
USING THE UNIX™ SHELL TO INTEGRATE A

MANAGEMENT MODEL WITH A GIS

By

FENGXIA MA

Bachelor of Science

Wuhan Technical University of

Surveying and Mapping

Wuhan, P.R. China

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State Universit y
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1993

OKLAHOMA STATE UNIVERSITY

USING THE UNIX™ SHELL TO INTEGRATE A

MANAGEMENT MODEL WITH A GI S

Thesis Approved :

'
~

J-j . L v Thesis Advisor

Dean of the Graduate College

i i

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. George

Hedrick, my major advisor, for his encouragement and advice

throughout my graduate program.

Many thanks also go to Dr. David Nofziger for giving me

the opportunity to practice my knowledge, for providing the

knowledgeable instructions I needed. Without his help and

support, this project would not have been completed so well.

Thanks are also extended to Dr. Huizhu Lu for serving

on my committee and providing helpful advice and

instructions during my graduate study.

A very special thanks goes to the GIS specialist Mr.

Mark Gregery at Agronomy Department of Oklahoma State

University for patiently guiding me in learning and using

GRASS. Only with h is help, this project can be finished so

smoothly.

My deepest gratitude goes to my parents for their

caring and support.

Last, but not the least, great appreciation goes to my

husband Gang Huang for his consistent support, encouragement

and understanding. Without him, none of this would have been

possible.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. LITERATURE REVIEW

III. ENVIRONMENTAL BACKGROUND

Introduction
Basic UNIX™ Background .

UNIX™ Design Philosophy
and Its Style

The Components of UNIXTM
Unique Features of UNIX™
Shell: The Enhancement of UNIX™

GRASS: A Powerful GIS Package
CMLS: A Simulation Tool for Managing

Agricultural Chemicals

IV. DESIGN AND DEVELOPMENT OF GO & DRAW

Introduction . . .
Functionality . . .
User Interface
System Description
Implementation Details

V. DESIGNING GUIDELINES

Reliability
Maintainability

Modularity
Consistency

Efficiency . . .
Change Directory . . .
Reduce Temporary Files
Using Time To Measure the Speed

Documentation

VI. SUMMARY, CONCLUSIONS AND FUTURE WORK .

BIBLIOGRAPHY

Summary and Conclusions
Future Work Suggestions

iv

Page

1

5

10

10
10

10
11
11
14

. 16

17

22

22
22
25
33
38

41

41
42
42
43
43
43
44
44
45

46

46
46

49

Chapter Page

APPENDIXES 51

APPENDIX A - GRASS COMMANDS USED IN THE MAP
DRAWING TOOL 52

APPENDIX B - PSEUDO-CODE OF THE PROCEDURES
IN THE MAP DRAWING TOOL 54

APPENDIX C - INSTALLATION INSTRUCTIONS OF
THE MAP DRAWING TOOL 74

v

LIST OF FIGURES

Figure

1. Components of UNIX~

2. CMLS Input Format

3. CMLS Output Format

4. Data Entered From the Command Line

Dialogue Box 1
Dialogue Box 2
Dialogue Box 3
Data Entered in Three Forms

Dialogue Box 4

Dialogue Box 5
Dialogue Box 6

Dialogue Box 7
Dialogue Box 8

Dialogue Box 9

16. Process CMLS

Vl

. . . .

. .

. . . .

. . . .

. . .

. . . .
. . .

.

. .

. .

. .

. .

.

.

.

.

.

Page

12

20

21

24

28

28

29

29

30

31

31

32

32

32

36

37

CHAPTER I

INTRODUCTION

The shell scripts, go & draw, a map drawing tool

developed as part of this thesis, automates the process of

producing maps using the output of a simulation model,

Chemical Movement in Layered Soils (CMLS) .

CMLS is a simulation tool used in managing agricultural

chemicals. This model is designed to use soil, chemical and

weather parameters to evaluate the impact of pesticides on

large areas.

Many government agencies, such as the Oklahoma

Department of Agriculture, and scientists interface CMLS

model with a Geographical Information System (GIS) package

to produce maps from the CMLS output. The maps produced can

be used in helping to evaluate the risk of groundwater

contamination for specific soil-pesticide-water management

systems. As a result, the high risk management systems are

brought to attention immediately.

Commercially available GIS packages usually are

powerful but expensive. The basic requirements for GIS users

are relatively high. Users must have knowledge of the GIS as

well as of the computer, including input, output devices,

and the operating system.

1

2

The Geographic Resources Analysis Support system

(GRASS), developed at the u.s. Army construction Engineering

Research Laboratory (USACERL) is selected as the GIS package

to interface with CMLS model in this project, because it is

a public domain package. GRASS was developed using federal

money and distributed without charge. This GIS package

includes a graphics production system with powerful map

production capabilities. The package is written in c and is

UNIX™ oriented. Like the other GIS packages, however, GRASS

requi res its users to have significant knowledge of not only

the GIS, but also of computers, including the UNIX™ system

as well as the inputjoutput devices, the databases being

analyzed, the areas under analysis, and the requirements of

the analysis (22]. The abil ity to produce thematic maps is

only a small part of GRASS' s powerful functionalit y, but

users still must go through a learning curve to accomplish

this job . It is impractical to ask a cas ual user of GRASS to

take a great deal of time to go through the entire learning

process for occasional use.

UNIX™, the system that GRASS is designed on, is a

portabl e multi-u ser, t ime-sharing operating system and can

be used on a variety of p latforms. It is des i gned for

programmers, and it is distributed with a wealth of

development tools . These development tools are the basis for

creating more complicated, powerful and flexible utilities.

Many UNIX™ programmers consider their work as the creation

and use o f tools . They find UNIX™ a helpful, productive,

3

and pleasant environment in which to work. To a casual user,

however, UNIX™ has a terse, unfriendly, unforgiving,

inconsistent user interface [20]. It is hard for people who

do not use the system very often to adjust to the

environment.

The map drawing tool designed and developed in this

project interfaces CMLS model with GRASS via UNIX™ shell

programming. It allows the CMLS users to produce maps with

minimal effort. It is not required for the user of go & draw

to have much knowledge in either GRASS or UNIX™. Instead of

going to the workstation terminals, users can even get their

maps from their desktop PC providing it is connected to the

network and running the X-window interface. The map drawing

tool provides the CMLS user with an effective, productive

working tool.

The map drawing tool is written for Sun MicroSystems'

workstations using the c shell for use with GRASS version

4.0. Due to the restrictions of current available data

bases, the project is tested only on Oklahoma state data.

When the data bases from other states become available, the

project should be enhanced easily to work on all the data

bases of the country.

Chapter II reviews the shell programming research and

practical work that have been done in the past. Chapter III

presents the basic background involved in doing this

proj ect. Thi s includes the UNIX™ operating system, the

GRASS package and the CMLS model. Chapter IV describes the

project in detail, including its features, functionalities

and its implementation details. The designing guidelines of

the project are introduced in Chapter V. Finally the

summary, conclusions and the future work suggestions of the

project are given in Chapter VI.

Three appendixes are included for reference. In

appendix A, the GRASS commands used in this project and a

short explanation for each command are listed. Appendix B

includes the pseudo-code of the project. The installation

instructions are given in appendix c.

4

Throughout the thesis, "He'' is used both in a masculine

and feminine sense, i.e., as a generic personal pronoun.

CHAPTER II

LITERATURE REVIEW

Much literature about shell programming deals with

using shell utilities to customize computing environments

and using shell utilities to manage software or to build

small, frequently used application tools. In most cases, the

UNIX™ shell utility is the major foundation. The proposed

shell scripts go & draw build a bridge between a simulation

model and a Geographic Information System by means of shell

programming. In this project, functions provided by the

Geographic Information System GRASS is the working

foundation. The UNIX™ shell utility is used as the bond to

link all the proper functions logically.

With the help of go & draw the CMLS users are able to

produce useful maps at greatly reduced cost and effort due

to less programming involved. Therefore the software

productivity is increased notably.

Shell utilities have long been treated as a programming

tool. Kernighan from Bell Laboratories [10] described the

history of shell programming as:

The use of the shell as a programming tool has
evolved over the years. It began a decade ago
with file redirection, but the real revolution
occurred with the invention of pipes The
progmmability of the shell itself has incrased,

5

reaching a plateau with the 7th edition shell
written by s. R. Bourne.

Bourne [3] <;iiscussed shell programming in his paper,

The UNIX™ Shell and stated that shell procedures are text

files which do not need to be compiled. Therefore they are

easy to maintain. Debugging is easier because of the

capability of trying part of a procedure at a time.

UNIX™ utilities are written in the manner that each

command is general-purpose and independent. It is possible

6

for users to finish their jobs by combining these tools with

minimal time and effort. In other words, many programming

tasks can be accomplished by writing shell procedures

instead of writing compiled programs. By organizing shell

utilities, many jobs can be done much easier than by using

compiled programming languages such as C or C++. The

procedures written in the shell utilities usually are

shorter as well.

Because the shell provides powerful tools for

manipulating documents and building programs, it has been

widely used in the related areas.

The most common case of shell programming is that

UNIX™ programmers use shell utilities to tailor their log-

in environments in order to fit their own needs. By changing

the default prompt, users put their own identities on their

log-in environments. By changing the default search path,

users get more efficient working environments. Fiedler [7]

described how users can reduce their user support time by

7

setting variables in the system.

An example given by Kernighan and Mashey [11] displayed

the application of shell programming in supporting

programming projects in Bell laboratories. In this

application, shel l procedures are widely used to assist in

managing a management decision support system. Shell

procedures provide a compact, integrated and highly

automated working environment.

