
OPTIMIZATION TECHNIQUES APPLIED

TO NEURAL NE1WORKS

By

ZIDMJNLU

Bachelor of Engineering

Shanghai University of Engineering Science

Shanghai, China

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1993

OPTIMIZATION TECHNIQUES APPLIED

TO NEURAL NETWORKS

Thesis Approved:

7,
:_))ean of the Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my gratitude to Dr. Martin T. Hagan, my

advisor, for his guidance, dedication, patience, invaluable instructions

and instruction. His insights in academics inspires my interests in

this field. He made a great deal of efforts to improve the thesis, both

in contents and in English. My appreciation is also extended to Dr.

Ronald Rhoten and Dr. James Baker for being members of my

committee.

I am grateful to my brother-in-law, Aimin Yan, and sister,

Huimin Lu, for their consistent support and encouragement. My

deep thanks are dedicated to my parents and another sister and

brother-in-law, for their understanding and love.

I would also like to thank Mr. and Mrs. Duncans and Mr. Mike

Dower for their friendship. Special thanks to my friends,Weiping

Xiao and Zuansun Ren, for their help and encouragement.

iii

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION... 1

3

Basic Ideas About Neural Networks __ ·-~··---··-··-·-- 3
Artificial Neural Network Structure_~~~~~~-~~----· 4
Training Artificial Neural Networks 7

About Multilayer Neural Networks

& Backpropagation ~··--··· 8
Properties of Multilayer Neural Networks........... 8
Backpropagation·-~----~~-~~~~~-~-----~.······ 1 2

Problems With Training An MPNN.......... 1 6
Local Minima __ ~-~---~------~------·-"-- 1 6
Overfitting __ ·-----.. ·~-----··-·-- -~----~- 1 7
Slow Training ~ -.. 1 8

III. OPTIMIZATION TECHNIQUES ~,,.............................. 2 0

Formulation of the Nonlinear Optimization

p r 0 b 1 e m ... _,.,, _~········-····---···-·-·-~-·-·-··--··----···m••···---··-········ 2 0
The Newton Method and Its Variations __ ~---- 2 2

The Newton Method~-~--~---~-----·~---- 2 2
Some Remarks on the Newton Method..................... 2 4

The Hartley Method·---·-·-~----·------·-----·-···--···--· 2 5
Least Squares, Gauss-Newton

and Marquardt Methods,... 2 6
Least Squares and the

Gauss-Newton Method... 2 6
The Marquardt Method_~--------.---~----------·--·--···- 2 9

Iterated Least Squares_·-----·---------~-- ~-~---~-- 3 3
Summary.. 3 6

IV. MARQUARDT'S METHOD FOR MPNNS ... ~··--------·...................................... 3 7

lV

Chapter Page

V. RECURSIVE ALGORITHMS FOR TRAINING
NEURAL NETWORKS 48

Quasi-recursive Gauss-Newton Method______ 4 9
Recursive Gauss-Newton Method 57
Recursive Marquardt Method "···~... 6 5
Summary 79

VI. APPLICATIONS OF RGN AND RMBP ~~ - ~.............. 7 2

Introduction_·-····---·-.. ·---·---·-·~--··-· ~·--·---~···-···-···············-······ .. ······ 7 2
Test Problems __ ·-·--·--·-· ·---·-- 7 3
Test Procedures/Results for Prob. #1__________ 7 6

Test Results for RGN·····-·--~-.. -·~-·~--............................... 7 6
Test Results for RMBP with Inverse.---·-·---·- 8 0
Test Results for RMBP without Inverse..................... 8 2

Test Procedures/Results for Prob. #2_~·········--.................. 8 4
Test Results for RGN~------·~·~--~--·w.. 84
Test Results for RMBP with Inverse............................... 8 6
Test Results for RMBP without Inverse 8 7

Summary of Test Results. 8 9

VII. CONCLUSIONS_~--~---~-------- 91

93

v

Figure

1

2

3

4

5

6

7

8

9

10

1 1

1 2

LIST OF FIGURES

Page

Structure of a typical neuron ""---~----~·-~-------·~-----·--·-.......... 4

P erceptron - .. ~ _ --~ ... -............... 5

Topology of feedforward neural networks _ _.............. 7

Input-output curve of a 1-5-1 MPNN __ ·-·-~-~ -................. 4

Function approximation (underfittingL-...................... _ _........... 1 1

Function approximation (overfittingJ.. -... 1 8

Example of trust region operation ~-···--- -.............................. 3 1

Training an MPNN _... 3 8

Parameter updating in QRGN ___ .. 6 4

Parameter updating in RGN --.. ~----· -............................. 6 4

The first test problem ---·-·--·-·--·-·-----........................ 7 4

The second test problem~_.__. ·---~------........... _............. 7 5

vi

Tables

6.1(a)

6.1 (b)

6.2

6.3

6.4

6.5

6.6

LIST OF TABLES

Page

Test Results of RON (6.3) for Prob. #1 ~··· .. ···--·········~········· .. ···· 7 8

Test Results of Modified RON (6.4) for Prob. #1............................ 8 0

Test Results of RMBP With Inverse for Prob. #!..

Test Results of RMBP Without Inverse for Prob. #1

Test Results of Modified RON (6.4) for Prob. #2 ~--···············

Test Results of RMBP With Inverse for Prob. #2

Test Results of RMBP Without Inverse for Prob. #2

vii

82

84

85

86

88

CHAPTER I

INTRODUCTION

Artificial neural networks (ANNs) are man-made systems

which imitate biological neural networks (BNNs) existing in biological

organisms. Even though people do not completely understand BNNs,

researchers around the world have found that the up-to-date

knowledge about BNNs can be used to design ANNs which exhibit

some intelligence and have significant computational capabilities.

The research on ANNs also helps the research on BNNs.

Mathematical models of BNNs are used to describe operations

and functions of BNNs, and form the basis for the design of ANNs.

Among the mathematical models, multilayer feedforward perceptron

neural networks (MPNNs) have been intensively investigated, and

there exist a large number of articles on their performances and

capabilities (see references [2] and [3] for more details). As Hagan

and Menhaj pointed out, most existing learning algorithms used to

train MPNNs are far from being effective and efficient [1]. There

have been efforts to explore more powerful algorithms to circumvent

such problems as the slow learning speed in training MPNNs (see

References [1] - [10]). One of the basic methods these authors used

to accelerate the learning process of MPNNs is to apply some

nonlinear optimization techniques to learning algorithms. This

research will use the same method to propose three learning

1

2

algorithms: the Quasi-recursive Gauss-Newton method (QRGN), the

Recursive Gauss-Newton method (RGN) and the Recursive Marquardt

Backpropagation method (RMBP). The purpose of developing RGN

and RMBP is to train MPNNs with data which is sequentially

presented to MPNNs, as in real-time control and signal processing

problems.

Chapter 2 provides an outline of ANNs, especially MPNNs.

Because many good articles are available in the literature, this

introduction is brief. Complete descriptions of MPNNs can be found

in references [1] - [3] and [16]. A basic learning algorithm for

training MPNNs, Backpropagation, will be described in Chapter 2.

Because the nonlinear optimization techniques are the main

source for us to derive learning algorithms for training MPNNs,

Chapter 3 summarizes some powerful nonlinear optimization

techniques. Based on these techniques, we will derive the hatching

Gauss-Newton method and the Marquardt method. Based on the

hatching algorithms developed in Chapter 4, we will further derive

three algorithms, namely the QRGN, RGN and RMBP in Chapter 5.

In Chapter 6, we will test the algorithms developed in Chapter

5 on two nonlinear function approximation problems. Various design

variables will be investigated. Chapter 7 will present conclusions

and further remarks.

CHAPTER II

NEURAL NETWORKS -- BASICS

2.1 Basic Ideas About Neural Networks

Researchers would like to develop artificial neural networks

(ANN s) which imitate the functions of biological neural networks

(BNNs), because BNNs can:

• perform complex actions precisely, often in noisy and

uncertain environments,

• adapt themselves to the changes m their environment,

• learn to recognize and respond to stimuli properly, and

• generalize from experiences obtained previously.

The mechanisms of BNNs' organization and operation are partially

known. The knowledge of them available up to now is the important

source for creating new approaches for designing intelligent devices,

such as intelligent controllers.

The research on neurophysiology and psychology reveals that

neurons are the basic building blocks of the nervous system. A BNN

consists of large numbers of neurons connected together in vanous

ways. Even though the neurons are simple in function and slow in

processing speed, the BNN is very versatile m function and fast in

processing speed.

Based on the mathematical models developed to describe the

3

organization and operation mechanisms of BNNs, various artificial

neural networks (ANNs) have been proposed in the previous

decades. At present, researchers not only develop ANNs to imitate

the functions of BNNs better, but also make efforts to apply ANNs to

solve difficult engineering problems, such as controlling nonlinear

dynamic systems.

2.1.1 Artificial Neural Network Structure

4

An ANN normally consists of a large number of processing

elements which are interconnected with some topology. It is the

topology and the strength (weight) of the connections which

determine the performance of the network. A learning algorithm Is

used to update the weight connections of an ANN during the training

period.

a
y = f(n)

Figure 1. Structure of a typical neuron

A neuron typically has the structure depicted in Figure 1 (also

see [7]), where e is a mapping from input ~ to n. The purpose of e is

to encode the input signals, since the input signals are normally

corrupted by noise. The mapping f from n to y determines the

5

activation of the neuron, g is a mapping from y to a, which forms the

output signal.

The perceptron Is the most popular model of the neuron in the

current literature, where the mapping e is an affine function, and the

output mapping a is a linear function. The activation of a perceptron

results from a nonlinear function of a weighted sum of its inputs,

which is normally either a sigmoid or a hard limit function.

perceptron, Figure 1 can be simplified as Figure 2.

n
a = f (l: W. x . +b)

. 1 1 1
1=

Figure 2.

a

1
a= f(n)=

1 + e-n

Perceptron

For the

The structure of the perceptron depicted in Figure 2 is a static

model, which can be described as

where

a is the output of the neuron,

xi is the ith input,

w i is the weight for the ith input, and

b is the bias.

The interconnection topologies of ANNs can be divided into

following categories:

• Feedforward: an ANN in this category consists of an input

layer, several hidden layers and an output layer. Figure 3

indicates an ANN with this kind of topology which has one

input layer, two hidden layers and one output layer.

• Feedback: a neuron of an ANN in this category normally

connects to other neurons as well as itself (e.g. the Hopfield

network [8]).

• Mixed topology. An ANN in this category consists of both of

the topologies mentioned above. (The counterbackpropaga­

tion network of Hecht-Nielson belongs to this category [8]).

The topological features of the feedforward ANN have the

following features:

• Each output of every neuron in a layer is connected to each

input of any neuron in the next layer (Refer to Figure 3)

6

• Because there are no feedback connections between layers,

the effect of the feedforward neural network topology is to

produce a nonlinear mapping between the input nodes and

output nodes. As long as the weights are fixed, this mapping

is completely determined.

o3(1)

a3(2)

a3(S3)

Figure 3. Topology of feedforward neural network

2.1.2 Training Artificial Neural Networks

An artificial neural network can be used m one of the two

modes:

• operational mode, where weights are fixed so that a given

input leads to a determined output.

• learning mode, where we adjust weights so that the output

approaches some desired results. In the learning mode, the

performance of the ANN is determined by a learning

algorithm. Some kinds of learning algorithms which may

not be related to the behavior of BNNs are derived from

optimization techniques.

Learning algorithms are generally divided into:

7

• Supervised learning. The desired network output ts known

for each network input. During learning each member of the

training set is presented to the network individually, and

upon each presentation the weights are readjusted. After

the entire training set is presented, the set is presented

again many times. At first, the performance of the network

1s improved, but eventually the performance stops

improving and the network is said to have converged. Two

possibilities after convergence exist: either the network

learns the examples from the training set successfully, or it

fails.

