
OPTIMIZATION TECHNIQUES APPLIED 

TO NEURAL NE1WORKS 

By 

ZIDMJNLU 

Bachelor of Engineering 

Shanghai University of Engineering Science 

Shanghai, China 

1986 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
December, 1993 



OPTIMIZATION TECHNIQUES APPLIED 

TO NEURAL NETWORKS 

Thesis Approved: 

7, 
:_))ean of the Graduate College 

ii 



ACKNOWLEDGMENTS 

I wish to express my gratitude to Dr. Martin T. Hagan, my 

advisor, for his guidance, dedication, patience, invaluable instructions 

and instruction. His insights in academics inspires my interests in 

this field. He made a great deal of efforts to improve the thesis, both 

in contents and in English. My appreciation is also extended to Dr. 

Ronald Rhoten and Dr. James Baker for being members of my 

committee. 

I am grateful to my brother-in-law, Aimin Yan, and sister, 

Huimin Lu, for their consistent support and encouragement. My 

deep thanks are dedicated to my parents and another sister and 

brother-in-law, for their understanding and love. 

I would also like to thank Mr. and Mrs. Duncans and Mr. Mike 

Dower for their friendship. Special thanks to my friends,Weiping 

Xiao and Zuansun Ren, for their help and encouragement. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I INTRODUCTION................................................................................................................................. 1 

3 

Basic Ideas About Neural Networks __ ·-~··---··-··-·-- .......... 3 
Artificial Neural Network Structure_~~~~~~-~~----· 4 
Training Artificial Neural Networks ............................. 7 

About Multilayer Neural Networks 

& Backpropagation .................................... ~··--····················································· 8 
Properties of Multilayer Neural Networks........... 8 
Backpropagation·-~----~~-~~~~~-~-----~.······ 1 2 

Problems With Training An MPNN.......... ........ ........................ .... 1 6 
Local Minima __ ~-~---~------~------·-"-- 1 6 
Overfitting __ ·-----.. ·~-----··-·-- -~----~- 1 7 
Slow Training ................... ~ ................ -.............................................................. 1 8 

III. OPTIMIZATION TECHNIQUES ...................... ~ .................. ., ....... .,.............................. 2 0 

Formulation of the Nonlinear Optimization 

p r 0 b 1 e m ... _,.,, ........................ _~········-····---···-·-·-~-·-·-··--··----···m••···---··-········ 2 0 
The Newton Method and Its Variations __ ~---- 2 2 

The Newton Method~-~--~---~-----·~---- 2 2 
Some Remarks on the Newton Method..................... 2 4 

The Hartley Method·---·-·-~----·------·-----·-···--···--· 2 5 
Least Squares, Gauss-Newton 

and Marquardt Methods .... .,..................................................................... 2 6 
Least Squares and the 

Gauss-Newton Method................................................................. 2 6 
The Marquardt Method_~--------.---~----------·--·--···- 2 9 

Iterated Least Squares_·-----·---------~-- ................... ~-~---~-- 3 3 
Summary................................................................................................................................ 3 6 

IV. MARQUARDT'S METHOD FOR MPNNS ... ~··--------·...................................... 3 7 

lV 



Chapter Page 

V. RECURSIVE ALGORITHMS FOR TRAINING 
NEURAL NETWORKS 48 

Quasi-recursive Gauss-Newton Method______ 4 9 
Recursive Gauss-Newton Method 57 
Recursive Marquardt Method .... "···~................................................. 6 5 
Summary 79 

VI. APPLICATIONS OF RGN AND RMBP ..... ~~ ....... - ............................ ~.............. 7 2 

Introduction_·-····---·-.. ·---·---·-·~--··-· ......... ~·--·---~···-···-···············-······ .. ······ 7 2 
Test Problems __ ·-·--·--·-· ·---·-- 7 3 
Test Procedures/Results for Prob. #1__________ 7 6 

Test Results for RGN·····-·--~-.. -·~-·~--............................... 7 6 
Test Results for RMBP with Inverse.---·-·---·- 8 0 
Test Results for RMBP without Inverse..................... 8 2 

Test Procedures/Results for Prob. #2_~·········--.................. 8 4 
Test Results for RGN~------·~·~--~--·w.. 84 
Test Results for RMBP with Inverse............................... 8 6 
Test Results for RMBP without Inverse 8 7 

Summary of Test Results. 8 9 

VII. CONCLUSIONS_~--~---~-------- 91 

93 

v 



Figure 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

1 1 

1 2 

LIST OF FIGURES 

Page 

Structure of a typical neuron ...... ""---~----~·-~-------·~-----·--·-.......... 4 

P erceptron ........ - ................................................ ~ .......... _ ......................... --~ ... -............... 5 

Topology of feedforward neural networks ..... _ .................. _.............. 7 

Input-output curve of a 1-5-1 MPNN __ ·-·-~-~ ................ -................. 4 

Function approximation (underfittingL-...................... _ ...... _........... 1 1 

Function approximation ( overfittingJ.. ..... -................................................. 1 8 

Example of trust region operation .... ~-···--- ............... -.............................. 3 1 

Training an MPNN .............................. _....................................................................................... 3 8 

Parameter updating in QRGN ...................... ___ .................................................... 6 4 

Parameter updating in RGN ...................... --.. ~----· .......... -............................. 6 4 

The first test problem ............................... ---·-·--·-·--·-·-----........................ 7 4 

The second test problem~_.__. ............... ·---~------........... _............. 7 5 

vi 



Tables 

6.1(a) 

6.1 (b) 

6.2 

6.3 

6.4 

6.5 

6.6 

LIST OF TABLES 

Page 

Test Results of RON (6.3) for Prob. #1 ................. ~··· .. ···--·········~········· .. ···· 7 8 

Test Results of Modified RON (6.4) for Prob. #1............................ 8 0 

Test Results of RMBP With Inverse for Prob. #!.. ...................... . 

Test Results of RMBP Without Inverse for Prob. #1 

Test Results of Modified RON (6.4) for Prob. #2 ..... ~--··············· 

Test Results of RMBP With Inverse for Prob. #2 ....................... . 

Test Results of RMBP Without Inverse for Prob. #2 .............. . 

vii 

82 

84 

85 

86 

88 



CHAPTER I 

INTRODUCTION 

Artificial neural networks (ANNs) are man-made systems 

which imitate biological neural networks (BNNs) existing in biological 

organisms. Even though people do not completely understand BNNs, 

researchers around the world have found that the up-to-date 

knowledge about BNNs can be used to design ANNs which exhibit 

some intelligence and have significant computational capabilities. 

The research on ANNs also helps the research on BNNs. 

Mathematical models of BNNs are used to describe operations 

and functions of BNNs, and form the basis for the design of ANNs. 

Among the mathematical models, multilayer feedforward perceptron 

neural networks (MPNNs) have been intensively investigated, and 

there exist a large number of articles on their performances and 

capabilities (see references [2] and [3] for more details). As Hagan 

and Menhaj pointed out, most existing learning algorithms used to 

train MPNNs are far from being effective and efficient [1]. There 

have been efforts to explore more powerful algorithms to circumvent 

such problems as the slow learning speed in training MPNNs (see 

References [1] - [10]). One of the basic methods these authors used 

to accelerate the learning process of MPNNs is to apply some 

nonlinear optimization techniques to learning algorithms. This 

research will use the same method to propose three learning 

1 



2 

algorithms: the Quasi-recursive Gauss-Newton method (QRGN), the 

Recursive Gauss-Newton method (RGN) and the Recursive Marquardt 

Backpropagation method (RMBP). The purpose of developing RGN 

and RMBP is to train MPNNs with data which is sequentially 

presented to MPNNs, as in real-time control and signal processing 

problems. 

Chapter 2 provides an outline of ANNs, especially MPNNs. 

Because many good articles are available in the literature, this 

introduction is brief. Complete descriptions of MPNNs can be found 

in references [ 1] - [ 3] and [ 16]. A basic learning algorithm for 

training MPNNs, Backpropagation, will be described in Chapter 2. 

Because the nonlinear optimization techniques are the main 

source for us to derive learning algorithms for training MPNNs, 

Chapter 3 summarizes some powerful nonlinear optimization 

techniques. Based on these techniques, we will derive the hatching 

Gauss-Newton method and the Marquardt method. Based on the 

hatching algorithms developed in Chapter 4, we will further derive 

three algorithms, namely the QRGN, RGN and RMBP in Chapter 5. 

In Chapter 6, we will test the algorithms developed in Chapter 

5 on two nonlinear function approximation problems. Various design 

variables will be investigated. Chapter 7 will present conclusions 

and further remarks. 



CHAPTER II 

NEURAL NETWORKS -- BASICS 

2.1 Basic Ideas About Neural Networks 

Researchers would like to develop artificial neural networks 

(ANN s) which imitate the functions of biological neural networks 

(BNNs), because BNNs can: 

• perform complex actions precisely, often in noisy and 

uncertain environments, 

• adapt themselves to the changes m their environment, 

• learn to recognize and respond to stimuli properly, and 

• generalize from experiences obtained previously. 

The mechanisms of BNNs' organization and operation are partially 

known. The knowledge of them available up to now is the important 

source for creating new approaches for designing intelligent devices, 

such as intelligent controllers. 

The research on neurophysiology and psychology reveals that 

neurons are the basic building blocks of the nervous system. A BNN 

consists of large numbers of neurons connected together in vanous 

ways. Even though the neurons are simple in function and slow in 

processing speed, the BNN is very versatile m function and fast in 

processing speed. 

Based on the mathematical models developed to describe the 
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organization and operation mechanisms of BNNs, various artificial 

neural networks (ANNs) have been proposed in the previous 

decades. At present, researchers not only develop ANNs to imitate 

the functions of BNNs better, but also make efforts to apply ANNs to 

solve difficult engineering problems, such as controlling nonlinear 

dynamic systems. 

2.1.1 Artificial Neural Network Structure 

4 

An ANN normally consists of a large number of processing 

elements which are interconnected with some topology. It is the 

topology and the strength (weight) of the connections which 

determine the performance of the network. A learning algorithm Is 

used to update the weight connections of an ANN during the training 

period. 

a 
y = f(n) 

Figure 1. Structure of a typical neuron 

A neuron typically has the structure depicted in Figure 1 (also 

see [7]), where e is a mapping from input ~ to n. The purpose of e is 



to encode the input signals, since the input signals are normally 

corrupted by noise. The mapping f from n to y determines the 
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activation of the neuron, g is a mapping from y to a, which forms the 

output signal. 

The perceptron Is the most popular model of the neuron in the 

current literature, where the mapping e is an affine function, and the 

output mapping a is a linear function. The activation of a perceptron 

results from a nonlinear function of a weighted sum of its inputs, 

which is normally either a sigmoid or a hard limit function. 

perceptron, Figure 1 can be simplified as Figure 2. 

n 
a = f ( l: W. x . +b ) 

. 1 1 1 
1= 

Figure 2. 

a 

1 
a= f(n)= 

1 + e-n 

Perceptron 

For the 

The structure of the perceptron depicted in Figure 2 is a static 

model, which can be described as 



where 

a is the output of the neuron, 

xi is the ith input, 

w i is the weight for the ith input, and 

b is the bias. 

