7	0.99926	16.010
482	4.8807	0.95973	-5.44017	·	-0.04158		0.48827	-0.48103	0.55728	-1.18861	7	0.99919	17.460
483	4.8899	-0.57474	-2.36856	-21.7416	0.99243	-1.03590		0.03119	0.26746		7	0.99919	17.522
484 485	4.8920		-5.23802	2.2466		-0.19646	0.12533	-0.08537	0.51580	-0.64284	7	0.99919	17.536
486	5.0351 5.1149	-0.58505	-2.17910	-23.0694	1.04163	-1.06260	0.02743		0.25332	•	7	0.99914	10.510
487	5.1554	0.56916 -0.30861	-5.34794	19.6969		-0.21502	-0.44598	0.48289	0.53410		7	0.99911	19.077
488	5.1877	-0.27943	•	-13.1731	1.07891	-1.02397	0.01776		0.08039	-0.23609	7	0.99910	19.365
489	5.3605	-0.27843	1.00449	-12.1283 -13 1164	1.07233 1.46029	-1.01498		0.01681	0.08141	-0.21941	7	0.99908	19.596
490	5.4018	-0.20306	0.92619		1.46808	-1.18637	0.82532	-0.83549	•	-1.17569	7	0.99902	20.856
491	5.4662	-0.55471	. 32013	-21.1830	1.12602	-1.21329 -1.10018	0.75216	-0.75741		-1.08815	7	0.99901	21.163
492	5.7557	0.94828	-5.79798	31.2371	-0.19727		-0.08690	0.10959	0.07721	•	7	0.99898	21.646
493	5.7568		-5.30200	3.2568	-0.15639	•	-0.52702	0.55325	0.58332		7	0.99887	23.891
494	5.8793	-0.64472	0.88270	-21.9321	1.23568	-1.17725	0.26760 0.02256	-0.23893	0.52960	-0.85405	7	0.99887	23.899
495	5.9165	-0.61722	0.89503	-20.9412	1.22935	-1.17725		0.02169	•	-0.16752	7	0.99882	24.885
496	6.0537	-0.84719	0.85588	-29.3114	1.28643	-1.24471	-0.03044	0.02169	•	-0.14470	7	0.99881	25.188
497	8.4444	0.85884		4.7717	0.16065	-1.244/1	0.41865	-0.44942	0 13000	-1 16207	7	0.99875	26.323
498	8.5482	0.01169	· ·	-17.9220		-0.10270	-0.16276	0.17720	0.13082 0.11023	-1.16297 -0.37346	7	0. 99758 0. 99752	50.272 51.491
499	8.8213	-2.17602		-40.4728	1.78547	-1.82267	0.74708	-0.67100					
500	9.9868	-0.58367	1.19577	-32.6185		-0.17756	-0.32106	0.35156		-0.76395 -0.13357	7	0.99735 0.99661	54.770 69.91 <u>6</u>
												-	

total fat gain predictive equations

OBS	_RMSE_	_ANGAIN_	_CGAIN_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
501	10.1696	0.45145	1.54021	-6.2971	0.14524		0.35848	-0.38543		-1.08050	7	0.99648	72.462
502	2.7582	0.37770	~3.44108		0.81080	-0.72629	0.68119	-0.67208	0.36827	-1.15319	8	0.99978	7.380
503	3.0080		-3.15072	-1.5566	0.86567	-0.80502	0.63791	-0.62169	0.33686	-1.04443	8	0.99974	8.210
504	3.6417	0.49404	-3.99286	17.3356	0.55555	-0.59730	0.02311		0.41490	-0.46583	8	0.99962	10.637
505	3.70353	0.51775	-3.98907	18.2319	0.54814	-0.58929		0.02249	0.41545	-0.44227	8	0.99961	10.8980
506	4.56499	1.06452	-5.92919	29.5286		-0.08213	0.27123	-0.25495	0.58842	-0.98496	8	0.99941	14.9996
507	4.66759	0.09045	-3.47581	5.1418	0.62951	-0.72230	-0.24750	0.27940	0.36789		8	0.99938	15.5450
508	4.74717	1.41447	-5.93990	38.6439	0.01115		0.46802	-0.46928	0.59876	-1.27444	8	0.99936	15.9765
509	4.82884	-0.15374		-15.2676	1.29110	-1.08489	0.75691	-0.75869	0.08155	-1.08693	8	0.99934	16.4268
510	5.70023	-0.48138	0.90085	-24.1101	1.45324	-1.23849	0.77933	-0.77711		-1.03892	8	0.99908	21.7099
511	2.94674	0.58106	-3.76135	13.7604	0.76889	-0.67458	0.66024	-0.65430	0.39650	-1.18628	9	0.99980	9.0000
					bes	t fat predic	tive equation	n.s					
OBS	_ROUSE_	_ANGAIN_	_CGAIN_	_RQ_	_CO2_	_02_	_MECON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
1	3.26128		-3.41394		0.64646	-0.71319	0.03131		0.35996	-0.36765	6	0.99958	7.5741
2	3.32793		-3.38539		0.64024	-0.70945		0.03130	0.35816	-0.32965	6	0.99956	7.9282
3	3.95367		-3.34302		0.65063	-0.74553	-0.22778	0.26087	0.35591		6	0.99938	11.6013
4	3.97734	0.64794	-2.78091		0.65545	-0.59022			0.33421	-0.34996	6	0.99937	11.7526
5	2.74805		-3.17047		0.86418	-0.80389	0.63258	-0.61628	0.33822	-1.04136	7	0.99974	6.2181
6	3.45427	0.23302	-3.59449		0.60136	-0.66024	0.02770		0.37972	-0.39900	7	0.99959	9.2448
7	3.51104		-3.45989	4.0620	0.64756	-0.71234	0.03118		0.36302	-0.37507	7	0.99958	9.5180
8	3.52234	0.24281	-3.56998		0.59487	-0.65490		0.02741	0.37847	-0.36639	7	0.99958	9.5729
9	3.58131		-3.43607	4.3981	0.64137	-0.70853		0.03117	0.36153	-0.33792	7	0.99956	9.8624
10	3.84987	1.00384	-3.76859	32.1032	0.55399	-0.49518			0.41334	-0.48878	7	0.99950	11.2414
11	4.26644		-3.37599	2.6682	0.64915	-0.74390	-0.23257	0.26571	0.35815	•	7	0.99938	13.5776
12	4.27008	0.01831	-3.35704		0.64693	-0.74146	-0.22990	0.26273	0.35746		7	0.99938	13.5991
13	4.28111	0.96077	-5.75563	29.1534		-0.12299	0.02298		0.57207	-0.67321	7	0.99938	13.6643
14	4.30253	0.96459	-5.73404	29.5011		-0.12407		0.02299	0.57054	-0.64568	7	0.99937	13.7913
15	4.33565	1.38767	-5.96735	37.9876			0.44428	-0.44373	0.60030	-1.24438	7	0.99936	13.9890
16	2.75815	0.37770	-3.44108		0.81080	-0.72629	0.68119	-0.67208	0.36827	-1.15319	8	0.99978	7.3805
17	3.00803		-3.15072	-1.5566	0.86567	-0.80502	0.63791	-0.62169	0.33686	-1.04443	8	0.99974	8.2102
18	3.64173	0.49404	-3.99286	17.3356	0.55555	-0.59730	0.02311		0.41490	-0.46583	8	0.99962	10.6366
19	3.70353	0.51775	-3.98907	18.2319	0.54814	-0.58929		0.02249	0.41545	-0.44227	8	0.99961	10.8980
20	4.56499	1.06452	-5.92919	29.5286		-0.08213	0.27123	-0.25495	0.58842	-0.98496	8	0.99941	14.9996
21	4.66759	0.09045	-3.47581	5.1418	0.62951	-0.72230	-0.24750	0.27940	0.36789		8	0.99938	15.5450
22	4.74717	1.41447	-5.93990	38.6439	0.01115		0.46802	-0.46928	0.59876	-1.27444	8	0.99936	15.9765
23	2.94674	0.58106	-3.76135	13.7604	0.76889	-0.67458	0.66024	-0.65430	0.39650	-1.18628	9	0.99980	9.0000

				A	alanced base	balanced based energy gain predictive equations	n predictive	• equations					
980	ROGSE	ANGAIN	CGAIN	2 1	00 ₁	8,	MCCON	MENCON	INDKP.	EU,	~	2	8,
-	17.803		11.4924						,		-	0.99995	12.30
N	140.888			•	•			•	,	2.53255	-	0.99673	1447.91
e)	151.292			•				0.35692			-	0.99623	1671.33
•	152.407		•	•			0.34202				-	0.99617	1696.23
m	190.924		•	•	3.0912						-	0.99399	2668.18
•	195.161			2973.49	•						-	0.99372	2788.40
-	199.035			•		-			0.5254		-	0.99347	2900 . 64
a	201.296	. !		•	•	2.5525					-	0.99332	2967.19
0	361.235	67.4075	•				-				-	0.97850	9579.95
2	13.279	-2.4357	11.8990		•		•	•		•	~	0.99997	2.88
1	15.091		12.3368	•	٠	•	-0.02522		•		7	0.99997	6.34
12	15.242		12.3257	•	٠		•	-0.02597		•	7	96666.0	6.65
7	16.148	•	12.0370	-141.75	•		•			•	7	0.99996	8.57
7	16.334		12.2347	٠	•					-0.16409	7	96666.0	96.0
15	16. 432		11.9887			-0.1109					7	96666.0	9.19
91	16.552		11.9809	•			•		-0.0225	•	7	96666 0	9.46
11	17.018	•	11.9415	•	-0.1215	•	•			•	8	96666.0	10.51
18	118.080	•	•		•	-3.8912		0.90003			7	0.99789	930.38
19	121.905	•			•		•	0.88539	-0.7794		7	0.99776	992.23
70	123.448	,			•	-3.6843	0.83481				7	0.99770	1017.74
21	126.167			•		-2.0935	•		-	4.60479	7	0.99760	1063.47
22	127.383			•			0.81602		-0.7295	•	~	0.99755	1084.25
23	127.716						•		-0.4228	4.56588	~	0.99754	1089.97
24	130.823	-23.3931		•			0.45903				7	0.99742	1144.08
25	131.365	-22.4281		•				0.47397			7	0.99739	1153.66
56	134.191			•	-2.1447					4.28623	~	0.99728	1204.23
27	137.408				-3.6307			0.77552			~	0.99715	1263.09
58	141.982	-8.4527		•	•				•	2.84489	~	0.99696	1349.19
53	142.302				-3.2285	•	0.69872				~	0.99694	1355.31
9	145.650			381.93				-		2.20841	7	0.99680	1420.27
F :	146.997	•		•	•			0.03726		2.26834	~	0.99674	1446.83
32	147.078		•		•		0.02439			2.35205	~	0.99673	1448.43
2	147.778			849.20	•			0.25541		•	7	0.99670	1462.33
, i	149.180			851.09	•		0.24453			•	7	0.99664	1490.38
9	154.358						-2.27530	2.73124	•		~	0.99640	1596.29
2 :	103.221	•		1442.53	TRACT		•			•	ν (35 C 5 C C C C C C C C C C C C C C C C C	90 · 98/ T
7 :	100.100			10 00 to		. ,	•		9:53.0		7 (0.588.0	1910.39
	170 140			000	. 00		•			•	۷ (0.00514	21 60 16
; ;	170 940			•	16 0443	. 0			PCCC . 7-	•	۰,	4 T C G C C	CT - BCT7
2 5	179.349	•				- FO 2640	•	٠		•	4 6	A 1900 C	2150.15
: 2	105 625	-9 2401			. F.004				14. 3333		٠, ١	0.000.0	25.02.5
.	199.668	7.7246		2638.72		•		-			۰ ،	0.09308	2677.02
7	203.760	-10,1194							6.603.0	•	۰ ،	0 99373	2788.24
ŧ.	206.115	-10.2512				2.9356					. ~	0.99358	2853.29
4	12.500	-2.1212	12,2063	. P.	•				•	•	. •	8000	2.57
;	12.598		12.7476		0.4775		-0.09020		•			8666	27.72
9	12.616		11.6417		2.2040		, 1		-0.3817		. •1	86666	2.75
5	12.616		11.6417		1.7460	-1.4760					, –	86666.0	2.75
20	12.616		11.6417			-7.1036		• •	1.4552		, 41	96666	2.75
						i			1		,	1	ı

OBS	_rmse_	_angain_	_CGAIN_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_IMDHP_	_cim_	_P_	_RSQ_	_CP_
51	12.729		12.7958		0.5118		•	-0.09958			3	0.99998	2.92
52	13.744	-2.1753	12.0691	,						-0.04719	3	0.99997	4.57
53	13.751	•	12.8197		•		-0.08781		0.0742		3	0.99997	4.58
54	13.891	-2.2064	11.9814				-0.00360				3	0.99997	4.82
55	13.891	-2.5809	11.8497		0.0199						3	0.99997	4.82
56	13.901	-2.2464	11.9690					-0.00317			3	0.99997	4.93
57	13.926	-2.4552	11.8932		•				0.0004		3	0.99997	4.89
58	13.926	-2.4206	11.9034			-0.0015					3	0.99997	4.88
59	14.069		12.8423					-0.09347	0.0759	•	3	0.99997	5.12
60	14.075		12.8174			0.3395	-0.08493				3	0.99997	5.13
61	14.426		12.8268			0.3396		-0.08894			3	0.99997	5.75
62	14.487		12.2362				-0.44033	0.43631			3	0.99997	5.86
63	14.719		12.5158	-92.03			-0.02000				3	0.99997	6.27
64	14.794		12.5172	-95.17				-0.02054			3	0.99997	6.40
65	15.579		12.3025	-112.73		-0.0843		•			3	0.99997	7.86
66	15.656		12.3015	-114.42					-0.0170		3	0.99997	8.01
67	15.699		12.2767		•		-0.03422			0.07986	3	0.99997	8.10
68	15.905		12.2794					-0.03361		0.06439	3	0.99997	8.49
69	15.954		12.2919	-120.94	-0.0906						3	0.99997	8.59
70	16.260		12.3126	-95.20						-0.10046	3	0.99996	9.19
71	17.065		12.2908		0.0564				•	-0.22255	3	0.99996	10.84
72	17.070		12.1664			-0.0443				-0.10515	3	0.99996	10.85
73	17.110		12.1961						-0.0054	-0.12958	3	0.99996	10.93
74	82.498	-22,4897				-3.8987		1.01845			3	0.99907	409.85
75	83.219	-24.4112				-3.8159	0.97451				3	0.99905	417.17
76	84.753	-23.3217	•					1.02333	-0.8033		3	0.99901	432.95
77	85.981	-25.2085	•				0.97554		-0.7809		3	0.99898	445.80
78	97.042	-26.2798			-4.3953			1.00083			3	0.99871	569.79
79	99.466	-27.8683			-4.1529		0.94025				3	0.99864	598.97
80	103.410		•		12.6249			0.80531	-2.8079		3	0.99853	647.98
81	103.410		•		9.2560	-10.8584		0.80531			3	0.99853	647.98
82	103.410		•		•	-40.6915		0.80531	7.7146		3	0.99853	647.98
83	103.659				14.0169		0.75267		-3.0152		3	0.99852	651.13
84	103.659				10.3992	-11.6603	0.75267				3	0.99852	651.13
85	103.659					-45.1779	0.75267	•	8.6674		3	0.99852	651.13
86	104.966		•		•	-3.9935		0.56850		2.45389	3	0.99849	667.83
87	108.281					-3.8486	0.50297			2.62005	3	0.99839	711.13
88	108.786							0.55164	-0.8088	2.51011	3	0.99838	717.85
89	112.171			•			0.48288		-0.7743	2.68245	3	0.99827	763.66
90	114.197					-4.0793	-3.09316	4.15406			3	0.99821	791.74
91	116.529						-3.41728	4.49316	-0.8410		3	0.99814	824.70
92	119.598		•		10.4112				-2.0856	4.04910	3	0.99804	869.09
93	119.598				7.9088	-8.0654				4.04910	3	0.99804	869.09
94	119.598				•	-33.5563			6.5917	4.04910	3	0.99804	869.09
95	123.444			161.13		-3.7131		0.85592			3	0.99791	926.34
96	125.422				-4.0056			0.44298		2.66640	3	0.99784	956.50
97	125.482			-981.95		-3.0917				6.42622	3	0.99784	957.41
98	126.931			-1027.32					-0.6482	6.52167	3	0.99779	979.82
99	127.398			176.47				0.83581	-0.7374	•	3	0.99777	987.09
100	127.684				-4.6877		-4.55164	5.64712			3	0.99776	991.56

							-	-					
OBS	_RMSE_	_ANGAIN_	_cgain_	_RQ_	_CO2_	_02_	_MECON_	_MENCON_	_INDHP_	_CIN_	_P_	_RSQ_	_CP_
101	128.286	•			-3.7406	•	0.37138			2.84291	3	0.99774	1001.00
102	129.144	•	•	153.21		-3.5099	0.79393		•		3	0.99771	1014.53
103	131.693	-20.3405	•	598.82				0.39150			3	0.99762	1055.24
104	132.075	-21.2097	•	558.45		•	0.38414	•	•	•	3	0.99760	1061.42
105	132.324	0.1240	•			-2.1016		•		4.60822	3	0.99760	1065.45
106	133.155	•	•	182.32		•	0.76638		-0.6852		3	0.99757	1078.97
107	133.929	-0.5701				,			-0.4152	4.55051	3	0.99754	1091.62
108	134.828	•	•	-1080.18	-3.7477		•		•	6.51376	3	0.99750	1106.42
109	136.819	•	•	1556.45	18.4522	•	•		-2.8858		3	0.99743	1139.55
110	136.819	•	•	1556.45	14.9898	-11.1595			•		3	0.99743	1139.55
111	136.819		•	1556.45		-59.4733	•		12.4935	•	3	0.99743	1139.55
112	136.853	-24.8619	•		•		1.20651	-0.77235	•	•	3	0.99743	1140.11
113	137.208	-23.3501	•		•		0.45752		•	0.00961	3	0.99742	1146.08
114	137.741	-21.8018	•	•				0.44937	•	0.15138	3	0.99740	1155.05
115	139.988	-3.3623	•		-1.9079					4.21689	3	0.99731	1193.28
116	141.614	•		1230.34	•		-4.38020	4.78069			3	0.99725	1221.32
117	142.649	•		342.58	-3.1053	•		0.67399			3	0.99721	1239.35
118	147.406	•	•	396.95	-2.6309	•	0.58722				3	0.99702	1323.85
119	147.683	-8.1619	•	332.39				•		2.55205	3	0.99701	1328.87
120	151.590			•		•	-1.81668	1.95159	•	2.13651	3	0.99684	1400.48
121	151.911	•		489.49				0.09057		1.47491	3	0.99683	1406.45
122	152.249	•		453.93			0.06541			1.66323	3	0.99682	1412.73
123	164.970	-10.4363	•	1465.98	2.0458			•			3	0.99626	1659.91
124	171.406	-10.3594		1538.77				•	0.3343	•	3	0.99597	1792.50
125	173.112	-10.2632		1561.15		1.6013			•		3	0.99589	1828.50
126	188.102	0.0947	•		18.1345				-2.5586		3	0.99514	2160.14
127	188.102	0.0947	•		15.0647	-9.8943	•			•	3	0.99514	2160.14
128	188.102	0.0947			•	-58.4495			12.5559		3	0.99514	2160.14
129	11.459	-1.6325	11.6560		1.7319	•			-0.2895	•	4	0.99998	2.24
130	11.459	-1.6325	11.6560	•	1.3845	-1.1196		•			4	0.99998	2.24
131	11.459	-1.6325	11.6560			~5.5822			1.1540		4	0.99998	2.24
132	11.546		12.2804		1.7519	•		-0.06176	-0.2430	•	4	0.99998	2.35
133	11.546		12.2804		1.4603	-0.9398		-0.06176			4	0.99998	2.35
134	11.546		12.2804			-5.6464		-0.06176	1.2171		4	0.99998	2.35
135	11.679		12.2536		1.6694		-0.05545	•	-0.2335		4	0.99998	2.52
136	11.679		12.2536		1.3892	-0.9030	-0.05545				4	0.99998	2.52
137	11.679		12.2536			-5.3806	-0.05545		1.1579		4	0.99998	2.52
130	12.989		11.8054	-45.57	1.9703				-0.3414		4	0.99998	4.30
139	12.989		11.8054	-45.57	1.5606	-1.3203					4	0.99998	4.30
140	12.989	•	11.8054	-45.57	•	-6.3504	•		1.3007		4	0.99998	4.30
141	13.025	-2.7228	12.2703		0.2444		•	•		-0.27117	4	0.99998	4.35
142	13.064	•	12.8673	•	0.5301	•	-0.08621		•	-0.09900	4	0.99998	4.41
143	13.073	-2.3423	12.1358	-95.82	0.0313				4		4	0.99998	4.42
144	13.077	•	12.7802	-37.70	0.4302	-	-0.08163				4	0.99998	4.43
145	13.098	-0.7696	12.5530		0.3954	•	-0.07148		•		4	0.99998	4.46
146	13.125		12.8342	-44.75	0.4556			-0.08895	•		4	0.99998	4.50
147	13.136	-2.2232	12.1491	-102.36						0.02380	4	0.99998	4.51
148	13.139	-2.2633	12.1678	-95.57					0.0032		4	0.99998	4.52
149	13.150	-2.2411	12.1752	-95.37	•	0.0129	,				4	0.99998	4.53
150	13.158	-2.2698	12.1587	-96.44			0.00248				4	0.99998	4.54

