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CHAPTER I
INTRODUCTION

Artificial neural networks (ANNs) have been developed
for a wide variety of applications in recent years. One of
the most interesting computing applications is that of using
neural network techniques to do time series forecasting.
There are several useful and powerful learning algorithms,
for example, backpropagation networks, counterpropagation
networks, Hopfield nets, ART, ART2, etc. that can be used to
predict the behavior of time series.

Many researches relative to prediction and decision
making problems have proceeded for decades. This research
focuses on the tests of the forecasting ability of two
famous neural network algorithms, backpropagation and
counterpropagation. A detailed comparison of the
performances of backpropagation and counterpropagation
models with NAIVE I ,NAIVE II, the exponentially weighted
regression method [Chandler 1992] and the NN-PDP package
used in Patil’s thesis as well as the Autobox software
[Patil 1990] is given in the Appendix I. The network
constructions for both forecasting models are of three-layer

type, one input layer, one hidden layer and one output



layer. More detail about the number of neurons in the
different layers and the network architectures will be
discussed in Chapter 3. The real-world data sets from the
M-111 competition [Makridakis 1982] are taken as the testing
data to examine the accuracy of prediction for the two

neural network models.

Neural Network Concepts

The artificial neural network structures consist of
fully interconnected layers (or slabs) or rows of processing
elements (or neurons, units) [Hecht-Nielsen 1990]. 1Its
prototype can be either single-layer (linear) or multi-layer
networks. The former comprises only the input and output
slabs while the latter can have different number of hidden
slabs between input and output layers.

Each layer in the network contains a number of
artificial neurons in a row. The neurons can receive any
number of streams of incoming information through the
connections (or links which have weights) and produce a
single output signal. For single-layer neural networks, the
nodes in the input layer serve only to distribute the input
signals to the output layer and perform no computation.
Therefore, the input layer will not be considered as a
function layer. The neurons in the output layer simply
output the weighted sum of the inputs to the network. The

representational ability of single-layer (linear) networks
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is severely limited, because it cannot provide the necessary
nonlinearity [Wasserman 1990].

With regard to the multilayer artificial neural
networks, the input layer functions the same as that of a
single-layer neural network. The difference arises from the
computational capability of the hidden layer(s) and the
output layer. According to Wasserman (1990), multilayer
networks provide no increase in computational power over a
single-layer network unless there is a nonlinear activation
function (or squashing function) between layers. The
products of input information and the weights will be summed
up as the Net and the Net will be processed by the transfer
function (or the activation function) within the processing
unit to emit an updated output signal to the next connecting
layer.

There are two operations for artificial neural
networks. One is the training of the networks, the other is
the normal operation (application) of the networks. Neural
nets perform a wide variety of pattern mappings and pattern
representations after the networks are well-trained ([Denning
1992]. The most important characteristic of neural networks
is the cognitive behavior arising from the training of the
networks. Through repeating input vectors to a network
during training, a network can learn to memorize the input
patterns and to represent the desired (or approximate)

outputs. The learning capability is achieved by modifying
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the interconnections (or weights) of the networks according
to a predetermined procedure [Wasserman 1990]. A neural
network is said to be well-trained if the errors (or noise)
between the produced outputs and the desired results are
minimized to an acceptable range.

The learning ability arising during the training
procedure can be either supervised or unsupervised
(Wasserman 1990]. Supervised learning requires the desired
output (or target vector) be paired with each input vector
to examine the behavior of the system. As an input vector
is applied to the network system, a computed product is
produced to compare with the corresponding target vector.
The difference (or error) between the produced output and
the target vector is propagated back through the network
layer by layer to adjust the interconnecting weights. The
unsupervised learning of the network requires no target
vector for the outputs, and therefore, no comparisons to the
desired result. When each input vector is applied to the
network, no predetermined target output accompanies it. The

neural network self-organizes to produce the ideal responses

during the training.
General Statement of Forecasting

There are two major types of forecasting models: time-
series and regression (causal) models [Makridakis and

Wheelwright 1978]. For a time-series model, prediction of
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the future is based on past values of a variable and/or past
errors. Its objective is to discover the data series
pattern of the past and extrapolate that pattern into the
future. 1In the second type, it assumes that the factor to
be forecast exhibits a cause-effect relationship with one or
more independent variables. The purpose of the causal model
is to discover the form of that relationship and use it to
forecast future values of the dependent variable.

There are many time seriés forecasting technigques that
have been invented and utilized widely in the human world,
such as smoothing and decomposition methods, NAIVE methods,
ARMA (Autoregressive/Moving Average) methods, Box-Jenkins
method, ..., etc. [Makridakis and Wheelwright 1978]. The
major concern in this thesis is to evaluate the forecasting
ability of artificial neural networks over a wide range of
data sets from the M-111 competition [Makridakis et al.
1982] and see i1f the neural network models are suitable to
do the forecasting task or not. If the neural network
models are able to discover the underlying structure changes
of the environment and give an appropriate prediction to the
future, then they can be used for the prediction job.

The problem of prediction can be generalized as the
following equation:

Y(t+N) = F(X(t),X(t-1),X(t-2), ... ,ult+1l)+ ... +u(t+N))

where,

Y(t+N) is the forecasting value for X(t+N) with the



historical observations X(t), X(t-1), X(t-2), ... ;

N is the number of future values to be forecast.

F is the vector function containing random terms

(or errors) u(t+1l), ... , u(t+N);

X(t) is the input vector of ocbservation at time t.

The task here is to select and minimize the random

terms (or errors) in predicting the output value ¥(t+1) such
that the function F can be used to forecast the future
results of the data series X(t), X(t-1), X(t-2),
Here, the data series X(t), X(t-1), X(t-2), ..., is a large
sample of the real-world time series from the M-111
competition data sets [Makridakis et al. 1982]. The vector
function F will also be employed to simulate the forecasting

environment of time series.
Objectives of the Study and Motivation

Considerable time and efforts have been spent in
studying counterpropagation and backpropagation neural
networks (this also includes various forecasting research
papers using neural network algorithms). On reading these,
the interest toward the studies of neural networks and time
series forecasting has arisen. Therefore, the objectives of
this research work are as follows:

(i) Using a different neural network technique

(counterpropagation networks) to evaluate the

forecasting ability of neural networks with the 111 M-



competition data series, instead of backpropagation
networks.

(ii) Examining the learning parameters of different network
architecture (for example, number of input neurons,
number of neurcons in the Kohonen layer and number of
output neurons in the Grossberg layer, etc.), the
training rate coefficients and the momentum introduced
in the backpropagation algorithm.

(iii) Analyzing and comparing the forecasting results of the
two neural network models over the M-111 competition
time series data with NAIVE I, NAIVE II, exponentially
weighted regression and that of NN-PDP and Autobox in
Patil’s thesis.

There are many applications of neural networks (for
example, data compression, image processing, pattern
recognition, robotics central application, etc). Motivation
comes from the interest in the learning ability of neural
networks and time series forecasting as well as trying to
estimate the performance of another neural network

implementation.



CHAPTER II
LITERATURE REVIEW AND RELEVANT STUDIES
Literature Review and Related Studies

Researchers have designed artificial neural networks to
simulate the organization and operation of the human brain.
The original neural network model has only the input and
output layers, which map a set of input vectors (patterns)
directly to a set of output vectors. This construction
restrains the learning ability of the neural network, since
similar input patterns will lead to similar outputs or the
same output. It is possible that such neural network cannot
perform the necessary mapping. In order to avoid the
limitation of single-layer networks, larger and more complex
networks such as multilayer artificial neural nets with a
nonlinear activation function between layers were invented
to offer stronger computational capability. Through
supervised or unsupervised training, artificial neural
networks can learn to represent the desired outputs or at
least give consistent results.

Artificial neural net models have been studied for many
years. A wide range of applications in the fields of
speech, image recognition [Lippmann 1987] and time-series

8



forecasting [Patil and Sharda 1989, 1990, Tang et al. 1991,
Hill et al. 1991, 1992] have been explored by researchers.

In Rumelhart and McClelland’s work (1988), multilayer
networks with internal representation units (or hidden
layer) were presented. The input information is recorded
into an internal representation which generates the ocutputs.
If there are enough hidden units, input patterns can always
be encoded and the appropriate output patterns can be
produced from any input pattern. This characteristic is
gsimilar to a backpropagation neural network.

Some neural networks such as Hopfield Nets suffer from
a tendency to stabilize to a local rather than a global
minimum of the energy (objective) function [Wasserman 1990,
Knight 1990]. Hinton and Sejnowski (1988) and Wasserman
{1990) presented a solution that starts with large steps and
gradually reduces the size of the average random steps for
this problem to approach the global minimum. This solution
gets its idea from annealing of a metal; hence it is usually
called the simulated annealing procedure with a probability
density function.

The recent research has a rising interest in the
selection for an optimal neural network. Fogel (1991)
proposed one method to choose the "best" network. It is a
modification of the Akaike’s information criterion (AIC),
the final information statistic (FIS).

In Masson and Wang’s paper (1990), they described
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several network models such as the Boltzmann machine, the
Kohonen network and the Hopfield-Tank net. They applied the
Kohonen self-organizing network to solve the Travelling
Salesman Problem (TSP). Meanwhile, they also pointed out
that the Boltzmann Machine is a time-consuming network.

Adaptive resonance architectures are neural networks
that self-organize stable recognition codes in real time in
response to arbitrary sequences of input patterns [Carpenter
and Grossberg 1987]. 1In Carpenter and Grossberg’s paper,
they also indicated that such an architecture’s adaptive
search has the ability to discover and learn appropriate
recognition codes without being entrapped in spurious memory
states or local minima.

If time is the most important factor in the
applications of neural networks, one can consider the
utilization of the counterpropagation networks (CPN). CPN
are not as general as backpropagation networks, but they
provide a solution for those tasks that cannot tolerate
tedious training procedures [Wasserman 1990]. In Hecht-
Nielsen’'s paper (1987b), he pointed out that the advantages
of a CPN are simplicity and that it can establish a good
statistical model of its input vector environment. One of
CPN’s main applications is data compression.

By combining the self-organizing mapping of Kohonen
learning and the outstar structure of Grossberg learning, a

new type of mapping neural network (counterpropagation
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network) is obtained [Hecht-Nielsen 1988]. 1In the report,
Hecht-Nielsen described four major applications of
counterpropagation neural nets. They are pattern
recognition, function approximation, statistical analysis
and data compression. The author also concluded that
counterpropagation has advantages over other neural net
approaches, such as development cost, computational savings,

and the use of an explicitly parallelizable architecture.
Forecasting Using Neural Networks

In time series forecasting history, artificial neural
networks have been utilized on the prediction for future
tendency of data series. In Patil and Sharda’s report
(1989), they applied food product sales data series to train
different configuration of the forecasting models. The
models established were three-layered networks using a back
error propagation (BEP) learning algorithm. The result
shows that the neural network models can exhibit the
seasonality property of the data series and give a
reasonable analysis of the data patterns. Again, in 1990,
Sharda and Patil made a comparison between a neural network
approach and the conventional forecasting instrument, the

Box-Jenkins model, with seventy-five time series. The
neural network model being used is the well-known
feedforward backpropagation network of a three-layered

perceptron (with one hidden layer). The result suggests
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that the simple neural net architecture can have a
competitive performance with Autobox, a Box-Jenkins
forecasting expert system.

Tang, Almeida and Fishwick (1991) have done an
experiment with three time series of different complexity by
using a backpropagation network implementation and the Box-
Jenkins model in 1991. They concluded that both methods
demonstrated comparable results for time series with long
memory and that neural network models outperformed Box-
Jenkins model for time series with short memory.

According to Hill, O’Connor and Remus’s work (1991),
they developed three different neural network configurations
(NN-I, NN-II and NN-III) simulating backpropagation
algorithm. The 111 time series data from the M-competition
[Makridakis et al. 1982] were used to train and test the
three neural network implementations. The result reveals
that NN-II is the best neural network structure and it is
used to compare with six classical models (Box-Jenkins,
NAIVE, Deseasonalized Exponential Smoothing, ..., etc.).
Generally speaking, NN-II was better than the average of the
other six reference methods for most periods. This is quite
encouraging for the proponents of using neural networks as a
forecasting tool.

Hill et al. (1992) argued more about the comparison
between neural networks and the conventional statistical

methods in prediction ability. Not only do they estimate
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the performance difference between neural networks and time
series forecasting models but also they evaluate causal
forecasting models and decision models with neural networks.
Across the areas of empirical studies, the authors summarize
that neural networks seem to perform at least as well as
classical models but there are still some problems left to
be solved.

There are several important factors that need to be
taken care of before and during the training of the neural
networks. One is to normalize the input vectors before
training; another is deciding on a method to adjust the
connection weights appropriately; the other is employing a
good strategy to determine when the training procedure
should stop. In Logar, Corwin and Oldham’s paper (1992),
they consider the factors described above and use a modified
backpropagation network to examine and predict the time
series generated by measuring the acid concentration of
waste water at given time periods. The experiment exhibits
a satisfactory result to the researchers.

We also can use neural networks to forecast student
behavior that used to be predicted by the student model, an
important component of an intelligent tutoring system (ITS)
[Mengel and Lively 1992]. The authors emphasize two
significant abilities in the paper. The first is that
neural networks can generalize over an input pattern set and

can be used to predict the future behavior of the pattern
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data. The second is that neural networks can be designed to
learn from the pattern set and produce output patterns that
it has not seen before. These talents make neural networks
efficient and flexible for this application.

In Sastri, English and Wang’s paper (1990), an
empirical study on applying three known artificial neural
networks (backpropagation, counterpropagation and the
category learning with a single hidden layer) to
identification of autoregressive time series models is
presented. The evidence indicates that the backpropagation
network was the best model identifier and the
counterpropagation network was the best model change
detector. The study also shows that the model change
detection capability is related to a network’s
generalization, which depends on the number of processing
elements in the hidden layer, the training sample and the

learning algorithm employed.



CHAPTER III
MODEL DEVELOPMENT AND METHODOLOGY
Why Neural Networks

A neural network is a parallel, distributed information
processing structure consisting of processing elements (i.e.
nodes, neurons) and connections (i.e. interconnected
weights, links) [Hecht-Nielsen 1990]. The ability to learn
is the most intriguing aspect of all the neural networks’
characteristics. The training of networks is accomplished by
applying input vectors (or patterns) sequentially and
adjusting the interconnected weights with a predetermined
procedure [Wasserman 1990]. Once the network is trained,
the error (or noise) is reduced to an acceptable interval
and then the network can be used for testing. At this
point, the weight vectors are not changed. Even if the
given testing information is not complete, the neural
network model still can accept it as an input and yield the
appropriate output. This pattern distortion tolerance makes
neural network capable of pattern recognition.

Since the output of each neuron (processing element) is
the summation of the weighted inputs from previous neurons,
we can analogize this relationship to be a time-series

15
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forecasting procedure. That is, through a neural network
model, the input data from previous time series can be used
to generate the forecasting output for future time series.

The relationship is depicted in Figure 1.

x(t)
x(t-1) > — ‘}(t+l)
x(t-2)
Figure 1. Time Series Forecasting with Neural Net

Counterpropagation Training Algorithm

The first neural network approach being employed in the
forecasting experiment is the well-known counterpropagation
network. The network combines a self-organization mapping
Kohonen layer as the hidden layer and a Grossberg outstar
layer as the output layer [Hecht-Nielsen 1990, Wasserman
1990}. The generalization property of the feedforward
counterpropagation network allows it to output a proper (or
even better, the desired and correct) result even though the

input vector is partially incorrect (for instance, the input
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vector is incomplete). The counterpropagation training

algorithm is designed to approximate a continuous function

f: ACR" --> BCR", defined on a compact set A. The full

network works best if f£* exists and is continuous (i.e. if

f is one-to-one and onto and if the inverse mapping f': BCR"

--» ACR"” is continuous) [Hecht-Nielsen 1990].

Where

The network structure is depicted in Figure 2.

> __>Y.

__€>Yh<%_\\\\
. . Y

E L
K G
Figure 2. Counterpropagation Neural Network
X = the input vector (x,,X,, ... ,X,);
Y = the desired output vector (y;,V¥sr --- ¥Yu i

W = the weight matrix comprising weight vectors w,,
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wW,, ... ,w, (the conjunction between input layer
and Kohonen layer) ;

V = the weight matrix comprising weight vectors v,,
vy, ... ,V, (the conjunction between Kohonen
layer and Grossberg laver) ;

K = the Kohonen layer that contains p neurons;

G = the Grossberg layer that contains m neurons.

The objective of training Kohonen neurons is to
separate the dissimilar input vectors into different groups
(or clusters). During training, the Kohonen layer functions
in a "winner-take-all" fashion (i.e. for an input vector,
one and only one Kohonen neuron produces the logical one;
the rest of the Kohonen neurons output a zero). The Kohonen
neuron that has the largest summation of products of
weighted input vectors wins the competition. The weight of
the winner will then be adjusted according to the following
formula:

174

new Ws1d o (X - Wold)

where o is a learning rate that may gradually be reduced
during the training.

It is difficult to predict which Kohonen neuron will be
activated (or be the winner) for a given input vector. In
order to prevent the same Kohonen neuron from winning more
than its fair share of the time (approximately 1/k, where k

is the number of Kohonen neurons in the Kohonen layer), I
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added a "conscience" testing method in the program to check
this implementation. This gives an opportunity to the other
Kohonen neurons to be trained and provides a better result
for time series forecasting. During the training of the
neural network, the weight vector w will converge to (or
approach to) the average value of the input vector x.

The only action in Grossberg layer is to activate the
Grossberg neuron that is connected to the Kohonen neuron
having a nonzero signal and output the connecting weight
vector between them. Meanwhile, the weight of that

Grossberg neuron is then modified with the following formula

Visnew = Vijora ¥ B{V5 = Vijora) Ky

where
3 is the learning rate of Grossberg layer;
¥; is the jth component of the desired output
vector;
k; is the output of Kohonen neuron 1.
As the neural network is trained, the weight vector vy,
will converge to the average value of the desired output vy;.
We can see that the Kohonen training operates under the
unsupervised mode while the Grossberg training operates
under the supervised mode, since the Kohonen layer produces
outputs in an indeterminate way and the Grossberg-layer has

desired outputs to which it trains. When the network
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finishes its training, the most appropriate
counterpropagation network model is applied to do time

series forecasting.
Backpropagation Training Algorithm

The second neural network methodology being used in the
predicting experiment is the popular backpropagation
training algorithm. It is designed for training multilayer
neural networks. The information processing operation that
backpropagation networks are intended to carry out is the
approximation of a bounded mapping or function f: ACR" -->
R", from a compact subset A of n-dimensional Euclidean space

to a bounded subset f[A] of m-dimensional Euclidean space,

by means of training on examples (X;,v,), (X,¥2), --. ,
(X, ¥x), -.. of the mapping, where y, = f(x,) [Hecht-Nielsen
1990] .

Multilayer networks, such as feedforward
backpropagation net, have greater power than single-layer
networks only if a nonlinearity is supplied. As we can see
in the formulas below, F is the squashing function or the
activation function (or the sigmoid function) that provides
the needed nonlinearity. x, is the input signal from
previous layer, w; is the weight and OUT is the output

signal of the neuron. I is the number of input neurons.

I
Net = Y x,w, , OUT = F(Net) =
i=1

N
(l+eNet)
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The activation function is depicted in Figure 3.

Y (OUT)
1.0 |
0.5
0.0 X (Net)
Figure 3. The Activation Function

The goal of training the backpropagation network is to
modify the weights (or connections) such that the
application of a set of inputs can produce the desired set
of outputs. The training of this algorithm is supervised,
so each set of inputs is paired with a target vector as the
desired output. There is one important thing that should be
mentioned here. Before starting the training process, all
of the weight vectors ought to be initialized to small
random numbers. This ensures that the network will not be
affected by large values of weights and prevents certain
other training pathologies [Wasserman 1990].

The backpropagation training procedure is described as

follows: 1. apply an input vector from the training set to
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the network.

2. calculate the output of the network.

3. calculate the error between the target
(desired) output and the network output.

4. adjust the connections (weights) of the network
in a way to reduce the errors.

5. repeat steps 1 through 4 with all the training
vectors until the error for the entire training
set is reduced to an acceptable value.

After enough repetitions of these steps, the error (or
noise) should be minimized to an acceptable range, and the
network 1is said to be trained. Then the weights of the
network model will not be changed and it will be used for
recognition and forecasting tasks.

In the program, I included a trainable bias for each
neurcon in the hidden layer and the output layer. This helps
the training process to converge more rapidly and provides a
more accurate result in time series forecasting than that
without using a bias. Therefore, the formula for the new
Net becomes the original one plus theta (the bias). Theta
can be considered as a weight connected to +1 [Freeman and

Skapura 1990, Wasserman 1990].