Run, a 400 line Bourne shell script, used to control

the BYTE UNIX™ benchmark, is an example of shell tool usage

as an application program. There are three different stages

for each benchmark test. Setting up parameters, timing the

execution of the tests and calculating, formatting

operations. After determining the parameters for the

benchmark test, Run sends a formatted description to the

output file and then invokes the specific benchmark test

with the help of the UNIX command time. The output of time

and other commands is saved in a raw data file. After the

completion of a set of tests, Run invokes a cleanup script

to do statistical calculations on the raw data by means of

awk. The benchmark fairly reflects the strengths and

weaknesses of all the systems for which Run is expected to

be used [19].

Facilities such as shell utilities and the pipe

mechanism, provided by UNIX™ offer great possibilities for

software reusability. In UNIX™, reuse of software is at the

program level, that is, combining programs using the command

8

interpreter (shell). Thus, each user-invoked program becomes

a building block analogous to a function in a programming

language. Kernighan [10] defined software reusability as:

Previously written software can be used for
a new purpose, or to avoid writing more
software.

The necessity for reusing software becomes obvious as

Horowitz and Munson [8] illustrated with their research. In

1980 the U.S.Department of Defense (DOD) spent more than $3

billion on software and this cost is i ncreasing at a rapid

rate. They discussed the potential for increasing software

productivity by addressing the concept of software

reusability and conclud~d that cost, the bottle-neck of

software development is because the entire software system

is built up "from scratch". Applying the idea of software

reusability would increase the software productivity.

By applying the concept of software reusability, one

distinct benefit is that the cost is reduced, another is

that less sophisticated users can gain access to many

complicated packages or algorithms without knowledge of the

internal workings.

A simple example for reusable software given by

Kernighan [10] is the program cal (for calendar). This

program can print the calendar for any specified year and

month. The original program is written in c and is about 200

lines with messy computation involved. The program requests

all the necessary arguments for month and year to be

9

supplied and month has to be in the form of number. If these

restrictive conditions are not satisfied the program will

not work. By using a simple shell program with the help of

UNIXTM utility date and the logical structure case, the cal

program becomes rather flexible without changing any

internal c source code.

Combining CMLS with GRASS using the UNIX™ shell, CMLS

users can produce maps from the CMLS output. The CMLS users

get a more powerful tool at a greatly reduced cost because

most utilities used already exist. No literature that

describes using the UNIX™ shell to integrate a simulation

model with the GRASS package has been gathered. It is really

worthwhile to have this application software developed.

CHAPTER III

ENVIRONMENTAL BACKGROUND

Introduction

UNIX™, the work-horse of the project, along with GRASS

and CMLS, the two software packages deeply involved in the

development of go & draw are discussed in this chapter.

Basic UNIX~ Background

UNIX™ Design Philosophy and Its Style

UNIX™ was first developed by Ken Thomson in PDP-7

assembly l anguage at the Bell Laboratories. Its original

name was UNICS for UNiplexed Information and Computing

Service and was changed to UNIX™ later.

After Ken Thompson and Dennis Ritchie rewrote the

system in C, the system became easier to understand,

maintain and easier to transport to other platforms. From

the beginning the primary goal of writing this operating

system was to create an effective environment f or

programmers to write and use programs. This determined the

style of the UNIX™ operating system, that is, simplicity,

general i ty and int e llig i bil ity. This envi ronment cul t i vated

the unique UNIX™ software style. As Melroy, Pinson and

Teagure outlined [13]:

10

A distinctive software style has grown upon this
base [simplicity, generality, intelligibility].
UNIX™ software works smoothly together, elaborate
computing tasks are typically composed from loosely
coupled small parts, often software tools taken
off the shelf.

The Components of UNIX™

11

The Figure from page 12 of Sobell's book clearly shows

the components of the UNIX™ operating system (see Figure

3.1), where software i s built on hardware in different

layers. Among the software layers, the inner-most part is

the UNIX™ kernel, which contains the interface to the

hardware and provides the most primitive of operating system

features. It is a relatively small program. From the core,

the second software layer is the system shell, which is a

command interpreter and acts as an interface between the

UNIX™ system and the user (programmer) . There are many

shell commands included within the shell and they are the

basis for programmers to composite more powerful and

complicated tools. The third layer consists of different

appl ication programs, such as compilers, editors, word

processors, mail tools, and so on.

Unique Features of UNIX™

UNIX™ has many unique features. Only the features

closely related to this project are discussed here.

Simplifie d I /0. The reading and writing o f fi l es in

UNIX™ are fairly simple. All the devices and f i les are

Figure 3.1. Components of UNIX™
[source from 20]

12

13

treated in the same way . Input and output can be redirected

to and from a disk file instead of the console by using the

file redirection symbols (>, <). Files are stored as a

stream of characters without any specific format. Multiple

files can be appended together to form a new file by using

the append symbols (>>, <<).

Pipe Usage. Both pipes and filters are a l lowed on the

command line in UNIX™. A pipe is a construct that sends the

output of · one command to another command as input. A filter

is another construction supported by UNIX™. It processes a

stream of input data and yields a stream of output data. It

is always used between two pipes . By combining commands

using pipes and filters, a new functional utility is

created. A UNIX™ programmer can use UNIX™ commands as

flexibly as he uses h i s natural language. In a natural

language, words can either have their own meaning or be

combined together to form a new meaning. The commands are

the vocabulary for the programmer to create more powerful

tools.

There are many UNIX™ utility programs which are also

called commands. The functions performed by these commands

are required universally, such as creating, displaying, or

moving files, creating, invoking, sleeping or terminating

processes, and editing or formatting texts, etc.

Since UNIX™ was developed originally for programmers

to manage their own projects, i t is an ideal software

development environment. The r ich set of utilities provide

14

the software developers with powerful tools.

Shell: the Enhancement of UNIX™

There are three major UNIX1M shells in existence today:

The Bourne shell, the c shell and the Korn shell. The

finished project go & draw uses the C shell.

The UNIX™ shell can be used as a programming language.

It is an interface between the operating system and the end

user. When a command is issued, the shell interprets the

command and calls the related program. The UNIX™ shell is

the key to increase the productivity and functionality of

the UNIX™ system. It supports many high-level language

constructs, such as variables, flow control structures,

parameter passing or subroutine calls and interrupt

handling. These capabilities are the primitives used to

bui l d more complicated programs. By composing shell

commands, many tasks can be accomplished easier than by

coding in other programming languages; i.e., cor C++. An

example, given by Kernighan [10], indicates that the news

program in their system, which is used to keep the user

informed of current events, is 360 lines long when written

in C but less than 20 lines in its shell version. Input and

output redirection are also supported by UNIX™ shell, but

in a slightly different way; that is, with an ampersand at

the end of the redirection sign. The UNIX™ shell can

customize the envi ronment in whi ch the command runs. Grouped

commands are usually put into a file to be executed, and the

15

file is called a shell script. To execute the shell script,

changing the file mode to executable is necessary. Once a

shell script has been changed to executable, there is no

difference between invoking a shell script and a compiled

program. Shell scripts are powerful tools for invoking and

organizing UNIX™ commands.

Bourne Shell. The Bourne shell is the most commonly

used UNIX shell. It almost always comes with the UNIX™

system. It was written by Steven R. Bourne in about 1975. It

has the smallest size and the best efficiency among the

three shells. It allows exception handling uniquely by using

the trap command. It has more versatile input and output

redirection, allowing standard input and output to be

redirected into and out of the whole control structure. It

supports both local and global variables and offers if-then­

else, case, for, while, and until control structures. The

Bourne shell does not support direct expression evaluation.

Expression evaluation can be performed only with the UNIX™

utilities test and expr. This can slow the process slightly.

The Bourne shell does not have the advanced interactive job

control features as the other two shells do; that is, when

the job starts, it remains in the foreground or background.

Status changes are not allowed in Bourne shell.

C Shell. The C shell is the second most popularly used

shell in UNIX™. It was developed by Bill Joy at the

University of California at Berkeley. Part of the C shell

16

syntax is borrowed from the c programming language. The

commands history and alias and the job control mechanism are

the most important improvements of c shell on Bourne shell.

The history feature allows users to keep track of the issued

commands, then go back to execute them without retyping the

command. The job control feature allows job switching

between background and foreground. The command alias allows

users to create aliases for command names. c shell supports

both local and global variables which are achieved by set

and setenv. The control structures offered by c shell are

if-then-else, switch, foreach, repeat, and while.

Expressions in C shell can be evaluated directly.

Korn Shell. The Korn shell was created at AT&T by

David Korn, with many features of both the C shell and the

Bourne shell. It is compatible with Bourne shell and is the

least popular shell among the three. The Sun Workstations on

which this work was done does not support the Korn shell.

Writing the project in the Korn shell never was considered.

GRASS: A Powerful GIS Package

GIS is a system which can collect, manage, manipulate,

analyze and display spatial and attribute data [21]. It is a

powerful, general purpose software package with great

flexibility. The basic requirements to use the software are

relatively high. Users must have knowledge of the

Geographical Information System as well as the computer,

including input, output devices, and operating systems.

17

GRASS was designed and developed by researchers at the

U.S . Army Construction Engineering Research Laboratory. It

is written in c and is UNIX™ oriented. GRASS was first

released in 1985 and version 4.0 was released in August,

1991. In version 4.0, each command can be used either

interactively or through the command-line interface. The

command-line interface provides programmers with great

working flexibility. GRASS is distributed with source code.

Portability is the first priority in GRASS design. It comes

before a friendly user interface and execution speed.

