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Chapter I 

INTRODUCTION 

Twenty percent of the American population is obese (56) Obesity predisposes 

individuals to develop metabolic diseases such as noninsulin-dependent cbh:tL:~ :::cl!i::..~s 

(NIDDM). Eighty five percent of NIDDM patients are obese (158). 

Obesity, insulin-dependent diabetes mellitus (IDDM) and NIDDM are characterized 

by impaired blood glucose homeostasis. Blood or plasma glucose level is controlled 

mainly by the two pancreatic hormones, insulin and glucagon. Insulin promotes glucose 

uptake and utilization in tissues (e.g., muscle) while glucagon enhances hepatic glucose 

output that serves to increase the plasma glucose level. An imbalance between insulin and 

glucagm~ will affect the plasma glucose concentration. 

Elevated plasma insulin concentration (hyperinsulinemia) and defective insulin action 

(i.e., insulin resistance) in the insulin target tissues are common in obese humans and 

animals. However, whether or not plasma glucagon level is altered by obesity is not 

clear. 

Reports on the effects of obesity on glucagon metabolism are conflicting, perhaps 

because a method for accurate measurement of plasma glucagon has not been well 

established. Quantification of plasma glucagon by RIA is complicated by the presence of 

large molecular weight plasma proteins that express glucagon-like immunoreactivity. In 

addition to the technical difficulties associated with measuring plasma glucagon, study 



of metabolic defects in obesity oftr :mes is limited by the availability of obese subjects 

or an obese animal model. The etiology of obesity also may be an important determinant 

of how obesity affects glucagon metabolism in humans. 

With access to an established obese animal model (102), this study was able to 

:nvestigate glucagon metabolism in dietary obese sheep. Dietary obese sheep suffer 

metabolic defects that are similar to those found in obese l:umans. Obese sheep are 

hyperinsulinemic, hyperglycemic and insulin resistant. The dietary obese sheep should 

be an unique animal model for study of obesity simply because the cause of obesity is 

known. Variables such as diet type, energy intake, environment, age and sex of the 

animal are controlled in lean and obese sheep. 

The overall objective of this study was to identify the pathophysiological changes in 

glucagon metabolism in dietary obesity. The specific objectives of this study were: 1) to 

establish a reliable method to quantify plasma glucagon concentration, 2) to deter::1ine 

the whole-body kinetics of glucagon in lean and obese sheep, 3) to determine how obesity 

affected the molecular profile of plasma immunoreactive glucagon under basal conditions 

and after arginine-induced rises in plasma IRG concentration, and 4) to detennine if a­

cell responsiveness to arginine stimulation differed in lean and obese sheep. 
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INTRODUCTION 

Chapter II 

LITERATURE REVIEW 

Insulin was the first and glucagon was the second pancreatic islet hormone to be 

discovered. Murlin et al (114) unknowingly identified glucagon in 1923 when they 

reported that aqueous extract of the dog pancreas contained a hyperglycemic­

glycogenoly:ic factor (HGF). It was this contaminant in the early insuiin preparations that 

produced a short period of hyperglycemia in insulin-treated patients. This observation 

enhanced interest in glucagon research. Sutherland (154) and Heard (66) in 1948 

demonstrated the preser,ce of HGF activities in extracts of pancreas, mucosal cells of 

small intestinal, and gastric mucosa in several species, but pancreatic tissue contained the 

greatest amount of HGF. 

Glucagon was first purified from pancreas and was identified as a peptide hormone 

by Staub (151) in 1953. The amino acid sequence of glucagon was reported by Bramer 

in 1957 (28), and glucagon was first measured in plasma by Unger (159) usmg 

radioimmunoassay (RIA). 

Relative to studies on insulin metabolism, glucagon research has proceeded slowly. 

However, it is known that glucagon is synthesized by the preprohormone pathway and 

that progluc::g' •:t L', •nt:ti:ls multiple bioactive pep tides (70, 78). The physiological 

significance of most pro glucagon gene products still remains unclear but knowledge about 

3 



regulation of glucagon secretion and glucagon action a: the cellular and moiecular level 

is growing (70, 78, 91). 

GLUCAGON SYNTHESIS 

Glucagon Structure 

Glucagon is a linear polypeptide hormone that contains 29 amino acids; it has a 

molecular weight of 3,485 daltons (28; Figure 1). The amino acid sequence of glucagon 

is identical in most mammalian species (153). Glucagon is classified as a member of the 

secretin family of hormo:1es because of its homologous strucrure to secretin, vasoactive 

inhibitory peptide (VIP) and gastric inhibitory peptide (GIP) at amino acids 6, 10, 13, 

19, 22, 23, 25, 26, 27 (158). 

NH2 - His - Ser - Gin - Gly - Thr - Phe - Thr - Scr - Asp - Tyr - Ser - Lys - Ty: - Leu - Asp - Ser -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Arg - Arg - Ala - Gin - Asp - Phe - Val - G!n - T:-p - l.eu - Met - Asn - Thr- COOH 
17 18 19 20 21 22 23 24 25 26 27 28 29 

Figure 1. Amino acid sequence of glucagon (28). 

Proglucagon Gene 

Glucagon is synthesized as a 180 amino acid preprohormone which has a molecular 

weight of 12,000 daltons. In most mammalian species, including human and sheep, the 

proglucagon gene is expressed in alpha cells of the pancreas and mucosal cells of the 

small intestine (32. 41, 110, 119). In both the pancreas and the gut, the signal sequence 

of preproglucagon is removed as the proglucagon protein enters the rough e~doplasmic 

reticulum (RER). Subsequently, part of the RER membrane is pinched off and for:ns 

4 



microvesicles which contain the proglucagon ;_Jrotein. Tissue specific cleavage of the 

pro glucagon starts in micro vesicles and continues after the CJ.icrovesicles h<. ve fused with 

:he Golgi apparatus (65). Bioactive g!ucagon is packaged as a tri-mciect.:iar crystal in 

secretory granules of the cytosol and is secreted from alpha cells by the process of 

exocytosis (158). 

Tissue Expression of Proglucagon Gene 

Pancreatic and intestinal preproglucagon mR.l\As are identical in humans (119). 

Different peptides are secreted by the pancreas ar:d intestine because multiple bioactive 

peptides can produced from proglucagon. ?est-translational processing of progiucagon 

is tissue specific (48) as shown in Figure 2. 

63-69 111-123 
.............. ,...;-.,. 159 

PROGLUCAGON '-----l~IL. __ -.~I J~~ j;~:N:@l:J-1~... __ _. 

PANCREAS 

INTESTINE 

1 30 33 61 72 159 

GRPP II GG 
.....-, -------,, 
. MPGF . 

1 69 72 
___ G_L_J_C_E N-T-~-~---------._ ..1 r--1 G_L_P __ .....,I I 

126 159 

jGLP-Il; 

Figure 2. Scb.ematic structure of progiucagon protein anc its tissue-specific 
processir.g ir. pancreas and intesti.:Je. The numbers above the boxes correspcnc 
to LIJ.e numbered residues within proglucago::J.. Solid boxes represent Lys-Arg 
or Arg-r\rg conncctmg peptidcs and these are the si:es fer e:!ZymJ.~ic cleavage 
of proglucagon. Abbreviations a.:-c GRPP, glicenr:..:1-re!ated pa.::creacic peptice: 
GG, glucagon: MPGF, major proglucagon fragmem; GLP-1, g!uc:;.gon-like 
peptide l; GLP-2, glucagon-like peptide 2.. 
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Glucagon (3,485 Da) is the major secretory product derived frum proglucagon in the 

pancreatic alpha cells. Glucagon is also found in gastric mucosal cells of dogs (146) and 

humans (16) but little or no glucagon is secreted by these cells (70). Pancreatic glucagon 

is responsible for the endocrine regulation of hepatic glycogenolysis and gluconeogenesis. 

Bioactive fragments derived from proglucagon gene expression in r:1e gut include 

glicentin and the truncated forms of glucagon-like peptide-1 (GLP-1) named GLP-1 7_36 

amide and GLP-1 7_37 (47, 122). Glicentin and glucagon-like peptide-1 (GLP-17_36) amide 

and GLP-17_37 are the major bioactivc fragments derived from proglucagon that are 

secreted by the intestinal a-cells. Secretion of glicen~:n, GLP-1 7_36 amide and GLP-17_37 

is induced by ingestion of food ( 4 7, 48) and intraluminal glucose absorption (95). 

The physiologic function of glicentin is not well identified. Glicentin may function 

as an additional source of glucagon, jecause glicentin includes the entire structure of 

glucagon (70). However, it is also possible that glicentin may act as an amagonisi: of 

glucagon action in hepatocytes (70). 

Glucagon-like peptide-1 1_37 has no known metabolic effects in mammals, but its two 

shorter forms of GLP-1 7•36 amide and GLP-1 7_37 may act as an incretin (60, 124). GLP-1-;. 

36 amide and GLP-17_37 secreted by the intestine in response to nutrients i:1 t~1e intestinal 

lur:1en act in an endoc~ine manner to inform the pancreatic beta cells of t::t.: :.tmount and 

composition of the upcoming nutrient absorption (60. 125). Support for this concept 

comes from reports showing that postprandial level of GLP-1 7_36 amide level was 

significantly increased in humans.(60, 86). Additionally, infusion of GLP-1 7.36 amide 

under euglyccmic coadition, raised the plasma concentrations of insulin (60). 

6 



RJ:GULATION OF GLC C:\CO'\ SH :ru•,TION 

H t:mnr::l Rl'galation 

Amino Acids. Plasma glucagon concentration is significantly increased after consumption 

of a protein meal in humans (81). Apparently, this rise in the plasma glucagon level is 

in response to a rise in the plasma concentration of am:no acids derived from the ingested 

protein. In vivo studies in humans (20, 73, 185), dogs (35, 134) and sheep (87) showed 

that intravenous administration of selected amino acids increased plasma glucagon 

concentration. Similarly, in vitro studies also showed that arginine increased the secretion 

of glucagon by rat islets (29, 156). 

Most, but not all, amino acids are potent glucagon secretagogues. The potency of 

various amino acids in stimulating glucagon secretion has been studied in dogs (134) and 

sheep (87). Among the 20 amino acids tested, asparagine, glycine and phenylalanine 

were very strong glucagon secretagogues in dogs, whereas alanine, glycine, serine and 

arginine were the most potent of the 17 amino acids tested in stimulating glucagon 

secretion in sheep. Both studies showed that intravenous injection of valine, histidine, 

leudne and isoleucine did not increase plasma glucagon concentration. 

The structure-function basis responsible for the different potencies of amino acids 

m stimulating a rise in the plasma glucagon level is not known. Ko significant 

relationship between the structure or size of the R-group and potency of an amino acid 

as a glucagon secretagogue has been shown (134). However, it is remarkabic that in the 

studies by Rocha ( 134) and Kuhara (87) that the five most potent glucagon-secreting 

amino acids were gluconcogenic (Figure 3). Physiologically these arr:ino acids stimulate 

glucagon secretion which in turn promotes the incorporation of these gluconeogenic 

amino acids into glucose in the liver. On the other hand, valine. leucine and isoleucine. 
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v.:h.:cj :-tave no effect on plasma g1uc:lgcn :eve!, are substrates for both the TCA cyc~e 

:;.nd L'"Ie ke::ogenic pathway. That :hese ke~cgenic amine acids do nor inc::-ease glucagon 

!eve! :nay be an advantage. because rt:is wouid ~reve:1t the development of ketosis due 

to inappropdate hype::-gluc::J.gonemia. T:1erer"cre. the ability of individml ar.1ino acid to 

stimulate glucagon seGetion may depend on whether they are g!uconeoge::lic or 

ketogenic. 
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The precise mechanism of amino acid-stimuiated glucagon secretion is ·:let well 

JocumenE:d. Amino acids may enhance glucagon secretion by cire:::tly stimulating the 

islet~ cell~. Arginine treatment was shown to increase the cytoplasmic Ca2 - level of islet 
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a cells by three fold (80) and an increased cytoplasn:!c Ca2 + level in the a cells is a 

prerequisite for glucagon secretion (136). On the other 1and. amino acids mav s:i:nulate . -

glucagon secretion indb.:ctly :~rough neural pathways. lt has been suggested that :;cural 

receptors for arginine are present in rat liver ( 157). Binding of arginine to its ::.::ural 

receptors signals the brain stem via the afferem vagal nerve. The efferent vagal nerve is - -
in rum activated and signals the a cells to secrete glucagon. In this srudy ( 157), 

sectioning of the celiac branches of the vagal nerve significantly decreased the arginine-

induced glucagon secretion. Therefore, both direct and indirect actions may exist for 

amino acid stimulation of glucagon release. 

Glucose. An elevated plasma glucose concentration suppresses glucagon secretion. 

Intravenous infusion of glucose lowers plasma glucagon concentration in humans (20. 24, 

81), dogs (161) and rats (79). Inhibitory effects of glucose on glucagon secretion also 

were shown in experiments using the perfused rat pancreas (52). 

The cellular mechanism of glucose-induced hypoglucagonemia is uncertain. The 

effect of glucose on a cell secretion could be direct or indirectly mediated by insulin and 

somatostatin. Specific glucose receptors or glucose tr<.nsporters have not been detected 

on a cells. However, one report (80) showed that the intracellular Ca2+ level in isolated 

a cells was significantly reduced when cells were treated with glucose. Because the 

release of glucagon requires a rise in intracellular Ca2 •· concentration (136), glucose may 

directly suppress a cell secretion by decreasing intracellular Ca2 - levels. 

Alternatively, glucose-induced hypoglucagonemia may be mediated by insulin and 

somatostatin. The uptake of glucose into the a cell may be insulin-dependent. Reports 

(31, 175) showed that the ability of glucose to suppress glucagon secretion in vivo was 
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dimiJ:ished in streprozotocin-induced diabetic rats, which lack insulin because their {3 

cells have been destroyed. In vivo studies in humans (34, 71) demonstrated :bt insulin 

needs to be present for the inhibitory effect of glucose on a cell secretion. Thb suggested 

that paracrine or gap-junction communicm:, •us lx::v.l·-·n •:· a Ill! :i ::ells may play an 

important role in the a cell response to glucose stimulation. 

Electron micrographs have provided evidence of gap-junctions between a and {3 cells 

(163). Extensive srudies on intra-islet regulation by Samols (138) indicated that direction 

of intra-islet microvascular blood flow may derermi..r1e the extent of intercellular 

interaction among islets cells. Using the unique microvascular structure of rats islet (23). 

Samols (138) showed that afferent arterioles entered the islet at the core of islet, so that 

{3 cells were the first islet cell type to be perfused. Blood flow then continued to the 

mantle (i.e., peripheral) area of the islet and reached the a and D cells sequentially. This 

microvascular {3_,cx_,D sequence as suggested by Samols (138) implied that elevated 

plasma glucose was first sensed by {3 cells. Insulin released upon glucose stimulation 

could in turn inhibit glucagon secretion from ex cells via paracrine communication. 

Although the microvascular structure of islets reported by Samols (138) was very 

convincing, it is not clear if this information can be extrapolated to other species. 

Hormonal Rl'gulation 

Insulin. Insulin inhibits glucagon secretion. In perfused normal rat pancreas, addition 

of insu:in, at euglycemic conditions, inhibited glucagon secretion (31, 175). Continuous 

infusion of insulin antiserum under euglycemic conditions led to a significant rise in 

plasma glucagon concentration (97, 138). Exaggerated glucagon secretion is seen m 

patients with insulin-dependent diabe:es mellitus (IDDM) because they have a deficiency 
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of (3 cells. Insulin treatn:L"lll :n TDDi'vl p;tt.:t::lts raised the plasma insulin level and 

suppressed glucagon secretion (24). In contrast, insulin infusion in obese people with 

NIDDM had minimum effect on suppressing their plasma glucagon concentration (63), 

which are results suggesting that the inhibitory action of insulin on a-cell secretion is 

through paracrine communication. Alternatively, the insulin inhibitory action on the a 

cells may be a result of direct ;Jassage of insulin from (3 cells into a cells through gap 

junctions (163). 

Somatostatin. The D cells of islets secrete the hormone somatostatin which exerts 

paracrine effects on neighboring a and {3 cells. Intraveno:1s injection or infusion of 

somatostatin suppresses insulin and glucagon secretion in vivo as illustrated by results 

in humans and sheep infused iv with somatostatin (26, 168). Direct treatment of isolated 

rat islets with somatostatin also inhibited insulin and glucagon secretion (138). The 

precise mechanism of somatostatin action on a and ;3 cells is not clear. Presumably, 

somatostatin decreases the intracellular cA.J.\t1P level by decreasir.g mitochondrial and 

plasma membrane permeability for Ca2 - (179). Because secretion of glucagon requires 

an increase in a-cell content of cytosolic cAMP and Ca2 +, somatostatin may inhibit 

glucagon secretion by decreasing cAMP and Ca2 - in a cells. 

Growth Hormone. Growth horn1one plays a key role in lipid and carbohydrate 

metabolism. The insulinotropic effect of growth hormone has been well documented in 

both ruminants (43, 69) and non-ruminants (25, 133. 148). A bolus iv administration of 

growth hormone increast:d ponal plasma glucagon concentration but not the peripheral 

ph,:m :evel of glucagon in dogs (46, 148). The stimulatory effect of growth hormone 
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on glucagon secretion also was demonstrated in the perfused rat pancreas (155). 

Growth hormone enhances glucagon secretion and the glucagon stimulates hepatic 

glucose production which leads to an increase in the plasma glucose level. At the same 

time, growth hormone also directly acts on liver to inuuct.: glycogenolysis, and this action 

of GH further increases the plasma glucose concentration. Prolonged exposure to high 

doses of growth hormone can lead to permanent diabetes in animals (8, 99). 

Sex Steroids. Gestational diabetes is common and potentially can become permanent 

diabetes in women. Therefore, the effects of female sex steroids on insulin and glucagon 

secretion are imponant. Although receptors for progesterone exist in a cells of human 

islets (39), pregnancy in humans is not associated with abnormal glucagon concentrations 

(59). Furthermore, the peripheral plasma level of glucagon was unaltered in rats 

implanted with progesterone or estradiol (9), and co-culture of rat islets with 

progesterone or estradiol did not affect basal or secretagogue-induced glucagon secretion 

(82, 118). On the other hand, pregnancy or treatment with female sex steroids invariably 

leads to {3 cell hypenrophy, hyperinsulinemia and exaggerated inst:.lin response to glucose 

in rats (3 6, 61). This may indicate that ir:.sulin, not glucagon, is involved in the impaired 

glucose homeostasis of pregnancy. 
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Neural Regulation 

!nnervation of islet a cells. Pancreatic :slets, including the a cells. are innervated by rhe 

sympathetic and parasympathetic fibers of the autonomic nervous system (182). 

Sympathetic fibers from the splanchnic nerve synapse at the coeliac ganglion, and enter 

the islets together w:th die vagus nerve as L~e mixed pancreatic nerve (Figure 4). 

Islet Cao•llary Blood Fio'lll 

Figure 4. Schematic diagram of neural 
comrol af the :narrJ:J<Lian pancreatic islet. 
Not all islet :::ell are mnervate:i. 
Considerable species difference exist. 
Adapted frcm Haze:wood (65) 

Effects of Svmvathetic Stimulation. Sympathetic stimulation promotes glucagon release 

from islet a cells in humans (30) and domestic animals (5, 21, 88). In ruminants, alpha 

adrenergic, but not beta adrenergic, agonises consistently increased glucagon secretion 

in goats (121), sheep (120) and adrenalectomized calves (22). However, both alpha2-
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adrenergic (57, 73, 137) and beta-adrenergic (52, 75, 142) receptors mediated :he 

sympathetic stimulation of glucagon secretion in nonruminants. 

Although species differences and experi:nental conditions, may explain t:1e c:;onflicting 

results i:: J".lminant and nonruminants, the effects of insulin on glucagon responses to 

adrenergic drugs must be considered. Because alpha2-agonists inhibit insulin secretion 

from .B-cells in nonruminants (75, 84, 120, 121), the finding of elevated glucagon 

concentration in response to alpha2-agouist treatment may simply be due to the attendant 

decrease in insulin level. A study (142) using isolated rat islet a-cells and !J-cells showed 

that the beta-agonist, isoproterenol, significantly increased cA.'vlP production anc 

glucagon release by the a cell. On the other hand, the alpha2-agonist, clonidinc, 

significantly decreased the cAMP level and insulin secretion by isolated [3 cells. 

Therefore, it is likely that sympathetic stimulation of glucagon secretion is mediated by 

beta-adrenergic receptors whereas adrenergic regulation of insulin secretion is mediated 

by alpha2-adrenergic receptors. 

Sympathetic control of islet hormone secretion is very important under conditions of 

metabolic and psychological stress and in the defense against hypoglycemic conditions. 

Activation of the sympathetic input will shut down insulin release and stimulate glucagon 

secretion, thus increasing hepatic glucose output. The rise in plasma glucose level 

induces hyperglycemia or reverses the hypoglycemic condition and t:ms provides 

immediate substrate for energy. generation in muscle and brain to cope with the metabolic 

or psychological stress. 