OBS	_FOCS E	_amgain_	_CGAIN_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_IMDHP_	_cm_	_P_	_RSQ_	_CP_
201	94.535			-1455.82		-5.6519	0.59563	•		4.95480	4	0.99890	487.642
202	94.733				10.5804	•		0.55702	-2.50242	1.96490	4	0.99889	489.702
203	94.733				7.5780	-9.6772	,	0.55702	÷	1.96490	4	0.99889	489.702
204	94.733	•		•		-34.1018	•	0.55702	6.31598	1.96490	4	0.99889	489.702
205	95.089				11.5466		0.51972		-2.64522	1.96563	4	0.99888	493.427
206	95.089			•	8.3729	-10.2294	0.51972			1.96563	4	0.99888	493.427
207	95.089	•			•	-37.2160	0.51972	•	6.97849	1.96563	4	0.99888	493.427
208	96.686	•	•	-1429.59		•		0.63048	-1.17764	4.93792	4	0.99884	510.311
209	97.559	•		-1572.66		•	0.59219	•	-1.19885	5.25011	4	0.99882	519.656
210	100.852	-27.7058		-287.70	-4.8781	•		1.09832	•	•	4	0.99874	555.679
211	101.210	-24.2007	•		-4.5942	•	-1.11702	2.17854	•	•	4	0.99873	559.666
212	102.137	-25.2234	•	•	-4.4006	•	•	0.95979	•	0.25646	4	0.99871	570.058
213	102.175	•	•			-4.1451	-2.61889	3.34832	•	2.27089	4	0.99871	570.479
214	102.340	-30.1546	•	~398.49	-4.8297	•	1.07200	•	•		4	0.99871	572.347
215	104.377	•	•	•	•	•	-2.94641	3.68871	-0.85959	2.31148	4	0.99865	595.549
216	104.773	-27.0515	•	•	-4.1590	•	0.91198	•	•	0.18406	4	0.99864	600.124
217	104.995	•	•	465.50	13.6631	•	•	0.66794	-2.86387	•	4	0.99864	602.689
218	104.995	•	•	465.50	10.2271	-11.0749	•	0.66794	•	•	4	0.99864	602.689
219	104.995	•	•	465.50		-44.0378		0.66794	8.52390	•	4	0.99864	602 . 689
220	105.749	•	•	443.16	14.7897		0.62852	•	-3.03369	•	4	0.99862	611.449
221	105.749	•	•	443.16	11.1498	-11.7316	0.62852	•		•	4	0.99862	611.449
222	105.749	•	-	443.16		-47.6687	0.62852		9.29299	•	4	0.99862	611.449
223	108.999	•	•	•	12.7850		0.08739	0.71203	-2.83202	•	4	0.99853	649.922
224	108.999	•	•	•	9.3872	-10.9517	0.08739	0.71203	<u>:</u>	•	4	0.99853	649.922
225	108.999	•	•	•		-41.2075	0.08739	0.71203	7.8239		4	0.99853	649.92
226	115.739	•	•		-4.9390	•	-4.14602	4.90639	•	2.45831	•	0.99834	733.42
227	115.010	•	•	-1685.21	-7.0166			0.56441	•	5.69760	4	0.99834	734.32
228	116.043	•	•	532.18		-3.5400	-3.89551	4.85245	•		•	0.99834	737.31
229 230	117.898 118.189	•	•	-1779.61	-6.9830	•	0.51132			5 . 968 92	•	0.99828	761.22
230	124.311	5,1172	•	555.82	11.6875	•	-4.20786	5.17165	-0.7229 -2.3575		•	0.99827	765.01
232	124.311	5.1172	•	•	8.8590	-9.1167	•	•		4.12372	•	0.99809 0.99809	846.84 846.84
233	124.311	5.1172	•	•		-37.6702	•	•	7.3837	4.12372 4.12372	7	0.99809	846.84
234	125.716	3.1172	•	-265.55	9.2852	-37.6702	•	•	-1.9641	4.61053	7	0.99805	866.21
235	125.716	•	•	-265.55	6.9287	-7.5953	•	•	-1.9041	4.61053	7	0.99805	866.21
236	125.716		•	-265.55		-29.9273	•	•	5.7749	4.61053	7	0.99805	866.21
237	127.886	·	•	690.07	-3.8036	-25.5273	-5.30294	6.24671	3.1743	. 61053	7	0.99798	896.55
238	130.494	5.5188	•	-1209.19	-3.4030	-3.6827	-3.30294		•	7.00021	7	0.99790	933.70
239	132.410	4.8889	•	-1240.68			•	•	-0.7600	7.05966	7	0.99783	961.46
240	134.873	-27.1911	•	1001.00	•	•	•	0.66028	0.7000	-1.99469	7	0.99775	997.75
241	135.025	-28.0535	•	900.81	•	•	0.62618		•	-1.02919	7	0.99772	1011.96
242	138.386	-17.9650	•	713.31		•	-0.97972	1.38778	•	-1.02515	7	0.99763	1050.67
243	142.071	0.9172	•	-1126.80	-3.8815	•		2.507.0	•	6.62881	4	0.99751	1107.64
244	144.220	0.0366	•	1556.44	18.4623	•	•	•	-2.8878	0.04001	7	0.99743	1141.55
245	144.220	0.0366	•	1556.44	14.9975	-11.1673	•			•	4	0.99743	1141.55
246	144.220	0.0366	•	1556.44		-59.5060	•	•	12.4999	•	7	0.99743	1141.55
247	144.238	-25.4231	•				1.26177	-0.81176		-0.10869	7	0.99743	1141.04
248	149.263		-	1260.83	:	:	-4.45356	4.86752	•	-0.09881	4	0.99725	1223.13
249	11.554	-1.8619	11.9272		1.5932				-0.2443	-0.15534	5	0.99999	3.54
250	11.554	-1.8619	11.9272		1.3001	-0.9448				-0.15534	5	0.99999	3.54

OBS	_RMS#_	_ANGAIN_	_CGAIN_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_INDHP_	_cim_	_P_	_RSQ_	_CP_
151	13.159	-2.2586	12.1604	-96.05		•		0.00243	•		4	0.99998	4.55
152	13.160	•	12.9268		0.5695			-0.09502		-0.10841	4	0.99998	4.55
153	13.165	-0.8886	12.5612		0.4100			-0.07592			4	0.99998	4.55
154	13.189		11.7660		2.1705				-0.3668	-0.07173	4	0.99998	4.59
155	13.189		11.7660	•	1.7305	-1.4184				-0.07173	4	0.99998	4.59
156	13.189	•	11.7660	•		-6.9958			1.4423	-0.07173	4	0.99998	4.59
157	13.251	•	12.7051		0.4469		-0.15299	0.07036			4	0.99998	4.68
150	13.674	-2.6955	12.2638						0.0327	-0.22834	4	0.99998	5.31
159	13.824	-2.6693	12.2547			0.1447				-0.21310	4	0.99998	5.53
160	14.041	-1.2779	12.4433			•	-0.05320		0.0480	•	4	0.99998	5.87
161	14.058		12.8545	-56.34			-0.07493		0.0627		4	0.99998	5.89
162	14.133		12.4197	-152.97			-0.04872			0.28554	4	0.99998	6.01
163	14.150	•	12.6656				-0.29611	0.23260	0.0588	•	4	0.99998	6.04
164	14.169	-1.4826	12.3927			•		-0.05044	0.0444		4	0.99998	6.07
165	14.184		12.4364	-161.93			•	-0.05215		0.29871	4	0.99998	6.09
166	14.207	-2.9020	11.9832					0.02296		-0.16424	4	0.99998	6.13
167	14.227		12.8891	-65.34				-0.07868	0.0634	•	4	0.99997	6.16
168	14.248	-1.4616	12.3736			0.1923	-0.04472				4	0.99997	6.19
169	14.255	-2.8991	11.9882				0.02094			-0.15758	Ā	0.99997	6.201
170	14.298	-1.7077	12.0067				-0.23559	0.23870			Ä	0.99997	6.254
171	14.316		12.8545	-61.70		0.2809	-0.07114				Ä	0.99997	6.297
172	14.356	•	12.6395			0.2579	-0.32815	0.27072		•	Ä	0.99997	6.361
173	14.364	-1.6721	12.3080			0.1680		-0.04014		•	- 1	0.99997	6.374
174	14.382		12.9306				-0.08615		0.08244	-0.07633	i	0.99997	6.402
175	14.503		12.8795	-70.85		0.2787		-0.07361			Ä	0.99997	6.594
176	14.695		12.9655					-0.09167	0.08507	-0.08418	i	0.99997	6.903
177	14.759	•	12.9146			0.3740	-0.08377			-0.06424	Ä	0.99997	7.007
178	14.920		12.3727	-56.08			-0.32392	0.31729		• • • • • • • • • • • • • • • • • • • •	Ä	0.99997	7.270
179	15.114		12.9346		·	0.3781		-0.08769		-0.07078	Ä	0.99997	7.592
180	15.222		12.2038	-			-0.43523	0.42546	•	0.04637	7	0.99997	7.773
181	15.450	-	11.9519	-211.60		-0.2955				0.37039	7	0.99997	8.158
182	15.683		11.9866	-210.13	-			•	-0.05867	0.35110	7	0.99997	8.559
183	16.579		12.1449	-192.63	-0.2408	•	•	•	0.03007	0.20760	7	0.99997	10.152
184	79.821	-19.8119			7.6891	•	0.90664	•	-2.02377	0.20100	7	0.99921	346.218
185	79.821	-19.8119	•	•	5.2610	-7.8261	0.90664	•	2.023.7	•	7	0.99921	346.218
186	79.821	-19.8119	·	•		-24.7829	0.90664	•	4.38486	•	7	0.99921	346.218
187	82.193	-10.8787	•	•	6.3620		0.90004	0.95669	-1.82093	•	7	0.99917	367.400
188	82.193	-18.8787	•		4.1772	-7.0417	•	0.95669	-1.62093	•	7	0.99917	367.400
189	82.193	-18.8787	•	•	4.2/12	-20.5053	•	0.95669	3.40156	•	•	0.99917	367.400
190	85.190	-25.8619	•	-343.79	•	-4.2150	1.07453	0.33663	3.40136	•	7		
191	86.041	-23.1890	•	-199,61	•	-4.1195		1.07678	•	•	1	0.99910	395.056
192	86.415	-20.6467	•		•	-3.9166		0.94856	•		•	0.99909	403.089
193	86.941	-22.7544	•	•	•	-3.8908	0 11110	0.94836	•	0.44552	•	0.99908	406.643
194	87.477	-23.0399	•	•	•	-3.8908 -3.8278	0.13130 0.92775		•		•	0.99907	411.673
195	87.808	-26.8899	•	-374 03	•			•	-0.03511	0.30727	4	0.99905	416.826
196	88.148	-24.1964	•	-374.03 -332.03	•	•	1.08801		-0.87511	•	:	0.99905	420.018
196			•	-232.92	•		•	1.09394	-0.85962	, ,,,,,,,	4	0.99904	423.319
198	88.891 89.316	-21.6344	•	•	•	•	0 14200	0.95901	-0.80634	0.40866	•	0.99902	430.567
199	90.431	-23.0354 -23.9409	•	•	•	•	-0.14320	1.17281	-0.80556		•	0.99901	434.742
200	94.022	-43. 71 09	•	1200 05	•		0.93218		-0.78306	0.28450	•	0.99899	445.793
200	94.022	•		-1309.80	•	-5.5323		0.63053		4.64876	4	0.99891	482.305

							-	-					
OBS	_RMSE_	_ANGAIN_	_CGAIN_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_INDHP_	_cin_	_P_	_RSQ_	_CP_
251	11.554	-1.8619	11.9272			-5.1351			1.0836	-0.15534	5	0.99999	3.54
252	11.709	-1.6569	11.8328	-49.15	1.4729				-0.2447		5	0.99998	3.72
253	11.709	-1.6569	11.8328	-49.15	1.1792	-0.9464	•				5	0.99998	3.72
254	11.709	-1.6569	11.8328	-49.15	•	-4.7472	•		0.9829		5	0.99998	3.72
255	11.844	-1.0069	12.0036		1.6629			-0.03414	-0.2482		5	0.99998	3.87
256	11.844	-1.0069	12.0036		1.3651	-0.9598		-0.03414			5	0.99998	3.87
257	11.844	-1.0069	12.0036			-5.3596	•	-0.03414	1.1378		5	0.99998	3.87
258	11.953	-1.0906	11.9452	•	1.6319	•	-0.02663	•	-0.2489	•	5	0.99998	4.00
259	11.953	-1.0906	11.9452		1.3332	-0.9627	-0.02663				5	0.99998	4.00
260	11.953	-1.0906	11.9452			-5.2596	-0.02663		1.1111		5	0.99998	4.00
261	12.052		12.2827		2.0781		0.17918	-0.25316	-0.2921		5	0.99998	4.12
262	12.052		12.2827		1.7277	-1.1294	0.17918	-0.25316			5	0.99998	4.12
263	12.052		12.2827			-6.6979	0.17918	-0.25316	1.4400		5	0.99998	4.12
264	12.174		12.3644		1.7329			-0.06096	-0.2338	-0.05320	5	0.99998	4.26
265	12.174		12.3644	(*)	1.4524	-0.9039		-0.06096		-0.05320	5	0.99998	4.26
266	12.174		12.3644			-5.5853		-0.06096	1.2106	-0.05320	5	0.99998	4.26
267	12.185	•	12.3100	~19.21	1.6750			-0.05880	-0.2327		5	0.99998	4.27
2 6 B	12.185		12.3108	-19.21	1.3958	-0.8998		-0.05880			5	0.99998	4.27
269	12.185		12.3188	-19.21		-5.3987		-0.05880	1.1634	•	5	0.99998	4.27
270	12.319		12.3344		1.6530		-0.05464		-0.2249	-0.05175	5	0.99998	4.44
271	12.319		12.3344		1.3832	-0.8698	-0.05464		•	-0.05175	5	0.99998	4.44
272	12.319		12.3344			~5.3279	-0.05464		1.1529	-0.05175	5	0.99998	4.44
273	12.338		12.2857	-17.45	1.6067		-0.05268		-0.2255	•	5	0.99998	4.46
274	12.338		12.2857	-17.45	1.3361	-0.8720	-0.05268				5	0.99998	4.46
275	12.338		12.2857	-17.45		-5.1785	-0.05268		1.1136		5	0.99998	4.46
276	13.249	-1.5754	12.6109		0.4330			-0.04959		-0.19111	5	0.99998	5.60
277	13.269	-1.5073	12.5881		0.4141		-0.04616			-0.18331	5	0.99998	5.63
278	13.358	-1.3379	12.4985	~65.05	0.2769			-0.04850			5	0.99998	5.74
279	13.403	-1.2922	12.4740	-61.37	0.2627		-0.04483				5	0.99998	5.80
280	13.712	-2.5481	12.2344	-46.51	0.1567					-0.15852	5	0.99998	6.21
281	13.7222		11.7528	-72.43	1.87264				-0.33555	0.08602	5	0.99998	6.226
282	13.7222		11.7529	-72.43	1.47004	-1.2976				0.08602	5	0.99998	6.226
283	13.7222		11.7528	-72.43		-6.0357			1.22523	0.08602	5	0.99998	6.226
284	13.8443		12.8383	-16.67	0.49011		-0.08387			-0.06310	5	0.99998	6.391
285	13.8463		12.8388		0.51074		-0.12248	0.04050		-0.09566	5	0.99998	6.394
286	13.8704		12.7755	-37.20	0.42772		-0.08810	0.00712			5	0.99998	6.427
287	13.8801	-1.9513	12.3133	-87.55				-0.01701	0.01781	•	5	0.99998	6.440
288	13.8844	-0.7379	12.5381		0.38229	·	-0.10608	0.03790		•	5	0.99998	6.446
289	13.8881	-1.9348	12.3031	-86.14		·	-0.01570		0.01697	•	5	0.99998	6.451
290	13.9080	-1.9837	12.1850	-111.45				-0.00770	0.02037	0.06938	5	0.99998	6.478
291	13.9115		12.8695	-32.27	0.49155	•	•	-0.09031	•	-0.03807	5	0.99998	6.483
292	13.9136	-2.0013	12.1798	-109.37	*********	•	-0.00651	0.03031	•	0.06301	5	0.99998	6.486
293	13.9221	-2.1371	12.1230	-112.57		-0.0266	-0.00631	•	•	0.06142	5	0.99998	6.497
294	13.9327	-2.2285	12.1507	-101.69	•	0.0200	•	•	0.00035	0.02138	5	0.99998	6.512
295	13.9371	-2.1074	12.2415	-92.14	•	0.0441	•	-0.00750	3.00033		5	0.99998	6.518
296	13.9376	-2.4043	12.1656	-103.74	•	0.0441	0.06327	-0.06207	•	•	5	0.99998	6.518
297	13.9406	-2.1149	12.2304	-91.91	•	0.0392	~0.00619	J. 00201	•	•	5	0.99998	6.523
298	14.3162	-1.9806	12.5031	-51.51	•	0.0392	-0.03017	•	0.05339	-0.18350	5	0.99998	7.043
299	14.3574	-2.1280	12.4808	•	•	•		-0.02755	0.05190	-0.19391		0.99998	7.100
300	14.5611	-2.1481	12.4389	•	•	0.2205	-0.02256	-0.02133	0.05190		5	0.99998	7.389
	24.0022	4.1401	14. 1303		•	0.2203	-0.02230			-0.18100	_	U. YYYYO	1.369

OBS	_rmsr_	_NIADNA_	_cgvin_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_INDHP_	_cin_	_₽_	_3220_	_CP_
301	14.5978	-2.2994	12.4041			0.2074	•	-0.01845		-0.19090	5	0.99998	7.442
302	14.7040	-1.0483	12.3972	•			-0.21326	0.17181	0.04132		5	0.99998	7.594
303	14.7709	•	12.6743	-100.73	•	•	-0.06788		0.03827	0.14280	5	0.99998	7.691
304	14.7745		12.7450	-43.25	•		-0.21503	0.15312	0.05523		5	0.99998	7.696
305	14.8602	-1.1638	12.3345	•		0.1629	-0.22995	0.19706			5	0.99998	7.820
306	14.8681		12.6695	-118.73	•			-0.07038	0.03396	0.17689	5	0.99998	7.832
307	14.8846	-2.3771	12.0073		•		-0.16963	0.19165		-0,12991	5	0.99998	7.956
308	14.8990		12.5907	-121.64	•	0.1174	-0.06131			0.19817	5	0.99998	7.977
309	14.9248	•	12.7652	•			-0.28446	0.22114	0.06637	-0.06329	5	0.9999B	7.915
310	14.9566	•	12.3911	-137.74	•		-0.12596	0.08348		0.25849	5	0.99998	7.961
311	14.9781		12.7219	-44.92		0.2406	-0.24240	0.18646			5	0.99998	7.993
312	14.9828	•	12.5787	-138.40	•	0.0953	•	-0.06308	•	0.23061	5	0.99998	8.000
313	15.1720	•	12.7225		•	0.2879	-0.32080	0.26358	•	-0.05180	5	0.99997	8.279
314	83.2184	-17.9610	•	-954.31	•	-5.0144	0.89485		•	2.34756	5	0.99924	336.335
315	83.2367	-20.9831		•	9.77651		2.24507	-1.42274	-2.33125		5	0.99924	336.484
316	83.2367	-20. 983 1	•	•	6.97945	-9.0152	2.24507	-1.42274			5	0.99924	336.484
317	83.2367	-20.9831			•	-31.5107	2.24507	-1.42274	5.81714		5	0.99924	336.484
318	94.1947	-17.9702		•	7.77485	•	0.84494		-2.04067	0.39987	5	0.99922	344.261
319	94.1947	-17.9702			5.32644	-7.8915	0.84494		•	0.39987	5	0.99922	344.261
320	84.1847	-17.9702	•		•	-25.0592	0.84494		4.43941	0.39987	5	0.99922	344.261
321	84.3744	-20.6866		-118.65	7.20287		0.94668		-1.97506		5	0.99922	345.828
322	94.3744	-20 . 6866		-110.65	4.83318	-7.6378	0.94668	•	•		5	0.99922	345.828
323	84.3744	-20.6866		-110.65	•	-23.2156	0.94668	•	4.02829		5	0.99922	345.928
324	85.2988	-16.1313	•	-787.10		-4.8581	•	0.90272	•	2.20371	5	0.99920	353.513
325	85.3909	-18,6891		-1046.36			0.90635		-1.06363	2.51891	5	0.99920	354.284
326	86.1188	-16.2717	•	•	6.61426		•	0.8 6139	-1.86570	0.58873	5	0.99919	360.401
327	86.118 8	-16.2717		•	4.37578	-7.2149		0.86139	•	0.58873	5	0.99919	360.401
328	96.1188	-16.2717		•		-21.3195	•	0.86139	3.64706	0.59873	5	0.99919	360.401
329	86.9928	-16.B673	•	-876.68	•	•	•	0.91759	-1.03306	2.36054	5	0.99917	367.914
330	87.1763	~10.9522		-10 . 63	6.31300			0.96042	-1.81580		5	0.99917	369.380
331	87.1763	-18.9522	•	-10.63	•	-20.3503	•	0.96042	3.44660		5	0.99917	369.380
332	87.1763	-10.9522	•	-10.63	4.13526	-7.0219		0.96042	•		5	0.99917	369.380
333	90.3570	-25.9418	•	-347.92	•	-4.2169	1.10752	-0.03325	•		5	0.99910	397.049
334	91.6427	-20.3081	•	•	•	-3.9247	-0.11715	1.06667		0.47027	5	0.99908	408.515
335	93.0615	-26.1263	•	-335.26	•	•	0.77298	0.31804	-0.87203	•	5	0.99905	421.356
336	94.1165	-20.4613		•		•	-0.40821	1.37154	-0.01351	0.49508	5	0.99903	431.032
337	95.201	•		-915.27	7.7786		0.57131	•	-2.28178	3.69390	5	0.99900	441.094
338	95.201	•	•	-915.27	5.0409	-8.8239	0.57131			3.69390	5	0.99900	441.094
339	95.201		•	-915.27	•	-25.0713	0.57131		4.20143	3.69390	5	0.99900	441.094
340	95.755	•		-030.60	7.0720			0.60104	-2.15513	3.55626	5	0.99899	446.274
341	95.755	•		-830.60	4.4863	-9.3341		0.60104		3.55626	5	0.99899	446.274
342	95.755	*		-830.60	-	-22.7939		0.60104	3.73917	3.55626	5	0.99899	446.274
343	99.663			-1239.10	•	-5.4656	-0.28301	0.92758	•	4.51051	5	0.99891	483.691
344	100.439	•			10.1420	•	-0.23548	0.80751	-2.43631	1.97161	5	0.99889	491.303
345	100.439	•			7.2189	-9.4215	-0.23548	0.80751		1.97161	5	0.99889	491.303
346	100.439	•				-32.6889	-0.23548	0.80751	6.01674	1.97161	5	0.99889	491.303
347	101.265	-21.0741	•	-1026.03	-6.1689		•	0.94870		2.49842	5	0.99887	499.470
348	101.908	-22.7407		~1181.01	-6.2441		0.91870			2.68230	5	0.99886	505.874
349	102.170	•		-1255.45		•	-0.69548	1.36136	-1.14470	4.59530	5	0.99885	508.494
350	106.661	-21.3069	•	•	-4.6625	•	-1.43555	2.42499	•	0.55860	5	0.99875	554.439