CMLS: A simulation Tool for Managing

Agricultural Chemicals

CMLS is a computer model designed to simulate the

movement and degradation of pesticides in soils. Pesticide

movement depends upon soil properties, pesticide properties,

weather, and management. The model is designed for use by

managers in selecting agricultural pest management systems

which minimize risk of degradation of ground water quality.

It is well suited for use with GIS systems since its input

parameters are readily available for large areas. Monte

Carlo techniques are used in CMLS to assess the range of

future behaviors of the chemical s since future weather is

unknown.

The input of CMLS is a text file. Information inside

the text file can be multiple blocks. Each block consists of

two groups. One group defines the overall simulation

parameters and the other defines all the soil chemical

systems being simulated. Fig 3.2 shows the format of the

CMLS input file, where the possible keywords in the input

file are listed.

18

The output of CMLS is written to text files, and the

file names are specified by the user in the input file

following the keyword InputFile in each block. The output

from the CMLS can either be time-depth data pairs or time­

depth-amount triples depending on the choice of the user;

that is, when the user chooses to specify the output amount,

the output will be time-depth-amount triples. Otherwise, it

will be time-depth data pairs. The f irst column re~orts the

simulation number. It should start from 1 and end at the

number specified by the user in the same block of the input

file after keyword Numberofsimulations. The second column 15

the system index specified by the user following the keyword

Systemindex in the beginning of each system in the input

file. The data following will be either the time-depth pairs

or the time-depth-amount triples. An example of output data

is given in Fig 3.3.

When the user wants to get the depths penetrated by the

chemical during certain time periods, he needs to specify

the times following the keywords Output TravelTime. When the

user wants to get the travel time taken for the chemical to

move to certain depths, he has to specify the depths after

the keywords Output Depth, and if the output amount is

preferred, the user has to put the keyword output Amount in

19

the input file of that block. The number of simulations

performed on the soil chemical systems of a block is defined

by an integer following the keyword NumberOfSimulations in

that block. This number defines the number of simulations

the user wants to perform on the given soil chemical systems

of the same block under certain weather condition.

Block 1

General
Information

Block

System
Information

Block

T
System 1

+
System 2

j_

T
System n

j_

CheckFile
Output TravelTime
Output Depth
output Amount
crop
Infiltration
ET
ETestimator
Irrigation
BeginSimulation
EndSimulation
NumberOfSimulations
PlantingDate
LengthUnits
Mode
Seed
outputFile

Systemindex
SoilName
Chemical
Soil Property

systemindex
SoilName

Resampling
Soil Property

Systemindex

ChemProperty
ChemProperty

SoilProperty
Soil Property

Figure 3.2. CMLS Input Format

20

21

sim. sys. time depth (amount) ... time depth (amount) ...

1 1 244 0.100 639 0.200 880 0.300
1 2 10 0.100 61 0.200 61 0.300
1 3 87 0.100 538 0.200 539 0.300
1 4 148 0.100 626 0.200 848 0.300
1 5 49 0.100 119 0.200 119 0.300
2 1 43 0.100 108 0.200 185 0.300
2 2 63 0.100 81 0.200 81 0.300
2 3 462 0.100 1296 0.200 2106 0.300
2 4 143 0.100 509 0.200 623 0.300
2 5 39 0.100 131 0.200 151 0. 300

Figure 3.3. CMLS Output Format (time-depth pairs five
soil chemical systems are included in
this block)

CHAPTER IV

DESIGN AND DEVELOPMENT OF GO & DRAW

Introduction

In this chapter, the features of the project are

presented. This includes a detailed description of the

functionalit i es that go & draw provides and the working

environment that the user faces. Finally, a complete

explanation of the designing details of the project is

given.

Funct i onality

go & draw can help its user to create the CMLS input

file and allows its user to run CMLS for a selected county

and to produce maps from either the CMLS output or the soil

and the land use data bases of that county. All the

implementation details of both UNIX™ and GRASS have been

concealed by using UNIX™ shell programming. After the user

selects a county within Oklahoma and chooses to run CMLS for

that county, the user only needs to supply some of the data

in the general information block of the CMLS input file.

They are entered under the prompt of dialogue boxes. The

data to be entered by the user f rom the command line are

shown in Fig 4.1. All the other required information to run

22

23

CMLS, like the soils and their properties, are extracted by

go & draw automatically from the associa ted data bases. go &

draw creates the input file for CMLS by combining these data

via the UNIX™ shell command awk . The travel time and/or the

depth data specified by the user from the command line are

kept in a temporary file by go & draw . After go & draw

i nvokes CMLS, it extracts the travel time andjor the depth

from the temporary file and displays the data in a dialogue

box to let the user select the data of interested in making

maps . go & draw processes the relevant data to meet the

requirements of the GRASS map producing programs. Not only

can the user produce maps from the CMLS output, but the user

can also produce soil and land use maps within the selected

county with the help of go & draw . The user has the

flexibil ity of displaying the CMLS output map and the soil

map or the land use map alternatively by choosing the

options provided in the dialogue box. To each displayed map,

the user is allowed to zoom in on any particular part of the

map to get a detailed map and to go back to the default

g eographical region of the county after zooming. All the

maps can either be displayed on the screen or printed out on

hard copy.

go & draw allows the CMLS users to accomplish these

tasks in a highly user friendly environment. The detailed

user interface descript i on of this project is discussed in

the next s e ction.

Output TravelTime
Output Depth
output Amount [optional]
Crop Name
crop File Name
Evapotranspiration (ET) Source
ET File Name
ET Estimator Name
ET Estimator Parameter(s)
I nfiltration Source
Infiltration File Name
Irrigation Management Strategy
Parameters for the selected Strategy
Simulation Begin Year and Day
Simulation End Year and Day
Earliest and Latest Planting Day
Number of Simulations
Name o f the Output File
Seed
Measure Unit for the Depth
Same or Different Weather for Each System
Application Window
Applicatio-n Depth and Amount
Chemical Name of Applied
Chemical Koc and half life
Root Depth

Figure 4.1 . Data Entered from the Command Line

24

25

User Interface

The user interface provided by go & draw is mainly

through dialogue boxes. Except when certain actions need to

be taken inside the graphics monitor where the mouse is

used, all other actions are carried out by entering choices

from the keyboard on the command line. A dialogue box is

used to give clear instructions to the user whenever actions

need to be taken by the user.

After the user starts go & draw, The graphics monitor

is invoked automatically and the map of Oklahoma state is

displayed on it. A dialogue box (see Fig 4.2) is used to

instruct the user to choose the county of interested using

the mouse. Another box (see Fig 4.3) continues to let the

user decide if the selection is intended. In this dialogue

box, [county] represents the selected county name. After

selecting the county, the first dialogue box encountered by

the user is the one that asks if the user wants to run CMLS

(see Fig 4.4). If so, the user will be prompted to enter the

necessary information to run CMLS. The data needed to be

entered are shown in Fig 4.1. The dialogue boxes that

instruct the user to enter these data are basically in three

forms, answering yes or no, making a selection, or typing in

the data directly. Examples for these three types of

dialogue box are given in Fig. 4.5. When the user finishes

entering data, a dialogue box is used to give the user the

opportunity to modify the data that he has entered (see Fig

26

4.6). The user can keep modifying the data until he is

satisfied by answering y to dialogue box 4. After this, go &

draw invokes CMLS automatically. In the process of running

CMLS, if an error occurs and if it is related to the data

that the user entered, the user still has the chance to

modify the data. That is, dialogue box 4 wi l l be displayed

to the user again with error messages to tell the user that

the data entered need to be modified. go & draw will restart

automatically to execute CMLS after the user is satisfied

with his modifications. When CMLS ends, the user is prompted

to select the actions he is i nterested in taking. This time,

the choices given by the dialogue box include choosing the

simulation number, displaying the soil or the land use map,

zooming the current region, going back to the default

geographical region of the county, or quitting this CMLS

session (See Figure 4.7). In this box, [No] represents any

number entered by the user from the command line for the

number of simulations. When the user chooses to display the

soil or the land use map or to go back to the default

region, the actions followed will be taken by go & draw

automatically. When the user chooses to zoom the current

region, he will be instructed to use the mouse to select a

region within the current region. When the user chooses a

simulation number, another dialogue box with al l the depths

andjor travel times entered by the user prior to running

CMLS wil l be display e d (s ee F i g 4 .8 as a n e xample) a nd the

user is prompted to select a number which represents the

27

data in which the user is interested. After the user makes a

selection in the dialogue box, go & draw will display the

map made from the selected data and go back to dialogue box

5 to let this process continue. Thus, the user can switch

back and forth between the CMLS output map and the soil or

the land use maps. This process continues until the user

selects q (quit) in dialogue box 5. Then the user is taken

back to dialogue box 7 (See Fig 4.9). This is the same

dialogue box that the user would encounter if he answers no

to dialogue box 3. In dialogue box 7 and box 8 (See Fig

4.10), the user is given the options of displaying the soil

or the land use maps of the county respectively. After that,

the execution will go to dialogue box 9 (See Fig 4.11). This

process continues until the user answers that he does not

want to select another county.

A series of procedures are involved in designing and

developing this project. They are discussed in the following

section.