I
Net = Y x;w, +0
i=1

The input information is propagated from the input
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layer through the hidden layers to the output layer in a
parallel, distributed manner. The error message that comes
from the difference between the actual value and the network
output 1is propagated backward from the output layer to the
hidden layers to adjust the weights within the network. The
method used to modify the weights in the output layer is
different from that used to modify the weights in the hidden
layers. To adjust the connections between the output layer
and the previous hidden layer, we utilize the generalized
delta rule and the momentum strategy. The momentum strategy
involves adding a term to the weight adjustment that is
proportional to the amount of the previous weight change
[Wasserman 1990). The adjustment equations are as follows:
b = OUT,(1 - OUT,) (Target - OUT,)
Av (n+l) = n(d0UT,) + alav(n)]
vin+l) = v(n) + av{n+1)
where
o is the momentum coefficient,
n is the training rate coefficient,
OUT, is the output of the network,
OUT, is the output of the previous neuron in the
hidden layer,
av(n) 1is the weight change at step n,
v(n) is the weight value at step n,
v({n+1l) is the weight value at step n+l1 (after

adjustment) .
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As we have mentioned earlier, for backpropagation
network training the error message is propagated backward
from the output layer through the network layer by layer to
adjust the weights within the network. The value of delta
from the output layer is passed back through the same
connections to the previous hidden layer to generate a value
of delta for each neuron in the hidden layer. The following
equations illustrate the adjustment formulas:
6, = OUT, (1 - OUTy) ( S6v )
aw = 70,%,
wi{n+l) = w(n) + aw
where
6y 1s the delta value of a certain neuron in the
hidden layer,
5 is the delta value propagated back from the output
layer,
7 is the training rate coefficient,
aw is the weight change at step n,
w(n) is the weight value at step n, and

w(n+l) is the new weight value after adjustment.
Neural Network Architectures

The neural network structures of backpropagation and
counterpropagation being used in this experiment are
different. For the backpropagation neural network model,

the number of neurons in the input layer and the hidden
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layer are the same, and the number of output neurons in the
output layer is the same as the number of forecasting
step(s). This selection is the same as that in Patil’s
thesis. The reason to choose this kind of architecture is
to compare the results of the backpropagation nets in this
thesis with Patil’s NN-PDP results. Different architectures
(for example, I-2I-N and I-(I/2)-N, where I is the number of
neurons in the input layer and N is the forecasting horizon)
also have been evaluated, but their results made no
significant difference. 1In the counterpropagation neural
network model, the first (or input) layer contains not only
the input information but also the desired output target
information. Therefore, the number of neurons in the input
layer is the number of components of the input vector plus
that of the output vector (the forecasting horizon}.
Usually, the number of components of the output vector is
the forecasting horizon. Since the output of the
counterpropagation network is the approximation of both the
input information and the desired result, the output layer
(or Grossberg layer) has the same number of neurons as that
of the input layer. The number of neurons in the Kohonen
layer (or the hidden layer) is flexible and always depends
on the categories of the input patterns. Because the number
of input patterns cannot be known in advance, it is very
hard for the researchers to choose the optimal Kohonen

structure beforehand. 1In the test of my program, I designed
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the number of Kohonen processing units to be twice the
number of input neurcons and that turns out to be a

satisfactory result.

Table 1 illustrates the neural network architectures

being employed to do prediction for different types of time

series:
TABLE 1
DIFFERENT BPN AND CPN NETWORK STRUCTURES USED
IN THE FORECASTING EXPERIMENT
Backpropagation Counterpropagation
Network Arch. Network Arch.
Annual 2-2-1 2-2-2 3-6-3 4-8-4
2-2-4 2-2-6 6-12-6 8-16-8
Quarterly 4-4-1 8-8-1 5-10-5 9-18-9
4-4-2 8-8-2 6-12-6 10-20-10
4-4-4 8-8-4 8-16-8 12-24-12
4-4-6 8-8-6 10-20-10 14-28-14
4-4-8 8-8-8 12-24-12 16-32-16
Monthly 12-12-1 24-24-1 13-26-13 25-50-25
12-12-2 24-24-2 14-28-14 26-52-26
12-12-4 24-24-4 16-32-16 28-56-28
12-12-6 24-24-6 18-36-18 30-60-30
12-12-8 24-24-8 20-40-20 32-64-32
12-12-12 24-24-12 24-48-24 36-72-36
12-12-18 24-24-18 30-60-30 42-84-42

The neural network structure 12-12-8 in the

backpropagation algorithm means twelve input neurons,

hidden neurons and eight output neurons.

The network

twelve
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structure 20-40-20 for monthly forecasting in the
counterpropagation algorithm indicates twelve input signals
plus eight desired ocutput signals (i.e. twenty neurons) to
the first layer (or the input layer), forty Kohonen neurons
and twenty output signals for the approximation of the

informaticn to the input layer.
Selection and Classification of Data Sets

The data set selection and classification are the same
as tho;e of Sharda and Patil’s early work (19%90). The data
series selected are from the M-111 competition [Makridakis
et al. 1982] to estimate the performance of the two
predicting models in this experiment. Out of 1001 series
collected, only 111 time series are chosen and these data
are different from the 111 time series used in Makridakis’
previous work in 1979 [Makridakis and Hibon 1979]. These
data series were from firms, industries and nations. The
sample selection of 111 series from 1001 series are every
ninth entry starting from series number 4 (a randomly
selected starting point), i.e. 4, 13, 22, 31, ... , 994.
Al]l 111 time series will be used for the experiment. The M-
111 studied used both the full set of 1001 series and also
this subset of 111 series. They are classified into three
groups according to the following rules

annual data series : 1 <= series number <= 181

gquarterly data series : 182 <= series number <= 384
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monthly data series : 385 <= series number
There are 20 annual time series data, 23 quarterly time
series data and 68 monthly time series data, among the 111
data series in the subset. This is different from the

approach of the data sets classification used in Patil’s

thesis.
Method of Approach and Analysis

The experimental approach to those data series is to
use the reduced sample, n - k observations, to establish the
two forecasting models (i.e. the backpropagation network
model and the counterpropagation network model). Here, n is
the total number of observations in a particular time series
while k is the maximal number of future values to be
forecast. We take k = 6, 8, 18 for yearly, gquarterly and
monthly data series, respectively. Obviously, we can
interpret the N-step-ahead forecasting method in a briefer
and clearer statement. That is, for N-step forecasting, N
future values will be predicted beyond the first n-k points
(i.e. we predict points number n-k+1, n-k+2, ... , n-k+N).
Of course, N cannot be greater than k. Here, we take N = 1,
2, 4, 6, 8, 12, 18.

The generated predicted outputs will be analyzed by the
comparison of MAPE (mean absolute percent error) and Median

APE individually. The formula for MAPE is as follows:
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k-N+1
MAPE; = [1/(k-N+1)1[ ¥ 1 (A;; - P;;) / Ayl = 100]
1=1

where
k is equal to 6, 8, 18 for yearly, gquarterly and
monthly time series respectively, j = 1 to N;
N is the number of values to be predicted;

the actual value;

>
1

the forecast value.

A
i

The following example of the four-step-ahead prediction
of yearly time series will demonstrate the above formula.
The network architecture used is 2-2-4. A is the array of
actual values in the testing set (in this case, there are
six actual values, i.e. k=6). The one-dimensional array, A,
can be transformed into a two-dimensional array. P is the

array of forecasting values.

1 2 3 4 A, A, A, A,
A=1[123456] =223475 =18, A, A, A,
34 5 6 A5, A, A,y Ay,
P, Pi; Pi3 Py
P = P21 P, P23 Py
P3l P32 P33 P34
1 2 3 4 5 6
Py Pz Py Py 1=1
P,. Py Py Py 1=2
Py, Py, Py, Py 1=3
Step Y+1 Y+2 Y+3 Y+4

MAPE MAPE1 MAPE2 MAPE3 MAPE4

Here, MAPE; = [1/(k-N+1)]1*100%*[(A,;-Pyy) /A + (B,-Pyy) /A,5+



(A;;-Py;) /B3] . k-N+1 = 6-4+1 = 3 and j = 1 to 4.
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If the number of forecasting periods, N, is equal to k,

the MAPE calculation would be as follows:

k-7+1
MAPE; = [1/(k-3+1)1[ Y. i(&;; - P;;) / Al * 100]
i=1

where j = 1 to k.

The following example of the six-step-ahead prediction

of yearly time series will demonstrate the above formula.
The network architecture used is 2-2-6. A is the array of
actual values in the testing set (in this case, there are
only six actual values. 1i.e. k=6). The one-dimensional
array, A, can be transformed into a two-dimensional array.

P is the array of forecasting values.

1234586 A, A A Ay A A
A =[12345¢6] =23452%6 0 =234, A, A, A,, A, Ay,
345600 Ay Ay, Ajy Ay Ay Agg
4 56 000 Ay Ay Ay Ay Ay Agg
56 0000 Agy Ay Agy Ay A Agg
€ 00 000 Ay, Ay Ay Ay A Ay
Py, Py Py Py Pis Py
P = P,, Py, Py 24 Pas P
Py, Py, Pyy Py Pyg Pyg
P,y Py Pys Pyy Py Py
Psy Psy; Psy Pgy Pog Pgg
Pe; Per Pes Pgs Pes Pes
1 2 3 4 5 6
P, Pz Pz Py Py Py i=1
P,y Pay Py Py Py Py 1=2
P;; Py 33 Pag 35 Pag 1=3
a1 a2 Pay Pas Pus Py 1=4
51 Psa Pss Psy Pgg Pgg 1=5
61 Pez Pey Pes Py Pgg 1=6
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Step | Y+1 Y+2 Y+3 Y+4 Y+5 Y+6
MAPE | MAPE1 |MAPE2 MAPE3 | MAPE4 | MAPES | MAPE6
Here, MAPE, = [1/(k-j+1)]1#%100%[(A;;-P) /A, + (A, -P,.) /A,.+

(B, -P3y) /BAy5+ (A;y-Pas) /RAyy+ (Ag;-Pyy) /A5j+ (Ag,-Pe,) /Aﬁj] .
k = 6 and j = 1 to 6.

For Median APE (M-APE), all we have to do is to arrange
all the APEs in order and pick the APE value of the middle

term (i.e. the M-APE).
Neural Network implementations

If there are not enough data points in a time series,
then that time series cannot be used to evaluate the
forecasting ability of the network models. The detail of
the implementations are shown in the program appendix. 1In
the programs, I require that there should be at least three
training patterns to precede the training task. Otherwise,
the training of the network models would be of no use and
not be able to do forecasting. The methodology of deciding
the number of training patterns for N-period-ahead
prediction of each algorithm is as follows:

backpropagation: n - Ymax (or Qmax, Mmax) - (I + N) + 1

counterpropagation: n - Ymax (or Qmax, Mmax) - I + 1
where

n is the total number of data points in a certain

time series,

Ymax, Qmax and Mmax are the maximum numbers of
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forecasting horizon (the number k) for yearly,
guarterly and monthly time series respectively.
(i.e. Ymax = 6, Qmax = 8 and Mmax = 18)

I is the number of processing elements in the input
layer.

The values of both above expressions must be greater or
equal to three to maintain the training situation. For
instance, ser265, a quarterly time series, has 60 data
points so the number of training patterns in this series for
the backpropagation training algorithm at four-period-ahead
prediction is 60 - 8 - (8 + 4) + 1 = 41. This series can be
used to train and test the neural network model. Another
quarterly time series, serl93, with only 20 data points has
20 - 8 - (8 + 4) + 1 = 1 training patterns for the
backpropagation training algorithm at four-step-ahead
prediction. This series cannot be used to train and test
the neural network model.

The number of training cycles of the backpropagation
model was chosen to be 1000 so that the results of this
model can be used to compare with the NN-PDP results in
Patil’s thesis. Different numbers of training cycles, such
as 500, 2000 and 10000, also have been tested but their
results made no significant difference. For example, the
MAPE values for the prediction of yearly , quarterly and
monthly data after 10000 training cycles are 6.90, 11.42 and

15.11 which are just slightly worse than the results (6.52,
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10.74 and 15.19) of 1000 training cycles. The number of
training cycles for the counterpropagation model was chosen
according to its weight adjustment algorithm. The learning
rates, alpha and beta, are reduced gradually (alpha=alpha/r
and beta=beta/r, where r>1 is the decreasing ratio) during
the training, and the final values of both of them are
decided to be 0.01 approximately. Different decreasing
ratios, such as 1.001, 1.005 and 1.01, have been tested and
the result for r=1.005 turns out to be better than that of
the others. For this reason, the number of training cycles
is set to 850 for the counterpropagation model.

When the program reads in a time series from the input
file, it checks if there are sufficient observations and
processes the data points into two parts, training part and
testing part. The training part (or training set) contains
several training pairs (or training patterns). Each
training pair is composed of an input vector and its desired
output vector. Before starting training of the network
model, the interconnecting weights must be initialized to
small random numbers. It is highly desirable to normalize
all input vectors before applying them to the network
(Wasserman 1990]. The normalization methods for the two
networks are different. For a counterpropagation net, the
normalization converts the input training pattern into an n-
dimensional unit vector with the same direction. Those

weights starting from different input neurons in the input
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layer and connecting to the same Kohonen neuron in the
Kohonen layer are normalized together to be a unit vector.
Meanwhile, those weights starting from the same Kohonen
neuron and connecting to different Grossberg neurcns in the
Grossperg (output) layer are also normalized together to
become a unit vector. The normalization formula can be
expressed as:

~ ) -~

%, (normalized number) = x, / (X,° + X + ... + x,°)*¥°¢

The normalization mean for a backpropagation neural
network model is different from that of a counterpropagation
neural network model. The method used in the program is the
same as that in Patil’s thesis [Patil 1990]. During the
training, the program selects the maximum and minimum data
points from each training pair (including the input and
output values) and each training pattern is normalized by
its own maximum and minimum observations. The normalization
equation can be written as:

X, (normalized number) = (x,-minimum) / (maximum-minimum)
Hence the normalized x, lies on the interval [0,1].

Note that the maximum and minimum numbers are the
values over all data points of input vector and target
vector in the training pair. But, in the case of testing,
the maximum and minimum values are only found in the input

vector since the model cannot know the actual testing values

in advance.



CHAPTER IV
RESULTS, ANALYSIS AND DISCUSSION

During the testing of the programs, different
forecasting periods (or horizons) have been used to evaluate
the performance of the two neural network methods. That is,
N =1, 2, 4, 6 were used for yearly time series, N = 1, 2,
4, 6, 8 were used for quarterly time series and N = 1, 2, 4,
6, 8, 12, 18 were used for monthly time series. Here, N
stands for the length of forecasting horizons. However, I
select only the forecasting horizons of N =1, 4, N = 1, 4,
8, and N = 1, 4, 8, 12 for vyearly data, quarterly data and
monthly data, respectively to present in the thesis.

After the programming design tasks are done, the
analysis and discussion of the time series forecasting are
based on several factors that affect the behavior of the
neural networks. The factors are the range initialization of
the weight vectors, the learning parameters (alpha, beta and
eta), the training rate coefficients and the momentum, etc.
Since the weight range initialization is of tremendous
importance to the backpropagation and counterpropagation

network models, 1t must be treated with care.

Learning Parameters and Weight

Initialization
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As far as the counterpropagation training algorithm is
concerned, the interconnecting weights are designed to be in
the closed interval 0.01 <= weights <= 0.5. During the
testing of the programs, the outputs of this implementation
proved to excel that of the larger range 0.0l <= weights <=
0.95. 1In Wasserman’'s book (1990) and Hecht-Nielsen’s paper
(1987a), they proposed weight adjustment formulas for
counterpropagation nets and suggested some feasible values
of the training rate coefficients (alpha, beta, a and b).

According to their opinions, the training rate
coefficient alpha is designed to be 0.7, beta is assigned to
be 0.1 and both a and b (A and B in the program) are equal
to 0.3. Different values of those learning parameters, such
as 0.1, 0.5, 0.6 and 0.9, have been tried during the testing
of the programs. It is cobserved that the former set (i.e
alpha = 0.7, beta = 0.1, a = b = 0.3) of training rate
coefficients turns out to be the optimal one.

For the backpropagation training algorithm, the weights
were initialized between 0.01 and 0.99 at the beginning.
Later on, the weight range was set to be within the interval
(-0.5,0.5). This improved the forecasting performance of
the backpropagation network model over the M-111 data
series. The same interval has also been tried for the
counterpropagation model, but the prediction capability of
the network did not improve much and even got worse.

According to my opinion, it is not necessary to say that a
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certain weight initialization range is suitable for all the
neural networks. Each neural network can have its own best
choice of the weight range.

The training rate ccefficient, eta, and the momentum of
the backpropagation net were tested with three different
numbers less than one (0.1, 0.5 and 0.9). Table 2 on the
following page gives the idea of choosing the optimal values
of training rate and momentum. The examination was carried
out over time series serb58, ser94, ser229, ser337, ser679,
ser769 and ser931. It is observed that the optimal values
for eta and the momentum are 0.9 and 0.1, respectively.
There is one thing needed to be noticed here: if the
training rate coefficient, eta, is low (approximately 0.1),
then the forecasting performance becomes poor, especially
when both momentum and eta were set to be 0.1. This is
different from the result in Patil’s thesis.

In order to have an idea of how the effects of
seasonality, noise and smooth trend affect the performance
of backpropagation model and counterpropagation model over
guarterly and monthly time series, the results (MAPE) of
backpropagation net (BPN) and counterpropagation net (CPN)
over six selected time series are illustrated as follows:

ser2ll ser562 ser229 ser787 ser31l0 ser832

BPN 33.46 19.43 2.42 4.89 1.30 0.95

CPN 17.04 24.86 14.45 8.22 0.87 0.96
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TABLE 2

COMPARISON TABLE OF DIFFERENT VALUES OF MOMENTUM AND
LEARNING RATE (MOMENTUM, LEARNING RATE) FOR SER58, SER94,
SER229, SER337, SER679, SER769 AND SERS931 WITH ONE STEP

AHEAD FORECASTING

ser58|ser94 |ser229|ser337|ser679|{ser769|ser931
(0.1,0.1) 7.131 3.87) 7.72 6.27 |30.68 {12.13 38.94
(0.1,0.5) 6.94| 2.92| 3.60 4.10 |17.66 |10.49 (16.67
(0.1,0.9) 6.90f 2.73] 2.42 3.62 |16.34 10.68 |16.38
(0.5,0.1) 7.06] 3.85| 7.46 6.23 |28.96 |12.14 37.53
(0.5,0.5) 6.92| 2.81] 3.05 4.03 |16.33 11.02 16.18
(0.5,0.9) 6.89| 2.68| 2.58 4.02 |17.19 |11.56 }17.20
(0.9,0.1) 7.011 3.76| 7.06 6.07 (26.75 |11.99 [34.82
(0.9,0.5) 6.901 2.74) 2.83 4.00 |15.67 111.63 16.66
(0.9,0.9) 6.87| 2.65| 2.60 4.09 |16.94 12.29 }j18.26

Time series ser229 and ser787 are quarterly and monthly
data series with seasonality. Time series ser2ll and ser562
are gquarterly and monthly data series with noise. Time
series ser310 and ser832 are quarterly and monthly data
series with smooth trend. It seems that the
counterpropagation network model cannot pick up the
seasonality of a time series as well as the backpropagation
network model does. We can distinguish from the prediction
results of ser229 and ser787 that the backpropagation
training algorithm is capable of dealing with the
seasonality trend of time series properly. Obviously, both
training algorithms have trouble with the time series with
lots of noise, but so must every method, if the noise is

truly random. As regard to a time series with a smooth
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trend, both of them can produce output nearly identical to

the actual values.

Results: Analysis of Yearly, Quarterly and

Monthly Time Series

As we have menticned in the data selection and
classification section, 1 <= series number <= 181 are annual
time series, 182 <= series number <= 384 are quarterly time
series and 385 <= series number <= 1001 are monthly time
series. Those data series have their own structure of trend
and the available number of data points. The way tec find
out that a certain time series has sufficient observations
or not is given in the neural network implementation
section. If the time series does not have the required
number of data points, it may be used to do short term
forecasting but may not be able to do long term forecasting.
Due to this constraint, a time series which appears in the
examinations of the beginning several steps prediction of
N-step-ahead forecasting may not appear in the examinations
of last few steps prediction of N-step-ahead forecasting.

The training network architecture is the same as the
testing network architecture. For the backpropagation
model, there is only one network structure (2-2-N) for
annual data. The quarterly and monthly data models selected
have two different types of structures respectively. That

is, 4-4-N and 8-8-N are used for the quarterly group while
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12-12-N and 24-24-N are employed for the monthly category.
Since the counterpropagation model has a different approach
from that of the backpropagation model, the neural network

architectures are constructed according to the number of

prediction steps. That is, (2+N)-(2*(2+N))-(2+N) is used
for the yearly time series, (4+N)-(2*(4+N))-(4+N) and
(8+N) - (2* (8+N) ) - (8+N) are selected for the quarterly data
group and (12+N)-(2* (12+N)) - (12+N) and

(24+N) - (2* (24+N) ) - (24+N} are used for the monthly data

category. As the size of the forecasting steps increased,
the network architecture is enlarged, too.

The compariscn of the forecasting ability at one-step
of NAIVE 1, NAIVE 2, exponentially weighted regression
method, Autobox, NN-PDP, BPN and CPN is given in Table 23.
The results indicate that neural networks (NN-PDP and BPN)
defeated the other forecasting techniques on yearly time
series prediction. Exponentially weighted regression was
better than any other competitor on quarterly and monthly
data for N=1l-step-ahead forecasting, the only N value for
which the regression system was run. Except for the
exponentially weighted regression method, it is observed
that neural networks provide a better prediction of future
values for those time series with short memory (i.e. serzll,
ser292, ser400, ser922, etc) than the other competitors
while NAIVE 2 outperform others for the time series with

long memory (i.e. ser337, serd454, serS508, ser6l6, etc).
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Table 3 through Table 22 exhibit the multiple steps
prediction capability of the backpropagation training
algorithm and the counterpropagation training algorithm.
Eventually, the backpropagation models outperform the
counterpropagation models at most of the competitions except
the one-step forecasting of the quarterly time series.

We also need to discuss the results from the following
references in this thesis.

1. the M-111 study [Makridakis et al. 1982]

2. Patil’s thesis [Patil 1990]

3. the computations by Chandler [Chandler 1992]

4. the paper by Hill, O’Connor and Remus (1991)

In the M-111 study, the given MAPE values of four
selected methods for one-step ahead forecasting of the 111

time series are:

NAIVE 1 13.2
NAIVE 2 8.5
Box-Jenkins 10.3
D. Sing ExXp 7.8

The NAIVE 1 method uses the last observation of the
time series as the prediction for all future times. This
means that the forecast of tomorrow’s weather will always be
the same as today’s weather. The NAIVE 2 method
deseasonalizes the data using the decomposition method of
the ratio-to-moving averages [Makridakis and Wheelwright

1978] then applies the NAIVE method to the deseasonalized
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data followed by reseasonalization. The Box-Jenkins
forecasting in the M-111 study required a human expert to
choose a model based on the standard Box-Jenkins methodology
involving the examination of autocorrelation, partial
autocorrelation and residual autocorrelation functions, etc.
[Box and Jenkins 1976]. It required the most time (on the
average about one hour of human effort per series)
[Makridakis et al. 1982]. The D. Sing Exp stands for
deseasonalized single exponential smoothing method, a simple
automatic method. We list it because this method has the
lowest MAPE for one-step-ahead prediction.

