
APPLICATION OF MOIRE TECHNIQUE AND

QUALTIY CONTROL OF A

TRANSPARENT OBJECT

By

CARL B. LOPEZ

Bachelor of Science
Oklahoma Baptist University

Shawnee, Oklahoma
1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 1993

OKLAHO:M.A STATE UNIVERSITY

APPLICATION OF MOIRE TECHNIQUE AND

QUALI1Y CONTROL OF A

TRANSPARENT OBJECT

Thesis Approved:

Thesis Advisor

Ct.

Dean of the Graduate College

u

A CKN 0 WLED G MENTS

I would like to thank Dr. Jersy Krasinski for allowing me to be a part of his

research group and his help preparing this paper. Dr. Gary Pearson I thank for

his help getting the programs started and debugged. I also thank Dr. Teague for

help with the computer routines, use of the frame grabber and for serving on my

commitee. I would also like to thank Dr. Jim Baker for serving on my committee.

I would also like to thank Scott Holmstrom for all his help setting the format of

the final draft.

I would also like to thank Denise, my wife, for her patience and support

during this last semester of late hours. My parents continued devotion and constant­

encouragement during the good times and the trying times was more benificial than

they will ever know, thanks for always being there.

I would like to thank God for all the many ways he has blessed me including

a supportive family and so many wonderful friends. With out him this paper could

have never been written.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. CREATING FRINGE PATTERNS 4

Interference Techniques . . . 4
Moire Techniques 6

III. A SIMPLE EXAMPLE USING MOIRE DEFLECTOMETRY 13

IV. COMPUTER ROUTINES FOR AUTOMATED ANALY-
SIS OF MOIRE PATTERNS. 17

Explanation of Routines . . 17
Testing of the Routines . . . 23

V. APPLICATION TO CANOPY 28

VI. CONCLUSIONS 31

BIBLIOGRAPHY 33

APPENDIX 34

iv

LIST OF FIGURES

Figure

1. Diagram of the Michelson interferometer .

2. Diagram of the Mach-Zehnder interferometer

3. A contour map of a human head

4. Moire pattern of two Ronchi rulings superimposed at a small
angle B

5. a)Diagram of moire deflectometer, b)Talbot interferometer .

6.

7.

8.

9.

10.

11.

12.

Lens, moire fringe pattern, and computer matched lines from
the fringe pattern .

Block diagram of process from moire fringe pattern to the map
of ray deflection.

Block diagram of steps in computer processing

Sample data before the first image processing routine.

Sample data after the first image processing routine.

a) Original image file b) Cut image file .

Diagram of constructing the line files.

13. a) Diagram of data that is noncontinuous b)- f) Examples of
broken line files when the search radius is 5, 7,12,20,23

14. Surface map of the distorted plexi glass plate

15. a) Moire fringes of original plastic piece, b) moire fringes of
the same plastic piece after small deformation has been
polished, c) computer image of fringes.

16. Computer matched lines of bright and dark fringes. a) Un­
smoothed lines, b) Smoothed lines.

v

Page

5

7

8

9

12

16

16

17

18

19

20

20

22

23

25

25

Figure
17. Slope files of 10, 20 and 25 length segments

18. Fringe slope map of the plastic phase object

19. a) element of the canopy b) moire fringes from small area of
same canopy .

20. a) computer fit fringes, b) smoothed version of fit fringe lines

Page
26

28

29

21. Fringe slope map of a section of the canopy presented in figure 20 30

vi

CHAPTER I

INTRODUCTION

I\.1easuring has always been an important part of technology. By definition,

measuring is comparing son1e test object to a known reference. Of course there

are many things to measure and almost as many ways to n1easure them. Often the

key is to find the best way to obtain the n1easurement needed. One of the rnost

common and versatile ways to measure something optically is using interference.

"Optical interference may be termed an interaction of two or more light waves

yielding a resultant irradiance that deviates from the sum of the cornponent irra­

diances'[l]. The results of this interaction can be used for many applications. One

can determine the thickness of an object, its refractive index, surface defects, and

even defects within the material of an object. Another not quite so comn1on way

to find the same types of measurements as mentioned above is the moire method.

For the interferometeric and moire techniques, a fringe pattern is created.

Unlike the interferometric methods, moire methods do not directly use the wave

properties of light. Moire uses the light for illumination only, and actually mea­

sures ray deflection. To a large extent this method can be explained with optical

geometry.

For our research the moire technique was used. Before applying a specific

technique of interpreting a fringe pattern, some back ground information on inter­

ferometers will be given to show how interference techniques and moire deftectom­

etry are related. Some advantages of using Moire techniques to measure strongly

distorted objects like the jet canopies will be given.

For the testing of jet canopies, moire deflectometry is an excellent tool for

finding a local ray deflection. This is done by creating a fringe pattern, processing

1

2

the information that corresponds to the ray deflection of a phase object in this case

~jet canopy, then calculating the slope of each of those fringes and finally plotting

the results. In the second chapter examples of an interferometer will be discussed

and compared with the moire deflectometer. Conclusions will be drawn as to why

the moire deflectometer is the better choice for this application. The theory of

the moire method will be shown in chapter three. Computer routines that extract

the interferometer from the fringe pattern will be discussed 1n chapter four and

listings of these routines will be shown in appendix A. Chapter five will contain

the application of the theory and computer routines to produce the ray deflection

plots for the canopy. Finally in chapter six conclusions and recommendations will

be stated.

Testing of the canopies could be done by methods other than those men­

tioned, but the moire deflectometry method was selected for several reasons. Ex­

cept for the major scratches caused from handling the canopy one can not tell if

there is a change in the focal length within the material by merely looking at the

canopies. By using the moire techniques, we will show that the fringes reveal even

slight changes in the focal local length of the material making up the canopy.

One goal of this research was to build a moire deflectometry system with the

capabilities to produce and record the fringe pattern of the canopy. The other goal

was to develop the software that will compose a map of the ray deflection created

by the defects of the canopy.

It will be shown that by using a moire deflectometer to test the canopy one

can benefit by using the two main advantages of this method; adjustable resolution

and capability to test large objects. By being able to adjust the sensitivity of the

deflectometer, testing can be done on phase objects; such as the canopies, that

have slightly distorted, strongly distorted surfaces or inhomogenous defects. The

variations in the defects create the need for this adjustable precision, but since the

high sensitivity limit is comparable to the interferometer methods measurements

can still be quite precise. This precision can be on the order of a fraction of the

3

wave length. These factors show that indeed the use of the moire method will yield

accurate results with more freedoms than that of the interferometer methods.

CHAPTER II

CREATING FRINGE PATTERNS

Interference Techniques

One of the most well known interferometers is the Michelson interferometer.