E{fects o(parasvmuathetic stimulation. Parasympathetic stinmlation of glucagon secretion 

was demonstrated in various mammalian species (2, 4, 71, 96, 165). The dorsa: trunk 
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of the vagus nerve innervates islets and is responsible for stimulation of glucagon 

secretion (83). The mechanism of vagal stimulation of glucagon secretion is 

controversial. At the neuroeffector junction, the terminal nerve ending releases 

acetylcholine which increase by interacting with muscarinic receptors in the plasma 

membrane of C¥ cells glucagon secretion (71, 83). Additionally, peptides released by the 

vagal terminus may also be responsible for the vagally stimulated rise in glucagon 

secretion ( 4). 

The presence of parasympathetic tone in control of glucagon secretion is important 

especially during preabsorptive stage. Because the parasympathetic nervous system 

stimulates insulin release before dietary glu:..:us.: ;:; absu~·j..:t.i, the simultaneous release of 

glucagon may prevent insulin induced hypoglycemia. 

GLuCAGON ACTION 

Liver is the major target organ for glucagon (163). The most important physiological 

function of glucagon is to stimulate hepatic glucose production by either glycogenolysis 

or gluco;~eogenesis. Glucagon also promotes ketogenesis and ureagenesis in liver and 

lipolysis in adipose tissue. 

Hepatic glycogenolysis 

In fasted humai:" a:Hi ::l•ll:• ~<1-:'>tri~: ;,n.imals, liver glycogen is the major supply of 

hexose units for maintenance of blood glucose level. The breakdown of hepatic glycoge:: 

(i.e., glycogenolysis) is stimulated by glucagon. 

The glycogc::nolytic action of glucagon begins with glucagon binding to its receptor 

on hepatic parachymal cells. The glucagon-receptor complex activates transducer protein, 
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the G protein, which in turn activates adenylate cyclase (93, 135). Adenylate cyclase 

catalyses the dephosphorylation of ATP to cAMP. The activated cAMP-dependent protein 

kinase phosphorylates the enzyme phosphorylase b and conver::; it to the active form, 

phosphorylase a. The active enzyme phosphorylase a breaks down glycogen into glucose-

1-phosphate (114). Phosphorylase a is the rate-limiting enzyme in the glycogenolytic 

pathway. The glucose 1-phosphate formed is converted to glucose 6-phosphate by the 

enzyme phosphoglucomutase. The finai step in hepatic glycogenolysis is catalyzed by 

glucose 6-phosphatase, which acts by removing the ;JhOsphate group from glucose 6-

phosphate to allow free glucose to diffuse from hepatocytes into the blood for circulation. 

The hepatic content of glycogen is relatively low in ruminants as compared with 

nonruminants. Glucose uptake by the liver is deficient in ruminants due to their low 

activity of hepatic glucokinase (17). Glucagon stimulation of hepatic giucose output in 

domestic ruminants is due mainly to glucagon stimulation of hepatic gluconeogenesis and, 

to a lesser extent. hepatic glycogenolysis. 

Hepatic gluconeogenesis 

In nonruminants, including humans. giuconeogenesis is physiologically activated only 

when hepatic glycogen is depleted and exogenous glucose is not available, such as in 

prolonged fasting. In ruminants, however, dietary carbohydrates are fermentated to 

volatile fatty acids and little glucose is absorbed t:rrough the gastrointestinal tract (18). 

Unlike nonruminants. the maintenance of euglycemia in ruminants reHes on continuous 

hepatic gluconeogenesis. Thus hepatic gluconeogenesis is greater in the fed than fasted 

ruminant. The biochemical mechanisms for endocrine control of hepatic gluconeogenesis, 

however, are similar in ruminants and nom11minants. 
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Hepatic gluconeogenesis is the process of converting noncarbohydrate precursors, 

such as amino acids, glycerol and propionate, to glucose in liver. Amino acids enter the 

gluconeogenic pathway as pyruvate or via intermediates in the TCA cycle. Transaminases 

are enzymes that transaminate amino acids to pyruvate or to oxaloacetate in the 

hepatocyte cytosol. Pyruvate enters the mitochondrion and is converted to oxaloacetate 

by pyruvate carboxylase. Decarboxylation of oxaloacetate to phosphoenolpyruvate (PEP) 

by PEP carboxykinase (PEPCK) is one of the rate-limiting steps in the gluconeogenic 

pathway. Glucagon promotes gluconeogenesis by stimulating the activity of PEPCK. 

Phosphoenolpyruvate is converted to fructose 1 ,6-bisphosphate. The dephosphorylation 

of fructose 1 ,6-bisphosphate to fructose 6-phosphate is catalyzed by fructose 1,6-

bisphosphatase and this step is another important rate limiti::g step of gluconeogenic 

pathway. Glucagon enhances gluconeogenesis by decreasing the amount of fructose 2,6-

bisphosphate, which functions as an allosteric inhibitor of fructose 1 ,6-bisphosphatase. 

In liver, conversion of glucose 6-phosphate into glucose requires the enzyme glucose 6-

phosphatase. The removal cf the phosphate allows free glucose to transverse the liver cell 

membrane and enter blood. 

Free f:::ty acids and glycerol are products of lipolysis, but only glycerol is 

gluconeogenic. Glycerol enters the gluconeogcnic pathway at the triose phosphate stage 

via conversion by glycerol kinase anC: glycerol-3-phosphate dehydroge:r.ase. 

Propionate is a major source of g~ucose in fed ruminants. In liver cell mitochondria, 

propionate is converted to succinyl-CoA which enters the gluconeogenic pathway. The 

gluconeogenic precursors are similar in fasted ruminants and nonruminants because 

propionate is only present in fed ruminants. 
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Hepatic ketogenesis 

Ketogenesis occurs under physiological conditions as well as in pathological 

situations such as in diabetic ketoacidosis, pregnancy ketosis, and lactational ketosis in 

high-yielding dairy cows. Ketone bodies (acetoacetate, 8-hydroxybutyrate and acetone) 

are products of hepatic ketogenesis. Ketone bodies can be used as an energy source by 

all tissues including certain parts of the brain. 

Glucagon stimulates and insulin inhibits ketoge:1esis. In the fasted state, decreased 

plasma insulin levels and elevated plasma glucagon promote adipocyte lipolysis, which 

in turn increases the plasma concentration of free fatty acids (FFA). Cellular uptake of 

plasma FFA is positively re:ated to plasma FFA concentration; :hercfore, the amount of 

fatty acid in the hepatocyte cytosol rises in response to lipolysis. Glucagon stimulates 

mitochondrial uptake of activated fatty acid (fatty acy!-CoA) by inducing the activity of 

fatty acid transporting enzyme known as hepatic carnitine acyl transferase that is located 

in the inner mitochondrial membrane. Fatty acyl-CoA is subsequently oxidized (/3 

oxidation) to acetoacetyl-CoA inside the mitochondr:on. The acetoacetyl CoA can either 

be directly deacylated to acetoacetate by deacylase enzyme, or acetylated to 3-hydroxy-3-

methyl-glutaryl CoA (HMG-CoA) \vhich in turn can be converted to acetoacetate by 

HMG-CoA lyase. Acetoacetate is one of the ketone bodies; it spontaneously 

decarboxylates to form acetone, or it can be enzymatically reduced to {3-hydroxybutylate 

by D(-)-3-hydroxybutyrate dehydrogenase (114, 158). The rate-limiting step in hepatic 

ketogenesis is the rate of lipolysis in adipose tissue because this ultimately determines the 

hepatic cytosol content of fatty acids (117) 
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Glucagon effects on protein metabolism 

Glucagon increases protein catabolism (58) in muscle to provide amino acids for 

gluconeogenesis. Glucagon-induced gluconeogenesis produces an excessive ~mount of 

am:nes which enter the urea cycle. Glucagon directly stimulates the activiti...:s of all 

enzymes of the urea cycle and thus promotes urea synthesis and prevents accumulation 

of toxic ammonia (3). 

Glucagon as a counter-regulatory hormone 

Insulin is a major regulatory hormone of glucose metabolism. Glucagon, growth 

hormone and cortisol physiologically counter the effects of insulin and thus are referred 

to as counter-regulatory hormones. 

Insulin inhibits but glucagon stimulates glycogenolysis, lipolysis and ketogenesis. 

Because of these opposing actions of insulin and glucagon, the molar insulin:glucagon 

ratio (I: G) perfusing hepatic tissue determines the balance of hepatic metabolism. Hepatic 

glucose output is determined by the I:G ratio. In the fasted state, when blood glucose 

level tends to decline, I:G ratio decreases and glycogenolysis and gluconeogenesis are 

stimu:ated. The reverse occurs during the fed state. The decrease in I:G ratio during the 

fasted state is due mainly to a decrease in inmlin secretion although a slight increase in 

glucagon concentration also occurs. Similarly, the increase in 1: G ratio in the fed state 

is mainly due to an increase in insulin level instead of a major decrease in glucagon 

secretion. 

Glucagon actions on cardiovascular system 

Cardiac muscle contraction is strenghtened after intravenous injection of glucagon, 
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or after adding glucagon to isolated or cultured heart cells. (51, 76). However, glucagon 

induces vasorelaxation in dog blood vessels in vitro (123). The inotropic effect of 

glucagon in the heart IS mediated by activation of adenylate cyclase ( 1 07) which 

subsequently leads to a rise in the cAMP level of the target cell (112). Although high 

concentrations of glucagon have inotropic effec:- :!1 ,:;:rJi.:-· r: ... ,:le, the picomolar 

concentrations of glucagon normally present in peripheral blood are too low to cause any 

change in the cardiovascular system under physiological conditions ( 126). 

Glucagon effects on electrolyte balance 

Glucagon stimulates renal reabsorption of Na-, K+, CJ·, .Ylg2 + and ca> (13. 14, 

40), but it inhibits b:carbonate reabsorption (55, 106) in the thick ascending limb of 

Henle's loop in rats. In the small intestine, glucagon causec c1· secretion in rr:ice in vitro 

(85) and in humans in vivo (68). The glucagon-induced outward movement of CJ· from 

e::terocytes causes excessive intestinal fluid secretion (92). An elevated glucagon levels 

stimulate an excessive intestinal fluid secretion which overloads the absorp:ive ability of 

the colon, and results in diarrhea as commonly observed in terminal-stages victims of 

famine and severe malnutrition. 

Glucagon receptors 

Glucagon receptors are mainly located on membranes of hepatic parachymal cells, 

but they are also found in adipocytes, brain tissues (145) and pancreatic islet cells (1). 

Hepatic glucagon receptors have a molecular weight of approximately 190 kDa (65). The 

6 amino acids at theN-terminus (His-Ser-Gin-Gly-Thr-Phe) of glucagon are required for 

specific binding to its receptor. Removal of histamine from the N-terminal region of 
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glucagon prevents its binding to receptor and t::us terminates all biological activities of 

glucagon (45). Amino acids at region 10-25 of the receptor form a helical structure when 

the receptor is occupied by glucagon and this conformational change in the occupied 

receptor may maimain a glucagon-receptor complex long enough to initiate a biological 

action. Once fanned, the glucagon-receptor complex undergoes re:::eptor-dependent 

endocytosis (10). The ligand, glucagon, is degraded in endosomes (11) and the receptors, 

devoid of glucagon, remain intact to be either recycled to the plasma membrane or 

degraded intracellularly (1 0). 

GLUCAGON KINETICS 

Glucagon secretion 

Glucagon produced by pancreatic a cells is secreted into the portal vem which 

perfuses the liver, the major target tissue for glucagon. Due to the unique direct blood 

t1ow from pancreas to liver, the majority of the secreted glucagon is degraded by the 

liver before :t enters the peripheral circulation. Therefore, plasma concentrations of 

glucagon are much higher in portal than in peripheral blooc. Conclusions :-egarcing ::he 

pancreatic secretory rates of glucagon based solely on the fasting plasma glucagon 

concentrations (37, 49) may be misleading in part because they ignore the portal­

peripheral blood gradient of glucagon concentration. In addition, c:irect measurement of 

plasma glucagon by radioimmunoassay (RIA) is fraught with problems due to 

interference in the RIA by cross-reacting large molecular weight plasma proteins 

(discussed in later section) which lead to an overestimation of the true level of plasma 

glucagon. 

Glucagon secretion rate has been measured indirectly in several species by kinetic 
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analysis of the plasma disappearance of iv injected glucagon. Estimates of glucagon 

secretion rate are similar in fasted humans, cows and sheep (Table 1). Direct 

measurement of glucagon secretion in vivo has been done in fed sheep. 

Table 1. Estimmed secretion rate of glucagon in differem !>pecies 

Species Physiological Secret:on R:.ue Half L!e Refc:-cnces 
condition (pmol· min· 1 • ~g-i) min 

Humans fasted 0.37 -19 
Humans fasted .c;._s ~ 

I 

Dairy cows fasted 0.32 7.7 37 
Sheep fasted 0.31 

.,,., __ , 
:26 

Sheep fed 0.61 'Y' -· 
Rats fed :?..5 15 
Dogs fasted, anesthetized 5.5 -7 I, 

Pigs Sham Operated 1.60 57 :67 

Glucagon secretion rate and bioiogica! half life were estimated by kinetic analysis of 
glucagon disappearance from plasma, except for sheep (:26) a.;.d Dog (77) where 
pancreatic sec~erion ~ate of glucagon was calcuia:ed as plasma co:Jcentra!ion difference 
between the portai and caudal aorta blood vessels multiplied by portal plasma flow. 
Glucagon concentrations used in kinetic analysis were :·ran: tl~e direct ~east.:rement of 
plasma inununoreactive glucagon by RIA. 

Glucagon degradation 

Liver is the major site for glucagon degradation in sheep (27), rats (~ 16). dogs (77) 

and humans (124). Some glucagon and majority of the proglucagon gene products are 

degraded by the kidney (124). Proteolytic enzymes in plasma also degrade large amounts 

of glucagon. 

Secreted glucagon enters the liver via the portal ve:n. Upon interaction with the 

glucagon receptors in hepatocytes, the glucagon-receptor complex undergoes receptor-

mediated endocytosis (62). After dissociation from the receptor in endosomes or 

lysosomes, the free glucagon is degraded (11). 
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The biological half-life (t 1,) measures the whole-body metabolism a:· hormone and ic 

is t~e time required for the circulating concentration of a hor:none tn decrease by 50%. 

The~ .. .; of glucagon is l!Uitc variable among specks (see Tab:e 1). rane:in!! :·:-om 2.5 min 

in rats ( i 5) to 56 min in pigs ( 167). Certain physiological states such as ohesity :n sheep 

(unpublished data). high protein diet in rars (15) and lactation in cC\vs (37) did not 

change the t.;, of glucagon. However, specific physiological disorders such as liver 

cirrhosis, kidney failure (143) and diabetes meJ:itus (7) significantly prolonged the t,_, of 

glucagon. 

\-IOLECL"LA.R SPECIES OF L\·1:\H.::\OR.:~ACTIVE GLUCAGON 

Glucagon specific antisera 

As discussed previously, mullip;e peptides origir.ate fro.:11 proglucagon gent! 

expression in the pancreas and intestine of ilUmans. :\mise:-a raised against gluc-:gon may 

cross-react with peptides derived from proglucagon because these peptides contain some 

homologous sequences to glucagon. Therefore, radioimmunoassays for glucagon may 

measure glucagon alone or glucagon plus other immunoreactive cmnponents of the 

proglucagor. gene. 

G~u:::agon specific antisera arc c:assiried i:1:o t\\'O maJor types :Jased •.)r. their 

sc~ectivity ~owads the i\" -terminus or C-terminus of glu::agon. )i-tcrmina: antisera 

recognize giucagon itself and otl:er proglucag-:.:-n-denved peptiLies as •,veE as sorr:e large 

immunoreactive plasma proteins. The C-terminal antisera. however. only measure 

glucagon and the large immunoreactive pla:;m<l proteir~s (70). 
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Accurate measurement of plasma glucagon 

Accurate measurement of plasma glucagon requires a gluc:.~·on specific C-terminal 

antisera . .\ttany laboratories have produced C-L..!rminal antisera. ::1~ most commonly used 

and best recognized antiserum is Unger's 30K C-terminal gluca.~on specific antiserum 

raised by R.H. Unger in 1959 (159). Although C-termina. antisera do not cross-react 

with glicentin and GLP-1 (160), but they do recognize the large immunoreactive plasma 

prmeins ( 166, 177). The identity of such large immunoreactive plasma proteins is not 

known. The immunoreactive proteins arc composed of at least two proteins of different 

molecular weight !n humans (181). Chromatographs of human plasma showed that the 

larger and the smaller sized immunoreactive plasma protein eluted at position 

corresponding to the gamma globulin and bovine serum albumin markers, respectively. 

Removal of IgG from plasma by staphylococcal protein A adsorption also removed the 

larger immunoreactive protein from human plasma (175). A sudden increase in total IRG 

level in sham-operated pigs (167) and burned patients (1 09) also supports the idea ~hat 

the larger immunoreactive plasma protein is lgG. 

Direct measurement of plasma glucagon hy RIA usmg C-terminal antiserum will 

overestimate its true concentration. Organic solvents such as ethanol (50) and acetone 

(169) has been validated for use in precipitating the large :mmunoreactive plas;:1a 

proteins and leaving the majority of the glucagon intact in the supernatant. In this thesis, 

polyethylene glycol (PEG) was validated as an efficient agent to ;>recipitate the large 

immunoreactive plasma proteins. Therefore, accurate measurement of plasma glucagon 

concentration can be achieved by RIA measurement of ethanol, acetone or PEG treated 

plasma using C-terminal glucagon specific antiserum. 
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GLUCAGON i:\ c m:•:srrY 

Molecular profiles of basal plasma IRG are similar in normal humans (78, 150) and 

in dogs (77). Plasma total IRG, as measured by C-terminal antisera, was composed of 

a glucagon peak and a large immunoreactive protein peak with :nolecular weight of 60 

k.Da or larger. Chromatograph of normal human plasma on a Sephadex G200 (2.6 x 100 

em) column provided results to de:::J.onstrate that the large immunoreactive proteins were 

composed of at least two distinct proteins of molecular weight 160 kDa and 68 kDa 

(176). The large immunoreactive protein peak was found not affected by obesity in 

humans. However, its concentration is variable among individual regardless of body 

condition (150). 

The effects of obesity on fasting levels of basal glucagon in plasma are not clearly 

established. Studies based on plasma levels of immunoreact:ve glucagon (IRG) found that 

obese humans and animals were either hypoglucagonemic (139, 140), hyperglucagonemic 

(79, 102, 150) or euglucagonemic (81, 108, 129). Because total IRG is comprised of 

both the large immunoreactive plasma proteins and glucagon, these cont1icting reports 

may simply be due to differences in the degree of interference by the large 

immunoreactive proteins in t:1e RIA for glucagon. Starke (150) used cl~romatography to 

separate the large immunoreactive proteins from glucagon and Pouilliot ( 127) used 

polyethylene glycol to precipitate the large immunoreactive proteins from plasma before 

the samples were subjected to RIA. Both of these (127, 150) studies unequivocally 

showed that obese humans were hyperglucagonemic. 

The effects of obesity on a cell responsiveness to glucagon secretagogues also are 

not clearly established. Exaggerated (79, 81) or normal (73, 108) plasma glucagon 

responses to arginine or alanine stimulation have been reported in obese as compared 
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with Jean humans and animals. The cellular and molecular basis for the fasting 

hyperglucagonemia and exaggerated a cell responsiveness to glucagon sccretagogues is 

not known but it may be related to the presence of insulin resistance in a cells. Insu:in 

normally inhibits glucagon secretion (31. 175··. r:asma glucagon concentration \vas 

decreased less in obese than lean humans when each was exposed to hyperinsulinemia 

and hyperglycemia (24) and to hyperglycemia during euglycemic condition (63). 
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Chapter III 

QUANTIFICATION OF PLASMA GLCCAGON 

INTRO:>CCTION 

The proglucagon gene is expressed in alpha cells of the pancreas and intestine in 

several animal species (41, 110, 119). At least five-to-six bioactive peptides can be 

derived from proglucagon mRNA (70, 78). Glucagon is the major secretory product of 

the proglucagon gene in pancreatic alpha cells, whereas glice:nin is the major secretory 

product in intestinal cells. Pancreatic glucagon is responsible for the endocrine regulation 

of hepatic giycogenolysis and gluconeogenesis. 

Accurate measurement by radioimmunoassay (RlA) of pancreatic giucagon (3 ,500 

daltons) can be problematic because of the presence in plasma of large molecular weight 

immunoreactive proteins and multiple products of the proglucagon gene that crossreact 

with glucagon antisera (166, 176, 170). Antisera directed against the carboxyl-tem1inus 

of glucagon specifically recognize pancreatic glucagon but not other products of the 

proglucagon gene such as glicentin, GLP-1, GLP-2 or the intact proglucagon polypeptide 

(160). However, these so called C-terminus specific antisera still crossreact with large 

molecular weight plasma proteins that express glucagon-like immunoreactivity (149). RIA 

systems that use C-terminus specific antisera therefore measure immunoreactive glucagon 

(IRG) concentrations which are composed of glucagon and the large immunoreactive 

protein components. The :arge immunoreactive proteins can be removed by treati:1g 
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plasma with ethanol or acetone to precipitate out the large immunoreactive component 

of IRG (50, 169, 173). Von Schenck used gel chromatography to show that acetone 

extraction of plasma removed approximately 90% of its large immunoreactive protein 

content while ailowing approximately 80% recovery :~:-the pancreatic glucagon. 