Please use mouse to select a county
left button t o select
right button to confirm

Figure 4.2. Dialogue Box 1 - Instruct the
User to Select a County

Selected county is [County], ok? (yjn)

Figure 4.3. Dialogue Box 2 - Let the User
Conf i rm His Selection

28

Run CMLS batch ? (yjn)

Figure 4.4. Dialogue Box 3 -
Give the User
the Option to
Run CMLS

Want to specify the output depth ? (yjn)

Enter the depths (float) in one line
and when finished hit return key

Choose the source of infiltration, please
a. actual
h. historical
g. generated

Figure 4.5. Data Entered in Three Forms

29

THESE ARE THE DATA THAT YOU JUST ENTERED

Output TravelTime 0.1 0.4 0.6 0.9
output Depth 30 100 500 3000
Crop corn cropfile
ET generated ok3281.par
ETestimator SCSBlaneyCriddle 1.0
Infiltration generated ok3281.par
irrigation none
Beginsimulation 1 1
EndSimulation 10 365
NumberOfSimulations 10
PlantingDate 1 1
Seed -100
LengthUnits
Mode sameweathereachsystem

Any Modifications ? (y/n)

Figure 4.6. Dialogue Box 4 - Let the User Modify
the Input Data

30

Please enter (1-[No]) for the
simulation preferred

or
s - l ook at the soil map
l - look at the land use map
z - zoom the area
b - back to the original region
z - quit

Figure 4.7. Dialogue Box 5 -Let the User
Select an Action

Please choose the data that you are interested
in making maps (enter q to quit):

1. 0.1 2 . 0.2 3. 0.6 4. 0.6 5. 0.9
2. 30 7. 100 8. 500 9. 3650

Figure 4.8. Dialogue Box 6 - Let the User Choose
the Interested Data

31

Look at the soil map for this area ? (yjn)

Figure 4.9. Dialogue Box 7 - Give the User the
Option of Looking at the Soil
Map for the Same Area

Look at the land use map for this area ? (yjn)

Figure 4.10. Dialogue Box 8 - Give the User the
Option of Looking at the Land Use
Map for the Same Area

Another County ? (y/n)

Figure 4. 11 . Dialogue Box 9 -
Ask If the User
Wants to Work on
Another County

32

33

System Description

All the functions described earlier are performed

inside GRASS. To produce maps using go & draw, the user must

get into GRASS first. go is the procedure that carries out

this task. By typing "go" from the command line, the

procedure will guide the user to get into GRASS.

As long as the user i s inside GRASS. draw becomes the

procedure that initiates all the other procedures. By typing

"draw" ins ide GRASS, the user will be instructed to take

certain actions or to make certain choices in order to

finish the job that he intended to.

Procedure draw implements all necessary processes by

calling other procedures. The designing and selecting of a

certain procedure is based on modularity. The relationship

between draw and other procedures which are called by draw

directly or indirectly are shown in Fig 4.12.

The functions that each procedure performs are

presented below:

1. draw. Read in the directory where the script

procedures are stored and the directories containing

necessary database files. Start the graphics monitor

which will be used to display maps during the session.

Display Oklahoma state map on the graphics monitor.

Procedure sel_county is called to continue the

execution. The process will not end until the user

explicitly answers that he does not want to choose

34

another county.

2. sel_county. Lets the user select a county within

Oklahoma by using the mouse. Give the user the option

to run CMLS. If the user chooses to run CMLS,

procedures get_input, mod_qen, draw_map are called, if

the user selects to skip the option of running CMLS,

display the soil map and the land use map options will

be given and certain GRASS functions will be called.

3. get_input. The soils and their properties for the

selected county are extracted from the soil attribute

data base and the soil curve number for each soil are

extracted from the soil data base. The extracted data

are combined and processed to create one system

information block of the CMLS input file. Procedure

gen_infor is called to read in data from the command

line. Procedure mod_gen is called to let the user

modify the data that he has entered. The general

information block data and the system information block

data are combined to form the input file for CMLS.

4. gen_infor. Lets the user enter the limited data

necessary for CMLS. Whenever certain data need to be

entered or certain choices need to be selected by the

user, a dialogue box will instruct the user to take the

relevant action.

5. mod_gen. Lets the user modify the data that he has

entered in procedure gen _infor. The data will be

displayed line by line. When there is no change in a

line, the user only needs to hit the return key. When

there is any change in a line, the user must type

everything in the line except the keyword(s).

35

6. draw_map. Display dialogue box 5 to let the user

select the choice that he prefers, which includes

picking up a simulation number, looking at the soil

map, looking at the land use map, zooming the current

mapping area, returning to the original region from the

zoomed area and quitt i ng for this CMLS session. If the

user chooses to pick up a simulation number, dialogue

box 6 will be displayed to let the user select the

depth andjor travel time for making a map. The

procedure automatically processes CMLS output by first

picking up certain rows and columns from the output

file and then grouping the selected data. Finally ,

GRASS functions are called to set the region and

display the map. Any other choices selected by the user

will l ead the procedure to take the corresponding

actions.

7. pre_pmap. Write a text file which specifies a ll the

necessary information in drawing the CMLS output map.

This text file is redirected to GRASS command p.map.

8. pre soils. Write a text file which specifies all the

necessary information in drawing the soil map of the

selected county. This text file is redirected to GRASS

p.map.

36

YES
PROCESS CMLS

YES
DRAIJ SOl L HAP

YES

YES

Figure 4.12. Execution Sequence of the Map Drawing Tool

37

BU ILD CHLS SYS. INFO. FILE

YES

DRA\.l SOI L MAP

YES

Figure 4.13. Process CMLS

9. pre_land. Write a text file which specifies all the

necessary information in drawing the land use map of

the selected county. This text file is redirected to

GRASS command p.map.

38

The procedures perform their functions with the help of

the UNIX™ shell utilities and the shell logic constructs. A

detailed discussion of selecting and organizing these

utilities is provided in the next section.

Implementation Details

A large amount of text processing is involved during

the implementation of go & draw. This is carried out by

using the UNIX™ shell commands awk, cut, paste, sed, tr,

and so on. The logical constructions offered by the UNIX™

shell are used as the glue to connect all the building

blocks (the shell tools). Pipe, filter, append symbols (<<,

>>), I/O redirection signs (<, >) are also widely used

within the project.

The data in Figure 4.1 are entered by the user one by

one under the prompt of dialogue boxes. As part of the input

data, they are appended together by using the output append

symbol (>>) and UNIX™ utility echo. The appended data are

saved in a temporary file for later use. Logic constructs

while and if are used to assure the proper flow logic of the

project.

The process of lett i ng the user continue to modify the

data he entered is fulfilled by using UNIX™ utility awk and

39

the logic construct while. awk is used to check whether the

line entered by the user is an empty line. That is, when the

user does not want to modify anything in this line by

choosing to hit the return key directly. The idea behind

this is to use new line as the field separator for the awk

program. The number of fields in a line will not be one

unless the user hits the return key directly, that i s, there

is no change in this line. If there is any change in a line,

the new data entered by the user replace the old. If the

user hits the return key directly, the old data are kept.

The while construct keeps the modify process continuing.

When the user chooses not to modify any data, a break

statement is used. The status of the CMLS execution is

checked using the c shell built in variable status. A single

procedure mod_gen is designed to let the user modify the

data. When errors occur inside CMLS, by simply invoking

mod_gen again, the user can perform the data modification

process.

If CMLS terminates normally , the output file is split

into multiple f iles by using UNIX™ utility split. Each file

contains the output from a single simulation. For example,

if the user entered 5 for the number of simulations in the

command line, the output file will be split into 5 f iles. If

there is only one simulation, the split process is skipped.

Which file is used in the following step depends upon the

numbe r chosen by the user in d ialogue box 5.

After the user chooses the data in making the map, awk

and cut are used to pick up certain columns from the

selected single simulation output file.

Finally, the data are grouped and organized using awk

to meet the requirements of the GRASS map producing

commands. The correct region is set by using GRASS command

g.region and GRASS command p.map is used to make the map.

40

The temporary files generated during the implementation

of the project are put in the directory /tmp, a UNIX™

directory for temporary files. A temporary fi l e is removed

as soon as its functions are finished. Each temporary file

name is made unique by naming it using the process ID of the

running procedure with a different extension.

Modularity is of first priority when it comes to

selecting and designing a procedure. Though the goto

s tatement is allowed by the C shell, it is never used within

the project.

CHAPTER V

DESIGNING GUIDELINES

The intention of developing this project (go & draw) is

to provide a friendly working environment for the CMLS users

who want to produce maps from the CMLS output but are

neither GIS experts nor computer experts. By using go &

draw, the CMLS users can produce maps from the CMLS output

or some existing data bases.

The most outstanding feature of this project is its

user-friendly interface. Since the motivation of developing

this project is to let the users with limited computer

skills perform complex tasks without great e ffort. The

friendly user-interface naturally decides the project's

success and becomes the heart of go & draw.

Other than the user-friendly interface, some other

quality factors of shell procedures, i ntroduced by Arthur

[2] are also of great concern in designing process. They are

the reliability, the maintainability and the efficiency.

These quality factors are discussed respectively below.

Reliability

The reliability of the project is understood as it

performs the correct, intended action and rarely fails. It

has taken effect by several efforts, like always checking

41

42

the range of input data. When a dialogue box is displayed

and the user is asked to enter data, the data entered by the

user will be checked for range and value. If there is any

mistake, the same dialogue box will be displayed to the

user. Therefore the user must re-enter the data. Fault

handling is enforced with the help of the exit statement and

the c shell predefined variable status. When any abnormality

occurs after the user typed "draw11 , and it is related to the

CMLS input data which was entered by the user from the

command line , procedure mod_gen will be invoked to allow the

user to have the opportunity to modify the data. When errors

other than that occur, the project will exit and give

control back to the c shell with an abnormal termination

signal. Interrupts are handled by using the interrupt

handler. That is, if any interrupt occurs when a procedure

is executing, the execution flow will be transferred to a

place inside the procedure where all the temporary files and

intermediate data files are deleted. Then control is

transferred back to the calling procedure.