It is not only well know but also one of the most versatile interferometers used

for measurements. This measuring device uses an interference pattern that is

created by a difference in the optical length[2]. It can be used for all of the

examples mentioned in the introduction and is a very precise way to obtain various

measurements.

In figure one an example of the Michelson interferometer is shown. The light

wave enters the interferometer and is split by a beam splitter that divides the wave

into two parts. These two parts then proceed along two different paths and come

back together at the detector. The detector is set at a point where the interference

pattern can be examined. One of the mirrors is mobile along it's axis to adjust

for the pattern. One of the mirrors can be replaced by a surface to create an

interference pattern of that surface. The reflection of that surface will change the

path of the light wave if there is any defect in it. A phase object to be tested may

also be placed in one of the arms of the interferometer to create the interference

pattern.

When placing an object into the arm of the interferometer one can see any

deformation contained by the phase object. This change might be caused for one

of several different reasons. One might see a change in the fringe pattern if there

was a change in the index of refraction within the material of the phase object.

The same change of the fringe pattern could be created by using a phase object

4

5

Figure 1. Diagram of the Michelson interferometer

[1]

6

that has a different thickness at one point than another. The change could also be

caused by some defects on the surface of the object.

The Michelson interferometer has capabilities of high accuracy in measuring

lengths. When moving one of the mirrors just >../2 closer or farther away from the

original position a single fringe will move position of the previous adjacent fringe.

Therefore one can count the number of fringes N to determine the distance traveled

by the mirror

)..
l::id = N * -.

2
(1)

With technology of today this can be done with electronics, but for high precision

the alignment is crucial.

An extension of the Michelson interferometer for larger transparent phase

objects would be the Mach-Zehnder interferometer. It uses two beam splitters and

two mirrors as shown in figure 2.

In this set up the phase object is placed into on arm of the interferometer.

Again, as in the Michelson interferometer, the separated parts of the wave come

back together and the interference pattern at the detector is caused by the slight

path difference created by the phase object itself. Even though larger objects can

be tested it is extremely difficult to align the system.

Moire Techniques

Unlike the interference techniques shadow moire is done by creating a shadow

of the Ronchi rulings onto a surface[4]. A Ronchi ruling is a simple grid of parallel

lines that has a certain pitch or spacing between the lines. This set up is shown

in figure 3 and has the capabilities of being used on large scale phase objects like

the Mach-Zehnder interferometer[5]. In figure 3 an example of the shadow moire

method is shown. The Ronchi rulings are projected onto a young child's face.

This method has low spatial resolution but can be used to create a surface

map of the contour elevations. The resolution is adjustable but only by replacing

7

source splitter

Figure 2. Diagram of the Mach-Zehnder interferometer

[1]

8

Figure 3. A contour map of a human head

[5]

9

Gl G2

X

z
p

Figure 4. lv1oire pattern of two Ronchi rulings superimposed at a small angle()

[1]

the grating with one of a different pitch. One could also project this fringe pattern

on larger surfaces.

The last two examples to be shown are similar to the shadow moire method

and use two Ronchi rulings. Moire defiectometer and the Talbot interferometer

measure slope derivatives instead of lines of equal height as shadow mone[3]. The

difference between these to methods is where the phase object is placed within the

deflectometer. These methods produce fringe patterns by the super positioning

of two grid patterns with similar pitches. Since a shadow of the first grating is

cast onto the second the sensitivity is adjustable by changing the distance between

gratings. The Ronchi rulings (fig. 4) are represented by Gland G2 and the pitch

of each is p. The angle between the two is represented by(}. The pitch is adjustable

by varying 8 and the resultant pitch is p'=p/B.

The coherent light is projected through these grid patterns and the shadow

and projected light can be observed. Depending on several factors (e.g., the pitch

of the gratings, the distance between gratings, and the reflection off or transmission

10

through the incident phase object) results can be detern1ined about the sarnple.

One of the main benefits of using this technique is the fact that it has adjustable

resolution and it can be applied to large surfaces[4].

Iv1oire defiecton1etry is used to produce a fringe pattern of a phase object

that is actually a map of ray deflection[4]. Unlike the interferometric techniques

that measure a difference in the path traveled by the wave parts. Even though

both techniques can produce a fringe pattern caused by the san1e defect there is a

difference in how the fringe pattern is created.

In figure 5 the Inoire deflectometer and the Talbot interferon•eter are shown.

Cornponent number one is a collimated light beam. For our set up, a HeNe laser

is used as the source and it is projected through a pin hole to get the resulting

collimated beam. The fringe pattern is created by the use of Rhonchi rulings

(Gl,G2) which are two sets of gratings that consist of parallel lines of a certain

pitchf6). The pitch is the spacing of the lines and can be selected depending on

the resolution you desire. The gratings are either parallel or one is rotated with

respect to the other by some angle. For this project, rulings with the pttch of 1

lines per n1illimeter are used and the angle is varied. The last component is the

screen on which the fringe pattern will be projected. It is partially transparent

so that a camera can be used to rnake an image of the pattern[7]. Once these

components are combined a phase object can be placed in the beam's path before

the gratings.

For a defect on the canopy's surface or within the material that makes up

the canopy the fringe pattern will be changed from straight lines to distorted lines.

Since the beam is collimated the change in the fringe pattern is due to a focal

length change in the material The sensitivity can be adjusted by changing the

angle between the gratings[2]. One problem with interferometric methods is due to

their high sensitivity, which means that there is need for high mechanical stability

and low noise of the system. With moire techniques the results can simply be

calculated using geometrical optics by means of ray tracing. This is possible since

defraction effects can be minimized by placing the second grating at a distance

11

which is an integer multiple of the Fourier plane[4]. Sensitivity of the deflectometer

is not dependent on wavelength of the light being used, but is adjustable by varying

the grating pitch or spacing. Thus at any sensitivity of the system there is less

need to control vibrations of the system.

There are many uses of the moire deflectometry method[4]. It has been

used to image air flow from the after burner of a jet fighter in an aircraft hanger.

Using moire for strain analysis, one will observe a difference in the fringe patterns

that are produced with and without stress being applied on the phase object.

This method can make sensitive measurements without having to have a special

environment, and unlike the interference techniques the resolution is adjustable.

These properties of moire make it more desirable to use when testing larger phase

objects such as the jet canopies.

12

a) ~
I y I

SCREEN

z I
I

X

/
Gl 02

\I
TRANSPARENT RONClll
SPECIMEN RULINGS

b) G/\2
y

SCREEN

z CO TED
c.----oX UGIITBEAM ~~

TRANSPARENT ~ I ,..Ji_ I
SPECIMEN

Figure 5. a)Diagram of moire defiectometer, b)Talbot interferometer

CHAPTER III

A SIMPLE EXAMPLE USING MOIRE

DEFLECTOMETRY

For a phase object that is transparent but curved one can use moire tech­

niques to see the aberrations in the material that makes up the object. A change in

the focal length of a surface would be one type of aberration that can be checked.