Extracting plasma with ethanol or acetone requires an evaporative step to .:-emove the 

sol vent and a sample reconstitution step before tl:c sample is ready for assay. Each of 

these steps increases the potential for analytical error and at the least should increase the 

imprecision of the RIA. Physically separating the large immunoreactive proteins and 

glucagon by passing plasma through a molecular sieving membrane should provide 

optimum ease of separation and minimum dilution of the giucagon concentration. 

However, we found this approach not be feasible because preliminary experiments 

showed that approximately 90 percent of the plasma glucagon content was retained by 

the passivated and non-passivated membrane. Therefore, the use of polyethylene glycol 

(PEG) as an alternative means of removing t:1e :arge immunoreactive proteins was 

considered. 

PEG should be suitable for selectively precipitating the cross-reacting large molecular 

weight proteins because PEG stcrically excludes large molecular weight proteins from 

their solubility limit (74) and has minimum effect on small polypeptides (38, 116). A 

PEG-extraction method should provide a simpie and consistent means to extract glucagon 

because PEG extraction does not req:.~ire solvent evaporation and reconstitution steps. 

PEG-extraction method has been used to measure glucagon in humans (127), but a 

validation of this method has not been reported. 

The quality of tracer glucagon used in the RIA is also a limiting factor in accurate 

quantification of plasma glucar';on. Different iodination procedures for glucagon have 
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been studied (144, 172, 181). The quality of iodinated glucagon usually has been 

determined by the percentage of tracer that can be pr,;cipitated with trichloroacetic acid 

(TCA) or by incubation with excessive amounts of !!lucagon antisera. We have found 

these two approaches to be inconsistent in identifyinf quality [125Ilglucagon. 

The objectives of this study were tO validate a PEG-extraction procedure for accurate 

quantification of pancreatic glucagon by RIA and to identify a strategy for testing and 

selecting quality glt!cagon tracer prepared by three different iodination procedures. 

MATERIALS AND METHODS 

In :his paper, the term immunoreactive glucagon (IRG) \Vill refer to measurement by 

RIA of plasma g:ucagon immunoreactivity which includes that due to glucagon (3.500 

Da) and large ( 2': 61 kDa) immunoreactive proteins; the term glucagon refers to 

measurement by RIA of glucagon (3 ,500 Da) concentrations in plasma. 

Glucagon Radioimmunoasstry 

A C-terminal specific polyclonal rabbit anti-glucagon serum previously validated for 

measuring plasma IRG and glucagon in sheep by RIA (101) was used in this experiment. 

Radioimmunoassays using this or Unger's 30K a:1tisera provide similar measurements of 

glucagon and IRG in sheep and canine plasma. Crystallized bovine glucagon (Lilly 

Research Laboratories, Indianapolis, IN) was used as standard. As described later, the 

chloramine-T method (pH 7.4) was used routinely to prepare e25IJglucagon. Assay buffer 

(pH 8. 7) contained 0.05 M Trisma base, 0.01 M EDT r\, 15 ITL\tl sodium azide. 16 ITLVf 

bcnzamidine hydrochloride, 0.03 ::V1 sodium chloride and 0.5% bovine serum albumin. 

All reagents were purchased from Sig1:1a Company (St Louis, MO) unless othenvise 
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stated. Assay conditions were as follows. Two hundred microliters of glucagon standard 

(12.5, 25, 50, 100, 200 and 400 pg/ml) or plasma samples were coi~cubated in glass 

tubes with 0.5 ml glucagon antisera diluted 1:12,000 in assay buffer for 18 - 24 h at 

4°C. Approximately 20,000 CPM of [125l]glu-.·:tgon were added (0.1 ml) and rubes 

incubated further for 18 - 24 h at 4°C. Goat .m::-rabbit gamma globulin (Calbiochem, 

San Diego, CA) diluted 1:250 (id) in assay buffer was added (0.2 ml) and the incubation 

continued for an additional 72 hat 4°C. The assay was terminated by the addition of 3.8 

ml cold (4°C) rinse buffer (pH 8.7) which contained 0.05 M Trisma base, 2 mM EDTA 

and 15 mM sodium azide. The precipitated antibody complexes were pelleted by 

centrifuging at 1,500 x g for 45 min at 4 °C. After decanting the supernatant, 

radioactivity in the pellet was quantified by counting in a gamma counter. 

Preliminary data showed that the presence of residual PEG in PEG-extracted plasma 

led to a 4-fold overestimation of glucagon concentration by RJA (data nor shown). 

Presumably, the residual PEG altered the binding properties of the first and second 

antibodies. As a result, antibody-bound and free [125l]glucagon were not reliably 

separated by the double antibody procedure. A modified RJA procedure, therefore, was 

developed for measuring glucagon in PEG-extracted plasma. In the modifid RIA, PEG 

was used in place of goat anti-rabbit IgG to separate antibody-bound and f:-ee 

[ 1:!5I]glucagon. Assays using the PEG-separation method were terminated 48 h after the 

addition of [125I]glucagon by adding 0.2 ml of pooled sheep plasma and then 1.5 ml of 

PEG (8000 mol wt; 18%) in cold rinse buffer to the assay tubes. Assay tubes were 

vortexed, centrifuged at 1,500 x g for 45 min at 4"C and the resulting su?ernatant was 

aspirated before the precipitates were counted for radioactivity. 
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PEG Extraction Method 

Procedure for the PEG removal of large immunoreactive proteins from sheep plasma 

was based on that used for precipitation of antibody-bound insulin ( 115). Briefly, equal 

volumes of plasma sample and 25% PEG (8,000 mol wt) in rinse buffer were vortexed 

for one minute then centrifuged at 1,500 x g for 45 min at 4·:c. The supernatant (i.e., 

PEG-extracted plasma) was collected for use in the RIA. 

Efficacy of PEG Extraction in Removing the Large Immunoreactive Plasma Proteins 

The efficacy of the PEG-extraction procedure in removing large inununoreactive 

proteins from plasma was studied in several ways. :--irst, five milliliters of unextracted 

plasma and 5 ml of PEG-extracted plasma were chromatograhed separateiy on a 

Sephadex G50-50 gel column (1.5 x 80 em). The column was calibrated with molecular 

markers, namely blue dextran and vitamin B1:!. RIA buffer was used as the elution buffer. 

Fractions (2 ml) collected were assayed for IRG as described above except that 0. 8 ml 

standard or fraction eluent were assayed and PEG was used to separate antibody-bound 

and free [1151]glucagon in the RlA. 

Surprisingly, it was found that the large inununoreactive proteins were barely or not 

detect<.ble in the chromatographs of ·.t::·.:\ir; .•. :!~·l: ]"l..'iJI::I -..•:::en PEG was used in the RIA 

to separate antibody-bound and free [! 251]glucagon (Figure 5). 
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Figure 5. Molecular profile of IRG in plasma before and after PEG extraction. Five milliiitcrs 
of sheep plasma were chromatographed on a Sephadex GS0-50 (1.5 x 80 em) colunm. Void 
volume (Vo) and salt peak (Vs) of the coluam were marked by blue dextran and vitamin 8 12 , 

respectively. Fractions collected were assayed for their IRG comenr by RIA using PEG 10 

separate bound and free [125I]glucagon. Note the presence of a glucagon peak (fraction 46 10 60) 
but the absence of the large immunoreactive peak in fractious eluung immediately after the Yo). 

Chromatographs of unextracted sheep plasma in previous work routinely had been 

assayed under similar conditions except that goat ami-rabbit IgG was used to separate 

antibody-bound and free [125I]glucagon. A glucagon peak and two peaks due to the large 

immunoreactive proteins typically were observed under those conditions. PEG was used 

here because the double antibody procedure produced arrifactual concentrations of IRG 

when PEG-extracted plasma was assayed by RIA employing second antibody ro separate 

the antibody-bound and free [125I]glucagon. Presumably, the double antibody and PEG 

separation methods in RIA provided different measurements of plasma IRG. This result 

led us to rechromarograph unexrracted sheep plasma on a larger column containing high 

resolution gel (SephacryllOOHR, 2.6 x 100 em) in order to resolve this discrepancy. An 

aliquot (0.8 ml) of each fraction was measured for IRG content by RIA either using 
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t.louble antibody method or PEG method to separate antibody-bound and free 

C25I]glucagon. 

Additionally. the results for the chromatograph of the PEG-extracted plasma in 

Figure 5 were inconclusive because the residual PEG i:: ·11.· .:.x:r:kt.·t: plasma affected 

adversely the flow properties of tte gel. Changing the column eluent to include 3% PEG 

did not improve the quality of the chromatographic results. Thus, this first approach ro 

test if PEG removed large molecular weight IRG was inconclusive. 

Because of the above problems, an alternative experiment was designet.l to test the 

efficacy of PEG in removing the large immunoreactive protein components of plasma 

(Figure 6). Dextran-coated charcoal was used as a means to remove glucagon (3500 Da) 

from plasma. If charcoal-absorbed plasma is glucagon-free, then the IRG content of 

charcoal-absorbed plasma would represent only the large immunoreactive proteins. 

Therefore, the IRG concentration of charcoal-absorbed plasma shOL:~d become zero when 

subjected to PEG extraction if indeed the PEG extraction procedure removes all large 

immunoreactive proteins. 

.... .... 
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Figure 6. Experimental protocol for testing the efficacy of PEG-extraction in removing large 
immunoreactive proteins from plasma. The chromatographic profile of neat piasma assayed 
by RIA using a double-antibody separation procedure should contain 3 peaks, namely the 
large immunoreactive protein peaks and the Iarer eluting glucagon peak. 

A pool of sheep plasma was used to study the efficacy of PEG in removing the large 

immunoreactive proteins. Six milliliters of untreated sheep plasma were used to 

determine the plasma IRG content and the chromatographic or molecular profile of IRG. 

The molecular profile of plasma IRG was obtained by chromatographing 5 ml of 

untreated plasma on a Sephadex GS0-50 (1.5 x 80 em) column and determining the IRG 

content of the fractions by RIA. Plasma total IRG concentration was determined by 

assaying directly an aliquot of the neat plasma. 

Twelve milliliters of the same plasma pool were subjected to charcoal absorption to 
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produce a sample that cont:iincd 11:1i:: large immunoreactive proteins (i.t.: .. glucagon-free 

plasma). The charcoal absorption procedure was designed :-: follows. Dextran-coated 

charcoal was prepared by mixing equal volumes of 32% activated charcoal (untreated 

powder, 100-400 mesh) and 16% dextran (- 73,000 daltons) iri rinse buffer. The plasma 

was divided into six aliquots (2 ml), each of which ·,v...:r...: mixed with 0.25 ml of ·the 

dextran-charcoal mixture. The plasma-dextran-charcoal mixt;Jres were incubated at room 

temperature for ten minutes, then centrifuged at 2,000 x g for 15 min. Supernatants from 

the six aliquots were pooled and filtered through a 0.45 J.Lm membrane (Millipore, 

Bedford, MA) to remove any residual charcoal powder. 

In order to confirm the ability of charcoal to absorb glucagon without affecting the 

large irrmmnoreactive proteins, 5 ml of the charcoal-absorbed plasma were 

chromatographed on the Sephadex G50-50 (1.5 x 80 em) column and column fractions 

were assayed for IRG. One milliliter of the charcoal-absorbed plasma was assayed 

directly to determine its IRG content, which should represent the concentratio:l of only 

the large immunoreactive proteins in plasma. Another aliquot (1 ml) of the charcoal­

absorbed plasma was extracted with PEG. If the PEG extraction method completely 

removes all the large immunoreactive proteins from plasma, then the IRG concentration 

in the PEG-extracted and charcoal-absorbed plasma should be zero. 

Finally, the IRG content in PEG-extracted plasma was measured in order to check 

the additivity of each procedure. Summation of the IRG concentration measured in PEG­

extracted plasma and charcoal-absorbed plasma should equal the total IRG content of the 

unext:·acted plasma as measured by RIA. 

Goat anti-rabbit IgG was used to separate ant ~body-hound and free [115I]glucagon in 

RIA using neat plasma, charcoal-absorbed plasma and fractions from chromatography of 
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neat plasma or charcoal-absorbed plasma. For PEG-extracted plasma samples, IRG was 

measured by RIA using PEG to separate antibody-bound and ~:-ee [125I]glucagon. 

Validation of RIA for Measuring Glucagon in PEG-extracted Plasma 

Validation of the glucagon RIA using the double antibody method was reported 

elsewhere (101). Validation of the RIA for quantifying glucagon in PEG-extracted plasma 

was done as follows. 

Accuracy is defined as the extent to which measurements of glucagon agree with the 

exact amount that is present in a sample. Accuracy of the RlA measurement of glucagon 

in PEG-extracted plasma was evaluated by adding 25 pJ of bovine glucagon to aliquots 

(975 p.l) of sheep plasma to produce final added glucagon concentrations of 0, 25, 50, 

100, 150 and 200 pg/rnl. The glucagon-spiked plasma samples were then extracted with 

PEG as described above. The amount of glucagon recovered in the glucagon-spiked 

plasma after its extracting with PEG was quantified by RIA using PEG to separate 

antibody-bound and free C25I]glucagon. Recovery of glucagon in the PEG-extraction 

procedure also was examined as follows. Approximately 50,000 CPM of [l25I]glucagon 

were mixed with 800 p.l of untreated sheep plasma. Subsequently, 150 p.l of 35% PEG 

in rinse buffer were added, and the mixture vortexed and centrifuged at 1, 500 x g for 45 

min at 4 °C. The supernatants were retrieved and counted for radioactivity. 

Precision is defined as the extent to which a series of measurements on a sample 

agree with the mean concentration. Intra-assay precision of the RIA was determined by 

calculating the coefficient of variatio:1 (CV) for 5 repeat measurements each of PEG­

extracted sheep plasma pools that contained low ( -70 pgiml). medium (- 90 pg/ml), 

and high (- 140 pg/ml) concentrations of glucagon; interassay CV was calculated by 
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running five different assays on 3 plasma pools that had glucagon concemrations of 

approximately 50 pg/ml, 90 pg/ml, and 200 pg/ml. Consisteacy of the PEG-extraction 

procedures per se was determined by extracting ten aliquors of tlu·ee plasma pools, and 

measuring i:he glucagon content in the extracted plasma by RIA using PEG to separate 

the amibody-bound and free [125l]gJucagon. 

Specificity is defined as the degree to which the assay measmcs what it is intended 

to measure. Crossreactiviry of the antisera and tests of parallelism indicate the specificity 

of the system. In this experiment, specificity of the assay system was evaluated by 

comparing the degree of parallelism between binding inhibition curves for glucagon 

standards with those for serial dilutions of PEG-extracted plasma pools and glucagon 

standards run in assay buffer comaining PEG at an equivalent amoum as found in 

extracted plasma. As mentioned before, some residual PEG is present in PEG-extracted 

plasma. Whether or not this residual PEG affects assay performance was determined by 

evaluating the parallelism between standard curves run in the presence and absence of 

PEG. 

Sensitivity is defined as the smallest amount of g:ucagon that can be distinguished 

from no glucagon. Assay sensitivity was determined by ca:culating the hormone 

concentration equal to the lower 95% confidence interval of the percentage of binding 

for B0 assay tubes of five different assays. 

Immunological Properties of the Large Immunoreactive Proteins 

Because of the interesting observations regarding the detection of the two large 

immunoreactive proteins (see Figure 7), this study brietly investigated t:1e immunological 

characteristics of these proteins as regards their ability to bind C25I]glucagon or to 
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displace antibody-bound glucagon. This was done by three different approaches. 

First, the possible presence of a glucagon-binding protein (GBP) in sheep p:asma was 

determined by comparing the chromatographs of [125l]glucagon (approximately 20,000 

CPM) previously incubated in RlA buffer (1 ml) alone or buffer (0.8 ml) plus 0.2 ml of 

pooled sheep plasma. Samples were chromatographed on a Sephadex 025 (1 x 25 em) 

and 1 ml fraction collected. The volume ratio of plasma: buffer: C251]glucagon in the 

preincubation mixture was identical to that in the incubation conditions of the RlA. If a 

binding-protein for glucagon exists, then the chromatographic profile of e25I]glucagon 

peak should be resolved into two peaks of free [125I]glucagon and a protein-bound 

[ 125I]glucagon peak when [i25I]glucagon was preincubated with plasma before 

chromatography. If this test for glucagon-binding protein was positive, t;:en 32 ng 

unlabelled glucagon would be coincubated with the plasma-['25I]glucagon mixture and the 

chromatography repeated. It was expected that the size of the protein-bound 

[ 125I]glucagon peak would diminish in the presence of unlabelled glucagon because the 

unlabelled glucagon would displace [125I]glucagon from the protein-bound-[125 l]glucagon 

complex. 

The second test determined if the ~ 145 kDa and 61 kDa protein functioned 

inmmnologically by binding [125I]glucagon or by displacing antibody-bound C25I]glucagon. 

Sheep plasma was chromatographed on a Sephacryl 100 HR (2.6 x 100 em) column as 

described earlier and the fraction containing the greatest immunoreactive content of the 

~ 145 kDa and 61 kDa proteins were each incubated overnight with approximately 

40,000 CPM C25I]glucagon in 2001-Ll RIA buffer. The mixtures then were 

chromatographed on a Sephacryl 100 HR (1 x 25 em) column. This was done to show 

if either of the large immunoreactive proteins were capable of binding e25I]glucagon. In 
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addition, ~ 125I]glucagon was coincubated overnight with glucagon antisera (1: 12K) alone, 

antisera plus 2:: 145 kDa protein, and antisera plus 61 kDa protein, respectively. The 

mixtures were chromatographed on the same Sephacryl 100 HR (2.6 x 100 em) column 

and fractions (1 ml) collected were counted for radioactivity. This was done to detennine 

the glucagon-binding or glucagon-like antigenicity of the large immunoreactive proteins. 

The chromatogram of [125I]glucagon that had been previously incubated with glucagon 

antisera should contain a free [125l]glucagon peak and an antibody bound-C15I]glucagon 

peak. If the large immunoreactive proteins bind [125I]glucagon then the height of antibody 

bound peak would be increased, whereas the height of amibody bound peak would be 

decreased if either of the large immunoreac~ive proteins expressed similar antigenic 

determinant as glucagon standard. This cesr relied on the fact that the antibody-bound 

[ 125I]giucagon eluted at the void volume. 

The third test was based on the suggestion by Von Schenk (170) that IgG may be 

part of :he large immunoreactive protein complex. This was to demonstrate that sheep 

IgG is measured by glucagon RIA system as IRG. An equivalent amount (13.5 mg/ml) 

of ovine IgG as normally found in plasma (54) was dissolved in RIA buffer which 

comined 5 ng of glucagon. Fifteen milliliters of the IgG -glucagon solution were 

chromatographed on a Sephacryl 100 HR (2.6 x 100 em) column . .i~ractions (5 ml) 

collected were assayed for glucagon by double antibody RIA. 

Glucagon Iodination 

Glucagon (Lilly Research Laboratories) for iodination was dissolved in 0.1 M acetic 

acid and aliquots (1 p,g/p.l) were stored at -20"C. Iodination of glucagon was 

accomplished by three methods, namely chioramine Tat pH 7.4, chloramine Tat pH 10, 
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and lactoperoxidase at pH :.0. For all iodination methods, 5 fJ..g (5 fJ..l) of glucagon was 

reacted with 0.5 mCi (5 fJ..l) Nal125 in a 1 ml polypropyrene microcentrifuge tube that 

contained 20 fJ..l of iodination buffer. 

Chloramine T iodination was done according to the procedure of Shima et al (144). 

Briefly, glucagon was added to the reaction vial containing 20 fJ..l phosphate (0.2 M. pH 

7.4) or Tris (0.015 M, pH 10) iodination buffer. Five microliters of Naf25 (Amersham, 

Arlington Heights, IL), 15 fJ..l of dimethyl sulfoxide (DMSO) and 70 fJ..g chloramine T in 

20 fJ..l iodination buffer were added sequentially to the reaction vial. Reaction was allowed 

for 15 sec before the sequential addition of 12 mg sodium metabisuifide in 50 fJ..l 

iodination buffer and 25 fJ..l of 25% bovine serum albumin (BSA) in dH20. The reaction 

mixture was purified by gel filtration on a Sephadex G25 (1 x 45 em) column that was 

eluted with RIA buffer. Fifty fractions (1 ml) were collected and 5 fJ..l of each fraction 

were counted for radioactivity. 

Lactoperoxidase iodination method based on Von Schenk (172) was done by mixing, 

in order, glucagon, I\al'25 , 20 fJ..l of 0.015 M TRIS buffer (pH 10), 15 fJ..g lactoperoxidase 

in 5 fJ..l 0.4 M phosphate buffer and 5 fJ..l (0. 003%) hydrogen peroxide. Reaction was 

allowed for 45 seconds before the addition of 0.2 ml transfer-inhibition solution (0.01 

M potassium phosphate dibasic, 0.1 M sodium nitrite, 0.1% BSA, 0.1 Yf sodi;Jm 

chloride, 0.1 .YI sodium iodide). Reaction mixture was purified by gel filtration as 

described for iodinations done by the chloramine T method. 

Analysis of Iodinated Glucagon 

Three different methods were used to identify the chromatography fractions 

containing [1251Jglucagon that were the most suitable for use in RIA. Fractions from the 
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start to the end of the [i25I]glucagon pea~~ were tested. First, the percentage of 125I 

incorporated into glucagon was determined by protein precipitation using 3 ml of 20% 

trichloroacetic acid (TCA) and 100 p.l of each fraction. The mixtures were centrifuged 

at 1,500 x g for 30 min at 4°C and the precipitate obtained was counted for radioactivity. 