OBS	_RMSE_	_ANGAIN_	_CGAIN_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_INDHP_	_CIN_	_P_	_R.S.Q	_CP_
351	106.742	-26.2486		-215.80	-4.8627		-0.59144	1.69753			5	0.99875	555.287
352	111.037		•	505.18		-39.9802	-0.73554	1.44131	7.67311		5	0.99865	601.122
353	111.037			505.18	12.4042		-0.73554	1.44131	-2.66540		5	0.99865	601.122
354	111.037			505.18	9.2063	-10.3074	~0.73554	1.44131			5	0.99865	601.122
355	117.558			-1071.20	-6.5161	•	-2.64946	3.37245		4.46020	5	0.99848	674.170
356	130.660	6.4314		-494.12	9.9203				-2.20112	5.18756	5	0.99812	833.523
357	130.660	6.4314		-494.12	7.2794	-8.5120				5.18756	5	0.99812	833.523
358	130.660	6.4314		-494.12	•	-31.9741			6.06710	5.18756	5	0.99812	833.523
359	142.189	-24.3062		1178.49			-1.33815	2.03515		-2.09941	5	0.99778	987.647
360	12.024	-1.5245	11.8656	•	2.2231		0.33282	~0.37548	-0.34193		6	0.99999	5.199
361	12.024	-1.5245	11.8656	•	1.8129	-1.3223	0.33282	~0.37548			6	0.99999	5.199
362	12.024	-1.5245	11.8656			-7.1654	0.33282	-0.37548	1.51097		6	0.99999	5.199
363	12.255	-1.4711	12.0841		1.5749			-0.01944	-0.22761	-0.13188	6	0.99999	5.439
364	12.255	-1.4711	12.0841		1.3018	-0.8802		-0.01944		-0.13188	6	0.99999	5.439
365	12.255	-1.4711	12.0841	•	•	-5.0759		-0.01944	1.08498	-0.13188	6	0.99999	5.439
366	12.326	-1.6409	12.010B		1.5682		-0.00988		-0.23321	-0.14180	6	0.99999	5.514
367	12.326	-1.6409	12.010B		1.2884	-0.9018	-0.00988			-0.14180	6	0.99999	5.514
368	12.326	-1.6409	12.0108			-5.0544	-0.00988		1.07382	-0.14180	6	0.99999	5.514
369	12.351	-1.8508	11.9255	-3.82	1.5810	•			-0.24340	-0.14652	6	0.99999	5.540
370	12.351	-1.8508	11.9255	-3.82	1.2889	-0.9413				-0.14652	6	0.99999	5.540
371	12.351	-1.8508	11.9255	-3.82		-5.0956			1.07427	-0.14652	6	0.99999	5.540
372	12.409	-1.2660	12.0101	-38.87	1.4845			-0.02105	-0.22860		6	0.99999	5.602
373	12.409	-1.2660	12.0101	-38.87	1.2102	-0.8840	•	-0.02105			6	0.99999	5.602
374	12.409	-1.2660	12.0101	-38.87		-4.7847		-0.02105	1.00866		6	0.99999	5.602
375	12.490	-1.4377	11.9260	-43.01	1.4653		-0.01062		-0.23414		6	0.99999	5.688
376	12.490	-1.4377	11.9260	-43.01	1.1844	-0.9055	-0.01062				6	0.99999	5.688
377	12.490	-1.4377	11.9260	-43.01		-4.7229	-0.01062	•	0.98717	•	6	0.99999	5.688
378	12.704		12.3494	-33.00	2.0448	•	0.23343	-0.30605	-0.28915		6	0.99998	5.919
379	12.704		12.3494	-33.00	1.6979	-1.1182	0.23343	-0.30605	•		6	0.99998	5.919
380	12.704		12.3494	-33.00	•	-6.5908	0.23343	-0.30605	1.41516		6	0.99998	5.919
381	12.780		12.3791		2.0758		0.18989	-0.26370	-0.28436	-0.06102	6	0.99998	6.003
382	12.780	•	12.3791		1.7347	-1.0997	0.18989	-0.26370		-0.06102	6	0.99998	6.003
383	12.780		12.3791			-6.6907	0.18989	-0.26370	1.44579	-0.06102	6	0.99998	6.003
384	13.012		12.3563	-5.88	1.7139		•	-0.06025	-0.23278	-0.04063	6	0.99998	6.260
385	13.012	•	12.3563	-5.88	1.4346	-0.9002	•	-0.06025		-0.04063	6	0.99998	6.260
386	13.012	•	12.3563	-5.88		-5.5240		-0.06025	1.19567	-0.04063	6	0.99998	6.260
387	13.170		12.3331	-0.88	1.6505	•	-0.05453	•	-0.22482	-0.0498B	6	0.99998	6.436
388	13.170		12.3331	-0.88	1.3807	-0.8694	~0.05453		•	-0.04988	6	0.99998	6.436
389	13.170		12.3331	-0.88		-5.3196	-0.05453		1.15079	-0.04988	6	0.99998	6.436
390	14.141	-1.5512	12.5781	-21.17	0.3839	•		-0.04720		-0.14369	6	0.99998	7.574
391	14.163	-1.5982	12.6137		0.4359		0.01029	-0.06032	•	-0.19338	6	0.99998	7.600
392	14.174	-1.5043	12.5627	-14.91	0.3786		-0.04414			-0.15103	6	0.99998	7.614
393	14.253	-1.4957	12.5057	~73.46	0.27800	-	0.07023	-0.12031			6	0.99998	7.710
394	14.796		12.8262	-12 . 61	0.48684		-0.10880	0.02720		-0.0695B	6	0.99998	8.386
395	14.829	-2.0665	12.3074	-93.16		•	0.04183	-0.05846	0.01672	•	6	0.99998	8.429
396	14.933	-1.9024	12.2943	-95.09		•		-0.01730	0.01449	0.02681	6	0.99998	8.434
397	14.936	-2.1346	12.1943	-122.76		•	0.07890	-0.08928		0.07712	6	0.99998	8.437
398	14.844	-1.8985	12.2957	-92 . 40		•	-0.01573		0.01407	0.02195	6	0.99998	8.447
399	14.868	-1.9765	12.1957	-110.02		0.0065		-0.00861	•	0.06556	6	0.99998	8.478
400	14.874	-2.0004	12.1808	-109.22		0.0006	-0.00660			0.06264	6	0.99998	8.486

OBS	_ROGS E	_angain_	_CGAIN_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_INDHP_	_cin_	_P_	_RSQ_	_CP_
1	13.2787	-2.43570	11.8990			•					2	0.99997	2.87965
2	12.5003	-2.12116	12.2063	-93.645							3	0.99998	2.57059
3	12.5976	•	12.7476	•	0.47746	•	-0.09020				3	0.99998	2.72021
4	12.6158	•	11.6417		2.20395		•		-0.38168		3	0.99998	2.74831
5	12.6158		11.6417		1.74601	-1.47602		•		•	3	0.99998	2.74831
6	12.6158	•	11.6417	•		-7.10358			1.45524		3	0.99998	2.74831
7	12.7290	•	12.7958		0.51182	•		-0.09958			3	0.99998	2.92407
8	13.7442	-2.17531	12.0691	•	•					-0.04719	3	0.99997	4.57009
9	13.7512	•	12.8197				-0.08781		0.07421		3	0.99997	4.58193
10	13.8910	-2.20639	11.9814				-0.00360				3	0.99997	4.81859
11	13.8911	~2.58090	11.8497		0.01990						3	0.99997	4.81872
12	13.9006	-2.24638	11.9690			•		-0.00317			3	0.99997	4.83497
13	13.9263	~2.45522	11.8932						0.00042		3	0.99997	4.87869
14	13.9265	-2.42064	11.9034			-0.00155					3	0.99997	4.87909
15	14.0687		12.8423			•		-0.09347	0.07588		3	0.99997	5.12285
16	14.0752	•	12.8174			0.33949	-0.08493				3	0.99997	5.13410
17	14.4260		12.8268	•		0.33964		-0.08894			3	0.99997	5.74652
18	14.4873		12.2362		•		-0.44033	0.43631			3	0.99997	5.85512
19	11.4595	-1.63254	11.6560		1.73192				-0.28953		4	0.99998	2.23888
20	11.4595	-1.63254	11.6560		1.38455	-1.11964					4	0.99998	2.23888
21	11.4595	-1.63254	11.6560	•	•	-5.58218			1.15397		4	0.99998	2.23888
22	11.5463		12.2804		1.75186	•		-0.06176	-0.24301		4	0.99998	2.34899
23	11.5463		12.2804		1.46029	-0.93976		-0.06176	-		4	0.99998	2.34899
24	11.5463		12.2804			-5.64644		-0.06176	1.21710		4	0.99998	2.34899
25	11.6789		12.2536		1.66937		-0.05545		-0.23350		4	0.99998	2.51882
26	11.6789		12.2536		1.38921	-0.90298	-0.05545				4	0.99998	2.51882
27	11.6789		12.2536			-5.38056	-0.05545	•	1.15786		4	0.99998	2.51882
28	12.9887		11.8054	-45.572	1.97028				-0.34142		4	0.99998	4.29978
29	12.9887		11.8054	-45.572	1.56064	-1.32031					4	0.99998	4.29978
30	12.9887	•	11.9054	-45.572		-6.35044			1.30074		4	0.99998	4.29978
31	13.0255	-2.72281	12.2703		0.24443					-0.27117	4	0.99998	4.35253
32	13.0638		12.8673		0.53009		-0.08621		•	-0.09900	4	0.99998	4.40760
33	13.0731	-2.34229	12.1358	-95.823	0.03131						4	0.99998	4.42102
34	13.0774		12.7802	-37.700	0.43019		-0.08163				4	0.99998	4.42727
35	13.0984	-0.76960	12.5530		0.39535		-0.07148				4	0.99998	4.45758
36	13.1251		12.8342	-44.750	0.45562			-0.08895			4	0.99998	4.49617
37	13.1359	-2.22322	12.1491	-102.360	•	•				0.02380	4	0.99998	4.51183
38	13.1387	-2.26331	12.1678	-95.568					0.00320		4	0.99998	4.51587
39	13.1503	-2.24113	12.1752	-95.372		0.01291					4	0.99998	4.53265
40	13.1579	-2.26980	12.1587	-96.445			0.00248				4	0.99998	4.54365
41	13.1593	-2.25863	12.1604	-96.047				0.00243			4	0.99998	4.54570
42	13.1597		12.9268		0.56948			-0.09502		-0.10841	4	0.99998	4.54631
43	13.1645	-0.88861	12.5612		0.41002			-0.07592			4	0.99998	4.55332
44	13.1891		11.7660		2.17053				-0.36679	-0.07173	4	0.99998	4.58898
45	13.1891		11.7660		1.73045	-1.41841			•	-0.07173	4	0.99998	4.58898
46	13.1891		11.7660			-6.99584			1.44227	-0.07173	4	0.99998	4.58898
47	13.2505		12.7051		0.44692		-0.15299	0.07036		•	4	0.99998	4.67848
48	13.6740	-2.69554	12.2638						0.03274	-0.22834	4	0.99998	5.30701
49	13.8236	-2.66934	12.2547			0.14471		•	•	-0.21310	4	0.99998	5.53377
50	14.0413	-1.27786	12.4433	•		•	-0.05320		0.04801		4	0.99998	5.86826

OBS	_PMSE_	_ANGAIN_	_CGAIN_	_RQ_	_co2_	_02_	WECON_	_MENCON_	_INDHP_	_CIN_	_P_	_RSQ_	_CP_
401	14.886	-2.2531	12.2307	-99.08		0.0359	0.05109	-0.05774	•		6	0.99998	8.501
402	15.241	-1.7860	12.4712				-0.12421	0.09873	0.04906	-0.16715	6	0.99998	8.959
403	15.453	-1.8708	12.4054			0.1977	-0.14762	0.13028	•	-0.15978	6	0.99998	9.238
404	15.733		12.6509	-78.68			-0.16723	0.10633	0.04021	0.10109	6	0.99998	9.612
405	15.870		12.5747	-98.20		0.1317	-0.16237	0.10756	•	0.15268	6	0.99998	9.798
406	86.492	-16.5283		-651.10	5.39702		0.85554	•	-1.83063	1.75494	6	0.99928	319.739
407	86.492	-16.5283		-651.10	3.20062	-7.0793	0.85554		•	1.75494	6	0.99928	319.739
408	86.492	-16.5283		-651.10		-17.3952	0.85554		2.66761	1.75494	6	0.99928	319.739
409	87.443	-23.7124		-292.15	6.77088	-9.1359	3.00163	-2.12216			6	0.99927	326.832
410	87.443	-23.7124		-292.15	9.60539	•	3.00163	-2.12216	-2.36247		6	0.99927	326.832
411	97.443	-23.7124		-292.15	•	-30.9592	3.00163	-2.12216	5.64330		6	0.99927	326.832
412	87.911	-19.7808		-1178.24		-5.1860	2.03905	-1.17593		2.64663	6	0.99926	330.345
413	88.826	-19.8226			9.63609		2.08825	-1.29359	-2.31301	0.22887	6	0.99924	337.284
414	88.826	-19.8226			6.86092	-8.9447	2.08825	-1.29359		0.22887	6	0.99924	337.284
415	88.826	-19.8226				-31.0582	2.08825	-1.29359	5.71834	0.22887	6	0.99924	337.284
416	89.636	-14.8938		-549.19	4.63041			0.86473	-1.68999	1.75745	6	0.99923	343.482
417	89.636	-14.8938		-549.19	2.60275	-6.5354		0.86473		1.75745	6	0.99923	343.482
418	89.636	-14.8930		-549.19	,	-14.9243		0.86473	2.16930	1.75745	6	0.99923	343.482
419	90.827	-19.9321		-1193.23			1 66552	-0.78052	-1.08568	2.71269	6	0.99921	352.698
420	101.611			-984.38	8.40555		1.06529	-0.52402	-2.38990	3.82052	6	0.99901	441.668
421	101.611			-984.38	5.53813	-9.2420	1.06529	-0.52402		3.82052	6	0.99901	441.668
422	101.611			-984.38		-27.0920	1.06529	-0.52402	4.61584	3.82052	6	0.99901	441.668
423	108.254	-20.9453		-1015.51	-6.16217		-0.06280	1.01291		2.48864	6	0.99887	501.444
424	11.689	-2.5497	11.7745	-93.65	2.22623		0.59002	-0.60773	-0.36720		ž	0.99999	6.021
425	11.689	-2.5487	11.7745	-93.65	1.78566	-1.4200	0.59002	-0.60773	,	•	7	0.99999	6.021
426	11.689	-2.5487	11.7745	-93.65		-7.1754	0.59002	-0.60773	1.48829		ż	0.99999	6.021
427	11.979	-2.4345	11.9363		2.30225		0.46006	-0.48342	-0.34620	-0.20234	7	0.99999	6.273
428	11.979	-2.4345	11.9363		1.88688	-1.3388	0.46006	-0.48342		-0.20234	7	0.99999	6.273
429	11.979	-2.4345	11.9363			-7.4204	0.46006	-0.48342	1.57265	-0.20234	7	0.99999	6.273
430	13.236	-1.4755	12.0890	4.17	1.58787			-0.01982	-0.22828	-0.14104	ż	0.99999	7.438
431	13.236	-1.4755	12.0890	4.17	1.31398	-0.8828		-0.01982		-0.14104	7	0.99999	7.438
432	13.236	-1.4755	12.0890	4.17		-5.1179		-0.01982	1.09516	-0.14104	7	0.99999	7.438
433	13.313	-1.6413	12.0131	1.63	1.57293		-0.01007		-0.23338	-0.14531	7	0.99999	7.514
434	13.313	-1.6413	12.0131	1.63	1.29292	-0.9025	-0.01007			-0.14531	7	0.99999	7.514
435	13.313	-1.6413	12.0131	1.63		-5.0697	-0.01007		1.07761	-0.14531	7	0.99999	7.514
436	13.714		12.3234	-43.50	2.03537		0.24546	-0.31772	-0.29198	0.02982	7	0.99998	7.912
437	13.714	· ·	12.3234	-43.50	1.68505	-1.1291	0.24546	-0.31772		0.02982	ż	0.99998	7.912
438	13.714		12.3234	-43.50		-6.5602	0.24546	-0.31772	1.40443	0.02982	7	0.99998	7.912
439	15.262	-1.6423	12.5789	-28.65	0.37958		0.04504	-0.09332		-0.13684	ż	0.99998	9.560
440	16.005	-2.0326	12.2748	-107.32		•	0.05783	-0.07478	0.01100	0.04274	ż	0.99998	10.414
441	16.021	-2.1800	12.1584	-129.27	•	-0.0228	0.08955	-0.09711		0.09154	ż	0.99998	10.432
442	89.071	-19.5161		-936.81	7.99133	0.0220	3.29024	-2.52829	-2.27075	2.01538	'n	0.99935	292.556
443	89.071	-19.5161	•	-936.81	5.26687	-8.7812	3.29024	-2.52829	-2.27073	2.01538	ź	0.99935	292.556
444	89.071	-19.5161	•	-936.81	3.20007	-25.7569	3.29024	-2.52829	4.38976	2.01538	7	0.99935	292.556
445	12.778	-2.5942	11.8094	-76.42	2.24600		0.57541	-0.59275	-0.36365	-0.05203		0.99999	8.000
446	12.778	-2.5942	11.8094	-76.42	1.80970	-1.4063	0.57541	-0.59275		-0.05203	R	0.99999	8.000
447	12.778	-2.5942	11.8094	-76.42		-7.2391	0.57541	-0.59275	1.50832	-0.05203	8	0.99999	8.000
					•		0.3.341		2.30032	0.03403	•	4.5555	

								•					
OBS	_RMS E_	_ANGAIN_	_CGAIN_	_RQ_	_C02_	_02_	MECON	_MENCON_	_INDHP_	_cin_	_P_	_RSQ_	_CP_
51	14.0585	•	12.8545	-56.341		•	-0.07493		0.06272		4	0.99998	5.89481
52	14.1327		12.4197	-152.972			-0.04872			0.28554	4	0.99998	6.01006
53	14.1500		12.6656			•	-0.29611	0.23260	0.05878		4	0.99998	6.03712
54	14.1689	-1.48261	12.3927					-0.05044	0.04442		4	0.99998	6.06663
55	14.1843	•	12.4364	-161.930				-0.05215		0.29871	4	0.99998	6.09076
56	14.2070	-2.90199	11.9832			•		0.02296	•	-0.16424	4	0.99998	6.12619
57	14.2274		12.8891	-65.340		•		-0.07868	0.06344	,	4	0.99997	6.15816
58	14.2481	-1.46158	12.3736			0.19228	-0.04472				4	0.99997	6.19066
59	14.2546	-2.89910	11.9882				0.02094			-0.15758	4	0.99997	6.20091
60	14.2882	-1.70771	12.0067				-0.23559	0.23870			4	0.99997	6.25371
61	14.3159		12.8545	-61.700		0.28092	-0.07114	,			4	0.99997	6.29740
62	14.3563		12.6395			0.25789	-0.32815	0.27072			4	0.99997	6.36131
63	14.3641	-1.67215	12.3080			0.16797		-0.04014			4	0.99997	6.37370
64	14.3818	•	12.9306				-0.08615		0.08244	-0.07633	4	0.99997	6.40171
65	14.5027		12.8795	-70.849		0.27875	•	-0.07361		•	4	0.99997	6.59422
66	14.6946		12.9655	,				-0.09167	0.08507	-0.08418	4	0.99997	6.90303
67	14.7586		12.9146			0.37404	-0.08377			-0.06424	4	0.99997	7.00692
68	14.9195		12.3727	-56.078			-0.32392	0.31729			4	0.99997	7.27021
69	15.1138		12.9346			0.37814		-0.08769		-0.07078	4	0.99997	7.59184
70	15.2222		12.2038				-0.43523	0.42546		0.04637	4	0.99997	7.77308
71	11.5541	-1.86191	11.9272		1.59322				-0.24432	-0.15534	5	0.99999	3.54128
72	11.5541	-1.86191	11.9272		1.30008	-0.94481				-0.15534	5	0.99999	3.54128
73	11.5541	-1.86191	11.9272			-5.13511			1.08357	-0.15534	5	0.99999	3.54128
74	11.7089	-1.65690	11.8328	-49.152	1.47286				-0.24473		5	0.99998	3.71769
75	11.7089	-1.65690	11.8328	-49.152	1.17923	-0.94639				·	5	0.99998	3.71769
76	11.7089	-1.65690	11.8328	-49.152		-4.74718			0.98285	•	5	0.99998	3.71769
77	11.8444	-1.00693	12.0036		1.66288			-0.03414	-0.24818	•	5	0.99998	3.87412
78	11.8444	-1.00693	12.0036		1.36511	-0.95975		-0.03414		•	5	0.99998	3.87412
79	11.8444	-1.00693	12.0036			-5.35965		-0.03414	1.13777	•	5	0.99998	3.87412
80	11.9533	-1.09058	11.9452		1.63185		-0.02663		-0.24895	•	5	0.99998	4.00106
81	11.9533	-1.09058	11.9452		1.33316	-0.96270	-0.02663			•	5	0.99998	4.00106
82	11.9533	-1.09058	11.9452			-5.25963	-0.02663	•	1.11115	•		0.99998	4.00106
83	12.0518		12.2827	•	2.07809		0.17918	-0.25316	-0.29205	•	5	0.99998	4.11700
84	12.0518		12.2827	•	1.72769	-1.12940	0.17918	-0.25316		•	5	0.99998	4.11700
85	12.0518		12.2827	•		-6.69791	0.17918	-0.25316	1.43997	•	5	0.99998	4.11700
86	12.1738		12.3644	•	1.73290		0.17510	-0.06096	-0.23375	-0.05320	5	0.99998	4.26174
87	12.1738	•	12.3644	•	1.45244	-0.90394	•	-0.06096		-0.05320	5	0.99998	4.26174
88	12.1738	•	12.3644	•		-5.58531	•	-0.06096	1.21056	-0.05320	5	0.99998	4.26174
89	12.1847	•	12.3188	-19.209	1.67501	-3.36331	•	-0.05880	-0.23268	-0.05320	5		4.27481
90	12.1847	•	12.3188	-19.209	1.39584	-0.89981	•	-0.05880		•	5	0.99998	
91	12.1847	•	12.3188	-19.209		-5.39875	•	-0.05880	1.16338	•	5	0.99998	4.27481
92	12.3193	•	12.3344		1.65304	-3.33673	0.05464	-0.03880			-	0.99998	4.27481
93	12.3193	•	12.3344	•		-0.86977	-0.05464	•	~0.22491	-0.05175	5	0.99998	4.43636
94	12.3193	•	12.3344	•	1.38319	-5.32794	-0.05464	•	1 15004	-0.05175	5	0.99998	4.43636
95	12.3133	•	12.2857	-17.445	1.60667	-3.32134	-0.05464	•	1.15284	-0.05175	5	0.99998	4.43636
96	12.3377	•	12.2857	-17.445 -17.445	1.33610	-0.07205	-0.05268	•	-0.22550	•	5	0.99998	4.45867
97	12.3377	•	12.2857			-0.87205	-0.05268	•		•	5	0.99998	4.45867
98	13.2488	-1.57545		-17.445	. 43200	-5.17846	-0.05268	. 0. 04050	1.11360		5	0.99998	4.45867
99	13.2689	-1.50726	12.6109	•	0.43298	•		-0.04959	•	-0.19111	5	0.99998	5.60082
100	13.2689	-1.33788	12.5881		0.41412	•	-0.04616		•	-0.18331	5	0.99998	5.62698
100	13.3383	~ L . 33 / 88	12.4985	-65.052	0.27685	•		-0.04850			5	0.99998	5.74384