The phase object can also be inspected for dents or inhomogenous material de­

formations that cause changes in ray deflections that can be seen in the fringe

pattern.

Moire fringes are produced when the collimated light beam projects the

shadow of the first grating upon the second grating. Any defect in the phase

object causes a deflection of the light beam. This deflection will result in a fringe

shift. The result of one fringe shift at the screen corresponds to a deflection angle

of ¢=p/ ~ (where p is equal to the pitch and ~ is the distance between gratings).

The slopes of the fringes are also related to the deflection angle by ¢=2* j3 (when j3

=dh/dx the slope of the distorted fringe)[4]. The moire deflectometer's accuracy is

bounded by the diffraction limit [8][9] (i.e., dxd¢ > A/211). Reading this equation

dx is the spatial resolution, d¢ is the angular resolution of the instrument and A is

the wavelength of the light. This equation is also the classical interferometer limit.

If there is a change in the focal length the moire pattern will be effected by

a rotation of the fringes at the optical center by an angle a. This angle can be

calculated using the following equation

(2)

By rearranging the previous equation the local focal length can be determined:

13

14

~

f = *tan a (3)

The accuracy of the local focal length of measuren1ent df is given by a formula [4]

(4)

where a is effective aperture, and q is resolution of measurement (minimum resolv­

able fraction of a moire fringe).

By merely looking at a canopy, it is difficult to tell if there is a change of

direction of optical rays propagating throughout the material. It will be shown, by

using the moire techniques, that the fringe image reveals even slight changes of the

ray's direction in the material of the canopy. The moire deflectometer produces a

fringe pattern for the canopy and software has been created to compose a map of

the local optical power of the canopy from the fringe pattern.

In our experiment a television camera recorded the image that was trans­

ferred into a computer using a frame grabber. By digitizing the fringe pattern

computer routines can be used to manipulate the image and calculate the focal

length of the phase object. These computer routines will be discussed in the next

chapter for now the proof that the focal length can be calculated will be shown.

For an example of this process a lens of known focal length (1000 mm) was

implemented into a piece of plastic as shown in the figure 6. This was done by

drilling a circule into a piece of plexi glass and placing the lens into it. This creates

a phase object of known focal length that can be placed into the deflectometer and

a picture of the fringe pattern can be taken. Then that digitized image can be

processed by means of several computer programs to get information about the

optical parameters of the lens.

Measuring the fringe rotation angle a=.6981 rad, distance between gratings

Ll=167 mm and angle between gratings e=.0645 rad a focal length f=989.22 mm

is calculated. This represents and error of -1%.

By using the deflectometer, data can be obtained and used to map the focal

information from a given object. Using a frame grabber to digitize the fringe

15

pattern, an image file can be made and the process of constructing the needed

images can begin. The results can then be used to create a map of the local focal

length or a contour map of the surface. In figure 7 a diagran1 is presented to give

an overall picture of the process.

Using the process described in the figure 7 a map of the ray deflection can

be generated using the theory of moire. In the following chapter the computer

routines will be discussed and the method of finding the slope of the fringes will

be shown.

16

Figure 6. Lens, moire fringe pattern, and computer matched lines from the fringe
pattern

Moire
Deflect. Fringes

Frame
Grabber

Computational
Processing

Map of
Ray Deflection

Figure 7. Block diagram of process from moire fringe pattern to the map of ray
deflection.

CHAPTER IV

COtviPlJTER ROUTINES FOR AUTOrv1ATED

ANALYSIS OF MOIRE PATTERNS

Explanation of Routines

Several computer programs have been developed to rnanipulate the fringe

patterns of a phase object that have been obtained using a rnoire deflecton1eter.

The goal was to take the fringes and obtain the change in slope inforrnation and

use it to determine the change in focal length. In figure 8 a fto\v chart of how these

routines will be used together after obtaining the digitized in1age.

These C programs are for filtering and extracting information from the fringe

patterns. The data will have obtained noise from the various steps of the process it

takes to get the information converted from the screen to the map of ray deflection.

vVe desire to filter out as much noise as possible and limiting loss of usable data.

One way the image will pick up noise is through the process of transferring the

actual data on the screen to the initial digital image. The screen might have some

slight movement when the image is taken or there could be some imperfections on

the screen itself. Noise has also entered when taking the photograph of the screen

then using that photograph to make the digitized image of the fringe pattern. By

Find
Peaks

enerate
Lines

Smooth
Lines

Calculate
Slope

Map of
Ray Deflection

Figure 8. Block diagram of steps in computer processing

17

18

3 4 6 7 8 5 4 3 5 6 7 8 9 7 6 4 2 1 0 2 3 4 5 6 7 5 4 2 1

Figure 9. Sample data before the first image processing routine.

capturing the image directly from the screen this last type of noise can hopefully

be reduced. Most of the problems that occur in attempting to make the map of

ray deflection can be found in the scratches of the phase object that show up as

noise. This noise is the most difficult to filter out.

The first routine takes the digitized image that has been created by the frame

grabber and finds the peaks and valleys of the fringe pattern. The fringes are not

constant intensities but vary from dark to light. The digital image that has been

captured has a 256 gray scale. The computer can find the locations of the peaks

and valleys by a simple analysis of data.

The routine will scan the image file for a single line 512 pixels wide. This line

of data might consist of 512 different intensity values, or one value for each pixel.

The routine scans through the data line the values are compared and positions of

each intensity are saved. This is done by starting at one end a comparing each

pixel with its neighbor.

For example if one had the data given in figure 9 where 0 represents white

and 9 represents black and the value's in-between represents an increase shade of

gray. The routine would start at 3 and check to see if the neighboring pixel was

higher or lower since it is higher it will change the value of the pixel from 3 to 0

and move to the next pixel ect ... When the routine gets to the 8 its neighbor is 7,

so it saves the position of pixel 8, changes it's value to 9 and proceeds. Figure 10

shows the results of this example line of data after it passes through the first image

processing routine. This process returns the peaks for the black fringes. A similar

routine is used for the white fringes except the check would be for the white pixels.

19

0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0

Figure 10. Sample data after the first image processing routine.

Once the file of the fringe pattern has been converted to and image pattern

of lines another routine is used to cut out the area of the file to be used. This

routine is necessary since the frame grabber is not adjustable for the exact frame

size of the picture needed. It simply prompts the user for the dimensions to which

the image should be reduced and returns a new image file of the curtailed image.

It can be seen in figure 11 that the usable data is limited to a certain area so it

must be removed before further processing.