• Unsupervised learning. The desired output is unknown but

learning is based on the statistical characteristics of the

training data. Such learning algorithms usually learn to

extract features from a set of training data.

• Reinforcement learning. Weights associated with a neuron

are not changed corresponding to the output error of that

particular neuron, but instead are changed in proportion to

a global reinforcement signal. Such a signal may gtve a

qualitative measure of performance, good or bad (+ 1 or -1)

In this thesis, we focus on the ANNs with perceptron type

neurons, feedforward topologies and supervised learning laws.

2. 2 About Multilayer Perceptron Neural

Networks and Backpropagation

2.2.1 Properties of Multilayer Neural Networks

8

It has been shown that an MPNN is a universal mappmg [17], if

there are enough hidden neurons in the MPNN. The term "universal

mapping" means that any relationship between state variables and

control variables, or patterns and features, or stimuli and response

can be expressed by an appropriately defined and well-trained

MPNN. That an MPNN is defined appropriately means the weights

and biases of the MPNN are chosen correctly. Figure 4 illustrates

how an MPNN can be used to approximate a function when the

weights and biases are appropriately selected. This MPNN has one

input terminal, one linear output terminal, and five hyperbolic

tangent sigmoid hidden neurons (We will denote this as 1-5-1).

Function Approximation
0.5~----~--~~~~-----+

++

Function Approximation
0.5~--~~--~--~~-----+

+

-1

+ +
+

++

-0.5 0
Input

+
+

0.5

+

1 -1 -0.5 0
Input

(a) (b)

0.5

Figure 4. Input-output curve of a 1-5-1 MPNN

(a) During training, weights & biases
are not appropriately determined.

(b) After training, weights & biases
are correctly determined

1

Another characteristic of the MPNN is the generalization

capacity. An well-trained MPNN can satisfactorily interpolate or

extrapolate the output values for input values that are not shown

during training. This is very useful in control engineering where

only a small subset of data sampled from a dynamic system can be

9

presented to the MPNN during training. An MPNN often makes a

good interpolation based on a subset of data [15].

10

The universal mapping and generalization capability of an

MPNN largely depends on the number of hidden neurons. Sometimes

we may encounter an underfitting problem. In other words, no

matter how long we train the MPNN, the MPNN cannot give a

satisfactory approximation to the data. Figure 5 illustrates a case

where a 1-2-1 network is used to approximate a function [23]. The

two neurons in the hidden layer are not sufficient to allow the

network to properly approximate the function. Figure 5 (a)

illustrates the best approximation obtained by the backpropagation

learning algorithm (which will be described in the next section).

Figure 5 (b) shows the learning curve. Note that the learning process

stopped after 5000 iterations. This situation can be avoided by

adding more hidden neurons to the original MPNN.

.~

J

Function Approximation
1.-------------~----------~~-------------------------,

+

0.5
+

+ +

+ +
+

0 +

+ + +

-0.5 + +
+

-1~------------~------------~----------~------------~
-1 -0.5 0 0.5

Input

(a)

102 ~=------------------~------------~------------~----~

'

~
f­
i
'

L..,-~--·--·------

10-1 ·---------'------- --- ------'--·--
0 1000 2000 3000 4000 5000 6000 7000

Number of Iterations

(b)

Figure 5. Function Approximation (Underfitting)

l

:j

I
j

-;

l
--<
'

8000

1 1

2.2.2 Backpropagation

The capability of universal mappmg and generalization of an

MPNN is generated from a successful training process. Training an

MPNN requires an learning algorithm and a data set as examples.

Backpropagation is the most widely used learning algorithm. It is

also the basis on which we understand and derive other learning

algorithms.

12

An MPNN consists of several layers of perceptrons (see Figure

3). We define 12.q as the qth input pattern vector, ~ as the output

vector corresponding to that P.q, !!. k as the output of the kth layer, wk

and bk as weights and biases related to the kth layer, 1q as the

desired output for P-q, and fk(.) as the activation function vector for

the kth layer. We can derive the output of the MPNN upon the qth

input pattern 12.q as

ao =p .
- -q'

a=aM.
- - '

k=O, ... ,M-1;

(2-1)

(2-2)

(2-3)

The training task is to minimize a least squares performance

index (PI)

(2-4)

Following the same procedure as in [1], an approximation to the

above PI is

1 3

(2-5)

We define the derivative of the approximate PI with respect to

nk(i) as

(2-6)

where nk(i) is the net input to neuron I in layer k

sk-I
nk (i) = L wk (i, j) ak-1 (j) + bk (i).

j=l
(2-7)

Sk-1 IS the number of neurons m the (k-l)th layer. Therefore,

(2-8)

(2-9)

According to the steepest descent rule [1], the weights and biases are

updated according to

14

W k (. ")new - wk (. ")old - {)j l,J - l,J a. k aw (i, j) (2-10)

(2-11)

where a is a learning rate. The ok(i) (for all k) can be calculated by

the backpropagation (BP) rule as

oM= -FM(nM)(t -a) - - -q -q

where

and

k
fk(n)= elf (n)

dn

0

k = M -l,M- 2, ... ,1

0

0

Backpropagation is derived based on the following facts

(2-12)

(2-13)

I 5

(2-14)

ok (') = aj - aj ank+l (i)
J ank (j) ank+l (i) ank (j)

= ok+l(i)Wk+l(i,j)fk(nk(j))

(2-15)

Therefore, when we train an MPNN by backpropagation, we

should go through the following steps

(1) -> (2) -> (3) -> (12) -> (13) -> (8) -> (9) -> (10) -> (11).

With the standard BP algorithm, the multilayer feedforward

perceptron neural network is presented with a set of patterns, the

input patterns paired with output target patterns. Upon each

presentation, weights and biases of the neural network are adjusted

to decrease the difference between the network output and the

target output. A training set is used for training and is presented to

the network many times until the error is less than an acceptable

value, the error goal.

Both the forward and backward propagation steps are

performed for each pattern presentation during training. The error

correction step takes place after a pattern is presented at the input

1 6

layer and the forward propagation step IS complete. Each processmg

neuron in the output layer produces a single real value, which is

compared to the target output specified in the training example set.

Based on the difference, an error value IS calculated for each neuron

in the output layer. Then, the weights of the interconnection going to

the output layer and the biases of the output neurons are adjusted.

Next an error sensitivity (ok(i)) is calculated for all of the neurons m

the hidden layer that just proceeds the output layer. Then, the

weights and biases of the proceeding layer of the hidden neurons are

adjusted. The process is continued until the last layer of weights has

been adjusted.

2.3 Problems With Training An MPNN

2.3.1 Local Minima

Training neural networks can be considered as a nonlinear

regression problem. We can treat a multilayered perceptron neural

network (MPNN) as a specific kind of nonlinear regression model.

What we have to do is to determine the parameters of the model, the

weights and the biases, that provides the best fit to the data. From

experience with nonlinear regression, we know that if the structure

of the model is not appropriate, the fitting process may not converge.

It is same in the training of MPNNs. If the number of hidden layers

and the number of hidden neurons are not sufficient, then the MPNN

will not be able to fit a given set of data, and the training process will

not converge.

Theoretically, the MPNN can approximate arbitrary non-linear

17

functions if the MPNN contains a sufficient number of hidden layers

and a sufficient number of neurons in each hidden layer. In practice,

however, even when we have a sufficient number of hidden layers

and a sufficient number of neurons in each hidden layer, sometimes

the learning algorithm will not converge to a satisfactory solution.

The reason is that in the error-weight space, there exist some local

minima which may trap the weights so that the error never

decreases. But it has been shown that the local minima can be

avoided if we restart the training process with a new set of initial

weights and maintain sufficient hidden neurons.

2.3.2 Overfitting

It is worth pointing out that if the data presented to a MPNN

are contaminated with noise, it may happen that the noisy data set

may be fitted "precisely." This is called overfitting (Refer to Figure

6). Overfitting also takes a long time for training. We can avoid

overfitting by processing the contaminated data before presenting it

to an MPNN, by using a small number of hidden neurons, or by using

a separate "validation" data set to determine when to stop training.

+ ...
C1)

~
E-<

~

I ...
= ~
0

Figure 6

Function Approximation
1,-----~------~~----~------~

+ +

0.5 +

0

-0.5

-1~------~------L-------L-----~
-1 -0.5 0 0.5 1

Input

A 1-7-1 MPNN to approximate a function

y=sin(7t/3*x) which is contaminated with

noise 0.18*sin(37tx)+0.1 *sin(27tx).

2.3.3 Slow Training

In addition to the local minima and overfitting problems, the

slow learning speed of standard backpropagation can also be a

problem. This has prohibited the application of backpropagation to

large problems. Some modifications of backpropagation have been

18

devised to improve the convergence rate. These modifications are

generally cast into two categories: those which are based on standard

optimization techniques (e. g., conjugate gradient, quasi-Newton,

extended Kalman filter), and those which use ad hoc techniques (e. g.,

momentum, appropriate initialization of weights and biases, variable

1 9

learning rate).

Besides the efforts to devise more powerful learning

algorithms, it is reported that changing the performance index from a

sum of squares of errors to some other kind of performance index

can improve the convergence rate. For example, [14] proposed a

performance index based on a log measure.

Most of the algorithms for training MPNNs use first derivatives

to determine search directions. The information provided by the

first derivatives may not be sufficient. It was shown [1] that if we

use more sophisticated methods, such as the Gauss-Newton method

and the Marquardt method, we might greatly speed up the training

process. In the next chapter, this problem will be discussed in more

detail.

CHAPTER III

OPTIMIZATION TECHNIQUES

3. 1 Formulation of the Nonlinear Optimization Problem

We noted in Chapter 2 that optimization techniques, especially

nonlinear optimization techniques, form the backbone of many

learning algorithms for training MPNNs. Nonlinear optimization

techniques are iterative methods for finding the extremum

(minimum or maximum) of a nonlinear function. Consider an

unconstrained nonlinear optimization problem as follows:

minS(~)
e (3-1)

where the vector ft. contains the free parameters and S is a nonlinear

function. There are no universal analytical approaches to obtain the

solution of (3-1). Numerical methods for the solution of (3-1) are

typically iterative. They start with some initial guess ~ and then

proceed according to an equation of the form:

~k+l = ~k + a.k ~k' (3-2)

where a.k is a scalar step size and llk is a search direction. This

research will focus on techniques where the search direction is

20

determined by usmg derivatives of S with respect to the free

parameters ft.

Solving the optimization problem generally deals with the

following questions:

(1) Does there exist ~*ERn such that sut) ~ S(~)
If so, ft * is called a global minimum. This question

addresses the existence of the solution of (3-1).

(2) If the answer to (1) is yes, is there only one such point?

2 1

This question addresses the uniqueness of the solution of

(3-1).

(3) If the answers to both (1) and (2) are yes, how do we find

e *? If it is impossible to find e *, or the procedure is very

complicated, how do we find vectors arbitrarily close to ft *?

We can restate questions (3) mathematically:

(3 ') How can we find a series of vectors { ftk } such that

lim II~* -~k II= o
k~oo

Formula (3-2) proposes a technique for obtaining { !!.k.}.

(4) Do there exist points ~* E R 0 such that S(~*)::; S(~)

whenever ft is a point in Rn lying near !t* ? If so, !t* is

called a local minimum.

We can restate question (4) mathematically:

(4') Do there exist points 9* ERn for which there exists some

B>O such that S(~*)::; S(~) for all ~*ERn satisfying

II~* -~II< 0? If o can be made arbitrarily large, then the

local minimum becomes a global minimum.

We will discuss how to realize (3-2) in the following

paragraphs.