OBS	_RMSE_	_MIADNA_	_CGAIN_	_RQ_	_cos_	_02_	_MECON_	MENCON	_INDHP_	_CIN_	_P_	_RSQ_	_CP_
101	13.4031	-1.29217	12.4740	-61.370	0.26267		-0.04483				5	0.99998	5.80238
102	13.7124	-2.54805	12.2344	-46.506	0.15669					-0.15852	5	0.99998	6.21340
103	13.7222		11.7528	-72.432	1.87264				-0.33555	0.08602	5	0.99998	6.22648
104	13.7222	•	11.7528	-72.432	1.47004	-1.29762				0.08602	5	0.99998	6.22648
105	13.7222	•	11.7528	-72.432		-6.03573			1.22523	0.08602	5	0.99998	6.22648
106	13.8443	•	12.8383	-16.666	0.49011		-0.08387			-0.06310	5	0.99998	6.39145
107	13.8463		12.9388		0.51074		-0.12248	0.04050		-0.09566	5	0.99998	6.39413
108	13.8704		12.7755	-37.205	0.42772		-0.08810	0.00712			5	0.99998	6.42689
109	13.0001	-1.95130	12.3133	-87.553		•		-0.01701	0.01781		5	0.99998	6.44008
110	13.8844	-0.73790	12.5381	•	0.38229		-0.10608	0.03790			5	0.99998	6.44592
111	13.8881	-1.93479	12.3031	-86.135	•	•	-0.01570		0.01697		5	0.99998	6.45089
112	13.9080	-1.98366	12.1850	-111.446		•		-0.00770		0.06938	5	0.99998	6.47808
113	13.9115	•	12.8695	-32.265	0.49155			-0.09031		-0.03807	5	0.99998	6.48288
114	13.9136	-2.00132	12.1798	-109.369			-0.00651			0.06301	5	0.99998	6.48575
115	13.9221	-2.13708	12.1230	-112.573		-0.02663				0.06142	5	0.99998	6.49722
116	13.9327	-2.22852	12.1507	-101.685					0.00035	0.02138	5	0.99998	6.51178
117	13.9371	-2.10743	12.2415	~92.143	•	0.04408		-0.00750			5	0.99998	6.51772
118	13.9376	-2.40428	12.1656	-103.740			0.06327	-0.06207			5	0.99998	6.51846
119	13.9406	-2.11493	12.2304	-91.910		0.03921	-0.00619				5	0.99998	6.52256
120	14.3162	-1.98055	12.5031		•		-0.03017		0.05339	-0.18350	5	0.99998	7.04256
121	14.3574	-2.12804	12.480B					-0.02755	0.05190	-0.19391	5	0.99998	7.10047
122	14.5611	-2.14815	12.4389		•	0.22045	-0.02256			-0.18100	5	0.99998	7.38913
123	14.5978	-2.29935	12.4041		•	0.20741		-0.01845	•	-0.19090	5	0.99998	7.44156
124	14.7040	-1.04828	12.3972	•			-0.21326	0.17181	0.04132		5	0.99998	7.59407
125	14.7709		12.6743	-100.732	•	•	-0.06788		0.03827	0.14280	5	0.99998	7.69060
126	14.7745		12.7450	-43.251			-0.21503	0.15312	0.05523		5	0.99998	7.69582
127	14.8602	-1.16380	12.3345		•	0.16287	~0.22995	0.19706			5	0.99998	7.82035
128	14.8681		12.6685	-118.734	•		•	-0.07038	0.03396	0.17689	5	0.99998	7.83175
129	14.8846	-2.37711	12.0073		•	•	-0.16963	0.19165		-0.12991	5	0.99998	7.85582
130	14.8990	•	12.5907	-121.644		0.11745	-0.06131			0.19817	5	0.99998	7.87685
131	14.9248	•	12.7652				-0.28446	0.22114	0.06637	-0.06329	5	0.99998	7.91455
132	14.9566	•	12.3911	-137.739			-0.12596	0.08348		0.25849	5	0.99998	7.96114
133	14.9781		12.7218	-44.920	•	0.24064	-0.24240	0.18646			5	0.99998	7.99269
134	14.9828		12.5787	-138.398		0.09526		-0.06308		0.23061	5	0.99998	7.99959
135	15.1720		12.7225			0.28790	-0.32080	0.26358	,	-0.05180	5	0.99997	8.27914
136	12.0245	-1.52447	11.8656		2.22312		0.33282	-0.37548	-0.34193	•	6	0.99999	5.19910
137	12.0245	-1.52447	11.8656		1.81288	-1.32227	0.33282	-0.37548			6	0.99999	5.19910
138	12.0245	-1.52447	11.8656			-7.16536	0.33282	-0.37548	1.51097		6	0.99999	5.19910
139	12.2549	-1.4710B	12.0841		1.57485		•	-0.01944	-0.22761	-0.13188	6	0.99999	5.43894
140	12.2549	-1.47108	12.0841		1.30177	-0.88018		-0.01944		-0.13188	6	0.99999	5.43894
141	12.2549	-1.47108	12.0841			-5.07593		-0.01944	1.08498	-0.13188	6	0.99999	5.43894
142	12.3259	-1.64091	12.0108		1.56819		-0.00988		-0.23321	-0.14180	6	0.99999	5.51386
143	12.3259	-1.64091	12.0108		1.28838	-0.90184	-0.00988			-0.14180	6	0.99999	5.51386
144	12.3259	-1.64091	12.0108			-5.05443	-0.00988		1.07382	-0.14180	6	0.99999	5.51386
145	12.3510	-1.85079	11.9255	-3.819	1.58096	•	•		-0.24340	-0.14652	6	0.99999	5.54038
146	12.3510	-1.85079	11.9255	-3.819	1.28892	-0.94127				-0.14652	6	0.99999	5.54038
147	12.3510	-1.85079	11.9255	-3.819		-5.09561			1.07427	-0.14652	6	0.99999	5.54038
148	12.4089	-1.26603	12.0101	-38.868	1.48449		•	-0.02105	-0.22860		6	0.99999	5.60181
149	12.4089	-1.26603	12.0101	-38.868	1.21020	-0.88404		-0.02105			6	0.99999	5.60181
150	12.4089	-1.26603	12.0101	-38.868	•	-4.78466	•	-0.02105	1.00866	•	6	0.99999	5.60181

composition based energy gain predictive equations

OBS	_FOCS R_	_COMPP_	_compr_	_co2_	_02_	_MECON_	_MENCON_	_cim_	_P_	_RSQ_	_CP_
1	140.888						•	2.53255	1	0.99673	114.031
2	151.292						0.35692		1	0.99623	133.179
3	152.407					0.34202			1	0.99617	135.313
4	190.924			3.0912					1	0.99399	218.611
5	201.296				2.5525				1	0.99332	244.236
6	222.034	10.2383							1	0.99188	299.534
7	314.532		20.1500						1	0.98370	612.163
8	57.063	6.0979	8.3728						2	0.99951	9.802
9	61.910		6.3699			0.23637			2	0.99942	13.131
10	63.629		6.3137		,		0.24762		2	0.99939	14.377
11	65.941		5.9119					1.80587	2	0.99934	16.107
12	81.161		7.7240		1.5981			•	2	0.99901	29.034
13	88.505		7.3604	1.9887					2	0.99882	36.230
14	118.080			-	-3.8912		0.90003		2	0.99789	71.507
15	123.448				-3.6843	0.83481		•	2	0.99770	78.993
16	126.167			•	-2.0935			4.60479	2	0.99760	82.912
17	134.191			-2.1447				4.28623	2	0.99726	94.976
18	137.408			~3.6307			0.77552		2	0.99715	100.021
19	142.044	-2.7218						3.20311	2	0.99695	107.500
20	142.302	•		-3.2285		0.69872			2	0.99694	107.924
21	145.566	-5.6897		•		0.53148			2	0.99680	113.350
22	146.719	-4.9772					0.52985	-	2	0.99675	115.295
23	146.997						0.03726	2.26834	2	0.99674	115.767
24	147.078					0.02439		2.35205	2	0.99673	115.905
25	154.358					-2.27530	2.73124		2	0.99640	128.576
26	179.349			15.0447	-9.8742				2	0.99514	176.729
27	198.177	1.5939		2.6112	•				2	0.99407	217.772
28	208.281	2.2499		•	1.9927		_		2	0.99345	241.485
29	51.992	3.7317	7.2498					0.72207	3	0.99963	7.189
30	54.129	•	10.7466	-13,4939	12.3704				3	0.99960	8.380
31	54.961		7.1206			2.72848	-2.61358		3	0.99959	8.856
32	55.169	3.6562	7.4754			0.09628			3	0.99958	8.977
33	55.225	3.7972	7.4916	•			0.09529		3	0.99958	9.009
34	57.110	4.7810	8.1097		0.3611				3	0.99955	10.120
35	58.128	5.1226	8.0937	0.3363					3	0.99954	10.736
36	58.841		5.9895	-1.2492		0.38069		•	3	0.99952	11.174
37	60.517		5.8518	-1.3415			0.41028	•	3	0.99950	12.224
38	61.408		5.7591		-0.8998	0.36685	•		3	0.99948	12.794
39	62.548		6.1367			0.14912		0.67471	3	0.99946	13.536
40	63.367		5.6298		-0.9402		0.39069		3	0.99945	14.077
41	63.704		6.0771			· ·	0.14301	0.77136	3	0.99944	14.302
42	68.702		5.7605	-0.2944				2.06517	3	0.99935	17.776
43	69.159		5.9240		0.0129			1.79163	3	0.99934	18.106
44	103.410			9.2560	-10.8584		0.80531		3	0.99853	49.133
45	103.659			10.3992	-11.6603	0.75267			3	0.99852	49.403
46	104.966	•	•	-	-3.9935		0.56850	2.45389	3	0.99849	50.834
47	108.281				-3.8486	0.50297		2.62005	3	0.99839	54.545
49	114.197	•	•		-4.0793	-3.09316	4.15406		3	0.99821	61.454
49	114.586	-3.8350	•	·	-3.6629		1.00142	•	3	0.99820	61.921
50	114.895	-5.0409	-		-3.5244	0.98128			3	0.99819	62.293
			•	•			•	•	-		

best balance based energy gain predictive equations

								-					
OBS	_ROCS R_	_MIADNA_	_CGAIN_	_RQ_	_co2_	_02_	_mecon_	_MENCON_	_INDHP_	_CIN_	P	_RSQ_	_CP_
151	12.4896	-1.43768	11.9260	-43.006	1.46534		-0.01062		-0.23414		6	0.99999	5.68800
152	12.4896	-1.43768	11.9260	-43.006	1.18441	-0.90545	-0.01062	•		•	6	0.99999	5.68800
153	12.4896	-1.43768	11.9260	-43.006		-4.72294	-0.01062	•	0.98717	,	6	0.99999	5.68800
154	12.7037	2.45700	12.3494	-33.003	2.04485		0.23343	-0.30605	-0.28915	•	6	0.99998	5.91928
155	12.7037	•	12.3494	-33.003	1.69793	-1.11817	0.23343	-0.30605		•	6	0.99998	5.91928
156	12.7037	•	12.3494	-33.003		-6.59077	0.23343	-0.30605	1.41516	•	6		5.91928
157	12.7804	•	12.3791		2.07585		0.18989	-0.26370	-0.28436	-0.06102	6	0.99998	6.00305
158	12.7804	•	12.3791	•		1 00065					-	0.99998	
159	12.7804	•	12.3791	•	1.73467	-1.09965	0.18989	-0.26370		-0.06102	6	0.99998	6.00305
160	13.0125	•				-6.69067	0.18989	-0.26370	1.44579	-0.06102	6	0.99998	6.00305
161	13.0125	•	12.3563	-5.876	1.71387		•	-0.06025	-0.23278	-0.04063	6	0.99998	6.25968
162	13.0125	•	12.3563	-5.876	1.43458	-0.90019	•	-0.06025		-0.04063	6	0.99998	6.25968
163	13.169g	•	12.3563	-5.876		-5.52399		-0.06025	1.19567	-0.04063	6	0.99998	6.25968
164	13.1698	•	12.3331	-0.881	1.65047		-0.05453	•	-0.22482	-0.04988	6	0.99998	6.43632
165	13.1698	•	12.3331	-0.881	1.38073	-0.86941	-0.05453	•		-0.04988	6	0.99998	6.43632
166	14.1412		12.3331	-0.881		-5.31964	-0.05453		1.15079	-0.04988	6	0.99998	6.43632
167	14.1628	-1.55123	12.5781	-21.171	0.38395	•		-0.04720	•	-0.14369	6	0.99998	7.57373
168	14.1744	-1.59820	12.6137		0.43594	•	0.01029	-0.06032	•	-0.19338	6	0.99998	7.59994
169	14.2534	-1.50432	12.5627	-14.912	0.37857		-0.04414		•	-0.15103	6	0.99998	7.61406
170	14.7962	-1.49574	12.5057	-73.463	0.27800	•	0.07023	-0.12031	•		6	0.99998	7.7103
171	14.8294		12.8262	-12.613	0.48684	•	-0.10880	0.02720		-0.06958	6	0.99998	8.3863
172	14.8334	-2.06651 -1.90241	12.3074 12.2943	-93.162	•	•	0.04183	-0.05846	0.01672		6	0.99998	8.4286
173	14.8357	-2.13460	12.1943	-95.088 -122.757		•	0.07890	-0.01730 -0.08928	0.01449	0.02681 0.07712	6	0.99998	8.4337
174	14.8436	-1.89852	12.2857	-92.399	•	•					6	0.99998	8.4366
175	14.8680	-1.97651	12.1957	-110.022	•	0.00650	-0.01573	-0.00861	0.01407	0.02195	6	0.99998	8.4466 8.4777
176	14.8743	-2.00039			•			-0.00861	•	0.06556	6	0.99998	
177	14.8862	-2.25314	12.1808 12.2307	-109.221 -99.080	•	0.00063 0.03589	-0.00660	-0.05774	•	0.06264	6	0.99998	8.4857 8.5009
178	15.2405	-1.78600	12.4712		•	0.03589	0.05109 -0.12421	0.09873		0 16715	6	0.99998	8.9586
179	15.4531	-1.97077		•	•	0 10771			0.04906	-0.16715	6	0.99998	
180	15.7326	-1.8/0//	12.4054	-20 676	•	0.19771	-0.14762	0.13028	0.04001	-0.15978	6	0.99998	9.2383
181	15.8696	•	12.6509	-78.676	•	0 13174	-0.16723	0.10633	0.04021	0.10109	6	0.99998	9.6121
182	11.6892	-2.54871	12.5747	-98.204		0.13174	-0.16237	0.10756		0.15268	6	0.99998	9.7976
183	11.6892	-2.54871	11.7745	-93.651	2.22623 1.78566	-1.42000	0.59002	-0.60773	-0.36720		7	0.99999	6.0213
184	11 6892	-2.54871	11.7745	-93.651			0.59002	-0.60773	1 40000	•	7	0.99999	6.0213
185	11.9789	-2.43448	11.7745	-93.651		-7.17539	0.59002	-0.60773	1.48829		7	0.99999	6.0213
186	11.9789	-2.43448	11.9363	•	2.30225	1 22070	0.46006	-0.48342 -0.48342	-0.34620	-0.20234	7	0.99999	6.2734 6.2734
187	11.9789		11.9363	•	1.89688	-1.33878	0.46006			-0.20234	7	0.99999	
188	13.2357	-2.43448	11.9363			-7.42039	0.46006	-0.48342	1.57265	-0.20234	7	0.99999	6.2734
189	13.2357	-1.47554	12.0890	4.167	1.58787		•	-0.01982	-0.22828	-0.14104	7	0.99999	7.4379
190	13.2357	-1.47554	12.0890	4.167	1.31398	-0.88277	•	-0.01982		-0.14104	7	0.99999	7.4379
191	13.3134	-1.47554	12.0890	4.167		-5.11786		-0.01982	1.09516	-0.14104	7	0.99999	7.4379
192	13.3134	-1.64133	12.0131	1.633	1.57293	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0.01007	•	-0.23338	-0.14531	7	0.99999	7.5137
193	13.3134	-1.64133	12.0131	1.633	1.29292	-0.90251	-0.01007	•		-0.14531	7	0.99999	7.5137
194	13.7145	-1.64133	12.0131	1.633		-5.06974	-0.01007		1.07761	-0.14531	7	0.99999	7.5137
195	13.7145		12.3234	-43.501	2.03537		0.24546	-0.31772	-0.29198	0.02982	7	0.99998	7.9121
195	13.7145	•	12.3234	-43.501	1.68505	-1.12914	0.24546	-0.31772		0.02982	7	0.99998	7.9121
196			12.3234	-43.501		-6.56022	0.24546	-0.31772	1.40443	0.02982	7	0.99998	7.9121
198	15.2623 16.0052	-1.64230	12.5789	-28.654	0.37958	•	0.04504	-0.09332		-0.13684	7	0.99998	9.5603
199	16.0208	-2.03262	12.2748	-107.322	•	-0.00036	0.05783	-0.07478	0.01100	0.04274	7	0.99998	10.4139
200	12.7776	-2.18003	12.1584	-129.269		-0.02276	0.08955	-0.09711		0.09154	7	0.99998	10.4324
200	12.1110	-2.59425	11.8094	-76.421	2.24600	•	0.57541	-0.59275	-0.36365	-0.05203	8	0.99999	8.0000

composition based energy gain predictive equations

OBS	_ROGSE_	_COMPP_	_COMP F_	_C02_	_02_	MECON	MENCON	_CIN_	_P_	"Bad"	_CP_
101	48.276	2.6126	9.6715	-8.7663	7.6326	0.0423		_	5	0.99974	6.787
102	49.560		8.1655	~8.9150	7.0512	0.1405		0.79905	5	0.99973	7.314
103	50.081		8.2055	-9.2071	7.3059		0.1407	0.82259	5	0.99972	7.532
104	51.042		9.2868	-8.3215	7.3427	1.6819	-1.6244		5	0.99971	7.941
105	53.591	2.7578	6.4986	-1.0977			0.1407	0.95413	5	0.99968	9.061
106	53.678	2.6193	6.5085	-1.0626		0.1354		0.95444	5	0.99968	9.100
107	55.351	-	6.3182	-0.8357		1.9600	-1.8335	0.93725	5	0.99966	9.866
108	55.962	3.1066	6.4763		-0.7192		0.1095	0.90640	5	0.99966	10.151
109	55.969	2.9810	6.4829		-0.7011	0.1069		0.90425	5	0.99966	10.154
110	56.776		6.4600		-0.3970	2.3709	-2.2958	0.86754	5	0.99965	10.537
111	57.199	0.9437	6.9925			2.0919	-2.0868	0.75842	5	0.99964	10.739
112	59.476	5.0970	7.0580	-1.0202		-1.6421	1.0088		5	0.99961	11.055
113	61.085	2.3117	7.1652	•	-0.2134	0.97953	-0.83982	•	5	0.99959	12.6693
114	100.331	-1.0352		7.3044	-9.3761	0.56012		1.95081	5	0.99889	39.2714
115	100.393	-0.4004		7.1419	-9.3251		0.57190	1.96610	5	0.99889	39.3244
116	100.439			7.2189	-9.4215	-0.23548	0.80751	1.97161	5	0.99889	39.3627
117	108.023	3.0428			-4.4704	-4.96243	5.72777	2.31181	5	0.99872	46.0018
118	114.253	-6.4115		10.3421	-10.9679	5.36706	-4.68250		5	0.99857	51.8172
119	122.747	-0.6519		-4.8428		-3.61200	4.36248	2.44553	5	0.99835	60.2710
120	46.614	10.5277	10.3367	-11.8917	9.4376	-6.80707	6.96930		6	0.99979	6.9840
121	47.224	2.3889	8.9189	-8.0645	6.6820		0.01574	0.71608	6	0.99979	7.1944
122	47.245	2.4143	8.9593	-8.1036	6.7410	0.00945		0.72020	6	0.99979	7.2016
123	50.359		8.5719	-7.7618	6.5015	1.43953	-1.40916	0.73054	6	0.99976	0.3184
124	56.216	6.5110	6.4915	-1.6848		-3.20605	3.41396	1.02317	6	0.99970	10.6120
125	59.821	3.3609	6.4666		-0.7525	-0.21256	0.32662	0.91129	6	0.99966	12.1490
126	107.219	-2.0041		7.5627	-9.4585	1.42158	-0.88070	1.93041	6	0.99890	41.2406
127	43.647	11.1859	9.6095	-11.4941	8.6355	-7.60666	7.74533	0.81029	7	0.99984	7.0000
			best			gy gain predi			•	0.23304	7.0000
OBS	_RMSE_	_COMPP_	_COMPT_	_co2_	_02_	MECON	_mencon_	_CIN_	_P_	RSQ	_CP_
1	45.7195	2.9340	10.0048	-9.1280	8.12587						
2	50.1028	2.3340	9.2160	-11.2210	9.65631	•	•	1.01674	•	0.99974 0.99969	4.8749 6.8592
3	50.9906	•	8.8899	-9.7316	8.07781	0.18932	•	1.010/4	7	0.99969	
Ā	51.7128		8.9569	-10.1310	8.42949		0.19336	•	- 1		7.2832
5	44.2052	2.4820	9.0247	-8.1756	6.83936	•	0.19336	0.72693	5	0. 99967 0. 999 79	7.6336 5.2059
6	48.2175	2.6274	9.6344	-8.7428	7.58336	•	0.04838		5	0.99979	6.7631
ž	48.2756	2.6126	9.6715	-8.7663	7.63256	0.04226	0.04636	•	5	0.99974	6.7867
8	49.5601	2.0220	8.1655	-8.9150	7.05116	0.14052	•	0.79905	5	0.99973	7.3144
9	50.0811	:	8.2055	-9.2071	7.30591		0.14075	0.82259	5	0.99972	7.5324
10	51.0422	•	9.2868	-8.3215	7.34270	1.68190	-1.62438		5	0.99971	7.9405
11	53.5912	2.7578	6.4986	-1.0977			0.14070	0.95413	5	0.99968	9.0605
12	53.6779	2.6193	6.5085	-1.0626	•	0.13535		0.95444	5	0.99968	9.0996
13	55.3514	2.0233	6.3182	-0.8357	•	1.96001	-1.83350	0.93725	5	0.99966	9.8658
14	46.6141	10.5277	10.3367	-11.8917	9.43761	-6.80707	6.96930		6	0.99979	6.9840
15	47.2243	2.3889	8.9189	-8.0645	6.68205		0.01574	0.71608	6	0.99979	7.1944
16	47.2450	2.4143	8.9593	-8.1036	6.74101	0.00 94 5	0.015/4	0.72020	6	0.99979	7.2016
17	50.3590		8.5719	-7.7618	6.50147	1.43953	-1.40916	0.73054	6	0.99976	8.3184
18	56.2160	6.5110	6.4915	-1.6848		-3.20605	3.41396	1.02317	6	0.99976	10.6120
19	43.6471	11.1859	9.6095	-11.4941	8.63553	-7.60666	7.74533	0.81029	7	0.99984	7.0000
			2.0023	*** ***		7.00000	1.14333	0.01029	•	v. 33304	7.0000

	8,	8 . 0000 8 . 0000
	2	0.99999 0.99999
	a j	a a
	MID,	-0.05203 -0.05203
,	INDKP	1.50832
cive equation	MENCON	-0.59275 -0.59275
gain predict	MECON	0.57541 0.57541
best balande based energy gain predictive equation	8,	-1.40627 -7.23912
at balance	8,	1.80970
4	gi	-76.421 -76.421
	COLIN	11.8094
	ANGAIN	-2.59425 -2.59425
	RMSH	12.7776