The next routine will create lines from the processed image file. The routine

will take each line in the image file and make individual line files. These line files

are made by starting in one corner of the image file and proceeding across until

the beginning of an individual line is found. Then it proceeds up the line recording

the location of the data for that specific line for an individual line file. At the end

of the line the routine picks up just to the right of where the last line started and

proceeds to find another line.

For example in figure 12 the routine is moving up the first full line of data.

The solid line represents the data recorded in the first line file. The pixels that

have been used are turned the same color as the background so that they will not

be used again. At point a the routine is searching for the next black pixeL It

searches at a search radius of R. This R is set by the user and can be changed

depending of the quality of the image file produced thus far. At the top of the first

column of data the first line file will be closed. The position moves to the pixel

that is now the most left black pixel on the first row of data, and the second line

file will be opened. This process is continued until all of the black pixels on the

first line of the image file are white.

20

Figure 11. a) Original image file b) Cut image file

TOP • • • • • • • • • • • • • • •
• • • • • • ~

• • • • • R • • • /~
, __

•
~ • • ~

A • • • • •
• • • • • • •

' • • • •

FIRST POINT SECOND

LINE FILE

Figure 12. Diagram of constructing the line files.

21

One problem with this routine used to build the line files is the fact that

the data in the image may have data that drifts off the actual path. This rnay

be caused by a scratch in the phase object or sharp defect within the material.

Adjusting the resolution can sometimes fix this problem but not always. Figure

13 a) shows broken areas in data of the dark fringes that are going to cause a

problem in building the line file. In figure 13 b)-d) show where the some of the

line files ended prematurely because there were no pixels within the search radius

to continue the line(s). We had to use a search radius of 20 to get complete line

file data from the image file shown in figure 13 e), but by extending the search

radius to 23 the lines cross over producing undesirable data. One can see that the

search radius must be select carefully depending on the quality of the image file

and the deformations of the fringes.

The first three routines are standard for our purposes. They do not require

any special set up but the smoothing routine may or may not be used depending

on the resolution and the quality of the image that has been manipulated thus far.

The image file can be smoothed again by a smoothing filter routine if necessary.

The smoothing is done by a simple averaging of the data file. One problem is that

the more an image is smoothed the more data precision is lost, but the lines in the

file must be continuous for the next routine to work properly. Obviously there is

a trade off here to get usable data, but there is sometimes a need for reducing the

precision of the image so that the lines will remain continuous.

The smoothed individual files can now be manipulated to find the slope of

each individual fringe at known sections of the fringe. Line regression is the process

used to obtain this slope. The routine can be modified to calculate the slopes over

a longer or shorter section of the line.

Once the individual lines are constructed and the localized slopes are found.

The map of the ray deflection can be plotted. Since the line files have lost some

of their accuracy as they are manipulated the desire is to filter and smooth only

as much as necessary to produce the most accurate information.

radius= 5 22

~ t CC{l-j'l: b)::
\I,//)/. t 250

l 1(/f/ ~ 200

150

I f I) \ (.

1

:

c) radius= 7 d) radius = 12

e) radius = 20

300

250

200

150 {,
(

100 ('

(100
(

50 ' 50

0
0 50 100 150 200 250 300 3SC

0
0 50 100 150 200 250 350

Figure 13. a) Diagram of data that is noncontinuous b)- f) Examples of broken
line files when the search radius is 5, 7,12,20,23

ijun)

I

0 2 4 6 10
(.5cm)

-2
0
2

4 {.Scm)
6

6
10

12

14

Figure 14. Surface map of the distorted plexi glass plate

23

By using other more complex algorithms some more accuracy might be saved

in the process of finding the focal map. Another way to get more accuracy is to

use the intensity across the entire fringe. The intensity of the fringe is a sine wave

and greater precision might be achieved by using this information.

Testing of the Routines

To test the routines previously described a phase object of known dimension

was needed. This element was obtained by taking a two inch square piece of plexi

glass that was a quarter of an inch thick and slightly polishing out an indention.

After polishing, measurements of the surface were taken using a dial indicator.

Setting the plastic on three steel ball bearings to simulate a flat surface the thick­

ness of the plastic was recorded. Figure 14 is a plot of the surface of the phase

object.

Placing the phase object into the deflectornetry set up the fringe pattern

was photographed. The pattern has become distorted from the original plexi glass

without polishing as seen in the figure 15.

Processing the fringe patterns through thE' cornputer routines the slopes of

the original fringes and the distorted fringes can co1n pared. following figure

shows the lines of rnaxnnurn and n1inirTmrrt intensities extracted fro1u thr irnage.

It can be seen in figure 16 that there is twice as n1uch inforrnallnn when dark

and bright extrernes are used ccnnpared to using only the bnght fringe patteru as

shovvn in the previous figure. In principle. the nurnber of lines and the resolution

of the grid of lines can be increased by following the constant intensity aloHg thf'

fringes.

Estimating the relative slope, rn, is done by using thE' slope rout.uw. The

slopes are calculated using linear regression. This slope can be used to calculate

the ray deflection. In the figure 17 the slope is presented over the segrnent lengths

10. 20 and :2.5 elements.

It can be seen that the longer the segrnent the srnoother the slopt· rurve.

There is son1e loss in the arnplitude for the 25 length segn1ent con1pared to the 10

length segr11ent) but for the combined m<1p of the slopes this srnnothness is needeci.

Of course more smoothing could done but with a loss of ntore of the arnplitude

and resolution. This infonnation IS used to plot the ray deflection roap.

By plotting the localized slopes frorn each line together the n1ap of the r<1y

deftPction was created. It can be seen in figure 18 that the slope is rh<1nging in the

area of the created distortion. This change is directly related to a change 1n the

local focal length.

Using the technique that has been explained above, one can also see the

changes of the ray deflections in a canopy. Using the canopy as the phase object

it can be seen that the fringe pattern is unchanged unless the focal length in

the material changes. By inspection of the fringe pattern one can irnrnediately

see where the focal length is ch<1nging, but to determine the change the series of

routines must be applied.

\ \I

I l \ (\
Figure 15. a) 1.1oire fringes of original plastic piece, b) moire fringes of the same

plastic piece after small deformation has been polished, c) computer
image of fringes.

y y
300 lXI

I

I
250 250 I

I
1
\
)

zoo 200 !

{
)

f

L50 150 ~:.
I I

f

100 f
LOO ',

) ' \ '
50 50 II: .

I r \ {
\

0 35(x 35•x 0 50 100 150 200 250 300 50 100 150 200 250 300

Figure 16. Computer matched lines of bright and dark fringes. a) Unsmoothed
lines, b) Smoothed lines.