The interconnection topologies of ANNs can be divided into 

following categories: 

• Feedforward: an ANN in this category consists of an input 

layer, several hidden layers and an output layer. Figure 3 

indicates an ANN with this kind of topology which has one 

input layer, two hidden layers and one output layer. 

• Feedback: a neuron of an ANN in this category normally 

connects to other neurons as well as itself (e.g. the Hopfield 

network [8]). 

• Mixed topology. An ANN in this category consists of both of 

the topologies mentioned above. (The counterbackpropaga­

tion network of Hecht-Nielson belongs to this category [8]). 

The topological features of the feedforward ANN have the 

following features: 

• Each output of every neuron in a layer is connected to each 

input of any neuron in the next layer (Refer to Figure 3) 

6 

• Because there are no feedback connections between layers, 

the effect of the feedforward neural network topology is to 

produce a nonlinear mapping between the input nodes and 

output nodes. As long as the weights are fixed, this mapping 

is completely determined. 



o3(1) 

a3(2) 

a3(S3) 

Figure 3. Topology of feedforward neural network 

2.1.2 Training Artificial Neural Networks 

An artificial neural network can be used m one of the two 

modes: 

• operational mode, where weights are fixed so that a given 

input leads to a determined output. 

• learning mode, where we adjust weights so that the output 

approaches some desired results. In the learning mode, the 

performance of the ANN is determined by a learning 

algorithm. Some kinds of learning algorithms which may 

not be related to the behavior of BNNs are derived from 

optimization techniques. 

Learning algorithms are generally divided into: 

7 

• Supervised learning. The desired network output ts known 

for each network input. During learning each member of the 

training set is presented to the network individually, and 

upon each presentation the weights are readjusted. After 

the entire training set is presented, the set is presented 

again many times. At first, the performance of the network 



1s improved, but eventually the performance stops 

improving and the network is said to have converged. Two 

possibilities after convergence exist: either the network 

learns the examples from the training set successfully, or it 

fails. 

• Unsupervised learning. The desired output is unknown but 

learning is based on the statistical characteristics of the 

training data. Such learning algorithms usually learn to 

extract features from a set of training data. 

• Reinforcement learning. Weights associated with a neuron 

are not changed corresponding to the output error of that 

particular neuron, but instead are changed in proportion to 

a global reinforcement signal. Such a signal may gtve a 

qualitative measure of performance, good or bad ( + 1 or -1) 

In this thesis, we focus on the ANNs with perceptron type 

neurons, feedforward topologies and supervised learning laws. 

2. 2 About Multilayer Perceptron Neural 

Networks and Backpropagation 

2.2.1 Properties of Multilayer Neural Networks 
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It has been shown that an MPNN is a universal mappmg [ 17], if 

there are enough hidden neurons in the MPNN. The term "universal 

mapping" means that any relationship between state variables and 

control variables, or patterns and features, or stimuli and response 

can be expressed by an appropriately defined and well-trained 

MPNN. That an MPNN is defined appropriately means the weights 



and biases of the MPNN are chosen correctly. Figure 4 illustrates 

how an MPNN can be used to approximate a function when the 

weights and biases are appropriately selected. This MPNN has one 

input terminal, one linear output terminal, and five hyperbolic 

tangent sigmoid hidden neurons (We will denote this as 1-5-1). 

Function Approximation 
0.5~----~--~~~~-----+ 

++ 

Function Approximation 
0.5~--~~--~--~~-----+ 

+ 

-1 

+ + 
+ 

++ 

-0.5 0 
Input 

+ 
+ 

0.5 

+ 

1 -1 -0.5 0 
Input 

(a) (b) 

0.5 

Figure 4. Input-output curve of a 1-5-1 MPNN 

(a) During training, weights & biases 
are not appropriately determined. 

(b) After training, weights & biases 
are correctly determined 

1 

Another characteristic of the MPNN is the generalization 

capacity. An well-trained MPNN can satisfactorily interpolate or 

extrapolate the output values for input values that are not shown 

during training. This is very useful in control engineering where 

only a small subset of data sampled from a dynamic system can be 
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presented to the MPNN during training. An MPNN often makes a 

good interpolation based on a subset of data [15]. 
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The universal mapping and generalization capability of an 

MPNN largely depends on the number of hidden neurons. Sometimes 

we may encounter an underfitting problem. In other words, no 

matter how long we train the MPNN, the MPNN cannot give a 

satisfactory approximation to the data. Figure 5 illustrates a case 

where a 1-2-1 network is used to approximate a function [23]. The 

two neurons in the hidden layer are not sufficient to allow the 

network to properly approximate the function. Figure 5 (a) 

illustrates the best approximation obtained by the backpropagation 

learning algorithm (which will be described in the next section). 

Figure 5 (b) shows the learning curve. Note that the learning process 

stopped after 5000 iterations. This situation can be avoided by 

adding more hidden neurons to the original MPNN. 
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2.2.2 Backpropagation 

The capability of universal mappmg and generalization of an 

MPNN is generated from a successful training process. Training an 

MPNN requires an learning algorithm and a data set as examples. 

Backpropagation is the most widely used learning algorithm. It is 

also the basis on which we understand and derive other learning 

algorithms. 
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An MPNN consists of several layers of perceptrons (see Figure 

3). We define 12.q as the qth input pattern vector, ~ as the output 

vector corresponding to that P.q, !!. k as the output of the kth layer, wk 

and bk as weights and biases related to the kth layer, 1q as the 

desired output for P-q, and fk(.) as the activation function vector for 

the kth layer. We can derive the output of the MPNN upon the qth 

input pattern 12.q as 

ao =p . 
- -q' 

a=aM. 
- - ' 

k=O, ... ,M-1; 

(2-1) 

(2-2) 

(2-3) 

The training task is to minimize a least squares performance 

index (PI) 

(2-4) 



Following the same procedure as in [1], an approximation to the 

above PI is 

1 3 

(2-5) 

We define the derivative of the approximate PI with respect to 

nk(i) as 

(2-6) 

where nk(i) is the net input to neuron I in layer k 

sk-I 
nk (i) = L wk ( i, j) ak-1 (j) + bk (i). 

j=l 
(2-7) 

Sk-1 IS the number of neurons m the (k-l)th layer. Therefore, 

(2-8) 

(2-9) 

According to the steepest descent rule [ 1], the weights and biases are 

updated according to 
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W k (. ")new - wk (. ")old - {)j l,J - l,J a. k aw (i, j) (2-10) 

(2-11) 

where a is a learning rate. The ok(i) (for all k) can be calculated by 

the backpropagation (BP) rule as 

oM= -FM(nM)(t -a ) - - -q -q 

where 

and 

k 
fk(n)= elf (n) 

dn 

0 

k = M -l,M- 2, ... ,1 

0 

0 

Backpropagation is derived based on the following facts 

(2-12) 

(2-13) 



I 5 

(2-14) 

ok (') = aj - aj ank+l (i) 
J ank (j) ank+l ( i) ank (j) 

= ok+l(i)Wk+l(i,j)fk(nk(j)) 

(2-15) 

Therefore, when we train an MPNN by backpropagation, we 

should go through the following steps 

(1) -> (2) -> (3) -> (12) -> (13) -> (8) -> (9) -> (10) -> (11). 

With the standard BP algorithm, the multilayer feedforward 

perceptron neural network is presented with a set of patterns, the 

input patterns paired with output target patterns. Upon each 

presentation, weights and biases of the neural network are adjusted 

to decrease the difference between the network output and the 

target output. A training set is used for training and is presented to 

the network many times until the error is less than an acceptable 

value, the error goal. 

Both the forward and backward propagation steps are 

performed for each pattern presentation during training. The error 

correction step takes place after a pattern is presented at the input 
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layer and the forward propagation step IS complete. Each processmg 

neuron in the output layer produces a single real value, which is 

compared to the target output specified in the training example set. 

Based on the difference, an error value IS calculated for each neuron 

in the output layer. Then, the weights of the interconnection going to 

the output layer and the biases of the output neurons are adjusted. 

Next an error sensitivity (ok(i)) is calculated for all of the neurons m 

the hidden layer that just proceeds the output layer. Then, the 

weights and biases of the proceeding layer of the hidden neurons are 

adjusted. The process is continued until the last layer of weights has 

been adjusted. 

2.3 Problems With Training An MPNN 

2.3.1 Local Minima 

Training neural networks can be considered as a nonlinear 

regression problem. We can treat a multilayered perceptron neural 

network (MPNN) as a specific kind of nonlinear regression model. 

What we have to do is to determine the parameters of the model, the 

weights and the biases, that provides the best fit to the data. From 

experience with nonlinear regression, we know that if the structure 

of the model is not appropriate, the fitting process may not converge. 

It is same in the training of MPNNs. If the number of hidden layers 

and the number of hidden neurons are not sufficient, then the MPNN 

will not be able to fit a given set of data, and the training process will 

not converge. 

Theoretically, the MPNN can approximate arbitrary non-linear 
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functions if the MPNN contains a sufficient number of hidden layers 

and a sufficient number of neurons in each hidden layer. In practice, 

however, even when we have a sufficient number of hidden layers 

and a sufficient number of neurons in each hidden layer, sometimes 

the learning algorithm will not converge to a satisfactory solution. 

The reason is that in the error-weight space, there exist some local 

minima which may trap the weights so that the error never 

decreases. But it has been shown that the local minima can be 

avoided if we restart the training process with a new set of initial 

weights and maintain sufficient hidden neurons. 

2.3.2 Overfitting 

It is worth pointing out that if the data presented to a MPNN 

are contaminated with noise, it may happen that the noisy data set 

may be fitted "precisely." This is called overfitting (Refer to Figure 

6). Overfitting also takes a long time for training. We can avoid 

overfitting by processing the contaminated data before presenting it 

to an MPNN, by using a small number of hidden neurons, or by using 

a separate "validation" data set to determine when to stop training. 



+ ... 
C1) 

~ 
E-< 

~ 

I ... 
= ~ 
0 

Figure 6 

Function Approximation 
1,-----~------~~----~------~ 

+ + 

0.5 + 

0 

-0.5 

-1~------~------L-------L-----~ 
-1 -0.5 0 0.5 1 

Input 

A 1-7-1 MPNN to approximate a function 

y=sin(7t/3*x) which is contaminated with 

noise 0.18*sin(37tx)+0.1 *sin(27tx). 

2.3.3 Slow Training 

In addition to the local minima and overfitting problems, the 

slow learning speed of standard backpropagation can also be a 

problem. This has prohibited the application of backpropagation to 

large problems. Some modifications of backpropagation have been 

18 

devised to improve the convergence rate. These modifications are 

generally cast into two categories: those which are based on standard 

optimization techniques (e. g., conjugate gradient, quasi-Newton, 

extended Kalman filter), and those which use ad hoc techniques (e. g., 

momentum, appropriate initialization of weights and biases, variable 



1 9 

learning rate). 

Besides the efforts to devise more powerful learning 

algorithms, it is reported that changing the performance index from a 

sum of squares of errors to some other kind of performance index 

can improve the convergence rate. For example, [14] proposed a 

performance index based on a log measure. 