One way to realize (3-2) locating a minimum 1s to set

22

(3-3)

where VS(~k) is the gradient of S evaluated at ek, and then to

determine an appropriate a.k by means of some one-dimensional

search algorithm. This method is called the steepest descent method

since -VS(~k) is the direction in which the function decreases fastest.

The term a.k is called the learning rate in the neural network

literature.

Another common minimization procedure is known as Newton's

method, which involves the calculation of second derivatives. The

remainder of this chapter will emphasize Newton's method, and will

discuss some methods for improving Newton's method.

3.2 Newton's Method and Variations

3.2.1 Newton's Method

Generally, when we are faced with an unconstrained nonlinear

optimization problem (3-1), we have no universal methods to solve it

directly. Instead we solve the following quadratic optimization

problem iteratively:

23

(3-4)

assuming the function is continuous and smooth. The quadratic

function of (3-4) is the truncated Taylor series expansion of U-1!:

S (~) = S (~k) + V' S T (~k) (~ - ~k) +

1 T 2
2 C~-~k) V' S(~k)(~-~k)+···

(3-5)

at .e_k where V'S(~k) and V2S(~k) in (3-4) denote gradient vector

and Hessian matrix of the function S respectively. According to the

optimality condition [4], the minimum of (3-4) exists only when

(3-6)

A possible solution of (3-6) is:

(3-7)

which produces the iteration:

(3-8)

A series {ftk} can be generated iteratively usmg (3-8), until the

minimum point of (3-1) is found. This is called Newton's method.

24

3.2.2 Some Remarks on Newton's Method

1. If the nonlinear function in (3-1) IS quadratic, then Newton's

method will converge in one step. For general smooth nonlinear

functions, if the search occurs in the vicinity of the minimum, it can

be shown ([4] and [6]) that the nonlinear function can be

approximated well enough by the quadratic function so as to exhibit

rapid convergence in the region.

2. Comparing (3-8) with (3-3), we can see that the Hessian matrix

in Newton's method replaces the diagonal matrix in the steepest

descent method.

3. Since, from (3-5), the function

(3-9)

Is, m general, an approximation of S(!D at ft.k. The sequence {frk}

generated from (3-8) may not approach ft* if the approximation is

not accurate or if the initial guess, fto. is far from the true minimum.

In addition, the repetitive application of (3-8) is based on the

assumption that a positive definite Hessian matrix always exists.

When the parameters and the coefficients in the nonlinear function

are not scaled properly, or the round-off errors are significant, or if

in the vicinity of some point ek the function is not convex, then the

Hessian matrix will not be positive definite.

In order to improve Newton's method in these circumstances,

many techniques have been proposed (see [1], [4] - [6], and [13]).

25

Some of them adapt linear algebra computation techniques to avoid

calculating the inverse of the Hessian matrix in (3-6). Some of them

use more sophisticated techniques to maintain the numerical

stability and tractability of the Hessian matrix. In the following

sections, we describe some of these techniques.

4. Newton's method and its variants are the fastest and most

robust algorithms for unconstrained optimization of a general smooth

function ([1], [2], [4], and [6]). Even though it is important to scale the

parameters properly in practical computation to avoid an ill­

conditioned Hessian matrix, Newton's method IS less sensitive to

scaling than are the steepest descent method and its variants [4].

The weight adjustments based on Newton's method use curvature

information in addition to gradient information, so that the training

algorithms derived from Newton's method and its variants are more

efficient than non-Newton methods. In addition, the variants of

Newton's method mentioned above make the computation results

more reliable.

3.2.3 Hartley's Method

From (3-8), we can see that a minimum can be reached by

means of Newton's method if the Hessian matrix is always positive

definite. However, the value found by (3-8) may not be a minimum

of the original nonlinear function but of the truncated second order

approximation of the original function. It is therefore necessary to

make an initial estimate of ft.*,~. sufficiently close to !!* to assure

that the iterations approach the minimum.

In some situations, the step generated from (3-8) may not

decrease the function even though the Hessian is positive definite.

26

So a modification can be made by adding an adjustable parameter ak

to (3-8), this is called the Hartley method [2] and corresponds to the

variable step size steepest descent method (3-3). The Hartley

method is:

where ak can be determined by line search algorithms.

procedures for determining ak can be found in [4].

(3-10)

The detailed

3. 3 Least Squares, Gauss-Newton and Marquardt Methods

3. 3. 1 Least Squares and the Gauss-Newton Method

We have investigated Newton's method for the general

nonlinear optimization problem. Least squares is a special type of

nonlinear optimization problem. The Gauss-Newton method applies

Newton's method to the least squares problem and simplifies the

complex calculation of the Hessian matrix. It was shown in [16] that

if the initial guess fto is sufficiently close to ~ *, the iteration using the

Gauss-Newton method converges quadratically.

Assume that we have a nonlinear regression equation with

single input/single output:

t(q)=a(~, p(q))+v(q) (3-11)

27

where

~ E R n ; t E R 1 ; a E R 1 ; q = 1, ... ' Q

ft is the parameter vector, tq is the dependent variable and Pq is the

independent variable. If we are given Q equations with the form of

(3-11) and Q pairs of examples [Pq• tql (q=l, ... , Q), then the least

squares problem can be formulated as

Q

~nS(~)=mJnLitq -a(~ Pq)j2

- - q=l

If we define

~=[a(~: Pt)]·
a(~ PQ)

then

SOD= !ltq -a(~ Pq)j2 =fTf (fERQ)
q=l

From (3-12), we have

VS(~) = 21{ · f

(3-12)

and

where

VftT
dft dft dft
ae1 ae2 aen

Jf = - . .

Vf.T arQ dfQ dfQ
Q ae1 ae2 a en

IS a Jacobian matrix and

Q Q
B(~)= L/q(~)· V2fq(~)= LCtq -a(~ Pq))V2aq

q=l q=l

where V 2fq (~) is the Hessian matrix of fq(e) evaluated at ei.

(3-8), Newton's method becomes:

~i+t = ~i - V2son-1 vs(~)

= ~i- [2Jf1r + B(~)]-1[21{ · f]

= ~i- [21f1r + 2 I,fq (~)V2fq (~)]-! [2J{ · f]
q=l

28

(3-13)

(3-14)

Using

(3-15)

29

Consider the second term in V2S(~), B(O). If the residuals are

so small (that is, f is small) that B(ft.) can be neglected, we get the

Gauss-Newton method:

(3-16)

3. 3. 2 The Marquardt Method

In practice, it IS found that the Gauss-Newton method does one

of the three things [6]:

• quickly converges to a minimum; or

• quickly diverges to infinity; or

• calculates values that wander about.

A part of the convergence problem with the Gauss-Newton

method arises from the Jacobian matrix being ill-conditioned or

indefinite. Omitting B(!D from the exact Hessian matrix is also an

intrinsic problem for computation. Accumulated calculation error or

round-off error may cause the [JTJ] matrix to become ill-conditioned

or non-invertible.

Marquardt added a J.ll matrix to the [JTJ] term. This provides a

tool to fix the ill-conditioned Hessian matrix during calculation of the

inverse. It has been shown ([1], [2], [4], and [6]) from many practical

experiences that the Marquardt J.1 can be very effective The

Marquardt method is:

30

(3-17)

The parameter J.1 is multiplied by some factor (J3> 1) whenever a step

would result in an increased S(!t). When a step reduces S(!!.), J.1 is

divided by J3.

The function of the Marquardt f..l is related to the trust region

method [6]. We know that the Newton method and Gauss-Newton

method are derived from a truncated Taylor series expansion, which

is an approximation of the original nonlinear function. Therefore the

result obtained from (3-8) or (3-16) must be justified by (S(!!.i+1)-

S(!!.i))<O. The !!.i+1 derived from (3-8) or (3-16) may be far from !!.i
'

so that S(!!.i+ I) may not be less than S(!!.j). In this case, the minimum

derived from (3-8) or (3-16) is not a reasonable approximation to

the minimum of S(!ti). The trust region method adds a constraint to

(3-8) or (3-16):

(3-18)

rather than checking (S(!!.i+ 1)-S(!lj))<O. That is, we can treat our

nonlinear least square problem as a constrained optimization

problem:

SUD= !ltq- a(~ Pq)12 = fT f
q=l (3-19)

Subject to

3 1

(3-20)

where E is an adjustable parameter which guarantees that S(ft) will

go down. Fletcher [4] gave a formula to determine the E at each

iteration. It was proved [4] that (3-19) and (3-20), a constrained

optimization problem, can be reduced to the Marquardt algorithm

using Lagrangian multipliers [4]. The effectiveness of the Marquardt

J.1 can also be seen in Figure 8. There the point ek+l, derived from a

quadratic function (truncated Taylor series expansion), leads to an

increase in the nonlinear function. A trust region restricts !!.k+l to

ftk+ 1 ', which decreases the nonlinear function.

I

~+1
ftk+l

'f'
trust region

truncated quadratic
function

nonlinear function

Figure 8 Example of Trust Region Operation

In most cases, the Marquardt method works best among the

methods for solving least squares problems. The Gauss-Newton

method using [JTJ] to approximate [JTJ+B] is effective when B can be

ignored compared with [JTJ]. Even though the Marquardt method is

32

effective and efficient in solving least squares problems, it may fail

to converge or may converge painfully slowly in some cases where

residual errors are large. Gill and Murray defined the "large

residual" case as the case when the term det{ B[JTJ]-1} is large. If

noisy data with large outliers are present (in realistic problems they

invariably are) the second term may dominate the Hessian, so that

excluding the term B(9) prevents (3-13) from approximating Hessian

matrix well. Adjusting J.l may not compensate the omitted term, so

that the algorithm may diverge. If there exists a large residual, fti + 1-

iii is much smaller when using the exact Hessian matrix of S(!!.) than

when using the Gauss-Newton or the Marquardt approximation to

the Hessian matrix. In [6], the problem is discussed in detail.

Now, there are some strategies to deal with the large residual

problem. The failure of the Levenberg-Marquardt method and the

Gauss-Newton method on large residual problems is caused by

ignoring the second term of Hessian matrix:

Q
B(~) = L,fq (~) · V 2fq (~)

q=l

There are two efforts to solve the problem:

• estimate B(ft) using the Quasi-Newton method (see Dennis et

al. [9]), and

• dynamically partition the eigenvalues of [J'J] into a set of

dominant eigenvalues and a complementary set of

undominant eigenvalues (see Gill and Murray [6]).

There are many details on the theory and implementation of

33

these two methods, which are out of the scope of the thesis, see [6]

for reference. When we apply the Gauss-Newton and Marquardt

methods to an MPNN, if the large residual problem occurs, we can

use other techniques to process the training data beforehand.

Therefore, we can use the Marquardt method safely and avoid large

residual problems.

3 .4 Iterated Least Squares

The Gauss-Newton method is derived by omitting the second

term m the Hessian matrix in the exact Newton method for least

squares. The Marquardt method is an improvement on the Gauss­

Newton method. In this section we will prove that the formula (3-

16) can also be obtained from a method, called iterated least squares

(ILS) [13]. This section is devoted to proving the equivalence

between the Gauss-Newton method and ILS. By means of ILS, we

will develop a batch version (Chapter 4) and a recursive version

(Chapter 5) of the learning algorithm to train MPNNs.