Maintainability

The maintainability of the pro]ect is enforced through

the following points:

Modularity

Small, modular shell proce dures help to improve the

maintainability of the whole project. These small procedures

43

are easy to understand. Each procedure carries out a

relatively primitive task. When the same function must be

performed repeatedly, or must be performed at different

places, it is only required to invoke the procedure which

carries out that function. Flow control is achieved with the

help of shell control constructions, such as, if, while,

switch and so on. Although the goto is allowed in the c

shell, it is never used within this project.

Consistency

Consistency is another quality factor upon which the

maintainability depends. Applying a consistent programming

style in each individual procedure is one way to ensure the

consistency of the shell s cripts. Other than that, choosing

the simpler command when there are several choices available

and indenting the shell control constructions to show the

structure of the procedure are also helpful in keeping the

consistency of the project in good shape.

Efficiency

Time efficiency of the project is the major concern in

the design process. The following items make the project run

faster.

Change Directory

When the user types "draw" inside GRASS, each

procedure invoked by draw directly or indirectly changes to

44

the directory where the shell procedures are stored. Thus,

the project does not need to search through directory after

directory . The efficiency of the project can be improved.

Reduce Temporary Files

The number of temporary files used can also affect the

efficiency of the project. The number of temporary files can

be reduced by using pipes whenever possible. Due to UNIX™'s

rich set of commands, many tasks can be performed in several

different ways. Carefully choosing commands is another way

of reducing the number of temporary files.

Using Time to Measure the Speed

The UNIX™ command time can be used to determine the

execution time of the shell procedures. By typing "time"

following the procedure name which needs to be measured.

time will reports its data in seconds on the diagnostic

output.

Because roost of the shell procedures designed in this

project ask the user to provide input interactively, the

execution times for such procedures are measured by mainly

measuring the single commands which are related to using

temporary files or are time consuming text processing

commands. No attempt has been made to measure the execution

time of a whole procedure at once.

45

Documentation

since the map drawing tool will be commercially

available, later improvement and enhancement are inevitable.

Good documentation becomes the important key to assuring the

future work. For each procedure inside the project, a

companion text file is produced to document the

functionalities and key points of that procedure.

CHAPTER VI

SUMMARY, CONCLUSIONS AND FUTURE WORK

summary and Conclusions

As stated in Chapter I, the purpose of designing this

project is to provide the CMLS user with a powerful map

drawing tool. The CMLS user can produce maps with great

efficiency but little effort. Early results of demonstrating

the project have been very promising. The finished project

displays this capability by user-friendly interface and

reliability.

The whole designing process of the project follows the

designing guidelines stated in Chapter V. As a result, not

only does the project have the functionalities introduced in

Chapter IV, but also are the later improvement and

enhancement are assured.

The finished project provides the CMLS user with a

powerful, convenient working tool. Due to time restri ction,

however, some features and functionalities that the project

might have are not added in this thesis. They are stated in

the next section.

Future Work Suggestions

l. After the user entered all the necessary data for

46

47

running CMLS and dialogue box 8 are displayed to the

user, if the user chooses to modify the data, the

modification steps followed are carried out by using

UNIX™ tool awk (See Chapter IV for details) . There is

a lot of text processing i nvolved each time the

procedure tries to determine if the input is a new

line. This can be revised by writing a small c program

and install it in the user's working environment. Thus,

the procedure can invoke this compiled C program just

like a UNIX™ command. This will improve the response

time.

2. CMLS program allows more than one block of information

in the input file (See Chapter III for details) . The

current project only allows one block of data in the

input file. If the capability of allowing more blocks

of information in the input file were possible, the

project would become more powerful.

3. Resampling is allowed in CMLS program, but the current

project is not capable of handing this. Adding this

feature to the project can also increase its

capability.

4. The current project asks the user to supply one weather

file from a single weather station for CMLS. If the

project were able to automatical ly detect the weather

stations that affect to a county and run CMLS based on

the multiple weather stations, the maps produced based

on such CMLS output would be more useful.

48

5. Each time the user typed "draw" in the command line,

certain directory names have to be supplied (see

Chapter IV for details) . If a instal l ation program

could be written to ask for those directory names and

the user did not need to be aware of those directories

later, the project would be more easy to use.

6. The current project allows its user only produce CMLS

output map based on current CMLS running session. If

the output from the previous CMLS running sessions

could also be used in producing maps, the project would

be more flexible and powerful.

7. The current project can only produce CMLS output map on

one single travel time or one single depth. I f the

project could calculate travel time or depth

probability based on the CMLS output and produce the

probability maps, the result would be more practical.

BIBLIOGRAPHY

1. Anderson G. and Anderson P . The UNIX™ c Shell Field
Guide, Prentice-Hall, Englewood, New Jersey, c1986.

2. Arthur L.J. UNIX™ Shell Programming, John Wiley &
Sons, Inc, c1990.

3. Bourne S.R . , The UNIX™ Shell, Bell systems Technical
Journal Vol. 57, July-August 1978, pp. 1971- 1991.

4. Comeau G., The UNIX™ Shell, BYTE, September 1989, pp.
315-321.

5. Doane S.M. , McNamara D.S., Kintsch W., Polson P.G, and
Cl awson D.M., Prompt Comprehension In UNIX™ command
Production, Memory & Cognition, 20:4, 1992, pp. 327-
343.

6 . Dolotta T . A., Haight R. C., and Mashey J. R., The
Programmer's Workbench, Bell Systems Technical Journal,
Vol. 57, July-August 1978, pp. 2177-2199.

7. Fiedler D. , Customizing For Comfort, Byte, November
1989, pp 139-142.

8. Horowitz E . , and Munson J.B., An Expansive View of
Reusable Software, IEEE Transactions on Software
Engineering, Vol. 10, September 1984 , pp. 477 - 487.

9. Johnson S.C., and Lesk M.E . , Language Development
Tools, Bell Systems Technical Journal, Vol. 57, July­
August 1978, pp. 2155- 2175.

10. Kernighan B.W. The UNIX™ System and Software
Reusability, IEEE Transactions on Software Engi neering,
Vol. 10, September 1984, pp. 513-518.

11. Kernighan B.W. and Mashey J.R., The UNIX™ Programming
Environment, IEEE Computer, April 1981, pp. 12-24.

1 2 . Luderer W. R., Maranzano J.F. and Tague B. A., The UNIX™
Operating System as a Base for Applications, Bel l
Systems Technical Journal , Vol. 57, Jul y-August 1978,
pp . 2201-2207 .

13. Mcllroy M.D., Pinson E.N. and Tague B.A . , Foreword,

49

14.

15.

1 6.

17.

18.

19.

20.

21.

l ~'J 22.

Bell systems Technical Journal, Vol. 57, July-August
1978, pp. 1899-1904.

Nofziger D.L. and Hornsby A.G., .chemical Movemen~ in
Layered soils: User's Manual, C1rcular 780, Flor1da
cooperation Extension service, Institute of Food and
Agriculture science, University of Florida,
Gainesville. FL . 1992, pp. 44.

Ritchie D.M., A Retrospective, Bell Systems Technical
Journal , Vol. 57, July-August 1978, pp. 1947-1969.

Ritchie D. M. and Thompson K., The UNIX™ Time-Sharing
system, Bell system Technical Journal, Vol . 57, July­
August 1978, pp. 1905- 1929.

50

Ryan B. , Scripts Unbounded, BYTE, August 1990, pp. 235-
240.

PikeR. and Kernighan B.W., Program Design in the
UNIX™ Environment, Bell System Technical Journal, Vol.
63, October 1984 , pp. 1595-1605.

Smith B. , The BYTE UNIX™ Benchmarks, March 19 9 0, pp.
273-277.

Sobell M.G . , A Practical Guide to the UNIX™ system,
The Benjamin-Commings Publishing Company, Inc. 1989 .

GRASS 4.0 Programmer's Menu. Engineers Construction
Engineering Research Laboratory (Unpub.), August, 1992.

GRASS 4.0 User's Menu, Engineers Construction
Engineering Research Laboratory (Unpub .), July, 1991.

APPENDIXES

51

APPENDIX A

GRASS COMMANDS USED IN THE

MAP DRAWING TOOL

52

53

GRASS COMMANDS USED IN THE MAP DRAWING TOOL

For reference, all the GRASS commands· used in the map

drawing tool are listed in this appendix, The source for the

description of each command is from the GRASS Reference

Menu.

d. frame

d.erase

d.mon

d.rast

d.what.rast

d. zoom

exi t

g.region

p.map
r.patch

r.reclass

r.stats

Manages display frames on the user's
graphics monitor.
Erase the contents of the active display
frame on the user's graphics monitor.
To establish and control use of a
graphics display monitor
Display and overlays raster map layers
in the active display frame on the
graphics monitor
Display and overlays raster map layers
in the active display frame on the
graphics monitor.
Allows the user to change the current
geographic region settings interactively
with a mouse.
Exits the user from the current GRASS
session.
Program to manage the boundary
definitions for the geographic region.
Hardcopy colour map output utility.
Creates a composite raster map layer by
using known category values form on (or
more) map layer(s) to fill in areas of
"no data" in another map layer.
Creates a new map layer whose category
values are based upon the user's
reclassification of categories in an
existing raster map layer
Generates area statistics for raster map
layers.