	")	9.0
	a į	a a
	ETS.	-0.05203
)	IMDKP	1.50832
	MENCON	-0.59275 -0.59275
	MCCOM	0.57541 0.57541
-	8 ₁	-1.40627 -7.23912
	80,	1.80970
ì	S,	-76.421 -76.421
	CONTH	11.8094
	ANGAIN	-2.59425
	ROMEN	12.7776
	OBS	201

composition based energy gain predictive equations

							-				
OBS	_RMSE_	_COMPP_	_COMPT_	_C02_	_02_	_MECON_	_MENCON_	_CIN_	_P_	_BSQ_	_CP_
51	119.598			7.9088	-8.0654	•		4.04910	3	0.99804	68.083
52	125.422	•	•	-4.0056	•		0.44298	2.66640	3	0.99784	75.573
53	126.773	-6.6978	•	-3.7068		0.97459	•	•	3	0.99779	77.361
54	126.777	-5.5611	•	-3.8825	•		0.99777	•	3	0.99779	77.366
55	127.684			-4.6877	•	-4.55164	5.64712		3	0.99776	78.578
56	128.286	•		-3.7406		0.37138	•	2.84291	3	0.99774	79.387
57	132.267	-0.2987			-2.0394			4.62485	3	0.99760	84.832
58	136.297	-22.0871	•			14.3264	-13.8256		3	0.99745	90.514
59	139.186	-1.4897		-1.9019			•	4.45473	3	0.99734	94.690
60	143.994	-4.7665		•		0.2426		1.91178	3	0.99715	101.837
61	144.560	-4.3761					0.2290	1.98666	3	0.99713	102.695
62	151.590		•			-1.8167	1.9516	2.13651	3	0.99684	113.624
63	162.460	8.0191	•	21.5929	-17.2780				3	0.99638	131.543
64	45.719	2.9340	10.0048	-9.1280	8.1259				4	0.99974	4.875
65	50.103		9.2160	-11.2210	9.6563			1.01674	4	0.99969	6.859
66	50.991		8.8899	-9.7316	8.0778	0.1893			4	0.99968	7.283
67	51.713		8.9569	-10.1310	8.4295		0.1934		4	0.99967	7.634
68	52.833	3.8758	7.0359	-0.5163				1.13502	4	0.99966	8.187
69	53.961	3.8865	7.0235		-0.2998			1.00851	4	0.99964	8.756
70	54.019		6.8840			2.7277	-2.7172	0.77052	i	0.99964	8.785
71	54.804	3.7146	7.2461			0.0016		0.71457	4	0.99963	9.189
72	54.804	3.7330	7.2501		•		-0.0001	0.72271	4	0.99963	9.189
73	55.584		5.5211	-1.5935		0.2844		1.05206		0.99962	9.596
74	56.304	3.1598	7.0415	-0.7331			0.2097		- 1	0.99961	9.976
75	56.364	2.9314	7.0460	-0.6908		0.2039		•	Ä	0.99961	10.009
76	56.763		5.3984	-1.6742			0.3008	1.10491	- 1	0.99960	10.222
77	57.533		6.8818	-0.3876		2.3725	-2.1932		Ä	0.99959	10.637
78	57.660	3.2948	7.1365		-0.3383	0.1592		•	7	0.99959	10.706
79	57.689	3.4934	7.1369	,	-0.3582		0.1620	•	Ä	0.99959	10.722
80	57.691	1.5893	7.2970	•		1.6578	-1.5546	•	7	0.99959	10.723
81	57.933	2.5555	7.1372	•	0.0168	2.7435	-2.6319	:	7	0.99959	10.856
82	59.014	•	5.1656	•	-1.2512	0.2850		1.02725	7	0.99957	11.453
83	60.480	•	5.0374	•	-1.2961		0.2973	1.08768	7	0.99955	12.291
84	94.733	•	3.0374	7.5780	-9.6772	•	0.5570	1.96490	7	0.99889	37.397
85	95.089	•	•	8.3729	-10.2294	0.5197		1.96563	7	0.99888	37.716
86	102.175		•	0.3123	-4.1451	-2.6189	3.3483	2.27089	- 1		
87	103.250	-3.1134	•	•	-3.7994	-2.0109	0.6791	2.24447	7	0.99871	44.320 45.363
88	103.649	-3.9232	•	•	-3.7008	0.6642		2.24738	:	0.99868	
89	108.611	-1.2731	•	9.0663	-10.5976	0.8002	•		:	0.99867	45.753
90	108.949	-0.3538	•	8.8716	-10.5480		0.8186	•	•	0.99854	50.729
91	108.999		•	9.3872	-10.9517			•	•	0.99853	51.076
92	115.739	•		-4.9390	-10.9517	0.0874	0.7120		•	0.99853	51.128
93		-4.8898	•		•	-4.1460	4.9064	2.45831	•	0.99834	58.284
93 94	116.247 116.454	-1.8898 -5.6525	•	-4.1852 -4.0577	•	0.0505	0.6754	2.36950	•	0.99833	58.840
95			•	-4.05// 11.4818	-11 2606	0.6595	•	2.36242	4	0.99832	59.068
95 96	120.312	3.3485	•	11.4818	-11.3696			3.57321	4	0.99821	63.384
96	120.372	-0.2535	•		-4.0523	-2.8972	3.9546		4	0.99821	63.451
98	133.199	-21.2183	•		•	14.0866	-13.8768	1.92474	4	0.99781	78.817
	133.624	-6.1982		-3.7846		0.5458	0.4391		4	0.99779	79.353
99	44.205	2.4820	9.0247	-8.1756	6.8394	•		0.72693	5	0.99979	5.206
100	48.217	2.6274	9.6344	-8.7428	7.5834	•	0.0484		5	0.99974	6.763

					heat pro	duction pre-	heat production predictive equations	tions					
OBS	FOCSE	ANGAIN	TCARB	g'	8,	8,	MECON	MUENCON	COMPP	CO809.	ا ا	280	0
-	122.512	٠				4.9185	•				7	0.99933	44.69
7	147.948	•			5.95354						-	0.99902	70.22
n •	152.407	٠	•				0.65798			•	- 4 ,	96866.0	75.19
- 4	104.901	•	•		•		•	19989.0	. 0.		- 1 •	0.99893	78.10
n 4	115.571	•	21.2662	•	•	•	•	•	1901.61	•	٠.	0.99610	161.22
۲,	418.485	130.400										0.99218	638.83
•	435.011		•	5706.19							-	0.99155	691.17
0.	999.106	•	•		٠			٠	٠	38.1493	-	0.95538	3697.37
10	57.174							0.80102		-6.6094	~	0.99987	2.12
11	61.910	•	•	•			0.76363	•		-6.3699	8	0.99984	4.04
77	79.502	24.782			٠	3.9925		•	•	٠	7	0.99974	12.50
13	95.458	29.052			4.63985	•		•	•	٠	7	0.99963	21.99
7	109.600	•				3.6297			5.1800		~	0.99951	31.86
15	110.393				-8.87268	12.2472		•			~	0.99950	32.45
91	113.306	•		•		5.2110		•	٠	-2.3679	~	0.99947	34.67
11	113.667		3.4232			4.1304		•			~	0.99947	34.95
œ :	120.943			•	3.87151				6.9140		~	0.99940	40.75
S (123.448	•	•			3.6843	0.16519				~	88666.0	42.83
50	124.542		•	•		3.8304		0.15198			~	0.99937	43.76
12 :	124.691	•	•		6.51664					-3.7594	~	0.99936	88 FF
77	126.855			212.17		4.7371					~	0.99934	45.73
2.5	130.510	24.445	•				. 64007	U. 55902			N 6	0.99930	10
, ,	130.024		. 4 63.63	٠		•	160FC - 0	•	•		v (0.0000	17.61
2 6	142.302		7000.	•	1.22854		0.30128	•	•	•	, ,	0.99922	
27	144.433				3.39854			0.29477			• •	90015	61.96
8	144.573							0.47217	6.1715		۰ ،	0.99914	62.09
58	145.566	-					0.46852		5.6897		~	0.99913	63.07
30	149.180		•	-851.09			0.75547	-	•		~	60666.0	66.70
31	150.478		-4.6273	٠		٠	0.80074	•		•	8	0.99907	68.02
32	152.177			338.04	5.60367			•			8	0.99905	69.17
33	153.861			-762.19		٠		17777			~	0.99903	71.52
F :	154.358		•	•			3.27530	-2.73124			8	0.99902	72.04
٠ د د	155.269		-4.0094 			•		0.81568			7	0.99901	73.00
9 ;	208.96/		3. 7206					•	16.2896	•	N (12866.0	70.00
7	214.171	13.636		•	•	•	•		10 2623	0.047	۷ ،	0.99818	147.02
66	215.475			-136.28					20.1989		۰ ۵	0.99810	148.92
9	278.511	67.597		2776.67							~	0.99683	254.84
#	294.046	40.345	14.7275	-			٠		•		8	0.99646	285.09
42	297.303		24.5890	٠		٠				-6.1809	7	0.99638	291.64
£ 3	323.667		18.3879	776.06						٠	7	0.99571	347.33
Į	344.284	103.141		•	•	٠			•	8.4004	~	0.99515	394.17
.	452.368			5970.91	•				•	-1.8339	~	0.99163	687.04
9 !	48.091		7.3699		4.77736					-5.8608	m .	16666.0	0.15
Ç:	54.808	•						0.89992	-2.4654	-7.3742	en (0.99989	2.28
2 9	54.961	•	•			•	-1.72848	2.61358		-7.1206	m e	6866.0	2.34
* 4	54.960		•	-352.30			. 00313	16628.0		-6.4234	n e	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 . S
}	101	•	•	•			A1 000 . D		70:00:0	P	1		:

OBS	_PMSE_	_ANGAIN_	_TCARB_	_RQ_	_co2_	_02_	MECON	MENCON	_COMPP_	_comp_	_P_	_RSQ_	_CP_
51	56.636				0.93945			0.68711	_	-6.2860	3	0.99988	2.92
52	57.268		6.5847			3.9611				-4.5205	3	0.99988	3.14
53	57.990	•		-434.89			0.80952			-6.1327	3	0.99987	3.40
54	58.501	•			•	0.5914		0.71103		-6.1792	3	0.99987	3.58
55	58.841				1.24921		0.61931			-5.9895	3	0.99987	3.71
56	58.887	3.364			•			0.77775		-6.2795	3	0.99987	3.72
57	59.193		-0.8272					0.8259		-6.50935	3	0.99987	3.0341
58	61.408		•			0.8998	0.6332			-5.75915	3	0.99986	4.6603
59	63.193		-1.3134				0.8014			-6.20317	3	0.99985	5.3401
60	64.384	2.5262	•				0.7469		•	-6.12585	3	0.99985	5.8180
61	75.232		19.6256			11.2089		-1.5097			3	0.99979	10.5011
62	75.347		22.3547		•	12.1119	-1 . 6517				3	0.99979	10.5547
63	77.773	21.8619			-4.2514	7.6132	•				3	0.99977	11.7032
64	78.170	22.3683	•		•	4.2270			•	-1.16845	3	0.99977	11.8945
65	81.513	24.7800	•	211.67	•	3.8116			•		3	0.99975	13.5452
66	82.772	23.3995	0.6471		•	3.8951					3	0.99975	14.1848
67	83.074	23.5016	•		•	3.8731			0.6720		3	0.99974	14.3397
68	03.218	24.4112			•	3.8159	0.0255	•	•		3	0.99974	14.4139
69	83.260	24.5060	•			3.8385		0.0229			3	0.99974	14.4355
70	85.782	24.2806	•	•	5.1833			•		-2.18766	3	0.99973	15.7537
71	93.904	33.9432	-9.2489	•	•	•	0.7735	•			3	0.99967	20.2662
72	95.518	35.2510	-9.0047		•	•	•	0.7925			3	0.99966	21.2118
73	95.817	•	3.6141	•	-9.2845	11.7553					3	0.99966	21.3884
74	96.919	24.2825	•		4.1810	•		•	2.2397		3	0.99965	22.0453
75	97.501	28.8303	•	273.27	4.3670	•	•	•	•	•	3	0.99965	22.3951
76	99.466	27.8683	•	•	4.1529	•	0.0598	•	•		3	0.99963	23.5919
77	99.650	28.1410		•	4.2172	•	•	0.0535	•		3	0.99963	23.7051
. 78	99.974	28.2767	0.3522	•	4.5767	•		•	•		3	0.99963	23.9051
79	102.495	•	•	•	•	4.0324	•	•	4.5553	-2.00133	3	0.99961	25.4934
80	103.659	•	•		-10.3992	11.6603	0.2473	•	•	•	3	0.99960	26.2253
81	103.851	•	•	•	4.7018	•		•	5.6261	-2.95404	3	0.99960	26.3488
82	103.880	•	•	•	-10.7564	11.9269		0.2621	•		3	0.99960	26.3673
. 83	107.705	•	•	'	-5.9385	8.9295	•	•	3.5934		3	0.99957	28.8699
84	109.658	•		600.53	•	4.7895	•	•		-3.11130	3	0.99955	30.1825
85	111.639	•	1.8407	· ·	•	3.5531	•	•	3.7844	•	3	0.99954	31.5391
96	113.135	•	•	-284.63	•	3.6502	.*		6.0754	•	3	0.99952	32.5776
87	114.197	•	•			4.0793	4.0932	-4.1541	•	•	3	0.99951	33.3240
88	114.224	•	•	810.94	5.8096		•	•	•	-4.64310	3	0.99951	33.3435
89	114.403	•	•	214.83	-8.8803	12.0697	•	•	•		3	0.99951	33.4696
90	114.707	•	•	•	-6.3792	10.3036		•		-0.93897	3	0.99951	33.6851
91	114.895	•	•	•	•	3.5244	0.0187		5.0409	•	3	0.99951	33.8107
92	114.901	•			•	3.5286	•	0.0179	5.0712	•	3	0.99951	33.8233
93	116.498	•	4.5067	-385.23		4.2103	•	•		•	3	0.99950	34.9661
94	123.676	•		-395.58	3.9287	•	•	•	8.0838	•	3	0.99943	40.2961
	125.500	•	1.2103	•	3.7940	•		•	6.0510	•	3	0.99941	41.7698
96 97	126.773	•	•	•	3.7068	•	0.0254		6.6978	•	3	0.99940	42.6948
98	126.774	•	•	•	3.7031	•		0.0259	6.7284	•	3	0.99940	42.6954
, 99	127.684 129.144	•	•	153.00	4.6877	3 5000	5.5516	-5.6471		•	3	0.99939	43.4115
100	129.144	•		-153.21		3.5099	0.2061		•	•	3	0.99938	44.5713
- 100	129.320	•	20.8408		13.8845	•	•	-1.5851		•	3	0.99938	44.8718

OBS	_POASE_	_ANGAIN_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	_HENCON_	_COMPP_	_COMP#_	_P_	_RSQ_	_CP_
151	57.082			-277.17	0.51429	•	•	0.76926		-6.28599	4	0.99989	4.068
152	57.281	2.5037		-336.63			•	0.82086		-6.18608	4	0.99989	4.131
153	57.533			•	0.38764		-1.37246	2.19324		-6.88182	4	0.99989	4.211
154	57.592					0.21037		0.86075	-2.2870	-7.16584	4	0.99989	4.230
155	57.635		0.5938	•	•		-2.02011	2.90152		-7.27864	4	0.99989	4.244
156	57.660					0.33833	0.84081		-3.2948	-7.13650	4	0.99989	4.252
157	57.691						-0.65784	1.55461	~1.5893	-7.29698	4	0.99989	4.262
158	57.770		0.0492					0.89940	-2.4893	-7.30759	4	0.99989	4.288
159	57.869			-330.98		0.14839		0.91498		-6.32672	4	0.99989	4.320
160	57.918		-0.1766	-342.54				0.84415		-6.40719	4	0.99989	4.335
161	57.933					-0.01675	-1.74353	2.63191		-7.13721	4	0.99989	4.340
162	58.109		-0.2048	•			0.90601		-3.5624	-7.42107	4	0.99989	4.397
163	50.972			-309.81	0.79267		0.70474			-5.95959	4	0.99988	4.678
164	59.372	4.3110	5.7121	,		3.93709				-4.00403	4	0.99988	4.810
165	59.399		6.9812	-157.09		3.99612				-4.45562	4	0.99988	4.819
166	59.675	8.5247				1.56075	0.48101			-4.48711	4	0.99988	4.910
167	60.091		4.6725			2.95174		0.21122		-5.02758	4	0.99988	5.049
168	60.194		8.1117			4.71070	-0.15266			-4.20201	4	0.99988	5.083
169	60.422			-368.163		0.4206	0.74148			-5.88361	4	0.99988	5.1598
170	60.757		-0.5882	-404.722			0.82324			-6.07450	4	0.99988	5.2731
171	60.856	10.6196	-3.4523				0.79274			-4.90597	4	0.99988	5.3063
172	60.980	1.2242		-425.679			0.80046			-6.01948	4	0.99988	5.3403
173	74.878	21.1201		432.825		3.9781				-1.77119	4	0.99981	10.6028
174	76.237		23.6640	365.536		13.0214	-1.85563				4	0.99981	11.1747
175	76.607	22.0868		591.330	4.7882					-2.97405	4	0.99980	11.3318
176	78.307		20.0961		-2.2092	12.9548	-1.45068				4	0.99979	12.0648
177	78.575	5.7124	15.7391			9.7496		-1.21071			4	0.99979	12.1818
178	78.575		21.2392		•	11.8807		-1.61733	-1.09608		4	0.99979	12.1819
179	78.658	5.8495	17.8205			10.4340	-1.31665				4	0.99979	12.2193
180	78.695		21.1221			11.7230	-0.79722	-0.79772			4	0.99979	12.2344
181	78.738		19.8267	146.372		11.4462		-1.56679	ē		4	0.99979	12.2532
182	78.887		21.2987			11.6868	-1.59054		0.84898		4	0.99979	12.3187
183	79.213	10.3645	1.3502		-5.1446	8.1708					i	0.99979	12.4621
184	79.240		19.0577		-0.5810	11.4327		-1.45566			4	0.99979	12.4741
185	79.638	19.8160		·	-5.4254	7.9208		0.10316	·		Ä	0.99979	12.6498
186	79.821	19.8119			-5.2610	7.8261	0.09336				4	0.99979	12.7310
187	79.837	21.8539		213.006	-4.2606	7.4390					4	0.99979	12.7382
189	81.287	21.6914	,		-2.6858	6.4009				-0.60312	Ä	0.99978	13.3885
189	81.872	20.7469	·	•		4.0837			0.82940	-1.18865	Ä	0.99978	13.6539
190	81.932	22.2744	•	•	-4.3785	7.7680	·	•	-0.26242	2.20005	i	0.99978	13.6815
191	85.190	25.8619	•	343.791		4.2150	-0.07453	•		•		0.99976	15.1966
192	85.197	25.6745	•	333.524	•	4.2075		-0.07452	:	•	Ä	0.99976	15.2001
193	85.747	25.9852	•	263.404	•	3.0798	•		-0.63297	•	i	0.99975	15.4616
194	85.852	25.4196	-0.2996	251.373	•	3.8227	•	•	U. UJZ 97	•	7	0.99975	15.5116
195	86.677	19.6680	-0.2990	232.373	4.7333		•	•	2.18010	-2.17417	4	0.99975	15.9078
196	86.941	22.7544	•	•	4. 1333	3.8908	0.86870	-0.98172	2.16010	2.1/11/	7	0.99975	16.0355
197	87.165	22.8998	0.5521	•	•	3.8439	0.00070		0.36888	•	7	0.99975	16.1438
198	87.522	23.4931		•	•	3.7929	0.01424	•	0.56783	•	7	0.99974	16.3172
199	87.534	23.4929	•	•	•	3.8026		0.01246	0.59797	•	4	0.99974	16.3231
200	96.695	23. 1323	4.8024	-421.613	-9,4051	11.9418	•	V. 422 40	0.33.31	•	7	0.99969	21.0199
		•	1.0027	444.013	2. 17.72		•	•	•	•	•	3.2223	

OBS	_ROCS E_	_angain_	_TCARB_	_RQ_	_CO2_	_02_	_MECON_	MENCON	_COMPP_	_compr_	_P_	_RSQ_	_CP_
251	226.737	5.1063	4.4653	-457.24					16.4043		4	0.99828	138.069
252	227.137		5.2802	-607.33		-			17.0232	-0.18094	4	0.99827	138.573
253	227.694	13.6977	2.0884	•					15.3764	0.73629	4	0.99826	139.279
254	228.202	17.3683		-156.81					16.7335	1.87177	4	0.99826	139.924
255	300.108	49.1509	6.9259	1829.18						-0.76236	4	0.99698	245.642
256	47.063		9.1545		7.7542	-2.21144			-1.9536	-7.25467	5	0.99993	2.479
257	48.077		8.8250	85.05	5.1877				-2.5664	-6.73578	5	0.99993	2.718
258	48.276				8.7663	-7.63256	0.9577		-2.6126	~9.67153	5	0.99993	2.765
259	48.392		9.0925		5.2893	,	•	-0.0224	-2.2847	-6.59685	5	0.99993	2.793
260	48.400		8.8127		5.1288		0.0063		-2.3122	-6.62606	5	0.99993	2.795
261	48.400	-0.0511	8.8860		5.1645				-2.3005	-6.62574	5	0.99993	2.795
262	49.533		4.6993		9.0621	-5.41593		0.3849		-7.99706	5	0.99993	3.069
263	49.584				8.2802	~7.31096		0.9683	-1.4668	-9.53128	5	0.99993	3.082
264	49.804	-4.2220	9.2127		10.0507	-4.37554				-7.85729	5	0.99993	3.136
265	50.044			-195.71	8.2961	-7.34329		0.9341		-8.99096	5	0.99993	3.195
266	50.371	•	8.7600		4.9612		-1.4745	1.4820		-6.39689	5	0.99992	3.276
267	50.433		6.3381		9.0978	-4.51548	0.1851	,		-7.46931	5	0.99992	3.292
268	50.490	3.7962			8.0712	-6.55585		0.7937		-8.22662	5	0.99992	3.306
269	50.746		8.1172	7.11	8.7875	-3.34995				-6.99865	5	0.99992	3.370
270	51.042				8.3215	-7.34270	-0.6819	1.6244		-9.28677	5	0.99992	3.445
271	51.231	9.4827			1.3033		0.6776		-3.3184	-6.06056	5	0.99992	3.493
272	51.777			-239.56	8.9125	-7.63402	0.8662			-8.70736	5	0.99992	3.632
273	51.818	9.3964			1.1927	•		0.6913	-2.4892	-6.04930	5	0.99992	3.642
274	51.954	-5.6211	13.5127		7.4664		-0.4503			-6.35464	5	0.99992	3.677
275	52.884		9.9387	27.82	6.1622		-0.2370			-5.77034	5	0.99992	3.918
276	53.067	3.6561			8.6739	-6.81859	0.7261	,		-8.00405	5	0.99992	3.966
277	53.179	11.5438	-2.4615				0.9031		-3.7820	-6.08606	5	0.99992	3.996
278	53.234	-3.5822	11.2041		6.5623			-0.3071		-6.05657	5	0.99992	4.010
279	53.451	-1.1686	7.8506	-93.67	4.8098					-5.97145	5	0.99991	4.067
280	53.454	9.5676				1.02883	0.6890		-3.5960	-5.83476	5	0.99991	4.068
281	53.4672		8.2031	-48.111	5.18690			-0.06951		-5.79037	5	0.99991	4.0717
282	53.6044	10.9999	-2.0983					0.89591	-2.68773	-6.11045	5	0.99991	4.1080
283	53.7208	9.4052				0.9204		0.70610	-2.74667	-5.86951	5	0.99991	4.1389
284	53.8437	8.7891			0.97108		-1.62569	2.32724		-5.89374	5	0.99991	4.1716
285	55.1652	9.7602	-1.4704				-1.88250	2.75184		-6.03093	5	0.99991	4.5280
286	55.1772	8.6678				0.6437	-1.92844	2.66536		-5.86134	5	0.99991	4.5312
297	56.0998	5.5784		-141.153				0.88434	-2.65030	-6.80987	5	0.99991	4.7852
288	56.2118	6.3007		-86.327			-2.06726	2.93479		-6.55717	5	0.99991	4.8163
289	56.2921	6.8820					-1.57552	2.45147	-1.14421	-6.75526	5	0.99991	4.8387
290	56.5095	5.1557		-172.275			0.88863		-3.67655	-6.88964	5	0.99990	4.8993
291	56.6567	4.3917	7.3897			4.3277			-2.75411	-4.76976	5	0.99990	4.9405
292	56.9834	7.0244		-117.352	1.30708			0.60690		-5.40842	5	0.99990	5.0324
293	57.6277		6.6048			3.4732		0.18319	-2.72902	-5.72861	5	0.99990	5.2150
294	57.6416		6.6552			3.5257	0.17364		-2.93839	-5.70998	5	0.99990	5.2190
295	57.8703		8.2721	1.333		4.3511			-2.74888	-5.29495	5	0.99990	5.2844
296	58.0396		6.5854			3.1849	-2.10186	2.32226		-5.71093	5	0.99990	5.3329
297	58.3142			-208.684	0.46203		0.82874		-2.51791	-6.87676	5	0.99990	5.4119
298	58.7459			-200.984	0.33442			0.84448	-1.54098	-6.86618	5	0.99990	5.5370
299	58.8016	7.6791	-2.0082	-193.170	•			0.82967		-5.51130	5	0.99990	5.5531
300	59.0336		0.2841	-246.598			•	0.89295	-1.82605	-7,08003	5	0.99990	5.6208