Patil compared neural networks (the Parallel
Distributed Processing package using the backpropagatiocon
training algorithm) with the Box-Jenkins method (the Autobox
software). Especially, the prediction results of annual
time series of the M-111 competition data [Makridakis et al.
1982] in his thesis are much better than the outputs of the
other competitors. However, there are a few mistakes in
Patil’s thesis that need to be corrected. The definitions
(extents) of the first two types of time series in
Makridakis et al.’'s paper (1982) are different from those in
Patil’s thesis. Makridakis et al. (1982), Pack and Downing
(1983) all agreed that the yearly time series group has 181
time series while the quarterly time series group has 203
time series. That is, the yearly time series in M-111 data

series should run from serd4 to serl75 (instead of serill2
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which is selected by Patil) and the quarterly time series in
M-111 data series should start from serl84 (not seri2l
selected by Patil) to ser382. The second one is that the
mean values and the standard deviations of Table 32 in
Patil’s thesis seem to be incorrect. The original values of
mean MAPEs and standard deviations in that table are as
follows:

Mean MAPE Standard deviation

Autobox 15.94 15.18
NN -BM 14.92 15.12
NN-PDP 14.67 15.39

According tc the correct calculation, the mean MAPE
values and the standard deviaticns for Autobox, NN-BM and
NN-PDP should be as follows:

Mean MAPE Standard deviation

Autobox 17.62 14 .57
NN-BM 16.02 16.76
NN-PDP 12.50 14.29

These results make the advantage of neural networks
that Patil claimed over Box-Jenkins methodology (Autcbox)
more significant. Meanwhile, there are two series on which

NN-PDP outperformed Autobox most dramatically, ser58 and

ser85. The MAPE values of these two series are shown as
follows:
Autobox NN-BM NN-PDP
ser58 72.57 16.17 1.34

ser85 37.00 7.53 0.29
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These two series are smooth and easy to predict. These
results raise the doubts of whether Autobox might have some
bug, or whether Patil might have misused Autobox in some
way. The Autobox software was designed according to the
Box-Jenkins technique. The average value of the Box-Jenkins
method in the M-111 competition paper [Makridakis et al.
1982] 1is 10.3 which is a lot better than the value, 17.62,
of the Autobox software utilized in Patil’s thesis.

Although Autobox operates automatically and the Box-Jenkins
results in the M-111 study were hand-tuned, Autobox has a
good reputation and Patil’s Autobox results appear to be
questionable. Also, some of Patil’s NN-PDP results on the
annual series (for example, series 31, 49, 85) are hard to
understand because I was unable to get close to these MAPE
values using methods that should have been similar.

The MAPE value (8.50) of NAIVE 2 in Makridakis et al.’'s
report (1982) is better than that (10.24) of Chandler’s
(1992) . Chandler [Chandler 1992] tried to reproduce the
results for NAIVE 1 and NAIVE 2 in the M-111 report. The
average MAPE values he obtained for all 111 series and for

Patil’s 72 series are as follows:

111 series 72 seriles
NAIVE 1 13.66 13.25
NAIVE 2A 10.23 10.18

NAIVE 2B 10.52 10.54
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Here, NAIVE 2A and NAIVE 2B use two different methods
of deseasonalization. NAIVE 2B is presumed to be closer to
the NAIVE 2 used in Makridakis and Wheelwright'’'s report
(1978) . We can observe that the MAPE value of NATIVE 1 is
different from that in M-111 study. It is very strange that
the same method but utilized by different researchers should
have different results. It is possible that Makridakis et
al. might have included some personal judgement and selected
the optimal cutputs from both NAIVE 1 and NAIVE 2 and then
cencluded the outputs as the final result of NAIVE 2. Or
possibly, a different set of points were predicted (maybe
just one point per time series); the M-111 study is not
completely clear on this.

Hill, ©O'Connor and Remus (1991) also used neural
networks to do the forecasting experiment over the 111 data
series from M-111 study. The results shown in Table 1 and
Table 2 of the report were not very clear to the readers.
They did not explain what is the forecasting horizon for the
regult values in the two tables. It would be ambiguous
since the values could be the MAPEs of one-step prediction
or the average numbers of the MAPEs of multiple-step
prediction. However, from Figure €& and Figure 7 of the
paper, we can see that they obtained good results
(approximately MAPE=9 or so) of the prediction for the first
step out of the eight-step and eighteen-step predictions for

quarterly and monthly time series respectively. There is
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one thing that needs to be noted here. They eliminated
ser949, which gave an MAPE value over 4000 %, from the 111
series (i.e. only 110 series were being tested in the
experiment) to obtain a good result. If they included the
series, ser9%949, in the examination, the result would be very
poor. The authors explained that ser949 contained at least
three major discontinuities and was therefore unsuitable for
the investigation of the performance of the neural network
modelg. Eliminating this series after a very poor
prediction was obtained, however, seems to be unfair.

The best results of the neural networks
(backpropagation and counterpropagation} employed in this

thesis for one-step ahead forecasting may be summarized as

follows:
111 series 72 series
BPN 1 12.72 11.92
CPN 1 13.57 13.46
BPN 2 12.77 13.17
CPN 2 12.13 12.74

Here, the structures of BPN 1 and CPN 1 are different
from those of BPN 2 and CPN 2. The details of the
difference of the structures selected for BPN and CPN is
specified at the beginning of this section. The structures
of BPN 1 are 2-2-1, 4-4-1 and 12-12-1 for yearly, gquarterly

and monthly series respectively while the structures of BPN
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2 are 2-2-1, 8-8-1 and 24-24-1 for yearly, quarterly and
monthly series respectively. The structures of CPN 1 are 3-
6-3, 5-10-5 and 13-26-13 for yearly, quarterly and monthly
series respectively while the structures of CPN 2 are 3-6-3,
9-18-9 and 25-50-25 for yearly, quarterly and monthly series
respectively. We can observe from the comparison of the
results of this thesis with the results of NAIVE 1, NAIVE 2,
Autobox, NN-PDP, etc. that BPN 1, 2 and CPN 1, 2 are better
than NAIVE 1 and Autobox as used by Patil but worse than the
other forecasting technologies (NAIVE 2 and Exponentially

weighted regression method) .

Some Relative Examinations of Neural

Networks

In order to evaluate the ability of neural networks to
capture the underlying trend (or mapping) of time series,
two examples that consist of non-noise trend have been
testified in this experiment. One is the linear equation, y
= X + 1, the other is the example, y = x'?7, being examined
by Hill, O’'Connor and Remus [Hill, O’'Connor and Remus 1991].
Both the backpropagation net and the counterpropagation net
have amazing results for these two instances. The linear
equation is considered as yearly data while the eguation, y
= x''*’, is taken as quarterly and monthly data. For the

linear trend, the MAPE value of the backpropagation model is

only 0.06 whereas the MAPE value of the counterpropagation
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model is 2.41. The linear equation with seasonality has
also been examined. The backpropagation net has an MAPE
value of 3.86 while the counterpropagation net has 9.02.
This indicates that the former model can approximate the
underlying seasonality mapping more accurately than the
latter. For the model, y = x'?, the MAPE value for the
backpropagation model is 0.46 and the MAPE value for the
counterpropagation model is 0.86.

We can observe an interesting possibility from the
result above. It is easy for neural networks to identify
(or learn) the functional forms automatically. In the Hill,
O’ Connor and Remus’ paper (1991), they also specified that
neural networks have the property to approximate the
functional forms automatically but it would be difficult for
a forecaster to correctly identify and capture it. The
property is more likely to occur in the quarterly and the
monthly data than in the annual data, since there is more
chance for the quarterly and the monthly data to contain

certain underlying pattern (or trend) [Hill, O'Connor and

Remus 1991].



CHAPTER V
CONCLUSIONS AND FUTURE WORK

During the experiment of this research, not only the
neural networks (backpropagation net and counterpropagation
net) have been examined for the time series prediction but
also several other forecasting methods (NAIVE 1, 2,
Exponentially Weighted Regression, ..., etc). It is
observed (see the summarized MAPE results below) that the
neural network is the best forecaster on the yearly type
time series (NN-PDP was the neural net package used in
Patil’s thesis, and BPN is the backpropagation net used in
this thesis), whereas the exponentially weighted regression
method dominates on the one-step-ahead prediction of
quarterly and monthly data series. Every method has
difficulty when dealing with the data series with noise and

irregular trends (for example, ser481, ser715, etc. see

Table 23).

Yearly time series. (BPN: 2-2-1, CPN: 3-6-3)

method {NAIVE 1 |NAIVE 2|Autobox|{NN-PDP| BPN CPN |Exp-reg

mean 10.25 10.25 24 .65 1.88 6.38| 7.57 7.02
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Quarterly time series. (BPN: 8-8-1, CPN: 9-18-9)

method |NAIVE 1 |NAIVE 2|Autobox|NN-PDP| BPN CPN {Exp-reg
mean 10.65 9.62 18.88 11.02 11.49 9.82 7.97
Monthly time series. (BPN: 24-24-1, CPN: 25-50-25)

method |NAIVE I|NAIVE 2 |Autobox|NN-PDP| BPN CPN |Exp-reg
mean 14.91 10.30 15.91 15.86 15.30(14.49 9.49
Quarterly time series. (BPN: 4-4-1, CPN: 5-10-5)

method|{NAIVE 1 |NAIVE 2!Autobox|NN-PDP| BPN CPN |Exp-reg
mean 10.65 9.62 18.88 10.47 10.74(110.43 7.97

Monthly time series. (BPN: 12-12-1, CPN: 13-26-13)

method [NAIVE I|NAIVE 2|Autobeox|NN-PDP| BPN CPN |Exp-reg
mean 16.48 10.10 15.91 12.52 13.45116.12 9.37

In accordance with the experiments for

counterpropagation neural nets, if the architecture has more

processing elements in the hidden layer than that of the
input layer then the network model can have better
performance. If the forecasting horizon is of multiple-step

length (i.e. more than two-step-ahead) then the

backpropagation training algorithm is considered to be a
more appropriate technique than the counterpropagation

training algorithm. Meanwhile, the backpropagation model is

able to detect the seasonality of a time series while the

counterpropagation model cannot.
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The following summarized MAPE values are the multiple-
step forecasting results of backpropagation models and
counterpropagation models over quarterly time series and
monthly time series. The annual time series forecasting

output are presented in Appendix A and Appendix D.

MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF BPN
AT 8_STEP WITH ARCH. 4-4-8

step|y+1 Y+2 y+3 y+4

mape m-ape | mape m-ape | mape m-ape |mape |m-ape

mean 8.42 6.20110.46 9.89111.39 9.75113.20/12.53

step|y+5 v+6 y+7 y+8

mape m-ape | mape m-ape | mape m-ape |mape |m-ape

mean (13.89) 10.18(15.43} 15.05(15.01| 12.64]15.89}115.89

MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF BPN
AT 8 STEP WITH ARCH. 8-8-8

step|y+1 y+2 v+3 v+4

mape m-ape |mape m-ape | mape m-ape |mape m-ape

mean 9.01 6.15| 9.93 9.10]13.89} 12.13|14.56| 14.88

stepiy+5 y+6 y+7 y+8

mape m-ape | mape m-ape |mape m-ape | mape m-ape

mean [17.22| 13.33(17.48| 17.23}17.43| 12.85118.34} 18.34




MAPE AND M-APE VALUES OF MONTHLY FORECAST OF BPN

AT 4 STEP WITH ARCH. 12-12-4
step|y+1 Y+2 y+3 v+4
mape m-ape | mape m-ape |mape m-ape mape |m-ape
mean [14.93111.19 |15.56]11.96 |14.56|10.68 |16.38[12.46

MAPE AND M-APE VALUES OF MONTHLY FORECAST OF BPN

AT 8 STEP WITH ARCH. 12-12-8
step|y+1 y+2 yv+3 y+4
mape m-ape |mape m-ape |mape m-ape |mape |m-ape
mean (14.58} 10.62{16.33| 12.1817.01] 12.06;17.80{|12.70
step|y+5 Yy+6 y+7 y+8
mape m-ape |mape m-ape |mape m-ape |mape |[m-ape
mean |17.85| 12.89|17.88| 13.36|18.63| 13.16(19.78|16.91
MAPE AND M-APE VALUES OF MONTHLY FORECAST OF BPN
AT 4 STEP WITH ARCH. 24-24-4
step|y+1 y+2 y+3 y+4
mape m-ape jmape m-ape | mape m-ape mape |m-ape
mean |14.78( 11.42|15.36| 13.11}15.76| 13.51(17.12)15.39
MAPE AND M-APE VALUES OF MONTHLY FORECAST OF BPN
AT 8 STEP WITH ARCH. 24-24-8
step|y+1 y+2 y+3 y+4
mape m-ape | mape m-ape | mape m-ape |mape |m-ape
mean |16.76| 12.63116.47| 13.69|14.59; 10.38|14.90}12.45
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step| y+5 Y+6 y+7 v+8
mape |m-ape |mape m-ape |mape m-ape |mape |m-ape
mean 14.70(11.27115.49| 13.82{16.18] 14.441]17.68|16.25
MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF CPN
AT 8 STEP WITH ARCH. 12-24-12
step |y+1 Y+2 y+3 y+4
mape m-ape {mape m-ape | mape m-ape |mape m-ape
mean 9.25 6.36112.80| 11.32j15.02] 11.73|14.48] 14.00
step y+5 Y+6 y+7 Yy+8
mape m-ape mape m-ape | mape m-ape | mape m-ape
mean |17.641 11.57(19.05} 19.18(22.93| 16.15]24.98| 24.958
MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF CPN
AT 8 STEP WITH ARCH. 16-32-16
step|y+1 Y+2 y+3 y+4
mape m-ape |mape m-ape |mape m-ape | mape m-ape
mean {11.03 8.59114.76] 12.80718.70) 13.64|19.30| 16.44
step|{y+5 y+6 y+7 Y+8
mape m-ape |mape m-ape | mape m-ape | mape m-ape
mean [23.42| 15.92|23.07; 23.29{25.45| 17.38(30.64| 30.64




MAPE AND M-APE VALUES OF MONTHLY FORECAST OF CPN

AT 4 STEP WITH ARCH. 16-32-16
steply+1l V+2 y+3 y+4
mape m-ape |mape m-ape | mape m-ape |mape |m-ape
mean [15.911 11.31(20.31) 15.36(20.72| 17.02|22.65|18.64
MAPE AND M-APE VALUES OF MONTHLY FORECAST OF CPN
AT 8 STEP WITH ARCH. 20-40-20
step|y+1 Y+2 v+3 v+4
mape m-apemape m-ape |mape m-ape |mape [m-ape
mean (16.33] 10.68]17.97| 13.66[20.18| 14.47)|24.68(18.03
steply+5 y+6 v+7 y+8
mape m-ape |mape m-ape |mape m-ape |mape |m-ape
mean [23.42| 17.47{22.85( 18.52(25.48) 18.56|25.34}21.23
MAPE AND M-APE VALUES OF MONTHLY FORECAST OF CPN
AT 4 STEP WITH ARCH. 28-56-28
steply+1 YV+2 y+3 y+4
mape m-ape |mape m-ape |mape m-ape |mape |[m-apeée
mean |[14.90 9.90(17.86| 13.18|19.23} 14.97,20.82|16.93
MAPE AND M-APE VALUES OF MONTHLY FORECAST OF CPN
AT 8 STEP WITH ARCH. 32-64-32
step|y+1 y+2 y+3 y+4
mape m-ape | mape m-ape | mape m-ape |mape |m-ape
mean [15.03| 10.27|17.32| 12.71|18.36| 13.74120.88117.86




step|y+5 y+6 v+7 v+8
mape m-ape | mape m-ape |mape m-ape |mape |m-ape
mean [22.01| 17.65(22.62| 18.04({23.71} 17.66|25.00}21.73
There are a number of factors, such as the learning

parameters,

procedure, that can affect

networks a lot.

neural network

structures and the training

the performance of neural

procedure and an appropriate network architecture,

network is capable of approximating the underlying pattern

of the time series and reproducing the underlying mapping

properly.

This thesis has just accomplished a small part of the

With a proper predetermined training
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a neural

utilization of neural networks for time series forecasting.

There is still much room for the researchers interested in

the time series prediction to investigate and explore the

potential of neural networks.

described as follows:

The future works may be

1. Employing some other neural networks, such as the

Hopfield net,

execute the experiments of time series forecasting

or decision making problems.

2. Evaluating the performance of neural networks with

recurrent networks and so on,

to

some other traditional prediction technigues.

3. Developing some other training procedures or

learning methods and applying to the neural networks



to compare the result with the existing training

algorithms.
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TEST RESULTS OF BPN WITH YEARLY DATA
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TABLE 3

YEARLY FORECAST OF BPN AT
1_STEP WITH ARCH. 2-2-1

series yv+1

mape m-ape
ser4 11.23 6.77
serl3 7.46 6.70
ser22 0.23 0.11
ser3l 9.22 6.36
ser40 4 .27 3.64
ser4?9 26.16) 25.21
serhb8 6.90 3.06
seré67 3.55 3.20
ser76 5.26 3.15
ser85s 3.86 2.62
serg4 2.73 0.91
serl03 1.44 1.02
serll?2 0.66 0.55
serl2l 2.76 2.28
serl30 10.66 9.58
serl39 6.96 6.00
serl4s8 5.62 3.29
serlS5”’ 11.74| 12.83
serl75 3.18 1.60
mean 6.52 5.20
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TABLE 4
MAPE AND M-APE VALUES OF YEARLY FORECAST OF BPN
AT 4_STEP WITH ARCH. 2-2-4

series|y+1 y+2 y+3 y+4

mape m-ape | mape m-ape | mape m-ape | mape m-ape
ser4 11.46) 11.23f 9.89; 10.03/11.59 9.02]13.29| 15.96
serl3 7.22 6.71| 7.45 8.16| 9.60 4.35(13.86| 14.24
ser22 0.28 0.13} 0.64 0.59| 1.17 1.14) 1.61 1.52
ser31l 9.09 6.24115.00f 15.03|16.96| 10.04| 8.25 7.77
ser40 4.83 2.18| 6.62 6.03| 7.51 6.59| 9.88| 11.03
ser49 |[26.61| 27.16|33.69| 35.33(30.29| 22.56{30.01| 32.15
ser58 [10.74 7.15(14.58] 12.18|21.11| 12.03|27.68| 28.36
ser85 3.78 3.30| 4.58 4.51( 5.50 3.49| 6.10 6.57
serll2| 1.08 0.83| 2.24 2.41} 3.73 3.22] 5.24 5.35
serl2l| 4.74 4.28( 8.56 8.43(12.45| 12.16|16.33| 16.17
serl57|11.11| 12.64|11.20| 14.03] 8.17 6.40] 4.12 4.64
mean 8.27 7.44110.40| 10.61|11.64 8.27112.40| 13.07
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TEST RESULTS OF BPN WITH QUARTERLY DATA

67



QUARTERLY FORECAST OF BPN AT

TABLE 5

1l _STEP WITH ARCH. 4-4-1
series v+1

mape m-ape
serl84 12.44 8.76
ser193 31.86 9.06
sex202 4.59 1.99
ser21ll 33.46f 29.22
ser220 33.77| 21.69
ser229 2.42 1.48
ser238 5.54 5.79
ser265 3.40 3.57
ser283 2.49 1.05
ser292 10.30 5.91
ser30l 2.56 2.00
ser310 1.30 1.11
ser319 3.35 2.63
ser328 3.51 2.35
ser337 3.62 1.98
ser34e6 16.93 5.74
ser355 2.74 2.57
ser364 2.38 2.63
ser382 27.371 29.17
mean 10.74 7.30
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TABLE 6

MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF BPN
AT 4 _STEP WITH ARCH. 4-4-4

series|{y+1 Y+2 y+3 y+4

mape m-ape |mape m-ape | mape m-ape | mape m-ape
serl84 8.99 4.68|12.53 8.85(112.68 7.85113.76( 14.58
serls93(25.21 7.42140.09| 39.89{45.05| 24.05|52.15] 55.35
ser202 3.81 2.74) 4.24 2.94| 4.84 1.97( 5.22 2.44
ser211|17.79| 15.56(23.04| 23.36120.95( 18.41|25.76| 22.67
ser220|27.22| 28.40(29.13| 31.53|26.09| 25.38|24.07} 18.73
ser229| 4.84 3.22| 3.88 3.12| 3.98 3.03 3.22 1.47
ser238 5.99 5.21{ 6.28 6.34; 7.03 6.94| 8.99) 10.68
ser265| 4.13 2.56| 7.65 8.23]11.82| 11.49]|15.75| 16.68
ser283 3.53 1.66| 5.82 5.55| 8.17 6.39110.52 10.85
ser292 8.87 4.70) 9.06 6.491 6.21 4.09) 6.62 4 .23
ser301| 3.69 2.93| 6.51 6.76| 8.09 7.47| 9.73 10.01
ser310| 3.83 3.61| 5.29 5.20] 6.81 6.50| 8.57 8.54
ser319| 4.36 4.161 6.19 6.47( 8.82 9.91|11.61| 13.74
ser328| 3.57 3.261 4.10 3.23¢ 4.33 3.73 3.87 2.66
ser337| 2.66 1.11}1 3.09 1.51) 3.71 1.65] 4.28 2.73
ser346|15.25 8.31121.86| 10.19|25.25| 10.16(31.45} 14.75
ser355( 3.07 2.55| 4.40 4.82| 5.45 4.28) 4.77 4.86
ser364| 2.98 2.75| 3.63 4.08) 4.61 4.17| 6.32 7.11
ser382(28.87( 29.64138.42| 36.15[(36.65| 40.18142.00| 52.81
mean 9.40 7.08(12.38] 11.30{13.19] 10.40115.19| 14.47




TABLE 7
QUARTERLY FORECAST OF BPN AT

1 STEP WITH ARCH. 8-8-1
series y+1

mape m-ape
serl84 11.43 8.63
serl93 42.08| 21.56
ser202 4.48 2.36
ser2l1l1l 34 .79 16.28
ser220 41.97 35.57
ser229 3.11 1.54
ser238 6.74 7.64
ser2e6b 3.88 2.66
ser283 2.49 1.11
ser292 9.73 4,73
ser301 2.71 2.20
ser310 1.36 1.15
ser319 3.48 3.14
ser328 3.07 2.14
ser337 4 .29 1.68
ser346 14.12 5.27
ser355 2.76 2.19
ser364 2.25 2.32
ser382 23.64| 24.98
mean 11.49 7.74
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TABLE 8

MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF BPN

AT 4 STEP WITH ARCH. 8-8-4

series|y+1 yv+2 v+3 y+4

mape m-ape |mape m-ape |mape m-ape | mape m-ape
serl84| 8.11 4.98| 9.69 8§.98(110.77 9.65(16.47| 16.51
ser202| 3.68 1.617 4.32 3.08| 5.03 2.41| 5.32 2.63
ser211|26.02| 19.94|16.42| 12.89({22.52| 13.67|16.56] 12.85
ser220(35.07| 27.06|36.347 35.85|43.14( 41.09|36.07| 34.30
ser229| 3.05 2.94] 3.20 2.16| 2.79 1.63] 2.02 1.78
sexr238 6.95 7.637 9.12 8.98|10.53 8.70[110.97] 13.16
ser265| 4.48 3.72| 8.33 9.11112.40| 11.66(14.47| 15.03
ser283|( 4.37 2.52) 6.41 6.22] 8.43 6.69110.62| 10.96
ser292 9.50 3.42| 6.20 2.63] 7.06 4.58| 5.25 4 .84
ser301| 4.51 3.94| 5.51 6.12] 7.26 6.69] 9.20 9.57
ser310; 5.43 5.20] 6.24 6.01| 7.08 6.79| 8.60 8.58
ser319| 5.03 4.68| 7.32 7.31f 9.46f 11.24111.83 13.45
ser328| 2.79 1.27 3.41 2.61] 3.69 2.47| 4.09 3.53
ser337| 2.94 1.42) 3.49 1.90) 4.16 2.71] 4.76 3.68
ser346|13.41 7.58115.60 8.29(22.50 9.33]31.00( 13.86
ser355| 6.34 4.79111.18} 12.51(12.82} 12.57(11.88] 12.06
ser364| 2.35 2.35| 3.14 2.55] 4.49 3.66|] 6.10 7.16
ser382(25.96| 25.18(33.75| 35.19}(36.73] 36.70(138.90}| 51.24
mean 9.44 7.24110.54 9.58:;12.83| 10.68|13.56] 13.07
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APPENDIX C

TEST RESULTS OF BPN WITH MONTHLY DATA
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TABLE 9

MONTHLY FORECAST OF BPN AT
1 STEP WITH ARCH. 12-12-1

series y+1

mape m-ape

ser3igl 14.92 8.19
ser400 10.26 7.85
ser409 31.22} 25.92
ser418 19.74} 20.40

ser427 8.60 7.10
ser436 1.54 1.40
ser445 18.32] 15.20
ser454 9.08 6.74

ser463 10.96 8.80
serd472 21.00| 13.28
ser481 28.31] 18.88
ser490 12.62 11.40

ser499 8.55 6.19
ser508 .79 4 .96
ser526 9.83 7.43
ser535 55.18{ 34.23
ser544 2.63 1.97

ser562 19.43 14.13
ser571 18.16 17.95

sers580 1.31 1.18
ser589 3.84 2.26
serb98 13.06 5.03
sere6lé 6.57 6.90

ser625 19.95} 13.32
ser634 22.84 16.45
sere643 16.92 7.38
ser652 16.35 9.53
seré661l 16.24 | 14.97
sexre70 28.81 27.64
ser678 16.34 13.78

ser688 9.03 3.53
ser697 3.00 3.13
ser706 7.75 7.35

ser715 50.20} 16.52
ser724 17.52| 15.06
ser733 23.65| 20.84

ser742 2.34 1.88
ser751 9.24 7.32
ser760 8.46 6.85
ser769 10.68 6.45
ser778 4,15 2.10
ser787 4.89 2.64



TABRLE 9 (Continued)
series y+1
mape m-ape
ser796 21.39) 19.46
ser805 1.30 1.35
ser814 0.86 0.54
ser823 0.68 0.47
ser832 0.95 0.86
ser841 11.26 7.95
ser850 5.52 4 .09
ser868 9.44 6.38
ser877 5.30 3.73
ser886 33.52 33.88
ser895 16.26| 14.95
ser904 4.63 2.18
ser913 36.60| 38.70
ser922 4.79 4.45
ser931 16.381 13.17
ser940 27.311 22.30
ser949 81.19} 80.12
ser958 8.08 5.95
ser9e67 6.64 4 .97
ser985 33.31f l1le6.34
ser994 10.59 9.64
mean 15.19 11.68
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TABLE 10

MAPE AND M-APE VALUES OF MONTHLY FORECAST OF BPN
AT 12 STEP WITH ARCH. 12-12-12

series|y+1 v+2 y+3 y+4

mape m-ape | mape m-ape |mape m-ape |mape |m-ape
ser4Q0| 9.17 8.03]11.16) 11.23]|12.27| 12.10}11.67|10.44
ser409)(22.91} 20.90)21.53) 15.223|17.29} 15.21(33.00(22.82
ser418(22.85| 21.51124.59| 23.57|15.31 8.43]15.21| 8.62
ser427 7.23 6.95| 5.98 8.63 8.82 4.69110.14 8.14
ser436| 2.87 2.47) 2.67 2.37 2.76 2.77} 3.74| 3.97
ser445|14.36 13.04(18.37| 16.91119.31} 19.37{12.95| 7.28
ser454(19.11) 13.91(23.65| 20.54(21.99| 19.68]21.94|21.90
ser463(18.72| 18.73119.41| 15.65|27.33| 25.72|20.34{14.98
serda72|22.65] 21.69(21.26} 12.96(23.68| 10.47{26.45(10.60
ser481(22.96 7.68|34.26| 19.82|45.04| 24.74138.89{27.57
ser490}14.28 11.33(14.01} 12.16114.08 12.28114.84|12.84
ser499|13.56| 12.55{12.32| 11.43|13.69} 14.17|14.46{17.69
ser5081(14.45) 15.22(115.48) 16.56315.55) 16.60)12.81(12.81
ser526|10.71 7.16(12.28 9.75|17.65} 17.53|14.42|13.04
ser544 | 4.65 3.20) 6.25 4.84| 6.59 4.96| 6.64 6.27
ser562|43.56) 23.80/50.24| 33.60[39.01) 28.92{40.80(30.38
ser571/19.45) 18.51{21.46| 21.83{17.50| 17.33{20.61|20.38
ser580! 1.40 1.28{ 1.88 1.82| 2.57 2.731 2.97| 3.29
ser589| 5.22 2.774 7.38 €.15| 8.33 7.60! 9.30]10.67
ser598(11.23 5.38111.10 6.64]113.96 8.22]14 .86 8.27
serele| 7.64 7.04| 7.12 5.55} 6.67 5.37( 7.95] 8.78
ser634(13.84 12.17]113.91| 11.02}20.66 15.66118.48(10.90
ser643)18.32] 10.45|21.41] 18.85(21.03( 11.65{18.90112.01
ser652(16.31 7.58{16.57 7.19/18.84| 10.63[/20.54(19.24
ser661/15.481 10.00/17.331 13.97(20.36] 19.33}22.34]14.64
ser670]33.94| 32.90{24.72} 13.97)132.92| 26.67[40.30(36.93
ser679143.30] 22.90|45.96} 24.80{37.19| 21.05(30.04[18.04
ser688]10.21 6.86{12.48 7.94111.92 7.91(|15.62 7.10
ser697| 2.96 2.34| 4.50 4.88| 2.03 1.63( 2.891 2.99
ser706} 3.11 2.851 3.39 2.30}f 3.97 3.38( 4.16| 2.97
sexr715{61.32 9.21/64.54] 21.17{56.47| 19.77]64.80136.32
ser724118.19| 14.05{21.54} 19.13119.62| 14.22)|20.41(14.26
ser733}117.51 6.92116.99 8.75|16.83 8.65116.48| 7.38
sexr742] 2.65 1.60}| 2.97 2.44| 3.28 2.70{ 3.07| 2.62
ser751| 8.40 6.53( 7.60 9.20| 7.29 6.97| 8.47| 7.14
ser760111.24 $9.99/11.48 10.14}| 9.95 7.49) 9.98| 8.80
ser769| 8.41 4.08| 9.58 7.37110.57 9.54) $.32| 7.19%
ser787| 6.82 5.80} 6.02 4.53| 6.57 4.10} 8.24| 8.63
ser796|15.87| 10.51})16.17| 14.31|17.62 13.13]17.49(12.62
serg805; 1.76 1.72) 2.93 2.90) 4.02 3.95( 5.29| 5.36
ser823 0.85 0.79 0.97 0.81;{ 1.09 0.74 1.23 0.97
ser832| 4.90 4.58| 5.49 5.07| 6.36 5.77| 7.15| 6.52




TABLE 10 (Continued)

series|y+1 y+2 y+3 y+4

mape m-ape |mape m-ape | mape m-ape |mape |m-ape
ser877| 3.72 2.89) 4.34 2.70( 4.23 3.49| 3.92| 2.33
ser904| 5.67 4.04| 9.07 7.58| 5.59 3.92| 7.45) 6.42
ser913|30.45| 10.95(138.21}| 33.77141.60} 39.04(|41.77}47.69
ser922| 5.31 4.95| 6.66 7.33( 7.80 7.49| 8.35] 8.20
ser958|23.31] 24.12|24.64| 26.24|17.60| 14.78| 9.06| 5.54
ser967(15.65} 10.16(20.19| 15.84|26.09| 21.40]32.55(38.65
mean |14.76} 10.08|16.17| 12.11{16.27| 12.17;16.71113.26
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TABLE 10 (Continued)

series|y+5 y+6 v+7 y+8

mape m-ape jmape m-ape |mape m-ape |mape |m-ape

ser400| 9.95 8.23] 9.45 8.36} 9.85| 10.30; 7.28| 7.68
ser409(46.97| 30.44{20.78{ 21.23113.03 8.08119.1414.19
ser418{15.92( 14.56}111.49 7.79118.84) 14.83(20.89|17.67
ser427110.71 8.63|11.16 9.46]10.86| 10.29} 6.54| 5.54
ser436) 5.06 5.46| 5.96 6.20] 6.89 7.08} 6.63; 6.63
ser445|16.61) 14.85}25.38| 25.47|24.30( 21.60|17.48116.71
ser454(18.54 ) 13.11120.40| 18.57]19.43 9.08|18.64;19.92
ser463(22.03] 18.76]30.78| 30.69{19.39 16.42|18.01(10.26
ser472{27.09] 18.04119.22} 13.70}113.98 9.91711.81{10.11
ser481({27.59) 11.28{52.84| 32.71}47.00| 33.14|32.18[24.04
ser490|14.60] 17.17]14.74| 14.22(|13.69} 13.78(|11.22(10.21
ser499(17.28| 18.17118.34( 21.74]16.43| 17.28{19.81(22.40
ser508|(12.24} 11.37111.55| 11.94|13.38| 12.48|11.38| 9.76
ser526|(16.22| 15.04(16.35{ 15.74(12.75| 10.17{10.48,10.37
ser544| 6.68 5.461 6.65 5.48| 6.21 4.11} 5.70} 5.38
ser562(40.73| 34.73]46.62) 35.85(34.46| 23.593131.32(32.23
ser571/16.20| 15.01,15.68}| 14.44|16.20| 14.14(17.35|14.54
ser580| 3.37 3.50] 4.36 4.16| 4.81 4.18¢ 5.05| 5.62
ser589|10.66| 12.90(11.632| 12.43[12.07| 10.05(12.67| 8.36
ser598(15.99 9.84(15.67} 12.66(19.47| 11.31{20.11}|18.3¢6
ser6le| 7.27 7.20( 7.51 6.42| 7.06 4.861 7.05| 6.74
ser634116.30 8.29119.83; 20.03(11.69 8.75120.37(|24.07
ser643({14.70 9.08)22.39| 23.89(10.41 6.90115.07115.36
ser652|17.72| 14.59(16.76} 15.47(25.18| 22.91}27.2325.40
ser661[25.321 14.49123.94| 18.79{20.30| 19.10{14.25|14.48
ser670|32.24| 26.83{32.45| 29.56|33.82| 28.68(41.82139.80
ser679(13.62 8.49120.26| 12.64}12.13 9.03]34.39(32.81
seré688(22.21 6.97(117.67 5.54{13.97 7.60114.21| 8.87
ser697| 2.16 2.03| 2.78 2.33| 2.30 1.83] 3.51| 3.81
ser706| 5.55 4.62| 6.80 6.63] 6.65 6.14| 8.57] 7.45
ser715(61.27| 16.05(65.96| 18.11}168.91| 16.67|72.52{17.09
ser724122.35| 17.93(22.73| 19.64{21.78} 14.98(21.51{20.01

ser733(16.06 7.50(|16.64 5.90118.82 5.27117.75| 8.46
ser742| 3.76 3.29| 3.4¢6 3.11} 3.15 2.01) 3.16} 2.85
ser751| 8.57 7.49) 9.42 9.23) 9.55 9.64710.90] 8.64
ser760/10.19 7.61/11.26 9.42| 8.67] 10.99[12.80|14.06
ser769| 9.80 9.34]12.38} 11.51|15.82] 15.32|11.66(10.34
ser787|14.01| 13.81|10.09| 10.38| 8.59 7.64| 8.55| 6.92
ser796|31.68| 24.91|16.61} 13.92({17.33| 14.20119.30| 7.82
ser805| 6.33 6€.631 7.18 6€.89| 8.08 8.16] 8.97| 8.71
serg823| 1.31 1.18) 1.39 1.34) 1.29 0.75] 1.19| 1.24
ser832| 7.95 7.19| 8.99 8.79] 9.87 9.56110.36110.42
ser877| 3.80 2.76; 3.31 2.77] 2.94 2.39; 3.85| 3.15
ser904| 4.97 2.47] 5.02 2.72| 6.28 3.45| 5.13} 2.60
ser913/43.98| 46.72|54.49| 60.28(65.46| 70.11{73.73]76.47



TABLE 10 (Continued)
series|y+5 y+6 y+7 y+8
mape m-ape | mape m-ape | mape m-ape [mape |m-ape
ser922|10.44| 11.25(14.15} 13.51{19.03| 17.72|24.06|26.18
ser958|( 8.63 3.09| 7.77 5.09f 6.90 5.51{18.64{21.23
ser967|33.51| 37.49|34.92| 39.72(37.00| 31.88{36.96|30.49
mean |[16.87| 12.83(17.60f 14.72}16.79| 13.01(17.74|15.11
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TABLE 10 (Continued)

series|y+9 y+10 y+11 y+12

mape m-ape | mape m-ape | mape m-ape [mape |[m-ape
ser400/]10.29 8.47] 8.16 7.36111.04 7.83 9.391 8.17
ser409(26.98( 17.96}22.58| 23.10{13.97{ 13.41}114.79|15.21
ser418(15.69 13.07(16.60| 13.48{19.95 9.49)14.76 9.40
ser427] 9.35 8.73f 5.17 4.44} 4.57 3.68| 2.88| 2.8¢6
ser436|{ 7.47 7.30) 8.13 8.63} 8.18 7.43) 8.13} 7.85
ser445)21.62; 22.45(125.46| 25.02(28.02| 31.14|22.5423.72
ser454(18.90| 15.66(16.56| 22.49(19.74| 22.40(17.90{22.87
ser463(19.69| 12.93|23.27| 19.94/16.16} 17.15[18.35}20.16
ser472({29.34| 30.06]14.99] 13.00{13.56 5.29114.61| 6.96
ser481119.31| 13.55(35.56| 35.46[25.91| 18.13]30.32|26.08
ser4390}10.20 12.63110.00} 12.77| 6.46 4.46 5.17 5.34
ser499(20.85] 23.09(20.44] 20.39|24.60| 24.58]23.78]21.98
ser508{14.03] 14.40115.49] 15.56}13.34| 13.12114.45(|13.59
ser526|[10.96 10.57| 9.83 10.86(14.47| 14.62 8.86 9.57
ser544| 5.43 4.73( 5.31 5.45}( 5.37 3.88} 5.50| 6.65
ser562|43.50] 34.52({28.28| 28.89)23.95| 20.46,22.14112.86
ser571(17.19 12.91{12.344{ 10.84) 7.12 5.15] 8.31 8.63
sexr580| 6.04 6.01} 6.78 6.90| 6.40 5.80( 6.71( 7.45
ser589(12.67 8.12(13.20| 16.72}15.08| 16.33(17.86|20.87
ser598|21.46| 18.43|23.63| 23.87|26.50( 23.74(29.67{26.37
ser6le| 7.71 7.26] 7.62 6.12}( 7.18 4,72}y 7.36| 7.15
ser634|22.53| 25.60(24.25| 26.71121.69| 21.86]21.58(22.49
sere43(14.71 11.90117.11}| 16.04 9.21 4.75] 6.13 3.70
ser652|15.88 13.36(23.07| 22.34]16.88 3.66{21.01|20.55
ser661[21.53} 20.39] 6.62 7.70116.99| 18.60]17.85}13.73
ser670]40.83| 37.14/42.63] 34.80(41.80{ 31.83[45.25|40.73
ser679133.99] 34.08|20.94| 21.43134.99| 34.72{44.92144.70
serée88|11.35 7.96110.67 7.42 7.03 4.211 6.98 5.52
ser697| 3.35 3.36| 2.64 2.551 2.85 3.54) 2.94| 3.30
ser706 8.74 7.91| 9.52| 10.61}10.35] 11.17|10.77}11.95
ser715|75.10| 29.85|80.33| 25.31|82.88 7.60[192.38111.66
ser724|23.72| 20.05|14.94| 15.02|16.97| 17.18|17.05{15.08
ser733(19.25 9.57|20.83| 11.96121.58 7.17124.00{15.77
ser742| 2.78 1.22( 2.87 2.50} 2.87 1.86| 3.04; 2.05
ser751} 9.27 7.261 8.01 5.58| 7.74 4 .51| 7.30] 6.21
ser760(11.25 8.39| 8.87 7.87| 8.45 7.48| 8.24| 7.12
ser769)15.40| 12.57]14.83| 12.50| 9.35 6.59111.17]11.59
ser787| 7.89 5.09| 7.83 4.56f 9.60 6.251 6.29) 7.11
ser796|17.94] 11.33(19.76| 16.83|26.31| 23.16|15.90 11.61
ser805110.00 9.52|11.16| 10.95(11.87| 11.92{12.48(12.23
ser823 1.06 0.75] 1.00 .65} 1.19 0.80 1.35 1.25
serg832/11.08] 11.22{11.91f 12.19/12.80| 12.52 13.78(113.70
ser877| 2.87 2.601 4.95 3.18] 2.85 1.49) 3.74| 1.55
sexr904 2.87 2.221 2.23 2.471 1.85 0.7 2.22 2.83
ser913|75.36| 75.22(73.59| 72.58|77.23| 76.04 75.36|76.92



TABLE 10 (Continued)

series|y+9 v+10 y+11 y+12

mape m-ape |mape m-ape | mape m-ape |mape |m-ape

ser922|20.94| 20.03|26.60| 25.67132.70} 30.20(|32.5934.78
ser958| 9.73 8.56(12.99| 10.33{14.88| 12.56]13.28,12.28
ser967|34.75] 26.98(39.39| 40.44(36.53| 36.94137.25[36.17

mean (18.18( 15.16}17.67| 15.86|17.72| 14.00(17.8815.21




TABLE 11

MONTHLY FORECAST OF BPN AT
1 _STEP WITH ARCH. 24-24-1

series y+1

mape m-ape
sexr400 8.04 6.76
ser409 28.34 23.78
ser41l8 23.17 21.02
serd27 8.75 7.15
ser4d436 2.05 1.81
ser445 16.22) 17.1¢6
ser454 10.66 10.00
ser463 20.38 14.94
serd72 12.21 9.37
serd481 44 .31 35.26
ser490 10.95} 11.87
ser4 99 9.05 7.96
ser508 6.55 4.47
ser526 12.87 9.23
serb44 4,71 3.16
ser562 64.22] 53.03
ser571 6.64 2.89
ser580 3.37 2.83
ser589 8.09 6.08
ser598 10.84 3.75
ser6lo 5.96 4,50
ser634 22.23 14 .73
seré643 18.54 7.28

ser652 15.83 16.58
ser6el 20.34| 19.34
ser670 22.90| 16.91
ser679 37.601 41.17
ser688 11.06 7.87
ser697 3.20 2.98
sexr706 10.73 11.45
ser715 57.52 33.95
ser724 18.87}1 12.13
ser733 17.19| 10.00
ser742 2.57 2.28
ser751 11.84 10.77
ser760 7.85 6.86
sexr769 7.99 4 .47
sexr787 4 .23 2.27
ser796 16.36] 18.58
ser805 1.06 1.08
ser823 0.65 0.41
ser832 0.98 0.88