Second, the immunoreactivity of [125I]glucagon tracer was tested by coincubating aliquots 

of the fractions with excess amount (100 p.l) of C-terminal glucagon antisera (1 :400 id) 

diluted in assay buffer for 1 h at room temperature. Two hundred microliters of goat 

anti-rabbit gamma globulin (1 :250 id) were added and tubes incubated for 1 h at room 

temperature and then for 16- 24 hat 4°C. Incubation ended with the addition of 3.8 ml 

cold rinse buffer and centrifugation at 1,500 x g for 45 min at 4°C. Percentage of 

antibody-bound [l25I]glucagon \vas determined by counting radioactivity of the 

precipitates. Finally, this latter approach of assessing the immunoreactive qua:ity of 

tracer in fractions obtained from chromatography of the iodination mixture \vas repeated 

as described except that the RJA-working dilution (1 : 12,000 id) of the C-terminus 

antisera was used instead of excess antisera. 
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REStJLTS 

Effect of RIA-separation Procedure on rhe Molecular Profile of IRG 

The molecular profile of IRG in chromatographed sheep plasma differed according 

to the procedure used in the RIA to separate antibody-bound and free [125I]glucagon 

(Figure 7). RIA using the double-antibody separation procedure measured three major 

IRG peaks at the void volume (0 Kd), 0.15, and 0.72 Kd with molecular weights of 

approximately ;;:::: 145, 65 and 3.1 kDa, respectively. When PEG was used to separate 

antibody-bound and free rt25I]glucagon in the RIA, only two IRG peaks were detected at 

0.15 and 0. 72 Kd, respectively. 
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Figure 7. Molecular profile of IRG in chromatographed sheep plasma as measured by 
glucagon RIA using double-antibody or PEG to separate antibody-bound and free 
[125I]glucagon. Ten milliters of sheep plasma were chrornatographed on a Sephacryl 100 high 
resolution (S100HR ; 2.6 x 100 em) column. Y~axis values are pg/ml of fraction eluent. ' 
Molecular weights of protein peaks eluting at void volume, 0.15 and 0. n Kd were 
approximately ~ 145, 61 and 3. 1 kDa, respectively. Equation of the colulllll calibration curve 
was logY = -2.31X + 5.16; r = 0.994 
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Efficacy of PEG Extraction in Removing the Large Immunoreactive Plasma Proteins 

The PEG-extraction procedure effectively removed all the large immunoreactive 

proteins from plasma (Figure 8). Charcoal absorption of plasma successfully absorbed 

all glucagon without affecting the q:.r<,:n::y ,f·l!:.: 'ar!_;:~ :1::n!:moreactive proteins. The IRG 

concentration of plasma fell from 118 pg/ml to 56 pg/ml after charcoal absorption. 

Chromatography also showed rhat :he IRG content of charcoal-absorbed plasma 

represented only the large immunoreactive proteins. PEG extraction of charcoal-absorbed 

plasma completely removed all measurable IRG. 
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Figure 8. Removal of large immunoreactive proteins by PEG extraction of plasma. Sheep 
plas:oa (5 rnl) was chromatographed on a Sephadex GS0-50 (:.5 x 80 em) coiumn be!-ore (•­
•) and afccr (O-C) ctarcoal absorption of the piasma. Y-axis values are pg/ml fraction 
e:uent. Insert table : total IR.G concentration of untreated plasma included that due to 
glucagon and the large molecular-weight immunoreactive proteins. IRG coccentration of 
charcoal-absorbed piasma represented the concentration of only the lar!'e imamnoreac~ive 
proteins in the sample. The dif:ereuce in IR.G concentration between untreated and charcoal­
absorbed plasma hence represented the concentration of the large i=unoreactive proteins. 
IRG concentration of PEG-extracted plasma represented the concer.rratioc of glucagon alone. 
PEG extraction of glucagon-free plasma (charcoal-absorje::i) measured zero IRG 
concentration, therefore showing that PEG-extraction procedure c:fcctivc:y removed 100 % 
of the large immunoreactive proteins in piasma. 
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Validation of RIA for Measuring Glucagon in PEG-Earac:ed Plasma 

Accuracy ·Jf the g!uc:1gon rad!oir:1..rnunoassay i5 show:1 in ~:gure 9. LneJ.r regression 

::ma:ysis of t..l:e mean data :r.dicated t.~at t.!l.e g:uc::.gon RIA essentially meJ.sured ~00% of 

~he glucagon in PEG-extrac:ed plasma becm:se the regression equation of the recovery 

ct:r;e was y = Q.978X- ~: ..r 1). 992). 
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Figure 9. Accu::acy of measuring glucagon ir. PEG-extracted piasma by RIA employing PEG 
:c se;,Jar::!e :;.:-.t:~ody-:Jcu::c :l.:1d t-ee ~· 25ng::1:::;.go:J.. A·1cngc pe~centagc :-ecovery oi :.he 
glt.:cagc::. swada::d was 98 %. Reg:-cssion :::qua::on of :he rewve:y ~!.l:-ve \Vas 
v = J.9'7SX- :1 : ~ = 0.992. 

~ecovery of :c5I]glucagcn due cC rl:e PEG-:=xt:::action procecure itself was ass~sseJ 

by de~er:nining the radioactivity in the supernatant of PEG-extracted plasma (n = 3) that 

cor:tained 50,000 CP~1 of ['25Ijg!ucagon. Approximately 97 ± 0.9% of ~~25I]glucagcn 

was recovered. in the PEG-extracted plasn:a. 
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Precision of the RIA in c;ua;:tifying glucagon in PEG-extracted plasma is sumrmri ... ed 

in Table 2. The intra-assay CV ranged from 4 to 9% for plasma pools containiug iuw, 

medium, and high concentration of glucagon. Interassay CV for another three plasma 

pools containing low, medium and high concentration of glucagon ranged from 8 to 15%. 

Table 2. Intra- and inter-assay precision for RIA measureme11t of 
glucagon in PEG-extracted plasma 

Precision Plasma Glucagon cv 
Pool (pg/ml) (%) 

Intra-assay A 68.8 ± l.9 6.0 
B 90.8 ::':: 2.2 5.5 
c :36.2 -'- 2.8 9.1 

In:er-assay D 45.8 +: 1.9 9.2 
E 87.8 ± 3.2 8.2 
F 199.6 ± 13.9 15.6 

------ ----------------------------------------
PEG was used to separate antibody-bound and free [1:!5I]glucagon in 

tl:e RIA. Glucagon values shown were as rr:easured i:1 PEG-extracted 
plasma pools and represented the mean (± SE) of 5 repeated 
measurements. 

The combined imprecision in the system due to PEG-extraction and intra-assay 

ranged from 5-18% and averaged 11.1% (Table 3). The difference between the average 

intra-assay CV (6.7%) in Table 2 and the combined CV due to PEG extraction and intra-

assay variability (11.1%) in Table 3 should represent the variability due to PEG 

extraction alone. 

Table 3. Combined imprecision in the RIA due ro PEG-t!..ttracrion 
and assay variability 

Plasma Pool Glucagon (pg/ml) CV (%) 

Low 20.9±1.17 17.7 
Medium 49.4 ± 1.67 10.7 
High 158.5 ± 2.01 5.0 

Values arc means (± SE) of :en observations. Each plasma pool was 
extracted ten times and the rcsult;mt s~;:JCr:-Jatants were assayeC. in duplicate 
in the RIA. 
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Serial dilutions of PEG-extracted plasma and standard curves run in the presence and 

absence of PEG were parallel ro each other (Figure 10). The presence of PEG did not 

affect the standard curve. Serial dilution of plasma resulted in binding inhibition curves 

that were parallel to both standard curves, which indicated that the same substance in 

standards and extracted plasma was being measured. 

Dilution ratiO or sheep plasma 

1:16 1:8 1:4 1:2 1:1 
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i- 60 
z 50 UJ 
0 40 
a: 

30 w 
a.. 

20 1:16 1:8 1:4 1:2 1:1 
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10 100 BOO 

GLUCAGON (pg/ml) 

Figure 10. Binding inhibition curves for glucagon standards and PEG-extracted plasma that 
contained medium (- 85 pg/ml; D D) and high (- 200 pg/ml; •-•) concentrations of 
glucagon. Glucagon standard curves were assayed in the absence (::::J-0) or presence (O-O) 
of equivalent amounts of PEG (12.5%) as found in extracted plasma. PEG-extracted plasma 
containing 12.5% PEG was assayed before (1: 1) and after its serial dilution (I :2, 1:4, 1:8, 
1 : 16) in assay buffer. 

The glucagon antisera used in this experiment did not crossreact significantly with 

potentially interfering compounds normally found in or added to sheep blood (Table 4, 

J.P. McCann, unpublished data). Interestingly, the crossreactivity with IgG was very low 

but IgG could interfere the radioimmunoassay because the plasma concentration of IgG 

is about 109-times greater than the plasma glucagon concentration. 
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Table 4. Cross-reactivities of compounds in the glucagon mdioimmwzoassay 

Compound 

Glucagon (bovine; 1.05 u/mg) 

Glucagon-Like Peptide : 
Secretin 
Vasoactive Intestinal P:)lypep:ide 
Gastric Inhibitory Polypeptide 

Gastrin I and II 
Cholecystokinin 

l::)ulin (ovine) 
Insulin (bovine) 
Pro insulin 
Somatostatin 
Pancreatic Polypeptide 

Calcitonin 
Parathyroid Hormone 
Calcium-Binding Proteins 

Growth Hormo~e 
Proiactin 
Thyroid Stimulating Hormone 
Lutein.izing Hormone 

Globulins (sheep; cow; dog) 
Immunogamma Globulins (sheep; cow; dog) 
Albumin Covine: bovine) 
Benzamidinc 
Heparin 

Relative Activity 
. 

1.0000 

< O.OOCOl 
< 0.00001 
< O.OCG01 
< 0.00001 

< 0.00001 
< 0.00001 

< 0.00001 
< 0.0001 
< 0. ooco 1 
< 0.00001 
< 0.00001 

< 0.00001 
< 0.00001 
< 0.00001 

< O.CCC01 
< 0.00001 

0.00003 
0.00005 

< 0.00000001 
< 0.00000001 
< 0.00000001 
< 0.000000: 
< o.ooococo; 

"Ratio of the concenrration of glucagon to the concemratior.. of :he potentially 
interfering compound needed to inhibit binding of tracer to antibody by 50 
percent (McCann. J.P., unpublished data). 

Sensitivity of the assay system was 5.35 pg.'tube or 2? pg/ml of plasma. 

Therefore. th:s RIA pro:::cdurc can ac:::~ra:ely qua:11:fy glucag,;r: in as E~tle as 200 

/-!1 of PEG-ex~racted sheep plasma. 
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Immunological Properties of the Large Immunoreactive Proteins 

A single peak of [125I]glucagon was detected in the chromatograph of 

[ 125I]glucagon in RIA buffer. Mixing [125I]glucagon with diluted sheep plasma did 

not change the magnitude or position of the [i25I]glucagon peak (Figure 11). 

Because data showed the absence of glucagon-binding protein, chromarography 

of unlabelled glucagon-[l25I]glucagon-plasma mi"X:rure was not done. 

::E 
a... 
() 

>­
I-
> 
I­
() 
<( 

0 
a 
<( 
a: 

6000 

5000 

4000[-

3000 

2000 

1000~ 
I !· 
~ ~ ,:p 

a Cr<l-.r.:-c"""-:>-o~· ~~">-Vv 
I I I I 

0 5 10 15 20 

FRACTiON NUMBER 

25 30 

Figure 11. Test for the presence of a plasma glucagon-binding protein. Radioactivity counts 
were obtained from the chromatography of e25IJglucagon previously incubated with buffer 
alone or buffer plus sheep plasma. 

Incubation of e25I]glucagon wit:l the 61 kDa protein resulted in a slight increase in 

radioactivity in fractions eluting between the void volume and [125I]glucagon. Incubating 

[ 125I]glucagon with the aliquots of fractions containing the ~ 145 kDa and 61 kDa 

proteins did not produced any change in the magnirude or position of the [l25I]glucagon 

peak (Figure 12). 
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Figure 12. Chromatographs of [125f1glucagon alone (top panel), [125I]glucagon 
preincubatcd with the ~ 145 kDa protein (middle panel), and [1 25I]glucagon preincubated 
with the 61 kDa protein (bottom panel). All chromatographs were obtained from 
Sephacryl 100 HR (1 x 25 em) column, void volume and bed volume of the colunm were 
marked by blue dextran (BD) and vitamin B12 (vit B), respectively. Fraction (1 ml) 
collected were counted for radioactivities. 
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Chromatography of the C25I]glucagon-amisera showed two distinct radioactive peaks. 

The earlier eluting peak represented the antisera-bound [: 25I]glucagon and the second one 

represented !ree [125I]glucagon. Addition of the ;::: 145 kDa or 61 kDa proteins to the 

antisera-[ 125l]glucagon mixture did not change the chromatographic profile of the 

e25I]glucagon-antisera mixture (figure 13). 
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Figure 13. Chromatographs of [12sl]glucagon alone (panel A), l'--I]glucagon prcincubared 
with antisera (panel B), [' 25I]glucagon preincubated with antisera plus :he ~ 145 kDa 
protein (panel C), and [125 l1glucagon preincubated antisera plus the 61 kDa protein (panel 
D). All chromatographs were obtained from Scphacryl 100 HR (i x 25 em) column, void 
volume and bed volume of the column were marked by blue dextran (BD) and vitamin 
B12 (vir B), respectively. Fraction (1 ml) collected were counted for 
radioactivities. 
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The artempt to chromatograph sheep IgG and demonstrate that sheep IgG interfered 

!.n glucagon RIA was not entirely successful. Although chro:·:1::tography of 202 mg of 

sheep IgG in 15 ml RIA buffer showed an :RG peak at the void volume (F!gure 14), the 

result from this single chromatographic run was qt~;:-;r:. ··nable because the column tlow 

rate was inconsistent and faster than normal. :"feve:.·thckss, the glucagon peak eluted at 

its proper position and the peak of immunoreactiv:ry at the void volume could only be 

due to the IgG. 
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Figure 14. Chromatograph of 202 mg sheep IgG and 32 ng glucagon in RIA bu:fer. 
Sample (15 ml) was chromatographed on a Scphacryl 100 HR (2.6 x 10 em) column, and 
fractions collected were measured for IRG by RL<\. Void voume and bed volume were 
marked !:Jy biue dextr:.n :me vitamin B12 , respectively. 
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Glucagon Iodination 

Chromatographic profiles of [125f]glucagon prepared by the chloramine T (pH 7.4 and 

pH 10) and lactoperoxidase methods arc summarized in Figure 15. All three iodination 

methods generated similar chromatographs that wmained a single prominent protein peak 

of C25l]glucagon and an 1125 peak that eluted at the bed volume. A small peak of 

radioactive material consistently was observed immediately before the e25l]glucagon peak 

in the lactop~.::·oxidase method. Percentage precipitable counts obtained using TCA and 

excess amounts of antibody were directly proportional to the radioactivity content of the 

fraction. Therefore, according to the TCA and excess antibody test, the fractions that had 

the highest radioactivity should be the most suitable for use as tracer in the glucagon 

RIA. Based on precipitated counts obtained using the RIA-working dilution of antisera, 

however, the fraction containing the most radioactivity (i.e., peak radioactive fraction) 

was not the most suitable for use in the RIA; this latter approach identified the 

radioactive fraction eluting at the tail of the [125I]glucagon peak as the most suitable for 

use as tracer in the RIA. 
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Figure 15. Comparison of glucagon iodination procedures and tests of suitability of 
C25I]glucagon for use in RIA. Bovine glucagon was iodinated using chloramine T (pH 7.4 and 
pH 10) and lactoperoxidase (pH 10). Each panel shows radioactive counts obtained after 
chromatography of the iodination mixture (•-•) and the precipitable counts obtained using 
excess TCA ( ... -.~.),excess antibody (O-O) and antibody at RIA-working dilution (0-::1). Data 
shown are results of single iodinations that represent typical results for 20 chloramine T 
iodinations at pH 7.4, 3 chloramine T iodinations at pH 10, and 9 lactoperoxidase iodinations 
at pH 10. The peak counts of [125I]glucagon eluted at approximately fraction 27 and :25! eluted 
at approximately fraction 45. 
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The fractions with the greatest amount of radioactivity that was precipitated by TCA 

or the two dilutions of antisera were tested further by performing binding inhibition 

curves for each of these three fractim~s (F!gure 16). 
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Figure 16. Binding inhibition curves for [125I]glucagon prepared using chloramine T (pH 7.4 or 10) or 
lactoperoxidase (pH 10) iodination methods. Binding of [125I]glucagon to antisera was inhibited by 
increasing concentrations of glucagon standard. Fractions from the chromatographic profile of each 
iodination mixture were selected for use as tracer glucagon in this experiment. TCA (.•.-•), and excess (O­
o) and working dilutions (D-D) of the glucagon antisera were used to precipitate [125I]glucagon in the 
fractions collected and the fraction containing the highest precipitable count provided the [125I]glucagon 
tracer that was used to generate the binding-inhibition curves. The binding characteristics of each curve 
arc summarized in Table 5. 
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The 'best' !racer fractions as determined by percentage precipitability by TCA, 

excess antibody, and antibody at working dilution produced standard curves with 

different slopes (sensitivity) and % total counts bound (Table 5). Regardless of the 

• iodination environment, tracers selected according to percent precipitability by antibody 

at the RIA-working dilution always provided the best standard curve for glucagon 

radioimmunoassay. 

Table 5. Performance of glucagon standard cun'es using selected f125l]glucagon tracers 

?aramctcrs 

:--.ISB (% TC) 

B0 (% TC) 

Slope 

ED (80) 
pg/ml 

ED (50) 
pg/mi 

ED (20) 
pg/ml 

Iodination Methods 

Ch T (pH 7.4) 
Ch T (pH 10) 
Lacto (pH 10) 

Ch T (pH 7.4) 
Ch T (pH 10) 
Lacto (pH 10) 

Ch T (pH 7.4) 
Ch T (pH 10) 
Lacto (pH 10) 

Ch T (pH 7.4) 
Ch T (pH 10) 
Lacto (pH I 0) 

Ch T (pH 7 .4) 
Ch T (pH 10) 
Lacto (pH 10) 

Ch T (pH 7.4) 
Ch T (pH 10) 
Lacto (pH 1 0) 

TCA 

3.0 
1.8 
2.2 

.., -, 
/ . ..:.. 
14.2 
9.6 

-1.86 
-2.06 
-:.90 

44 
53 
84 

274 
246 
452 

1729 
1134 

2030 

Precioitation Procc(:ure 
Excess Ab Working Ab 

,., - 1.6 .:...I 

1.8 1.8 
1.4 1.7 

! i. 7 20.1 
14.2 20.9 
6.4 19.7 

-2.29 -2.06 
-2.06 -2.13 
-1.35 -1.36 

66 62 
53 47 
49 55 

300 274 
246 2:5 
557 230 

1360 1215 
1134 998 
6427 1194 

Values for each method are from single iodinations that represent the typical results for 20 
chloramine-T iodinations at pH 7.4. 3 chloran:inc-T iodir.ations at pH 10, and 9 lactoperoxidase 
iodinations at pH 10. TC, total counts added to assay tube; NSB, non-specific-bound counts; B0, 

maximum antibody binding of [125 l]glucagon in the absence of competition due to g:ucagon 
stanclarc:; ED(8Q), ED(50), and ED(20) are cor.ccntrations or' g;uc::gon required to displace SO%. 
50%. and 20% of the B0 counts, respectively. 
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DISCUSSION 

Quantification of plasma glucagon by RIA is complicated by the presence of large 

molecular weight plasma proteins that express glucagon-like immunoreactivity (166, 

177). There are various methods to remove these large immunoreactive proteins from 

plasma prior to RIA measurement of glucagon concentrations. Attempts to physically 

separate the large immunoreactive proteins using ultrafiltration membranes (Amic:-on, 

Beverly, MA) were unsuccessful because more than 90% of unlabelled glucagon and 

[ 125I]glucagon were adsorbed to the membrane (data not shown). Separation of the large 

immunoreactive proteins using organic solvents such as ethanol (67, 79) and acetone 

(173) essentially removed :tll the large immunoreactive proteins and allowed 75 to 80% 

recovery of glucagon in the extracted plasma. This study demonstrated that PEG 

extraction of sheep plasma effectively removed 100% of the large immunoreactive plasma 

proteins and allowed 97% recovery of glucagon. In comparison to the ethanol and 

acetone extraction methods, the PEG-extraction procedure is simpler and it provides a 

more precise and accurate quantification of plasma glucagon. Smaller quantities of PEG 

(150 ,ul of 35% PEG) can be mixed with plasma (850 ,ul) to minimize dilution of the 

plasma glucagon (data not shown). 

This study showed that com;_Jlete removal of the large immunoreactive proteins was 

essential before essential glucagon could be measured accurately by RIA. The 

biochemical properties of the large immunoreactive proteins are not known. Using the 

technique of gel chromatography, Weir ( 176) showed that the large immu!loreactive 

proteins were composed of at least two proteins that eluted from the column with 

molecular weights corresponding to those of the g:.mm.: r-Iobulin (146 k.Da for IgG 1, IgG:: 
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and IgG4; 170 kDa for IgG3) and bovine seru::1 ;:.ibumin (66 kDa) markers. Von Schenck 

(170) showed that hu:nan IgG is measured as IRG by 1:1e glucagon RIA. Human plasma 

that was immunoad"orbed with protein A to remove IgG (the IgG1, IgG2 and IgG4 

subclasses did not contain measurable amount of the large immunoreactive proteins by 

glucagon RIA (170). Von Schenck (170) also demonstrated that IgG and the constant 

portions (Fe) of IgG, but not t~1e antigen-binding portion (Fab), were measured as IRG 

in the glucagon RIA. 