26

0.7 .-----,----.,..-----r---.,.------r------.
0.6

0.1

-o.t

-o.2

-o,3
-o.c~----_. _____ L-____ _. ______ L-____ _. ___ --J

0 50 100 150
0.1 ,------,----T-"---......,...---....------....----

-o.3
0 50 100 150 200

0.6 -·-----

0,5

0.4

0,3

slope 0.2

0,1

0

-o.t

-o.2

-o.3~-----~-------L----__ _. _____ ~~------J

o 50 line position of slope 250

Figure 17. Slope files of 10, 20 and 25 length segments

0.8

0.6

0.4

slope 0.2

0.0

-0.2

line number

-5
-50 50 100 150

line J)Oaition of slope

Figure 18. Fringe slope map of the plastic phase object

200

., ...

..,(

CHAPTER V

APPLICATIOK TO CAl\OPY

The following figures are to shov; how the rnoire procedure can nsed to

create a localized slope rnap of the canopy. In hgure 19. all elernent of the canopy

and the fringes fron-t a section of the canopy are shown.

For this set of fringes the distance between gratings is .3. =SO rnn1 and the

angle between gratings is o =.0322 rad.

Large defects seen 1n figure 19 a) are vivid with the eye. For srnaller defects

the ccnn pu ter processing can be used to o bta.i n their pus It ion. T hf' coru put f'r

routines \\'ill return the localized slope change of all defects.

Figure 19. a) element of the canopy b) moire fnnges frorn small area of san-te

canopy

29

y .
1

/ / J

0 2~. 40) _ 20 40 ~o ao 100 12q_ 140 16(X

Figure 20. a) computer fit fringes, b) smoothed version of fit fringe lines

The figure 20 shows that the computer generated fringe pattern reveals

changing slopes of the fringes. The slope change over this section of the canopy is

plotted in the figure 21.

One can see that there is a definite change in the slope and that corresponds

to a change in the local focal length in the material that makes up the canopy or

a change in the surface of the canopy itself.

line number

0 5 10 15

0

50

100

150

200

250 ~--------------------------~
line position of slope

0.6

0.4

slope

30

Figure 21. Fringe slope map of a section of the canopy presented in figure 20

CHAPTER VI

CONCLUSIONS

The moire deflectometry technique can be used as a utility to map the ray

deflection a curved surface. Processing the moire fringe patterns with the com­

puter routines and using the simple equations based on geometric optics the ray

deflections of a phase object can be plotted. It has been shown that large defects

in the canopy that can be detected by the eye and smaller defects can both be

detected by the computer.

By varying different filters and smoothing routines the fringes can be pro­

cessed for various phase objects. For the canopy one section was shown where

the sensitivity and the resolution were set. For other areas of the canopy the

parameters may need to vary to get a different resolution for the fringe pattern.

For different resolutions more or less smoothing may need to be done. Making

routines adjustable was the desire for this project. Therefore, it is hard to give

specific settings for a general phase object. By setting the variables for the canopy

one may find difficulties in getting precise results for the entire canopy.

The goals now are to improve the precision of the process and to establish a

computer routine that might fill in the gaps where the digitized image information

is not complete or gets filtered out. This will take programming of a smart routine

that will not only scan the next pixel but also read pixel values ahead and move in

the weighted direction. Scaling of the ray deflection is needed to produce the focal

map of the phase object. This ratio not only varies depending on the sensitivity

and distance between gratings, but also depends on pixel width and smoothing.

When using moire techniques, the capabilities for adjustments are at least

simpler, since there is less concern with the alignment of the system. The method

31

32

also has the capabilities of adjustable sensitivity and resolution. These are definite

advantages when measuring the defects in a curved phase object.

BIBLIOGRAPHY

1. E. Hecht, and J. Feinberg, Optics, Addison- Wesley, Massachusetts,1987).

2. Z. Karny and 0. Kafri, Appl. Opt. 21, 3326 (1982).

3. 0. Kafri and A. Livnat, Appl. Opt. 20, 3098 (1981).

4. 0. Kafri and I. Glatt, The Physics of Moire Metrology (Wiley, New
York, 1990).

5. 0. Kafri and A. Livnat, Opt. Eng. 24, 150 (1985).

6. J. Krasinski, D.F. Heller, and 0. Kafri, Appl, Opt. 24, 3032 (1985).

7. 0. Kafri, Opt. Lett. 5, 55.5 (1980).

8. M. Born and E. vVolf, Principles of Optics, (Pergamon Press, 1970).

9. E. Keren and 0. Kafri, J. Opt. Soc. Am. 2, 111 (1985).

10. K. Gasvik, Appl. Opt. 22, 3543 (1983).

33

APPENDIX

CO~ROtmNES

34

maresmob.c reads in a raw file and then extracts black lines by using a peak
filtering routine with a thirteen point smoothing routine .,

#include <stdio.h>
#include <math.h>
Fll.E •in file •out file· - ' - '
int ij,k, 1• counters •1

N = 512, I* number of rows •1
m, 1• number of lines to skip */
number,
header size = 512,
row len= 512·

1• size of header */

- '
1• number of samples in row •1

unsigned char
in_buffer£512],

out_ buffer[512];
char

infi1[81],
outfi1[81];

I* array to read in binary file */

float x.,y 7-,
smooth[512],
sample[512],
derivative[512]

;mainO
{

banner:
printf("···••\n");
printf("• interferometric fringe processing progam *\n")~
printf("* last update Aug. 23, 1993 *\n");
printf(" •• *\n");

printft" \n ");
querry: I* prompt user for the file name to be used and the file name

to be created. */
printf("name of input file 7");
scanf("o/os", infil);
printf("\n");
printf("name of output file 7");
scanf("%s", outfit);
printf("\n");

if ((in_ file = fopen(infil, "r"}) = NULL){
printf("YOU IDIOTt!! There's no such file!\n ");
return 1;
}

out_ tile = fopen(outfit, "w+"); /*read in digitized image*/
I* strip off first 512 bytes (header) •1
fread((char *) in_ buffer,sizeof(unsigned char), row _len, in_ tile);

35

I* use 5 point smoothing filter, result is float */
for(i=O; i <= N-1; i++){
number= fread((char *) in_buffer,sizeof(unsigned char),row_len, in_file);
for(j=6;j<= row_len-7;j++)

smooth[i] = (in_buffer[j-6] + in_buffer[i-5] + in_buffer[i-1]
+ in-buffer[i-3] + in-buffer[j-2] + in-buffer[j-1]
+ in_buffer[i] + in_buffer[i+1] + in_buffer[i+2]
+ in_buffer[j+3] + in_buffer[i-4] + in_buffer[i+5]
+ in_buffer[i+6])/13.0;

smooth[OJ = smooth[1] = smooth[2 J = smooth[3] = smooth[4] =smooth[5]
= smooth[6];

smooth[row _len-1] = smooth[row _len-2] = smooth[row _len-3]
= smooth[row_len-4] = smooth[row_len-5]
= smooth[row_len-6] = smooth[row_len-7];

for(j=O; j<= row _len-2; j++)
derivative[i] = (smoothfj+ 1]·smooth[i]);

derivative[row_len-1] = derivative[row_len-2];
for(j=2; j<= row _len-3; j++)
samplefj] = derivativefj-2] + derivativefj-1]+ derivativefj] +

derivativefj+ 1] + derivativefj+2];
sample[O] =sample[I]= sample[2];
sam.ple[row_len-1] = sample[row_len-2] = sample[row_len-3];

for(j=1;j<= row_len-l;j++){
out_buffer(i] = 255;