Most of the algorithms for training MPNNs use first derivatives 

to determine search directions. The information provided by the 

first derivatives may not be sufficient. It was shown [ 1] that if we 

use more sophisticated methods, such as the Gauss-Newton method 

and the Marquardt method, we might greatly speed up the training 

process. In the next chapter, this problem will be discussed in more 

detail. 



CHAPTER III 

OPTIMIZATION TECHNIQUES 

3. 1 Formulation of the Nonlinear Optimization Problem 

We noted in Chapter 2 that optimization techniques, especially 

nonlinear optimization techniques, form the backbone of many 

learning algorithms for training MPNNs. Nonlinear optimization 

techniques are iterative methods for finding the extremum 

(minimum or maximum) of a nonlinear function. Consider an 

unconstrained nonlinear optimization problem as follows: 

minS(~) 
e (3-1) 

where the vector ft. contains the free parameters and S is a nonlinear 

function. There are no universal analytical approaches to obtain the 

solution of (3-1). Numerical methods for the solution of (3-1) are 

typically iterative. They start with some initial guess ~ and then 

proceed according to an equation of the form: 

~k+l = ~k + a.k ~k' (3-2) 

where a.k is a scalar step size and llk is a search direction. This 

research will focus on techniques where the search direction is 

20 



determined by usmg derivatives of S with respect to the free 

parameters ft. 

Solving the optimization problem generally deals with the 

following questions: 

( 1) Does there exist ~*ERn such that sut) ~ S(~) 
If so, ft * is called a global minimum. This question 

addresses the existence of the solution of (3-1 ). 

( 2) If the answer to ( 1) is yes, is there only one such point? 

2 1 

This question addresses the uniqueness of the solution of 

(3-1). 

(3) If the answers to both (1) and (2) are yes, how do we find 

e *? If it is impossible to find e *, or the procedure is very 

complicated, how do we find vectors arbitrarily close to ft *? 

We can restate questions (3) mathematically: 

( 3 ') How can we find a series of vectors { ftk } such that 

lim II~* -~k II= o 
k~oo 

Formula (3-2) proposes a technique for obtaining { !!.k.}. 

(4) Do there exist points ~* E R 0 such that S(~*)::; S(~) 

whenever ft is a point in Rn lying near !t* ? If so, !t* is 

called a local minimum. 

We can restate question ( 4) mathematically: 

( 4') Do there exist points 9* ERn for which there exists some 

B>O such that S(~*)::; S(~) for all ~*ERn satisfying 

II~* -~II< 0? If o can be made arbitrarily large, then the 



local minimum becomes a global minimum. 

We will discuss how to realize (3-2) in the following 

paragraphs. 

One way to realize (3-2) locating a minimum 1s to set 
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(3-3) 

where VS(~k) is the gradient of S evaluated at ek, and then to 

determine an appropriate a.k by means of some one-dimensional 

search algorithm. This method is called the steepest descent method 

since -VS(~k) is the direction in which the function decreases fastest. 

The term a.k is called the learning rate in the neural network 

literature. 

Another common minimization procedure is known as Newton's 

method, which involves the calculation of second derivatives. The 

remainder of this chapter will emphasize Newton's method, and will 

discuss some methods for improving Newton's method. 

3.2 Newton's Method and Variations 

3.2.1 Newton's Method 

Generally, when we are faced with an unconstrained nonlinear 

optimization problem (3-1), we have no universal methods to solve it 

directly. Instead we solve the following quadratic optimization 

problem iteratively: 
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(3-4) 

assuming the function is continuous and smooth. The quadratic 

function of (3-4) is the truncated Taylor series expansion of U-1!: 

S ( ~) = S ( ~k ) + V' S T ( ~k ) ( ~ - ~k ) + 

1 T 2 
2 C~-~k) V' S(~k)(~-~k)+··· 

(3-5) 

at .e_k where V'S(~k) and V2S(~k) in (3-4) denote gradient vector 

and Hessian matrix of the function S respectively. According to the 

optimality condition [ 4], the minimum of (3-4) exists only when 

(3-6) 

A possible solution of (3-6) is: 

(3-7) 

which produces the iteration: 

(3-8) 

A series {ftk} can be generated iteratively usmg (3-8), until the 

minimum point of (3-1) is found. This is called Newton's method. 
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3.2.2 Some Remarks on Newton's Method 

1. If the nonlinear function in (3-1) IS quadratic, then Newton's 

method will converge in one step. For general smooth nonlinear 

functions, if the search occurs in the vicinity of the minimum, it can 

be shown ([ 4] and [ 6]) that the nonlinear function can be 

approximated well enough by the quadratic function so as to exhibit 

rapid convergence in the region. 

2. Comparing (3-8) with (3-3), we can see that the Hessian matrix 

in Newton's method replaces the diagonal matrix in the steepest 

descent method. 

3. Since, from (3-5), the function 

(3-9) 

Is, m general, an approximation of S(!D at ft.k. The sequence {frk} 

generated from (3-8) may not approach ft* if the approximation is 

not accurate or if the initial guess, fto. is far from the true minimum. 

In addition, the repetitive application of (3-8) is based on the 

assumption that a positive definite Hessian matrix always exists. 

When the parameters and the coefficients in the nonlinear function 

are not scaled properly, or the round-off errors are significant, or if 

in the vicinity of some point ek the function is not convex, then the 

Hessian matrix will not be positive definite. 

In order to improve Newton's method in these circumstances, 

many techniques have been proposed (see [1], [4] - [6], and [13]). 
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Some of them adapt linear algebra computation techniques to avoid 

calculating the inverse of the Hessian matrix in (3-6). Some of them 

use more sophisticated techniques to maintain the numerical 

stability and tractability of the Hessian matrix. In the following 

sections, we describe some of these techniques. 

4. Newton's method and its variants are the fastest and most 

robust algorithms for unconstrained optimization of a general smooth 

function ([1], [2], [4], and [6]). Even though it is important to scale the 

parameters properly in practical computation to avoid an ill­

conditioned Hessian matrix, Newton's method IS less sensitive to 

scaling than are the steepest descent method and its variants [ 4 ]. 

The weight adjustments based on Newton's method use curvature 

information in addition to gradient information, so that the training 

algorithms derived from Newton's method and its variants are more 

efficient than non-Newton methods. In addition, the variants of 

Newton's method mentioned above make the computation results 

more reliable. 

3.2.3 Hartley's Method 

From (3-8), we can see that a minimum can be reached by 

means of Newton's method if the Hessian matrix is always positive 

definite. However, the value found by (3-8) may not be a minimum 

of the original nonlinear function but of the truncated second order 

approximation of the original function. It is therefore necessary to 

make an initial estimate of ft.*,~. sufficiently close to !!* to assure 

that the iterations approach the minimum. 



In some situations, the step generated from (3-8) may not 

decrease the function even though the Hessian is positive definite. 
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So a modification can be made by adding an adjustable parameter ak 

to (3-8), this is called the Hartley method [2] and corresponds to the 

variable step size steepest descent method (3-3). The Hartley 

method is: 

where ak can be determined by line search algorithms. 

procedures for determining ak can be found in [4]. 

(3-10) 

The detailed 

3. 3 Least Squares, Gauss-Newton and Marquardt Methods 

3. 3. 1 Least Squares and the Gauss-Newton Method 

We have investigated Newton's method for the general 

nonlinear optimization problem. Least squares is a special type of 

nonlinear optimization problem. The Gauss-Newton method applies 

Newton's method to the least squares problem and simplifies the 

complex calculation of the Hessian matrix. It was shown in [ 16] that 

if the initial guess fto is sufficiently close to ~ *, the iteration using the 

Gauss-Newton method converges quadratically. 

Assume that we have a nonlinear regression equation with 

single input/single output: 

t(q)=a(~, p(q))+v(q) (3-11) 
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where 

~ E R n ; t E R 1 ; a E R 1 ; q = 1, ... ' Q 

ft is the parameter vector, tq is the dependent variable and Pq is the 

independent variable. If we are given Q equations with the form of 

(3-11) and Q pairs of examples [Pq• tql (q=l, ... , Q), then the least 

squares problem can be formulated as 

Q 

~nS(~)=mJnLitq -a(~ Pq)j2 

- - q=l 

If we define 

~=[a(~: Pt)]· 
a(~ PQ) 

then 

SOD= !ltq -a(~ Pq)j2 =fTf (fERQ) 
q=l 

From (3-12), we have 

VS(~) = 21{ · f 

(3-12) 



and 

where 

VftT 
dft dft dft 
ae1 ae2 aen 

Jf = - . . 

Vf.T arQ dfQ dfQ 
Q ae1 ae2 a en 

IS a Jacobian matrix and 

Q Q 
B(~)= L/q(~)· V2fq(~)= LCtq -a(~ Pq))V2aq 

q=l q=l 

where V 2fq (~) is the Hessian matrix of fq(e) evaluated at ei. 

(3-8), Newton's method becomes: 

~i+t = ~i - V2son-1 vs(~) 

= ~i- [ 2Jf1r + B(~) ]-1[21{ · f] 

= ~i- [21f1r + 2 I,fq (~)V2fq (~)]-! [ 2J{ · f] 
q=l 
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(3-13) 

(3-14) 

Using 

(3-15) 
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Consider the second term in V2S(~), B(O). If the residuals are 

so small (that is, f is small) that B(ft.) can be neglected, we get the 

Gauss-Newton method: 

(3-16) 

3. 3. 2 The Marquardt Method 

In practice, it IS found that the Gauss-Newton method does one 

of the three things [6]: 

• quickly converges to a minimum; or 

• quickly diverges to infinity; or 

• calculates values that wander about. 

A part of the convergence problem with the Gauss-Newton 

method arises from the Jacobian matrix being ill-conditioned or 

indefinite. Omitting B(!D from the exact Hessian matrix is also an 

intrinsic problem for computation. Accumulated calculation error or 

round-off error may cause the [JTJ] matrix to become ill-conditioned 

or non-invertible. 

Marquardt added a J.ll matrix to the [JTJ] term. This provides a 

tool to fix the ill-conditioned Hessian matrix during calculation of the 

inverse. It has been shown ([ 1], [2], [ 4], and [ 6]) from many practical 

experiences that the Marquardt J.1 can be very effective The 

Marquardt method is: 
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(3-17) 

The parameter J.1 is multiplied by some factor (J3> 1) whenever a step 

would result in an increased S(!t). When a step reduces S(!!.), J.1 is 

divided by J3. 

The function of the Marquardt f..l is related to the trust region 

method [6]. We know that the Newton method and Gauss-Newton 

method are derived from a truncated Taylor series expansion, which 

is an approximation of the original nonlinear function. Therefore the 

result obtained from (3-8) or (3-16) must be justified by (S(!!.i+1)-

S(!!.i))<O. The !!.i+1 derived from (3-8) or (3-16) may be far from !!.i 
' 

so that S(!!.i+ I) may not be less than S(!!.j). In this case, the minimum 

derived from (3-8) or (3-16) is not a reasonable approximation to 

the minimum of S(!ti). The trust region method adds a constraint to 

(3-8) or (3-16): 

(3-18) 

rather than checking (S(!!.i+ 1 )-S(!lj))<O. That is, we can treat our 

nonlinear least square problem as a constrained optimization 

problem: 

SUD= !ltq- a(~ Pq )12 = fT f 
q=l (3-19) 

Subject to 
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(3-20) 

where E is an adjustable parameter which guarantees that S(ft) will 

go down. Fletcher [4] gave a formula to determine the E at each 

iteration. It was proved [ 4] that (3-19) and (3-20), a constrained 

optimization problem, can be reduced to the Marquardt algorithm 

using Lagrangian multipliers [ 4]. The effectiveness of the Marquardt 

J.1 can also be seen in Figure 8. There the point ek+l, derived from a 

quadratic function (truncated Taylor series expansion), leads to an 

increase in the nonlinear function. A trust region restricts !!.k+l to 

ftk+ 1 ', which decreases the nonlinear function. 