In agreement with results in humans (176), two distinct protein peaks of molecular 

weight :::::145 and 61 kDa were detected when sheep plasm:1 was chromawgraphed and 

the fractions measured by double-antibody RIA. However, thL· :arger (::::: 145 kDa) protein 

peak was not detectable in these same fractions when PEG was used instead of goat anti­

rabbit IgG to separate antibody-bound and free l125r]glucagon in the RIA. Tllis suggested 

that the ::::: 145 kDa peak may bind [125l]glucagon and that the bound-comp:ex was 

precipitated )y PEG. As a consequence, the higher than expected radioactive counts in 

the precipitated pellet would result in an artifactually lower, or zero, concentration 

reading from the standard curve. When double antibody-RIA was used, the :::::145 kDa 

protein-[125I]glucagon complex would not be recognized by the goat anti-rabbit IgG. 

However, the ;:::: 145 kDa protein would prevent some C251Jg!ucagon from interacting with 

the glucagon antisera, and this potentially could lower the radioactivity count in the 

precipitated pellet. The lower radioactive count would be measured as IRG. 

The fact that a small void volume peak appeared in the chromatog:-aph of 

e25I]glucagon preincubated with the ;:::: 145 kDa protein (Figure 12) suggested that the 

;:::: 145 kDa protein bound to glucagon to some extent. However the postulate that ::2: 145 

kDa protein may binds glucagon was not supported by other preliminary results 
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demonstrating the absence of a sheep plasma-binding protein (Figure 11) and the inability 

of the ~ 145 kDa protein to displace the antisera-[125I]glucagon peak (Figure 13). Further 

studies of the properties and chemical identity of the large immunoreactive proteins is 

warranted. 

On the other hand, the smaller immunoreactive protein (61 kDa) may behave as 

unlabelled glucagon that competes with glucagon and [125I]glucagon for bi1:ding to the 

glucagon antisera. The r.racer displaced by the 61 kDa protein would not be precipitated 

by either goat anti-rabbit IgG or PEG. T~erefore the 61 kDa protein would interfere to 

the same degree in RlAs using the double-antibody or PEG-separation methods. 

If indeed the ;::::: 145 protein binds [i25I]glucagon and the 61 k:Da prote:n competes 

with glucagon for antisera binding, then RlA using reagents (e.g. acetone or ethanol) that 

precipitate the antibody-bound [125I]glucagon should behave the same as RIA using the 

PEG-separation method. RlAs of unextracted plasma that use acetone, ethanol or PEG 

methods to separate antibody-bound and free C25I]glucagon will measure a lower IRG 

concentration than that using a double-antibody separation procedure because the former 

do not measure the ;::::: 145 kDa protein. However, RJA using a dextran-coated charcoal 

separa~ion method was able to detect both a larger (160 kDa) and a smaller (68 k.Da) 

immunoreactive protein equally as well as the double-antibody method ( 177). If the larger 

immunoreactive protein (;::::: 145 kDa) actually binds [125I]glucagon tracer. then the binding 

affinity may be weak enough that the charcoal is capable of stripping e5IJg·~!cagon from 

:he ~ 145 kDa protein. Although the actual characteristics of the ;::::: 145 k.Da protein are 

not well understood, the results of this experiment clearly show that the concentration of 

IRG in unextracted plasma would differ according to the procedure used in RIA to 

separate antibody-bound and free [125I]glucagon. Therefore, removal of the large 
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immunoreactive proteins prior to the measuremem :,1 plasma glucagon by RIA is 

recommended. 

The quality of iodinated hormones for use in RIA traditionallv has been assessed bv - -
the percent of radioactive counts precipitable by TCA or excess antisera. This srudy 

showed that l125l]glucagon selected according to those methods was not the best quality 

tracer for use in RIA. Typicaily, fractions containing [l25I]glucagon that were selected 

in this study by the TCA or excess antibody methods produced standard curves with low 

sensitivity. The RIA-working dilution of antisera identified the fractions containing the 

best quality tracer for RIA; these fractions, routinely always eluted 4 to 5 fractions after 

the radioactive-glucagon peak. The later eluting fractions may contain mainly 

monoiodoglucagon while the fractions around the radioactive glucagon peak may contain 

mainly diiodoglucagon. As suggested by Von Schenck ( 172), diiodoglucagon molecules 

are less immunoreactive and are more subject to iodination damage. This may be the 

reason why fractions containing the peak counts of [125I]glucagon had apparently good 

immunoreactivity when tested with excess antisera but reduced immunoreactivity when 

tested using limited amounts of antisera. 

In summary, this srudy validated a PEG-extraction method for removing the large 

immunoreactive proteins from plasma. Radioimmunoassays of unextracted plasma that 

use PEG to separate antibody-bound and free [125I]glucagon will measure glucagon and 

the smaller (61 kDa) of the two large inmmnoreactive proteins, whereas tl1e double-

antibody procedure will measure glucagon and both immunoreactive proteins. Therefore 

double ,,ntibody and PEG separation procedures in RIA provide di'Jerent total IRG values 

in unextracted plasma. Nevenheless, RIA of neat plasma using C-terminus specific 

antisera will not provide accurate concentrations of glucagon regardless of the RIA-
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separation procedure. Complete removal of the large immunoreactive proteins is a 

necessary step for accurate measurement of plasma glucagon by RIA. Quality 

[ 125l]glucagon was prepared by the chloramine T (pH 7.4 or pH 10) and lactoperoxid::se 

(pH 10) methods, but the best tracer for RIA .!"lad to be identified by percentage 

precipitable counts obtained using limited amounts of antisera rather than excess antisera 

or TCA. Fractions identified in this manner consistently eluted at the tail of the 

radioactive glucagon peak. 
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Chapter IV 

WHOLE BODY KINETICS OF GLUCAGON 
IN LEAl\ AND OBESE SHEEP 

INTRODUCTION 

The obese sheep :nodel has experimental application to obesity and nor:insulin -

dependent diabetes mellitus (NIDDM) in humans because obese sheep display similar 

endocrine, metabolic and cardiovascular abnormalities as found in humans with obesity 

or NIDDM (6, 98, 100). Hyperinsulinemia, hyperglycemia and insulin resistance are 

consequences of dietary-induced obesity in sheep (1 00). Hyperinsulinemia in obese 

humans and obese sheep may coexist with hyperglucagonemia (33. 100, 150). Direct and 

indirect measurements have shown that greater-than-normal secretion r::tes of insulin 

were responsible for the hyperinsulinemia in obese cattle and sheep (103, ~ 'l4). However, 

the kinetic basis for hyperglucagonemia in obese animals and humans is :10t known. 

Regardless of body condition state, relative or absolute hyperglucagoncmia was found 

in humans with insulin-dependent diabetes mellitus (IDDM) and l'\IDDM ~129, 164). In 

nondiabetic people, fasting plasma concentrations of immunoreactive glucagon (IRG) 

were either normal (129), significantly elevated (102, 150), or nonsignificantly elevated 

(81) in obese compared with nonobese individuals. One extensive study showed that 

plasma IRG concentrations were similar in nondiabetic control subjects and in subjects 

with moderate or severe degn.:cs of dietary obesity when frequent measurements were 
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made throughout the day (129). Such results suggest that glucagon dysfunction is !<~eking 

or is an infrequent find;u,;; i:: uJc~L· .JUI!la::s. This may be an erroneoJs conclusion 

because immunoreactive glucagon levels in peripheral plasma may not retlect the true 

concentration of glucagon in animals and humans. 

Glucagon radioimmunoassays that are considered specific for glucagon actually 

measure IRG which is comprised of glucagon and large molecular weight plasma proteins 

with glucagon-like inununoreactivity (see Chapter 3). The extent of cross-reactivity of 

large molecular weight plasma proteins in the glucagon RIA depends on the source of 

glucagon antisera used (149). The relative abundance of these large reactive proteins in 

plasma :nay mask small differences in plasma levels of pancreatic glucagon. One study 

that measured plasma glucagon exclusive of the large inununoreactive prmeins founc that 

the pl'::-ipheral plasma level of glucagon was slightly but s:~nificantly elevated in obese 

humans (150). 

The objectives of these experiments were to determine how obesity affected glucagon 

kinetics in sheep. In addition, the plasma insulin, glucose and free fatty acid (FFA) 

responses to a high dose of glucagon stimulation were compared in lean and obese sheep 

because insulin and glucagon have reciprocal effects on the plasma glucose concentration 

and each can affect the secretion rate of the other hormone. 
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MA TK'UALS Al"\il> i\U('J': ::ODS 

Diermy Obese Sheep 

Details of the feed intakes and body weight changes during the induction (dynamic) 

and maintenance (static) phases of dietary obesity in sheep were reported elsewhere 

(102). Briefly, obesity was induced in adult ewes by overfeeding with a pelleted hay­

grain diet and this same diet was fed at a maintenance level to :he lean (control) ewes. 

Static phase obesity was achieved after approximately 40-50 wk of ad libitum feeding. 

Lean and obese Dorset ewes aged 3 to 5 yr were used in this experiment. Body 

weight in obese sheep (91 ± 1 kg) exceeded (P<O.OS) that of lean (41 ± 1 kg) sheep. 

These differences in body weight were associated with significantly greater depths of 

subcutaneous fat, weights of internal fat depots, and an estimated percent body fat in the 

live animal of 20 to 26 percent in lean sheep and 34 to 40 percent in obese sheep (102). 

Lean and obese sheep were housed individually in pens in a room with constant light and 

temperature (21 ± 1 °C). Water was available continuously and experiments were 

conducted when lean and obese sheep were at zero energy balance and equilibrium body 

weight. 

Glucagon Injection and Sample Collection 

Bovine glucagon (Lilly Research Laboratories, Indianapolis, IN) was dissolved in 

0.01 :vi TRIS buffer (pH 9.8) and 0.5 ml of each animal's own sterile plasma 

immediately before injection. Glucagon (1 ,u.g/kg) was injected (0830 h) via jugular 

catheter (Angiocathl), Becton Dickinson, Sandy, UT) into 20-h fasted sheep. Catheters 

were inscrt~J p...::·cu::.t!:._·uusl:,· :t: ka ... t :6 h before each experiment. Catheters were 

t1ushed with 5 ml saline after glucagon injection. Blood samples ( 4 ml) were collected 
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into heparinized syringes at 2, 4, 6, 8, 10, 12, 15, 18, 20, 22, 25, 27, 30, 32, 35, 37, 

40, 45, SO, 55, 60, 70, 80, 90, 100, 110 anc: 120 min after glucagon :njection in lean 

(n=S) and obese (n=8) ewes; addition:.: blood samples (4 mi) were collected 20, 10 and 

1 min before the glucagon injection. Blood was immediately dispensec: into chilled 

polystyrene tubes containing benzamidine (10 mg) and heparin (200 C) that were held 

in an ice-water bath. Plasma was recovered by centrifugation (4: C) and stored at -20.:C. 

Plasma samples collected for the glucagon kinetic study were used to quantify plasma 

insulin, glucose and FF A responses to glucagon stimulation (n = 8 per group). 

Measurements were made in samples collected 20. 10, and 1 min before and 4, 8, 12, 

20, 25, 30, 40, 80, and 120 min after glucagon injection. 

Analytical methods 

Plasma insulin was measured by solid phase radioimmunoassay validated for use in 

sheep (105). Sensitivity of the assay was 6.0 pmol/L; intra-assay and interassay 

coefficients of variance (CV) were 8% and 14%, respectively. Plasma glucose 

concentration was determined by Trinder reagent as described previously (102); imra­

assay and interassay CV were 0.5% and 4.55~. respectively. Plasma FFA concentrations 

were determined using an enzymatic colorin1etric method described by iv1cCann et al 

(102); intra-assay and interassay CV were 3% and 7%, respectively. 

A double-antibody radioimmunoassay using polyclonal rabbit anti-glucagon serum 

was validated in this laboratory for measurement of glucagon in sheep (101). Intra-assay 

and interassay CV were 3% and 12%, respectively. Radioimmunoassays using this or 

Unger's 30K antisera provide equivalently specific measurement of plasma concentrations 

of pa::c~..·a: ic {lii.:agon, although each system also ueasures large molecular weight ( ~ 
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61 kDa) immunoreactive components in plasma (102). Concentrations of glucagon m 

plasma after glucagon injection were determined by the double antibody procedure. 

Plasma concentrations of glucagon plus the large im;:mnoreactive proteins (i.e., IRG) 

were measured in the basal samples collected befort: glucagon injection. Glucagon 

concentrations alone were determined after plasma was treated with polyethylene glycol 

8000 (PEG; Sigma, StLouis, MO). As described in Chapter 3, PEG treatment removes 

the large immunoreactive protein component of IRG and allows accurate quantification 

of glucagon in the supernatant of PEG-extracted plasma. 

Separation of antibody-bound and free e25I]glucagon (Diagnostic Products 

Corporation, Los Angeles, CA) in the RIA for quantification of IRG in unex~~·acted 

plasma and pancreatic glucagon in PEG-extracted plasma was achieved using charcoal 

absorption (64). For each sample, extracted and unextracted plasma were run in the same 

assay. Recovery of bovine glucagon (Lilly, Indianapolis, IN) in PEG-extracted sheep 

plasma averaged 110 ± 5 percent when 100, 200 and 400 pg glucagon standard were 

added (50 tJ-L) to plasma aliquots (1.95 ml) of three sheep before PEG e:.:tracrion. In this 

paper, the term IRG will refer to the total immunoreactive glucagon as measured by RIA 

which includes immunoreactivity due to glucagon (3 ,500 Da) and large molecular weight 

( ~61 kDa) plasma proteins; the term glucagon will be reserved for glucagon (3,500 Da) 

as measured by RIA in PEG-extracted plasma. 

Calculations and statistical analysis 

Concentrations of injected glucagon in each sheep were measured by subtracting the 

averagt: concentration of IRG in three pre-injection samples from the IRG conccntr~.tion 
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measured at each time point after glucagon injection. This is based on the observation 

that the concentration of the large immunoreactive proteins remained constant when 

plasma glucagon concentrations increased during an arginine-stimulated-rise in plasma 

IRG levels (see Chapter 5). For accurate calculation of glucagon secretion rate, it was 

assumed that the large immunoreactive component of IRG remained constant throughout 

the sampling period of this experiment. 

Best fit of the relationship between log glucagon concentration in plasma and time 

was determined by computerized nonlinear regression analysis (P-Fit, Biosoft, Milltown, 

NJ) of all observations within each body condition group. ComiJarison of regression 

residual sum of squares and coefficients of determination showed that a bi-exponential 

eqt:a:;on best described the disappearance of injected glucagon and that glucagon kinetics 

we:\: described best by an open two-compartment model (132, 147, 178). Bi-exponential 

eqc:.Eions then were fitted to individual sheep to provide eight estimates of glucagon 

kinetics in each body condition group. Glucagon kinetics were calculated :rom the 

biexponential equation C(t) = Aoe·<>(r-ro) + B0e-•'<r-rO), where C(t) equals concentration of 

injected glucagon in plasma at timet. The individual kinetic variables for glucagon were 

dctined (132, 178) as: 

A0 ; time-zero plasma concentration intercept of the distribution phase 

B0 ; time-zero plasma concemration intercept of the elimination phase 

k1 = A0B0(a-J3)2/(A0 +B0)(A,B+Ba); rate at which glucagon is transferred from the 
central compartment to the peripheral compartment 

k2 - (A0,6 + B0a)/ (A0 + B0) ; rate at which glucagon is transfeiTed from the peripheral 
compartment back to central compartment 

k3 = a{3/k2 ; rate at which glucagon is irreversibly lost from the central compartment 
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V d = glucagon dose/ (A,>+ B0) ; volume of distribution of injected glucagon 

V.:.ss = Yil +(k/k2)] ; volume of distribution of injected glucagon at finite time when 
the amount of glucagon is equivalent in the central and peripherai compartments 

t •. ..;, = 0.693/a ; half-life of the distribution phase 

t,,tJ = 0.6931{3 ; half-life of the elimination phase, i.e. biologka: half-life 

MCR = V dk3 ; metabolic clearance rate 

SR = MCR x basal plasma glucagon concentration ; estimated secretion rate of 
glucagon 

Because the basal plasma glucagon concentration was measured at :1 peripheral site 

instead of the portal vein, the calculated secretion rate was actually the post-hepatic 

delivery rate of glucagon. Differences in glucagon kinetic variables and pancreatic 

secretory rates between lean and obese sheep were determined by Smccm's unpaired r 

test. 

Differences between lean and obese sheep in glucagon-induced changes in plasma 

concentrations of insulin, glucose and FFA were detennined by repeated measures 

analysis of Gill (53). Differences in basal concentrations of insulin, glucose and FF A 

between lean and obese sheep before glucagon injection were accour:ted for by 

determining ~he response area above basal for each of these variables. Area-under-t:1e-

curve (A UC) was calculated by trapezoidal method (P-Fit, Biosoft Company, Milltown, 

NJ). The A DC allows determination of the net response in insulin, glucose and FF A 

metabolism in lean and obese sheep after perturbation of the system by injection of a 

high stimulatory dose of glucagon. Student's unpaired t rest detem1ined differences in 

AUC between Jean and obese sheep. Level of significance \Vas 0.05 and values presented 

are means ± SE. 
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RESULTS 

Whole body kinerics of injecred glucagon 

The plasma concentration-time curves for injected glucagon in lean anc obese sheep 

were similar and described best by biexponential equations (Figure 17). Such results 

indicated that glucagon disappearance from plasma followed first order kinetics and that 

whole-body kinetics of injected glucagon were described ad...:q_uately by an open two-

companment model (~32, 178). 
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Figure 17. Plasma concentration-time curves of glucagon in !e:m and obese Dorset 
ewes injected iv (time 0) with l l'g/kg bovine glucagon. Values are me:ms = SE 
and were obtained by subtracting basal (pre-injection) values of plasrr:a IRG from 
plasma IRG levels after glucagon injection. Shown arc the biexponemial equations 
derived for the fit of the n::..!I. c:.,:..! ;;..::z:::.; ::~ :;:..ch group. Note iog scale of y-a.xis. 
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The half-life of glucagon during the distribution (- 3 min) and elimination (- 17 

min) phases was unaffected by obesity (Table 6). However, time-zero plasma 

concentration intercept of the distribution phase (A0) was about 80% greater (P < 0. 05) 

in obese than ~can sheep. 

Table 6. Parameters of two-component-exponemial equations describing 
disappearance of iv injected glucagon from plasma in lean and obese Dorset sheep 

Item 

Intercept concentration 
(ng/ml) 

Fractional removal rate 
(min' 1) 

Half :ife 
(min) 

Phase 

Distrihution(Ao) 
Elimination (R1) 

Distribution( ex) 

Elimination((J') 

Distribution (t 112.J 
Elimination (t!;28) 

Values are means ± SE (n = 8 per group). 
*P < 0.05, different from lean value. 

Lean 

14.: ± 2.5 
2.8 = 1.1 

0.25 ± 0.06 
0.06 ± 0.02 

3.2 ± 0.6 
18.0 ± 4.5 

Obese 

25.:2 ± 3.5* 
3.2::: :.'J 

0.23 ± 0.03 
0.08 ± 0.02 

3.4 ± 0.5 
16.7 ± 4.8 

Glucagon kinetics (k1, k2 , k3) were similar in lean and obese sheep. Absolute Vd was 

similar in lean (3.38 ± 0.4 L) and obese (4.10 ± 0.49 L) sheep, but it was greater in 

lean than obese sheep when indexed to body weight (Table 7). The calc~LL·d :1:~~~- :ute 

secretion rate of glucagon in obese sheep was nearly twice that of lean sheep (Table 7). 

Secretion rates of glucagon were similar (P > 0.05) in lean and obese sheep when 

expressed relative to unit or metabolic body weight. The absolute MCR was 

approximateiy 34% greater (P < 0.1) in obese than lean sheep. However, the MCR of 

glucagon was significantly greater in l.!an than obese sheep when expressed relative to 

unit or metabolic body weight. 
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Table 7. Estimates of glucagon kinetics in lean and obese Dorset sheep 
derived from an open two-companment model 

Item 

k1 (min-i) 

k2 (min-1) 

k3 (min-1) 

vd (ml· 100 g'1) 

Vdss (L) 

MCR (ml · min-1) 

MCR (ml· kg- 1 ·min-') 

MCR (rnl · kg-!l.?s ·min 1) 

SR (ng ·min-:) 

SR (ng · kg- 1 • min-1) 

SR (ng · kg-0 ·75 • min- 1) 

Lean 

0.532 ± 0.13 

0.071 ± 0.02 

0.187 ± 0.04 

8.3 ± 1.1 

33.8 ± 9.0 

536 ± 35 

13.2 ± 0.9 
.., .., - ' ') -.).),) ::!: ~.) 