TABRLE 11 (Continued)

series y+1

mape m-ape
sexr877 6.48 6.03
sexr904 4.82 2.74
ser91l3 58.25( 57.25
sexr9822 4.74 4.62

ser949 34 .36| 35.16
sexr958 12.22 10.82
sexr967 21.11)] 16.53

mean 15.69 12.90




TABLE 12

MAPE AND M-APE VALUES OF MONTHLY FORECAST OF BPN
AT 12 STEP WITH ARCH. 24-24-12

series|y+1 y+2 v+3 y+4

mape m-ape | mape m-ape |mape m-ape| mape |[m-ape
ser400; 9.80 8.66(10.82| 10.01(10.19 9.75}| 12.12}10.60
ser409{17.99! 14.51)18.47] 18.67)16.88| 15.20| 62.53150.62
ser418,20.88| 18.90(22.58| 21.68|18.93| 12.58| 18.12{10.19
ser427| 9.21 8.41] 8.52 6.57) 7.29 5.91 9.51} 7.31
ser436| 2.18 1.53] 2.61 2.37( 2.97 2.57 3.49] 3.74
ser445(14.07) 14.65|13.01 8.71|26.11] 26.22| 23.91(22.66
ser454)11.37 7.92|22.71| 20.23(22.32| 22.31| 14.62|11.67
ser463{18.82| 15.28|26.05{ 26.29]24.03] 20.09| 28.19{30.795
ser472|20.97] 16.11]16.14| 12.45{17.09| 14.83| 17.27} 7.54
ser481|24.62| 15.26|32.55| 17.56{19.89| 10.70| 21.52/10.49
ger490i12.32{ 10.05{12.34} 12.57{13.76| 10.72} 13.80]10.96
ser499{16.63| 16.91|18.15] 18.72|16.61] 16.53| 13.55|14.68
ser508]10.02 9.88113.91| 14.11}10.83 9.22 8§.82) 9.27
ser526,12.58 9.90{18.86 13.74(19.87| 11.72| 16.5310.86
ser544113.08] 15.17(13.27] 14.94|12.95} 12.93 6.36] 6.08
ser562{47.46| 28.33(32.34| 29.05|53.37| 37.00| 47.86(|59.31
ser571{17.64{ 16.37|19.08} 18.01|14.63 14.27| 16.80i15.67
ser598| 9.97 6.32(11.00 7.42{14 .46 7.07] 12.42] 6.99
ser6l6] 6.76 5.01} 7.11 5.75} 6.52 5.22 7.25| 4.06
ser634/18.17| 15.89{16.49} 11.86116.13| 14.30} 17.25]12.06
ser643/18.74| 11.41(20.47| 15.17119.53( 13.78{ 17.64]15.16
ser652]|18.69] 16.38{12.61} 12.15)(15.54| 14.15| 19.02}121.60
ser661({29.70| 27.13[31.31| 29.06}27.44| 20.62| 23.51}21.28
ser670133.87| 33.28(35.02| 35.6635.95| 36.17| 37.93|34.92
ser679|78.58] 61.68/61.03| 52.11[50.85| 42.80| 44.37(43.19
ser688i17.41 7.93124.26| 14.93(22.00 9.16 22.68) 7.73
seré97} 6.04 6.18( 7.32 6.94! 6.64 7.69 £.421 6.76
ser706| 3.35 1.631 4.71 4.15) 2.52 1.78 3.03 2.19
ser715!53.96| 11.25(59.97| 39.32|67.71| 18.91| 58.20!16.04
ser724122.03| 18.67(22.49| 18.77{22.41| 13.77| 25.29121.16
ser733|16.94 8.73|17.18| 12.40}16.37 6.10} 15.55] 7.20
ser742} 4.52 4.16( 4.88 4.76( 4.08 3.44 4,15} 4.36
ser751] 6.03 5.31} 6.90 6.47] 8.69 8.08 7.15| 6.86
ser760| 8.37 7.10) 8.00 6£.66| 8.42 6.61 7.26) 6.90
ser769|11.29 6.98/11.75| 11.40|14.42| 13.02| 10.94} 8.71
ser787| 6.089 3.87{ 5.23 3.70) 7.22 3.62 7.47) 5.17
ser796|12.93 7.38}12.81 7.76112.02 7.10| 12.09] 8.51
ser805| 3.88 4.25( 4.56 4.72| 7.16 7.51 7.20( 7.07
ser823| 1.37 1.48| 1.26 1.33] 1.31 1.28 1.03] 1.06
ser832| 5.74 5.19{ 6.06 5.40| 6.92 6.24 7.70( 7.02
ser877| 4.74 4.17| 5.40 4.30| 4.49 3.10 4a.72| 3.56




TABLE 12 (Continued)
series|y+1 Y+2 y+3 y+4
mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser904 | 4.85 2.73( 4.75 3.25| 4.72 2.01 4.48{ 2.37
ser922| 6.60 5.44110.74 8.93119.09| 17.44| 12.36112.18
mean |[16.05| 12.03{16.62| 13.72|16.98| 12.64}| 17.03|13.64
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TABLE 12 (Continued)

series|y+5 yv+6 y+7 y+8

mape m-ape | mape m-ape [ mape m-ape| mape |m-ape
serd400|{13.8¢6 11.38111.89 9.40110.67 9.34 8.48 9.30
ser409(20.48 17.54116.52 13.22118.12 11.72 26.30]|18.089
ser418(12.63 8.43117.07} 16.40}21.29| 18.19| 21.05(23.65
sexrd427 7.33 4.06) 8.91 7.83 7.01 5.46 7.901 7.71
serd436 4.11 4.13 5.03 4 .99 5.51 5.02 5.54 5.73
ser445|18.90| 19.60|21.83) 21.97|27.52| 29.€8| 21.29|22.62
sexr454(17.69 14.18127.46| 29.22]20.31} 20.37 17.63117.60
ser463(24.71) 15.27121.07{ 17.19|37.94 18.33 31.09|15.4¢6
serd72(21.67 12.23123.24] 21.8216.19} 17.14 22.63120.33
ser481120.22 10.64123.43 11.13117.57| 11.28 19.77|17.52
ser4950(12.72 11.45|111.41 9.72110.61 9.62 9.40 9.16
ser499|18.42 17.99{18.50| 22.17]19.56] 21.06 24.59129.00
ser508}11.17 9.45[12.23 12.56112.09 11.12 16.64115.62
sers526(12.92 8.51116.98 12.10}115.49 10.18 9.82 8.15
ser544) 4.96 3.76| 5.30 4.80| 4.88 4.23 4.80| 3.76
serbe62{72.76 66.24191.05| 84.81(69.71| 66.76} 44.03(29.40
sers571(19.31 16.53/17.40) 14.74|19.53 17.29 19.65|15.16
ser598|12.49 4.63|14.50 8.99]19.16 11.22 18.30]16.50
ser6l6 7.88 7.81)] 7.49 6.21f 7.08 6.33 7.84 8.16
ser634(16.04 10.81(21.27| 18.65|20.10 18.20 15.67]14.71
ser643{12.598 7.97123.89) 22.49(19.22 18.88 14.82]12.90
ser652|16.88 15.13129.58| 31.50/23.95| 20.08} 23.08}120.33
ser661(20.15 18.67116.81f 13.95}15.09 10.36 16.77}13.50
ser670!35.59) 34.60|35.50| 34.33(38.74 37.77| 36.57{35.51
ser679(36.32| 32.80(28.72| 33.64119.07} 21.98 15.77115.48
ser688,17.81 5.76120.12 12.20(22.93 5.58 21.80 8.22
sexre97 6.58 7.07| 6.44 7.55( 5.61 5.83 4.99| 5.74
ser706| 4.07 3.00| 6.45 7.68 6.99 6.56 7.55| 8.03
ser715({43.38 27.35(80.35 85.45|69.68 81.68 71.77175.13
ser724({23.80 16.70123.83}| 22.27123.13 14.80 23.31124.02
ser733(14.56 7.08117.54| 12.27(18.76 5.64 18.75 9.10
ser742 3.56 3.29} 4.4°9 4 .51 3.08 2.54 3.57 3.37
ser751(10.78 106.46(10.57 8.68 9.76 7.25 8.55 8.68
ser760 8.43 6.47| 9.26 8.08 9.44 8.18 8.95 8.71
ser769,10.29 7.77 7.45 6.60110.31 7.95 9.45 8.46
ser787| 7.84 5.81| 7.9%94 6.61| 7.95 6.16 5.55| 4.40
ser796{13.33 6.27]112.09 8.89]16.20 11.65 11.68 7.22
ser805 7.53 7.79( 8.18 7.74 9.31 9.40 9.97 9.64
sexr823 0.84 0.92| 0.80 0.74 0.66 0.39 0.69 0.66
ser832 8.55 7.66| 8.90 8.61 9.83 9.48 10.50{10.55
sexr877{ 6.64 6.81! 7.55 7.20] 2.%91 2.70 4.55| 3.72
ser904| 4.19 1.71| 4.39 1.66| 3.77 1.15 5.04| 3.12
ser922i12.40 11.80/18.50| 18.76{15.95| 15.48} 21.00 20.71
mean |15.73| 12.27(18.18]| 16.73|17.28| 14.77| 16.44|14.53
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TABLE 12 (Continued)

seriesjy+9 yv+10 y+11 y+12

mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser400 8.86 6.38 8.88 8.76111.35 9.13 15.36115.95
serd408{24.76 13.57134.06 28.8024.82 14 .32 28.02({27.05
ser418)18.75 15.05}119.71 18.81120.82 15.52 19.53113.31
serd427 4.18 1.59 7.96 8.62 5.96 3.53 2.90 2.84
serd 36 6.26 6.00 6.80 £.69 7.27 7.00 7.42 7 .34
ser445}156.13 58.60(33.99 35.09(29.88 29.27 40.44143.14
ser454120.16 17.03119.73 20.89117.57 20.58 17.45(122.07
ser463132.74 11.45140.84 20.96114.77 9.37 30.22(32.96
ser4d72 9.78 7.27124.19 17.93125.54 17.19 23.03118.05
ser481{20.39 11.33128.68 21.19}33.26 28.68 43,73143.92
ser490}110.29 5.59 9.51 9.80 5.98 3.86 4 .88 3.66
ser499(21.35 24.21124.97 26.85(22.57 22.77 23.00(21.17
ser508(15.52 16.37114.43 15.98113.52 13.46 14.19{13.50
ser526 9.37 6.87116.25 13.38{13.07 8.22 12.86111.59
serb44 5.74 5.63 6.12 4.68 5.62 4 .26 5.53 6.60
ser562123.92 14.88(44.12 33.131}162.93 64 .94 65.1471.27
ser571]16.32 12.11110.54 9.82 8.61 6.00 8.27 8.14
sers598|17.71 15.62114.59 10.73126.19 23.17 28.50}122.80
serélé 7.49 5.54 7.39 6.20 7.16 4 .73 7.24 6.03
ser634121.23 15.86116.55 15.42|15.81 17.52 18.59(117.93
ser643/13.19 8.46 7.88 6.93 7.11 6.56 3.90 3.18
ser652138.81 45.03128.90 28.56145.56 44,77 31.561}125.15
ser661)16.22 12.87116.08 12.68116.75 16.67 25.46127.00
ser670139.92 38.38148.47 47.81141.43 3B.66 43 .42136.56
ser679 9.56 5.00141.09) 41.28|50.07 45 .67 56.72|58.24
ser688]15.58 10.55 9.24 6.51 6.66 4.09 7.82 7.90
ser697 4 .57 4 .43 3.61 3.63 2.74 1.72 4.43 5.15
ser706 7.01 7.15 7.87 9.27 9.70 10.59 9.43|10.54
ser715(80.81 89.14(75.41 82.42{88.20 38.17 86.51)126.55
ser724121.02 18.88114.21 9.49116.12 13.76 16.57|15.76
ser733|17.36 6.78|19.24 12.52{23.80 g.34 24.53|18.89
ser742 3.68 2.45 2.74 0.75 2.79 2.01 3.20 2.63
ser751 8.04 6.12110.75 9.25 6.16 3.12 6.57 6.68
ser760 7.81 4.72 6.81 4 .57 6.43 5.53 7.35 6.66
ser769(11.87 9.25]19.89] 18.60(10.88 7.17 16.36115.13
ser787] 8.64 6.26113.86| 14.31| 9.35 6.39 10.44110.21
ser796113.62 9.01(11.86 8.97(15.28 6.90 18.07111.67
ser805i10.74 10.23111.46 11.23111.897 12.06 12.16411.89
ser823 0.83 0.52 1.10 0.90 0.96 0.67 1.06 1.04
ser832(11.22 11.361]12.04 12.31112.84 12.56 13.80(13.72
sers877]| 7.61 6.46| 4.43| 4.21| 6.12 6.19 8.23| 6.78
ser904)10.12 9.76| 2.21| 2.28) 2.26 1.79| 2.24] 2.96
ser922(22.37 21.65}113.71 13.12}20.39 18.16 22.35121.89
mean |17.02| 14.32(17.96| 16.17|18.35| 14.79| 19.73|17.80
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APPENDIX D

TEST RESULTS OF CPN WITH YEARLY DATA
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TABLE 13

YEARLY FORECAST OF CPN AT
1_STEP WITH ARCH. 3-6-3

series yv+1

mape m-ape
ser4 15.49} 13.24
serl3 11.95 8.91
ser2?2 0.23 0.14
ser3l 9.07 6.36
ser4d0 4 .12 3.43
ser4?9 29.38| 29.97
sers8 6.11 2.90
sexre7 3.47 2.42
ser76 6.22 5.38
ser85 3.05 1.55
ser94 6.87 7.83
serl03 1.41 0.99
sexrll2 1.08 1.03
serl2l 2.02 1.69
serl130 12.04 11.40
serl39 8.93 8.09
serl48 6.27 5.77
serl1l57 9.30 3.54
serl75 3.71 1.88
mean 7.41 6.13
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TABLE 14
MAPE AND M-APE VALUES OF YEARLY FORECAST OF CPN
AT 4 _STEP WITH ARCH. 6-12-6

series|y+1 y+2 y+3 y+4

mape m-ape | mape m-ape |mape m-ape | mape m-ape
ser4 35.52| 29.39|53.09| 47.92|63.76| 53.10/67.84| 56.06
serll3 |42.06| 38.90|45.42| 46.65(61.18| 59.82143.42| 40.43
ser22 0.32 0.29¢{ 0.33 0.28) 0.25 0.201 0.31 0.22
ser3l 9.04 5.00{13.48| 12.69(16.98| 16.33|11.50| 12.63
ser40 4.16 3.51} 5.07 5.03| 2.16 0.85] 4.88 5.20
ser49 |25.66| 21.15|34.27| 32.62|31.28| 24.77|35.32| 35.69
ser58 110.47 6.21111.99 9.08|14.67 5.77117.87) 17.53
ser85 3.88 1.68112.91| 14.35(19.76| 16.26{26.53| 25.85
serll2y 0.97 0.86) 1.32 1.22| 1.58 1.16f 1.97 2.10
serl2l| 0.98 0.52| 1.89 1.84] 3.26 3.08| 5.76 5.87
serl57/10.74 5.97113.63, 12.84]11.41 7.76] 5.86 8.82
mean |13.07) 10.32}17.58| 16.77}|20.57| 17.19{20.48| 19.13




APPENDIX E

TEST RESULTS CF CPN WITH QUARTERLY DATA
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TABLE 15

QUARTERLY FORECAST OF CPN AT
1_STEP WITH ARCH. 5-10-5

series y+1
mape m-ape
serl84 18.52 13.51
serl93 22.62 21.39
ser202 3.04 2.10
ser2ll 17.04] 15.35
ser220 30.17 16.88
ser229 14.45 8.63
ser238 5.29 3.19
ser265 2.59 2.75
ser283 2.40 1.14
ser292 21.53 8.87
ser301 1.66 1.12
sexr310 0.87 0.76
ser319 3.62 3.29
ser328 3.63 2.47
ser337 10.12| 11.40
ser346 16.12 7.57
ser355 2.55 1.83
ser364 1.40 .72
ser382 20.53| 23.08
mean 10.43 7.69
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TABLE 16

MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF CPN
AT 4_STEP WITH ARCH. 8-16-8

series|y+1 y+2 v+3 yv+4

mape m-ape | mape m-ape | mape m-ape |mape m-ape
serl84|16.59| 15.09{17.60} 11.18;25.68 18.73(10.72| 12.68
serl9324.74| 24.88|35.55} 14.41144.83| 26.18]65.07| 42.67
ser202| 2.97 1.96{ 5.88 4.35] 7.55 3.34] 7.00 2.38
ser211|35.20} 34.94(36.37| 25.66|38.94| 25.78|24.66| 28.28
ser220127.41 8.72]38.97| 26.71125.44 3.83}135.89| 24.92
ser229i16.20| 12.68|13.55| 10.84|16.60| 14.72| 6.34 6.85
ser238! 4.29 1.60| 7.81 6.16/11.04 3.74¢ 9.41| 12.13
ser265| 2.96 1.67} 2.88 2.12| 2.25 0.74f 3.64 2.72
ser283| 2.20 0.93} 4.08 4.07] 6.38 4.70( 8.39 8.75
ser292(18.80 9.21}111.19 6.09119.59| 12.86| 8.28 2.70
ser301| 1.82 1.33}) 2.89 3.23) 5.22 4.65| 5.68 6.03
ser310| 1.35 1.24¢ 2.77 2.69) 3.19 3.02¢ 4.38 4.31
ser319| 2.96 2.491 5.03 4.80] 8.24 9.72| 9.76| 11.52
ser328| 3.31 2.91| 2.71 1.10| 3.89 1.93)] 5.38 5.93
ser337| 8.79 6.70| 2.89 1.62] 9.60 7.96) 3.72 2.27
ser346|11.71 7.57116.49| 11.15(18.59| 16.75}{23.52| 12.95
ser35h5| 5.43 5.82| 8.69 9.19] 7.47 7.28} 5.75 7.55
ser364| 1.32 0.61}| 2.28 2.00| 4.37 2.69| 6.16 6.08
ser382(23.33| 20.80142.63) 36.47(43.10| 47.29|42.90| 54.32
mean [11.13 8.69]13.70 9.68}15.89] 11.36(15.09| 13.42




QUARTERLY FORECAST OF CPN AT

TABLE 17

1 _STEP WITH ARCH.9-18-9

series y+1
mape m-ape
serl84 15.70 10.82
serl93 24 .56 23.77
ser202 3.16 1.95
ser2ll l6.62 7.98
ser220 28.14 16.72
ser229 15.36| 11.34
ser238 5.11 2.45
ser265 3.38 3.28
ser283 2.06 0.79
ser292 14.8%81 10.73
ser301 1.42 0.84
ser310 1.45 1.34
ser319 3.94 4 .24
ser328 3.31 3.56
ser337 8.68| 10.01
ser346 12.72 7.64
ser355 4 .57 4.76
ser364 1.27 0.52
ser382 20.231 16.33
mean 9.82 7.32
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TABLE 18
MAPE AND M-APE VALUES OF QUARTERLY FORECAST OF CPN
AT 4 STEP WITH ARCH. 12-24-12

series|y+1 y+2 v+3 y+4

mape m-ape | mape m-ape | mape m-ape | mape m-ape
serl84|23.04| 16.24(14.93} 10.18|19.92| 16.23120.15) 21.92
ser202) 2.94 2.38] 5.11 3.32| 6.40 4.39] 6.99 2.36
ser211{18.13 13.82124.98| 25.74|31.00 23.07({25.66 32.03
ser220128.15| 13.12|36.83] 29.43]126.39 5.73{35.70| 26.67
ser229113.28 3.48]11.65 1.96120.13 10.88 1.43 1.69
ser238| 5.12 2.75| 6.12 5.66{ 9.08 5.55{10.03 11.91
ser265 3.52 3.08 6.77 6.63 9.72 8.79112.19 12.78
ser283 2.66 1.40] 5.02 5.01 7.36 5.69[110.03 10.38
ser292(15.67| 10.41| 7.84 6.85122.36| 15.39} 7.81 7.089
ser301! 2.10 1.71] 3.25 3.73| 6.03 5.46( 7.90 8.25
sexr310 1.18 1.08} 2.36 2.28| 3.589 3.82) 4.53 4 .47
ser319| 3.35 2.73] 4.72 4.86; 6.83 7.55] 7.31 8.87
ser328| 3.29 3.36] 3.68 2.42| 4.95 3.95| 7.90) 10.00
ser337/10.50 8.17| 4.35 3.44111.26 9.98]| 4.67 3.37
ser346|17.14 8.19!26.09| 10.22{46.72| 27.71;72.14}| 53.80
ser355( 4.70 5.511 8.06 8.56( 7.61 7.42| 4.89 5.78
ser364| 1.16 0.63] 2.34 2.071 3.74 2.07y 5.79%9 5.70
ser382]18.65| 11.34(34.32| 24.40[40.54| 41.95(39.94| 45.69
mean 5.70 6.08111.58 8.71115.78} 11.42]15.84 15.15
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APPENDIX F

TEST RESULTS OF CPN WITH MONTHLY DATA

95



TABLE 19

MONTHLY FORECAST OF CPN AT
1_STEP WITH ARCH. 13-26-13

series y+1

mape m-ape
ser39l 20.47) 12.28
ser400 7.30 5.97
ser409 30.96 24 .78
ser4l8 22.761 16.53
serd 27 11.14 10.87
ser436 1.76 1.45
ser445 17.29| 10.97
ser454 24 .17 21.47
ser463 21.21{ 17.22
serd72 22.08 8.34
ser481 33.15| 28.53
ser490 17.36 14 .66
ser499 9.86 7.02
ser508 9.06 5.83
ser526 15.09 9.21
ser535 26.71| 25.27
ser544 2.26 2.34
ser562 24 .86 23.01
ser571 12.85 8.60
ser580 0.71 0.68
ser589 5.55 3.50
ser598 6.37 5.64
sexre6le 10.76 5.53
ser62b 24 .,39( 12.11
sere634 17.31| 12.05
ser643 16.74| 13.96
ser652 30.00 28.71
ser66l 21.63 10.31
ser670 31.77} 21.03
ser679 19.27! 16.90
ser688 13.24 8.68
ser697 2.83 2.77
ser706 3.36 2.78
ser715 66.49| 45.41
ser724 16.50 9.28
ser733 27.81| 15.63
sexr742 5.76 5.70
ser751 9.78 6.79
ser760 19.191 12.61
ser769 12.71 10 79
ser778 2.25 2.10
ser787 8.22 4 .85




TABLE 19 (Continued)

series y+1

mape m-ape
ser796 40.13 22.17
ser805 1.09 1.01
ser8l4 0.65 0.49
sexB23 0.50 0.33
ser832 0.96 0.85
ser841l 19.744} 18.49
ser850 15.57 8.06
ser868 10.50 7.06
ser877 10.35 7.12
ser886 9.48 8.33
ser895 4 .27 3.60
serS04 5.00 1.71
ser913 25.87 15.70
ser922 4,23 3.61
ser931 47.01( 43.67
sers840 26.74 1l6.61
ser949 21.53 13.59
ser958 6.27 2.48
ser967 6.53 4.42
ser985 52.25 21.26
ser994 19.49 14.6€1
mean 16.37 11.55
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TABLE 20