/*if (samplefj] > 0.0 && samplefj-1] < 0.0)
out_bufferfj] = 0; *I

if (samplefj] < 0.0 && sample[j-1] > 0.0) /*check for valleys*/
out_ bufferfj] = 0;
}

out_ buffer(OJ = 255;
fwrite((char *) out_buffer,sizeof(unsigned char), row_len, out_file)j*write info to

file*/
}

fclose(in _file);
fclose(out_ file);

} I* end of main*/

••
•••

I* moresmob.c reads in a raw file and then extracts black: lines
using a thirteen point smoothing filter .,

#include <st.dio.h>
##include <math.h>

36

FILE *in file *out file· - , - '
int ij)c, I* counters •1

N = 512, I* number of rows */
m, /* number of lines to skip •1
number,
header_size = 512,
row _len= 512;

I* size of header •1
I* number of samples in row */

WJSigned char
in_buffer[512],

out_ buffer[512];
char

infi1[81],
outfil[Sl];

1• array to read in binary file •1

float x,y .;L.,

smooth[512],
sample[512],
derivative[512]

;mainO
{

banner:
printf("•··••\n");
printf("* interferometric fringe processing progam •\n");
printf("• last update Sept.6, 1993 •\n");
printf("··•••\n");
printf(" \n");

querry:
printf("name of input file ?");
scanf("o/os", infil);
printf("\n ");
printf("name of ou1put file?");
scanf("o/os", outfil);
printf("\n ");

if((in_file = fopen(infil,"r")) =NULL){
printf("YOU IDIOT!!! There's no such file!\n");
return 1;
}

out_ file= fopen(outfil,"w+");
I* strip off first 512 bytes (header) •1
fread((char •) in_buffer,sizeof(unsigned char), row_len, in_file);
I* use 5 point smoothing filter, result is float •1
for(i=<>; i <= N-1; i++){
number= fread((char *) in_buffer,sizeof(unsigned char),row_len, in_file);
for(j=6; j<= row_len-7;j-t+)

smooth[j] = (in_bufferfj-6] + in_buffer[j-5] + in_buffer(j·l]
+ in-buffer[j-3] + in-buffet[j-2] + in-bufferfj-1]
+ in_buffet(j] + in_buffet[j+1] + in_buffer[j+2]

37

+ in_buffer[j+3] + in_bu.ffer[j-4] + in_buffer[j+5]
+ in_buffer[j+6])/13.0;

smooth[O] = smooth[1] = smooth[2] = smooth[3] = smooth[4] =smooth[5]
= smooth[6];

am.ooth[row_len-1] = smooth[row_len-2] = smooth[row_len-3]
= smooth[row _len-4] = smooth[row _len-5]
=smooth[row _len-6] =smooth(row _len-7];

for(j=O; j<= row _len.-2; j++)
derivative[j] = (smooth[j+ 1]-smooth[j]);

derivative[row_len-1] = derivative[row_len-2];
for(i=2; j<= row _len-3; j++)
sample[j] = derivative[j-2] + derivative[j-1]+ derivative[j] +

derivative[j+ 1] + derivativefj+2];
sample[O] =sample[I]= sample[2];
sample[row_len-1] = sample[row_len-2] = sample[row_len-3];

for(i= 1; j<= row _len-1; j++){
out_bufferfj] = 255;

/*if(samplefj] > 0.0 && samplefj-1] <0.0)
out_bufferfj] = 0; •1

if (samplefj] < 0.0 && samplefj-1] > 0. 0) I* check for peaks in bright fringes• I
out_ buffer[j] = 0;
}

out_buffer[O] = 255;
fwrite((char *) out_bu.ffer,sizeof(unsigaed. char), row_len, out_file);
}

fclose(in _file);
fclose(out_ tile);

} I* end of main*/

••
••

I*
grow2b.c ··grow the dots into a series of lines and store the lines This program takes the
choped image and generates a line file for each individual line by connecting the data
points from the chopped image for an output file of the following type 'lineOO' and will
increment by faetor of 2 . . ,
#include <stdio.h>
#include <math.h>
FILE •in _file, •out _file, *line_ file~
int iJ,k, I* counters • I

kk, jj, radius, I* max distance for search */
number,

38

sample,
line_ count,
row_size,
column size,
x_pointer,

past_ x_pointer,
past_y _pointer,
y_pointer;

unsigUed char
frame[512][512],
in_buffer[512],
out_ buffer[512];

I* work area for picture • I

char
infil[Sl],
linefil[Sl],

outfil[Sl];

I* array to read in binary file • I
I* name of line output file •1
,. name of output file mmus line •J

mainO
{
banner:

printf(" \n");
printf("···~");
printf("* grow2b.c --grow a series of line files *\n");
printfl:"• last update July 23, 1993 •\n");
printf("• ••• •\n");

printf(" \n");
querry:

printf("name of input file ?");
scanf("o/os", intil);
printft"\n ");
printf("name of line file?.");
scanf("o/os", linefil);
printf("\n ");
printf("size of search radius ?");
scanf("o/od", &radius);
printf("\n");
printfl:"\nlength of rows? ");
scanf("o/od", &row_ size);
printf("\nlength of cobmms? ");
scanf("o/od", &column_ size);
printf("row_size = o/od\n" ,row_size);
printfl:"colunm _size = o/od\n" ,column_ size);

if((in_ tile= fopen(infil,"r")) ==NULL){
printfl:"YOU IDIOT!!! There's no such file!\n ");

39

retum 1;
}

line_ file = fopen(linefil, "w+");

I* read into array frame •1
for(i=O; i<= column_size-1; i++){
number= fread((char *) in_buffer,sizeof(unsigned cbar),row_size, in_file);
for(j=O; j<= row_size-1; j++) frameli][i] = in_buffer[j];
}

fclose(in _file);
for(jj = 0; jj<=2; jj++){
for(kk = 1~<=5;kk++){
line _file = fopen(linefil, "w+");
y _pointer = jj;
x_pointer =radius;
while(frame[x_pointer][y_pointer] = 255 && x_pointer < row_size-1){

x_pointeri+;
}

frame[X _pointer][y _pointer] = 255;
fprintf(line _file, "o/od o/od\n" ,x _pointer, y _pointer); I* go to next scan line */

past _y _pointer = y _pointer~
do{ y _pointeri+;

past_x _pointer = x _pointer;
x_pointer = x_pointer ·radius;
while(frame[x_pointer][y_pointer] = 255 && x_pointer < row_size-1){