OBS	_RMSE_	_angain_	_TCARB_	_RQ_	_C02_	_02_	_MECON_	MENCON	_COMPP_	_compr_	_P_	_rsq_	_cp_
301	59.0357	•		-250.352	•	0.1033	0.88089		-2.76184	-6.99835	5	0.99990	5.6214
302	59.0632	•		-253.963			0.58747	0.31118	-2.44717	-7.06073	5	0.99990	5.6294
303	59.0785		0.0465	-263.641			0.89938		-2.85188	-7.09434	5	0.99990	5.6339
304	59.1249	•		-240.233	•	-0.0172		0.89926	-1.72261	-7.02942	5	0.99990	5.6474
305	59.2855	5.8358		-198.866		0.8133		0.65885		-5.34044	5	0.99990	5.6945
306	59.2986	7.0069		-136.884	1.55458		0.55219			-5.14513	5	0.99990	5.6983
307	59.3268	•	0.6117	-230.058	•		-1.42430	2.30159		-6.98313	5	0.99990	5.7066
308	59.4759				1.02023		2.64211	-1.88884	-5.09701	-7.05795	5	0.99989	5.7504
309	59.5318			-214.394	0.22539		-0.95805	1.80201		-6.70193	5	0.99989	5.7669
310	59.5805			-239.202		-0.1637	-1.24692	2.15991		-6.97094	5	0.99989	5.7812
311	59.9554	11.0552	-3.9305	•	•	-0.4695		0.91431	•	-5.39116	5	0.99989	5.8921
312	61.0754		0.4284				-1.34007	2.22904	-0.88890	-7.33327	5	0.99989	6.2274
313	61.0851					0.2134	0.02047	0.83982	-2.31167	-7.16525	5	0.99989	6.2304
314	61.1988		1.6924	-294.705	•	1.0518		0.62256		-5.89343	5	0.99989	6.2647
315	62.0893	6.0254		-217.663	•	1.0837	0.58966			-4.93364	5	0.99989	6.5363
316	62.4240	6.9255	-2.2270	-268.600			0.81025			-5.27181	5	0.99988	6.6394
317	62.6583	2.8740	6.2593	-101.573		3.9677				-4.13425	5	0.99988	6.7119
318	62.8487	•	5.1849	-216.265	•	3.0542	0.19451			-4.83697	5	0.99988	6.7710
319	62.8501	5.6335	3.7677			3.1067	0.16762			-4.19527	5	0.99988	6.7715
320	76.8555	24.9546	•	650.211	•	4.2473			-2.28213	-2.01832	5	0.99982	11.6116
321	79.2958	21.2750		462.991	0.95968	3.1840			•	-2.01519	5	0.99981	12.5542
322	79.7181	6.8185	18.4376	382.002	•	11.1066	-1.47426			•	5	0.99981	12.7203
323	80.4611	24.2761		718.599	4.96280	•			-1.25789	-3.15108	5	0.99981	13.0147
324	80.8124		24.1156	391.914		13.2308	-1.89102		-0.28708		5	0.99981	13.1549
325	80.8385		23.9875	385.385	•	13.1505	-2.04168	0.16335			5	0.99981	13.1653
326	80.8428	•	23.2698	348.427	-0.32563	13.1031	-1.81645				5	0.99981	13.1670
327	80.8675		23.7345	359.541		13.2971	•	-1.89109	-2.45565		5	0.99981	13.1769
328	81.3298	8.8893	12.3245		-3.07104	10.7339	-0.86311				5	0.99980	13.3624
329	81.7756	25.9911	•	428.929	-5.54689	8.8182	•		-2.63683		5	0.99980	13.5422
330	82.1768	7.8182	14.5977	212.016		9.5554	•	-1.18319	•		5	0.99980	13.7050
331	82.2328	19.5307	1.9881		-6.43485	9.4921			-1.79295	•	5	0.99980	13.7278
332	82.5067	9.7543	10.5414	•	-2.50391	9.6815	•	-0.76629	•		5	0.99980	13.8394
333	82.6592	5.3632	17.4915	•	•	10.4696	•	-1.33004	-1.02907	•	5	0.99980	13.9017
334	92.9650	21.5113		•	-6.78116	9.0606	0.15007	-	-1.87296	•	5	0.99980	13.9859
335	82.8901	21.4832	_•_		-6.81851	9.0708	•	0.15345	-1.69495	•	5	0.99980	13.9963
336	82.9126	4.9211	17.5155	•	:	10.3771	-0.65954	-0.66310	•	•	5	0.99980	14.0055
337	82.980	•	20.0463	•	-1.7808	12.6375	-1.1515	-0.3157	•		5	0.99980	14.033
338	82.985		20.2320		-1.4420	12.6037		-1.5101	-1.3695		5	0.99980	14.035
339	83.004		20.0066	•	-1.9306	12.6978	-1.4544	•	0.3010	•	5	0.99979	14.043
340	83.162	4.8375	17.8504	•		10.4206	~1.3309		0.6066	•	5	0.99979	14.108
341	83.237	20.9831		•	-6.9795	9.0152	-1.2451	1.4227		•	5	0.99979	14.139
342	83.320	•	21.1866			11.9306	0.5251	-2.1485	-1.7299	•	5	0.99979	14.173
343	83.494		20.2110	161.551	0.3718	11.3276	•	-1.6073	•	•	5	0.99979	14.245
344	83.885	19.1737	1.0367	75.840	-4.9405	7.9793	•		•	•	5	0.99979	14.407
345	84.231	20.5381	•	104.418	-5.0133	7.7262		0.0666	•	•	5	0.99979	14.550
346	84.374	20.6866	•	118.651	-4.8332	7.6378	0.0533	•			5	0.99979	14.610
347	86.181	21.2733	•	•	-2.3802	6.1098			0.2532	-0.6736	5	0.99978	15.373
348	89.419	24.2862	•		•	4.7381	6.8929	-7.0139	-8.0741	•	5	0.99976	16.779
349	89.966	27.6124	•	429,618	•	4.3705		-0.0860	-0.9452	•	5	0.99976	17.022
350	90.039	27.5485	•	424.060	•	4.3418	-0.0814	•	-0.8337	•	5	0.99976	17.054

heat production predictive equations

OBS	_ ROAS E_	_ANGAIN_	_TCARB_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_COMPP_	_COMPT_	_P_	_RSQ_	_CP_
451	86.831	24.6192		313.797	-6.3875	9.1526	,	0.07258	-2.6771		6	0.99980	15.3193
452	87.443	23.7124		292.149	-6.7709	9.1359	-2.00163	2.12216		•	6	0.99980	15.5504
453	87.567	9.8546	11.6394	166.069	-1.5442	9.5555		-0.91507			6	0.99980	15.5971
454	88.026	7.1285	16.0354	•	•	10.2164	2.22427	-3.48559	-3.6920		6	0.99980	15.7716
455	88.473	21.7841	•		-6.3784	8.9326	1.48740	-1.37184	-3.4183		6	0.99980	15.9424
456	88.689		20.1545	•	-1.6421	12.6449	-0.62283	~0.86511	-0.6556		6	0.99980	16.0254
457	93.258	27.7616	•	371.607		5.1258	6.12986	-6.32123	-8.4488	•	6	0.99977	17.8246
458	109.770	37.5579	-11.6265	172.419	•		5.90056	-5.09839	-6.1793	•	6	0.99969	25.0810
459	110.174	36.6291	-12.5037		-0.6959		6.01370	-5.09366	-5.8590	•	6	0.99968	25.2730
460	111.032	37.9438	-12.9547	176.281	-1.5352	•	1.03259		-0.4599	•	6	0.99968	25.6839
461	111.084	35.7939	-11.5084	144.504	-0.8759		1.08943	-0.18284		ă.	6	0.99968	25.7091
462	111.594	37.0855	-12.0429	190.174	-1.2534			0.97430	0.8126		6	0.99968	25.9551
463	113.026	27.7624	•	241.004	5.7119		5.99321	-6.20349	-5.6470		6	0.99967	26.6510
464	117.746	•	•	-479.746	-9.9812	10.3528	-2.54012	2.92174	5.1419		6	0.99964	29.0087
465	134.791	•	14.6434	-177.453	11.5154	•	4.28595	-5.58372	0.5748		6	0.99953	38.3260
466	46.665		5.3677	•	11.4666	-6.4743	7.30278	-7.00972	-10.3207	-9.0619	7	0.99995	5.0400
467	46.969	5.5959	•		10.2241	-7.4955	7.84037	-7.11704	-11.0066	-9.0881	7	0.99995	5.0929
468	48.486			-188.606	11.5857	-9.2683	8.28006	-7.42679	-10.6856	-10.1285	7	0.99995	5.3616
469	52.399	1.8557	3.8913		7.8700	-4.8200	0.52625	•	-2.5324	-8.3258	7	0.99994	6.0939
470	52.496	•	5.5117	15.475	8.3531	-4.6026	0.39721		-2.3826	-8.3792	7	0.99994	6.1127
471 472	52.573 52.934	5.2287	10.7871	120.192	7.0966		4.52733	-4.82625	-7.9451	-6.6601	7	0.99994	6.1278
473	52.934 53.030			-12.059	7.1136	-5.7638	0.85468		-2.8802	-8.4755	7	0.99994	6.1985
474	53.090	-0.0086	6.6965 9.7794	54.151	8.1915	-3.8710		0.27154	-2.0509	-8.0795	7	0.99994	6.2174
475	53.122	0.2196	5.8689	•	6.4639 8.0044	. 1446	4.67630	-4.86695	-7.8240	-6.6118	7	0.99994	6.2292
476	53.392	-1.5348	9.4964			-4.1446	•	0.35908	-1.8976	-8.1451	7	0.99994	6.2356
477	54.363	5.6002		98.896 4.518	8.6083 6.6085	-2.9054 -5.3654	•	0.85381	-2.1652	-7.7795	7	0.99994	6.2889
478	55.200	0.1057	10.2347	141.418	6.0482		•	-0.15094	-1.9167	-8.2844	7	0.99993	6.4830
479	55.320	1.0292	9.2001	132.100	5.5351		-0.06188		-2.6376 -2.5888	-6.6475 -6.6078	7	0.99993 0.99993	6.6531 6.6776
480	55.471	-0.7443	6.2088		8.1544	-4.2337	-1.02519	1.34981	-2.3000		7	0.99993	6.7087
481	55.485		5.5377	-9.118	7.9399	-4.3194	-1.01506	1.39419	•	-8.0084 -7.9832	7	0.99993	6.7117
482	56.569	-1.9462	5.0080	-119.250	9.1045	-5.6216	-1.01308	0.42835	•	-8.2973	7	0.99993	6.9369
483	56.649	3.9303		-70.563	6.9017	-5.8367	-0.80038	1.67222	•	-8.2924	7	0.99993	6.9537
484	57.064	11.1963		81.161	2.2077		4.59191	-4.04014	-8.1813	-5.9739	'n	0.99993	7.0413
485	57.247	-4.5947	8.4874	-91.433	9.8996	-4.7206	0.10045			-8.0312	'n	0.99993	7.0801
486	57.790	-1.2225	10.4259	93.566	5.8206		-1.63957	1.49888		-6.5206	ż	0.99993	7.1960
487	60.986	13.0711	-3.7628			-0.2468	2.80715	-1.B3914	-6.0606	-6.1017	ż	0.99992	7.9003
488	60.998	12.7045	-3.2111	3.343			2.74562	-1.82879	-6.0066	-6.0280	7	0.99992	7.9030
489	61.392	11.9825	-2.8928	10.587		-0.1724	0.93903		-3.8494	-6.1321	i	0.99992	7.9926
490	61.446	10.3970		36.198		1.3224	1.98184	-1.34291	-5.2711	-5.6959	7	0.99992	8.0049
491	61.869	11.0357	-1.6264	30.978		0.2693		0.84117	-2.7903	-6.0163	7	0.99991	8.1015
492	63.685	9.3480	-0.8451	2.538		0.2862	-1.90223	2.71273		-5.9460	7	0.99991	8.5245
493	66.370		5.5866	-82.001	•	2.9041	0.07811	0.22091	-2.5625	-5.9014	7	0.99990	9.1725
494	90.236	12.9355	13.2034	406.064	-2.5988	11.3798		-1.04029	-2.9627		7	0.99982	16.1065
495	90.313	12.7621	13.2032	409.413	-2.9000	11.4779	-1.01494		-1.8004		7	0.99982	16.1323
496	90.671	11.6543	13.7341	397.303	-2.9809	11.5378	-2.34717	1.31875			7	0.99982	16.2528
497	91.048	10.0295	17.2713	451.578		11.1098	0.93717	-2.37198	-3.8097		7	0.99981	16.3796
498	93.241		23.6614	370.023	-0.4067	13.4111	-1.38044	-0.47234	-0.9060		7	0.99981	17.1297
499	93.374	11.7455	10.3503		-3.7371	10.7317	0.71237	-1.43083	-2.5178	•	7	0.99981	17.1758
500	93.700	24.7988		309.087	-6.0624	9.0473	1.12055	-1.07529	-3.9607	•	7	0.99980	17.2889

OBS	_RMS E_	_angain_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	MENCON	_COMP_	_COMPT_	_P_	_RSQ_	_CP_
351	90.357	25.9418		347.924		4.2169	-0.1075	0.0332			5	0.99976	17.196
352	90.836	26.9022	-0.3700	317.893		3.9007			-0.6998	•	5	0.99975	17.411
353	102.223		4.5159	-455.527	-8.6555	11.1995			0.8765		5	0.99969	22.849
354	103.100	35.5029	-11.1894		ē	•	6.2573	-5.4577	-6.0554		5	0.99968	23.295
355	103.924	36.4646	-11.9831	154.516	-1.1151		0.9508	•		•	5	0.9996B	23.716
356	103.974	34.4563	-9.8229	161.722		•	1.1601	-0.4069			5	0.99968	23.742
	104.080	35.5353	-9.8807	213.147	•	•	0.7614		-0.0237		5	0.99968	23.797
358	104.184	34.9046	-12.0511		-1.3222	•	1.4095	-0.4260	•	•	5	0.99968	23.850
359	104.266	36.7759	-13.6088	•	-2.1292	•	1.1323		-0.0957	•	5	0.99968	23.893
360	104.521	35.2040	-9.6073	218.474		•	•	0.7546	0.9046	•	5		24.024
361	104.660	39.4820	-12.8989	260.968	-1.5426	•	•	1.0425			5	0.99967	24.096
362	104.857	35.7991	-12.7400	•	-1.9096	•		1.0937	1.3352		5	0.99967	24.199
363	106.485	25.3759	•		5.3482	•	6.2318	-6.3846	-5.2061	•	5	0.99966	25.049
364	106.742	26.2486		215.797	4.8627	•	1.5914	-1.6975		•	5	0.99966	25.185
365	106.972	28.5279	-1.1897	308.708	4.2667	•	•		1.3578	•	5	0.99966	25.307
366 367	107.464	26.9450	•	263.072	4.6526	•		-0.0731	1.4734	•	5	0.99966	25.567
369	107.504 110.435	26.8723	•	257.564	4.6191		-0.0682		1.5599	•	5	0.99966	25.589
369	110.512	•	•	-503.946 -505.382	-9.2923 -9.1915	10.1303 10.0963	, , , , , ,	0.3238	2.3149	•	5	0.99964	27.169
370	111.037	•	•	-505.382 -505.180	-9.1915 -9.2063	10.0963	0.3153 1.7355	-1.4413	1.9711	•	5	0.99964	27.211 27.499
371	113.858	•		197.821	1.3172	2.9585			4.1050	-2.5775	5	0.99963	27.499
372	114.253	•	•	197.621	-10.3421	10.9679	-4.3671	4.6825	6.4115	~2.3/13	5	0. 99961 0. 99961	29.291
373	123.054	•	•	-536,350	10.3421	3.6344	5.6173	-5.5862	-0.9256	•	5	0.99955	34.457
374	126.095		14.7424	-176.755	11.6483	3.0344	4.7512	-6.0679	-0.9236	•	5	0.99953	36.332
375	126.446		16.2105		12.5194		4.0587	-5.5309	0.4879	•	5	0.99952	36.551
376	126.838	·	14.1842	-157.763	10.5467			-1.1616	5.5974	•	5	0.99952	36.797
377	127.274	•	13.6070	-171.904	10.0335		-1.0810		6.9180		5	0.99952	37.070
378	130.119	17.7658		-307.186			-11.2651	11.8045	16.7337		5	0.99950	38.882
379	135.096			-668.789	3.1832		2.6242	-2.4933	4.4451		5	0.99946	42.148
380	140.597		-2.7790	-835.636			-3.0448	3.6559	11.4345		5	0.99941	45.899
381	240.367	7.4219	3.6759	-431.918					16.4628	0.4783	5	0.99828	139.921
382	46.614				11.8917	-9.4376	7.8071	-6.9693	-10.5277	-10.3367	6	0.99994	3.703
383	48.608		5.3175		8.3272	-4.6866	0.4188	•	-2.3621	-8.4048	6	0.99994	4.114
384	49.012	5.3853			7.0978	-5.7267	0.8501		-2.9120	-8.4563	6	0.99994	4.199
385	49.152	•	9.7732		6.4613		4.6767	-4.8669	-7.8248	-6.6112	6	0.99994	4.229
386	49.183		6.0361	,	8.0644	-4.1331		0.3463	-1.8921	-8.1562	6	0.99994	4.236
387	49.530	•	9.1237	129.018	8.2166	-2.5756			-2.3004	-7.5358	6	0.99994	4.310
388	49.754	-3.0656	9.8845		8.7523	-3.0400			-1.8453	-7.8726	6	0.99994	4.358
389	50.331	5.5417	ė		6.6135	-5.3787		0.8556	-1.9027	-8.2913	6	0.99993	4.483
390	50.644	•	•	-148.135	8.3648	-7.4066	0.9761	•	-2.3285	-9.4737	6	0.99993	4.552
391	51.106	•	10.3053	140.746	6.0770	•	•	~0.1559	-2.6328	-6.6546	6	0.99993	4.653
392	51.240	1.7150	8.4513	124.998	5.1833		•	•	-2.6794	-6.5779	6	0.99993	4.693
393	51.2437	•	9.8818	125.746	5.8050		-0.10912		-2.49628	-6.67707	6	0.99993	4.6939
394	51.3712		5.6391		7.9487	-4.2728	-1.03632	1.40438		-7.96912	6	0.99993	4.7121
395	51.7097	-0.9307	9.7652	•	5.5764	•	, , , , , , ,	-0.07211	-2.25680	-6.66198	6	0.99993	4.7876
396	51.7414	0.0857	8.7515		5.1035		0.01076		-2.32003	-6.62008	6	0.99993	4.7947
397	52.1632	•		-140.413	7.8894	-7.0890	•	0.98577	-1.17560	-9.33992	6	0.99993	4.8896
398	52.4746		3.5385	-114.659	8.6157	-5.7429		0.53636	•	-8.18765	6	0.99993	4.9601
399 400	52.5857	4.8409	E 0212	•	6.7385	-5.5802 -5.3076	-0.98713	1.83474	•	~8.16528	6		4.9854 5.0539
400	52.8861	-1.5687	5.9212	•	9.4705	-5.3076	•	0.29294	•	-8.07930	6	0.99993	3.0339

OBS	_POCS E_	_angain_	_TCARB_	_RQ_	_CO2_	_02_	_MECON_	_MENCON_	_COMPP_	_COMP_	_P_	_RSQ_	_CP_
101	130.558		•	-65.88		3.7576		0.1700			3	0.99937	45.7063
102	132.075	21.2097		-558.45			0.6159				3	0.99935	46.9386
103	132.368			-1104.75				0.5509	7.7057		3	0.99935	47.1784
104	132.944	22.7651		-481.96				0.6254	,		3	0.99934	47.6506
105	133.022			-1122.04		•	0.5497	•	7.1102		3	0.99934	47.7146
106	134.757	20.4689						0.4982	2.3485		3	0.99932	49.1513
107	135.987	20.4349			•		0.4944	•	1.8419		3	0.99931	50.1807
108	136.297						-13.3264	13.8256	22.0871		3	0.99931	50.4425
109	136.853	24.8619					-0.2065	0.7723			3	0.99930	50.9114
110	138.327		-5.2767					0.6113	7.0566		3	0.99929	52.1660
111	138.800		-5.4472				0.6137		6.3775		3	0.99928	52.5709
112	139.190		14.7725		10.3611		-0.9425		•		3	0.99928	52.9066
113	141.614			-1230.34			5.38020	-4.78069			3	0.99925	55.011
114	143.303		4.9359	-317.44	4.90644						3	0.99924	56.499
115	143.859		-6.7680				5.33333	-4.66096			3	0.99923	56.993
116	147.406			-396.95	2.63090		0.41278				3	0.99919	60.187
117	150.573			-277.05	2.97358			0.37689			3	0.99916	63.105
118	152.029		-3.3374	-657.53			0.83627				3	0.99914	64.468
119	158.304		-2.8009	-590.90				0.84741			3	0.99907	70.489
120	215.508		5.0884	-626.84		•			17.1781		3	0.99827	136 611
121	216.280	10.6018	3.1952						15.1821		3	0.99826	137.640
122	216.676	18.3601							16.1308	1.69957	3	0.99825	138.171
123	218.528	•	4.7854		•	•			15.7114	-0.82234	3	0.99822	140.663
124	220.956	15.4908		195.99					16.7292		3	0.99818	143.962
125	222.825			-468.81					20.5583	1.58347	3	0.99815	146.527
126	284.922	53.1146	5.6747	1882.84							3	0.99698	244.021
127	288.776	69.4792		2426.21						1.86281	3	0.99690	250.857
128	304.134		20.9706	1022.97	,	•		•		-6.50761	3	0.99656	279.015
129	305.110	26.3626	18.5855							-2.96121	3	0.99654	280.852
130	45.633		8.8756		5.16400				-2.3002	-6.61941	4	0.99993	0.795
131	47.846		8.1289		8.75230	-3.31905				-6.98579	4	0.99992	1.371
132	48.731				9.05514	-7.78332	•	0.88741		-9.15302	4	0.99992	1.609
133	49.881		9.6876		5.99810		-0.20784			-5.77325	4	0.99992	1.924
134	50.456		7.5579	-71.14	4.79500					-5.83691	4	0.99991	2.085
135	50.480		8.5916		5.46534	•		-0.12028		-5.76689	4	0.99991	2.092
136	50.691	0.1839	7.3332		4.77592					-5.83846	4	0.99991	2.151
137	50.991				9.73157	-8.07781	0.81068			-8.88986	4	0.99991	2.236
138	53.209	6.9579					-2.35313	3.22048		-6.62283	4	0.99991	2.879
139	53.567	6.4692						0.88448	-3.1959	-6.96628	4	0.99990	2.985
140	54.124	8.1310			1.57338			0.55400		-5.27015	4	0.99990	3.152
141	54.273	6.2476					0.88845		-4.3346	-7.07710	4	0.99990	3.197
142	54.561		8.2730			4.35083			-2.7448	-5.29325	4	0.99990	3.284
143	55.702			-262.30			0.89992		-2.8348	-7.08401	4	0.99990	3.635
144	55.745			-238.34				0.89609	-1.7140	-7.01528	4	0.99990	3.648
145	56.260		•	-228.79			-1.12723	2.00834		-6.82196	4	0.99989	3.808
146	56.364				0.6907B		0.79614		-2.9314	-7.04596	4	0.99989	3.841
147	56.391	8.3728			1.85515		0.49400			-4.99634	4	0.99989	3.850
148	56.560	10.3315	-2.9098					0.81714	•	-5.24407	4	0.99989	3.902
149	56.666				0.55817			0.81277	-1.9800	-7.03146	4	0.99989	3.936
150	56.993	7.9749				1.25836		0.55438		-4.91190	ā	0.99989	4.039
			•	•	•		•		•		-	-,	