MAPE AND M-APE VALUES OF MONTHLY FORECAST OF CPN
AT 12 STEP WITH ARCH. 24-48-24

series|y+1 y+2 y+3 y+4

mape m-ape | mape m-ape | mape m-ape|mape |m-ape

ser400| 8.24 5.99|11.62| 10.97|12.73] 13.95[13.04|14.90
ser409|20.31| 17.46146.97| 34.85(34.69| 32.79|66.32[50.40
ser418|25.15| 19.64(21.59| 20.22|21.84| 19.60|19.74|14.88
serd427(10.50 8.43114.18| 11.49|16.75| 9.33|22.24|15.21
ser4a36| 1.79| 1.60| 2.11{ 1.83| 3.46| 3.23| 5.00| 4.76
ser445|16.87| 10.75(21.79| 19.62|17.63 9.91]19.53(13.71
ser454|22.64| 15.48(34.30] 16.72(35.46| 18.16[39.83|20.96
ser463|26.21| 27.12{22.93| 19.84|23.99] 20.04|31.56|29.69
sera72|22.76| 11.54|25.70| 8.39(28.76| 13.33[30.75(11.08
ser481|37.50| 32.01|33.46| 22.03|32.01| 22.75|43.55|26.38
ser490|12.64 9.99|19.05| 14.65[10.76 7.52]14.60[13.51
ser499/10.86 6.96/11.68| 8.99| 8.54 6.99/11.91(11.96
sers508| 8.75 7.17| 9.22! 8.02| 7.97| 6.13| 9.54| 6.56
ser526|12.78 6.86[13.43 5.20/13.33 9.17{14.44| 7.37
ser535|21.61| 13.91/33.85| 32.51(39.94| 39.62[42.30[39.59
ser544| 2.27| 2.43| 3.64| 3.21| 3.33 2.48| 3.61| 2.91
serS62(28.34| 22.10|25.03| 26.55|25.43| 25.87|24.47]19.71
ser571[13.43 8.56|17.83 7.69|18.46| 4.21|20.99] 9.92
ser580| 0.63 0.57| 1.32| 1.29| 2.52| 2.31| 4.42| 4.48
sers589| 5.96 3.88/11.06 8.58(14.10| 11.45{14.60(13.43
ser598| 6.62| 4.65| s.48] 7.36| 7.65| 4.22[11.18|12.74
ser616(11.36 9.16/12.40| 9.86|10.49| 6.63| 9.40| 4.78
ser634(19.03| 13.65]18.75] 17.68|15.15| 14.71|19.85|21.08
ser64a3|16.72| 13.86|21.54| 18.70(24.32| 15.73|20.97]19.26
ser652124.11| 19.95|26.61| 20.57[24.25| 12.12|25.92| 9.98
ser661|24.94 5.35039.01| 20.68|41.75| 13.47|50.57{22.87
ser670]26.56| 11.20(34.84| 11.25(33.52] 13.15[34.20{20.59
ser679|14.72| 13.30|20.79| 19.99|24.88| 25.93|30.43|26.68
ser688|14.72| 10.48|25.54| 11.82[35.18 9.72(32.93[16.37
ser697| 3.93 3.64| 3.94! 3.09| 3.40| 2.18| 4.57! 4.30
ser706| 6.66 5.62| 5.55| 4.37| 6.15 6.00| 5.44| 4.54
ser715{58.45 6.44|71.07| 22.05|62.36| 22.41[56.59|25.97
ser724|18.48| 12.70118.67| 10.19(18.08| 17.71(18.96{12.17
ser733|26.56| 15.56|27.56| 17.14[|22.96 8.60/29.19]18.18
ser742| 5.18] 4.33] 8.11| 7.92|11.88| 12.52|13.56|13.78
ser751| 9.71 6.71110.63| 9.11{11.58 8.84{14.34(15.93
ser760|20.27| 17.23|22.27| 24.21[12.28 5.55|23.24(21.94
ser769(13.07 9.55/18.27| 15.92|19.64| 16.55/18.08|20.94
cer787| 6.56| 2.67| 7.96| 2.23| 8.77| 3.57[{11.28| 7.72
cer796|42.98| 20.14(47.97| 30.11{41.63| 38.92(36.09|40.62
cor805| 0.99| o0.81| 1.s1] 1.29| 2.11| 1.89| 2.65| 2.60
ser823| 0.58 0.521 0.74| 0.57| 0.84 0.75| 1.05| 0.94




TABLE 20 (Continue)

series|y+1 y+2 y+3 yv+4

mape m-ape | mape m-ape |mape m-ape {mape |m-ape
ser832| 0.84 0.73] 1.65 1.52) 2.37 2.02f 3.17| 2.94
ser877| 9.46 4.34113.24) 10.82(13.86| 14.03(12.62(12.27
ser904| 5.45 2.07| 6.20 2.68;7 7.16 2.67| 7.76| 4.07
ser913(24.34| 17.45135.45| 39.48|39.71| 35.76|42.44|40.31
ser922| 4.99 5.22110.63| 10.65|14.76| 13.46(19.4620.23
ser949(18.28| 11.21(18.19| 18.43{24.28| 19.41|25.64|23.19
ser958;10.23 8.48]15.02| 17.14|13.51 7.61110.19| 7.10
ser967f 5.95 4.79] 9.23 8.23110.90) 10.23112.93(12.27
mean |{15.22 9.98(18.85| 13.55(18.74} 12.91(21.14(15.96
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TABLE 20 (Continued)

series|y+5 y+6 y+7 y+8

mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser400{11.94 8.60114.18 11.89:114.76 13.03 13.10(13.76
ser409(62.41 54.00{53.94| 42.98|57.88 50.21 59.89}54.88
ser418(19.14 14.33117.42 22.16120.02 18.64 18.03(17.88
ser427(25.96 16.03127.52 20.75({27.51f 21.55% 25.80)19.12
ser436 6.49 7.18 7.87 7.64 8.47 8.25 8.86 9.13
ser445119.27 11.044117.06 8.47118.30 11.88 14.21(12.83
ser454131.61 20.5428.51 13.67(35.57 19.47 47.78131.52
ser463{33.22 24 .33129.301 22.70130.73 26 .64 32.05129.80
serd472(31.26 13.24{28.55 12.22126.81 17.54 28.92]23.46
ser481141.05 32.27132.70 24 .34{31.03 25.29 35.13133.84
serd90119.35 12.98}13.68 12.57116.33 14 .25 13.09 6.94
ser499| 9.98 7.05{11.41f 14.40]14.20] 12.92 9.97( 7.47
ser508 7.43 2.26 6.99 6.93 8.94 6.96 6.67 1.56
ser526116.28 8.70113.49% 6.11115.29 8.07 16.25114.97
ser535149.03 36.56|54.85 31.86}149.12 27.67) 41.76[135.12
serb44 4 .77 3.64 5.69 4 .03 5.62 4 .73 6.23 8.46
ser562i22.44 21.96131.61) 32.35|21.31 14 .89 24.77121.87
ser571(21.00 8.76122.83 8.43|27.67 15.49 26.79113.52
ser580 4 .58 4.551 4.53 4.46 5.25 4.58 6.49 6£.68
ser589114.29 8.56114.91 9.06]15.91 9.33 15.65 7.55
ser598 9.76 8.46117.50 11.94(17.19 14.01 24.34124.009
ser61l6 9.63 6.56112.23 13.39{12.89 8.83 11.70 7.73
ser634(121.39 21.62(20.67 19.97(19.68 14 .46 22.7511%8.47
ser643(19.81 20.05116.97 17.6016.26 12.51 19.01]15.64
ser652|29.92 23.12|34.08 32.48(30.16 27.96 32.46|27.00
ser661]41.11 29.45|37.50 33.75(38.54 25.80 29.96(34.28
ser670125.48 16.25134.21} 28.06}131.03 23.59 36.09(21.64
ser679(32.12 30.33}30.48 34.04127.36 11.66 25.00114.93
ser688|(26.63 12.89(32.14 20.72(132.80 21.90 33.25(24.65
sere97 4.61 4.14 5.88 5.22 5.64 5.63 6.11 6.71
ser706 8.67 8.55(11.66 11.20§11.21 9.45 18.14120.02
ser715{54.98 29.61159.44| 42.27(|81.73 52.12 73.75147.34
ger724(20.05 19.55(22.38 19.04|20.90 16.14 26.02123.98
ser733(32.49 18.35/29.37| 26.36}26.64 20.87 24 .88|15.71
ser742{13.76 14.16(11.44 8.43111.23 8.48 11.03 9.36
ser751{14.04} 12.13|17.20| 14.82}14.50 7.79) 16.87113.97
ser760|23.55 23.56113.06 11.03(22.68 23.19 24.401]17.66
ser769(15.00 15.04}115.29 12.53121.39 25.26 20.45120.08
ser787 7.85 2.25112.81] 11.03 9.50 3.38 8.04 4 .61
ser796(33.32| 14.35({25.71| 29.68|34.44| 23.53| 31.64|35.14
ser805| 3.02 3.47| 3.96 3.60| 4.75 4.97 5.93] 5.63
ser823| 1.42 1.15| 1.57| 1.54| 1.48| 0.83 1.30| 1.17
ser832 4.02 3.31 4.83 4.50 5.52 5.17 6.29 6.31




101

TABLE 20 (Continued)

series|y+5 y+6 y+7 y+8

mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser877| 8.36 4.99| 6.55 3.86| 7.73 5.93 14.24114.30
serS04| 9.04 5.19| 8.06 4.57} 8.99 4.21| 10.24| 5.72
ser913|45.73| 42.88{50.27| 53.74|63.61| 65.22| 70.77|79.03
ser922|(27.49( 28.19(31.04| 29.51({33.15| 32.29} 33.11{33.57
ser949(26.54| 23.34130.73| 27.44!33.05] 35.99| 44.13)44.28
sersS58 7.46 7.19|14.66| 15.68(13.17| 13.26 11.27110.66
ser967|13.78{ 11.08(14.79{ 11.37(16.61} 17.96 18.70/20.04
mean (20.85| 15.56|21.27| 17.53(22.49| 17.48| 23.27|19.90
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TABLE 20 (Continued)

series|y+3 y+10 y+11 y+12

mape m-ape | mape m-ape |mape m-ape| mape |m-ape
ser400|10.37 7.50| 8.09 4.65| 8.07 6.38 8.961 7.05
ser409162.51| 47.63(59.36| 53.42{40.61| 26.66| 17.96|11.81
ser418}17.09 9.25(24.91| 24.48|27.02| 21.28| 15.33]11.08
ser427(22.04| 13.20}18.47| 19.26}14.85| 12.26 4.71| 3.69
serd436| 9.68 9.11(10.22| 10.26{10.75| 10.85} 10.70{10.85
ser445(14.38| 12.40|24.66| 19.0416.91| 16.43| 24.71|25.17
ser454(32.31| 19.70(27.48} 23.47}14.75| 13.59| 10.78| 9.33
ser463128.18| 25.76{39.79} 39.06(33.22( 32.58| 31.77}(34.92
ser472|26.96| 21.90|38.04| 33.97|42.42| 41.45} 32.05]30.07
ser481{31.83| 15.21|25.82| 25.06}51.70; 48.48} 42.93|34.90
ser490(12.98| 14.02]16.99| 12.32|20.42] 13.80| 15.48|16.34
ser499(12.62; 10.92}13.69| 12.02{10.01 5.59 7.43] 6.38
ser508110.01 8.56{10.30 4.43) 9.37 5.86 3.51f 2.37
ser526|15.36| 13.06/16.90| 15.10{20.83| 16.37 9.32} 8.36
ser535|35.08| 27.81{46.55| 39.63(43.89| 34.22| 39.56|34.97
ser544) B.53 8.30}] 8.11 8.00] 8.32 7.86 9.20 9.03
ser562{27.19| 25.90(19.98| 10.26{30.60| 27.85| 28.21|35.25
ser57120.90 6.02{17.50| 14.66| 8.96 9.79 3.79¢ 1.69
ser580) 6.83 7.17] 7.51 8.14| 8.24 7.90 9.11| 9.83
ser589114.38 8.28(|13.12 5.53114.13 7.35| 16.94117.55
ser5981{24.44| 19.92{23.43| 24.15|34.39| 34.97| 31.54|28.77
ser616|10.21| 11.04} 9.72 7.73111.64 6.55 3.07] 2.60
ser634116.511 14.59(24.56| 32.24{32.56| 33.06] 28.39|25.14
ser643/21.19| 22.28|15.62| 19.37|17.05| 15.38| 15.48]13.41
ser652|34.20( 29.24[27.94| 18.26(19.20 6.76| 12.38] 9.45
ser661|34.42| 30.03(31.06| 29.69}19.17| 12.52| 10.01} 7.99
ser670143.97] 27.75|42.75| 33.06|39.86| 38.58| 28.80;30.79
ser679|27.69| 18.79(33.19| 34.15(35.17| 34.60| 42.96|43.74
ser688(19.31( 11.96|17.24} 17.24]12.90 9.98} 12.66}111.97
ser697| 5.31 3.55| 5.20 4.96( 5.28 5.02 3.71( 4.20
ser706|21.91] 22.27]|25.19| 26.76(23.69| 23.99] 23.64|26.79
ser715|60.46] 60.11(61.96| 64.79|78.13| 49.80| 32.26|34.64
ser724|27.70} 25.91|23.34| 19.50|22.84| 17.14| 23.26|25.24
ser733136.15| 24.20(25.57| 17.12(24.22]| 20.03| 24.74)25.84
ser742(10.34| 10.09| 6.83 7.21] 3.69 2.52 2.22) 0.86
ser751(13.80{ 10.27|10.69 9.01} 8.90 7.90 7.82] 6.00
ser760(11.12 7.52023.49 13.75[/23.68]| 16.21 9.54| 9.27
ser769(20.81( 19.64}19.00} 17.91114.19| 12.24 9.38( 6.50
ser787| 8.90 2.98( 8.85 5.12| 7.84 2.24 1.65} 1.09
ser796(41.04| 25.71[57.93] 22.88(43.74| 26.36| 11.03) 8.50
ser805] 6.86 6.40; 8.01 7.79) 9.27 9.47] 10.13} 9.83
ser823| 1.34 0.74| 1.71 0.84; 1.61 0.55 1.12) 0.38
ser832} 7.11 7.30] 7.98 8.29] 8.87 8.58 9.80| 9.71
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TABLE 20 (Continued)

series|y+9 y+10 y+11 y+12

mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser877114.54 14.46(13.30 6.85 9.99 4 .57 4 .94 5.05
ser904 7.61 4.43 8.09 6.11 5.41 3.77 6.31 6.83
ser913176.30 81.02176.37 80.64|78.64 79.55 80.77180.28
sexr922132.01 32.48133.00 31.76133.68 31.90 30.47130.89
ser9491(47.34 50.33|58.39| 58.95]|66.13 68.17 73.98;:74.05
ser958|13.35 14.71112.71 9.66}116.68 10.84 14.49(15.21
ser967(21.85 18.82123.94 29.66127.00 25.06 29.96130.34
mean 22.74 18.80({23.69 20.95123.41 19.70 18.78118.12




MONTHLY FORECAST OF CPN AT

TABLE 21

1 STEP WITH ARCH. 25-50-25

series yv+1

mape m-ape
ser400 8.24 5.09
ser409 31.56 22.58
ser41ls8 20.57| 15.05
serd427 9.23 9.78
ser436 1.79 1.99
ser445 15.97 13.00
ser4s54 21.36 17.81
serde3 18.62 17.24
ser472 21.67 10.26
ser481 36.54 33.00
ser490 16.75 13.41
serd 99 13.59) 10.92
sers508 8.91 7.12
ser526 14.16 9.53
ser535 17.30 7.73
serb44 2.25 2.41
serb562 29.49) 15.54
sers571 10.35 6.73
ser580 0.54 0.45
ser589 3.21 1.22
ser598 5.97 5.63
ser6l6 11.32 9.09
ser634 23.73] 20.73
ser643 16.16| 11.95
ser652 22.15 16.05
ser66l 21.24 12.38
sere70 26.44 6.57
ser679 16.92] 13.28
ser688 14.24| 11.20
ser697 3.44 3.03
ser706 3.54 2.36
ser715 59.37| 17.69
ser724 18.69 12.43
ser733 26.29 19.10
ser742 4 .30 4 .07
ser751 9.01 4,42
ser760 17.96 14 .36
ser769 13.66| 10.12
ser787 9.96 8.70
ser796 25.41 14.80
ser805 1.38 1.35

ser823

0.64 0.60
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TABLE 21 (Continued)

series yv+1

mape m-ape
ser832 0.84 0.73
sexr877 9.12 7.52
ser904 5.00 1.54
ser%13 22.62| 18.59
ser9222 3.89 3.69
ser9949 32.70} 30.19
ser958 8.11 6.97
ser967 9.4¢6 8.97
mean 14.91} 10.38
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TABLE 22
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MAPE AND M-APE VALUES OF MONTHLY FORECAST OF CPN

AT 12 STEP WITH ARCH. 36-72-36

series|y+1 v+2 yv+3 y+4

mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser400 7.91 4.69111.55 11.32112.73 14.05 12.87116.37
serd409|24.03 20.55140.58 42.41149.42 34 .88 30.01{25.46
serd418)23.88 17.94121.62} 23.12(21.77 20.44 23.83(18.72
serd2’ 9.87 7.76111.55 6.50/15.42 11.75 17.39713.87
ser436 1.77 1.31) 1.83 1.28 1.68 1.55 2.30 2.05
ser445]18.98 9.04124.36 17.94118.69 15.32 24.69116.39
sexr454122.02 15.38(28.88 13.60127.71 15.64 33.94(22.29
ser463|16.15 6.46121.55 14.54]23.35 18.72 26.93122.28
ser4721(21.47 9.99124.79 9.27127.42 14 .65 29.61113.59
ser481/35.92 31.261(44.79 35.17122.04 24.09 37.52(23.84
ser490(17.46 15.46(17.92 13.27 9.98 6.74 13.27112.85
ser499]10.29 8.38]11.74 8.27 8.00 4 .55 12.60112.99
ser508 8.60 7.78 8.23 3.67 7.87 4 .56 10.32 8.95
ser526114 .30 10.05113.47 6.77113.29 9.74 13.90 9.53
ser544 4 .96 5.05| 4.49 3.98 3.15 2.38 2.86 3.92
ser562}29.16 23.04(129.07 25.77121.99 11.59 23.47118.80
ser571 9.12 2.26117.07 4.72{18.28 3.51 22.47112.69
ser598 5.74 4.11 7.04 5.80 8.00 5.09 10.22110.98
ser61l16|11.42 9.12]12.86 11.02115.07 11.32 17.89}115.46
ser634(19.04 14.64(19.99 14.11117.83 14 .50 24 .24121.44
ser643(18.58 14.49(24.31 23.46129.67 27.15 21.78117.37
ser652|25.15] 16.47126.07| 21.91|29.41| 21.37| 29.02|14.14
ser661|20.54 7.41,28.68 11.35(36.02 15.11 32.90112.75
ser670(29.81 18.22136.38 12.53{34.13 13.05 27.00111.16
ser679(15.79 11.40/26.16 26.20(29.45 28.13 33.68(34.29
ser688116.16 9.66124.00 10.58(27.22 7.94 28.54113.93
sexr697 8.33 7.81 7.75 9.35 6.60 6.38 9.52 9.79
ser706 7.73 7.07{ 5.76 5.53(10.70 9.90 13.54113.13
ser715160.26 24.36162.48 39.48(66.46 49.49 67.68|64.68
ser724118.50 19.97)16.72 12.75(20.41 19.02 17.59117.29
ser733|27.56 19.78|29.60| 23.83125.61 23.77 27.85120.13
ser742 4 .86 3.71 7.34 6.94110.99 11.59 13.85(14.71
ser751) 9.82 7.32110.74} 10.57(11.80 7.23) 14.64]12.81
ser760|10.17 5.55|11.67 9.58|12.12 9.64| 15.41(13.91
ser769|12.68| 11.45|18.99| 17.66(20.76| 17.83| 18.07120.45
ser787| 6.82 3.80{( 9.35 5.01(15.05] 11.39} 13.55|10.50
ser796|36.82| 23.15/30.53| 26.49(34.52| 34.01 31.72|38.74
ser805]| 1.43 1.40| 2.39 2.25| 3.18 2.99 4.21| 4.16
ser823| 0.63 0.57{ 0.85 0.87| 0.84 0.72 1.07| 0.99
ser832| 0.64 0.53| 1.60 1.48| 1.61 1.26 2.43| 2.20
ser877| 8.90 4.19]12.58] 11.46|13.72| 13.93| 13.21|11.15
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TABLE 22 (Continued)
series|y+1 y+2 y+3 y+4
mape m-ape | mape m-ape |mape m-ape| mape |m-ape
ser904| 5.54 2.29) 6.11 2.34} 6.99 2.70 7.91! 4.46
ser922| 4.04 3.82| 7.51 6.85(12.16} 10.67| 17.12]17.91
mean |[15.42| 10.43;18.16| 13.26|18.68{ 13.73| 19.83,15.89
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TABLE 22 (Continued)