We consider a nonlinear regression model with one input and

one output terminal as in (3-11). Recall that the performance index

for that model is:

S(~) = ~~tq- a(~; Pq)l2 = fT f
q=l (3-21)

(The result for a multi-input/multi-output model is similar). From

(3-16), the Gauss-Newton algorithm to minimize SUD is

~i+l = ~i- V'2S(~)-l VS(~)

= ~i- [2Jflr + B(~)]-1(2Jf · f]

~~i -[JTirr1[Jr ·f]

Now we apply ILS to (3-19), in which the nonlinear function is

replaced by its first order approximation:

S(~) = !itq- a(~; Pq)12
q=l

= !.itq- a(!);;
q=l

= f1T f1

P) - VTa(9·. £q)(~- ~~-)12 q -1'

where f 1 is the linear approximation of f, defined as:

Furthermore, we define S1 (~) = ff f1;

Note that

34

(3-22)

(3-23)

Then we have

where

VT a(9· · r1) -1'
T Ja (~i) =

vTa(e.·
-1· rQ)

It is easily found from (3-21) that:

VS1 (~) = V(fT ft) == V { f(~i)T f(~i) + (~- ~i)T JJJa (~- ~i)

-(~- ~i)T JJ f(~i)- fT (~i)Ja (~- ~i)}

= -21I t<~i) + 21I1a <~- ~i)

Furthermore

Therefore

35

36

(3-24)

We can easily verify (3-23) below:

(3-25)

Hence, substituting (3-23) to (3-22) leads to

(3-26)

We can see that the Gauss-Newton method can be obtained

from ILS by truncating the error function f(ft) to its first order Taylor

series expansion. We will use ILS again in Chapter 4 and 5.

3.5 Summary

The results of this chapter are summarized as follows:

(1) If the Hessian matrix of the objective function is available,

Newton's method is most appropriate; a Marquardt J.l can

maintain the search direction down hill.

(2) In nonlinear least squares, the Marquardt compromise for

the Gauss-Newton method is most appropriate, even

though it may converge slowly, and sometimes will diverge

when the problem involves large residual error.

(3) There are the complements for the Marquardt algorithm to

deal with large residual error effectively, but these

algorithms are very complex.

CHAPTER IV

MARQUARDT'S METIIOD FOR MPNNS

In Chapter 3, Gauss-Newton and Marquardt methods are

discussed under the framework of the nonlinear regression problem.

This chapter applies these methods to MPNNs and derives batch

algorithms to train MPNNs. The conclusions obtained in this chapter

are same as those in [1]. However the results are derived using ILS,

which was not used in [1]. The two methods were proved equivalent

in the last chapter. The ll..S method, which is used in this chapter,

can be easily extended to derive the recursive versions of training

algorithms in the next chapter.

An MPNN can be considered as a nonlinear regression model,

where the adjustable parameters, ~. are the weights and the offsets

of the networks. Successful training leads to minimizing the sum of

squares of the total residuals with respect to .e._. That is

Q
min ""'v2 £... q.
~ q=l

where v q is the difference between the network output and the

desired output.

When training an MPNN we first constitute a group of

nonlinear equations describing the relations between all the

37

quantities. Then, a set of examples, [pq; tql (q=l, 2, ... , Q), are

presented to the MPNN sequentially (Figure 9). In order for the

MPNN to match the pairs correctly, the set of examples must be

presented repeatedly. We call one presentation of the whole set of

examples as one epoch.

MPNN
a

q

Figure 9 Training an MPNN

38

The purpose of training MPNN s is to look for an appropriate set

of parameters !:!_, such that the output of the MPNN matches the

desired value t with minimum error. The ILS method [12] can be

used to find the solution. At first, we consider an MPNN with single

input/single output. We formulate the expression as:

q = 1, ... ' Q (4-1)

We use the truncated Taylor series expansion to linearize the

relationship between !!. and tq:

(4-2)

where

39

(4-3)

09= 9-9* - - - (4-4)

We define !!. * as a nominal value of e.

examples (q=l, ... , Q) and obtain:

We stack (4-2) through all

Ot=J *09+v' - a - - (4-5)

where

da(~; PI) da(~; PI) da(~; PI)
a9I ae2 aen

Ja = . . .
da(~; PQ) da(~; PQ) da(~; PQ)

a9I ae2 aen ~·

and

J E RQxn
a '

Solving (4-5) for oe by linear least squares [13] leads to:

(4-6)

The formula (4-6) has the same form as the solution obtained from

the Gauss-Newton method for unconstrained optimization techniques

40

[1]. Following Levenberg and Marquardt's idea to improve the

Gauss-Newton method, we add a term 1-1 to compensate the omitted

higher order term in the Taylor series expansion:

(4-7)

After we get 8ft_ from (4-7), we can adapt the nominal value of

fr, fr*, as follows:

e = se + e* - - - (4-8)

Repeating the procedure above, an optimal value of !i can be

obtained, which may have least residual errors. The iteration to find

the optimal !i * stops when the condition

is satisfied, where £ is a predetermined termination value.

Now we consider training a multi-input/multi-output MPNN.

The set of training examples, therefore, has the form { 12q, tq } (q= 1, ... ,

Q). In this case, the performance index has the form:

(4-9)

The formula (4-9) indicates that the multi-input/multi-output case

has the same form of performance index as does the single input/

single output case. Therefore, we follow the same procedure to

derive the solution of optimal ft:

41

(4-10)

Applying a first order truncated Taylor series expansion to (4-1 0)

about a nominal ft *, we have:

where

J a <eq)l~r

Defining

da1 (~; Pq)

ae1 .
dasm (~;

da1(~; Pq)

ae2

dasm (~; Pq)

ae2

da1 (~; Pq))

aen

dasm (~; Pq)

aen

(4- 11)

42

we reformulate (4-11) as

(4-12)

Following the same convention as that in [1], we stack (4-12)

through q=1, ... , Q and get to:

OT=H09+V' - -

where

Oh v'
J a (Et)

-1

0!2 Y2 ' ' OT= ' H= v

O!Q
I a (J:!Q)

YQ '

The solution of (4-13) can be derived by batch least squares

estimation techniques [13]:

o~=[HTHr1 HToT

We clarify the H in (4-14):

(4-13)

(4-14)

43

aal (~; EI) aal (~; EI)

ae1 aen

dasm (~; Et) aasm (~; Et)

ae1 aen
aal (~; £2) aal (~; £2))

ae1 aen
H= aasm (~; £2) dasm (~; p,.,) - ..

ae1 aen

aal (~; £Q)) aal (~; EQ))

ae1 aen

aasm (fl; £Q)) dasm (~; £Q))

ae1 aen 9*

Modifying (4-14) by the Marquardt method leads to:

8~ = [HTH + J.ll r1 HT8T
(4-15)

Then we update ~ with the same procedure as (4-8).

Because the Jacobian matrix in (4-6), (4-7) and (4-14), (4-15)

ts the key to the constitution of the search direction, it will be

derived for MPNNs explicitly next. For an MPNN with Q pairs of

training examples, M layers and Sm neurons in each layer (m=O, 1, ... ,

M), we have the following feedforward equations for each pair of

examples:

aO =p .
- -q' (4-16)

44

(4-17)

Where the wk (k= 1, ... , M) are the connection weights and the Q_k are

the bias vectors [1]. These parameters are arranged as !!. with the

following form:

~ = [w 1 (1, 1); ... ; w 1 (s1 • 1); w 1 (1, 2); ... ; w 1 (s 1 , s0) ;

b 1(1); ... b 1(S1); ... ;

WM{l, 1); ... ; WM(SM,1); WM{1,2); ... ;

WM(SM,SM-l);bM(1); ... bM(SM)]

(4-19)

Each element of Jacobian matrix can be written out by chain

rule:

dam(~; p) dam(~; p) an~
---------~q~ -q J

d9i = dn~ · d9i
J

(4-20)

where, as m [1], we define:

(4-21)

Then if the parameter ei is a connection weight, we have:

45

(4-22)

which can be expressed in matrix form:

aa(9· p)
- -' -q k T k-1

---...,.---~= ~ ·a (r)
awk(:, r) (4-22')

where

of(l) 8~(1)
.D..k =

If the e i is bias, then we have

(4-2 3)

which can be expressed m matrix form:

(4-23')

The last layer has its sensitivity matrix as:

(4-24)

46

which is different from the sensitivity vector in standard BP. The

backpropagation formula is

k=M-l,M-2, ... ,1 (4-25)

where

0

(4-26)

0 0

and

k
:fk (n) = df (n)

dn (4-27)

We summarize the steps for applying the Marquardt algorithm

to an MPNN as follows:

(1) forward calculate the actual output a by (4-16) - (4-18);

(2) backward calculate all sensitivities by (4-24) and (4-25)

and their associated terms;

(3) calculate each term in Jacobian matrix H by (4-22) and

(4-23) or (4-22') and (4-23') to find H.

(4) calculate e using (4-15) ,where, the 1.1 is adjusted by means

of the Marquardt algorithm described in Chapter 3. Then

follow the procedure (1) to (3) above until jo~j $ E and/or

the performance index (4-9) decreases to an acceptable

value.

47

CHAP1ER V

RECURSIVE ALGORITIIMS FOR

TRAINING NEURAL NETWORKS

In the last chapter, we derived hatching algorithms for training

MPNNs using the Gauss-Newton (GN) method and the Marquardt

method (MBP). This chapter will propose two recursive algorithms

for training MPNNs, recursive Gauss-Newton backpropagation (RGN)

and recursive Marquardt Backpropagation (RMBP).

Given a set of examples { (Pq , tq), q=l, ... , Q}, which are

generated by a mapping f(pq)=tq, an MPNN can be trained to match

the set of examples by some hatching algorithm, e.g. GN or MBP.

Furthermore, if the MPNN is trained well, it should capture the

"general features" in the training data, so that it can predict values of

f from new, previously unseen, pattern values, p.

GN and MBP have superior computational efficiency. The mam

problem with them is that updating the weights of an MPNN requires

a complete data set. In some kinds of applications, e.g. adaptive

control and signal processing, the data are generated by a dynamic

system and may be sequentially presented to an MPNN. In these

situations, recursive algorithms are needed. One of the ways to

develop recursive algorithms is to start from some hatching

algorithms and then make them ''recursive" based on some

reasonable assumptions. This is the approach we follow in this

48

49

chapter.

In this chapter. we will derive three algorithms. First in

section 5.1, we will introduce a new form of the Gauss-Newton

method, calling it the quasi-recursive GN algorithm. which is derived

by means of ILS [12]. Secondly, RGN will be derived in section 5.2

based on some assumptions (these assumptions are same as those

used in developing the on-line Maximum Likelihood estimation

techniques [18]). The relationship between RGN and the quasi­

recursive GN algorithm will be pointed out. Finally, we will derive

RMBP in section 5.3, which improves on RGN.

5.1 The Quasi-recursive Gauss-Newton Method

We will derive the quasi-recursive Gauss-Newton algorithm by

means of ILS from the hatching GN algorithm (4-6) in this section.

This algorithm may alleviate the storage burden associated with the

hatching GN. Let us consider a single-input/single-output MPNN, as

in (4-1). Assume that we have obtained the first k pairs of examples

from Q pairs of training data and have obtained oak by means of (4-

6):

(5-l)

where

da(~; Pt)

ae1
Jk = .

da(~; Pk)

ae1

da(~; Pt)

ae2

da(~; Pk)

ae2

da(~; Pt)

aen
da(~;· Pk)

aen
9*

We want to modify 3ftk to oek+l· based on the (k+l)th pair of

examples (pk+l ,tk+l), which corresponds to:

50

(5-2)

where ft* is the initial guess for the optimal parameter vector.

Following the covariance form of the recursive LS algorithm [13], we

get:

(5-3)

where

(5-4)

and

(5-5)

Note that when we modify se sequentially, the nominal value

5 1

ft* is not changed until all the examples are passed through (5-3) -

(5-5). The procedure for finding the optimal ft is as follows:

(1) Initially choose a ft"' as an estimate of the optimal e , and set:

Po =ai (5-6)

as well as

o~o =Q (5-7)

where a is a very large number.

(2) Follow the sequence of (5-8) below and use (5-3), (5-4) and (5-

5) to find a oe for all examples.

for k = 0, ... , Q - 1 (5-8)

(3) Modify .e_* as:

e*new = e*old + oe
- - -Q (5-9)

And repeat the procedure (1) - (3) until

is satisfied, where E is a predetermined termination value.