I 

~+1 
ftk+l 

'f' 
trust region 

truncated quadratic 
function 

nonlinear function 

Figure 8 Example of Trust Region Operation 

In most cases, the Marquardt method works best among the 

methods for solving least squares problems. The Gauss-Newton 

method using [JTJ] to approximate [JTJ+B] is effective when B can be 

ignored compared with [JTJ]. Even though the Marquardt method is 
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effective and efficient in solving least squares problems, it may fail 

to converge or may converge painfully slowly in some cases where 

residual errors are large. Gill and Murray defined the "large 

residual" case as the case when the term det{ B[JTJ]-1} is large. If 

noisy data with large outliers are present (in realistic problems they 

invariably are) the second term may dominate the Hessian, so that 

excluding the term B(9) prevents (3-13) from approximating Hessian 

matrix well. Adjusting J.l may not compensate the omitted term, so 

that the algorithm may diverge. If there exists a large residual, fti + 1-

iii is much smaller when using the exact Hessian matrix of S(!!.) than 

when using the Gauss-Newton or the Marquardt approximation to 

the Hessian matrix. In [6], the problem is discussed in detail. 

Now, there are some strategies to deal with the large residual 

problem. The failure of the Levenberg-Marquardt method and the 

Gauss-Newton method on large residual problems is caused by 

ignoring the second term of Hessian matrix: 

Q 
B(~) = L,fq (~) · V 2fq (~) 

q=l 

There are two efforts to solve the problem: 

• estimate B(ft) using the Quasi-Newton method (see Dennis et 

al. [9]), and 

• dynamically partition the eigenvalues of [J'J] into a set of 

dominant eigenvalues and a complementary set of 

undominant eigenvalues (see Gill and Murray [6]). 

There are many details on the theory and implementation of 
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these two methods, which are out of the scope of the thesis, see [6] 

for reference. When we apply the Gauss-Newton and Marquardt 

methods to an MPNN, if the large residual problem occurs, we can 

use other techniques to process the training data beforehand. 

Therefore, we can use the Marquardt method safely and avoid large 

residual problems. 

3 .4 Iterated Least Squares 

The Gauss-Newton method is derived by omitting the second 

term m the Hessian matrix in the exact Newton method for least 

squares. The Marquardt method is an improvement on the Gauss­

Newton method. In this section we will prove that the formula (3-

16) can also be obtained from a method, called iterated least squares 

(ILS) [ 13]. This section is devoted to proving the equivalence 

between the Gauss-Newton method and ILS. By means of ILS, we 

will develop a batch version (Chapter 4) and a recursive version 

(Chapter 5) of the learning algorithm to train MPNNs. 

We consider a nonlinear regression model with one input and 

one output terminal as in (3-11). Recall that the performance index 

for that model is: 

S(~) = ~~tq- a(~; Pq)l2 = fT f 
q=l (3-21) 

(The result for a multi-input/multi-output model is similar). From 

(3-16), the Gauss-Newton algorithm to minimize SUD is 



~i+l = ~i- V'2S(~)-l VS(~) 

= ~i- [ 2Jflr + B(~) ]-1( 2Jf · f] 

~~i -[JTirr1[Jr ·f] 

Now we apply ILS to (3-19), in which the nonlinear function is 

replaced by its first order approximation: 

S(~) = !itq- a(~; Pq )12 
q=l 

= !.itq- a(!);; 
q=l 

= f1T f1 

P ) - VTa(9·. £q)(~- ~~- )12 q -1' 

where f 1 is the linear approximation of f, defined as: 

Furthermore, we define S1 (~) = ff f1; 

Note that 
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(3-22) 

(3-23) 



Then we have 

where 

VT a(9· · r1) -1' 
T Ja (~i) = 

vTa(e.· 
-1· rQ) 

It is easily found from (3-21) that: 

VS1 (~) = V(fT ft) == V { f(~i)T f(~i) + (~- ~i )T JJJa (~- ~i) 

-(~- ~i)T JJ f(~i)- fT (~i)Ja (~- ~i)} 

= -21I t<~i) + 21I1a <~- ~i) 

Furthermore 

Therefore 
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(3-24) 

We can easily verify (3-23) below: 

(3-25) 

Hence, substituting (3-23) to (3-22) leads to 

(3-26) 

We can see that the Gauss-Newton method can be obtained 

from ILS by truncating the error function f(ft) to its first order Taylor 

series expansion. We will use ILS again in Chapter 4 and 5. 

3.5 Summary 

The results of this chapter are summarized as follows: 

( 1) If the Hessian matrix of the objective function is available, 

Newton's method is most appropriate; a Marquardt J.l can 

maintain the search direction down hill. 

(2) In nonlinear least squares, the Marquardt compromise for 

the Gauss-Newton method is most appropriate, even 

though it may converge slowly, and sometimes will diverge 

when the problem involves large residual error. 

( 3) There are the complements for the Marquardt algorithm to 

deal with large residual error effectively, but these 

algorithms are very complex. 



CHAPTER IV 

MARQUARDT'S METIIOD FOR MPNNS 

In Chapter 3, Gauss-Newton and Marquardt methods are 

discussed under the framework of the nonlinear regression problem. 

This chapter applies these methods to MPNNs and derives batch 

algorithms to train MPNNs. The conclusions obtained in this chapter 

are same as those in [1]. However the results are derived using ILS, 

which was not used in [ 1]. The two methods were proved equivalent 

in the last chapter. The ll..S method, which is used in this chapter, 

can be easily extended to derive the recursive versions of training 

algorithms in the next chapter. 

An MPNN can be considered as a nonlinear regression model, 

where the adjustable parameters, ~. are the weights and the offsets 

of the networks. Successful training leads to minimizing the sum of 

squares of the total residuals with respect to .e._. That is 

Q 
min ""'v2 £... q. 
~ q=l 

where v q is the difference between the network output and the 

desired output. 

When training an MPNN we first constitute a group of 

nonlinear equations describing the relations between all the 
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quantities. Then, a set of examples, [pq; tql (q=l, 2, ... , Q), are 

presented to the MPNN sequentially (Figure 9). In order for the 

MPNN to match the pairs correctly, the set of examples must be 

presented repeatedly. We call one presentation of the whole set of 

examples as one epoch. 

MPNN 
a 

q 

Figure 9 Training an MPNN 
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The purpose of training MPNN s is to look for an appropriate set 

of parameters !:!_, such that the output of the MPNN matches the 

desired value t with minimum error. The ILS method [ 12] can be 

used to find the solution. At first, we consider an MPNN with single 

input/single output. We formulate the expression as: 

q = 1, ... ' Q (4-1) 

We use the truncated Taylor series expansion to linearize the 

relationship between !!. and tq: 

(4-2) 

where 
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(4-3) 

09= 9-9* - - - (4-4) 

We define !!. * as a nominal value of e. 

examples (q=l, ... , Q) and obtain: 

We stack (4-2) through all 

Ot=J *09+v' - a - - (4-5) 

where 

da(~; PI) da(~; PI) da(~; PI) 
a9I ae2 aen 

Ja = . . . 
da(~; PQ) da(~; PQ) da(~; PQ) 

a9I ae2 aen ~· 

and 

J E RQxn 
a ' 

Solving (4-5) for oe by linear least squares [13] leads to: 

(4-6) 

The formula ( 4-6) has the same form as the solution obtained from 

the Gauss-Newton method for unconstrained optimization techniques 
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[ 1]. Following Levenberg and Marquardt's idea to improve the 

Gauss-Newton method, we add a term 1-1 to compensate the omitted 

higher order term in the Taylor series expansion: 

(4-7) 

After we get 8ft_ from (4-7), we can adapt the nominal value of 

fr, fr*, as follows: 

e = se + e* - - - (4-8) 

Repeating the procedure above, an optimal value of !i can be 

obtained, which may have least residual errors. The iteration to find 

the optimal !i * stops when the condition 

is satisfied, where £ is a predetermined termination value. 

Now we consider training a multi-input/multi-output MPNN. 

The set of training examples, therefore, has the form { 12q, tq } ( q= 1, ... , 

Q). In this case, the performance index has the form: 

(4-9) 

The formula (4-9) indicates that the multi-input/multi-output case 



has the same form of performance index as does the single input/ 

single output case. Therefore, we follow the same procedure to 

derive the solution of optimal ft: 
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(4-10) 

Applying a first order truncated Taylor series expansion to ( 4-1 0) 

about a nominal ft *, we have: 

where 

J a <eq )l~r 

Defining 

da1 (~; Pq) 

ae1 . 
dasm (~; 

da1(~; Pq) 

ae2 

dasm (~; Pq) 

ae2 

da1 (~; Pq )) 

aen 

dasm (~; Pq) 

aen 

( 4- 11) 
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we reformulate ( 4-11) as 

(4-12) 

Following the same convention as that in [1], we stack (4-12) 

through q=1, ... , Q and get to: 

OT=H09+V' - -

where 

Oh v' 
J a (Et) 

-1 

0!2 Y2 ' ' OT= ' H= v 

O!Q 
I a (J:!Q) 

YQ ' 

The solution of (4-13) can be derived by batch least squares 

estimation techniques [ 13]: 

o~=[HTHr1 HToT 

We clarify the H in (4-14): 

(4-13) 

(4-14) 
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aal (~; EI) aal (~; EI) 

ae1 aen 

dasm (~; Et) aasm (~; Et) 

ae1 aen 
aal (~; £2) aal (~; £2)) 

ae1 aen 
H= aasm (~; £2) dasm (~; p,.,) - .. 

ae1 aen 

aal (~; £Q)) aal (~; EQ )) 

ae1 aen 

aasm (fl; £Q)) dasm (~; £Q)) 

ae1 aen 9* 

Modifying (4-14) by the Marquardt method leads to: 

8~ = [ HTH + J.ll r1 HT8T 
(4-15) 

Then we update ~ with the same procedure as ( 4-8). 