OBS	_RMSE_	_ANGAIN_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_COMPP_	_compr_	_P_	_B4Q_	_CP_
201	98.128	35.4783	-9.8717	210.934			0.76091				4	0.99968	21.7968
202	98.306	36.4678	-13.3660		-2.0153		1.11059				4	0.99968	21.8941
203	98.372	32.5848	-9.4464				1.58441	-0.83271			4	0.99968	21.9301
204	98.733	32.7727	-9.1766				0.75461	•	0.67746		4	0.99967	22.1285
205	98.870	37.4474	-9.9435	306.866				0.77460			4	0.99967	22.2036
206	99.177	32.3741	-0.8872					0.74761	1.61580		4	0.99967	22.3728
207	99.766	39.9418	-15.1498		-3.0621			1.31891			4	0.99967	22.6988
208	100.996	•	3.6548		-9.3654	11.8359			-0.09329		4	0.99966	23.3863
209	101.210	24.2007			4.5942		2.11702	-2.17854	•		4	0.99966	23.5069
210	101.587	31.6800	-1.3592	447.370	4.4368						4	0.99965	23.7196
211	101.749	25.5466		135.954	4.1775				1.59437		4	0.99965	23.0114
212	102.076	24.6056	-0.2796		4.2031				2.37686		4	0.99965	23.9966
213	102.159	24.2947			4.2079			-0.00411	2.26685	•	4	0.99965	24.0439
214	102.161	24.2888	•		4.1954		-0.00220		2.25723		4	0.99965	24.0449
215	102.186	30.1697		409.282	4.9040			-0.08518			4	0.99965	24.0592
216	102.340	30.1546		398.486	4.8287		-0.07200				4	0.99965	24.1470
217	105.749			-443.157	-11.1498	11.7316	0.37148				4	0.99963	26.1211
218	106.393			-411.552	-11.6149	12.1193		0.38351			4	0.99962	26.5012
219	107.485			174.495		4.0735			3.92304	-2.26822	4	0.99961	27.1513
220	108.011			÷	0.5712	3.5465			4.67086	-2.11998	4	0.99961	27.4667
221	108.311			254.934	4.7806				4.69280	-3.36544	4	0.99961	27.6471
222	108.535			•	-9.1456	10.6262		0.20638	1.48245		4	0.99961	27.7822
223	108.611				-9.0663	10.5976	0.19981		1.27312		4	0.99961	27.8284
224	108.999				-9.3872	10.9517	0.91261	-0.71203	•		4	0.99960	28.0634
225	111.060		3.1128	-580.34		3.54221			4.6455		4	0.99959	29.325
226	113.210	•		-119.42	-5.5407	8.58316			4.0753		4	0.99957	30.667
227	115.214	•	•	531.37	-2.1139	6.52552				-2.55219	4	0.99956	31.941
228	116.043			-532.18		3.54002	4.8955	-4.8525	•		4	0.99955	32 . 475
229	117.496	•	•	-483.79	•	2.95108	0.1269		5.7589		4	0.99954	33.419
230	117.564			-478.69	•	2.94930		0.1266	5.9166		4	0.99954	33.463
231	119.221	•	16.2894		12.6289		4.4546	-5.9423			4	0.99952	34.555
232	119.853		15.6075		11.4905		•	-1.3242	5.2915		4	0.99952	34.976
233	120.311	•	15.1351	•	11.0200		-1.2521		6.7757		4	0.99952	35.282
234	120.372					4.05227	3.8972	-3.9546	0.2535		4	0.99951	35.323
235	123.781	20.3742		•			-13.2589	13.7838	18.2011	•	4	0.99949	37.639
236	125.290	•	2.5993	-637.50	3.7973		•		6.9459		4	0.99947	38.685
237	127.588		•	-650.05	2.7686		0.1846		7.2656		4	0.99945	40.302
238	127.622			-647.04	2.7448			0.1875	7.4829		4	0.99945	40.326
239	127.886			-690.07	3.8036		6.3029	-6.2467			4	0.99945	40.514
240	132.464	13.5851		-806.30				0.5469	4.7540		4	0.99941	43.831
241	132.931		-3.6141	-897.92				0.6315	8.0248		4	0.99941	44.176
242	133.104		-3.7819	-910.71			0.6352		7.3202		4	0.99941	44.304
243	133.397	13.3893		-826.99	•		0.5454		4.2155	•	4	0.99940	44.522
244	133.624				3.7846		0.4542	-0.4391	6.1982		4	0.99940	44.690
245	134.583		•	-815.04			-8.0135	8.5600	16.8738		4	0.99939	45.406
246	134.930		23.5110	379.42	15.8101			-1.9385			4	0.99939	45.591
247	136.509	•	-5.3757	-1011.21			6.6400	-5.9484			4	0.99938	46.859
248	138.386	17.9650		-713.31			1.9797	-1.3978			4	0.99936	48.295
249	142.201		-2.4438		•		-9.0750	9.6300	17.4196		4	0.99932	51.274
250	146.494	•	16.1757	157.06	11.2751		-1.1048	•	•	•	4	0.99928	54.723

OBS	_PMSE_	_angain_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_COMPP_	_COMPT_	_P_	_RSQ_	_CP_
401	53.0263	10.3314			2.0718		4.66588	-4.09179	-8.04436	-5.99835	6	0.99993	5.0861
402	53.0404	-5.1657	9.5706	-70.157	9.9931	-4.3068				-7.92517	6	0.99993	5.0893
403	53.1234	2.2694	•	-151.107	7.8809	-6.7098	. •	0.86742		-8.47408	6	0.99993	5.1084
404	53.2354	-4.5288	9.6392		10.0779	-4.2199	-0.03596			-7.82671	6	0.99993	5.1342
405	53.3202			-173.988	7.9898	-7.1576	-0.36300	1.32123		-9.08015	6	0.99993	5.1537
406	53.5414	,	9.5976	100.851	5.4749		-1.67922	1.59805		-6.43515	6	0.99993	5.2049
407	53.7022		5.1899	-87.502	8.9135	-4.9988	0.31875			-7.66001	6	0.99992	5.2422
408	53.7576	-1.8559	10.1091		5.5424		-1.43677	1.34419	•	-6.53084	6	0.99992	5.2551
409	54.5337	10.4572		90.323	1.4653		0.65128		-3.53715	-6.03252	6	0.99992	5.4370
410	55.1278	10.4458		96.819	1.3714			0.66242	-2.75759	-6.01923	6	0.99992	5.5780
411	55.2572	1.2275		-212.698	8.6492	-7.2610	0.83161			-8.43041	6	0.99992	5.6090
412	55.5340	-5.5885	13.6281	15.240	7.5478		-0.46485			-6.34967	6	0.99992	5.6753
413	56.4733	12.6598	~3.2009				2.75180	-1.83499	-6.00415	-6.02927	6	0.99992	5.9031
414	56.7859	-3.8317	10.9023	-59.920	6.2919			-0.25694		-6.10599	6	0.99992	5.9797
415	56.8409	11.9215	-2.9792	•	•	-0.2281	0.95035		-3.82960	-6.15309	6	0.99992	5.9932
416	56.8428	11.7798	-2.5232	16.302			0.90341	•	-3.83046	~6.07897	6	0.99992	5.9937
417	56.9228	9.9637			•	1.2617	2.02395	-1.37304	-5.21571	-5.73387	6	0.99992	6.0134
418	57.0997	10.0705	•	41.181	•	1.1038	0.67446		-3.69946	-5.78907	6	0.99992	6.0570
419	57.2909	11.3245	-2.1830	22.435				0.89640	-2.75393	-6.10075	6	0.99991	6.1044
420	57.3029	10.8195	-1.8405	•		0.1179		0.87166	-2.69261	-6.07509	6	0.99991	6.1074
421	57.3719	9.9832		47.019		1.0085	•	0.68906	-2.08530	-5.81655	6	0.99991	6.1245
422	57.4996	9.2787		47.377	1.0394		-1.73137	2.42116		-5.87846	6	0.99991	6.1563
423	58.9605	9.3357	-0.8673			0.2729	-1.89549	2.70872		-5.95087	6	0.99991	6.5245
424	58.9726	9.6664	-1.4501	-7.213	•		-1.86514	2.73447		-6.03365	6	0.99991	6.5276
425	58.9828	8.6147	•	12.675	•	0.6626	-1.95788	2.69094	•	-5.84852	6	0.99991	6.5302
426	59.8177	6.0270	,	-108.631			-0.92883	1.80818	-1.56645	-6.72150	6	0.99991	6.7449
427	59.8842	6.6418	6.8352	158.027	-	4.3491	•		-3.24141	-4.70265	6	0.99991	6.7621
428	61.4477	•	5.6107	-80.417		2.9059		0.29806	-2.47357	-5.89926	6	0.99990	7.1727
429	61.4525	•	5.5656	-84.997		2.9241	0.29647		-2.81580	-5.89662	6	0.99990	7.1740
430	61.5985	•	6.6199			3.4425	-0.25815	0.44566	-2.41859	-5.73280	6	0.99990	7.2129
431	61.7381	•		-227.816	0.8861		3.32532	-2.55150	-5.40534	-6.B7745	6	0.99990	7.2502
432	61.9462		5.7421	-66.787		2.7339	-1.91732	2.23013	•	-5.84715	6	0.99990	7.3059
433	62.5488	9.4375	-4.9257	-222.906	•	-1.4059	•	1.12255		-5.99286	6	0.99990	7.4682
434	63.1050		0.2301	-250.449	•		0.20380	0.69063	-2.05909	-7.08349	6	0.99990	7.6195
435	63.1117			-250.734	,	0.1082	0.91566	-0.03554	-2.80263	-6.99692	6	0.99990	7.6214
436	66.3103	5.1065	1.5206	-196.066		1.7549	0.45240			-4.77155	6	0.99989	8.5174
437	82.1320	25.0123		642.906	-0.4746	4.6494			-2.36206	-1.90630	6	0.99982	13.6009
438	84.3550	9.3724	17.8935	461.558		11.2329		-1.46672	-2.72433	•	6	0.99981	14.4020
439	84.7092	8.6567	18.5400	474.728		11.2911	-1.48992	•	-0.96086		6	0.99981	14.5316
440	84.9478	7.8966	16.0969	318.879	-1.2510	11.1176	-1.26347			•	6	0.99981	14.6192
441	84.9733	7.7361	18.7915	449.083		11.2705	-2.03093	0.53382			6	0.99981	14.6286
442	B6.3387		23.5979	371.805	-0.5576	13.4436	-1.83627		-0.38707		6	0.99981	15.1349
443	86.3470		23.9937	380.411		13.2708	-1.14168	-0.75203	-1.15642		6	0.99981	15.1380
444	86.3584	23.1655	1.1403	284.446	-6.3327	9.4533			-2.71485		6	0.99981	15.1423
445	86.3637	•	23.4963	368.366	-0.6037	13.3974	-2.10682	0.28431			6	0.99981	15.1442
446	86.4510		23.7290	359.329	-0.0058	13.2992		~1.89050	-2.45596	•	6	0.99981	15.1769
447	86.4804	11.4314	10.5284		-3.8985	10.8276		-0.71500	-1.69235	•	6	0.99981	15.1879
448	86.5745	11.4866	10.3239		-4.1639	10.8607	-0.68034		-0.90848		6	0.99980	15.2232
449	86.727	10.6758	10.8555		-4.0432	10.8793	-1.30295	0.58873			6	0.99980	15.2804
450	96.921	24.6196	•	312.567	-6.3735	9.1486	0.07143	•	-2.7593		6	0.99980	15.3156

OBS	_RMSE_	_angain_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_COMPP_	_COMEPT_	_P_	_RSQ_	_CP_
501	118.563	37.7543	-11.6884	169.544	-0.1425		5.85660	-5.02980	-6.1370	•	7	0.99969	27.0802
502	50.904	2.3943	3.5278		10.8988	-6.6591	7.48988	-7.05908	-10.5965	-8.9646	8	0.99995	7.0062
503	51.046		4.8176	-43.884	11.4389	-6.7386	7.46450	-7.11202	-10.3786	-9.1440	8	0.99995	7.0285
504	51.292	4.7779		-63.291	10.3652	-7.7226	7.99422	-7.24897	-10.9895	-9.2007	8	0.99995	7.0675
505	57.3777	1.9915	4.1090	25.665	7.8795	-4.6905	0.49829		-2.5789	-8.27755	8	0.99994	8.0899
506	57.5651	0.8900	10.1963	125.694	6.8615		4.56218	-4.82001	-8.0266	-6.60016	8	0.99994	8.1233
507	59.0811	0.5685	6.3040	57.462	8.0438	-3.8846		0.30000	-2.0749	-8.04623	8	0.99994	8.2155
508	60.7604	-0.0111	6.1036	-12.512	8.1593	-4.3020	-0.99143	1.32922		-8.03365	8	0.99993	8.7078
509	66.8057	13.0436	-3.8172	-6.057		-0.2788	2.82553	-1.85093	-6.0636	-6.11334	8	0.99992	9.9001
510	98.8481	12.9427	13.1984	405.956	-2.5952	11.3774	0.01728	-1.05757	-2.9823		ě	0.99982	18.1065
511	56.8684	2.2271	3.2470	-32.653	10.9179	-6.8428	7.59715	-7.13175	-10.6204	-9.03252	9	0.99995	9.0000

total protein gain predictive equations

OBS	_RMSE_	_angain_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_P_	_RSQ_	_CP_
1	10.8405				•	•	0.03330		1	0.99795	148.053
2	11.2884	•						0.03475	1	0.99778	161.466
3	12.2065	•		•		0.24880		•	1	0.99741	190.662
4	13.3192	•		•	0.30113		•		1	0.99691	229.103
5	14.8224		1.07710						1	0.99617	286.359
6	18.9605	•		289.247					1	0.99374	475.567
7	20.7310	6.60384		•		•			1	0.99252	570.678
8	3.7713			•			0.75165	-0.74962	2	0.99977	8.646
9	9.4567	1.60608				•	0.02527		2	0.99857	101.952
10	9.7494	1.69318		•				0.02591	2	0.99848	108.927
11	10.1568	1.90463		•		0.17763			2	0.99835	118.988
12	10.5361		0.41817			0.15253			2	0.99823	129.725
13	10.6867	2.12929		•	0.20485				2	0.99818	132.690
14	10.8893	3.11471		154.262					2	0.99811	138.114
15	10.9878			81.773		0.17889			2	0.99807	140.786
16	11.0460			38.108			0.02893		2	0.99805	142.380
17	11.2121			•	-0.07141		0.04119		2	0.99799	146.964
18	11.2303		0.12856	•			0.02933		2	0.99799	147.471
19	11.2730				-0.81657	0.92328			2	0.99797	148.666
20	11.2894					0.03171	0.02906		2	0.99797	149.125
21	11.3618	•	0.46700		0.17098				2	0.99794	151.157
22	11.4205			44.456				0.02943	2	0.99792	152.818
23	11.6114		0.17959					0.02896	2	0.99785	158.271
24	11.6804		•			0.05952		0.02644	2	0.99782	160.266
25	11.7501				-0.04527			0.03996	2	0.99780	162.292
26	11.8992			90.752	0.20720				2	0.99774	166.666
27	13.8067	1.95907	0.75959						2	0.99696	227.503
28	14.5579		0.77421	81.668					2	0.99662	253.937
29	2.4647				0.14570		0.82240	-0.84025	3	0.99991	-0.148
30	2.5818					0.10652	0.77300	-0.78677	3	0.99990	0.518
31	2.8693		-0.24824				0.82713	-0.82039	3	0.99988	2.279
32	3.6307			-24.612			0.79376	-0.79061	3	0.99981	7.868
33	3.8612	0.24656					0.71712	-0.71487	3	0.99978	9.816
34	8.2174	1.90400		81.734		0.10778			3	0.99902	69.160
35	8.6178	2.05955	_	86.125	0.11886				3	0.99892	76.762
36	8.8494		0.43598		-0.86626	0.86395			3	0.99886	81.327
37	8.8993				-1.04695	0.83470	0.03733	•	3	0.99885	82.325
38	8.9658	1.85515	•	63.704			0.01672	•	3	0.99883	83.666
39	9.1255	1.93103	•	68.226	•	•	0.01012	0.01651	3	0.99879	86.923
40	9.2696	2.20202	1.47209	30.220	•	0.61296	•	-0.09820	3	0.99875	89.913
41	9.2784		2.47203	•	-1.08654	0.87738	•	0.03756	3	0.99875	90.098
42	9.6705	•	•	82.018	-0.81947	0.85554	•	0.03730	3	0.99864	98.478
43	9.8507	1.61687	•	52.025		0.04043	0.01980	•	3	0.99859	102.446
44	9.8509	1.72778	-0.10669	•	•		0.01380	•	3	0.99859	102.450
45	9.8710	1.35475	0.25744	•	•	0.13891	0.02133	•	3	0.99859	102.896
46	9.9091	1.58582	V.23/44	•	-0.01880	0.13031	0.02744	•	3	0.99859	102.896
47	10.0829	1.69413	•	•	.0.01000	0.06008	0.02144	0.01752	3		
48	10.0829	1.57206	•	•	-0.48426	0.59006	•		3	0.99852	107.665
49	10.1946	1.78043	-0.07271	•	· V . 10120	0.39000	•	0 02770	3	0.99852	107.760
50	10.2249	1.69677	-0.01211	•	0.00410	•	•	0.02779	3	0.99849	110.220
30	10.2249	1.030//	•	•	0.00410	•	•	0.02542	3	0.99848	110.917

total protein gain predictive equations

OBS	_RHSE_	_angain_	_TCARB_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_P_	_RSQ_	_CP_
51	10.2896		1.24382	•	•	0.50062	-0.07203		3	0.99846	112.415
52	10.4522	1.54452	0.26578		0.15722				3	0.99841	116.220
53	10.7005		0.30004	41.999		0.14382			3	0.99834	122.142
54	11.3249			57.402		0.09704	0.01374		3	0.99814	137.653
55	11.3901	2.92657	0.07372	142.651					3	0.99812	139.325
56	11.4709			69.771		0.13661		0.00734	3	0.99809	141.408
57	11.5245		0.33640	46.079	0.15969				3	0.99807	142.797
58	11.5656		0.06072	34.586			0.02746		3	0.99806	143.869
59	11.5790			34.835	-0.01896		0.03140		3	0.99805	144.219
60	11.7440		0.99086		0.45328			-0.04941	3	0.99800	148.557
61	11.7577		-0.05351		-0.09724		0.04569		3	0.99799	148.921
62	11.9243		0.10134	38.259	,			0.02691	3	0.99794	153.371
63	11.9631			49.445	0.03058			0.02531	3	0.99792	154.417
64	2.4628	0.22572			0.14483		0.79037	-0.80790	4	0.99992	1.157
65	2.4957	0.49189	-0.28785		,	•	0.77169	-0.76378	Ä	0.99992	1.323
66	2.5230		0.16173		0.22455	•	0.81151	-0.84318	7	0.99992	1.461
67	2.5817			-4.788	0.13957		0.82761	-0.84441	7	0.99991	1.766
68	2.5980	-		•	0.14895	-0.00253	0.82347	-0.84138	7	0.99991	1.851
69	2.6315	0.18972				0.10495	0.74612	-0.75949	7	0.99991	2.029
70	2.7080			-4.504	•	0.10196	0.77980	-0.79268	7	0.99990	2.444
71	2.7167		0.03728			0.12001	0.76437	-0.78085	7	0.99990	2.492
72	2.8524	•	-0.22710	-15.355	•	0.22002	0.84697	-0.83994	7	0.99989	3.259
73	3.8269	0.01190		-24.270	•	•	0.79150	-0.78837	7	0.99981	9.866
74	7.8268	3.21756	-2.53617		-1.18921	•	0.22684		7	0.99920	57.183
75	7.8617	1.56900		81.897	-0.48780	0.52308	0.22001	•	4	0.99919	57.739
76	8.0083		1.59134	86.807		0.75372	•	-0.13206	7	0.99916	60.100
77	8.4682	2.05033		101.667	•	0.17254	•	-0.01219	7	0.99906	67.792
78	9.5738	2.02313	•	96.282	•	0.15219	-0.00821	0.01213	7	0.99904	69.619
79	8.5829	2.11868	-0.10055	95.059	•	0.11151		•	4	0.99904	69.778
80	8.6398	2.40858	-0.38289	93.546	•		0.02235	•	7	0.99903	70.772
81	8.7362	0.90731			-0.81164	0.65912	0.03028	•	7	0.99900	72.472
82	8.8741	2.47980	-0.37165	97.710		0.03311	0.03020	0.02209	7	0.99897	74.937
83	8.9357		0.32693	38.691	-0.85519	0.84683	•	0.02203	7	0.99896	76.051
84	8.9704	2.32136	-0.12488	102.120	0.12527	0.04003	•	•	- 1	0.99895	76.683
85	9.0220	2.18864		99.234	0.17062	•	•	-0.00821	7	0.99894	77.624
86	9.0409	0.98362	•	33.234	-0.82193	0.67852	•	0.02967	7	0.99893	77.972
87	9.0603	0.65045	0.35580	•	-0.71962	0.73698	•	0.02967	7		78.327
88	9.0783	2.10412	0.35380	90.339	0.13440		-0.00242	•	•	0.99893	78.660
89	9.1702	2.10412	0.85749	30.339	-0.62871			-0.03973	7	0.99892	
90	9.1739	•	0.83/49	31.568	-0.82871	0.85514	0.02848	-0.03973	•	0.99890	80.361
90 91	9.2902	•	1 53303			0.82962	-0.12330	•	•	0.99890	80.431
		•	1.57293	91.884		0.72927		•	•	0.99887	82.609
92	9.3127	•	0.29737		-0.92576	0.85386	0.01220	• • • • • • • • • • • • • • • • • • • •	•	0.99887	83.035
93	9.4524			39.912	-1.00329	0.85881	•	0.02578	4	0.99883	85.696
94	9.7502	-0.33927	1.70291	•		0.69963	•	-0.11596	4	0.99876	91.502
95	10.0415	3.10263	-1.80484	•	-0.86311			0.17617	4	0.99868	97.354
96	10.3830	1.66826	-0.04934			0.02211	0.02352		4	0.99859	104.434
97	11.1264	•	1.66628	95.970	0.94032	•		-0.13878	4	0.99838	120.664
98	12.1473		0.37131	47.553	0.17947	•	-0.00343		4	0.99807	144.784
99	2.6015	0.26808	•	4.464	0.15038		0.77949	-0.79795	5	0.99992	3.106
100	2.6058	0.23434			0.17584	-0.02415	0.79937	-0.81754	5	0.99992	3.127