APPENDIX B

THE PSEUDO-CODE OF THE

MAP DRAWING TOOL

54

Procedure qo

1. Display the dialogue box to prompt the user to enter
the directory name where GRASS is stored
Read in the directory name

2. Change to the directory where GRASS is stored
3. Display the dialogue box to instruct the user to hit

Esc when GRASS is started

55

4. Wait for 2 seconds for the user to read the instruction
5. Invoke GRASS.
6. End of qo

Procedure draw

1. Change to the user's home directory
2. Alias rm to rm -f for forcing removing files
3. Set variable tf to ;tmp/$$ for later naming temporary

files
4. Prompt the user to enter the directory where all the

shel l procedures are stored
Read in the directory name

5. Change to the directory where all the shell procedures
are stored

6. Prompt the user to enter the directory name where all
the soil files are stored
Read in the directory name

7. Prompt the user to enter the directory name where all
the soil property files are stored
Read in the directory name

8. Check the environment (OpenWindows™ or SunView™) with
the help of GRASS command d.mon

9. Display the dialogue box to instruct the user to adjust
the graphics monitor size if the user is not satisfied
with the default size when the graphics monitor
displayed

10. If the graphics monitor is not started
A. If the environment is SunView™

Start the graphics monitor for SunView™
B. If the system is OpenWindows™

Start the graphics monitor for
OpenWindows™

11. If the user enter continue for satisfying with the
current graphics monitor size

A. Frame the graphics monitor using GRASS
command d.frame

B. Set the current geographic region as Oklahoma
state region

C. Clear the graphics monitor
D. Display Oklahoma state map on it
E. Call procedure sel county

12. While true -
A. Display the dialogue box to ask the user if

he wants to select another county

Read in the user's answer
B. If the user selects yes

a. Set the geographic region to
Oklahoma state

b. Clear the graphics monitor
c. Display the Oklahoma state map on

it
d. Call procedure sel_county

Otherwise
Break

13. End of draw

Procedure Sel_county

1. Set tf to jtmpj$$ for later naming temporary files
2. Alias rm to rm -f for forcing removing files
3. While true

56

A. Display the dialogue box to instruct the user
to use the mouse to select a county

B. Using GRASS command d.what.rast, UNIX™
commands tee and awk to get the name of the
selected county

C. Remove the temporary files that from the
previous step

D. Display the dialogue box to inquire the user
if he is satisfied with his selection
Read in the user's answer

E. If the user answers yes
Break

4. Write the selected county name to a temporary file
5. Using the UNIX™ command tr to convert all the letters

of the county name to lower case
6. Remove the temporary fi le
7. Display the dialogue box to inquire the user if he

wants to run CMLS
Read in the user's answer and store it in variable
choice

8. While the user answers anything other than no
A. Call procedure get input
B. Invoke CMLS -
c. Check the status of CMLS execution process

a. If the status is 1
Terminate the shell tool with an
abnormal termination signal

b. If the status is 2
aa. Display a dialogue box to

tell the user that data
entered has errors

bb. Call procedure mod_gen
c. If the status is 0

aa. Call procedure draw_map
bb. Set choice to no

9. Display the dialogue box to give the user the option of

looking at the soil map
Read in the user's answer

10. If the user answers yes
A. Set the geographic region to the selected

county
B. Clear the graphics monitor
C. Display the soil map

57

11. Display the dialogue box to give the user the option of
looking at the land use map
Read in the user's answer

12. If the user answers yes
A. Set the geographic region to the selected

county
B. Clear the graphics monitor
c. Display the land use map

13. End of sel_county

Procedure get_input

1. Set variable tf to jtmpj$$ for later naming the
temporary files

2. Alias rm to rm -f for forcing removing file s
3. Copy the selected county soil property file to a

temporary file
4. Using UNIX™ command sed to change the copied soil

property file field separator from"," to ":"
5. Using UNIX™ command awk to make the first fields of

all the lines in the soil property file two digits
6. Using UNIX1H command awk to remove the first four

lines of the selected county soil file
7. Using UNIX™ command awk to make the first fields of

all the lines in the soil file two digits
8. Us ing UNIX1H command join to do relational join on the

soil file and the soil property file
9. Using UNIXlM command awk to convert the joined file to

fit the requirements of CMLS input file system
information block, name the file ~

10. Call procedure gen_infor
11. Call procedure mod gen
12. End of get input -

Procedure gen infor

1. Al i as rm to rm -f for forcing removing files
2. While true

A. Display the dialogue box to ask the user if
he wants to specify the output depth
Read in the user's answer

B. I f the user answers yes
a. Display the dialogue box to

instruct the user to enter the

depths
Read in the depths

b. Write the depths with keyword
output Traveltime to file gen

58

c. Write the depths with keyword depth
to a temporary file mid for later
use

c. Display the dialogue box to ask the user if
he wants to specify the output travel time
Read in the user's answer

D. If the user answers yes
Display the dialogue box to instruct the
user to enter the specified travel times
Read in the travel times

E. If the user specified both depth and travel
time

a. Append the travel times with
keyword Output Depth to file gen

b. Append the travel times with
keyword time to file mid

F. If the user only specified travel time
a. Write the travel times with keyword

Output Depth to file gen
b. Write the travel times with keyword

time to file mid
G. If the user specified neither travel time nor

depth
Display error message

Otherwise
Break

3. Display the dialogue box to ask the user if he wants to
specify the output amount
Read in the user's answer

4. If the answer is yes
Append keyword output Amount to file gen

5. Display the dialogue box to let the user enter crop
name
Read in crop name

6. Display the dialogue box to let the user enter crop
file name
Read in the crop file name

7. If the file does not exist
Display error message

8. Append the crop name and crop file name with keyword
Crop to file gen

9. Displ ay the dialogue box to let the user select the
evapotranspiration (ET) source
Read in the user's selection

10. Display the dialogue box to let the user enter the ET
file name
Read in the f ile na me

11. If the file does not exist
Display error message

12. Display dialogue box to let the user select the ET

estimator name
Read in the user's selection

13. Display the dialogue box to let the user enter the ET
estimator parameter(s)
Read in the parameter(s)

14. Append the ET source, ET file name, ET estimator name
and the parameter(s) with keyword ET to file gen

15. Display the dialogue box to let the user select the
infiltration source
Read in the user's selection

16. If the user selects both the ET source and the
infiltration source as not generated

A. Display the dialogue box to prompt the user
to enter the infiltration file name

B. Append infiltration source and infiltration
file name with keyword Infiltration to file

Otherwise
Append infiltration source and ET file name with
keyword Infiltration to file gen

59

17. Display the dialogue box to let the user to select the
irrigation management strategy
Read in the irrigation management strategy, and if the
irri gation strategy is

A. None
Append None with keyword Irrigation to
file gen

B. Actual
a. Display the dialogue box to ask the

user for irrigation file name
Read in the file name

b. Append Actual and irrigation file
name with keyword Irrigation to
file gen

c. Periodic

D. Demand

a. Display the dialogue box to prompt
the user to enter irrigation begin
day, irrigation end day, number of
irrigation days and irrigation
amount in one line
Read in all the data at once

b. Append all the read in data with
keyword Irrigation to file gen

a. Display the dialogue box to prompt
the user to enter irrigation begin
day, irrigation end day, critical
water depletion level and minimum
irrigation amount in one line
Read in all the data at once

b. Append all the read in data with
keyword Irrigation to file gen

18. Display the dialogue to let the user enter simulation
begin year

Read in the year
19. Display the dialogue box to let the user enter

simulation begin day
Read in the day

20. Append simulation begin year and day with keyword
BeginSimulation to file gen

21. Display the dialogue box to let the user enter
simulation end year
Read in the year

22. Display the dialogue box to let the user enter
simulation end day
Read in the day

23. Append the simulation end year and day with keyword
EndSi:mulation to file gen

24. Display the dialogue box to let the user enter the
earliest planting day
Read in the day

25. Display the dialogue box to let the user enter the
latest planting day
Read in the day

26. Append the earliest and the latest planting day with
keyword PlantingDate to file gen

27. Display the dialogue box to let the user enter the
number of simulation times that he prefers
Read in the number

28. Append the number with keyword NumberOfSimulation to
file gen

60

29. Display the dialogue box to let the user enter the file
name to which the CMLS output is going to be written

30. Append the file name with keyword OutputFile to file
gen

31. Display the dialogue box to let the user enter a number
for seed

32. Append the number with keyword Seed to file gen
33. Display the dialogue box to let the user select the

measure unit for depth
Read in the user's selection

34. Append the user's selection with keyword DepthUnits to
file gen

35. Display the dialogue to ask the user if he wants to
change weather for each soil chemical system
Read in the user's selection and if the user answers

Append newweathereachsystem with keyword Mode to
file gen

Otherwise
Append sameweathereachsystem with keyword Mode to
file gen

36. Display the dialogue box to let the user select the
application day type
Read in the user's selection

37. Display the dialogue box to let the user enter
application year
Read in the year

38. Display the dialogue box to let the user enter
application begin day
Read in the day

39. Display the dialogue box to let the user enter
application end day
Read in the day

40. Display the dialogue box to let the user enter
application depth
Read in the depth

41. Display the dial ogue box to let the user enter
application amount
Read in the

42. Display the
Read in the

43. Display the
life
Read in the

amount
dialogue
value
dialogue

value

box to let the user enter

box to let the user enter

61

Koc

half

44. Display the
name

dialogue box to let the user enter chemical

Read in the chemical name
45. Append all the data read in from 36 to 44 with keyword

Chemical to file gen
46. Display the dialogue box to let the user enter root

depth
Read in the value

48. Append the value with keyword RootDepth to file gen
49. End of gen_infor

Procedure mod_gen

1. Set variable tf to jtmpj$$ for naming temporary file
2. Alias rm to rm -f for forcing removing temporary files
3. Set nonomatch
4. Using UNIXTM command awk to get the number of lines in

file gen
5. While true

A. Display the dialogue box to let the user
browse the data that he has entered in
procedure gen_infor and ask the user if he
wants to modify the data
Read in the user's response
If the response is DQ