series|y+5 yv+6 y+7 v+8

mape m-ape | mape m-ape | mape m-ape| mape |m-ape
ser400(11.94 8.41]14.64 11.93114.48 11.68 13.00113.80
ser409|47.85| 38.25154.16| 45.3856.71| 34.82| 73.32(44.11
ser418116.17| 11.46{139.61, 18.09|22.10| 21.80]| 20.21|27.14
ser427117.71 13.111}19.52| 19.89(15.01 14.23 15.65113.70
ser436 3.13 2.96}1 3.42 3.04 3.57 3.20 4.76 5.03
ser445|19.25| 14.33{25.93} 21.29119.53) 18.71] 15.28|14.70
ser454125.23| 13.89}128.84] 18.45(31.51 9.20| 40.82127.01
ser463|29.36| 16.93}26.71| 18.16126.09| 20.07{ 29.75(26.55
ser472130.81 17.07131.15{ 19.33|30.31 22.91 32.93130.57
ser481)30.26| 26.77|28.03| 15.19|35.28} 20.92| 23.89{23.51
ser490{16.47 9.95112.70| 10.66|15.58| 13.14| 12.53 8.93
ser499)10.14 7.87(11.08 2.98{13.31 9.93 8.88| 8.73
ser508) 8.03 4.58]| 6.99 6.93| 8.43 4.34 7.82| 5.22
ser526|17.23 14.10113.72 6.59|23.25] 23.28] 15.93]14.90
ser544 4.02 3.81} 4.78 4.65| 7.88 7.25 11.63[(14 .46
ser562{24.76 19.93129.59| 23.07(20.92 17.32 21.03(17.72
ser571|22.36( 12.01{23.70 6.76126.18 7.44| 26.87| 9.81
ser59812.31 12.51111.46 6.84112.66 7.05 15.37(13.0¢0
ser616|16.54| 16.60|15.70] 12.71|17.76| 15.66| 14.41{11.64
ser634|29.39| 19.94(30.99| 20.38(32.35| 29.14| 22.88|19.38
ser643120.29 19.57|20.44 15.43(19.98 14.78 20.2612.69
ser652131.37| 23.38129.64} 21.57|25.17] 16.96| 29.48|30.77
ser661|31.41 8.68|27.67| 11.13|32.83| 28.76| 27.34{30.92
ser670124.37| 10.11[26.01| 13.40130.95| 17.98| 35.07|11.51
ser679/33.10] 34.04({30.21| 36.33|31.06| 12.92| 36.1023.50
ser688(28.33 14.69(33.18; 25.96|37.56 23.88 40.36(37.28
ser697| 8.95 9.00} 9.52 9.25| 8.05 7.59 8.09] 6.74
ser706(21.71| 22.63|22.23| 22.02(20.29| 18.16 25.42128.26
ser715|82.86] 67.20170.07) 49.93185.79| 44.61 95.77139.53
sexr724(19.24 16.99(23.70| 21.67[22.62 21.16 24 .78(20.07
ser733|26.17| 19.02(26.45| 24.35|25.76| 18.04| 32.47129.70
ser742|15.36| 14.74(14.96| 14.07(13.77| 10.50| 12.64 9.32
ser751]14.71| 11.36|17.16| 19.39}15.37| 14.90| 16.37|14.53
ser760|12.40] 11.93(11.58 8.04[15.45] 11.61] 14.27|13.98
ser769]15.02] 12.47(13.28| 13.69|15.98| 14.02| 16.26]14.58
ser787113 .44 9.90(11.48 9.38111.36 7.05 9.42) 8.25
cer796]39.38| 35.07|26.49| 27.55|35.06| 34.10| 32.50]26.39
ser805| 4.79 5.23| 6.25| 5.94| 7.72 7.93 7.86| 7.56
serg823| 1.94 1.98| 2.54| 2.76| 2.45 1.82 3.27| 3.04
ser832| 4.19 3.48| 4.80| 4.47| 5.73 5.39 6.66| 6.68
sers77| 8.60| 5.37| 6.80) 4.93| 7.18 3.28| 13.01[10.93
cer904| 8.90| 4.91| 8.05| 4.54| 9.07| 4.34| 10.30} 5.97
cer922|21.06] 21.83]26.13| 24.49(33.21| 32.35} 36.09)|36.53
mean |20.48| 15.54]20.50 16.1121.98| 15.91| 22.81)18.11
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TABLE 22 (Continued)

series|y+9 v+10 y+11 y+12

mape m-ape | mape m-ape| mape m-ape {mape |m-ape
ser400({10.76 5.89] 8.91 5.22 8.18 6.62 8.62 8.72
ser409146.39 27.32145.69| 45.90| 38.69| 22.49133.47(32.16
ser418(20.76 11.70114.62 9.27| 26.47 19.51/21.80(25.49
sexr427{15.00 16.69(13.85 6.83 13.87 10.24 9.14 8.05
serd36 7.33 6.75 9.21 9.25 10.55 10.641{11.22{11.37
ser445]18.48 12.43({25.80 26.63 27.32 21.93127.19}25.02
ser454 (32.63 14.39115.43 9.82 12.29 7.26110.41]110.85
ser463{24 .48 20.31131.54 25.82 38.50 37.91131.76{34.92
serd72|42.22 40.95139.63 36.61) 39.16 35.58[41.69]39.98
ser481|32.55 25.95148.75] 36.72 51.97! 45.63]59.93147.56
ser480{10.90 8.25}119.03 15.59 16.37 17.17 6.60 6.19
ser499(12.97 11.59115.47 12.01 10.72 8.48 .05 3.47
sexr508 8.97 5.39110.41 4.87 10.01 6.29 3.60 1.40
ser526117.87 15.68)28.43 23.00 17.28 16.071]114.89|14.60
ser544(13.71 13.44}114.18 14 .30 16.42 15.93{20.18,19.99
serb62|23.57 19.26|17.55 9.60 23.41 14.70)23.66|25.93
ser571i25.84 8.69116.94 9.09 7.32 6.16[110.57 8.16
ser598|16.95 11.05/18.01 17.50 24 .38} 23.86126.84|24.16
ser6l6!13.44 11.44(15.67 16.95 14 .49 12.30 7.56 6.68
ser634(13.17 8.09|23.40] 29.09| 28.41| 34.83|14.92|12.38
ser643|23.97 26.18119.37 19.58 17.84 10.18117.96(115.87
ser652|32.24 30.78(24.19 15.99 19.12 15.06(113.78713.590
sers61|28.44 27.17126.07 23.38 20.97 15.36 8.13 3.47
ser670130.16 14.53]39.94| 27.83 24 .05 8.90]23.82(24.03
ser679144 .59 36.35/54.24 55.93 63.10 63.53171.01}71.41
ser688(35.44 26.80128.87) 22.49| 23.58 22.07{14.08|14.38
sere927 8.08 6.87{ 6.84 7.51 7.97 7.70 5.06 6.12
ser706(28.82 27.00(34.54 36.84 36.64 35.88(37.31{36.68
ser715({72.31 34.43173.20 30.00({105.67 41.84135.43142.08
ser724|29.89 28.97120.571 19.29{ 23.59 20.45(26.80(27.62
ser733|33.67 32.81125.15} 16.61}| 23.82 11.17125.27122.05
ser742 9.47 6.36 8.06 7.16 4 .36 2.84 3.06 1.82
ser751}114.47 11.58115.29} 15.42 8.33 5.51 5.99] 3.86
ser760{11.37 9.00({10.57 2.89 9.89 10.59 5.93 6.27
cer769120.13| 22.78|19.01| 18.02| 16.07| 14.12|11.58| 9.18
ser787| 9.43 7.48| 8.30 5.04 9.71 5.65| 6.09] 5.56
ser796|38.90| 30.74|39.54 44,90 31.18 28.46{10.27 5.75
ser805 8.11 7.66 8.39 8.17 8.02 8.22 8.66 8.36
sers823| 2.92 2.35| 2.86| 2.14| 2.62 1.65) 2.15| 1.63
serg32| 6.76 6.94] 7.90 8.21 8.77 8.49| 9.87| 9.78
sers877|13.48| 14.23(12.65| 11.36 9.58 4.24| 5.70| 6.13
cer904| 7.57| 4.39| 7.85| 5.48| 5.08| 3.90| 6.26| 6.76
cer922|37.81| 38.25|38.18| 37.03| 37.79| 36.13|38.46/38.83
mean |22.23| 17.28[22.42| 18.91| 22.18] 17.66)|18.20}17.41




APPENDIX G

TIME SERIES INFORMATION CONTENT

110



TIME SERIES INFORMATION CONTENT

This section is quoted directly from Pack and Downing's

paper from p.13 through p.18 in 1983. It provides the

necessary information concerning the two characters

specified for each time series in Table 23.

Uninformative Series

I.

IT.

IIT.

The stationary nonseasonal ARIMA model will produce
forecasts egual to the estimated mean after
relatively few time periods (i.e., for relatively
short lead time).

The models in this group are constant mean (157),
random walk (400, 778, 895) and simple linear trend
(319, 814). The forecasts produced are constant for
all lead times in the first two models, and a simple
trend line in the third model.

The models in this group are of the form the ARIMA
school generally associates with exponential
smoothing [(0,1,1) is simple exponential smoothing].
The (0,1,g) model forecasts are constant for lead
times greater than or equal to g if there is no
trend in the model. Other models in the group,
including (0,2,1), produce simple linear trend
forecasts for lead times beyond the indicated moving

111



112
average order.

IV. The first difference models in this group produce
forecasts that are constant for sufficiently long
lead times (dependent on the strength of AR), or
simple linear trend forecasts for those time series
that indicate "trend".

The peoint is that in all these cases the forecast
patterns produced are relatively simple. They are not very
likely to describe what really happens beyond a relatively
short lead time. These forecast patterns would be easily
matched by a number of other extrapolative methods.

Informative Series

I. This model is dubiously called "informative". It
represents the weakest form of seasonal structure,
MA structure in the absence of AR or differencing.
II. Order s (gquarterly s=4, yearly s=12) relationships
are present, but order 1 relationships are not,
considering AR or differencing, irrespective of MA.
III. In contrast to II, order s and order 1 relationships
appear multiplicatively in the model in the AR
and/or differencing structure. The 23 series listed
in this group suggest this may be a common seasonal
structure, and our experience suggests that it is.
Any extrapolative method which depends primarily on
an autoregression involving lags 1, s, and s+l

should forecast competitively with ARIMA on these



Iv.

PS:

SH:

113
time series.
About half of these cases are like those in III, but
reflect higher orders of autoregression (e.g., 652,
661) . The other cases are the unique cases of
historical pattern present in the 111 M-competition
time series. In principle, one might expect the
ARIMA identification process to perform most
successfully relative to other extrapolative methods
on this group of 16 time series.
short, no analysis. Pack and Downing, and also
Makridakis et al. agree that these series are
seasonal.
unsuitable, no analysis. Makridakis et al. consider
these series to be seasonal, but Pack and Downing do
not.
short, no analysis, and not type PS (see above).
unsuitable (contains structural change(s)), no

analysis, and not type UM (see above).
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EXPONENTIALLY WEIGHTED REGRESSION METHOD

A regression forecasting method simply fits a curve or
model to the historical data of a given time series, and
then extrapolates the curve or model into the future to
obtain predicted values. The fitting process minimizes the
sum of squares of the differences between the data values in
the historical training data and the fitted value at each
datum point.

The problem with doing this is that "old" data points
near the beginning of the training set have just as much
influence over the fitted model as do the "recent" data near
the end of the training set. This is quite unreasonable:
the points to be forecast are nearer the "recent" data,
which should be more predictive of the future than the "old"
data. If we want to forecast next year’'s sales, the past
year’s sales are much more important than ancient data from
five or ten years ago. The model needs to ignore or
discount old data in some systematic way. Exponential
weighting accomplishes this [Harrison and Akram 1982]. In
the least squares fit, each residual (the difference between
the data and the fit) is squared and added into the sum of
squares, but each squared residual is multiplied by a weight

before the addition:
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S(a) = Xl: W:U’; - f(a, ti‘))z

Here, t; is the i-th time abscissa, y. is the i-th data
ordinate, a is the vector of parameters of the model,
f(a,t;) is the model being fitted to the y,, w, is the weight
for the i-th datum point, and S(a) is the sum of squares to
be minimized. The exponentially weighted regression method
takes w, to be an exponential function of the time t,:
w, = b,

where b is a real number greater than one, to be determined
along with the parameter a in the fit. Because b is greater
than one, the weights corresponding to the larger (later) t.
are larger than those corresponding to the earlier points.

In the exponentially weighted regression results used
in this thesis for comparison with NAIVE and neural net
models, the model f was simply a straight line:

f(a,t,) = al + a2 t,

(A logistic curve might be more reasonable and has been used
in other time series forecasting, but the nonlinear least
squares fitting process sometimes breaks down and must be
replaced by an even slower optimization problem.) For
quarterly and monthly series, the model was multiplied by
fitted seasonality factors. Also applied to the forecast
values were fitted "shrinking factors", one factor that

shrinks the forecast toward the data ordinate y, in the

fitted set, and one factor that shrinks the forecast toward
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zero. Without shrinking, regression models tend to be a
little wild and should not be used. In the M-111 study, a
linear regression model without exponential weighting or
shrinking was one of the worst methods tested; with
exponential weighting, seasonality factors, and shrinking,
regression becomes competitive with some of the best
methods. Exponentially weighted regression is related to

exponential smoothing models and to Box-Jenkins ARIMA

models.
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COMPARISON OF DIFFERENT FORECASTORS

AT 1 STEP FORECASTING

This section presents a comparison of the performance
of seven forecasting methods. The results of NAIVE 1, 2,
and exponential regression are provided by Chandler (1992).
The Autcbox and the NN-PDP are the Box-Jenkins software and
the Parallel Distributed Processing package used in Patil’s
thesis (1990), respectively. BPN and CPN are the
backpropagation neural network and the counterpropagation
neural network in this thesis.

The numbers in the parentheses inside the tables below
are the available numbers of data points. The two letters
in the parentheses inside the tables below indicate the
information of that time series (gsee APPENDIX G). The
parentheses that follow the "yearly time series", the
"Quarterly time series" and the "Monthly time series" in the
tables below show the neural network architectures used by
BPN and CPN. Table 23 shows the comparison of the MAPE
values of these seven prediction implementations over 72 M-
competition data series. We can observe that Patil’s
Autobox results are poor when compared with the other
methods and NN-PDP does an extremely good job on the annual

time series.
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Since the extents of yearly and quarterly time series
in Makridakis et al.’s report (1982) (i.e. ser4 <= yearly <=
serl75, serl84 <= quarterly <= ser382) are different from
those (i.e. ser4 <= yearly <= serll2, serl2l <= quarterly <=
ser382) in Patil’s thesis, the comparison tables below
present only those time series shown on both extents. That
is, the annual time series table contains the results from
ser4 through serll2 and the quarterly time series table

contains the outputs from serl84 through ser3s82.
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TABLE 23

MAPE COMPARISON OF NEURAL NETWORKS, NAIVE I, II, EXPONENTIAL
REGRESSION AND BOX-JENKINS AT 1 STEP FORECASTING

Yearly time series. (BPN: 2-2-1, CPN: 3-6-3)

series NAIVELl |NAIVE2 |Autobox |NN-PDP} BPN CPN |Expreg
4 (23, 8H) 15.51 [|15.51 23.53 6.43 (11.23115.49|11.80
13(52,UN) 7.76 7.76 6.58 2.59 7.46111.95 7.40
22(14,SH) 0.47 0.47 0.04 0.23 0.23 0.36
31(22,8H) 9.08 9.08 18.07 0.55 9.22 9.07} 8.80
40 (21, SH) 4 .51 4 .51 10.16 1.03 4.271 4.12 7.23
49 (19, SH) 28.39 |28.39 24 .77 7.65 (26.13|29.38(27.70
58 (18, SH) 11.21 (11.21 72.58 1.34 6.90] 6.11 8.29
67(13,S8H) 3.96 3.96 0.93 3.55}] 3.47( 4.19
76 (13, 8H) 6.10 6.10 2.27 5.261 6.22 6.11
85 (20, SH) 3.76 3.76 37.00 0.29 3.86| 3.05| 3.03
94 (13, SH) 3.32 3.32 0.76 2.73 6.87| 3.11
103 (13, 8H) 4.66 4.66 0.41 1.44) 1.41| 1.49
112(38,U4) 1.77 1.77 4 .55 0.10 0.66 1.08) 1.77
mean 14 .34 14 .34 24 .65 2.50 8.72110.03 9.50
Quarterly time series. (BPN: 8-8-1, CPN: 9-18-9)
series NAIVE1l |NAIVE2 |Autobox |NN-PDP| BPN CPN |Expreg
184 (48,I3)(18.82 6.34 20.61 6.92 11.43]15.70) 6.32
193 (20,8H) |24.00 |21.71 44 .43 32.52 (42.08124.56124 .42
202 (24, SH) 2.96 3.34 21.51 3.95 4.48| 3.16] 4.00
211(30,SH) |21.85 [32.46 26.31 136.03 34.79(16.62(19.43
220(34,S5H) |28.52 [32.48 37.10 147.59 141.97|28.14129.08
229(32,P8) 113.22 1.68 42.19 4.19 3.11115.36 1.65
238 (57,I3) 5.16 3.22 14.22 4.79 6.74) 5.11| 2.64
265(60,U3) 4.92 3.17 21.15 5.52 3.88| 3.38 3.61
283 (76,U04) 2.77 2.16 2.90 2.49) 2.06 1.41
292(38,I3)1(22.37 |32.60 12.67 |13.94 9.73114.89120.36
301(56,1I4) 2.12 1.36 2.91 2.25 2.71] 1.42 1.12
310(52,U04) 2.49 0.95 4 .46 2.90 1.36 1.45 0.74
319(52,U02)1 3.18 2.71 14.30 4.39 3.48| 3.94| 3.11
328(36,1I3) 3.37 1.67 8.02 3.14 3.07| 3.31}| 1.87
337(56,14)110.44 2.38 8.52 3.86 4.29] 8.68| 2.53
346 (40,UN) |11.75 |16.86 20.23 11.15 114.12(12.72]12.86
355(51,UN) 3.15 2.73 4,75 3.92 2.76 4.57| 2.65
364 (36,U4) 1.16 1.45 3.73 1.25 2.25( 1.27| 0.75
382(40,Ul1) |20.08 [13.46 32.78 18.25 [23.64]20.23112.87
mean 11.09 {10.03 18.88 (11.47 {(11.99}10.25 8.33
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TABLE 23 (Continued)

Monthly time series. (BPN: 24-24-1, CPN: 25-50-25)

series NAIVE1l |NAIVE2|Autobox|NN-PDP| BPN CPN |Expreg
400 (90,U2) 7.87 9.05 14.14 (11.42 8.04] 8.24(10.28
409(78,1I2) 27.46 |30.8¢6 42.80 (32.09 |28.34]31.56120.63
418(63,1I1) 21.95 |16.24 19.23 |27.37 [23.17|20.57]13.76
427{(105,1I2){10.76 7.24 9.89 8.53 8.751 9.23f 6.55
436(101,14) 1.87 0.68 7.09 1.85 2.05] 1.79) 0.69
445(75,13) 15.78 (11.75 25.71 |12.87 {16.22115.97(10.86
454 (101,I2)(26.10 ]10.44 8.48 6.85 |10.66(21.36] 8.45
463(124,I3)(16.07 7.37 6.19 |19.95 (20.38{18.62| 6.86
472(80,I4) 21.59 8.10 19.21 [20.76 (12.21{21.67f 7.589
481 (56,U4) 38.20 [39.24 32.36 |[31.00 |44.31|36.54|32.16
490(80,1I3) 18.12 7.63 7.90 8.71 110.95)16.75; 6.71
499(105,U4 }10.24 8.33 13.50 (10.02 9.05[13.59| 6.47
508 (105,14 8.60 5.67 16.11 5.89 6.55) 8.91| 4.85
526 (79,I4) 14.44 (10.60 9.95 {14.75 |12.87|14.16| 8.26
544 (57,14) 2.28 2.00 2.72 3.98 4.71| 2.25) 2.21
562(80,U1) 25.72 |19.55 77.15 |64.22129.49]16.57
571(64,1I3) 9.12 6.44 5.57 5.82 6.64110.35] 7.14
580(52,U1) 0.55 0.66 3.03 3.28 3.37| 0.54} 0.62
589 (54,U1) 3.15 3.63 9.66 8.20 8.091 3.21| 3.63
598 (84,I4) 6.08 3.33 23.49 6.36 (10.84| 5.97| 2.98
616(120,1I4 11.65 5.88 7.22 4.62 5.921{11.32 4.25
634 (87,13) 16.71 [16.73 13.70 |18.67 |22.33|23.73(12.87
643(64,13) 18.02 |15.37 18.92 |20.29 |18.54(16.16|17.06
652 (67,1I4) 24.19 (11.47 15.23 |15.54 [15.83122.15| 9.94
661(66,14) 21.54 (12.60 19.80 [20.52 [20.34(21.24|11.53
670(65,I3) 29.26 111.79 28.39 |30.27 |22.90(26.44]11.98
679 (66,U3) 10.85 |16.14 20.42 |40.01 |37.60(16.92|17.57
688 (65,13) 16.80 5.49 12.86 |11.12 ]11.06]14.24| 6.04
697(66,1I3) 3.31 2.60 4.13 3.63 3.20| 3.44| 1.66
706 (65,13) 3.37 3.61 20.11 9.66 |10.73| 3.54| 3.83
715(66,U1) 64 .55 |61.50 61.31 |83.83 |57.52(59.37|66.19
724 (62,U3) 18.39 |17.37 17.43 |22.44 [18.87(18.69|16.08
733 (66,14) 29.12 119.56 14.21 {21.52 [17.19(26.29|16.71
742(66,13) 5.51 2.56 5.00 2.05 2.57{ 4.30( 2.18
751(63,13) 9.95 5.00 5.19 8.17 {11.84| 9.01} 3.88
760 (66,1I3) 22.81 4.44 7.75 8.05 7.85117.96| 4.32
769(66,I3) |13.55 7.35 10.46 7.99113.66| 6.62
787 (111,13) 6.58 1.91 3.17 1.87 4 .23 9.96} 1.93
796 (114,I4) |43.75 |18.08 17.68 |15.96 |16.36|25.41(15.34
805(114,U3) 1.19 0.85 7.93 1.18 1.06( 1.38} 0.74
823(114,U3) 0.47 0.57 1.29 0.65 0.65] 0.64}1 0.54
832(114,U3) 1.29 0.70 7.96 1.29 0.98} 0.84} 0.33
877(102,I4) 9.50 3.48 3.73 3.38 6.48] 9.12| 2.58
904 (90,1I3) 5.00 2.11 3.88 3.22 4.82) 5.00{ 2.04
913 (51,UM) 21.86 |22.32 58.53 (48.90 |58.25{22.62(27.67
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TABLE 23 (Continued)

Monthly time series. (BPN: 24-24-1, CPN: 25-50-25)

series NAIVEl |NAIVE2 |Autobox |{NN-PDP| BPN CPN |Expreg

922(126,U3) 3.89 4.67 26.35 5.22 4.74) 3.89) 4.66
958 (54, UM) 6.81 4 .05 13.67 {11.36 |12.22| 8.11| 3.92
967 (54, UN) 5.94 7.33 38.74 20.28 |21.11) 9.46| 5.76

mean 14.70 (10.16 15.91 [14.65 (14.40]14.18| 9.40

The above mean values of each method (except Autobox)
are the means of the selected series corresponding to those
series available for the Autobox (i.e. B8 for yearly, 18 for
quarterly, and 46 for monthly). The actual mean values of
each method are presented in the following tables.