The quasi-recursive algorithm for training a multi-input/multi-

52

output MPNN has a similar form and can be derived in the same

manner. Assuming that the examples have the form of {llq, tq; q=1, .. ,

Q}, we start with:

Define

hq =Ja<P)I
-q e·

.
dasm (~;

.
dasm (~; .Eq)

ae2

where !!_* is the initial guess for the optimal parameter vector.

Considering the first k pairs of examples, we have

O!t = htO~ + Y'l

O!z = h2o~ + Y'2

Stacking the k equations into a super-vector equation as:

(5-10)

(5-11)

(5-12)

53

(5-13)

The solution for (5-13) is (5-14), based on (4-6), which is derived in

the last chapter:

(5-14)

The subscript k in the term oek means that it is a result of the first k

pairs of examples. We further consider the solution after the k+ 1st

data point 1s presented to the MPNN:

(5-15)

If we stack (5-13) and (5-15) we get:

(5-16)

where

[Hk] , [V'k]
Hk+l = h ' V k+l = v'

k+l - k+l

The solution for (5-16) is known as

(5-17)

Next we want to make (5-17) recursive. So we define

54

(5-18)

then

(5-19)

Therefore

(5-20)

Put (5-18) into (5-14)

(5-21)

Then we have

(5-22)

Further, we consider (5-17)

b~k+l = (Hk+l THk+l)-l Hk+l TbT k+l

=Pk+l [Hk]T[oTk J
hk+l b!k+l

= pk+l [Hk TbT k + hk+l T b!k+l]

=Pk+l[Pk -lo~k +hk+lTO!k+d

= pk+l[{ pk+l-l- hk+1Thk+1 }b~k

+hk+lTb!k+l]

= o~k + Pk+th T k+l (o!k+1 - hk+lo~k]

Consequently, we get the recursive solution:

where

n -1 n -1 h Th !e+l = .rk + k+l k+l

55

(5-23)

(5-24)

(5-25)

(5-26)

If the matrix inversion lemma is applied to (5-26), then we get:

(5-27)

56

Substituting (5-27) into (5-25), we get

(5-28)

Substituting (5-28) into (5-27), we get:

(5-29)

The procedure is summarized as follows:

(1) Initially choose a e * as an estimate of the optimal ft , and set

Po =ru

as well as

o~o =Q

where ex. is a very large number.

(2) Follow the sequence of (5-30) below and use (5-24), (5-28) and

(5-29) to find a Oft for all examples.

for k = 0, ... , Q - 1 (5-30)

(3) Modify ft* as:

e*new = e*old + oe - - -Q (5-31)

57

And repeat steps (1) - (3) until

(5-32)

IS satisfied, where f. is a predetermined termination value.

In the quasi-recursive algorithm, all the examples are

presented to an MPNN before ft is updated. The quasi-resursive GN

algorithm is different from the hatching GN in the calculation of <>ft.

The hatching GN calculates oe in one step, while the quasi-recursive

algorithm calculates oe in a series of Q steps (Q is the number of

examples).

5.2 Recursive Gauss-Newton Method

In section 5.1, we derived the quasi-recursive GN. In this

section, we will derive the recursive Gauss-Newton algorithm (RGN)

for training MPNNs. For RGN, the parameter vector will be updated

after each example is presented.

Before we begin to develop RGN, we have to point out that the

performance index we used previously treats all data points in the

example set equally. This kind of performance index is widely used

in the neural network literature and may not be a good choice. A

widely used performance index in recursive estimation [18] is of the

form

58

(5-33)

where W s is a weighting matrix which weights the each residual

error at each data point differently. If W s is selected as the identity

matrix, the resulting performance index is the same as that we used

previously.

We formulate our problem as follows. Consider again the

regression equation:

where £!. represents the MPNN output and

eERnxl. t v ERSmxl. RSoxl (1 Q) P E ; q= , ... , - ' -q' -q '

we want to find the parameter vector e which minimizes

(5-34)

Sq(~) = ~ fAq-sYsTwys
s=l (5-35)

q-s where we have set W 8 ='A W, where A is called forgetting factor [18]

which emphasizes recent data. Applying the Taylor series expansion

with a nominal value of ft . .e_*, to (5-35) leads to:

59

Sq (~) ~ Sq (~*) + VSq T (~*)(~- ~*)

+ ~ (~-!t)TV2Sq(~*)(~-~*) (5-36)

Hence, if we let .f!.* be !!.q_1 , then (5-36) is equal to (5-37):

Sq (~) ~ Sq (~q-1) + VSq T (~q-1)(~- ~q-1)

1 T 2
+ 2 (~- ~q-1) V Sq (~q-1)(~- ~q-1)

(5-37)

We can minimize the right side of (5-37) and obtain:

(5-38)

which is the Gauss-Newton method. This is a hatching algorithm,

2
because V Sq(~q-1) and VSq(~q-1) are evaluated at !l.q-t for all the

(q-1) examples.

Let us now derive a recursive algorithm. First, we can rewrite

the performance index:

1 q-l 1
=-A. ""'A.q-1-s v Twv +- v Twv 2 £..J -S -S 2 -q -q

s=1

(5-39)

From (5-39), it is easy to obtain:

and

VSq (f!) = v[A.Sq-l (!!)+ ~ Yq Twyq J
= A.V[Sq_1 (~)] + ~ v[Yq Twyq]

= A.V[Sq-1 (~)] + 1v(£q)Wyq (~)

= A.VSq-1 (~)+ lv(Eq)WYq (~)

v 2sq (~) = v[vsq (~)]

= v[A.VSq_1 (~) + Jv(£q)Wyq (~)]

= A.V2Sq-l (~)+ v[Jv(£q)WYq (~)J

=A.V 2Sq-l(~)+Jv(P)WJ~(p)+ -q -q

SmSm 2 L L vi,q (~)Wijv vj,q (~)
i=lj=l

= A.V 2Sq-l (~) + Jv(£q)WJ~ (£q) + B(q,~)

In (5-41), we define

SmSm 2
B(q,~) = L L vj,q (~) wijv v j,q (~)

i=lj=1

Let us make three assumptions

60

(5-40)

(5-41)

6 1

< 1) vsq-I <~q-1) = o (5-42)

(which means that ftq-1 is the minimum of Sq_ 1(ft)); and

(2)
n2 2
v Sq-1 (~q-1) == V Sq-1 (~q-2) (5-43)

(which means that the surface m the parameter space IS smooth

enough); and

(3) B(q,~)=O

(which means that the model produces small residuals). We

substitute the assumptions (5-42) to (5-44) into (5-38):

~q - ~q-1 = -[v 2sq (~q-1)]-1 [vsq <~q-1)]

and define:

=-[A. V 2Sq-l (!!q-1) + J v (f2q)WJv(I'q) T r
·[A.VSq-1 (~q-1) + J~ (£q)Wyq (~q-1)]

= -[A.V2Sq-l (!!q-2) + J v (f2q)WJv(I'q) T rl

·J~(£q)WYq(~q-1)

(5-44)

(5 -45)

(5-46)

and

then

and consequently

Pq = v2sq <~q-1)-I

= [A:v zsq-1 C!!q-2 l + J v Cpq l)ll,_, w J v Cpq li;.J _,

= [AP~~1 + <l>q W<t>!]-1

Applying the matrix inverse lemma to (5-49), we get

Therefore, we summanze (5-45) to (5-50) as follows:

62

(5-4 7)

(5-48)

(5-49)

(5-50)

~q (~q-1) = !q - ~(~q-1; p)
-q

Pq = ~ [Pq-1 - Pq_1<j>q { AW-1 +<I>~ Pq_1<j>q} - 1 <j>~Pq_1 J

~q = ~q-1 + Pq<!>q w~q (~q-1)

This is the recursive Gauss-Newton method.

An alternative form of (5-51), which is used in our

implementation of RGN is given in (5-52) below:

63

(5-51)

(5-52)

In (5-51) and (5-52), A. can be time-variant. This facilitates

flexibility of the algorithm. The term W may be used to weight each

MPNN output when a multi-output MPNN is used.

The difference between RGN and the quasi-recursive GN

algorithm is whether the weights are updated or not after each data

pair is presented. RGN updates the weights after each data pair ts

presented, while the quasi-recursive GN algorithm updates the

weights after all pairs of data are presented.

depicted this difference.

Figures 10 and II are

64

ftll ft2 ft3 ft min

-~
q=l oft 1 (l) o!! 2 0)

! + q=2 o!! 1 (2) oft 2 (2)

+ •
~ ~

q=Q 0 ft 1 (Q) oft 2 (Q)

Figure. 10 Parameter Updating in Quasi-recursive GN

ft2 !! .
..----• min

q=2

q=Q

Figure. 11 Parameter Updating in RGN.

65

5.3 Recursive Marquardt Method

This section will derive the recursive Marquardt

backpropagation algorithm (RMBP) for training MPNNs. In last

chapter, we derived hatching MBP to fix the ill-conditioning problem

which may occur when we invert the Hessian matrix in hatching GN.

In the last section, RGN was derived and the possibility of an ill­

conditioned Hessian matrix may also exist in RGN. We treat it as we

did for hatching GN in the last chapter.

Observing (5-49), we find that if the term on the right hand

side of (5-49) is ill-conditioned at some step q, then the matrix may

not be invertible. Therefore, we can apply the Marquardt 1-1 to (5-49)

to ensure that P q - 1 is always positive definite.

small positive number and may change with q.

the RMBP can be derived and written as:

Yq (~q-1) = !q- ~(~q-1; £q)

pq-1 = A-Pq~l + <f>q W<t>J + J.lql

~q = ~q-1 + Pq<f>q Wyq (~q-1)

(5-54)

In (5-54), l-1q is a

After adding this l-1q,

(5-55)

In practice, especially in real-time calculations, we may not

know how to adjust 1-1q in an optimal way. If we set l-1q in (5-55) as a

constant ll (e.g. j..l= 1 o-3), p q -1 has the form

66

after q pieces of data have been presented. We explain (5-56) next.

For q = 1, 2 and A is a constant, p1-1 and P:21 have the forms

P -1 .. p-1 T
1 =/\, 0 +<1>1W<I>1 +J.11I;

P21 = "AP11 + <l>z W<I>I + J.!zl

= "-("AP01 + <1>1 W<l>f + J.L1I) + <1> 2 W<I>I + f.izl

="-(A-Poi+ <1>1 W<l>f) + <l>z W<I>I + "-f.11I + flzl.

For q pieces of data, therefore, P q -l has the form

Pq1 = "AqP01 + · · · + A<l>q-l W<I>J-1 + <l>q W<I>J

+("A q-lf.ll + ... + AJ.lq-1 + f.lq)L

tot "Aq-1 "A . The term f.lq = f.l1 + · · · + Jlq-1 + f.lq IS the accumulated effect of

J..lq on P q -l for the q pieces of data. If f.lq = f.1, a constant number,

which appeared in (5-56). In this case the accumulated effect of f.lq

on P q -l is adding an identity matrix with a coefficient:

67

(5-57)

which changes with q. Note that (5-57) increases with q but is

bounded by J.l/ (1- A) if A. < 1.

If we need f.1~0tto be constant, we have to set

II tOt = II tOt
r-'q rq-1

Therefore, if q = 2, AJ..ll + f.12 = Jll· That is

If q > 2, (5-57') can be written as

Furthermore, for J.lq+ 1, we have

From (5-57'') and (5-57"'), we obtain

Jlq+l - AJlq = (1- A.)Jlq ¢:> Jlq+l = J..lq (q > 2)

(5-57')

(5-57'')

(5-57"')

68

Therefore, we have following formula to determine liq when we need

Jl tot to be constant: q

q=2,3,···
(5-58)

where li 1 Is assigned to whatever value is desired for Jl ~ot.