total protein gain predictive equations

OBS	_RMSE_	_ANGAIN_	_TCARB_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_P_	_RSQ_	_CP_
101	2.6069	0.29434	-0.07725		0.10690		0.78583	-0.79666	5	0.99992	3.132
102	2.6338	0.59788	-0.40090			-0.04351	0.78110	-0.76449	5	0.99992	3.259
103	2.6455	0.50193	-0.29188	1.731	•		0.76715	-0.75922	5	0.99992	3.315
104	2.6746		0.16511		0.21159	0.01136	0.80647	-0.83812	5	0.99992	3.455
105	2.6752		0.17235	1.213	0.23128		0.80947	-0.84232	5	0.99992	3.458
106	2.7375			-4.946	0.15072	~0.00883	0.83153	-0.84853	5	0.99991	3.762
107	2.7871	0.21539		2.803		0.10758	0.73826	-0.75211	5	0.99991	4.009
108	2.8722		0.00530	-4.302		0.10408	0.77826	-0.79157	5	0.99990	4.443
109	7.8854	3.21657	-2.11260	47.328	-0.91348		0.17789		5	0.99928	53.104
110	0.2581	2.85896	-2.20213	,	-1.20294	0.13957	0.20118		5	0.99921	58.534
111	8.2916	1.42538		70.278	-0.55824	0.54754	0.00656		5	0.99920	59.034
112	8.3277	1.47035	0.03816	76.839	-0.51282	0.54296			5	0.99919	59.576
113	8.33340	1.52444		78.2105	-0.51329	0.53280		0.00225	5	0.99919	59.6608
114	8.42433	0.57050	1,20977	91.5975		0.61575		-0.10407	5	0.99918	61.0358
115	8.45979	•	1.43241	80.5299	-0.15376	0.80277		-0.11531	5	0.99917	61.5759
116	9.09054	1.91306	0.10657	96.5032		0.19203	-0.01630	,	5	0.99904	71.5642
117	9.28858	2.94913	-1.05338	87.1221	-0.35584			0.08388	5	0.99900	74.8484
118	9.30925		0.84752	60.3981	-0.59925	0.87957	-0.05120		5	0.99899	75.1953
119	9.58936	0.99098	-0.00771		-0.82406	0.67723		0.03031	5	0.99893	79.9718
120	2.76133	0.42486	-0.20066		0.12156	-0.05861	0.80044	-0.80213	6	0.99992	5.0200
121	2.77528	0.27429		4.2767	0.17889	-0.02239	0.78830	-0.80730	6	0.99992	5.0810
122	2.77754	0.31945	-0.06193	4.0801	0.11950	,	0.77679	-0.78979	6	0.99992	5.0909
123	2.81538	0.60199	-0.39903	0.6550		-0.04221	0.77910	-0.76274	6	0.99992	5.2580
124	2.85754		0.18224	1.8287	0.21744	0.01513	0.80173	-0.83514	6	0.99992	5.446B
125	8.33072	2.70242	-1.60724	50.2859	-0.91592	0.20009	0.13804		6	0.99930	53.7929
126	8.85778	1.03990	0.52790	81.0066	-0.35595	0.61577		-0.04227	6	0.99920	60.9455
127	2.97762	0.43201	-0.17963	2.9013	0.12932	-0.05380	0.79282	-0.79680	7	0.99992	7.0000
			-,-,-			dictive equa			•	-/	
OBS	_racs e_	_ANGAIN_	_TCARB_	_B_G_	_co2_	_02_	_MECON_	_MENCON_	_P_	_RSQ_	_CP_
1	2.46474	_			0.14570		0.82240	-0.84025	3	0.99991	-0.14823
2	2.58182					0.10652	0.77300	-0.78677	3	0.99990	0.51820
3	2.86834		-0.24824				0.82713	-0.82039	3	0.99988	2.27947
4	2.46276	0.22572			0.14483		0.79037	-0.80790	4	0.99992	1.15671
5	2.49574	0.48189	-0.28785			•	0.77169	-0.76378	4	0.99992	1.32270
6	2.52297		0.16173		0.22455	•	0.81151	-0.84318	4	0.99992	1.46142
7	2.58171	•	•	-4.7880	0.13957		0.82761	-0.84441	4	0.99991	1.76578
8	2.59800	-			0.14895	-0.00253	0.82347	-0.84138	4	0.99991	1.85144
9	2.63147	0.18972		_		0.10495	0.74612	-0.75949	4	0.99991	2.02913
10	2.70797			-4.5044		0.10196	0.77980	-0.79268	4	0.99990	2.44375
11	2.71673	•	0.03728			0.12001	0.76437	-0.78085	4	0.99990	2.49196
12	2.85240	-	-0.22710	-15.3551			0.84697	-0.83994	4	0.99989	3.25892
13	2.60147	0.26808		4.4638	0.15038		0.77949	-0.79795	5	0.99992	3.10645
14	2.60583	0.23434	•		0.17584	-0.02415	0.79937	~0.81754	5	0.99992	3.12695
15	2.60688	0.29434	-0.07725		0.10690		0.78583	-0.79666	5	0.99992	3.13188
16	2.63378	0.59788	-0.40090	·		-0.04351	0.78110	-0.76449	5	0.99992	3.25906
17	2.64548	0.50193	-0.29188	1.7311	•		0.76715	-0.75922	5	0.99992	3.31484
19	2.67464		0.16511		0.21159	0.01136	0.80647	-0.83812	5	0.99992	3.45478
19	2.67522	•	0.17235	1.2130	0.23128		0.80947	-0.84232	5	0.99992	3.45758

best protein predictive equations

OBS	_RMSE_	_ANGAIN_	_TCARB_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_P_	_RSQ_	_CP_
20	2.73750	•		-4.9464	0.15072	-0.00883	0.83153	-0.84853	5	0.99991	3.76175
21	2.78715	0.21539		2.8031		0.10758	0.73826	-0.75211	5	0.99991	4.00926
22	2.87216		0.00530	-4.3016		0.10408	0.77826	-0.79157	5	0.99990	4.44337
23	2.76133	0.42486	-0.20066		0.12156	-0.05861	0.80044	-0.80213	6	0.99992	5.01999
24	2.77528	0.27429		4.2767	0.17889	-0.02239	0.78830	-0.80730	6	0.99992	5.08097
25	2.77754	0.31945	-0.06193	4.0801	0.11950		0.77679	-0.78979	6	0.99992	5.09086
26	2.81538	0.60199	-0.39903	0.6550		-0.04221	0.77910	-0.76274	6	0.99992	5.25799
27	2.85754		0.18224	1.8287	0.21744	0.01513	0.80173	-0.83514	6	0.99992	5.44679
28	2.97762	0.43201	-0.17963	2.9013	0.12932	-0.05380	0.79282	-0.79680	7	0.99992	7.00000

total fat gain predictive equations

OBS	_RMSE_	_ANGAIN_	_CGAIN_	_RQ_	_C02_	_02_	_MECON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
1	15.4918								0.04882		1	0.98370	320.24
2	16.1870	•	0.56063		•			•	•		1	0.98218	351.10
3	21.9341							0.01731			1	0.96728	653.87
4	22.0427						0.01659				1	0.96696	660.47
5	22.1555			144.350					•		1	0.96662	667.36
6	23.2445				0.14978						1	0.96326	735.68
7	24.0410					0.12356					1	0.96069	787.74
	25.7033									0.49451	1	0.95507	902.01
9	30.6924	3.24495									1	0.93594	1290.85
10	6.6058								0.11220	-0.65427	2	0.99728	46.28
11	7.7074		1.34447		·					-0.70372	2	0.99630	66.25
12	8.9541	-	•		-		-0.02899		0.13324		2	0.99500	92.57
13	9.2249				•	•		-0.03005	0.13271		2	0.99470	98.80
14	9.6574	-	-8.01591	•	*	•	•	0.0000	0.74628	•	2	0.99419	109.15
15	9.6932	•	0.01331	•	•	-0.15766	•	•	0.11017	•	2	0.99414	110.03
16	10.2850	•	1.60355	•	•	0.15700	-0.03115	•		•	2	0.99341	125.00
17	10.5786	•	1.59248	•	•	•	-0.03113	-0.03216	•	•	2	0.99302	132.76
18	10.7753	•		•	-0.18746	•	•	-0.03216	0.10910	•	2	0.99276	138.08
19	11.0586	-2.13078	•	•	-0.18/40	•	•	•	0.07975	•	2	0.99238	145.92
20	11.0784	-2.13078	1.28988	•	•	-0.16278	•	•	0.01915	•	2		
				•	•	-0.162/8	•	•	•	•	2	0.99235	146.48
21	11.7023	-2.28320	0.94182	•		•	•	•	•	•	2	0.99146	164.48
22	12.2219	•	1.26079		-0.18941	•	•	•		•	2	0.99069	180.23
23	13.5368	•		-129.430	•	•	•	•	0.09207	•	2	0.98858	223.14
24	14.6127	•	1.06292	-130.739			•	•	•	•	2	0.98669	261.50
25	15.9829	•	•	•	2.65559	-2.06991	•		•	•	2	0.98408	314.61
26	18.0205	•	•	•		-0.52417		0.09047	•		2	0.97976	402.38
27	18.1568	•		•	•	•	0.05822		•	-1.25021	2	0.97945	408.62
28	18.2797	•	•	-	•	•	•	0.05801	•	-1.17123	2	0.97917	414.30
29	18.7620	-3.35722		•	•	•	•	0.03483	•		2	0.97806	436.93
30	18.8587	-3.40637	•	•			0.03363	•	•		2	0.97783	441.54
31	18.8708	•		•		-0.48350	0.08126	•			2	0.97780	442.12
32	20.3904	•		•			-0.70272	0.75062	•	•	2	0.97408	517.70
33	21.3108				-0.39120			0.06241	•		2	0.97169	566.32
34	21.8340			•	-0.33047		0.05310				2	0.97028	594.91
35	22.4992	-2.18084			0.24840						2	0.96844	632.27
36	22.5102	-1.01022		188.131							2	0.96841	632.90
37	22.5201			63.811				0.00968			2	0.96838	633.47
38	22.5928			67.866			0.00881				2	0.96818	637.62
39	22.7000	•		210.000						-0.22697	2	0.96788	643.77
40	22.8911	•	•	101.852	0.04436		·			,	2	0.96733	654.81
41	23.0887	•	•	124.822		0.01684	•	_		•	2	0.96677	666.32
42	23.5082	•	•	111.011	0.28107	V. UZ.501	•	•	•	-0.43599	2	0.96555	691.08
43	23.5082	-2.06539	•	•		0.20073	•	•	•	-0.43333	2	0.96505	701.27
44	24.7927	-2.00339	•	•	•	0.20122	•	•	•	-0.31214	2	0.96168	769.67
		-2.76063	•	•	•	0.20122	•	•	•	0.91053	2	0.96017	800.44
45	25.2777	-2.76807	•	•	. 27157	_1 22716	•	•	0.08535		3	0.99868	19.80
46	4.8238	•		•	1.37157	-1.22718	•	•	J. V8335	•	3	0.99835	26.44
47	5.3886	•	0.98462	•	1.53082	-1.35962	•	•	0 20207	. 40,000		0.99833	27.28
48	5.4555	•	-3.41194	•	•		•	•	0.39307	-0.48902	3		
49	6.7980		•	•	•	-0.02773	•	•	0.11489	-0.57065	3	0.99738	46.22
50	6.8365	0.35542	•		•	•			0.11413	-0.72744	3	0.99735	46.83

total fat gain predictive equations

OBS	_RMSE_	_ANGAIN_	_CGAIN_	_RQ_	_co2_	_02_	_MCCON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
51	6.8641		-5.23273			-0.10243			0.54398		3	0.99733	47.26
52	6.8805							-0.00361	0.11629	-0.59243	3	0.99732	47.52
53	6.8814						-0.00360		0.11630	-0.58849	3	0.99732	47.53
54	6.8953				-0.01632				0.11389	-0.61751	3	0.99731	47.75
55	6.9052		•	~9.571	•				0.11380	-0.63776	3	0.99730	47.91
56	7.2602						-0.42001	0.41125	0.12425		3	0.99701	53.70
57	7.3410		-5.76949		-0.11788				0.58873		3	0.99695	55.063
58	7.4489		-4.47768				-0.01872		0.49294		3	0.99686	56.901
59	7.5927		-4.64518					-0.01901	0.50607		3	0.99673	59.391
60	8.0145		1.36991			-0.02183				-0.63889	3	0.99636	66.972
61	8.0427		1.37343	-13.949						-0.68160	3	0.99633	67.493
62	8.0582	•	1.38472				-0.00289			-0.65291	3	0.99632	67.781
63	8.0583		1.38406					-0.00287		-0.65669	3	0.99632	67.783
64	8.0779	0.09474	1.35033							-0.72318	3	0.99630	68.147
65	8.0798		1.35176		-0.00590					-0.69067	3	0.99630	68.183
66	8.3165		1.49514				-0.47851	0.47020			3	0.99608	72 . 652
67	8.7825			-51.848			-0.02558		0.14066		3	0.99563	81.828
68	8.9451	•		-71.954		-0.13670		•	0.12606		3	0.99547	85.149
69	8.9753	•		-55.893		•		-0.02632	0.14096		3	0.99543	85.772
70	9.0282				0.12478		-0.04543		0.14101		3	0.99538	86.869
71	9.2813	-0.42848	•	•			-0.02481		0.12730		3	0.99512	92.205
72	9.3241	-0.97387	•	,	•	-0.11183			0.10648		3	0.99507	93.123
73	9.3857				0.11984			-0.04674	0.14075		3	0.99501	94.448
74	9.3871	•	•			0.01233	-0.03109		0.13458		3	0.99501	94.480
75	9.4468	-0.91283	-5.75282						0.56262		3	0.99494	95.774
76	9.4904	-0.55114	•					-0.02447	0.12511	•	3	0.99490	96.725
77	9.6706	•	•			-0.01395		-0.02754	0.13112		3	0.99470	100.702
78	9.7875	•	•	-82.876	-0.16029	•		•	0.12806		3	0.99457	103.321
79	9.9373	•	-7.22931	-33.089		•			0.68890	•	3	0.99440	106.724
80	10.0130	-1.21760	•	•	-0.11709			•	0.10414		3	0.99432	108.463
81	10.0478	•	1.72427	-62.066	•	•	-0.02763	•	•		3	0.99428	109.267
82	10.1570		1.75927	•	0.18100		-0.05578	•	•		3	0.99415	111.808
83	10.1634	•	•	•	2.16448	-2.15341		0.06832	•		3	0.99415	111.958
84	10.2579	•	1.72612	-66.417		•		-0.02837	•		3	0.99404	114.181
85	10.2838	-1.79412	•	-79.648	•	•		•	0.1014B	•	3	0.99401	114.793
86	10.3128	•	•		2.26446	-2.22029	0.06337	•	•	•	3	0.99397	115.481
87	10.3320		1.51516	-81.307	•	-0.14354	•	•	•	•	3	0.99395	115.937
88	10.3769	-1.24639	1.24497		•	-0.10645			•	•	3	0.99390	117.009
89	10.4320	-0.79816	1.47498		•	•	-0.02333	•	•	•	3	0.99383	118.329
90	10.5791		1.75500	•	0.17697	•	•	-0.05761	•	•	3	0.99366	121.888
91	10.6157	-0.91779	1.44674	•	•	•		-0.02284	•	•	3	0.99361	122.783
92	10.7599		1.65428			0.03584	-0.03745	•	•		3	0.99344	126.331
93	10.9193	-1.99611	1.22226	-85.471		-		•	•	•	3	0.99324	130.312
94	11.0363	-1.50140	1.20739	•	-0.10716		•		•		3	0.99310	133.268
95	11.0949	•	1.59562			0.00213		-0.03255	•		3	0.99302	134.762
96	11.2561		1.52928	-92 . 665	-0.16574		•		•		3	0.99282	138.913
97	12.8904	-3.36552	•			-0.52529	•	0.10819			3	0.99058	184.359
98	13.2360		•	124.026	2.65121	-2.17234		•	•	•	3	0.99007	194.758
99	13.5932	-3.54047	•	•	•	-0.50258	0.10152		•		3	0.98953	205.793
100	14.0253	•		•	•	-0.57390	-0.81778	0.95079	•	•	3	0.98885	219.537

total fat gain predictive equations

OBS	_rmse_	_ANGAIN_	_CGAIN_	_RQ_	_co2_	_02_	_MECON_	_MENCON_	_EGAIN_	_COMPP_	_P_	_RSQ_	_CP_
101	14.1058				•	-0.46306		0.11762		-1.02684	3	0.98872	222.147
102	14.1579					-0.44645	0.11520			-1.16803	3	0.98864	223.842
103	15.6489				3.07062	-2.53918				0.50826	3	0.98612	275.022
104	16.2050	-3.79684			-0.50166			0.09497		•	3	0.98512	295.424
105	16.3135				-0.42805		0.10939			-1.36663	3	0.98492	299.485
106	16.3282				-0.44727			0.11191		-1.23850	3	0.98489	300.040
107	16.7263	-0.28265			2.59584	-2.01000					3	0.98414	315.193
108	16.7732				-0.62484		-1.00614	1.13929			3	0.98406	317.004
109	16.7831	-3.90196			-0.45989		0.08691				3	0.98404	317.385
110	17.1066						1.73614	-1.68165		-3.24468	3	0.98342	330.010
111	17.2325			121.364			0.04943		-	-1.40386	3	0.98317	334.989
112	17.2973			123.504	•	•		0.04920		-1.34275	3	0.98304	337.566
113	17.7844	-2.00468	•		•	•	0.05568		•	-0.87274	3	0.98208	357.248
114	17.9160	-2.00965	•	•	•	•	0.03300	0.05545	•	-0.79589	3	0.98181	362.656
115	18.7228		•	-41.901	•	-0.570 4 7	•	0.10194	•	0.75005	3	0.98013	396.700
116	19.2067	-2.70338	•		•	0.5/01/	-0.32412	0.36965	•	•	3	0.97909	417.838
117	19.2278		•	146.813	•	•	-0.95389	0.99517	•	•	3	0.97905	418.770
118	19.6135	-3.27532	•	23.493	•	•	.0.93369	0.03160	•	•	3	0.97903	436.022
119	19.6692	-3.27332	•	-36.534	•	-0.52507	0.09100	0.03160	•	•	3	0.97807	438.545
120	19.7246	-3.32014	•	22.056	•	.0.32301	0.03067	,	•	•	•	0.97795	441.055
121	20.4519		•	193.292	0.25314	•	0.03007	•	•	-1.00759	3	0.97630	474.709
122	21.6059	•	•	202.417		0.18659	•	•	•	-0.94891	3	0.97354	530.601
123	21.8550	-2.26745	•	106.946	0.14162		•	•	•	-0.94831	3	0.97354	543.069
124	22.3509		•	-0.019	-0.39123		•	0.06242	•	•	-		568.317
125	22.5723	-2.06635	•	124.864	-0.39123	0.09401	•	0.00242	•	•	3	0.97169	
126	22.8835		•	14.622	-0.30845		0.04899	•	•	•	_	0.97113	579.772
127	23.5954	-2.12243	•		0.25402	•	0.04633	•	•		3	0.97032	596.061
128	23.6089	-1.00310	•	188.484		•	•	•	•	-0.02743	3	0.96845	634.164
129	24.7944	-2. 3 1755	•	180.404	•	0.17722	•	•	•	-0.00229	3	0.96841	634.899
130			•	•			•	•		0.13240	3	0.96516	700.984
	4.4039	•		•	1.06620	-0.93529	•	•	0.09283	-0.23613	•	0.99901	15.102
131	4.5494		-1.99269	•	1.08429	-0.98214	•	•	0.25575		4	0.99894	16.452
132	4.7672	1.04992	-4.45579	•			•		0.48469	-0.65463	4	0.99884	18.555
133	4.9405	-0.29074	•		1.30993	-1.16544	•	•	0.08536	•	4	0.99876	20.299
134	4.9732	•		-16.655	1.29634	-1.16367	•	•	0.09039	•	4	0.99874	20.635
135	5.0719	•	1.07385	•	1.23410	-1.07501		•	. •	-0.23855	4	0.99869	21.662
136	5.0730		•	•	1.34943	-1.19430	-0.00286		0.08799	•	4	0.99869	21.673
137	5.0825	•		•	1.36366	-1.21397	•	-0.00135	0.08652	-	4	0.9986B	21.773
138	5.3961	-0.42912	0.98838		1.43581	-1.26595	•	•	•		4	0.99851	25.180
139	5.5017	•	-3.48571		•	-0.03299		•	0.40234	-0.38598	4	0.99846	26.373
140	5.5581	•	1.05180	-18.706	1.45474	-1.29571			•		4	0.99842	27.019
141	5.6109		-3.52723	•	-0.02912				0.40556	-0.41784	4	0.99839	27.631
142	5.6417		1.04806	•	1.49383	-1.30021	-0.00575				4	0.99838	27.989
143	5.6602		1.03053	•	1.51029	-1.32108		-0.00444	•		4	0.99837	28.207
144	5.6996		-3.59020	12.869	•		•	•	0.40559	-0.50259	4	0.99834	28.670
145	5.7493	•	-3.39686			•		-0.00051	0.39241	-0.48098	4	0.99831	29.260
146	5.7501		-3.40255				-0.00030	•	0.39264	-0.48391	4	0.99831	29.270
147	6.5745	•	-3.15117		•	·	-0.31130	0.30452	0.37972		4	0.99780	39.801
149	6.9199	÷	-6.35710			-0.20845	•	0.02259	0.62001		4	0.99756	44.632
149	7.0651	0.35915				-0.02794			0.11686	-0.64397	4	0.99745	46.736
150	7.0732	•	-4.68903	-24.456		-0.10105		•	0.50430		4	0.99745	46.855

VITA ~

Kevin Ray McDonald

Candidate for the degree of

Master of Science

Thesis: BROILER PERFORMANCE: AN EVALUATION OF METABOLIC CONSIDERATIONS RELATED TO STRESS TOLERANCE AND TISSUE ACCRETION METHODOLOGY

Major Field: Animal Science

Biographical:

Personal Data: Born in Greenwood, Arkansas February 5, 1967, the son of Elmer and Linda McDonald.
Married Robin on October 10, 1992.

Education: Graduated from Greenwood High School,
Greenwood, Arkansas, in may 1985; received
Bachelor of Science in Agricultrue from Oklahoma
State University, Stillwater, Oklahoma, in
December 1989; Completed requirements for the
Master of Science degree at Oklahoma State
University in July 1993.

Professional Experience: Teaching and Research, Assistant, Department of Animal Science, Oklahoma State University, 1990 to 1993.