30.1 ± 3.2 

0.75±0.1 

1.9 ± 0.2 

Obese 

0.584 ± 0.09 

0.092 ± 0.02 

0.188 ± 0.03 

4.5 ± 0.6t 

37.0 ± 4.9 

721 ± 87 

7.9 = 1.07 

24. 3 -;- 2 . 9 * 

55.0 ± 8.4"' 

0.61 ± 0.1 

1.7 ± 0.2 

Values are means ± SE (n = 8 per group) calculated (see Methods) 
from components of biexponential equations describing disappearance 
of iv injected glucagon from plasma. 
* P < 0.05, different from lean value. 
t P < 0. 01, differe:1t from lean value. 
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Metabolic responses to glucagon 

Changes in plasma concentrations of insulin, glucose and FF A after iv injection of 

glucagon were determined to assess whether obesity affected pancreas, liver and adipose 

responses to acute glucagon stimulation. Basal plasma concentrations of IRG, insulin and 

glucose, but not FFA, were greater (P<0.05) in obese than lean sheep (Table 8). 

Table 8. Basal plasma concentracimzs of IRG, glucagon, insulin, 
glucose and FFA in lean and obese Dorsec sheep 

Item Lean Obese 

IRG (ng/ml) 76.1 ± 4.2 101 ± 6.7t 
Glucagon (pg/ml) 56.0 ± 3.5 71.2 = 4.9* 
Insulin (p.lJ/ml) 5.3 ± 1.3 18.6 ± 3.7t 
Glucose (mg/dL) 49.8 ± 1.6 55.9 ± l.l'" 
FFA (p.M) 356 ± 47 397 :::51 

Values are mean ± SE for an average of 3 observations in each 
animal; n = 8 per group. Glucagon values measured in plasma 
extracted with PEG to remove ~arge molecuiar weight plasma 
proteins that display glucagon-like immunoreactivity (see :\1ethods). 
*P < 0.05, different from lean value. 
tP < 0.01, different from lean value. 

Glucagon injection resulted in rapid and significant increases i:1 the plasma 

concentrations of insulin, glucose and FFA in both groups of sheep (Figure 18). The 

increase in insulin concentrations was more pronounced in obese than in lean sheep, even 

after considering for the difference in basal insulin concentration bet\:veen the lean and 

obese sheep. The plasma concentration-time curves for plasma glucose and FFA 

responses to injected glucagon were similar in lean and obese sheep. 
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Figure 18. Mean(± SE) plasma concentrations of IRG, insulin. 
glucose and FFA in lean and obese sheep before and after the iv 
injection (time 0) of 1 ~Lglkg bovine gluc::gon. 
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AUC were calculated in order to determine more clear!y the effect of obesity on tile 

insulb, glucose and FFA responses to stimulation by an approximate fifteen-fold increase 

in the physiological concentration of plasma glucagon. This manoeuvre correc::ed for 

differences in the basal concentrations of plasma variables Jetween lean and obese sheep. 

The acute (0 to + 20 min) and total (0 to + 120 min) insulin response areas were greater 

(? < 0.05) in obese than lean sheep, but those for glucose and FFA were nor affected by 

body condition (Figure 19). 
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Figure 19. Acute (0 to + 20 min) and total (0 to + 120 min) response 
areas for glucagon-induced changes in plasma ;-:oncentrations of lnsulin, 
glucose and FFA in lear. and obese sheep. Positive response means that 
the net response of the system was :::n increase above basal (pre­
injection) values. Values are means ± SE. Units of response area are 
,ttU . mt· 1 • nun·1 X 10'2 for insulin, rog. dL' 1 • min for glucose and 
pJv[. min·' X 10'2 for FFA. 
* P < 0.05, different from lean value. 
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DISCUSSION 

The kinetic basis for obesity-associateli hyperglucagonemia in sheep was determined 

using compartmental kinetics of iv injected glucagon. A single pulse injection of glucagon 

should be a valid approach for multi-compartmental analysis of glucagon kinetics in 

aitirnals (147). The whole-body kinetic behavior of injected glucagor: in this study was 

described best by an open :wo-compartment model. Glucagon kinetics in humans (7), 

pigs (167), and domestic ruminants (37) have been described previousiy by an open two­

compartment model. The model is composed of a central compartment, which 

presumably includes the vascular system, and a peripheral compartment. Each 

compartment represents multiple tissues and/or fluids that are lumped together \Vithin a 

compartment because of their similarity in kinetic hanc!::n!_: <)r ~;ucagon. 

The ~inetic behavior of iv injected glucagon esse::tially was similar in lean and obese 

sheep. As regards the plasma disappearance of injected glucagon, the only significant 

difference measured was that of a greater time-zero plasma concentration intercept for 

the distribution phase (1\o) in obese compared with lean sheep. Because blood and plasma 

volume per unit body weight decreases with increasing degree of obesity in sheep (94), 

a larger A0 value was not an unexpected finding in obese compared with lean sheep given 

that glucagon dosage was proportional to body weight. For any time period, 

approximately 65 percent of t:k· ~·.l:l,;a;'•':: pool in the central compar~n~-.·:1t flowed to the 

peripheral compartment, with only 19 percent of the pool irreversibly leaving or being 

eliminated from t!1e central compartment. The ;Jhysiological identity of the peripheral 

compartment is not known; it may include the liver a:1d kidney \Vhich are highly 

vascularized and very actively sequester glucagon in sheep, humans and rodents (11, 27, 

78). 
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MCR indicates the hypothetical volume of plasma that loses its glucagon comem each 

minute. The MCR of glucagon was significantly lower in obese than in :ean sheep when 

expressed relative to unit or metabolic body weight. Comparing MCR of a given 

compound among different groups of animals as a measure of whole-body handling or 

removal of the compound will be worthwhile if the plasma concentrations a:· the 

compound are similar among groups of animals. In this study, the plasma concentrations 

of IRG in unextracted plasma and glucagon in extracted plasma were greater (P < 0.05) 

in obese than lean sheep. Therefore comparisons of actual rate of glucagon removed 

(ng/min) would be more reliable than the comparison of glucagon :VICR per unit weight 

of lean and obese sheep. 

Glucagon MCR of 8 to 13 ml · kg·1 · min·1 in sheep in this study were similar to those 

of 9 to 11 ml· kg·1 ·min·' in non-diabetic humans (7), 11 to 14 ml · kg· 1 ·min in lean and 

obese humans (49), 12.6 ml· kg·'· min.; in normal dogs (77), and 5 to 10.5 ml· kg·'- min·' 

in normal sheep (26) and in lactating dairy cows with and \Vithom ketosis (37). 

Relative fasting hyperglucagonemia seems to be a consistent finding in lean and obese 

patients with NIDDM (129, 164) but is an equivocal fmding in obese nondiabetic subjects 

(73, 81, 127, 150, 180). One partial explanation for the inconsistency in detecting 

significant hyperglucagonemia 111 obese nondiabetic humans may be that 

hyperglucagonemia is only expressed in obese subjects with hepatic lipidosis (73). We 

have observed repeatedly a 20 to 100 percent increase in the fasting plasma IRG level 

in obese compared with lean sheep (100, 102, tvfcCann unpublished data). In this study. 

fasting plasma IRG and glucagon levels were significantly greater in obese than lean 

Dorset ewes. Similar or increased levels of plasma IRG should indicate relative 
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hyperglucagonemia in obese animals that are hyperinsulinemic and mildly hyperglycemic 

because both insulin and gh.:cose normally inhibit glucagon secretion by the pancreas 

(158, 164). 

The kinetic mechanism responsible for the obesity-associated hyperglucagonemia in 

this study was that of a greater glucagon secretion rate in obese cm:tpared with lean 

sheep. Glucagon secretion rate was estimated indirectly and was approximately twice as 

great in obese than lean Dorset ewes that were fasted 20 h. These results suggest that 

increased secretion rates for glucagon may be associated with fasting hyperglucagonemia 

in obese people. The indirect estimate of glucagon secretion of 8 to 16 pmol/min in 

Dorset ewes in this study agreed well with the indirect estimate of 28 pmol!min in 

nonobese humans (49) and also with that of 26 pmolimin measured directly across the 

pancreas in fed sheep by Brockman (27). 

Under steady state conditions, as occurred in this experiment, the basal 

concentrations of glucagon can be multiplied by the glucagon MCR to calculate both the 

estimated secretion rate (i.e., post-hepatic delivery rate) and the whole-body removal rate 

of glucagon. Secretion rate was calculated using the peripheral rather than the portal vein 

concentration of glucagon and thus the results actually represent the post-hepatic delivery 

rate. Plasma IRG concentrations could have been used as a surrogate for plasma glucagon 

in calculations of secretion rate or removal rate if the concentration of the non-glucagon 

immunoreactive component in plasma either is very small or was equal in concentration 

among different groups of animals. 

Glucagon is capable of directly increasing insulin secretion and stimulating lipolysis 

and hepatic glycogenolysis (158). The immediate (0 to +20 min) changes in the plasma 

glucose and FFA concentrations :;!":t·r g!a~·a~t··n :njection should ret1ect the direct effect 
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of glucagon on hepatic glycogenolysis and adipocyte lipolysis. The similar rates of 

increase (3.96 mg · dL" 1 • min. 1) in the mean plasma glucose concentration in lean and 

obese sheep suggest that the hepatic responsiveness to high dose glucagon was similar 

in both groups of sheep; these are results agree with those in Jean and obese humans 

( 49). Because of the smaller volume of distribution of glucose in obese (- 16 ml. 100 g· 1) 

than in lean ( -21 ml·100 g·1) sheep (19, 105), a small difference in hepatic 

responsiveness to a large dose of glucagon may not have been detected in this study. 

There was a rapid but transient increase in plasma FF A after glucagon injection. The 

initial rise likely was caused by direct glucagon stimulation of adipocyte lipolysis. The 

subsequent decrease to levels that approximated 50 percent of those in the basal fasted 

state reflect the unique ability of increased insulin to suppress hormone-stimulated 

lipolysis. Using normal sheep and sheep with alloxan-induced {3-cell deficiency that \vere 

injected daily with insulin, Brockman (27) showed thar glucagon infusion stimulated 

lipolysis in the absence but r:ot in the presence of glucagon-induces rises in plasma 

insulin concentrations. The suppression of plasma FFA was similar in both groups of 

sheep in this study despite much more insulin in plasma of obese than lean sheep. 

Although glucagon can increase plasma FFA concentration in vivo in man and sheep 

(128, 141) and stimulate lipolysis in vitro (128. 137), the physiological significance of 

this change is unclear because the stimulatory levels of glucagon employed in r::ose 

studies and this study greatly exceeded the physiological concentration of glucagon in 

peripheral plasma. Plasma FFA concentrations were not increased in huma:is whose 

plasma glucagon levels were increased into the high physiological level by chronic 

infusion of glucagon for 4 h (183). 

The inst:lin response to glucagon stimulation was greater in obese than in lean sheep 
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and also in obese compared with lean humans (49). It is unclear to what degree the larger 

rise in plasma insulin concentration in obese than in lean sheep after glucagon injection 

reflected j3-cell stimulation by glucagon alone or a combined stimulation by glucagon and 

the attendant hyperglycemia. Based on previous work (99) that determined the glucose­

dose response curve for insulin secretion in lean and obese sheep, the difference in the 

acute insulin response between lean and obese sheep in this study was greater than that 

which could be attributed directly to greater responsiveness of the .B-cell to glucose 

stimulation in obese compared with lean sheep. This suggests that obesity is associated 

with ,6-cell hyperresponsiveness to glucagon stimulation. Should this be t::e case, then 

chronic hyperglucagonemia of mild degree, as observed here in obese sheep and 

previously in obese diabetic and nondiabetic humans (129, 150), may play a role in 

maintaining exaggerated rates of insulin secretion in obese subjects. 

In summary, whole-body kinetic handling of glucagon was affected minimally by 

dietary obesity in sheep. Obesity-associated hyperglucagonemia in fasted sheep was due 

to a greater entry rate of glucagon rather than a major alteration in the Vd or whole-body 

MCR for glucagon. 
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Chapter V 

PLASMA MOLECULAR PROFILE OF IMMUNOREACTIVE 
GLCCAGON AND ISLET ALPHA CELL RESPONSE 

TO ARGININE IN OBESE SHEEP 

Insulin and glucagon play a major role in regulating glucose suppiy and utilization 

by body tissues. Hypersecretion of insulin and insulin resistance are common findings 

in obese people and animals. However, whether or not glucagon secretion is abnormal 

in obese-nondiabetic individuals is not clear. Obesity in humans and rodents associated 

with hypoglucagonemia (140, 139), hyperglucagonemia (79, 102, 127, 150) or 

euglucagonemia (8i, 108, 129). Such conflicting resul:s ety (:t:e to inaccurate 

measurement of plasma glucagon concentration by RIA. RIA measurement of plasma 

glucagon is complicated by the presence of other proglucagon gene products and large 

molecular weight immunoreactive proteins in plasma. The glucagon concentration 

measured in plasma depends on the specificity of the antisera used (149) in the assay, and 

whether or not the large immunoreactive proteins had been removed prior to the RlA 

quantification of plasma glucagon. 

On the other hand, different levels of plasma glucagon among obese individuals may 

reflect multiple etiologies of obesity that exist in humans (12, 44. 158). The degree and 

duration of obesity has been shown to affect the degree of endocrine dysfunction in 
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humans (12) and sheep (94). 

This study used dietary obese sheep as an animal model to determine wLether or not 

· obesity is associated with glucagon dysfunction. The objectives of this srudy were 1) to 

determine if fasting hyperglucagonemia exists in obese sheep, 2) to determine if the 

molecular components of plasma immunoreactive g2ucagon differ between lean and obese 

sheep under basal conditions and during an arginine-stimulated condition, and 3) to 

determine if a ceil response to the glucagon secretagogue, arginine, differed in lean and 

obese sheep. 

M .. \TERtALS Ai"'D .\1ET:~-IODS 

Animals 

Rambouillet and Dorset ewes were used in this experiment. Experiment 1 included 

five lean and five dietary obese Rambouillet ewes of similar age ( 4 ± : yr). Experiment 

2 included eight ~can and nine dietary obese Dorset ewes aged 5 ± 0. 7 yr. As described 

previously (102), obesity was induced by feeding ewes a hay-grain diet ad libitum; the 

same diet was fed at a maintenance level to lean ewes. Once static phase obesity was 

achieved, obese ewes were fed a maintenance intake such that intake per unit body 

weight (g ·kg·') was similar in lean and obese sheep. Therefore, ex;1eriments were done 

when lean and obese sheep were at equilibrium weight and in zero-energy balance. 

Arginine Infusion 

Jugular catheters (Angiocath ®, Becton Dickinson. Sandy, UT) were inserted into 

animals at least 16 h before each arginine infusion. L-Argin.ine hydrochloride (Sigma. 
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St Louis, MO) was dissolved in warm sterile saline and filtered through a 0.45 _ur:: 

membrane (Millipore, Bedford, MA). The arginine solution (3 mmol/kg) was infused 

(Harvard infusion pump, Cambridge, MA) into 16-h fasted ar.imals via the jugular vein 

catheter at a rate of 11.25 ml/min for 8 min, after which the inr'usion catheter was 

flushed with 5 ml saline. 

Blood (4 ml) samples were collected from the jugular catheter at 30, 15, and 1 min 

before and 10, 15, 20, 30, 60, 80, 100, 130, 190 and 240 min after the infusion started. 

Sa~ples (4 ml) collected were immediately dispensed into chilled polystyrene tubes (12 

x 75 mm) containing 40 .ul solution of benzamidine (250 mg) and heparin (5,000 "C). 

Additional plasma (50 ml) was collected at the -15 min and + 15 min sample times. 

Blood samples were kept in an ice-water bath until they were centrifuged at 1,500 x g 

for 10 min at 4"C. After centrifugation, additional amount of the benzamidinc-heparin 

solution (1 0 .ul per ml of plasma) was added to the harvested plasma and samples were 

placed in storage (-20°C) until analyzed. All chemicals were purchased from Sigma Co., 

St. Louis, MO, unless otherwise stated. 

IRG Response to Arginine Stimulation in Obese Ramhou.illet Erves (Etperiment 1) 

Chromatographv. Molecular profiles of plasma immunoreactive glucagon (IRG) were 

determined by radioimmunoassay (RIA) measurement of the IRG content in fractions 

obtained from gel chromatography of plasma. Twenty microliters of plasma collected 

before ( -15 min) and during ( + 15 in in) arginine-stimulation were lyophilized (Virtis 

model 10-146MR-8A, Gardiner, New York). Lyophilized samples were reconstituted 

with 10 ml of distilled water and loaded (8 ml) onto a Sephadex 075-120 (2.6 x 100 em) 

column. Blue dextran ( > 2,000 kDa) and ~al 125 (250 Da) were added to the s<imple as 
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intemal markers for the void volume (V0) and column bed volume (V,), respectively. 

RIA buffer (pH 8. 7) contained 0.05 M Trisma base, 0.01 .\-1 disodium EDTA, 15 

m:Vl sodium azide. 16 mM benzamidine hydrochloride, 0.03 r.:l sodium chloride ar.d 

0.5% bovine serum albumin. For each chromatograph, 110 fractions (5 ml each) were 

collected by automatic fraction collector (Varioperpex E model 12000, LKB Pharmacia. 

Piscataway, NJ). A peristalic pump (S161 25, LKB Pharmacia, Piscataway, NJ) 

maintained a column t1ow rate of 15 ml per h. Fractions collected were kept froze:1 (-

20cC) until analyzed. 

The column was calibrated before the first and after the la<>t sample was 

chromatographed in this experiment. The column was calibrated using the molecular 

markers blue dextran ( > 2,000 kDa), bovhe ~erum albumin {66 k.Da), carbonic 

anhydrase (29 kDa), myoglobin (17.8 k.Da), cytochrome c (12.4 ;d)a). aprminin (6.5 

kDa), [t 251Jglucagon (3 .5 JrDa). and [: 25 I]Ka (250 Da). Eluent (;JH 8. 7) for colurr::n 

calibration was the same as the RIA buffer except that it contained 0.05 m~·l benz;:midine 

and no BSA; tlow rate, fraction volume and number of fractions collected \Vere the same 

as for chromatography of plasma samples. The absorbance of each column fraction 

collected was measured at wavelength 280 nm and 620 nm to detcm1ine the elution 

positions of each molecular marker. Elution position was expressed by the coefficien: of 

distribution (Kd). 

IRG Response to Arginine Stimulation in Obese Dorset Ewes rErperimem 2) 

C!zromatograplzv. :vlolecular profiles of plasma JRG i:1 lean and obes~ sheep during basal 

(-15 min) and arginine-stinmlated ( + 15 min) conditions were dctcm1incd by gel 

chromatography :::Kl RIA. Plasma ( -15 and + 15 min) was lyophilized and stored frazer: 
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( -20°C) until chromatographed. However, due to a sudden discontinuance of the 

commercial [125I]glucagon supply, and the technical difficulties in preparing quality 

[! 25l]glucagon (see Chapter 3), lyophilized samples and fractions collected from 

previously chromatogrpahed samples were stored for up :o a year. .i'r-...:lc-:Iged storage of 

lyophilized plasma or column fractions, but not plasma, resulted in loss of the large 

immunoreactive plasma proteins. Lyophilized samples and column fractions from 4 lean 

and 2 obese sheep were lost. Therefore, an additional 2 lean and 4 obese Dorset ewes 

were infused with arginine, and serial samples were taken as described previously. 

Bec<!USe of the problems due to lyophilization and the relative low resolution 

characteristics of Sephadex G75-120 gel, the remaining and newly collected plasma 

samples collected at 15 min before and 15 min after the arginine infusion were 

chromatographed on Sephacryl 100 high resolution gel (S100HR) packed in a 2.6 x 100 

em column (LKB Pharmacia, Piscataway, NJ). Ten to fifteen milliliters of plasma were 

loaded directly onto the column. The column \Vas calibrated with blue dextran (2,000 

kDa), bovine serum albumin (66 kDa), myoglobin (17.8 kDa), insuli11 (6 kDa), glucagon 

(3.5 kDa) and vitamin B12 (1.4 kDa). We found that ~al 115 was not suitable for use as 

a bed volume marker in this column because it adhered to the gel and eluted after the bed 

volume. Therefore, blue dextran and vitamin B12 were used as internal markers for V0 

and V5 , respectively. The column as well as the fraction collector were kept at 4cC. The 

column buffer described in Experiment 1 \Vas used as the e:uent for column calibration 

and sample chromatography. Flow rate, fraction size, and number of fractions collected 

were as described for Experiment 1. Fractions were stored frozen ( -20 °C) for less than 

7 d before their IRG content was quantified by RIA. 

Although S100HR gel had better resolution than the Sephadex G75-120 gel, 
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chromatographs from the S100HR column often showed multiple peaks at the elution 

position of glucagon (3500 Da) of 0.6 to 0.9 Kd. For calculation purposes, IRG 

measured in fractions eluting between 0. 6 and 0. 9 Kd were assumed to be rrlucagon 

(3500 Da). To support this assumption, sheep plasma was chromatographed and 1.5 ml 

of each fraction eluting at the position of glucagon (0. 6 - 0. 9 Kd) were pooled, 

lyophilized, and reconstituted with 5 ml distilled water. The concentrated eluent was 

loaded (5 ml) onto a Sephadex G25-150 column (1.5 x 85 em). RIA buffer was used as 

column eluent, flow rate was -20 ml/h and the fraction volume was 2 mi. Blue dextran 

and vitamin B12 were used as internal markers. Eighty fractions were collected and their 

immunoreactive glucagon content was determined in duplicate. This was done to 

determine if fractions eluting at 0. 6 to 0. 9 Kd on the S 1 OOHR column contained only 

glucagon or glucagon plus some other immunoreactive proteins. 