We must point out that RMBP (5-55) requires a matrix inverse

each time a piece of new data is presented. This is a disadvantage.

The advantage is that we do not need to worry about the problem of

having a singular matrix.

The operation of inverting the Hessian in (5-55) reqmres

intensive computation. A version of RMBP without such inversion is

proposed based on the idea of Levenberg and Marquardt. In Chapter

2, we showed that the weight update by means of the steepest

descent method have the form of

(5-59)

We call the search direction generated from (5-59) as the steepest

descent direction. In (5-51), the weight update takes the form of

(5 -60)

We call the search direction generated from (5-60) as the Gauss­

Newton direction. If the search along the Gauss-Newton direction

fails to approach the minimum because of such reasons as an ill-

69

conditioned Hessian matrix, we may try some directions other than

the Gauss-Newton direction. The search direction from the

Marquardt method is in between Gauss-Newton and steepest

descent. From (5-55), we can see that the weight update for the

Marquardt method is

(5-61)

The Marquardt direction becomes the steepest descent direction as

J..l--jooo

(5-62)

or the Gauss-Newton direction as J..l ~ 0

[-1 T]-l ~~MD = A.Pq-1 + <l'q W<l'q <l'q Wyq (~q-1)

= Pq<l'q Wyq O.~q-1) = ~~GN ·
(5-63)

When we search for a minimum by means of the Marquardt method,

we adjust ~ to determine a search direction which changes between

the Gauss-Newton and the steepest descent direction. We adjust ~ in

order to maintain the current norm of the error (between network

output and desired output) to be less than the previous norm of

error.

According the idea of Levenberg and Marquardt, we increase

70

the ~ when the norm of the error increases, and decrease ~ when the

norm of the error decreases (see [1] and Chapter 4 for detail). The

Marquardt direction is close to the Gauss-Newton direction when ~

decreases, as seen in (5-63), and is close to the steepest descent

direction when ~ increases, as seen in (5-62). The Marquardt

direction is the combination of the two search directions.

A recursive Marquardt algorithm without matrix inversion is

an approximation of the exact Marquardt algorithm (5-55) and

should possess the same features. We propose the weight update

scheme (i.e. the search direction) for a recursive Marquardt

algorithm without matrix inversion as follows:

1 f.l
d~MD = 2 d~GN + 2 d~SD·

(l+f.l) (l+f.l) (6-64)

As f.l ~ 00 ,

and as f.l ~ 0,

just as with the standard Marquardt method. Substituting (6-59)

and (6-60) into (6-64) leads to a version of RMBP without matrix

inversion as follows:

~q <~q-1) = !q- ~<~q-1; Eq)

_ { ~q-1 · J3 ll~q <~q-1)II< ll~q-1 c~q-1)II
~q-

1-lq-1 I J3 ll~q (~q-1)II~ ll~q-1 (~q-1)II
Kq= 1 2Pq-1<l>q{A.w-l+<j>JPq-I<I>q}-I+ 1-l 2<J>qW

(!-1+1) (1-1+1)

7 I

~q = ~q-1 + Kq~q(~q-1)
(5-65)

where, 13 is a constant. The initial J.lo takes on a value m the range of

[0.001 0.01], 13 in the range of [0.9 0.99].

5.4 Summary

In this chapter, we derived three algorithms: quasi-recursive

GN, RGN and RMBP. The quasi-recursive algorithm is really a

hatching algorithm. RGN is a truly recursive procedure which IS an

approximation of quasi-recursive GN algorithm. RMBP avoids the

possibility of ill-conditioning which is found in RGN. In the next

chapter, we will use RGN and RMBP to approximate two functions.

We will investigate their properties and compare them with standard

BP introduced in chapter 2.

CHAPTER VI

APPLICATIONS OF RGN AND RMBP

6.1 Introduction

In the last chapter, we derived two recursive learning

algorithms, the Recursive Gauss-Newton method (RGN) and the

Recursive Marquardt method (MBP). In this chapter, we will use the

two recursive algorithms to train MPNNs to approximate nonlinear

functions. In Chapter 2, we pointed out that an MPNN with sufficient

hidden neurons could approximate any nonlinear function if it was

trained by some learning algorithms, such as backpropagation (BP),

adaptive learning rate BP and conjugate gradient BP. At that time

we trained MPNN s using hatching algorithms.

In this chapter, we will train MPNNs using recursive

algorithms, RGN and RMBP. We will select two functions to form test

problems. (The two functions were also used in [1]. The purpose of

selecting the two functions is to provide results which can be

compared with those obtained m [I]). In addition, we will

investigate the effects of the design variables involved in RGN and

RMBP (such as P 0 , /... 0 , fro and J.L) on the convergence rate of the

learning process. We will give some details of the implementation of

the two algorithms.

In section 6-2, we will define two functions to form test

72

73

problems, and we will describe the stopping rule which will be used

to determine the convergence. In section 6-3, we will use RGN and

RMBP to train MPNNs to approximate the first function defined in

section 6-2, and will investigate the effects of the design variables

involved in RGN and RMBP (such as P0 , A.0 and ito) on the convergence

rate of the learning process. What we do for the first nonlinear

function in section 6-3 will be repeated for the second nonlinear

function in section 6-4. Finally, in section 6-5, we will summarize

the test results obtained m sections 6-3 and 6-4, and give some

conclusions about RGN and RMBP based on our tests.

6. 2 Test Problems

In this section, we will define two functions to form test

problems and will define the stopping rule which will be used to

determine the convergence. The two functions were used in [1] to

test BP, CGBP and MBP. The purpose of selecting these functions is to

provide test results which can be compared with those obtained in

[1]. In our testing process, test problems are formed by computing a

set of discrete points from the functions of interest. MPNNs are

trained to approximate the functions at these points.

The first nonlinear function is a sine wave:

1 1 . 3 y = - + - sm nx;
2 4

XE[-1,1).
(6-1)

The first test problem is defined as follows:

(1) x takes on values from -1 to 1 with steps of 0.05;

(2) Y takes on values calculated from (6-1) at those x values

defined in (1).

The first test problem and the first function (6-1) are depicted m

Figure 12, where each * indicates a test example.

0.8.-----------------------------------~

0.6

-0.5

\ !
\l

0

X

0.5

Figure 12. The First Test Problem

1

The second function is a square wave defined as follows:

74

{
-1

y= ~

{X E (-1,0] U (1,2]}

{x e [-3,-2] u(1,3]}

{x e (-2,-l]u (0,11}
(6-2)

The second test problem is defined as follows:

(1) x takes on values from -3 to 2. 9 with steps of 0.1;

(2) y takes on values calculated from (6-2) at those x values

defined above.

The second test problem and the second function (6-2) are depicted

in Figure 13, where each * indicates a test example.

75

1

o~j
.. Li ·•

. .

r
I

~:+.-.:t+:+:· -1

-3 -2 -1 0 1 2 3

X

Figure 13. The Second Test Problem

A stopping rule is used to determine when the training process

terminates. Training stops when the SSE (SSE is the sum of squares

of errors between the desired outputs and MPNN outputs) is less

than a prespecified value, or the number of iterations has exceeded

some maximum number. We set the target SSE to 0.02, which is

same as that used in [1], and the maximum iteration number to 800.

If the SSE of a learning process does not reach 0.02 within 800

iterations, we will state that the process is not convergent.

In order to make the test results more reliable, we repeated

the same test with 10 different seeds for the random number

generator, which is used to create the initial weights and offsets, and

averaged the results obtained. We observed that some particular

seeds produced very good test results, while others did not.

Averaging the test results for different seeds will avoid misleading

results. We set the seeds here to the same values as those used in [1]

We will train MPNNs to approximate the two nonlinear

functions by means of RGN and RMBP m the next two sections.

6. 3 Test Procedures/Results For Test Problem #1

6.3.1 Test Results With RGN

In section 6.2, we defined the first test problem. In this

section, we will apply RGN (5-52), RMBP with inversion (5-55) and

RMBP without inversion (5-59) to the first test problem, and will

investigate the effects of the design variables on the convergence

rate.

76

First, we will apply RON (5-52) to the first test problem and

will investigate the effects of the design variables Po, A.o and !to on

the convergence rate. We use an MPNN with one hidden layer and

one output terminal. There are 15 hyperbolic tangent type neurons

in the hidden layer. We use this kind of MPNN in all the tests.

Because the MPNN has one output terminal, the design variable W in

(5-52) is set to 1. The RGN used to train the MPNN is summarized in

(6-3) below.

77

(6-3)

where

0 0

0

0 2 T
·Wq-1

In (6-3), W~-1. !?~-1· WJ-1and Q~-1 are the elements of ~q-1 (Refer to

(4-19) in Chapter 4 for detail).

Table 6-1 (a) shows the test results obtained by means of (6-

3). Each item in the table is an average value for ten different sets of

initial random weights. We set the initial values of ~o by means of

two methods. One is suggested by Nguyen and Widrow (NW for

short) [3]. The other method sets the initial values to small random

numbers, for example, to random values in a range from -0.001

through 0.001. When we test the effects of Po, we change Po but set

A.o to 0.88 and initialize eo by the NW method. When we test the

78

effects of A.o, we change A.o but set Po to 103 and initialize ito by the

NW method. When we test the effects of ito, we initialize ito by either

the NW method or a set of random values, but set A.o to 0.88 and Po

to 103 . We mark * in the row where we obtained failure records

(some particular seeds do not lead to convergence). For other tables

listing other test results, we will use the same conventions.

TABLE 6-1 (A)

TEST RESULTS FOR RGN (6-3) FOR PROB. #1

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDillONS ITERATIONS FLOPS SSE

Po 10 5 234.3* 1.2645e+8 0.01923

(A.o = 0.88, 10 3 224.2 1.2110e+8 0.01942

eo-NW) 1 0 467.5* 2.5251e+8 0.01969

0.95 226.1 * 1.2213e+8 0.01917

A.o 0.92 217.95* 1.1772e+8 0.01942

(Po= 103 , 0.90 219.2 1.1842e+8 0.01930

fto -NW) 0.88 224.2 1.2110e+8 0.01942

0.86 225.4 1.2175e+8 0.01917

fto (A.o=0.88, NW 224.2 1.211 0e+8 0.01942

PQ- 103) Small rand. 209.7 1.2645e+8 0.01890

The test results shown in Table 6-1 (a) reveal that RGN is

comparable with variable learning rate BP in terms of the total flops

(the total flops for variable learning rate BP is 8.42e+ 7, refer to [1]).

When testing variable learning rate BP in [1], a hatching algorithm

was used, but RGN is a recursive algorithm.

79

For problem #1, the standard RGN algorithm (6-3) works well.

For the next test problem (approximating a square wave (6-2)), the

standard RGN algorithm cannot deal with ill-conditioned Pq matrices

after tens of iterations. To circumvent this ill-conditioning problem,

we can use RMBP. Another method is to add a small identity matrix

to Pq in (6-3) so that an improved RGN is proposed as (6-4):

(6-4)
Rq = O.l·I

A.q = 0.99 * A.q-l + 0.01

where L\ 1 has the same form as in (6-3). We give the test results for

algorithm (6-4) in Table 6-1 (b).