Because the Jacobian matrix in (4-6), (4-7) and (4-14), (4-15) 

ts the key to the constitution of the search direction, it will be 

derived for MPNNs explicitly next. For an MPNN with Q pairs of 

training examples, M layers and Sm neurons in each layer (m=O, 1, ... , 

M), we have the following feedforward equations for each pair of 

examples: 

aO =p . 
- -q' (4-16) 
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(4-17) 

Where the wk (k= 1, ... , M) are the connection weights and the Q_k are 

the bias vectors [ 1]. These parameters are arranged as !!. with the 

following form: 

~ = [ w 1 ( 1, 1); ... ; w 1 ( s1 • 1); w 1 ( 1, 2); ... ; w 1 ( s 1 , s0 ) ; 

b 1(1); ... b 1(S1); ... ; 

WM{l, 1); ... ; WM(SM,1); WM{1,2); ... ; 

WM(SM,SM-l);bM(1); ... bM(SM)] 

(4-19) 

Each element of Jacobian matrix can be written out by chain 

rule: 

dam(~; p ) dam(~; p ) an~ 
---------~q~ -q J 

d9i = dn~ · d9i 
J 

(4-20) 

where, as m [1], we define: 

(4-21) 

Then if the parameter ei is a connection weight, we have: 
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(4-22) 

which can be expressed in matrix form: 

aa(9· p ) 
- -' -q k T k-1 

---...,.---~= ~ ·a (r) 
awk(:, r) (4-22') 

where 

of(l) 8~(1) 
.D..k = 

If the e i is bias, then we have 

( 4-2 3) 

which can be expressed m matrix form: 

(4-23') 

The last layer has its sensitivity matrix as: 

(4-24) 
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which is different from the sensitivity vector in standard BP. The 

backpropagation formula is 

k=M-l,M-2, ... ,1 (4-25) 

where 

0 

(4-26) 

0 0 

and 

k 
:fk (n) = df (n) 

dn (4-27) 

We summarize the steps for applying the Marquardt algorithm 

to an MPNN as follows: 

( 1) forward calculate the actual output a by (4-16) - (4-18); 

(2) backward calculate all sensitivities by (4-24) and (4-25) 

and their associated terms; 

(3) calculate each term in Jacobian matrix H by (4-22) and 

(4-23) or (4-22') and (4-23') to find H. 

(4) calculate e using (4-15) ,where, the 1.1 is adjusted by means 

of the Marquardt algorithm described in Chapter 3. Then 

follow the procedure (1) to (3) above until jo~j $ E and/or 



the performance index (4-9) decreases to an acceptable 

value. 
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CHAP1ER V 

RECURSIVE ALGORITIIMS FOR 

TRAINING NEURAL NETWORKS 

In the last chapter, we derived hatching algorithms for training 

MPNNs using the Gauss-Newton (GN) method and the Marquardt 

method (MBP). This chapter will propose two recursive algorithms 

for training MPNNs, recursive Gauss-Newton backpropagation (RGN) 

and recursive Marquardt Backpropagation (RMBP). 

Given a set of examples { (Pq , tq), q=l, ... , Q}, which are 

generated by a mapping f(pq)=tq, an MPNN can be trained to match 

the set of examples by some hatching algorithm, e.g. GN or MBP. 

Furthermore, if the MPNN is trained well, it should capture the 

"general features" in the training data, so that it can predict values of 

f from new, previously unseen, pattern values, p. 

GN and MBP have superior computational efficiency. The mam 

problem with them is that updating the weights of an MPNN requires 

a complete data set. In some kinds of applications, e.g. adaptive 

control and signal processing, the data are generated by a dynamic 

system and may be sequentially presented to an MPNN. In these 

situations, recursive algorithms are needed. One of the ways to 

develop recursive algorithms is to start from some hatching 

algorithms and then make them ''recursive" based on some 

reasonable assumptions. This is the approach we follow in this 
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chapter. 

In this chapter. we will derive three algorithms. First in 

section 5.1, we will introduce a new form of the Gauss-Newton 

method, calling it the quasi-recursive GN algorithm. which is derived 

by means of ILS [ 12]. Secondly, RGN will be derived in section 5.2 

based on some assumptions (these assumptions are same as those 

used in developing the on-line Maximum Likelihood estimation 

techniques [ 18]). The relationship between RGN and the quasi­

recursive GN algorithm will be pointed out. Finally, we will derive 

RMBP in section 5.3, which improves on RGN. 

5.1 The Quasi-recursive Gauss-Newton Method 

We will derive the quasi-recursive Gauss-Newton algorithm by 

means of ILS from the hatching GN algorithm (4-6) in this section. 

This algorithm may alleviate the storage burden associated with the 

hatching GN. Let us consider a single-input/single-output MPNN, as 

in (4-1). Assume that we have obtained the first k pairs of examples 

from Q pairs of training data and have obtained oak by means of ( 4-

6): 

(5-l) 

where 



da(~; Pt) 

ae1 
Jk = . 

da(~; Pk) 

ae1 

da(~; Pt) 

ae2 

da(~; Pk) 

ae2 

da(~; Pt) 

aen 
da(~;· Pk) 

aen 
9* 

We want to modify 3ftk to oek+l· based on the (k+l)th pair of 

examples (pk+l ,tk+l), which corresponds to: 
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(5-2) 

where ft* is the initial guess for the optimal parameter vector. 

Following the covariance form of the recursive LS algorithm [13], we 

get: 

(5-3) 

where 

(5-4) 

and 

(5-5) 

Note that when we modify se sequentially, the nominal value 
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ft* is not changed until all the examples are passed through (5-3) -

(5-5). The procedure for finding the optimal ft is as follows: 

( 1) Initially choose a ft"' as an estimate of the optimal e , and set: 

Po =ai (5-6) 

as well as 

o~o =Q (5-7) 

where a is a very large number. 

(2) Follow the sequence of (5-8) below and use (5-3), (5-4) and (5-

5) to find a oe for all examples. 

for k = 0, ... , Q - 1 (5-8) 

(3) Modify .e_* as: 

e*new = e*old + oe 
- - -Q (5-9) 

And repeat the procedure ( 1) - (3) until 

is satisfied, where E is a predetermined termination value. 

The quasi-recursive algorithm for training a multi-input/multi-
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output MPNN has a similar form and can be derived in the same 

manner. Assuming that the examples have the form of {llq, tq; q=1, .. , 

Q}, we start with: 

Define 

hq =Ja<P )I 
-q e· 

. 
dasm (~; 

. 
dasm (~; .Eq) 

ae2 

where !!_* is the initial guess for the optimal parameter vector. 

Considering the first k pairs of examples, we have 

O!t = htO~ + Y'l 

O!z = h2o~ + Y'2 

Stacking the k equations into a super-vector equation as: 

(5-10) 

(5-11) 

(5-12) 
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(5-13) 

The solution for (5-13) is (5-14), based on (4-6), which is derived in 

the last chapter: 

(5-14) 

The subscript k in the term oek means that it is a result of the first k 

pairs of examples. We further consider the solution after the k+ 1st 

data point 1s presented to the MPNN: 

(5-15) 

If we stack (5-13) and (5-15) we get: 

(5-16) 

where 

[ Hk ] , [ V'k] 
Hk+l = h ' V k+l = v' 

k+l - k+l 

The solution for (5-16) is known as 

(5-17) 

Next we want to make (5-17) recursive. So we define 



54 

(5-18) 

then 

(5-19) 

Therefore 

(5-20) 

Put (5-18) into (5-14) 

(5-21) 

Then we have 

(5-22) 



Further, we consider (5-17) 

b~k+l = (Hk+l THk+l )-l Hk+l TbT k+l 

=Pk+l [ Hk ]T[ oTk J 
hk+l b!k+l 

= pk+l [ Hk TbT k + hk+l T b!k+l] 

=Pk+l[Pk -lo~k +hk+lTO!k+d 

= pk+l[ { pk+l-l- hk+1Thk+1 }b~k 

+hk+lTb!k+l] 

= o~k + Pk+th T k+l ( o!k+1 - hk+lo~k] 

Consequently, we get the recursive solution: 

where 

n -1 n -1 h Th .... !e+l = .rk + k+l k+l 
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(5-23) 

(5-24) 

(5-25) 

(5-26) 

If the matrix inversion lemma is applied to (5-26), then we get: 

(5-27) 
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Substituting (5-27) into (5-25), we get 

(5-28) 

Substituting (5-28) into (5-27), we get: 

(5-29) 

The procedure is summarized as follows: 

( 1 ) Initially choose a e * as an estimate of the optimal ft , and set 

Po =ru 

as well as 

o~o =Q 

where ex. is a very large number. 

(2) Follow the sequence of (5-30) below and use (5-24), (5-28) and 

(5-29) to find a Oft for all examples. 

for k = 0, ... , Q - 1 (5-30) 

(3) Modify ft* as: 

e*new = e*old + oe - - -Q (5-31) 



57 

And repeat steps (1) - (3) until 

(5-32) 

IS satisfied, where f. is a predetermined termination value. 

In the quasi-recursive algorithm, all the examples are 

presented to an MPNN before ft is updated. The quasi-resursive GN 

algorithm is different from the hatching GN in the calculation of <>ft. 

The hatching GN calculates oe in one step, while the quasi-recursive 

algorithm calculates oe in a series of Q steps (Q is the number of 

examples). 

5.2 Recursive Gauss-Newton Method 

In section 5.1, we derived the quasi-recursive GN. In this 

section, we will derive the recursive Gauss-Newton algorithm (RGN) 

for training MPNNs. For RGN, the parameter vector will be updated 

after each example is presented. 

Before we begin to develop RGN, we have to point out that the 

performance index we used previously treats all data points in the 

example set equally. This kind of performance index is widely used 

in the neural network literature and may not be a good choice. A 

widely used performance index in recursive estimation [18] is of the 

form 
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(5-33) 

where W s is a weighting matrix which weights the each residual 

error at each data point differently. If W s is selected as the identity 

matrix, the resulting performance index is the same as that we used 

previously. 

We formulate our problem as follows. Consider again the 

regression equation: 

where £!. represents the MPNN output and 

eERnxl. t v ERSmxl. RSoxl ( 1 Q) P E ; q= , ... , - ' -q' -q ' 

we want to find the parameter vector e which minimizes 

(5-34) 

Sq(~) = ~ fAq-sYsTwys 
s=l (5-35) 

q-s where we have set W 8 ='A W, where A is called forgetting factor [18] 

which emphasizes recent data. Applying the Taylor series expansion 

with a nominal value of ft . .e_*, to (5-35) leads to: 
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Sq (~) ~ Sq (~*) + VSq T (~*)(~- ~*) 

+ ~ (~-!t)TV2Sq(~*)(~-~*) (5-36) 

Hence, if we let .f!.* be !!.q_1 , then (5-36) is equal to (5-37): 

Sq (~) ~ Sq (~q-1 ) + VSq T (~q-1 )(~- ~q-1) 

1 T 2 
+ 2 (~- ~q-1) V Sq (~q-1 )(~- ~q-1) 

(5-37) 

We can minimize the right side of (5-37) and obtain: 

(5-38) 

which is the Gauss-Newton method. This is a hatching algorithm, 

2 
because V Sq(~q-1) and VSq(~q-1 ) are evaluated at !l.q-t for all the 

(q-1) examples. 