Radioimmunoassay 

Crystallized bovine glucagon (Lilly Research Laboratories, Indianapolis, IN) was 

used as standard. Polyclonal rabbit anti-glucagon sera, validated for the measurement of 

glucagon and IRG in sheep, was used in the RIA (101). T:e chloramine-T method (pH 

7.4) was used to prepare [125I]glucagon as described in Chapter 3. Glucagon antisera, 

[ 125l]glucagon and goat anti-rabbit IgG were diluted using RIA buffer. 

In view of the possibility that a high level of arginine may interfere in the RIA for 

measurement of plasma glucagon (89), standard curves \Vere run in the absence and 

presence of (0.02, 0.2, 1, 2, 4 and 8 mM) arginine to check if glucagon could be 

quantified accurately in plasma collected during and after the arginine infusion. The 

maximum plasma concentration of arginine was estimated to be approximately 1 to 2 m:Vl 
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in lean and obese sheep infused with 3 mmol/kg arginine. This calculation was based on 

the finding that plasma volume in lean and obese sheep was approximately 2.5 and 3.5 

liters, respectively (94). 

RIA of IRG in column fractions. Concentrations of IRG in fractions from the three 

different columns (Sephadcx G75-120, Sephacryl 100 HR and Sephadex G25-150) were 

measured by the double-antibody RIA method. Assay conditions were as follows. Eight 

hundred microliters of column fractions or glucagon standard (3.125, 6.25, 12.5, 25, 50, 

100 and 200 pg/ml) diluted in column eluent were incubated with 0.1 ml glucagon 

antisera (final dilution 1:60,000) at 4°C for 18- 24 h. Fifty microliters of [l15I]glucagon 

( - 20,000 CPM) were added to each assay tube; incubation was continued 18 - 24 h at 

4°C before fifty microliters of goat anti-rabbit IgG (Calbiochem, San Diego, CA) diluted 

1 :300(id) were added. Thi-) mixture was incubated funher for 48 hat 4°C. The assay was 

terminated by the addition of 3.8 rnl cold (4°C) rinse buffer (pH 8.7; 0.05 M Trisma 

base, 2 mM EDTA, 15 mM sodium azide) and centrifugation at 1500 x g for 45 min at 

4°C. The supernatant was discarded and the precipitate in each assay tube was counted 

in an automatic gamma counter for 2 min. 

RIA of Plasma IRG and i]lucagon in PEG-extracted plasma. Plasma samples collected 

before and after the arginine infusion in Rambouillet and Dorset sheep were assayed 

directly for IRG content using the double-antibody RIA procedure. Assay conditions for 

plasma IRG were similar to those for the RIA of column fractions except that 200 J.Ll of 

plasma or standards (12.5, 25, 50, 100, 200 and 400 pg/ml) diluted in RIA buffer were 

assayed. In addition, aliquots (850 J.Ll) of each plasma sample from Dorset sheep were 
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extracted with polyethylene glycol (PEG) to remove large immunoreactive protein content 

and allow more accurate measurement of glucagon concentration (see Chapter 3). PEG­

extraction was achieved by adding 150 f.tl of PEG-rinse buffer mixrure (35% wiv) to 850 

f.tl plasma. The plasma-PEG mixture was vortexed and centrifuged at 1,500 x g for 45 

min at 4°C. The supernatant was collected and assayed for glucagon by RIA using PEG 

to separate antibody-bound and free [! 25I]glucagon as described in Chapter 3. 

Radioimmunoassay o(insulin. Plasma samples collected serially before and after arginine 

infusion in Rarnbouillet and Dorset sheep were assayed for insulin content by solid-phase 

RIA (Diagnostic Product Co., Los Angeles, CA) validated for measuring plasma insulin 

in sheep (McCann JP, unpublished data). 

Calculations and Statistical Analysis 

Elution positions of the molecular markers and the immunoreactive glucagon (IRG) 

peaks were identified by their chromatographic coet~"icient of distribution (Kd), calculated 

as Kd = (Vc-V0)/(V5-V0), where Vc is the elt:tion volume of interest. and V0 and Vs are 

the elution fractions of the void volume and the column bed volume, respectively. The 

Kd used to identify the base-to-base positions of each IRG peak in chromatographs of 

individual sheep were derived from the chromatograph of data pooled within breed 

regardless of body condition. IRG that eluted between 0 Kd and 0.1 Kd was a protein 

with a molecular size ;;::: 145 kDa. Other IRG peaks included a 61 k.Da protein and 

glucagon (3.5 k.Da). Quantity of IRG in each peak was calculated by multiplying the 

summation of IRG concentrations (pg/ml) in fractions within the designated Kd range by 

b:. fraction volume (5 ml). Total IRG for the chromatograph was determined bv 
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summing the IRG content of each fraction (pg/ml x fraction volume) for all fractions 

between V0 and V,. The percentage of each molecular species of IRG in plasma was 

calculated by dividing the IRG content of each peak by the total IRG content of the 

chromatograph and multiplying the answer by 100. 

Data from Dorset and Rambouillet groups initially were ana:yzed separately. The 

effects of body condition, arginine treatment and their interaction on the molecular 

profile of plasma IRG were tested. Heterogeneity of variance was present in the data 

from the plasma chromatograhs as determined by Bartlett's test (152). A logaritlunic 

transformation of the data was done before statistical analysis because the coefficient of 

variance among each treatment groups were similar (152). The log-transforrned data for 

the molecular profile of plasma IRG then were subjected to split-plot ANOV A for an 

incomplete block design (Systat Inc., Evanston, IL). Body condition contained 2 levels 

of treatment (lean and obese) and the arginine-dose subplot contained 2 levels of 

treatment (basal and arginine-stimulated). Differences among means were compared using 

Fisher's protested LSD test if a significant F-value (P<0.05) was found (152). 

Differences in the plasma IRG, glucagon and insulin responses to arginine stimulation 

between lean and obese sheep were tested using the repeated-measures analysis of Gill 

(53). The acute (0 to +20 min) and total (0 to + 100 min) response areas of plasma IRG, 

glucagon and insulin to iv arginine were determ:ned by calculating area-under-the-curve 

(AUC) less basal AUC, and differences in response AUC between lean and obese sheep 

were tested using Student's t test. The level of probability designated as significant was 

P<0.05. 
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Body condition 

Body >veight. body rr.ass index and estimated body fat differed (P < 0.05) between 

lear. and obese sheep (Table 9). A:thot:gh the bc:dy '.veights or obese Dorset and Jbcse 

Rambouillct ewes were similar, the degree of obesity was great in Dorset ewes as 

assessed by the body mass index. The lean Dorset sheep were relatively leaner than the 

!can Rambouilkt ewes. Therefore. the lean and obese contrast in Dorset ewes was brger 

~han that in Rambouillct e'.ves. 

TABLE 9. Indexes of ohesir:y in Dorset and Rambouiller Ewes 

Body Condi::or: Rambouillct Dorset 
-- ---- ------ --- --------
Body Weight ikg) Lean 50 

Obese 83 

Body Mass Index ~kg.'crn) Lean 0.3 
Obese !.2 

Estimated Body Fat (kg) Lean 13 
Obese 28 

F.~ ti n:~tcd r• 
/o Body Fa: L~ar: :29 

O'Jcsc 3! 

± 
-· 

J.~ 

, 

3 

\).,)2 

41 = 2"' 
9: ± 3 

:±- 0.03 
0.6 ± 0.01 X 

1.4 ± 0.04"' 

± 
± 

--
-· .. 

0.8 
1.3 

., .., 
IJ. I 

).5 

9 = 0.6 
32 !: !.6 

24 :'.:: 0.9"' 
39 :::: 0.5"' 

------
All vaL.:es wit!lin breed di:'fercd between lea:1 and obese shee;-:- (P <0.05). 

Difi<.:rences (P < 0 .05) ':Jctween breeds with in same body cor:ditio:! arc 
indi:::ated by "'. Body rna% index is the ratio of body weigh: to wit:-ter bei:ht. 
Estimated body fat and % body fat were calculated according :o Reid (130). 
Five lean and five obese R:>..mbouillet :.:wes and .:ight ie:lll and :1ine o':Jese 
Dorset ewes were inclt:dcd !n this experirnc:l!. 
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Ecperiment 1 

Figure 20 shows the calibration curve for the Sephadex G75-120 (2.6 X 100 em) 

column. Calibration results were similar before and after tl:e experimental samples were 

chromatographed. 
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Figure 20. Sephadex G75-120 column (2.6 x 100 em) calibration curve. Molecular 
markers were BSA, bovine serum albumin; CA, carbonic anhydrase; MYO, myoglobin; 
CC, cytochrome c; INS, insulin; GG, glucagon. Blue dextran and Nai125 were used as 
void volume and bed volume markers, respectively. Each data point was an average of 
3 calibrations before and 3 calibrations after all the experimental samples had been 
chromatographed. The linear regression equation of all the data point.-; is 
logY = -1.96X + 5.09, r = -0.994. 

The molecular profile of plasma IRG in lean and obese sheep before (-15 min) and 

after ( + 15 min) arginine infusion (-15 and + 15 min) is shown in Figure 2;. Elution 

positions of the void volume, glucagon and bed volume were consistent for all the: 

Rambouillet plasma samples that were chromatographed. In agreement with results 

reported in Chapter 3, the large molecular weight immunoreactive proteins were 

composed of at least two proteins. The larger one eluted at the void volume of the 
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coiurnn. hence it 3ad a moiecular weight of at le:J.st 123 illa. The smaller protein eluted 

at 0.1.5 Kd and had an approximate molecular weight of 63 k.Da. These rwo large 

immunoreactive proteins were observed consistently in the basal piasma samples of the 

beth lean and obese sheep. Argjnine-incuced rises in the plasma :evels of IRG cid nor 

:1.ffect ul.e molecuiar prof:.Je or dlese two protei11s. Fer the chromarcgraphs cf lycph.ilized 

sampies, small amounts ( < 5 pg/mJ of :racrion) of immunoreactive material were 

measured between 0.3- 0.6 Kd. These immunoreac~ivc proteins were affected by neither 

bcdy conditior.. :10r ~v arginine challenge. Giucagon (3.500 kDai e!ured c-..:nsistencly at 

approximately 0. 78 Kd. 
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Figure 21. Molec:Ilar profi!e of plas::::m immt:noreJ.c~:ve gluc:tgor: (fRG) :n ! 6-h :'"asteC. 
:e:m :md obese R:unbouillet ewes ';eforc (basal) a::d c::.rr.ng m :trg:..:1i:Je-s:i:::;.l!iated stJ.tl!. 
Twer.ty miiliEtcrs of lyo?hiEzcd ;:>lr~r:1:1 wc::c r:!c::Jnsti~utcd wi:h :o :nl d:st::led WJ.ter, 
:u:d 3 ::n1 of tl:e rcc::Jnstitutcd s:t.'11ple were .:l-.:::-Jm:t:cgr:tpi:cd c:: Se~hadex G"75-1 ~:; t2. 6 
X !GO em) w!uiT.n. V:llues of the y-a.~is arc ;:>g oi !RG per :nl of column fr~cticn (5 
ml per fraction). 
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The total quam:cy of glucagon and the iarge immunoreactive proteins present m 

chromatographed plasma are shown in Figure 22. The concemration.s of the ~ 123 kDa 

protein and 63 kDa protein were affected by neither body condition nor arginine 

stimulation; che glucagon concentration was similar (P > 0.05) in lean and obese sheep 

during the basal or arginine-stimulated conditions but the increase in glucagon following 

arginine infusion was significant (P < 0.01) in both groups. 

BASAL ARGININE 

0 LEAN :31 '76 ± 36 191 ± 52 

0 OBESE (5) 176 ± 74 190 ± 75 
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Figure 22. Quantitative illustration of the molecular species of plasma fRG in ;ean and 
obese Rambouillet ewes !Jefore (BASAL) a!ld duri."'lg the arginine-stimulated state 
(ARGININE). -:-he quantity of eac!J. immunoreactive peak displayed in Figure 17 was 
calculated as described in Methods. Ir..ser.ed :able shows the values (pg per mi plasr.1a 
;:!::omatogr::qhed) :"or the histogram bars. The ?robability values :"or the treat::ten~ 

effects of body conditio:J. (BC), arginir.e iufl:sion (ARG) a.1d their :mer:lction (IA) were 
derived from split-plot ANOV A of the log-transforn:ed data. Vallles within a panel with 
different lower case letter are different ( <0.05). 
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The basal plasma IRG was similar (P > 0.05) in lean (222 ± 21 pg/ml) and obese 

(316 ± 88 pg/ml) sheep (Figure 23). Plasma IRG response to iv arginine stimulation was 

biphasic. Both groups showed a 2- to 3- fold increase in their basal plasma IRG level 

within 10 min after starting the arginine infusion. Plasma IRG levels remained 2 to 3 fold 

above basal at and 20 min after the arginine infusion began. Both groups showed a slight 

increase in their IRG concentration started from +40 min, but at no time did the IRG 

concentration in obese sheep significantly exceed that in lean sheep. Neither the acute 

(8.0 ± 1.4 vs 11.2 ± 5.0 pg · ml-1 • min"1) nor the overall area (66 ± 8 vs 82 ± 26 

ng · ml-1 • min·1) for the plasma IRG response to iv arginine challenge differed (P < 0.05) 

between the lean and obese groups. 
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Figure 23. Plasma immunoreactive glucagon (IRG) response to iv argmme (3 
mmol· kg·1) in lean and obese Rambouillet ewes. The basal plasma lRG concentration 
was similar (P>0.05) in lean and obese sheep. Inserted diagram represents the acute 
(0-20 min) and total (0-100 min) areas (AUC) of the plasma fRG response to arginine 
stimulation in lean and obese groups. 
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The basal plasma insulin concentration was higher (P < 0. 05) in obese (20 ± 8 

.uUiml) :han lean (4.3 ± 0.9 .uU/ml) Rambouillet sheep. The plasma insulin response to 

arginine infusion was biphasic in both lean and obese sheep (Figure 24). Concentrations 

of insulin were greater (P < 0. 05) in obese than lean sheep frcm 0 to + 20 min, and i:: 

the period from 80 to 100 min after the arginine infusion began. The plasma insulin level 

exceeded (P < 0.05) its basal concentration in both groups at and 20 min after the 

arginine infusion began. Plasma insulin concentration in obese sheep continued to rise 

~rom +40 to + lOO min of the experimental period. The acute response area (0.84 = 
0.25 vs 0.28 ± 0.11 mU·mJ· 1 ·min-') and the overall response area (5 = 1.6 vs 1.5 

0.3 mG- ml": · min· 1) above basal were greater (P < 0.05) in obese than lean sheep. 
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Figure 24. Plasma insulin response to iv arginine (3 mrnol· kg" 1) in lean (opc:1 circles 
or bars) and obese (solid circles or bars) Rambouillet ewes. Basal ?lasma insulin 
concentrations were higher (P < 0.05) in obese :han !ea..1 sheep. lnscned diagram shows 
acute (0-30 min) and total (O-:oo min) response :4eas (AUC) for plasma insuEn to 
arginine stimulation in obese than lean group. 
* diff.:1<: f:-.11:1 ;can group, P < 0.05. 
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Experimenr 2 

Calibration results for the Sephacryl 100 HR (2.6 X 100 em) column were similar 

before the first and after the last plasma samples were chromatographed. The combined 

calibration data are shown in Figure 25. 
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Figure 25. Scphacryl 100 HR (2.6 x 100 em) column calibration curve. Yfolecular 
markers were: BSA, bovine serum albumin; MYO, myoglobin; INS, insulin; GG, 
glucagon. Blue dextran and vitamin B12 were used as void volume and salt peak 
markers, respectively. Each data point was an average of 3 calibrations before and 1 
calibration after the experimental plasma samples had been chromatographed. The 
linear regression equation of the mean data points was 
logY = -2.31X + 5.16, r = -0.994. 
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Molecular profiles of plasma IRG in lean and obese sheep are shown in Figure 26. 

The first protein peak eluted at the void volume and had a molecular weight of ;;::: 145 

kDa. The second protein peak eluted at 0.15 Kd had a molecuiar weight of approximately 

61 k.Da; presumably it apparently corresponded to the 63 kDa protein measured m 

Experiment 1. Small amounts of immunoreactive material eluting at 0.3 to 0.6 Kd in 

Experiment 1 were not observed here \Vhen non-lyophilized plasma \vas 

chromatographed. 
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Figure 26. Molecular profile of plasma immunoreactive glucagon (IRG) in 16-h fasted 
Jean and obese Dorset ewes before (BASAL) and during the arginine-stimulated state. 
Ten to fifteen milli:iters of plasma were chromatograp~ed on Sephacryi WOHR (2.6 X 
100 em) column. Vaiues of y-a.xis arc pg of IRG p~:- ml of column fraction (5 ml per 
f;;action). 
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As found in Experiment 1, the plasma concentrations of j}e ~ 145 protein and 61 

kDa prorein were affected by aeither arginine s<:imulation nor body condition (Figure 27). 

HO\vever, the basal ?lasma glucagon level in ::hroma~ographed ?lasma was higher 

(P < 0.01) in obese than lean sheep. The pos;:-arginine plasn:.a concentration of glucagon 

also was hlgher (P < 0. 05) in obese j}an !ean sheep. 

9ASAL ARGININE oASAL ARG:NINE 3ASAL ARGININE 

0 LEAN (6) 39 ± 8.2 49 ± 5 56 ± 13 66 ± 6 I 56 ± 25 313 ± 115 
I I 

0 OBESE :sl I 62 ± 20 65 ± 21 81 ± 1<! 76 ::: 16 i 115 ± 25 609 ± 50 I 

1000 > 145 kDa 61 kDa GLUCAGON r-
PROTEIN PROTEIN 

800 f-
BC : NS BC : NS 3C : 0.05 d 

600 r- ARG : NS ARG: NS ARG : 0.01 j 
lA : NS lA : NS lA : NS c~ 

400 '- 1&. 
~f 200 f- a b ~. 

.-n c:£·· I T '· ~ ·~ , c~ ~ ~~~ 
Or-

. 
I~ 

BASAL ARGININE BASAL ARGININE BASAL ARGININE 

Figure 27. Quantitative illustration of the molecular species of p:asma IRG in lean and 
obese Dorset ewes before (BASAL) and during arginine-stimulated state (ARGININE). 
The auantitv of each imnucoreac:ive peak displayed in Figure 22 was c:Lculatc:i as 
described :r{ Methods. Inserted table shows values (pg pe:: ml piasma c!lrorr:atogra?hed) 
for the histogram bars. The probabiiiry values for the . trearmeat effects of body 
condition {BC), arginine infusion (ARG) and their interaction (IA) were derived from 
split-plot ANOV A of the log-transformed dat:... \' ..:.lu:::J ·.v:!:1:u a ;.>:•::1~: ·,\· ::h :t:ffe:-ent 
lower case letter are different ( <0.05). 
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Basal plasma lRG tended robe higher (P<O.l) in obese (153.2 = 36.26 vs 70.8 ± 

5.3 pgtml) !han lean sheep. Glucagon ccncen::·;ni.,:.s in PEG-extracted plasn:a \Vere 

greater (P < 0.05) in obese (114.3 ± 3:.0 pghnl) than ie:m (46.7 ± 5.2 pg/mi) sht:ep. 

Plasma concentrations of IRG and glucagon before and after iv arginine stimulation were 

greater (P < 0. 05) in obese than :e~m throughout the 250 :ninl!te cxperimei~Wl period 

(Figure 28). 