From Table 6-1 (b), we note that the improved version of RGN

Is comparable with CGBP in terms of the total flops (the total flops for

CGBP is 1.75e+7, refer to [1]). If the design variables A.o = 0.88 or

0.90, Po =103 and fto is initialized by small random values, the total

flops and the number of iterations have smaller values, i.e. the

convergence is faster. It is also noted that the Rq in (6-4) makes the

80

TABLE 6-1 (B)

TEST RESULTS FOR MODIFIED RGN (6-4) FOR PROB. #1

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDIDONS ITERATIONS FLOPS SSE

Po 10 5 33.4* 1.8040e+7 0.01923

(A.o=0.88, 10 3 39.1 2.1119e+7 0.01872

fto-NW) 10 207 .833* l.1226e+8 0.01765

0.95 102.3 5.5256e+7 0.01903

A.o 0.92 99.875* 5.3946e+7 0.01874

(Po= 103 , 0.90 23.4 1.2639e+7 0.01767

fto-NW) 0.88 39.1 2.1119e+7 0.01872

0.86 46.6 2.5170e+7 0.01740

fto (A.o=0.88, NW 39.1 2.1119e+7 0.01872

Po= 103! Small rand. 37.5 2.0255e+7 0.01867

convergence faster.

6.3.2 Test Results for RMBP With Matrix Inversion

Next, we apply RMBP with matrix inversion to the first test

problem and investigate the effects of the design variables Po, A.o, !to

and J..l on the convergence rate. We summarize the RMBP algorithm

with matrix inversion as follows:

a(~q-1 ;pq) = W~-1 f 1 (W~-d~q + !2~-1) + !2~-1;

<l>q =[~lpq;~1;a;l];

8 1

p-1 A -1 T
q = qPq_1 +<f>q<f>q +Jlql; (6-5)

~q =~q-1 +Pq<f>q(tq -a(~q-l;Pq)];
Aq = 0.99 * Aq_1 +0.01.

where where ~ 1 has the same form as in (6-3), ~q may take a

constant number, for example 0.001, or a number calculated by

q=2,3, ...

The test results are listed in Table 6-2. When we test the RMBP

(6-6)

algorithm with matrix inversion, we investigate the effect of ~ on the

convergence rate. From Table 6-2, we find that RMBP with matrix

inversion needs more total flops to converge (SSE is less than 0.02

within 800 iterations) than RON, even though it needs fewer

iterations. The matrix inversion involved in (6-5) requires intensive

flops. If the design variables A.o = 0.88 or 0. 90, and Po = 103 , f.l =

0.001 and eo is initialized by small random values, the total flops

and iterations have smaller values, i.e. the convergence is faster.

82

TABLE 6-2

TEST RESULTS FOR RMBP WITH INVERSE FOR PROB. #1

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDIDONS ITERATIONS FLOPS SSE

Po 0 .. 0=0.88, 10 5 63.1 * 2.6968e+9 0.01923

~-NW) 10 3 29.3 1.2522e+9 0.01901

!:!=le-32 10 77.4 3.3080e+9 0.01989

0.95 48.2 2.0600e+9 0.01991

"-o (Po=to3, 0.92 51.7 2.2096e+9 0.01894

f!o-NW 0.90 17.6 7.5220e+8 0.01813

J.l= 1 e-3) 0.88 29.3 1.2522e+9 0.01901

0.86 33.8 1.4446e+9 0.01993

.e.o (Po= 1 o3 NW 29.3 1.2522e+9 0.01901

A.Q=.88,J.t=le-3) Small rand. 28.5 1.2180e+9 0.01952

I! (Po=to3 fixed 29.3 1.2522e+9 0.01901

t..0=.88,.!io NW) set bl:: (6-6) 29.8 1.2530e+9 0.01910

6.3.3 Test Results for RMBP Without Matrix Inversion

In this section, we apply the RMBP algorithm which does not

require matrix inversion to the first test problem and investigate the

effects of the design variables Po, "-o and .e..o on the convergence rate.

We summarize this RMBP algorithm as follows:

Yq (~q-1) = !q - ~(~q-1; ~q)

_ { J.lq-1 · f3 ll~q c~q-1)II< ll~q-1 c~q-1)II
J..lq-

J..lq-1 I 13 IIYq (~q-1)II~ IIYq-1 (~q-1)II

Kq = (1)2 Pq-i<l>q {AW-l+ cpJPq-i<l>qrl + ~ 2 <l>q W
fl+l (J..L+l)

83

~q = ~q-1 + Kq Yq (~q-1)
(6-7)

_ 1 [{ -1 T }-1 T] Pq -A. Pq-1- Pq-l<l>q A.W + <l>q Pq-t<l>q <l>q Pq_1

In the test, flo = 0.001 and 13 = 0.95. The test results are listed in

Table 6-3. From Table 6-3, we find that the RMBP without matrix

inversion requires a little more total flops to converge than RGN, but

much less than RMBP with matrix inversion. If the design variables

A.o = 0.88 or 0.9, Po = 103 and eo is initialized to small random values,

the total flops and iterations have smaller values, i.e. the

convergence is faster. It was observed that if J3 took on the values

close to and less than 1, the same conclusion was maintained. If 13

is too small, e.g. 0.8, it requires much more total flops and iterations

than those indicated in Table (6-3) to converge.

84

TABLE 6-3

TEST RESULTS FOR RMBP WITHOUT INVERSE FOR PROB. #1

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDmONS ITERATIONS FLOPS SSE

Po 10 5 159.2 8.6958e+7 0.01921

(1,.0=0.88. 10 3 157.6 8.5734e+7 0.01919

.f!o-NW) 10 195.333* 1.3123e+8 0.01984

0.95 168.5 9.2014e+7 0.01963

A.o 0.92 167.7 9.1582e+7 0.01955

(Po=10 3 , 0.90 159.333* 8.7008e+7 0.01943

.eo-NW) 0.88 157.6 8.5734e+7 0.01919

0.86 170.667* 9.3197e+7 0.01983

~o (Po=103 , NW 157.6 8.5734e+7 0.01919

A-0=0.88) Small rand. 152.9 8.2322e+7 0.01902

6.4 Test Procedures/Results For Test Problem #2

6.4.1 Test Results for RGN

In section 6.2, we defined the second test problem as a set of

examples from a square wave indicated in (6-2). In this section, we

will apply RGN and RMBP to this test problem. Because the SSE of

the standard RGN (6-3) cannot reach 0.02 within the maximum

number of iterations, which we set to 800, we will incorporate a term

into the standard RGN (6-3) to form the improved version of RGN (6-

4). We will apply this improved version of RGN, as well as RMBP

with matrix inversion (6-5) and RMBP without matrix inversion

(6-7) to the second test problem, investigating the effects of the

design variables on the convergence rate.

85

First, we will use the improved RGN (6-4). The test results

shown in Table (6-4) indicate that if the design variable A.o takes on

values near 0.86 or 0.88, and Po= 103 and fto is initialized by the NW

method, the total flops and iterations have smaller values. Note that

there are failures when A.o = 0.86. we note that the modified RGN is

comparable with CGBP in terms of the total flops (the total flops for

CGBP for this test problem is 1.49e+8, refer to [1 D

TABLE 6-4

TEST RESULTS FOR MODIFIED RGN (6-4) FOR PROB. #2

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDIDONS ITERATIONS FLOPS SSE

Po 10 5 525.4 4.1 530e+8 0.01930

(A-0=0.88, 10 3 503.3 3.9783e+8 0.01994

ftc> NW) 1 0 626.7 4.9537+8 0.01877

0.95 607.1 4. 7988e+8 0.01946

AO 0.92 587.5 4.6438e+8 0.01875

(Po= 103, 0.90 566.2 4.4755e+8 0.01996

ftc> NW) 0.88 503.3 3.9783e+8 0.01994

0.86 531.42* 4.2006e+8 0.01895

!!o (Po= 103 , NW 503.3 3.9783e+8 0.01994

A-0=0.88) Small rand. 510.2 4.0328e+8 0.01830

86

6.4.2 Test Results for RMBP With Matrix Inversion

Next, we apply RMBP with matrix inversion to the problem #2

and investigate the effects of the design variables Po, A.o, !to and ll on

the convergence rate. The test results are listed in Table 6-5. From

Table 6-5, we find that the RMBP with inversion needs more total

flops to converge than RGN, even though it needs fewer iterations. If

the design variable A.o = 0.86, 0.88 or 0.90, and Po = 10 3 , ll takes on

variable values by means of (6-6), and fro is initialized to small

random values, the total flops and iterations have smaller values, I.e.

the convergence is faster.

6.4.3 Test Results for RMBP Without Matrix Inversion

In this section, we apply RMBP without matrix inversion to the

second test problem and investigate the effects of the design

variables Po, A.o and fro on the convergence rate. The test results are

listed in Table 6-6. From Table 6-6, we find that the RMBP without

matrix inversion and RGN require similar total flops to converge.

However, the RMBP without matrix inversion needs fewer iterations

than RGN. If the design variables A.o = 0.88 or 0.95, and Po= I 0 3 and

fro is initialized by the NW method, the total flops and iterations have

smaller values, i.e. the convergence is faster.

87

TABLE 6-5

TEST RESULTS FOR RMBP WITH INVERSE FOR PRO B. #2

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDmONS ITERATIONS FLOPS SSE

Po U-0=0.88, 10 5 490.3 9.0191e+9 0.01930

~-NW 10 3 429.1 7.8933e+9 0.01907

!;!=le-32 1 0 508.2* 9.3483e+9 0.01873

0.95 430.5 7.9190e+9 0.01961

A.o (Po=to3, 0.92 457.1 8.4083e+9 0.01972

~-NW, 0.90 411.6 7.5714e+9 0.01814

ll=le-3) 0.88 429.1 7 .8933e+9 0.01907

0.86 423,7 7.7940e+9 0.01964

!to 0-0=.88, NW 429.1 7.8933e+9 0.01907

PO 103 ,Jl-1 e-3) Small rand. 422.3 7 .7682e+9 0.01953

Jl () ... 0=.88, fixed 429.1 7.8933e+9 0.01907

3
b~ (6-6) 428.2 7.8937e+9 0.01944 Po=IO ,~ NW) set

88

TABLE 6-6

TEST RESULTS FOR RMBP WITHOUT INVERSE FOR PROB. #2

VARIABLES TESTING NUMBER OF TOTAL ULTIMATE
INVEST!. CONDIDONS ITERATIONS FLOPS SSE

Po 10 5 403.6 4.2557e+8 0.01823

0.0=0.88, 10 3 384.5 4.0550e+8 0.01804

i!o-NW) 1 0 597.2 6.3128e+8 0.01843

0.95 387.1 4.0878e+8 0.01876

Ao 0.92 421.7 4.4627e+8 0.01922

(Po=10 3 , 0.90 405.7 4.2842e+8 0.01790

i!o-NW) 0.88 384.5 4.0550e+8 0.01804

0.86 411.3 4.3433e+8 0.01972

!!.o (Po= 1 03 , NW 384.5 4.0550e+8 0.01804

A-0=0.88) Small rand. 396.2 4.1839e+8 0.01945

6.5 Summary of Test Results

In this chapter, we defined two test problems: one is a set of

examples from a sine wave (see (6-1)) and the other is a set of

examples from a square wave (see (6-2)). The RGN and RMBP

algorithms were implemented and tested on the two test problems.

The properties of RGN and RMBP under the tests were revealed.

Some details related to the implementations were pointed out. The

results derived m sections 6-3 and 6-4 are summarized as follows.

89

1. The standard RGN (6-3) derived in Chapter 5 may not converge

in terms of the stopping rule we defined in section

6-2 (see test problem #2). Some improved versions of the RGN

could solve the problem (for example (6-4)) because in these

algorithms such uncertainties as calculation errors, truncation

errors, etc. are taken into account. In (6-4), the term Rq deals

with such uncertainties. This term also makes faster

convergence.

2. In RGN and its improved versions, the design parameter A.0 is a

important factor to accelerate the convergence rate. We found

that A. 0 = 0.88 to 0.90 works better in all tests. It is appropriate

to set the design parameter P 0 to 103 . A P 0 too large, like 1 05 ,

may cause the learning process to oscillate; while a P0 too

small, like 10, causes the learning process to become very slow

or stops the learning after a few iterations.