Let us now derive a recursive algorithm. First, we can rewrite 

the performance index: 

1 q-l 1 
=-A. ""'A.q-1-s v Twv +- v Twv 2 £..J -S -S 2 -q -q 

s=1 

(5-39) 



From (5-39), it is easy to obtain: 

and 

VSq (f!) = v[ A.Sq-l (!!)+ ~ Yq Twyq J 
= A.V[ Sq_1 (~)] + ~ v[ Yq Twyq] 

= A.V[ Sq-1 (~)] + 1v(£q )Wyq (~) 

= A.VSq-1 (~)+ lv(Eq )WYq (~) 

v 2sq (~) = v[ vsq (~)] 

= v[ A.VSq_1 (~) + Jv(£q )Wyq (~)] 

= A.V2Sq-l (~)+ v[Jv(£q)WYq (~)J 

=A.V 2Sq-l(~)+Jv(P )WJ~(p )+ -q -q 

SmSm 2 L L vi,q (~)Wijv vj,q (~) 
i=lj=l 

= A.V 2Sq-l (~) + Jv(£q )WJ~ (£q) + B(q,~) 

In (5-41), we define 

SmSm 2 
B(q,~) = L L vj,q (~) wijv v j,q (~) 

i=lj=1 

Let us make three assumptions 
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(5-40) 

( 5-41) 
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< 1) vsq-I <~q-1) = o (5-42) 

(which means that ftq-1 is the minimum of Sq_ 1(ft)); and 

(2) 
n2 2 
v Sq-1 ( ~q-1 ) == V Sq-1 (~q-2) (5-43) 

(which means that the surface m the parameter space IS smooth 

enough); and 

(3) B(q,~)=O 

(which means that the model produces small residuals). We 

substitute the assumptions (5-42) to (5-44) into (5-38): 

~q - ~q-1 = -[ v 2sq (~q-1 ) ]-1 [ vsq <~q-1 )] 

and define: 

=-[A. V 2Sq-l (!!q-1) + J v (f2q )WJv(I'q) T r 
·[ A.VSq-1 (~q-1 ) + J~ (£q )Wyq (~q-1)] 

= -[ A.V2Sq-l (!!q-2) + J v (f2q )WJv(I'q) T rl 

·J~(£q)WYq(~q-1) 

(5-44) 

(5 -45) 

(5-46) 



and 

then 

and consequently 

Pq = v2sq <~q-1 )-I 

= [ A:v zsq-1 C!!q-2 l + J v Cpq l)ll,_, w J v Cpq li;.J _, 

= [ AP~~1 + <l>q W<t>! ]-1 

Applying the matrix inverse lemma to (5-49), we get 

Therefore, we summanze (5-45) to (5-50) as follows: 
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(5-4 7) 

(5-48) 

(5-49) 

(5-50) 



~q (~q-1) = !q - ~(~q-1; p ) 
-q 

Pq = ~ [ Pq-1 - Pq_1<j>q { AW-1 +<I>~ Pq_1<j>q} - 1 <j>~Pq_1 J 

~q = ~q-1 + Pq<!>q w~q (~q-1) 

This is the recursive Gauss-Newton method. 

An alternative form of (5-51), which is used in our 

implementation of RGN is given in (5-52) below: 
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(5-51) 

(5-52) 

In (5-51) and (5-52), A. can be time-variant. This facilitates 

flexibility of the algorithm. The term W may be used to weight each 

MPNN output when a multi-output MPNN is used. 

The difference between RGN and the quasi-recursive GN 

algorithm is whether the weights are updated or not after each data 

pair is presented. RGN updates the weights after each data pair ts 

presented, while the quasi-recursive GN algorithm updates the 

weights after all pairs of data are presented. 

depicted this difference. 

Figures 10 and II are 



64 

ftll ft2 ft3 ft min 

-~ 
q=l oft 1 (l) o!! 2 0) 

! + q=2 o!! 1 (2) oft 2 (2) 

+ • 
~ ~ 

q=Q 0 ft 1 (Q) oft 2 (Q) 

Figure. 10 Parameter Updating in Quasi-recursive GN 

ft2 !! . 
..----• min 

q=2 

q=Q 

Figure. 11 Parameter Updating in RGN. 
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5.3 Recursive Marquardt Method 

This section will derive the recursive Marquardt 

backpropagation algorithm (RMBP) for training MPNNs. In last 

chapter, we derived hatching MBP to fix the ill-conditioning problem 

which may occur when we invert the Hessian matrix in hatching GN. 

In the last section, RGN was derived and the possibility of an ill­

conditioned Hessian matrix may also exist in RGN. We treat it as we 

did for hatching GN in the last chapter. 

Observing (5-49), we find that if the term on the right hand 

side of (5-49) is ill-conditioned at some step q, then the matrix may 

not be invertible. Therefore, we can apply the Marquardt 1-1 to (5-49) 

to ensure that P q - 1 is always positive definite. 

small positive number and may change with q. 

the RMBP can be derived and written as: 

Yq (~q-1) = !q- ~(~q-1; £q) 

pq-1 = A-Pq~l + <f>q W<t>J + J.lql 

~q = ~q-1 + Pq<f>q Wyq (~q-1) 

(5-54) 

In (5-54), l-1q is a 

After adding this l-1q, 

(5-55) 

In practice, especially in real-time calculations, we may not 

know how to adjust 1-1q in an optimal way. If we set l-1q in (5-55) as a 

constant ll (e.g. j..l= 1 o-3), p q -1 has the form 
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after q pieces of data have been presented. We explain (5-56) next. 

For q = 1, 2 and A is a constant, p1-1 and P:21 have the forms 

P -1 .. p-1 T 
1 =/\, 0 +<1>1W<I>1 +J.11I; 

P21 = "AP11 + <l>z W<I>I + J.!zl 

= "-( "AP01 + <1>1 W<l>f + J.L1I) + <1> 2 W<I>I + f.izl 

="-(A-Poi+ <1>1 W<l>f) + <l>z W<I>I + "-f.11I + flzl. 

For q pieces of data, therefore, P q -l has the form 

Pq1 = "AqP01 + · · · + A<l>q-l W<I>J-1 + <l>q W<I>J 

+("A q-lf.ll + ... + AJ.lq-1 + f.lq )L 

tot "Aq-1 "A . The term f.lq = f.l1 + · · · + Jlq-1 + f.lq IS the accumulated effect of 

J..lq on P q -l for the q pieces of data. If f.lq = f.1, a constant number, 

which appeared in (5-56). In this case the accumulated effect of f.lq 

on P q -l is adding an identity matrix with a coefficient: 
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(5-57) 

which changes with q. Note that (5-57) increases with q but is 

bounded by J.l/ (1- A) if A. < 1. 

If we need f.1~0tto be constant, we have to set 

II tOt = II tOt 
r-'q rq-1 

Therefore, if q = 2, AJ..ll + f.12 = Jll· That is 

If q > 2, (5-57') can be written as 

Furthermore, for J.lq+ 1, we have 

From (5-57'') and (5-57"'), we obtain 

Jlq+l - AJlq = (1- A.)Jlq ¢:> Jlq+l = J..lq ( q > 2) 

(5-57') 

(5-57'') 

(5-57"') 
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Therefore, we have following formula to determine liq when we need 

Jl tot to be constant: q 

q=2,3,··· 
(5-58) 

where li 1 Is assigned to whatever value is desired for Jl ~ot. 

We must point out that RMBP (5-55) requires a matrix inverse 

each time a piece of new data is presented. This is a disadvantage. 

The advantage is that we do not need to worry about the problem of 

having a singular matrix. 

The operation of inverting the Hessian in (5-55) reqmres 

intensive computation. A version of RMBP without such inversion is 

proposed based on the idea of Levenberg and Marquardt. In Chapter 

2, we showed that the weight update by means of the steepest 

descent method have the form of 

(5-59) 

We call the search direction generated from (5-59) as the steepest 

descent direction. In (5-51), the weight update takes the form of 

( 5 -60) 

We call the search direction generated from (5-60) as the Gauss­

Newton direction. If the search along the Gauss-Newton direction 

fails to approach the minimum because of such reasons as an ill-
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conditioned Hessian matrix, we may try some directions other than 

the Gauss-Newton direction. The search direction from the 

Marquardt method is in between Gauss-Newton and steepest 

descent. From (5-55), we can see that the weight update for the 

Marquardt method is 

(5-61) 

The Marquardt direction becomes the steepest descent direction as 

J..l--jooo 

(5-62) 

or the Gauss-Newton direction as J..l ~ 0 

[ -1 T]-l ~~MD = A.Pq-1 + <l'q W<l'q <l'q Wyq (~q-1) 

= Pq<l'q Wyq O.~q-1) = ~~GN · 
(5-63) 

When we search for a minimum by means of the Marquardt method, 

we adjust ~ to determine a search direction which changes between 

the Gauss-Newton and the steepest descent direction. We adjust ~ in 

order to maintain the current norm of the error (between network 

output and desired output) to be less than the previous norm of 

error. 

According the idea of Levenberg and Marquardt, we increase 
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the ~ when the norm of the error increases, and decrease ~ when the 

norm of the error decreases (see [1] and Chapter 4 for detail). The 

Marquardt direction is close to the Gauss-Newton direction when ~ 

decreases, as seen in (5-63), and is close to the steepest descent 

direction when ~ increases, as seen in (5-62). The Marquardt 

direction is the combination of the two search directions. 

A recursive Marquardt algorithm without matrix inversion is 

an approximation of the exact Marquardt algorithm (5-55) and 

should possess the same features. We propose the weight update 

scheme (i.e. the search direction) for a recursive Marquardt 

algorithm without matrix inversion as follows: 

1 f.l 
d~MD = 2 d~GN + 2 d~SD· 

(l+f.l) (l+f.l) ( 6-64) 

As f.l ~ 00 , 

and as f.l ~ 0, 

just as with the standard Marquardt method. Substituting (6-59) 

and (6-60) into (6-64) leads to a version of RMBP without matrix 

inversion as follows: 



~q <~q-1) = !q- ~<~q-1; Eq) 

_ { ~q-1 · J3 ll~q <~q-1 )II< ll~q-1 c~q-1 )II 
~q-

1-lq-1 I J3 ll~q (~q-1 )II~ ll~q-1 (~q-1 )II 
Kq= 1 2Pq-1<l>q{A.w-l+<j>JPq-I<I>q}-I+ 1-l 2<J>qW 

(!-1+1) (1-1+1) 

7 I 

~q = ~q-1 + Kq~q(~q-1) 
(5-65) 

where, 13 is a constant. The initial J.lo takes on a value m the range of 

[0.001 0.01], 13 in the range of [0.9 0.99]. 

5.4 Summary 

In this chapter, we derived three algorithms: quasi-recursive 

GN, RGN and RMBP. The quasi-recursive algorithm is really a 

hatching algorithm. RGN is a truly recursive procedure which IS an 

approximation of quasi-recursive GN algorithm. RMBP avoids the 

possibility of ill-conditioning which is found in RGN. In the next 

chapter, we will use RGN and RMBP to approximate two functions. 

We will investigate their properties and compare them with standard 

BP introduced in chapter 2. 



CHAPTER VI 

APPLICATIONS OF RGN AND RMBP 

6.1 Introduction 

In the last chapter, we derived two recursive learning 

algorithms, the Recursive Gauss-Newton method (RGN) and the 

Recursive Marquardt method (MBP). In this chapter, we will use the 

two recursive algorithms to train MPNNs to approximate nonlinear 

functions. In Chapter 2, we pointed out that an MPNN with sufficient 

hidden neurons could approximate any nonlinear function if it was 

trained by some learning algorithms, such as backpropagation (BP), 

adaptive learning rate BP and conjugate gradient BP. At that time 

we trained MPNN s using hatching algorithms. 