X _pointeri+;
}

if (x_pointer < past_ x _pointer + radius && y _pointer < past_y _pointer + 5) {
frame[X _pointer}[y _pointer] = 255;
fprintf(line _file, "o/od o/od\n" ,x _pointer, y _pointer);
past_y _pointer = y _pointer;
}

else{

}

x _pointer = past_ x_pointer;
}

'While (x _pointer> radius && x_pointer <row_ size ·1 &&
y_pointer < column_aize);

fclose(line _file);
linefil[5]+=2;
} 1• end ofkk loop *I

linefi1[5] = linefi1[5) • 10; linefil[4]++;
} I* end ofjj loop*/
/*fclose(out_ file); •1

} I* end of main *I

40

••
•••

I*
grow2w.c- grow the dots into a series of lines and store the lines This program takes the
choped image and generates a line file for each individual line by connecting the data
points from the chopped image for an output file of the following type 'lineO 1' and will
increment by factor of two . . ,
#include <stdio.h>
#include <math.h>
FilE •in_file, •out_file, *line_file;
int iJ,k, I* counters */

kk,jj,
radius, I* max distance for search */
number,
sample,
line_ count,
row_size,
column_ size
x_pointer,
past_ x _pointer,
past _y _pointer,
y_pointer;

unsigned char
frame£512][512],
in-buffer(512],

out_ buffer[512];
char

infil[Sl],
linefil[Sl],
outfi1(81];

mainO
{

banner:

I* work area for picture *I

I* array to read in binary file */
I* name of line output file */
I* name of output file minus line */

printf(" \n ");
~~"···••\n");
~tf("* grow2w.c- grow a series of line files *\n");
printf("* last update Sept 25, 1993 *\n");

~tf("···••\n");
printf(" \n ");

querry:
printf("name of input file ?");

scanf("o/oa", infil);
~~"\n");
printf("name of line file ?");

41

scanf("o/as", linefil);
printft"\n");
printf(''size of search radius?");
scanf("o/od", &radius);
printft"\n ");
printf("\nlength of rows? ");
scanf("o/od", &row_ size);
printf("\nnumber of columns? ");
scanf("CJiod", &column_ size);
printft"row _size = CJiod\n" ,row_ size);
printf("column_size = o/od\n",column_size);

if ((in_ tile = fopen(infil, "r")) = NUlL){
printf("YOU IDIOT!!! There's no such file!\n");
return 1;
}

line_ file = fopen(linefil, "w+");

I* read into array frame */
for(i=O; i<= column_size-1; i++){
number = fread((char *) in_ buffer,sizeof(unaigned char),row _size,

in_file);
for(j=O;j<= row_size-1;j++)
frame[j][i] = in-bufferfj];

}
fclose(in_file);
for(ij = O;jj<=l;jj++){
for(kk= 1~<=5~++){
line_ file = fopen(linefil, ''w+");
y _pointer = jj;
x _pointer = radius;
while(frame[x_pointer][y_pointer] = 255 && x_pointer < row_size-1){

X _pointer++;
}

frame(x _pointer][y _pointer] = 255;
fprintf(line-file, "CJiod o/od\n" ,X _pointer, y _pointer);
I* go to next scan line •1
put _y _pointer= y _pointer;
do{

y _pointer++;
past_ X _pointer = X _pointer;
X _pointer = X _pointer • radius;
while(frame[x_pointer][y_pointer] = 255 && x_pointer < row_size-1){

X _pointer++~
}

if (x _pointer < pe.st_x _pointer + radius && y _pointer < past _y _pointer+ 5){

42

frame[X _pointer] (y _pointer] = 255;
fprintf(line _file, "o/od o/od\n" ,x _pointer, y _pointer)~
past_y _pointer = y _pointer;
}

else{
X _pointer = past_ X _pointer;
}

} while (x _pointer> radius && x _pointer <row_ size -1 &&
y _pointer < column_ size);

fclose(line _file);
linefil[5]+=2;
} 1• end ofkk loop •1

linefi1[5] = linefil[5] - 10; linefil[4]-++;
} 1• end ofjj loop •1
l•fclose(out_file); •1
} 1• end of main •1

••
•
••

I*
chop.c -- clip out relavant portion of a binary image user is promted to for the file to be

cut and at the djminsions desired.
•I
#include <stdio.h>
#include <math.h>

FILE •in file •out file· - ' - '
int iJ ,k, I* counters • I

N = 512, I* number of rows
row_ info_ size,
column _info_ start,
column_ info_ size,
row_ info_ start,
number,
header_size = 512,
row len= 512· - '

unsigned char
in_ butfer[512],

out_ buffer(512];
char

infil[Bl],
outtil[Bl];

main()
{

/*sizeofbM~ •1
1• number of samples in row •1

1• array to read in binary file • I

43

banner:
printf(" \n ");
printf("···~");
printf("* chop-· clips out portion of binary file *\n");
printf("* last update June 29, 1993 *\nn);
printf("···••\n");
printf(" \n ") ~

querry:
printfl:"name of input file ?");
scanf("o/os ", infil);
printf("\n ");
printf("name of output file ? ..);
scanf("o/os", outfil);
printf("\n ");
printf("what is first scanline with information? ");
scanf("o/od", &row_ info_ start);
printf("\nhow many scanlines contain information?");
scanf("o/od", &row_ info_ size);
printf("\nwbat is first column with information?");
scanf("o/od", &column_ info_ start);
printfl:"\nhow many scanlines contain information?");
scanf(''o/od", &column_ info_ size);
printf("row _info_ start = o/od\n", row_ info_ start);
printf("row_info_size = o/od\n" ,row_info_size);
printf('•column _info_ start = o/od\n" ,column_ info _start);
printf('•colunm _info _size = o/od\n" ,column_ info_ size);

if ((in_ file = fopen(infil, "r")) = NULL) {
printf("YOU IDIOT!!! There's no such file!\n")~
return I;
}

out_ file = fopen(outfil, "w+");
I* strip off first 512 bytes (header) */
for(i=O; i<=row _info_ start-1 ~ i++)
fread((char *) in_ buffer ,sizeof(un.signed char), row _len, in_ file);

I* use 5 point smoothing filter, result is float*/
for(i=O; i <= row_info_size-1; i++){

number= fread((char *) in_buffer,sizeof(un.signed char)row_len, in_file)~
k=O~
for(i=column _info_ start-!; j<= column_ info_ size+column _info_ start-1; j++){
out-buffer(k] = in-butfer[j] ~
k++;
}