Break
B. Remove file mid and inf
C. Display the dialogue box to instruct the user

to modify the data
D. Display the first line of file gen

Read in the user's response
If the response is not a newline

a. Write the entered data with the
corresponding keyword to a
temporary file temp

b. Write the data with the

62

corresponding keyword to file mid
Otherwise

a. Write the line in file gen to file
temp

b. Write the line with keyword to file
mid

E. Display the second line of file gen
Read in the user's response
If the response is not a newline

a. Append the entered data with the
corresponding keyword to file temp

b. I f the keyword for the second line
is Output Depth

Append the data with keyword
time to file mid

F. Display the third line of file gen
Read in the user's response
If the response is not a newline

Append the data with corresponding
keyword to file temp

Otherwise
Append the third line in file gen to
file temp

G. Display the fourth line of file gen
Read in the user's response
If the response is not a new l i ne

Append the data with corresponding
keyword to file temp

Otherwise
Append the fourth line in file gen to
file temp

H. Display the fifth line of file gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the fifth line in file gen to
file temp

I. Display the sixth line of file gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the sixth line in file gen to
file temp

J. Display the seventh line of file gen
Read in the user's response
If the response i s not a new line

Appe nd t h e d a ta with corresponding
keywor d t o f i le t e mp

Otherwise
Append the seventh line in file gen to

file temp
K. Display the eighth line of file gen

Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Write the eighth line in fi le gen to
fi le temp

L. Display the ninth line of file qen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the ninth line in file gen to
file temp

M. Display the tenth line of file gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the tenth line in file gen to
file temp

N. Display the eleventh line of file gen
Read in the user's response
If the response is not a new l ine

Append the data with corresponding
keyword to file temp

Otherwise

63

Append the eleventh line in file gen to
file temp

0. Display the twelfth l ine of file gen
Read in the user 's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the twelfth line in file gen to
fi le temp

P. Display the thirteenth line of file gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to fi le temp

Otherwise
Append the thirteenth line in file gen
to file temp

Q. Display the fourteenth line of file gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the fourteenth line in file gen
to file temp

R. Display the fifteenth line of file gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise

64

Append the fifteenth line in fi l e gen to
file temp

S. If the number of l ines in file gen is 16
Di splay the sixteenth line of gen
Read in the user's response
If the response is not a new line

Append the data with corresponding
keyword to file temp

Otherwise
Append the sixteenth line in file
gen to file temp

T. If the number of lines in file gen is
seventeen

Display the seventeenth line of gen
Read in the user's response
If the response is not a new l ine

Append the data with corresponding
keyword to file temp

Otherwise
Append the seventeenth line in file
gen to file temp

U. Remove file gen
V. Move file temp to file gen

6. Write all the lines in file gen that not start with
"RootDepth" to file genl

7. Write the line in f i le gen that start with "RootDepth"
to file rd

8. Concatenate file rd with file 2KQQ and name the new
file sys

9. Remove file~ and rd
10. Append the number following "RootDepth" to line start

with keyword curveNoRootDepth in file sys
11. Concatenate file sys and fi l e genl
12. Distribute line start wi th Chemical to each soil

chemical system and name the finished CMLS input file
inf

13. End of mod_gen

Procedure draw_map

1. Set variabl e tf to j tmp/$$ for later naming t e mporary
f iles

2. Set nonomatch
3. Alias rm to rm -f for forcing removing files

4. Using UNIX™ command awk to get the CMLS output fi l e
name from file inf

5. Using UNIX™ command awk to get the number of
simulations from file inf

6. Us i ng UNIX™ command awk to get the number of lines in
file mid and save it in variable no line

7. Using UNIX™ command awk to get the first field of the
first line in file mid

8. Using UNIX™ command awk to get the first field of the
second line in file mid

9. Using UNIX™ command awk to get the number of data in
the first line of file mid

10. Using UNIX™ command awk to get the number of data in
the second line of file mid

11. Using UNIX™ command awk to calculate the number of
soil chemical systems in file inf

65

12. Split the CMLS output file into multiple files and each
file contains only one simulation output

13. Get the selected county soil map region from the
coordinates data base file and set the geographic
region to the soil map region

14. Clear the graphics monitor
15. Initialize counter sim to 0
16. Set flag to out
17. Set zoom flag to off
18. While true

A. If the number of simulation is not 1
While sim is greater than number of
simulation times or sim is smaller than
1

a. Display the dialogue box to
let the user make a selection
among picking up a simulation
number, displaying the soil
map, displaying the land use
map, zooming the current
geographic region, going back
to the original region and
quitting the session
Read in the user's selection
and store it in sim

b. If the user selects to quit
Do nothing

c. If the user selects to zoom
aa. If flag is out

Call procedure
pre soils
Display the soil map
on the screen

bb. Call GRASS procedure
d. zoom

cc. Clear the graphics
monitor

dd. Set flag to in

66

ee. Set zoom flag to on
ff. Set sim to 0

d. If the user selects to go back
to the original region

aa. Get the geographic
coordinates for the
soil map of the
selected county from
the coordinate data
base file and set
the regi on

bb. Clear the graphics
monitor

cc. Set flag to in
dd. Set zoom flag to off
ee. Set sim to 0

e. If the user selects to display
the soil map

aa. If the zoom flag is
off

Get the
coordinates for
the soi l map
from the
coordinate data
base and set
the geographi c
region

bb. Clear the graphics
monitor

cc. Cal l procedure
pre_soils

dd. Call GRASS command
p.map

ee. Set sim to 0
ff. Set flag to in

f. If the user selects to d i splay
the land use map

aa. If the zoom flag is
off

Get the
coordinates for
the soil map
from the
coordinate data
base and set
the geographic
region

bb. Clear the graphics
monitor

cc. Cal l p rocedure
pre_land

dd. Call GRASS command
p.map

ee. Set sim to 0
ff. Set flag to in

g. If sim is quit
Break

h. If sim is greater than the
number of simulation times

Set sim to 0

67

Otherwise
Set sim to 1

B. If sim is quit
Break

C. If the zoom flag is off
a. Get the geographic coordinates from

the coordinate data base and set
the region

b. Clear the graphics monitor
D. Based on the number selected by the user for

simulation number sim, copy the relative,
split output file into file outfile

E. Set variable choice to 0
F. While choice is smaller than 1 or choice is

greater than the number of data specified by
the user for the output depth plus the output
travel time

a. Display the dialogue box to l et the
user p i ck up a data from the
specified data
Read in the user's selection into
variable choice

b. If the number of simulation is 1
and the user selects to quit

aa. Set variable no line to 0
bb. Break

G. If no line is 1 and the first field is depth
a. Set variable result to depth
b. Pick up column 2 and another column

which depends on the value of
choice from the file outfile, store
them in file depth

H. If no line is 1 and the first field is time
a. Set variable result to time
b. Pick up column 2 and another column

which depends on the value of
choice from the fil e outfile, store
them in file time

I. If no line is 2
Generate file part2 from file outfile by
copying simulation number column, system
index column, and the columns for
specified travel times

J. If no l ine is 2 and choice i s not greater
than the numbe r o f depths specified by the
user

Pick out column 2 and another column

which depends on the value of choice
K. If no line is 2 and choice is greater than

the number of specified depths
a. Set variable result to time

68

b. Get choice2 by subtract the number
of specified depths from choice

c. Pick up column 1 and another column
which depends on the value of
choice2 from file part2

L. If choice is quit
Break

M. Set sim to 0
N. If result is depth

Group the output of specified travel
time and save them in file rule

Otherwise
Group the output of specified depth and
save them in file rule

o. If file rule exist
a. Call GRASS procedure r.reclass
b. Call procedure pre_pmap and

redirect the output to file
pmap file

c. Call GRASS procedure p.select
d. Call GRASS procedure p.map

P. Remove all the temporary files
19. End of draw_map

Procedure Pre_pmap

1. Set variable tf to jtmpj$$ for naming temporary files
2. Alias rm to rm -f for forcing removing files
3. Set nonomatch
4. Write "raster rastfile"
5. If result is time

Write setcolor 1 gray 11

Write setcolor 2 green"
Write setcolor 3 aqua 11

Write setcolor 4 yellow 11

Write setcolor 5 magenta 11

Write setcolor 6 red"
Otherwise

Write "setcolor 1 gray"
Write "setcolor 2 red"
Write "setcolor 3 magenta 11

Write "setcolor 4 yellow 11

Write 11 setcolor 5 aqua 11

Write "setcolor 6 green"
6. Write 11 colormode approx imate 11

7. Write 11 scale 1:2200000''
8. Write 11vector (county].outline 11 ((county] represent the

selected county name)
Write 11 color black"

Write "width 1 11

Write "end"
9. Get the map title east and north coordinates from the

coordinate data base
Write "text $east $north"
If result is depth

Write "TRAVEL TIME "
otherwise

Write 11 DEPTH"
Write "color black"
Write 11width 2"
Write "ref· upper center"
Write "size 3500"
Write "border none"
Write "end"

10. Using UNIX™ command tr to convert all the letters of
the county name to upper-case
Get the county name position (north and east

coordinates) from the coordinate data base
Write "text $east $north [county]"
Write "color black"
Write "width 2"
Write "ref upper left"
Write "size 1500"
Write "border none"
Write "end 11

11. Using UNIX™ command tr to convert all the letters of
the chemical name to upper-case
Get the chemical name position (north and east
coordinates) from the coordinate data base
Write "text $east $north [chemical]" ([chemical]
represents the name of the chemical)
Write "color black 11

Write "width 2 11

Write "ref upper left"
Write "size 1500"
Write "border none"
Write "end"

69

12. Get the travel time or depth title position (north and
east coordinates) from the coordinate data base
Write "text $east $north"
If result is depth