In this chapter, we will train MPNNs using recursive 

algorithms, RGN and RMBP. We will select two functions to form test 

problems. (The two functions were also used in [ 1]. The purpose of 

selecting the two functions is to provide results which can be 

compared with those obtained m [I]). In addition, we will 

investigate the effects of the design variables involved in RGN and 

RMBP (such as P 0 , /... 0 , fro and J.L) on the convergence rate of the 

learning process. We will give some details of the implementation of 

the two algorithms. 

In section 6-2, we will define two functions to form test 
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problems, and we will describe the stopping rule which will be used 

to determine the convergence. In section 6-3, we will use RGN and 

RMBP to train MPNNs to approximate the first function defined in 

section 6-2, and will investigate the effects of the design variables 

involved in RGN and RMBP (such as P0 , A.0 and ito) on the convergence 

rate of the learning process. What we do for the first nonlinear 

function in section 6-3 will be repeated for the second nonlinear 

function in section 6-4. Finally, in section 6-5, we will summarize 

the test results obtained m sections 6-3 and 6-4, and give some 

conclusions about RGN and RMBP based on our tests. 

6. 2 Test Problems 

In this section, we will define two functions to form test 

problems and will define the stopping rule which will be used to 

determine the convergence. The two functions were used in [ 1] to 

test BP, CGBP and MBP. The purpose of selecting these functions is to 

provide test results which can be compared with those obtained in 

[ 1 ]. In our testing process, test problems are formed by computing a 

set of discrete points from the functions of interest. MPNNs are 

trained to approximate the functions at these points. 

The first nonlinear function is a sine wave: 

1 1 . 3 y = - + - sm nx; 
2 4 

XE[-1,1). 
(6-1) 

The first test problem is defined as follows: 

( 1) x takes on values from -1 to 1 with steps of 0.05; 



(2) Y takes on values calculated from (6-1) at those x values 

defined in (1). 

The first test problem and the first function (6-1) are depicted m 

Figure 12, where each * indicates a test example. 

0.8.-----------------------------------~ 

0.6 

-0.5 

\ ! 
\l 

0 

X 

0.5 

Figure 12. The First Test Problem 

1 

The second function is a square wave defined as follows: 
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{
-1 

y= ~ 

{X E ( -1,0] U (1,2]} 

{x e [-3,-2] u(1,3]} 

{x e (-2,-l]u (0,11} 
(6-2) 

The second test problem is defined as follows: 

(1) x takes on values from -3 to 2. 9 with steps of 0.1; 

(2) y takes on values calculated from (6-2) at those x values 

defined above. 

The second test problem and the second function (6-2) are depicted 

in Figure 13, where each * indicates a test example. 
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1 

o~j 
.. Li ·• 

. . 

r 
I 

~:+.-.:t+:+:· -1 

-3 -2 -1 0 1 2 3 

X 

Figure 13. The Second Test Problem 

A stopping rule is used to determine when the training process 

terminates. Training stops when the SSE (SSE is the sum of squares 

of errors between the desired outputs and MPNN outputs) is less 

than a prespecified value, or the number of iterations has exceeded 

some maximum number. We set the target SSE to 0.02, which is 

same as that used in [1], and the maximum iteration number to 800. 

If the SSE of a learning process does not reach 0.02 within 800 

iterations, we will state that the process is not convergent. 

In order to make the test results more reliable, we repeated 

the same test with 10 different seeds for the random number 

generator, which is used to create the initial weights and offsets, and 

averaged the results obtained. We observed that some particular 

seeds produced very good test results, while others did not. 

Averaging the test results for different seeds will avoid misleading 

results. We set the seeds here to the same values as those used in [ 1] 

We will train MPNNs to approximate the two nonlinear 



functions by means of RGN and RMBP m the next two sections. 

6. 3 Test Procedures/Results For Test Problem #1 

6.3.1 Test Results With RGN 

In section 6.2, we defined the first test problem. In this 

section, we will apply RGN (5-52), RMBP with inversion (5-55) and 

RMBP without inversion (5-59) to the first test problem, and will 

investigate the effects of the design variables on the convergence 

rate. 
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First, we will apply RON (5-52) to the first test problem and 

will investigate the effects of the design variables Po, A.o and !to on 

the convergence rate. We use an MPNN with one hidden layer and 

one output terminal. There are 15 hyperbolic tangent type neurons 

in the hidden layer. We use this kind of MPNN in all the tests. 

Because the MPNN has one output terminal, the design variable W in 

(5-52) is set to 1. The RGN used to train the MPNN is summarized in 

(6-3) below. 
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(6-3) 

where 

0 0 

0 

0 2 T 
·Wq-1 

In (6-3), W~-1. !?~-1· WJ-1and Q~-1 are the elements of ~q-1 (Refer to 

( 4-19) in Chapter 4 for detail). 

Table 6-1 (a) shows the test results obtained by means of (6-

3 ). Each item in the table is an average value for ten different sets of 

initial random weights. We set the initial values of ~o by means of 

two methods. One is suggested by Nguyen and Widrow (NW for 

short) [3]. The other method sets the initial values to small random 

numbers, for example, to random values in a range from -0.001 

through 0.001. When we test the effects of Po, we change Po but set 

A.o to 0.88 and initialize eo by the NW method. When we test the 
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effects of A.o, we change A.o but set Po to 103 and initialize ito by the 

NW method. When we test the effects of ito, we initialize ito by either 

the NW method or a set of random values, but set A.o to 0.88 and Po 

to 103 . We mark * in the row where we obtained failure records 

(some particular seeds do not lead to convergence). For other tables 

listing other test results, we will use the same conventions. 

TABLE 6-1 (A) 

TEST RESULTS FOR RGN (6-3) FOR PROB. #1 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDillONS ITERATIONS FLOPS SSE 

Po 10 5 234.3* 1.2645e+8 0.01923 

(A.o = 0.88, 10 3 224.2 1.2110e+8 0.01942 

eo-NW) 1 0 467.5* 2.5251e+8 0.01969 

0.95 226.1 * 1.2213e+8 0.01917 

A.o 0.92 217.95* 1.1772e+8 0.01942 

(Po= 103 , 0.90 219.2 1.1842e+8 0.01930 

fto -NW) 0.88 224.2 1.2110e+8 0.01942 

0.86 225.4 1.2175e+8 0.01917 

fto (A.o=0.88, NW 224.2 1.211 0e+8 0.01942 

PQ- 103) Small rand. 209.7 1.2645e+8 0.01890 

The test results shown in Table 6-1 (a) reveal that RGN is 

comparable with variable learning rate BP in terms of the total flops 

(the total flops for variable learning rate BP is 8.42e+ 7, refer to [1 ]). 



When testing variable learning rate BP in [1], a hatching algorithm 

was used, but RGN is a recursive algorithm. 

79 

For problem #1, the standard RGN algorithm (6-3) works well. 

For the next test problem (approximating a square wave (6-2)), the 

standard RGN algorithm cannot deal with ill-conditioned Pq matrices 

after tens of iterations. To circumvent this ill-conditioning problem, 

we can use RMBP. Another method is to add a small identity matrix 

to Pq in (6-3) so that an improved RGN is proposed as (6-4): 

(6-4) 
Rq = O.l·I 

A.q = 0.99 * A.q-l + 0.01 

where L\ 1 has the same form as in (6-3). We give the test results for 

algorithm (6-4) in Table 6-1 (b). 

From Table 6-1 (b), we note that the improved version of RGN 

Is comparable with CGBP in terms of the total flops (the total flops for 

CGBP is 1.75e+7, refer to [1]). If the design variables A.o = 0.88 or 

0.90, Po =103 and fto is initialized by small random values, the total 

flops and the number of iterations have smaller values, i.e. the 

convergence is faster. It is also noted that the Rq in (6-4) makes the 
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TABLE 6-1 (B) 

TEST RESULTS FOR MODIFIED RGN (6-4) FOR PROB. #1 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDIDONS ITERATIONS FLOPS SSE 

Po 10 5 33.4* 1.8040e+7 0.01923 

(A.o=0.88, 10 3 39.1 2.1119e+7 0.01872 

fto-NW) 10 207 .833* l.1226e+8 0.01765 

0.95 102.3 5.5256e+7 0.01903 

A.o 0.92 99.875* 5.3946e+7 0.01874 

(Po= 103 , 0.90 23.4 1.2639e+7 0.01767 

fto-NW) 0.88 39.1 2.1119e+7 0.01872 

0.86 46.6 2.5170e+7 0.01740 

fto (A.o=0.88, NW 39.1 2.1119e+7 0.01872 

Po= 103! Small rand. 37.5 2.0255e+7 0.01867 

convergence faster. 

6.3.2 Test Results for RMBP With Matrix Inversion 

Next, we apply RMBP with matrix inversion to the first test 

problem and investigate the effects of the design variables Po, A.o, !to 

and J..l on the convergence rate. We summarize the RMBP algorithm 

with matrix inversion as follows: 



a(~q-1 ;pq) = W~-1 f 1 (W~-d~q + !2~-1) + !2~-1; 

<l>q =[~lpq;~1;a;l]; 

8 1 

p-1 A -1 T 
q = qPq_1 +<f>q<f>q +Jlql; (6-5) 

~q =~q-1 +Pq<f>q(tq -a(~q-l;Pq)]; 
Aq = 0.99 * Aq_1 +0.01. 

where where ~ 1 has the same form as in (6-3), ~q may take a 

constant number, for example 0.001, or a number calculated by 

q=2,3, ... 

The test results are listed in Table 6-2. When we test the RMBP 

(6-6) 

algorithm with matrix inversion, we investigate the effect of ~ on the 

convergence rate. From Table 6-2, we find that RMBP with matrix 

inversion needs more total flops to converge (SSE is less than 0.02 

within 800 iterations) than RON, even though it needs fewer 

iterations. The matrix inversion involved in (6-5) requires intensive 

flops. If the design variables A.o = 0.88 or 0. 90, and Po = 103 , f.l = 

0.001 and eo is initialized by small random values, the total flops 

and iterations have smaller values, i.e. the convergence is faster. 
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TABLE 6-2 

TEST RESULTS FOR RMBP WITH INVERSE FOR PROB. #1 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDIDONS ITERATIONS FLOPS SSE 

Po 0 .. 0=0.88, 10 5 63.1 * 2.6968e+9 0.01923 

~-NW) 10 3 29.3 1.2522e+9 0.01901 

!:!=le-32 10 77.4 3.3080e+9 0.01989 

0.95 48.2 2.0600e+9 0.01991 

"-o (Po=to3, 0.92 51.7 2.2096e+9 0.01894 

f!o-NW 0.90 17.6 7.5220e+8 0.01813 

J.l= 1 e-3) 0.88 29.3 1.2522e+9 0.01901 

0.86 33.8 1.4446e+9 0.01993 

.e.o (Po= 1 o3 NW 29.3 1.2522e+9 0.01901 

A.Q=.88,J.t=le-3) Small rand. 28.5 1.2180e+9 0.01952 

I! (Po=to3 fixed 29.3 1.2522e+9 0.01901 

t..0=.88,.!io NW) set bl:: (6-6) 29.8 1.2530e+9 0.01910 

6.3.3 Test Results for RMBP Without Matrix Inversion 

In this section, we apply the RMBP algorithm which does not 

require matrix inversion to the first test problem and investigate the 

effects of the design variables Po, "-o and .e..o on the convergence rate. 