Plasma total IRG and glucagon increased by approximately 3 to 4 fold within 10 min 

after starting t.1e argiline infusion in both grour-s. At and 30 mir: after the arginicc 

infusion began. the plasma concentration of IRG anc! g~ucagon in t)bcse she~p remained 

at values approximmely four-fold higher than their basal levels. In Jean sheep, however, 

the plasma IRG and glucagon concentration gradua:Iy rerurr.ed to\va:;c basal by l 00 mi:1 

afta starting the arginine infusion. The acute IRG (.:;.2 ± ~.0 vs 5.: = l.O ng · mi·· ·min· 

1) and glucagon (2.7 ± 0.6 vs 4.3 ± 1.1 ng·ml-1 -min-1) response areas to iv arginine 

scimuiation \Vere simila::- (P > 0. 05) in lean ar.c obese sheep. The total response areas (0 

to 250 min) for IRG (77 ± 16 vs 38 ± 4 ng · rrJ· 1 • min- 1) and gh.:cagon (64 

± 3 ng · ml- 1 • min- 1) were greater (P < 0.05) in obese than lean sheep. 
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Figure 28. Plasma inur.unore:!ct!ve g!u.:agon (IRG) :::-:d ~lu;;agon 1_GG"t n:sr.c:1scs 10 iv 
arginine (3 mmol · kg. 1) in lean (open circles and ::,ars) :Uld obese (solid circles and 
bars) Dorset ewes. Basal i)!asma IRG (P <0.]) ;:..ru.: glucagm: (P < 0.051 wen: higher i:1 
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The basal plasma insulin concentration was higher (P < 0. 05) in obese (21. 8 ± 2. 5 

,u.U/ml) than lean (6.5 ± 1.1 ,u.U/ml) Dorset sheep. The plasma insulin response to 

arginine was biphasic in both lean and obese sheep (Figure 29). Plasma insulin-increased 

(P < 0.01) 2- to 3-fold above its basal level in both groups by 10 min after starting the 

arginine infusion. At and 20 min after the arginine infusion began, the insulin level 

remained higher than basal in both groups but the plasma insulin concentration in the 

obese group was greater (P < 0. 05) than insulin levels in lean sheep from + 60 to + 100 

min after starting the arginine infusion. The acute insulin response area was similar in 

obese (0.50 ± 0.15 mU · ml-I · min-1) and lean (0.48 ± 0.15 mU · ml-I ·min-I) sheep. The 

total response area was greater (P <0.05) in obese (3.3 ± 1.0 mU · ml- 1 ·min-I) than lean 

I AUC c 4 T * E 3 

oa. ~~ !.... 2 
~ 1 

r 60 
~ 0 

ACUTe TO>AC 1 1__._..-J E • ....... 
:::J l l I r---------o-0 OBESE (6) ::I.. 

z: 40 

~../;{ ~.~ _J 

:::J 
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z: 
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Figure 29. Plasma insulin response to iv arginine (3 mmol ·kg "1) in lean and obese 
Dorset ewes. Basal plasma insulin concencrations were greater (P < 0 .05) in obese than 
lean sheep. Inserted diagram slwws the acute (0-20 min) and total (0-100 min) insulin 
response areas (AUC) to an_:inu:e stimulation in the lean and obese groups. 
*different from lean group, P<0.05. 
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IRG and Glucagon in Lean and Obese Sheep 

The statistical significance (Table 10) of breed, body condition, arginine infusion and 

their interactions on glucagon concentration were tested by 2 x 2 x 2 factorial design 

(Systat Inc., Evanston, IL). Although the basal and arginine-stimulated levels of plasma 

glucagon differed (P<O.OOl) in Rambouillet and Dorset sheep, both breeds of sheep 

demonstrated a similar response to arginine stimulation (Table 11). 

TABLE 10. The main and imeractive effects of breed, 
body condition, and arginine mjitsiorz on the plasma 
glucagon level in sheep 

SOURCE p 

-----------------------------·-------
BREED 
BODY CONDITION 
ARGTNINE 
BREED "' BODY CONDITION 

0.000 
0.013 
0.000 
0.064 

BREED "' ARGININE 0.202 
BODY CONDITION * ARGININE 0. 709 
BREED * BODY CONDITION* ARGININE 0.997 

Probability values from 2 x 2 x 2 factorial ANOV A 
for chromatography data . Analys;s was done on tl:c 
log-tra.•1sformed data of Experiments 1 31JC 2. 
Interactions among treatments are indicated by "'. 

TABLE !!. Glucagon concentrations in Dorset and 
Rambouillet sheep in response to iv arginine stimulation 

Dorset (n=l3) 
Rambouillet (n=8) 

BASAL 

1.71 ± 0.13 
2.34 ± 0.097 

ARGININE 

2.55 ± 0.09* 
2.ss ± o.o7~t 

Values arc mean :::: SE of log-transformed data from 
chromatographs. 
* P<O.OOl, differ froc1 basal; 
t P<O.Ol, differ from Dorset. 
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In !Joth breeds, glucagon and IRG levels aiways were nume:-ic:J.Jly higher in obese 

than lean sheep . .\-fore in1portantiy, because there was r.o significant interaction term 

involving breed, the results of Experimen:s l and 2 were pookd (breed· ignored) to 

provide a larger data set with :ncreased degrees of freedom :·or statistical analysis. The 

molecular profile of plasma IRG in lean and cbese sheep, averaged across !Jreeds is 

summarized in Figure 30. 
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Figure 30. Moiecular prof.les of plasma im::nunore:Jctive gh.:cagon_ (_IRG) in _!ean 
~:1 = 10) md obese (n = 1 i) s~eep before (3ASAU :u:d duru:g an argmme-.st:m_u:ated 
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:'he quamiry of glucagon and the large :mmunore:J.crive proreins prcsem in 

chromatographed plasma are showed in Figure 31. !\either :he ;;::: !.:!.5 k.Da nor the 6 i 

kDa proteins were affected by body condition and arginine stimulation. The basal plasma 

glucagon concemration was greater (P <0.01) :n ::>bese than :e:1n sheep. After 1rgin.ine 

stimulation, the plasma glucagon level was greater (P<0.05) in obese than lean sheep. 

9ASA:.. ARGIN'~ 1 E '' ~ - '· -A~G''liNE I "'ASAI -I :::J _E..;N 110i 30 :t 24 92 = 26 ac = '' 31 = ,s :1 sa = 29 .123 = 1 J ~ l 
i:OBESE (11) 113 :: 38 ~21 :: 39 103 :: 14 90 :!: 16 :j 196 - 52 747 = i01 

I 
I 

~cooL > 145 kDa 6 : kDa 
' GL~CAGON 
I 

PROTEIN PROTEIN I 

I d I -

BASAL ARG1Nit-iE BASAL ArtGINiNE 

Figure 3 L Quar..tit~dvc iib.:st::aiicn of the rncle::ular spec:es of ?iasna in:n:"Jncreactive 
glucagon (IRG) b lean (n = lO) and obese (n =< 1) sheep before (BASAL) anC. during 
an arginine-stimuiated state (ARGININE). The quu . .'1tity of each IRG immunoreactive 
peak displayec :n Figure ::!6 was calcuiated c.s C.esc::ibed ir: :\ofe!r.oC.s. Icscrted tabie 
shows values \pg ?Cf ::n.l plasr.:a chrornawgrapheC.) :"or the histogram bars. Values 
within a panel with different lower C:l.'>c !ener are different ( <0.05). Th.: ;Jroba~iiity 
vaiues for the treatment effc;:ts of body condition (BC), arginine infusion (A.RG) and 
their i.'l.tcraction (IA) were derived from sp[it-piot AN OVA of the !og-:rr.ns:or::1cd dat:J.. 
Vah:es within a panei with di~fcrent :ower c~e kttcr arc dif:ere:'.t ~ <0.05). 

10~ 



Data for :!1c ~lasma g!ucagon ar..d IRG responses :o iv arg:ninc: s~ime1iation \Vcre 

available only from Dorset sheep (Experiment 2). Insufficient plasma was collected from 

Ramboumet ewes in Experiment 1 to al:ow measurement of glucagon in PEG-extracted 

plasma. Addi6J!1ally. measurement of !RG in Rambouil!et sheep was done only up tG 

100 min afte:· arginine stimulation. \VL:rcas IRG conccntrat:c;r:s in Dcrset ~he;!n were 

measured for 250 min arter argi~::1e !lfus:on began. Ttercf~~re, llata :·or the piasr:1a 

glucagon and IRG responses to arginine stimulation in Rambnuillet and Dorset sheep 

were not combined. 

Ins:.Ili:1 Ja:a '.vere combined within bot~ ~on:.iitio:1 aaJ ac:-oss brc-:d re:::~t.:S::! :he 

insuiin response to arginine st~nula:ion was not atrcctcd 9y an interac:io!l between b:\::et.! 

anc: body condition. The basal pbsma insulin cmJCentration was higher (P < 0. OS) in 

obese (19.4 ± 3.4 MU/ml) than lean (5.2 = 0.8 MU/ml) sheep. The piasma insuiin 

response to arginine stimulation in lean :md c·bese sl:eep '.vas biph~:.~ic (F:gt.:re 32). Basal 

p:asma insulin levels in ~cth groups increased (0.05) 2-!oid '.'-:ithin :0 rr:icutes after 

starting the argi::ine infusion. At and 20 min after the arginine in~·usion began. tL · ~ i:a··: ·.a 

insulin level remained elevated (P < 0.05) above basal in both groups, bt:t tl:e plasma 

insulin conce:ltration in the obese group continued ro rise t~1roughout the I 00 min 

cxperimental period. Plasm<l cor.ccn::-ations of in~:.!! in were f!reater (P < 0.0.5'1 ir.. c·bcsc 

than lea;J sheep at a:l time points after startii:g "Che arg:nine inll.:sion. The ac~te in· .. lin 

response area to arginine infusion was similar (P > 0.05) in obese (634 = 136 p.t.. · ml· 

1 • :nin·') and lean (388 ± 97 f< C · mJ·: ·min.:) sheep. The ~oral insulin response area was 

nrcater CP < 0.05) in obese (2.69 = 0.52 mC · ml·' · mii{) th:m lean ( 1.2 ~ ± 0.2-t 
~ .. . 
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Figure 32. Plasma insulin response to iv arginine (3 mmoi · kg.;) i;::;. lean ar.d obese 
sheep. Basal plasma insulin concentrations were ;:remer (P < 0 .05) in obese thar.. le::t:1 
sheep. Inserted diagram shows the acme (0-20 min)and :ocal (0-100 min) are::LS (AUC) 
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Interference of arginine in rhe glucagon RIA 

Glucagon standard curves run in the absence or presence of various concenrration of 

arginine were identical to each other (Figure 33). These results demonstrated .. that the 

presence of 0.02 to 8 rru\11 of arginine in plasma samples would not have atTected the 

measurement of glucagon by the RlA. 
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Figure 33. Binding inhibition curves for glucagon standards in the presence of 0, 
0.02. 0.2, 1, 2, 4, and 8 mM arginine. 
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DISCVSSfOI\ 

the molecular profile of plasma IRG in fasted sheep was composed or gluc-~1gon plus 

at least two large molecular weight immunoreac:ive proteins peaks which are !"esults in 

agreement with those in humans (176). Several studies have dc:c...:·.L·.: a large 

immunoreactive protein with a molecular weight of 60 kDa or greater in humans (70, 79, 

150. 166) and dogs (77). These researchers did not detect multiple large immunoreactive 

proteins because the molecular weight of the proteins exceeded the molecular range or 

their gel columns. This study and that by Weir (176) used a gel :.:olumn with a molec'..llar 

range of 1 - 145 kDa and 5 - 250 kDa, respectiveiy. \Ve showed that the larger 

immunoreactive protein had a molecular weight of ;;:::: 145 kDa. whereas the molecular 

weight of the smaller one was <.pproximately 61 illa. Von Schenck (170) suggested that 

part of the ;;:::: 145 kDa protein may represent ganuna globulin. The chemical idemity of 

these large immunoreactive proteins is not known. 

This study found that ~he concentratio!"!S of rhe ;;:::: 145 kDa a!'d the 61 kDa prote!ns 

were unaffected by dietary obesity. In agreement with resu:ts in humans (150), this study 

found that the amount of these two Iarge immunoreactive proteins were variable among 

sheep regardless of their body condition. Based on chromatography results, the plasma 

glucagon concentration in obese sheep was approximately 1. 8 times grea.cr (P < 0.01) 

than that in lean sheep. The clrromatographic results clearly show that the IRG differcr.ce 

in lean and obese sheep was due to a difference in the concentration of glucagon and not 

the large immunoreactive protein. Experiment 2 showed that when plasma IRG was 

measured directly by RIA, its concent:·ation in obese sheep was approximately 1. 9 times 
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higher (P < 0.1) than that in lean sheep. However, when plasma was extracted with 

polyethylene glycol to remove the large immunoreactive proteins, the glucagon value 

measured by RIA was approximately 2.4 times greater (P < 0.05) in obese. than lean 

sheep. Failure to remove t:1e large immunoreactive proteins before measurement o!" 

plasma glucagon by RIA masked the true difference !n plasma glucagon level between 

lean and obese animals. This study demonstrated unequivocaily :hat basal plasma 

glucagon concentration was higher in obese than in iean sheep when results were 

obtaieed using gel chromatography to separate g:ucagon from the large immunoreactive 

proteins and when plasma was extracted with PEG to remove the iarge immunoreactive 

proteins. 

The function of a-cells in lean and obese sheep was evaluated in this study using 

arginine as a glucagon secretagogue. The acute response of glucagon to iv arginine 

stimulation was measured both by gel chromatography of plasma collected at i 5 min aftc::­

argir:ine infusion began and by calculating the acute (0 to + 20 min) response area for 

the plasma glucagon concentration-time curve. Although both sets of data showed that 

the plasma concentration of glucagon after arginine was higher in obese than lean sheep, 

the incremental increase in the glucagon concentration \Vas si: ::1ilar in both groups. The 

acute response of glucagon should ret1ect the arginine-induced release of glucagon stored 

in granules in a-cells (11 7). My results s>.ow that a cell responsiveness to high dose 

arginine stimulation was unaffected by obesity despite the observation that obesity is 

associated with fasting hyperglucagonemia (this Chapter) and glucagon hypersecretion 

in the basal state (Chapter 4). 

The PEG extraction of pl::sma allowed an extended measurement of the glucagon 

response to arginine stimulation without the confounding due to the presence of the l3.rge 
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immunoreactive proteins. The glucagon concentration-time curves showed that the 

glucagon response to arginine was biphasic, \Vhich arc results in agreen::.:m with those 

· in vitro for the perfused rat pancreas stimulated with ;,rginine (52). The second phase 

( +20 to +250 min) of the plasma glucagon response in this study differed bet\vee:: l.·:m 

and obese sheep. The glucagon concentration of obese sheep increased bevond the values 

measured during the acute response and remained at levels 4 fold higher than ~hose in 

the basal state for at least 250 min after starting the arginine infusion. The initial period 

( + 30 to + 100 min) of the second phase of :he glucagon response in lean sheep was 

similar to that for obese sheep, but thereafter the glucagon concentration in lean sheep 

returned to basal values. The persistence of a high level of glucagon in the obese sheep 

may be due either to a slower removal rare of plasma arginine t)r to a-cell 

hyperresponsiveness to arginine stimulation in obese compared with lean sheep. 

Unfortunately, plasma arginine concentrations were not measured in this study. 

Alternatively, the prolonged increase in p:asma glucagon in obese sheep may be due to 

a defective response of the a cells to insulin inhibition of glucagon secretion. Although 

the higher i:lsulin level in obese sheep should compensate somewhat for their obesity­

associated insulin resistance, the peripheral :asulin concentration was increased two fold 

approximately during arginine stimulation :!1 obese sheep and this increase in insulin 

concentration may not be strong enough to suppress glucJ.gon release during the arginine­

stimulated state. The insulin dosage necessary to suppress plasma L:lucagon to norn1al 

levels in obese hyperinsulinemic patien~s with impaired glucose tolerance was 3 to 4 

times that required in normal people (63). This finding supports the concept that the 

persistent hypersecretion of glucagon in obese sheep may be secondary to a reduced 

inhibitory effect of i:lsulin in a cells. Although the reason for the hypersecretion of 
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glucagon in response to arginine cannot he defined, this study and previous \VOrk ( 1 02) 

has clearly identified the presence of dual defects in the pancreatic islet secretion of 

. insulin and glucagon in dietary obese sheep. 

Ir. summary, this study showed that the molecular profile of plasma IRG in both lean 

and obese sheep contains three immunoreactive components, a ~ 145 kDa protein. a 61 

kDa protein and glucagon (3500 Da). The plasma concentrations of the ~ 145 and 61 

kDa proteins were affec:ed by neither obesity nor iv <..~ginine stimula~ion. In addition, 

peripheral hyperglucagonemia and hyperinsulinemia coexist in sheep \Vith dietary obesity. 

The responsiveness of o:-cells to iv arginine was altered by obe~ity in sheep. 
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Chapter VI 

SUMMARY AND COKCLUSIONS 

Overeating causes obesity in sheep as in humans. Adult-onset diabetes mellitus is a 

major medical problem in many obese humans. Diabetes mellitus is a disfunction o!" 

blood glucose homeostasis. Insulin and glucagon are two major metabolic hormones that 

control glucose metabolism and thus the plasma glucose concentration. ft is well 

documented that insulin metabolism is altered by ojesity. However, whether or not 

glucagon metabolism is affected by obesity is not clearly known. Repons on the effects 

of obesity on glucagon metabolism in humans arc con11icting. 

The accurate measurement of plasma glucagon by radioimmunoassay (RIA) is a 

major problem in studies of glucagon metabolism in obesity. Gh.:cagon RIA measures 

glucagon itself as well as some large molecular weight proteins in plasma that express 

glucagon-like immunoreactivity. T~e chemical structure and biological activities of these 

large immunoreactive proteins are unknown, but their presence in plasma confouncs 

accurate measureoem of small changes ir. plasma glucagon concentration. Therefore a 

plasma extraction procedure :o remove the large immunoreactive proteir.c; is an essential 

step prior to the measurement of plasma glucagon concentration by RIA. 

In this thesis, an established animal model of dietary obesity in sheep was used to 

address two major research goals of 1) solving the technical problems in quantifying 

plasma glucagon, and 2) identifying the effects of dietary obesity on glucagon metabolism 
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in sheep. 

To achieve the first goal, polyethylene glycol (PEG) was used to precipitate the large 

molecular weight proteins from plasma. The PEG-extraction method proved tq be 2 00% 

efficient in removing the large immunoreactive plasma proteins and allowing 97% 

recovery of the glucagon in the extract. The validity of the radioimmunoassay system in 

measuring glucagon in PEG-extracted plasma was tested analytically in terms of 

sensitivity, accuracy, precision and specif!city. 

The second goa: had three specific objectives. The firsi. objective w:1s to determine 

if the plasma glucagon concentration was greater in obese than Jean sheep. This \vas 

achieved by chromatographing plasma from lean (n= 11) and obese (n= 10) sheep. Gel 

chromatography allowed separation of proteins according to molecular size. The 

immunoreactive glucagon (IRG) content in each of the 80 fractions collected were then 

measured by RIA. This generated a complete picture of p~asma IRG molecular profile 

in lean and obese sheep. The chromatographs of lean and obese sheep plasma showed 

that plasma immunoreactive glucagon was cooposed of three major prmeins: a :;:::: 145 

kDa protein, a 61 k.Da protein, and glucagon (3.5 k.Da). The plasma concentrations of 

the ~ 145 k.Da and the 61 kDa proteins were not different between lean and obese sheep. 

However, the chromatographic iso!ation of the glucagon component provided results 

which showed that peripheral plasma glucagon concentrations indeed were greater in 

obese than lean sheep. 

The second specific objective was to test the hypothesis that the hypcrglucagonemia 

in obese sheep was due to a greater secretion rate rather than to a slower degradation rate 

of glucagon. The \Vhole body kinetics of glucagon were determined by calculating the 

kinetics for the plasma disappearance of a high dose ( 1 p.g!kg) of glucagon in lean (n = 8) 
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anti obese (n=S) sheep. Blood samples were colle:.:red every 2 to 10 :nin for two hours 

after the i\' injection of glucagon. Plasma samples .::ollectcd \Vcrc subjccr~d to PEG-

extraction then RIA measurement of glucagon. Kinetics parameters (e.g ... metabolic 

::le::trance rate) were ca!culatcd ar.d these results sh0'.-\'Cd tblt th<.! wl:olc bndy ~inc~ics d 

glucagon '.\'ere altereti minimai;y by dietarv obesit'.' in she;,::;. I-Ir::wever. i~ was cle::r ~hat . . . 

glucagon secrct~on rate v..as significantly greater in obese than iean sheep. 

The third specific objective was to determine if pancreatic a cell responsiveness to 

a glucagon secretagogue (i.e .. arginine) '.vas affected !Jy )besity. This \V:ls :.tdie\·eJ by 

infusing le:::.n (r:=11) and obese (nc-10) sheep:\' with .:r.;mme (3 . . . 
:nmO!:Kg.l. !G 

:.:onjunc:ion with data :'rom Objective 1. plasm:: ~ampies ce>lkct<.!d ~5 ~~~::1 :lftc:· the 

arginine infusion \Vere cllfomatographed and fractions assayeL! by RIA ror their glucagon 

content. Chromatographs of !he _j_ 15 min samples shO\ved that arginine stimulated a 

significant ir:c~e:.tse :.n the plasma g!ucagcr. lev:::! i:~ kan ~nd •.):)es~ steep. !Icwevcr. the 

~ 145 k.Da and the 6; kDa proteins in lean and obese she:::p were not affec:ec hy 

arg:i:1ine stimulation. The plasma gll!cagon response to iv a1gin.i::e challenge was 

determined by measuring the plasma concentration of glucagon for 250 min J fter starting 

~he arginine infusion. T!le overall glucagcn :-esponse C~50 min) w arginine "''as 

signi~·icantly gre:uer in cbcsc c::an lean si1e~p. 

T!1is research projec: \'C.;idated a me~hcd fnr acc:.:ratc measurement of p:as:na 

glucagon, and proved 1) that plasma glucagon concentrations arc elevated in dicta:·y 

obese sheep, 2) t'-.at the fasting hyperglucagone:nia in obese sheep is due to a greater 

secretion rate r:ilher than a slower dcgradatior. rat.:: •)f gluc:-::;on. ar.d 3) :hat islet ex cells 

of dicta!): obese sheep arc hyperresponsive to argmint! stimulation. 
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Abnormal insulin metabolism in obese humans and animals is well documer.ted, 

while the effects of obesity in glucagon metabolism v,:as not clearly known. This study 

identified hyperglucagonemia, hyperinsulinemia, and hyperglycemia in obese sheep. The 

dual defects in the pancreatic islet secretion of glucagon and insulin will worsen the 

hyperglycemic condition that is present in obese sheep. Prolonged exposure of high level 

of plasma insulin, glucagon and glucose may predispose obese individuals to develop 

noninsulin-dependent diabetes mellitus (NIDDM). 
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