Write "DEPTH value"
Otherwise

Write "TRAVEL TIME value"
Write "color black"
Write "width 2"
Write "ref upper left"
Write "size 1500 11

Write "border none"
Write 11 end"

13. Ge t the b e ginning posit ion o f the legend box (north,
east1 from the coordinate data base
Write "point $eastl $north"

Write "color gray"
Write "width 2"
Write "ref center left"
Write "size 1500 11

Write "border none"
Write "end"

14. Get east2 by adding 5000 to east1
Write "text $east2 $north nodata"
Write "color black"
Write "width 2 11

Write "ref center left 11

Write 11 s ize 1500 11

Write "border none"
Write "end"

15. Subtract north by 400
Write "point $east1 $north"
If result is depth

Write "color red 11

Otherwise
Write "color green 11

Write "icon box.fill 11

Write "size 2.0 11

Write "masked n"
Write "end"

16. Write "text $east2 $north"
If result is depth

Write 11 < 1 yr . 11

Otherwise
Write 11 < 0.5 m11

Write "color black"
Write "width 2 11

Write "ref center left"
Write "size 1500"
Write "border none 11

Write "end"
17. Deduct 400 form north

Write "point $east1 $north 11

If result is depth
Write "color magenta"

Otherwise
Write "color aqua 11

Write 11 icon box.fill 11

Write "size 2.0"
Write "masked n 11

Write "end"
18. Write "text $east2 $north"

If result is depth
Wri te 11 < 1 - 2 yr. "

otherwise
Write 11 < 0.5 - 1 m11

Write "color black11

Write "width 2 11

Write "ref center left 11

Write "size 1500 11

70

Write "border none"
Write "end"

19. Deduct 400 from north
Write "point $eastl $north 11

Write "color yellow"
Write "icon box.fill"
Write "size 2.0 11

Write "masked n 11

Write "end"
20. Write "text $east2 $north"

If result is depth
Write"< 2- 5 yr."

Otherwise
Write "< 1 - 2 m"

Write "color black"
Write "width 2 11

Write 11 ref center left 11

Write 11 size 1500 11

Write "border none 11

Write "end"
21. Deduct 400 from north

Write "point $eastl $north"
If result is depth

Write "color aqua 11

Otherwise
Write "color magenta 11

Write "icon box.fill"
Write "size 2.0 11

Write "masked n 11

Write "end11

22 . Write "text $east2 $north 11

If result is depth
Write 11 < 5- 10 yr."

Otherwise
Write 11 < 2 - 4 m"

Write "color black11

Write 11width 2 11

Write "ref center left 11

Write 11 size 1500"
Write 11 border none"
Write "end 11

23. Deduct 400 from north
Write "point $east1 $north"
If result is depth

Write "color green"
Otherwise

Write 11 color red"
Write "icon box.fill"
Write "size 2.0"
Write 11masked n"
Write "end11

24. Write " text $east2 $north"
If result is depth

Write 11 > 10 yr."

71

Otherwi se
Write "> 4 m11

Write "color black"
Write "width 2 11

Write "ref center left"
Write "size 150011

Write "border none"
Write "end"

25. End of pre_pmap

Procedure pre_soils

1. Alias rm to rm -f for forcing removing files
2. Set variable tf to ; tmpj $$ for later naming temporary

fi l es
3. Write "raster [county] .soils 11

4. Write "colormode approximate"
5. Write "scale 1:22000000 11

6. Using the Oklahoma county name data base to f i nd the
short form of a selected county name

72

7. Get the soil map title position (north, east) from the
coordinate data base
Write 11 text $east $north [county] SOILS 11

Write 11color white"
Write "width 2"
Write "ref upper center"
Get the font size from the coordinate data base and
store it in variable size
Write "size $size"
Write "border none"
Write "end"

8. End of pre soils

Procedure pre_land

1. Alias rm to rm -f for forcing removing files
2. set variable tf to j tmp/$$ for later naming temporary

files
3. Write "raster [county] .landuse"
4. Write "colormode approximate 11

5. Wri te "scale 1:22000000"
6. Using the Oklahoma county name data base to find the

short form of a selecte d county name
7. Get the land use map title position (north, east} from

the coordinate data base
Write "text $east $north [county] LAND USE"
Write "color white"
Write "width 2"
Write "ref upper c enter"
Ge t t he font s ize from t he coor dinate d a t a base and
store it in variable size
Write "size $size 11

Write "border none 11

Write "end 11

8. End of pre_l and

73

APPENDIX C

INSTALLATION INSTRUCTIONS OF

THE MAP DRAWING TOOL

74

INSTALLATION INSTRUCTIONS OF THE MAP DRAWING TOOL

Include the directory name where all the shell

procedures are stored in your path variable. This can be

done in one of the two following ways (assume dir name is

the directory name where shell procedures are stored) :

1. Type set path = Cdir name $path) under the c shell.

2. Add the dir name to the path variable directly in the

.cshrc file via any text editor. Save the modified

file. Type source .cshrc in the command line of your

home directory to recompile the .cshrc file.

75

VITA 2-

FENGXIA MA

candidate for the Degree of

Master of Science

Thesis: USING THE UNIXTM SHELL TO INTEGRATE A MANAGEMENT
MODEL WITH A GIS

Major Field: Computer Science

Biographical:

Personal Data: Born in Lanzhou, People's Republic of
China, January 22, 1964, The daughter of Mr.
Yiting Ma and Ms. Huanzhen Li .

Education: Graduated from Northwest Teachers
University high school, Lanzhou, P.R. China, in
August 1981; received Bachelor of Science Degree
in cartography from Wuhan Technical University of
Surveying and Mapping, Wuhan, P.R . China in July,
1985; completed requirements for the Master of
Science degree at Oklahoma State University in
December, 1993.

Professional Experience: Student programmer,
Department of Agronomy, Oklahoma State University,
January, 1992 to Present. Instructor, Cartography
Department of WUhan Technical University of
Surveying and Mapping, Wuhan, P.R. China, July,
1985 to February, 1989.

Professional Societies: Student Member, Association
for Computing Machinery

	Thesis-1993-M111u_Page_01
	Thesis-1993-M111u_Page_02
	Thesis-1993-M111u_Page_03
	Thesis-1993-M111u_Page_04
	Thesis-1993-M111u_Page_05
	Thesis-1993-M111u_Page_06
	Thesis-1993-M111u_Page_07
	Thesis-1993-M111u_Page_08
	Thesis-1993-M111u_Page_09
	Thesis-1993-M111u_Page_10
	Thesis-1993-M111u_Page_11
	Thesis-1993-M111u_Page_12
	Thesis-1993-M111u_Page_13
	Thesis-1993-M111u_Page_14
	Thesis-1993-M111u_Page_15
	Thesis-1993-M111u_Page_16
	Thesis-1993-M111u_Page_17
	Thesis-1993-M111u_Page_18
	Thesis-1993-M111u_Page_19
	Thesis-1993-M111u_Page_20
	Thesis-1993-M111u_Page_21
	Thesis-1993-M111u_Page_22
	Thesis-1993-M111u_Page_23
	Thesis-1993-M111u_Page_24
	Thesis-1993-M111u_Page_25
	Thesis-1993-M111u_Page_26
	Thesis-1993-M111u_Page_27
	Thesis-1993-M111u_Page_28
	Thesis-1993-M111u_Page_29
	Thesis-1993-M111u_Page_30
	Thesis-1993-M111u_Page_31
	Thesis-1993-M111u_Page_32
	Thesis-1993-M111u_Page_33
	Thesis-1993-M111u_Page_34
	Thesis-1993-M111u_Page_35
	Thesis-1993-M111u_Page_36
	Thesis-1993-M111u_Page_37
	Thesis-1993-M111u_Page_38
	Thesis-1993-M111u_Page_39
	Thesis-1993-M111u_Page_40
	Thesis-1993-M111u_Page_41
	Thesis-1993-M111u_Page_42
	Thesis-1993-M111u_Page_43
	Thesis-1993-M111u_Page_44
	Thesis-1993-M111u_Page_45
	Thesis-1993-M111u_Page_46
	Thesis-1993-M111u_Page_47
	Thesis-1993-M111u_Page_48
	Thesis-1993-M111u_Page_49
	Thesis-1993-M111u_Page_50
	Thesis-1993-M111u_Page_51
	Thesis-1993-M111u_Page_52
	Thesis-1993-M111u_Page_53
	Thesis-1993-M111u_Page_54
	Thesis-1993-M111u_Page_55
	Thesis-1993-M111u_Page_56
	Thesis-1993-M111u_Page_57
	Thesis-1993-M111u_Page_58
	Thesis-1993-M111u_Page_59
	Thesis-1993-M111u_Page_60
	Thesis-1993-M111u_Page_61
	Thesis-1993-M111u_Page_62
	Thesis-1993-M111u_Page_63
	Thesis-1993-M111u_Page_64
	Thesis-1993-M111u_Page_65
	Thesis-1993-M111u_Page_66
	Thesis-1993-M111u_Page_67
	Thesis-1993-M111u_Page_68
	Thesis-1993-M111u_Page_69
	Thesis-1993-M111u_Page_70
	Thesis-1993-M111u_Page_71
	Thesis-1993-M111u_Page_72
	Thesis-1993-M111u_Page_73
	Thesis-1993-M111u_Page_74
	Thesis-1993-M111u_Page_75
	Thesis-1993-M111u_Page_76
	Thesis-1993-M111u_Page_77
	Thesis-1993-M111u_Page_78
	Thesis-1993-M111u_Page_79
	Thesis-1993-M111u_Page_80
	Thesis-1993-M111u_Page_81
	Thesis-1993-M111u_Page_82