We summarize this RMBP algorithm as follows: 



Yq (~q-1) = !q - ~(~q-1; ~q) 

_ { J.lq-1 · f3 ll~q c~q-1 )II< ll~q-1 c~q-1 )II 
J..lq-

J..lq-1 I 13 IIYq (~q-1 )II~ IIYq-1 (~q-1 )II 

Kq = ( 1 )2 Pq-i<l>q {AW-l+ cpJPq-i<l>qrl + ~ 2 <l>q W 
fl+l (J..L+l) 
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~q = ~q-1 + Kq Yq (~q-1) 
(6-7) 

_ 1 [ { -1 T }-1 T ] Pq -A. Pq-1- Pq-l<l>q A.W + <l>q Pq-t<l>q <l>q Pq_1 

In the test, flo = 0.001 and 13 = 0.95. The test results are listed in 

Table 6-3. From Table 6-3, we find that the RMBP without matrix 

inversion requires a little more total flops to converge than RGN, but 

much less than RMBP with matrix inversion. If the design variables 

A.o = 0.88 or 0.9, Po = 103 and eo is initialized to small random values, 

the total flops and iterations have smaller values, i.e. the 

convergence is faster. It was observed that if J3 took on the values 

close to and less than 1, the same conclusion was maintained. If 13 

is too small, e.g. 0.8, it requires much more total flops and iterations 

than those indicated in Table (6-3) to converge. 
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TABLE 6-3 

TEST RESULTS FOR RMBP WITHOUT INVERSE FOR PROB. #1 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDmONS ITERATIONS FLOPS SSE 

Po 10 5 159.2 8.6958e+7 0.01921 

(1,.0=0.88. 10 3 157.6 8.5734e+7 0.01919 

.f!o-NW) 10 195.333* 1.3123e+8 0.01984 

0.95 168.5 9.2014e+7 0.01963 

A.o 0.92 167.7 9.1582e+7 0.01955 

(Po=10 3 , 0.90 159.333* 8.7008e+7 0.01943 

.eo-NW) 0.88 157.6 8.5734e+7 0.01919 

0.86 170.667* 9.3197e+7 0.01983 

~o (Po=103 , NW 157.6 8.5734e+7 0.01919 

A-0=0.88) Small rand. 152.9 8.2322e+7 0.01902 

6.4 Test Procedures/Results For Test Problem #2 

6.4.1 Test Results for RGN 

In section 6.2, we defined the second test problem as a set of 

examples from a square wave indicated in (6-2). In this section, we 

will apply RGN and RMBP to this test problem. Because the SSE of 

the standard RGN (6-3) cannot reach 0.02 within the maximum 

number of iterations, which we set to 800, we will incorporate a term 

into the standard RGN (6-3) to form the improved version of RGN (6-



4). We will apply this improved version of RGN, as well as RMBP 

with matrix inversion (6-5) and RMBP without matrix inversion 

(6-7) to the second test problem, investigating the effects of the 

design variables on the convergence rate. 
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First, we will use the improved RGN (6-4). The test results 

shown in Table (6-4) indicate that if the design variable A.o takes on 

values near 0.86 or 0.88, and Po= 103 and fto is initialized by the NW 

method, the total flops and iterations have smaller values. Note that 

there are failures when A.o = 0.86. we note that the modified RGN is 

comparable with CGBP in terms of the total flops (the total flops for 

CGBP for this test problem is 1.49e+8, refer to [ 1 D 

TABLE 6-4 

TEST RESULTS FOR MODIFIED RGN (6-4) FOR PROB. #2 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDIDONS ITERATIONS FLOPS SSE 

Po 10 5 525.4 4.1 530e+8 0.01930 

(A-0=0.88, 10 3 503.3 3.9783e+8 0.01994 

ftc> NW) 1 0 626.7 4.9537+8 0.01877 

0.95 607.1 4. 7988e+8 0.01946 

AO 0.92 587.5 4.6438e+8 0.01875 

(Po= 103, 0.90 566.2 4.4755e+8 0.01996 

ftc> NW) 0.88 503.3 3.9783e+8 0.01994 

0.86 531.42* 4.2006e+8 0.01895 

!!o (Po= 103 , NW 503.3 3.9783e+8 0.01994 

A-0=0.88) Small rand. 510.2 4.0328e+8 0.01830 
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6.4.2 Test Results for RMBP With Matrix Inversion 

Next, we apply RMBP with matrix inversion to the problem #2 

and investigate the effects of the design variables Po, A.o, !to and ll on 

the convergence rate. The test results are listed in Table 6-5. From 

Table 6-5, we find that the RMBP with inversion needs more total 

flops to converge than RGN, even though it needs fewer iterations. If 

the design variable A.o = 0.86, 0.88 or 0.90, and Po = 10 3 , ll takes on 

variable values by means of (6-6), and fro is initialized to small 

random values, the total flops and iterations have smaller values, I.e. 

the convergence is faster. 

6.4.3 Test Results for RMBP Without Matrix Inversion 

In this section, we apply RMBP without matrix inversion to the 

second test problem and investigate the effects of the design 

variables Po, A.o and fro on the convergence rate. The test results are 

listed in Table 6-6. From Table 6-6, we find that the RMBP without 

matrix inversion and RGN require similar total flops to converge. 

However, the RMBP without matrix inversion needs fewer iterations 

than RGN. If the design variables A.o = 0.88 or 0.95, and Po= I 0 3 and 

fro is initialized by the NW method, the total flops and iterations have 

smaller values, i.e. the convergence is faster. 
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TABLE 6-5 

TEST RESULTS FOR RMBP WITH INVERSE FOR PRO B. #2 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDmONS ITERATIONS FLOPS SSE 

Po U-0=0.88, 10 5 490.3 9.0191e+9 0.01930 

~-NW 10 3 429.1 7.8933e+9 0.01907 

!;!=le-32 1 0 508.2* 9.3483e+9 0.01873 

0.95 430.5 7.9190e+9 0.01961 

A.o (Po=to3, 0.92 457.1 8.4083e+9 0.01972 

~-NW, 0.90 411.6 7.5714e+9 0.01814 

ll=le-3) 0.88 429.1 7 .8933e+9 0.01907 

0.86 423,7 7.7940e+9 0.01964 

!to 0-0=.88, NW 429.1 7.8933e+9 0.01907 

PO 103 ,Jl-1 e-3) Small rand. 422.3 7 .7682e+9 0.01953 

Jl () ... 0=.88, fixed 429.1 7.8933e+9 0.01907 

3 
b~ (6-6) 428.2 7.8937e+9 0.01944 Po=IO ,~ NW) set 
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TABLE 6-6 

TEST RESULTS FOR RMBP WITHOUT INVERSE FOR PROB. #2 

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE 
INVEST!. CONDIDONS ITERATIONS FLOPS SSE 

Po 10 5 403.6 4.2557e+8 0.01823 

0.0=0.88, 10 3 384.5 4.0550e+8 0.01804 

i!o-NW) 1 0 597.2 6.3128e+8 0.01843 

0.95 387.1 4.0878e+8 0.01876 

Ao 0.92 421.7 4.4627e+8 0.01922 

(Po=10 3 , 0.90 405.7 4.2842e+8 0.01790 

i!o-NW) 0.88 384.5 4.0550e+8 0.01804 

0.86 411.3 4.3433e+8 0.01972 

!!.o (Po= 1 03 , NW 384.5 4.0550e+8 0.01804 

A-0=0.88) Small rand. 396.2 4.1839e+8 0.01945 



6.5 Summary of Test Results 

In this chapter, we defined two test problems: one is a set of 

examples from a sine wave (see (6-1)) and the other is a set of 

examples from a square wave (see (6-2)). The RGN and RMBP 

algorithms were implemented and tested on the two test problems. 

The properties of RGN and RMBP under the tests were revealed. 

Some details related to the implementations were pointed out. The 

results derived m sections 6-3 and 6-4 are summarized as follows. 
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1. The standard RGN (6-3) derived in Chapter 5 may not converge 

in terms of the stopping rule we defined in section 

6-2 (see test problem #2). Some improved versions of the RGN 

could solve the problem (for example (6-4)) because in these 

algorithms such uncertainties as calculation errors, truncation 

errors, etc. are taken into account. In (6-4), the term Rq deals 

with such uncertainties. This term also makes faster 

convergence. 

2. In RGN and its improved versions, the design parameter A.0 is a 

important factor to accelerate the convergence rate. We found 

that A. 0 = 0.88 to 0.90 works better in all tests. It is appropriate 

to set the design parameter P 0 to 103 . A P 0 too large, like 1 05 , 

may cause the learning process to oscillate; while a P0 too 

small, like 10, causes the learning process to become very slow 

or stops the learning after a few iterations. 

3. Two versions of RMBP were investigated. The iterations 

required for convergence in the exact form of RMBP (6-5) are 

less than those needed in RGN. However, the total flops needed 
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in the exact RMBP are much more than those needed in RON, 

because of the inversion of the Hessian matrix. A version of 

RMBP without inversion (6-7) was also investigated. The total 

flops and iterations required for convergence for this algorithm 

are similar to those for RON. The parameter 11 makes the 

algorithm (6-7) not sensitive to the value of /... 

4. The advantage of RMBP and its variant is that they can work in 

all cases, without incorporating some ad hoc design parameters 

such as those used in the improved versions of RON. 



CHAPTER VII 

CONCLUSIONS 

In this thesis, we developed two recursive learning algorithms, 

the Recursive Gauss-Newton method (RGN) and the Recursive 

Marquardt method (RMBP) to train Multilayer feedforward 

Perceptron type Neural Networks (MPNNs), based on the hatching 

Gauss-Newton method and the hatching Marquardt method (MBP). 

We also derived a Marquardt Backpropagation (MBP) and a quasi­

recursive Gauss-Newton method (QRGN) to train MPNNs using 

Iterated Least Squares. The MBP and QRGN are the starting points to 

develop RGN and RMBP. 

The difference between QRGN and RGN was depicted in Figures 

10 and 11. We showed in Chapter 5 that RGN, like other recursive 

algorithms, was an approximation to the hatching Gauss-Newton 

method under certain assumptions. RMBP improves RGN just as MBP 

improves GN. 

We applied RGN and RMBP to train MPNNs to approximate two 

nonlinear functions. The details of the implementation were pointed 

out, and the test results were summarized in Chapter 6. Standard 

RGN may not converge. Modified RGN has superior convergence rate 

in our test. RMBP with matrix inversion requires intensive 

computational burdens. RMBP without matrix inversion has a 

convergence rate which is similar to that of RGN. The advantage of 
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RMBP without matrix inversion is that it 1s not too sensitive to the 

values of A.0 . 
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RGN and RMBP can be used in the situation where an on-line 

learning algorithm is needed and calculation speed is critical. The 

current versions of RGN and RMBP were not tested on more complex 

problems, for example, multiple-output MPNNs. 

The RGN and RMBP algorithms are derived from optimization 

techniques. On the one hand, the development of optimization 

techniques will inspire us to improve RGN and RMBP to be more 

powerful learning algorithms to train MPNNs. On the other hand, 

there exist many problems with practical applications of RGN and 

RMBP. We need to make more efforts to deal with these problems in 

the future. 
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