3. Two versions of RMBP were investigated. The iterations

required for convergence in the exact form of RMBP (6-5) are

less than those needed in RGN. However, the total flops needed

90

in the exact RMBP are much more than those needed in RON,

because of the inversion of the Hessian matrix. A version of

RMBP without inversion (6-7) was also investigated. The total

flops and iterations required for convergence for this algorithm

are similar to those for RON. The parameter 11 makes the

algorithm (6-7) not sensitive to the value of /...

4. The advantage of RMBP and its variant is that they can work in

all cases, without incorporating some ad hoc design parameters

such as those used in the improved versions of RON.

CHAPTER VII

CONCLUSIONS

In this thesis, we developed two recursive learning algorithms,

the Recursive Gauss-Newton method (RGN) and the Recursive

Marquardt method (RMBP) to train Multilayer feedforward

Perceptron type Neural Networks (MPNNs), based on the hatching

Gauss-Newton method and the hatching Marquardt method (MBP).

We also derived a Marquardt Backpropagation (MBP) and a quasi­

recursive Gauss-Newton method (QRGN) to train MPNNs using

Iterated Least Squares. The MBP and QRGN are the starting points to

develop RGN and RMBP.

The difference between QRGN and RGN was depicted in Figures

10 and 11. We showed in Chapter 5 that RGN, like other recursive

algorithms, was an approximation to the hatching Gauss-Newton

method under certain assumptions. RMBP improves RGN just as MBP

improves GN.

We applied RGN and RMBP to train MPNNs to approximate two

nonlinear functions. The details of the implementation were pointed

out, and the test results were summarized in Chapter 6. Standard

RGN may not converge. Modified RGN has superior convergence rate

in our test. RMBP with matrix inversion requires intensive

computational burdens. RMBP without matrix inversion has a

convergence rate which is similar to that of RGN. The advantage of

91

RMBP without matrix inversion is that it 1s not too sensitive to the

values of A.0 .

92

RGN and RMBP can be used in the situation where an on-line

learning algorithm is needed and calculation speed is critical. The

current versions of RGN and RMBP were not tested on more complex

problems, for example, multiple-output MPNNs.

The RGN and RMBP algorithms are derived from optimization

techniques. On the one hand, the development of optimization

techniques will inspire us to improve RGN and RMBP to be more

powerful learning algorithms to train MPNNs. On the other hand,

there exist many problems with practical applications of RGN and

RMBP. We need to make more efforts to deal with these problems in

the future.

REFERENCES

[1] M. T. Hagan, and M. Menhaj, "Training Feedforward Networks

with the Marquardt Algorithm," accepted for publication, IEEE

Transactions on Neural Networks.

[2] R. Hecht-Nielsen, Neurocomputing. Addison-Wesley (1990).

[3] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, Parallel

Distributed Processing: Explorations in the Microstructure of

Cognition, Vol. 1: Foundations. MIT Press (1986).

[4] G. E. F. Seber, Nonlinear Regression. John Wiley (1989).

[5] D.M. Himmelblau, Applied Nonlinear Programming. McGraw­

Hill (1972).

[6] P. E. Gill, and K. Murray, Practical Optimization. Academic

(1981).

[7] T.P Yogi, et. al., "Accelerating the Convergence of the

Backpropagation Method," Biological Cybernetics, vol. 59, p

257-263' 1988.

[8] D. Nguyen and B. Widrow, "Improving the Learning Speed of 2-

Layer Neural Network by Choosing Initial Values of the

Adaptive Weights," Proceedings of the IEEE International Joint

Conference on Neural Networks, vol. Ill, p.21-26, July 1990.

[9] Dennis, J. E., Jr. and More, J. J., "Quasi-Newton methods,

motivations and theory," SIAM Review, vol. 19, no. 1, p 46-

89, 1977.

93

94

[11] A. Guez and J. Selinsky, "A Trainable Neuromorphic Controller,"

Journal of Robotic Systems, vol. 5, no. 4, p 363-388, 1988.

[12] J. Mendel Lessons on Digital Estimation Theory. Prentice-Hall

(1987).

[13] R.A. Jacobs, "Increased Rates of Convergence Through Learning

Rate Adaptation," Neural Networks, Vol. 1, No. 4, pp 295-308,

1988.

[14] A. von Ooyen and B. Nienhuis, ''Improving the Convergence of

the Backpropagation Algorithm." Neural Networks, Vol. 5, No. 3,

1992, pp 465-471.

[15] A.K. Rigler, J.M. Irvine and T.P. Vogl, "Rescaling of Variables m

Back Propagation Learning," Neural Networks, Vol. 3, No. 5,

1990, pp 561-573.

[16] E. Barnard, "Optimization for Training Neural Nets," IEEE Trans.

on Neural Networks, Vol. 3, No. 2, March 1992, pp 232-240.

[17] D.C. Liu and J. Nocedal, "On the Limited Memory BFGS Method

for Large Scale Optimization," Mathematical Programming, Vol.

45, 1989, pp 503-528.

[18] M. T. Hagan and R. Klein, "On-line Maximum Likelihood

Estimation for Load Forecasting" IEEE Trans. on SMC, Vol. 8, No.

9, Sept 1978, pp 711-715.

[19] S. Kollias and D. Anastassiou, "An Adaptive Least Squares

Algorithm for the Efficient Training of Artificial Neural

Networks," IEEE Trans. on Circuits and Systems, Vol. 36, No. 8,

August 1989, pp 1092-1101.

. [20] S. Singhal and L. Wu, "Training Multilayer Perceptrons with the

Extended Kalman Algorithm," in Advances in Neural

Information Processing Systems I, D.S. Touretzky (Ed.), San

Mateo CA:Morgan Kaufman, 1989, pp 133-140.

95

[21] G.V. Puskorius and L.A. Feldkamp, "Decoupled Extended Kalman

Filter Training of Feedforward Layered Networks," IJCNN

Proceedings, Vol. I, July 1991, pp 771-777.

[22] D. Marquardt, "An Algorithm for Least Squares Estimation of

Non-Linear Parameters," J. Soc. Ind. Appl. Math., 1963, pp 431-

441.

[23] The Manual of The Neural Network Toolbox, The Mathworks

Inc., 1992.

Vita

Zhimin Lu

Candidate for the Degree of

Master of Science

Thesis: OPTIMIZATION TECHNIQUES APPLIED TO NEURAL NETWORKS

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Shanghai, P.R. China, January 1962, the
son of Jiayi Lu and Hongying Zhang.

Education: Graduated From Kongjiang Senior High School,
Shanghai, in July 1980; received Bachelor of Engineering
Degree in Electrical Engineering from Shanghai University
of Engineering Science in July 1986; completed
requirements for the Master of Science degree at
Oklahoma State University in December 1993.

Professional Experience: Research Assistant, Department of
Electrical and Computer Engineering, 1992 through 1993.
Supervisor of FA division in R & D department of
Shanghai Applied Technology Co., Shanghai, P. R. C. from
Jan. 90 to Jul. 91. Electrical Engineer in Shanghai Bell
Telephone Equipment Mfg. Co. Ltd. from Jul. 86 to Dec. 89.

Membership in Professional Societies: China Institute of
Automation; Association of Shanghai Electronic and
Electrical Technology; Association of Science and
Technology of China; SIAM.

	Thesis-1993-L926o_Page_001
	Thesis-1993-L926o_Page_002
	Thesis-1993-L926o_Page_003
	Thesis-1993-L926o_Page_004
	Thesis-1993-L926o_Page_005
	Thesis-1993-L926o_Page_006
	Thesis-1993-L926o_Page_007
	Thesis-1993-L926o_Page_008
	Thesis-1993-L926o_Page_009
	Thesis-1993-L926o_Page_010
	Thesis-1993-L926o_Page_011
	Thesis-1993-L926o_Page_012
	Thesis-1993-L926o_Page_013
	Thesis-1993-L926o_Page_014
	Thesis-1993-L926o_Page_015
	Thesis-1993-L926o_Page_016
	Thesis-1993-L926o_Page_017
	Thesis-1993-L926o_Page_018
	Thesis-1993-L926o_Page_019
	Thesis-1993-L926o_Page_020
	Thesis-1993-L926o_Page_021
	Thesis-1993-L926o_Page_022
	Thesis-1993-L926o_Page_023
	Thesis-1993-L926o_Page_024
	Thesis-1993-L926o_Page_025
	Thesis-1993-L926o_Page_026
	Thesis-1993-L926o_Page_027
	Thesis-1993-L926o_Page_028
	Thesis-1993-L926o_Page_029
	Thesis-1993-L926o_Page_030
	Thesis-1993-L926o_Page_031
	Thesis-1993-L926o_Page_032
	Thesis-1993-L926o_Page_033
	Thesis-1993-L926o_Page_034
	Thesis-1993-L926o_Page_035
	Thesis-1993-L926o_Page_036
	Thesis-1993-L926o_Page_037
	Thesis-1993-L926o_Page_038
	Thesis-1993-L926o_Page_039
	Thesis-1993-L926o_Page_040
	Thesis-1993-L926o_Page_041
	Thesis-1993-L926o_Page_042
	Thesis-1993-L926o_Page_043
	Thesis-1993-L926o_Page_044
	Thesis-1993-L926o_Page_045
	Thesis-1993-L926o_Page_046
	Thesis-1993-L926o_Page_047
	Thesis-1993-L926o_Page_048
	Thesis-1993-L926o_Page_049
	Thesis-1993-L926o_Page_050
	Thesis-1993-L926o_Page_051
	Thesis-1993-L926o_Page_052
	Thesis-1993-L926o_Page_053
	Thesis-1993-L926o_Page_054
	Thesis-1993-L926o_Page_055
	Thesis-1993-L926o_Page_056
	Thesis-1993-L926o_Page_057
	Thesis-1993-L926o_Page_058
	Thesis-1993-L926o_Page_059
	Thesis-1993-L926o_Page_060
	Thesis-1993-L926o_Page_061
	Thesis-1993-L926o_Page_062
	Thesis-1993-L926o_Page_063
	Thesis-1993-L926o_Page_064
	Thesis-1993-L926o_Page_065
	Thesis-1993-L926o_Page_066
	Thesis-1993-L926o_Page_067
	Thesis-1993-L926o_Page_068
	Thesis-1993-L926o_Page_069
	Thesis-1993-L926o_Page_070
	Thesis-1993-L926o_Page_071
	Thesis-1993-L926o_Page_072
	Thesis-1993-L926o_Page_073
	Thesis-1993-L926o_Page_074
	Thesis-1993-L926o_Page_075
	Thesis-1993-L926o_Page_076
	Thesis-1993-L926o_Page_077
	Thesis-1993-L926o_Page_078
	Thesis-1993-L926o_Page_079
	Thesis-1993-L926o_Page_080
	Thesis-1993-L926o_Page_081
	Thesis-1993-L926o_Page_082
	Thesis-1993-L926o_Page_083
	Thesis-1993-L926o_Page_084
	Thesis-1993-L926o_Page_085
	Thesis-1993-L926o_Page_086
	Thesis-1993-L926o_Page_087
	Thesis-1993-L926o_Page_088
	Thesis-1993-L926o_Page_089
	Thesis-1993-L926o_Page_090
	Thesis-1993-L926o_Page_091
	Thesis-1993-L926o_Page_092
	Thesis-1993-L926o_Page_093
	Thesis-1993-L926o_Page_094
	Thesis-1993-L926o_Page_095
	Thesis-1993-L926o_Page_096
	Thesis-1993-L926o_Page_097
	Thesis-1993-L926o_Page_098
	Thesis-1993-L926o_Page_099
	Thesis-1993-L926o_Page_100
	Thesis-1993-L926o_Page_101
	Thesis-1993-L926o_Page_102
	Thesis-1993-L926o_Page_103