&rite((char*) out_buffer,sizeof(unsigned char), column_info_size;out_tile);
}

fclose(in _file);

44

fclose(out_ file);
} It end of main *I

••
••

I* smoothline.c ·takes lines from lineOO ··line19 files and smooths them out
to line40 - line 59 files using a twenty on point filter .,

#include<stdio.h>
#include<math.h>
FILE *in file *out file· - ' - '
int ii,ij,k,

counter= 0,
x,y,
ch=O;

unsigned char
in-buffer[512],
out_ buffer[512];

char
bogus[81],
infi1[81] = "lineOO"'
outfi1[81] = "line40";

int
sample,
line(512][2];

mainO
{
for(j=O~<=l~++){ fot(i=O; i<=9; i++){
counter= 0;
printf{"fileo/os\n" ,infil);
printf("number of lines read= o/od\n",counter);
in_ file = fopen(infil, "r");

k=O;
do{
fscanf(in_file, "o/od 'Yod",&y,&x);
line[k](O] = x;
line[k](1] = y;
k++;
counter++;
} while ((ch = getc(in_file)) != EOF);

printf("end of file reached\n");
printf("number of lines read = o/od\n", counter);
if (cotmter > 20) {
out_ file = fopen(outfit, "w+");
for(ii=11 ;ii<=counter-19;ii++){

4S

sample= line[ii-I][I]+line[ii+ I][1 }+line[ii][1];
sample= sample+line[ii-2][I]+line[ii+2][1];
sample= sample+line[ii-3](I]+line[ii+3][1];
sample= sample+line[ii-4][I]+line[ii+4][I];
sample= sample+line[ii-5][I]+line[ii+5][1];
sample= sample+line[ii-6](l]+line(ii+6][I];
sample= sample+line[ii-7][I]+line[ii+7][1];
sample= sample+line[ii-8][I]+line[ii+8][1L
sample= sample+line[ii-9][l]+line(ii+9][1];
sample= sample+line[ii-IO](l]+line(ii+IO](I];
sample= sam.ple/21.0;
fprintf(out_file, "o/od o/od\n" ,sample,line[ii][O]);
}

fclose(out_ file);
outfil[5] =outfit[5] +I ;
}
/*printf("press 'j'");
scan:f("o/os" ,bogus)~

•t fclose(in_file);
infil[5] = infil[5] + I;

} /*end of rea.ding files loop •1
infil(5] = infi1[5] -IO;
infi1[4] = infi1[4] +1;
outfil[5] = outfil[5] • 1 0;
outfil[4]=outfil[4] + 1;
} /*end ofj loop*/

} /*end of main *I

••
••
••
I*

rtemp.c- set the bent line in an array then calculates the slope by
line regression. Calculates the local slope and places them into a file
so the user can plot the localized slope map of all files.

#include<stdio.h>
#include<math.h>
FILE *in l_file,

•out file· - ' int ijJj,k)ck,s,t,size=5,segm.=25,counter=O;
float value[350](2],sslop=30,slo[350],a1[350],tana,d=70.0,theta=.0565,focal,

sumx,sumy,sumxx,sumxy,x,y,ch=O.O;
unsigned char

46

in 1_ buffer[3 90],
out_ buffer[3 90];

char
infi11 [261] = "line40"'
outfi1[261] = "reg340";

mainO
{
for(s=O;s<=l ;s++){
for(t=O; t<=9; t++){
counter= 0;
if((inl_file = fopen(infill,"r")) NULL){

printf("no such displaced file\n");
return 1;
}

k=O;
do{

fscanf(in 1_ file, "%f %£'' ,&x,&y);
value[k] [1] =x;
value[k] [2]=y;
k++;
counter++;

} while ((ch = getc(in1_ file)) != EOF);
printf{"end of file o/od reached\n" ,counter);
printf ("o/od\n" ,counter);
ift(out_ file = fopen(outfil, "w+")) NULL) {

printf("no such output file\n");
return 1;

}
for(i=OJ<---counter-segm-1 ~++) {

slo[j+segm/2] = (valueU+segm-1][1]-value[j][I])/
(value[j+segm-1][2]-value[j][2]);

}
for(j=segm/2j<=counter-segm-l J++) {

for (i=1; i<=segm;i++){

}

a1U] = a1 UJ + slo[j+i];
}

a1U] = a1U]/segm;
tana=(sslop-1/a 1 [j])/(1 +sslop*a 1 [j]);
focal=d/(theta *tana);
fprintf(out_file, "o/of\n" ,a 1 [j]);

fclose(out _file);
outfil[5] =outfit[5] + 1 ;
close(in1_file);
infill[5] = inti11[5] + 1;
}

47

infi11[5] = infi11[5] -10;
infil1[4] = infi11[4] +I;
outfil[5] = outfil[5] • 1 0;
outfit[4]=outfit[4] + 1;
} /*end ofj loop*/

} /*end of main *I

48

VITA

CARL LOPEZ

Candidate for the Degree of

Master of Science

Thesis: APPLICATION OF MOIRE TECHNIQUE AND QUALITY CON­
TROL OF A TRANSPARENT OBJECT

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Edmond, Oklahoma, November 11, 1967, the son
of William and Glenda Lopez, and Married to Denise Layne Stenner
August 7, 1993.

Education: Received Bachelor of Science Degree in Physics from Oklahoma
Baptist University, Shawnee, Oklahoma, May, 1990; completed the re­
quirements for the Master of Science degree at Oklahoma State Uni­
versity, Stillwater, Oklahoma, December, 1993.

	Image1.tif
	Image2.tif
	Image3.tif
	Image4.tif
	Image5.tif
	Image6.tif
	Image7.tif
	Image8.tif
	Image9.tif
	Image10.tif
	Image11.tif
	Image12.tif
	Image13.tif
	Image14.tif
	Image15.tif
	Image16.tif
	Image17.tif
	Image18.tif
	Image19.tif
	Image20.tif
	Image21.tif
	Image22.tif
	Image23.tif
	Image24.tif
	Image25.tif
	Image26.tif
	Image27.tif
	Image28.tif
	Image29.tif
	Image30.tif
	Image31.tif
	Image32.tif
	Image33.tif
	Image34.tif
	Image35.tif
	Image36.tif
	Image37.tif
	Image38.tif
	Image39.tif
	Image40.tif
	Image41.tif
	Image42.tif
	Image43.tif
	Image44.tif
	Image45.tif
	Image46.tif
	Image47.tif
	Image48.tif
	Image49.tif
	Image50.tif
	Image51.tif
	Image52.tif
	Image53.tif
	Image54.tif
	Image55.tif