Yearly time series. (BPN: 2-2-1, CPN: 3-6-3)

method |NAIVE 1|NAIVE 2|Autobox|NN-PDP| BPN CPN |Exp-reg

mean 10.25 10.25 24 .65 1.88 6.38| 7.57 7.02

Quarterly time series. (BPN: 8-8-1, CPN: 9-18-9)

method |NAIVE 1|NAIVE 2|Autcbox|NN-PDP| BPN CPN |(Exp-reg

mean 10.65 9.62 18.88 }11.02 {11.49( 9.82 7.97

Monthly time series. (BPN: 24-24-1, CPN: 25-50-25)

method [NAIVE 1|{NAIVE 2{Autobox|NN-PDP}| BPN CPN |(Exp-reg

mean 14.91 10.30 15.91 {15.86 |15.30(14.49 9.49

The following tables are the comparisons of these
methods but with different neural network architecture. The
first two tables are the results corresponding to the

selected time series availlable for Autobox while the last



two are the comparison tables of actual means.
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Quarterly time series. (BPN: 4-4-1, CPN: 5-10-5)
method |[NAIVE 1|NAIVE 2Autobox|NN-PDP|{ BPN CPN |Exp-reg
mean 11.089 10.03 18.88 |10.89 [(11.20(10.88 8.33
Monthly time series. (BPN: 12-12-1, CPN: 13-26-13)
method |NAIVE I |NAIVE 2|Autobox|NN-PDP} BPN CPN |Exp-reg
mean 14.70 10.16 15.91 (11.53 {12.76)15.06 9.40
Quarterly time series. (BPN: 4-4-1, CPN: 5-10-5)
method [NAIVE 1{NAIVE 2|Autobox|NN-PDP| BPN CPN |Exp-reg
mean 10.65 9.62 18.88 110.47 110.74110.43 7.97
Monthly time series. (BPN: 12-12-1, CPN: 13-26-13)
method |NAIVE I|NAIVE 2|Autobox|NN-PDP| BPN CPN |Exp-reg
mean 16.48 10.10 15.91 |(12.52 [13.45116.12 9.37
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Finclude <math.h>
#define prime 200
/* prime the random number generator 200 times ./

#define maxape 70
/* maxape is the maximum total # of apes */

#define bias 1.0
#define momentum 0.1
#define rate 0.9 /* 0.01 <= rate <= 1.0 ./

/* momentum is the factor to improve BPN training time >/
/* rate is the training rate coefficient of the weight change */

f#dafine Yser 20
#define Qser 23
#define Mser 68

/* There are 13, 30 and 68 time series for yearly, quarterly and
monthly data, respectively. #/

#define ¥Ymax 6
#define Qmax 8
#define Mmax 18

/* The maximum # of forecasting steps for yearly, quarterly and
monthly time series is 6, 8, and 18, respectively. #/

fdefine maxset 50
#define numerr 30
#define maxobs 150

#detine UPbound 0.99
#define LOWbound 0.01

/* UPbound and LOWbound are the upper delimiter and lower
delimiter of weight vectors #/

#define TRUE 1
#define FALSE 0

float MAX=0.0,MIN=9999999.0;
/* initial values of MAX and MIN for normalization of
observations */

float W_change[50)(50);
/* W_change is the previous weight change #/

float w{100][100],v(100](100];

/* wx(],wy[] are the weight matrics connecting Input, Hidden

iayers vx{},vVy|) are the weight matrics connecting Hidden, Output
layers */

float err_set[50){30};

long seed = 1.0;

int I,H,0;

/* I,H,0 are the # of neurons in Input, Hidden, Output layers#*/

int N; /* N _step ahead forecasting */
int Pass;

/* Pass is the number of times to select the training patterns
and adjust the welght matrices #/

float mape(30)(70),m_mapa(30)(70);
main()

float random(};

float actual[l50]);

/* actual[] is the array of actual values for training and
testing »/

int time=1;
/* 1 <= time <=13 for yearly , 14 <= time <= 43 for quarterly
44 <= time <= 111 for monthly */

int numofobs;
/* numofobs is the # of observations in a certain time series #/
int i,done=0,ada;
int §;
char sernum(7};
FILE *fp,+fopen{();
printf ("\nPlease enter\n");
printf{("the number of neurons for Input layer : %);
scanf ("td",&I);
printf ("8%d\n",I1);
printf (*the number of neurons for Hidden layer : ");
scanf ("td", &(H) ;
printf("td\n" H);
printf("the number of neurons for Output layer : *);
scanf (“%d",&0);
rintf("%d\n",0);
srinth"thl nGmLer of values to be forecast (N = 1,2,4,6,8,12,18)
")
scanf ("%d", &N) ;
printf ("sd\n",N);
printf("the number of train passes : ");
scanf ("td”,&Pass);
printf ("%d\n",Pass);
printf(™\n");
if (0 I= N) {
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printf ("The future values cannot be predicted!\n");
exit(1);

}i
printf("I = %d , H = ¥d , 0 = %d\n",I,H,0);
printf(“%d_step ahead forecasting\n" N);

for(i=0;i<prime;i++) randon();
fp = fopen("data”, "r");

for (i=0;1i<N;i++)
for(j=0;j<maxape;j++) {
mape(i](]j] = 0.0;
n_mape(1i]1{j} = 0.0;

1
printf("\n*essnsasss Yaarly time series forecasting
i.ttiﬁ..ih\n") H
while (time <= Yser && !feof(fp)) {(
/* for yearly time series */
for(i=0; f<maxobs;i++)
actual(i) = 0.0;
for (i=0;i<maxset;i++)
for (j=0;j<numerr;j++)
err_set(1][]}) ~ 0.0;
facanf (fp,"ts",aernum);
tscanf(fp,"%d", &numofobs);
for(i=0;i<numofobe;i++)
fecant (fp," %", &actual(i});
/l
printf ("\n%s $d\n",sernum, numofobs) ;
if (numofobs < I || numofobs <= Ymax) {
printf (“There is no enough data points in the time
series : %s\n",sernum);

}
else if (N > ¥Ymax) {
printf("This ¥d_step forecasting cannot be done ", N);
printf ("with time series %a\n",sernum);

else done = trainwork(numofobs-Ymax,numofobs, sernum,actual);
if (done) {
testwork (¥Ymax,numofobs,sernum,actual,time-1);
}i
done = 0;
*/
MAX = 0.0;
MIN = 9999999.0;
time++;
Yi
*
1€ (N <= ymax) {
MEAN(Yser) ;
M_MEDIAN(Yser) ;
}:

*/
for(i=0;i<N;i++)
for(j=0;j<maxape;j++) {
mape[i}{]j) = 0.0;
n mape(i)(]j) = 0.0;

}i
time = 1;
printf("\n*+ssarseras Quarterly time series forecasting
dhkddhndds\n");
while (time <= Qser && !feof(fp)) {
/* for quarterly time series #/
for(i=0;i<maxobs;i++)
actual{i) = 0.0;
for(i=0;i<maxset;i++)
tor (j=0;i<numerr;j++)
err_set(1i)(J)] = 0.0;
tacanf(fp,"ts", sernun);
fscanf (fp,"%a", knumofobs) ;
for(i=0;i<numofobs;i++)
facant (fp,"sf", kactual(i));
/C

printf("\ni\s $d\n", sernum, nunofobs) ;
if (numofobs < I !! numofobs <= Qmax) {
printf("There is no enough data points in the time
series : As\n", sernum);

}
alse if (N > Qmax) {
printf("This %d_step forecasting cannot be done ", N);
printf("with time series %s\n",sernum);

else done = trainwork(numofobs-Qmax,numofobs,sernus,actual);
it (done) {
testwork (Qmax, humofobs, sarnum,actual, time-1);
}i
done = 0;
»/
MAX = 0.0;
MIN = 9999999.0;
time++;
}i
*
if (N <= Qmax) {
MEAN (Qser) ;
M_MEDIAN (Qser) ;
Yi
*

for(i=0;1<N;i++)
for (§=0; j<maxape;j++) {
mape(i}1(}) = 0.0;
m_mape(i](j) = 0.0;
}i
time = 1;
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printf("\n#+esaeswss Monthly time series forecasting test = a%*lo - r*hi;

RhAARNAAAN\N"); if (test > 0.0) seed = test;
while (time <= Mser && !feof(fp)) ( else sBeed = test + m;
/* for monthly time series +/ return (seed/m);
for(i=0;i<maxobs;i++) }

actual[i] = 0.0;
for (i=0; i<maxset;i++)

for(3=0;j<numerr;j++) A ettt B e et */
err_set(i)(Jj) = 0.0; /* This is the function to train BPN network with the #/
fscanf (fp,*ts",sernum) ; /* training set from the time series data. #/
fscanf (fp, "td", &numofobs) ; trainwork(train,numofobs,sernum,actual)
printf("\n}s td\n", sernum, numofobs) ; int train,numofobs;
for (i=0; i<numofobs;i++} char sernum[7];
fscanf (fp,"¥f", &kactual(i)); float actual(];
if (numofobs < I }] numofobs <= Mmax) { {
printf("There is no enough data points in the time float random(),normalization(),root(150});
series : %$s\n",sernum); float activation();
} float obs[150]{50]; /* obs(] is the array of cbservations #/
elgse if (N > Mmax) { float set{150]1([50);
printf("This td_step forecasting cannot be done “,N); float product[50),H net{50),0 net[50);
printf("with time series %s\n",sernunm); float H_OUT[50],0_OUT(50);
}
else done = trainwork(numofobs-Mmax,numofobs,sernum,actual); /* product is the product of observation and weight. H_OUT[] is
it (done) {( . the net outputs for Hidden neurons while O_OUT{] for Output
testwork (Mmax, numofobs, sernum, actual,time-1); neurons. %/
}i
done = 0; float err(150),error,diff, forecast(50);
MAX = 0.0; float act[150}(50],min[150};
MIN = 9999999.0; int i,4,h,0,c=0;
time++; int ind,in,pass;
}; int b,prev(150],flag;
if (N <= Mmax) { printf("----Training for time series : %s\n",sernum);
MEAN (Mser) ; train = train - I - N;
M_MEDIAN (Mser) ; if (train <= 1)
}i printf("There is no enough data points in the time series :
ts\n",sernum);
fclose(fp); return(0);
} }i
for (i=0;i<=train;i++) {
[¥mmmmm e m e e m s o e omsse—s s sesee Bintinieied */ for(J=0;3<I;j++) {
/* This is the random number generator function from the #/ obs(1]{3) = actual[j+i);
/* paper below. Park and Miller, "Random number generators:#*/ }:
/* good ones are hard to find. Comm. ACM 31, 10(Oct. 1988),*/ for (b=9;b<I+N;b++) {
/* 1192-1201. #*/ obsfi){b] = actual(b+i];
float random() }i
{ ¥i
float a=16807.0,m=2147483647,0,q=127773.0,r=2836.0;
float lo,test; init weight();
int hi; for (1=0;1<50;1++)
hi = {int)(seed/q); lo = seed - g*hi; for(j=0;3<50;3++)
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W_change(i](j] = 0.0; }i

whilea (c <= train) { b=0;
root{c) = normalization(obs(c},I+N); for (pass=1;pass<=Pasa-Cc;pass++) {
min[c) = MIN; ind = (int) (random() * c);

/* the root={maxcbs - minobs) of the observations is saved for for (h=0;h<H;h++) {
denormalization purpose when comes to the testing process save for (i=0;i<=1;1i+4) {
the normalized obserations for training #/ it (1 == I)
product(i) = blas * w[{)(h];
for (i=0;i<I+N;i++) { else product[i] = set[ind)(i] * w[i]([h);
set(c)(i]) = obs(c)(i]); };
}: H_net[h) = 0.0;

for(i=0;i<=I;1+4)
H_net{h] = H_net[h) + product(i];
H_OUT[h] = activation(H _net(h});
yi

for (o=0;0<0;0++) {
for (h=0;h<=H;h++) {
it (h == H)
product{h] = bias * v(h](
else product(h) = H OUT(h])
}i
O_net([o] = 0.0;
for (h=0;h<=H;h++)
O_net{o] = O_net[o] + product(h];
o] OUT[o] = activation(0_net{o)});

/* operations between Input and Hidden layers */

for (h=0;h<H;h++) {
for(i=0;i<=I;1++)
product([i]) = 0.0;
for (i=0;1<=X;{i++) (
if (1 == 1)
product(i) = bias * wii}[h}; o);
else product[i) = obs(c}[i] * w[i])(h]; * vih}{[o]):
}i
H not(h] = 0.0;
for(i=0;1<=I;1++)
H net{h] = H netfh) + product{i};
H OUT[h] = actlvation(H net(h]);
}i
forecast{o]) = O _OUT[o] * root[ind] + min(ind};
/* operations between Hidden and Output layers %/ diff = act{ind}{o) - forecast{o];
if (diff < 0)
diff = forecast(o] - act(ind}(0);
err{o] = diff / act{ind][o0];
}i
error = 0.0;
for(i=0;i<N;i++) error += err(i);
error /= N

for (o=0;0<0;0++) {
for (h=0;h<=H;h++)
product(h] = 0.0;
for (h=0;h<=H;h++) ({
if (h == H)
product(h] = bias * v(h)([o0]);
else product{h]) = H_OUT(h]) * v(h][o];
}; adjust_weight(set{ind),0.0UT, H_OUT);
O_net(o] = 0.0;
for (h=0;h<=H;h++) if (error <= (0.,000001)
0 _net{o] = O _net([o] + product(h}; return(1l);
0_0UT[o] = actIvation(o_net{o));

)n
printt("The training of BPN network for time series %ts is
finished.\n",sernum);

act{c){o) = actual[o+c+I];

Vi return(l);
adjust_welght (obs{c},0_OUT,H_OUT); }

/% init” adjust(obs[c]),ﬁ/
C++;
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/* This is the function to initialize the connecting weight */

/* vectors in the BPN network. *#/
tnit_weight()

{

float random(),delimiter=1.0;

/* delimiters are the bounds for weights ¥/

float sqr_sum=0.0;
int i,h,0;
int ind;

/* initialize the weights between Input and Hidden layers */

for (h=0;h<H;h++) {
for(i=0;ic<mI;+4) {
while (delimiter > UPbound |} delimiter < LOWbound)
delimiter = randon();
w(i){h) = delimiter - 0.5;
delimiter = 1.0;
}i
}i

/* initialize the weights between Hidden and Output layers #*/

for (o=0;0<0;0++) {
for (h=0;h<=H;h++)
while (delimiter > UPbound || delimiter < LOWbound)
delimiter = random();
v(h){o) = delimiter - 0.5;
delimiter = 1.0;
}:
}i
}

/ﬁ ----------------------------------------------------- t/
/* The function adjusts the weight vaectors in the BPN */
/* networks according to the methods from the papers of */
/* Hecht-Nielsen[1987a], */

adjust_weight (x,out,h_out)

float x[);

float out{),h_out[]);

{

float target([50});
float hdelta[50],odelta(50};
int i,h,0;

for(i=0;1<50;i++)
odelta(i) = 0.0;

for(i=0;i<N;i++)
target(i} = x{1+1];

/* adjust the weights connecting Hidden and Output layers #/

for (0=0;0<0;0++)
odelta(o] = out{o] * (1 - out[o]}) * (target(o) - out(o]);
for (o=0;0<0;0++) {
for (h=0;h<=H;h++) {
if (h == H) {
v(h}{o) = v[h][0o] + rate*cdelta[o]*bias;
v(h] (0] += (momentum*W_change{h][o]);
W_change(h] (o] = ratatodeltafo)*bias;
¥W_change[h][0] += (momentum*W_change(h)(o0]);

else (
v(h]}{o] = v(h]{o]) + rate*todeltafo)}*h out{h];
v(h]}{o) += (momentum+*W_change(h](c])}
W_change(h}{o) =~ ratetodeltao)*h_out(h];
W_change(h] (0] += (momentum#*W _change{h][o]);
}:
}i

}i
/* adjust the weights connecting Input and Hidden layers */

for (h=0;h<H;h++) {
hdeltafh) = 0.0;
for(o=0;0<0;0++)
hdelta{h] = hdelta(h] + odelta[o)*v{h]}{0];
hdeltaf(h) = hdelta{h]) * h out{h} * (1 - h_out({h]);

}i
for (h=0;h<H;h++) {
for(i=0;1<=I;1i++)
it (1 == I)
w(i)(h) += (rateshdelta{h]*bias);
else w[i)(h) = w{i)[h) + ratethdelta[h]*x{i};
bi

/% vectors. */

float normalization(x,b)
float x[)/

int b;

{
int i;
MAX = 0.0;
MIN = 9999999,0;
/*float sqr_sum = 0.0;
for (1=0;1<I;1i++)
sqr_sum = gqr_sum + x[i)%x{1];
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for(i=0;1<I;1++) modfactor = actual(~-i]/average;
x(1) = x{i] / sqrt(sqr_sum);*/ .y
for (i=0;1<b;i++) sum = actual{end-1) - actualf{end-n);

if (MAX <= x(1]) modfactor = sum / (n-1);
MAX = x[i);

for(i=0;1i<b;i++)
1f (MIN >= x[1))
MIN = x{1};
for(i=0;i<b;i++)
if (MAX = MIN)
x{1] = (x(L] - MIN) / (MAX - MIN);
else xfi) = 1.0;

for (1=0;1<50;1++)

actualval{i] = 0.0;
for(i=0;i<n;i++)

actualval(i) = actual({i+end};
for(i=0;i<n;i++)

for(3=0;3<I;j++) |

obs{i{){j) = actual(j+begin+i};
}i

return(MAX-MIN) ;

) while (c < n) {
xroot = normalization(ohs(c),I);
/Q ----------- o~ 2 e 4 e T 1 0 o W G o B t/

/* This is the function to test the trained BPN network */
/* model with the remaining k data points (observations) */

/* the xroot=(maxobs - minobs) of the observations is saved for
denormalization purpose when comes to the testing process+*/

/* of a certain time series and evaluate its forecasting */ /* operations between Input and Hidden layers */
/* ability. #/
testwork (n, numofobs, sernum, actual,t) for (hwo;h<H;h++) {
int n,numofobs; for(i=0;i<=I;1++) {
it (1 == 1)
/* n : the maximum # of forecasting steps for yearly, #*/ product{i] = bias » w(i}(h];

/* quarterly and monthly time series (i.e. 6,8,18) ¥/ elsa product(i) = obs(c]{i] * w(i)(h);

}i

char sernum(7) H _net{h] = 0.0;

float actual[]); for(i=0;i<=1;1i++)

int t; H_net[h]) = H_net[h) + product(i];
( H_OUT(h) = actIvation(H_net(h});
float normalization(),xroot; }:

float compare();

float obs[50)([50),H_net[50],0_net{50],product(100];
float H_OUT(50),0_OUT({50);

float error,m_err(30]; for (o=0;0<0;0++) |{
float actualval(50); for (h=0;h<=H;h++) {
float forecast([50)(50); if (h == H)

float sum_err,sum, average; product(h) = bias * v(h}{o];

/* operations between Hidden and Output layers #*/

float modfactor; else product[h] = H_OUT(h} * v[h](o0];
int c=0,0,4,3,h; }3:
int ind,begin,end; O_net[o] = 0.0;
for (h=0;h<=H;h++)
printf ("-~--Testing for time series : %s\n",sernum); O_net(o] = O_net{o] + product(h);
end = numofobs ~ n; 0_OUT[o]} = actIvation(o*not[o])J
begin = end - I;
sum = 0.0;

if (xroot == 0.0)
forecast(c])[o] = MIN;
else forecast{c)[o] = (O_OUT[o]}#*xroot+MIN)+modfactor;

/'
for (i=end-n;icend;i++)
sum += actual{i};

average = sum / n; if ((c > n-N) & (o0 >= n-c))
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forecast[c] (o] = 0.0;
*

printf("output(%d] = %1f\n",0,0 OUT([o]);

printf("forecast(%d) = %1f\n",o,forecast(c}{o]);

printf(M--ee—mmmm e e

*/
i

\n");

/*printf(*error(%d) = %5.2f\n",c,error(c));*/

c++;

}i

compute_err (forecast,actualval,c);

printf("The %d_step ahead forecasting MAPE \n",N);

for (i=0;i<N;i++) {
if ((4 ¥ 10) == 0 && § !~ 0)
printf("\n Y+%d ",i+1);
else printf(™ v+3d * i+1);
}i
printf("\n");
for(im0;i<N;i++) (
if ((4 % 10) == 0 && 1 I= 0)
printf("\n------- ");
else printf("--—-r-—- ");

}:
printf (*\n%);
sum_err = 0.0;
for(§=0;<N;i++) {
error = 0.0;
for (im0;i<c;i++) {
error = error + err_set{i](3});

}i
mape()}{t]) = error / (c-3j);
if ((3 % 10) == 0 && ] 1= Q)
printf ("\n%s5.2f ,mape[j][t H
else printf(®$5.2f " mape(])[t]);
sum_err = 0.0;
}i
printf("\n");
/*printf(*sum_err = ¥f\n",sum_err);*/

printf ("The %3_step ahead forecusting Median-APE \n",N);

for (i=0;i<N;i++)
i ((1 & 10) == 0 && 1 |1= 0)
printf("\n Y+3a ", i+1);
alse printf(" y+td ",i+1);
}:
printt (*\n");
for (im0;i<N;i+4) {
if ((1 % 10) == 0 §& 1 !I= Q)
printf("\n-~---=~ ");
else printf("------- ");
}i

printf("\n");
for(j=0;3<N;j++) {
for(i=0;i<c=j;i++) {
m err(i] = err_set(i][(]);

n mape[j)[t] = compare(m_err,c-});
if ((3 ¥ 10) == 0 &6 § 1= 0)
printf("\n3¥5.2f *,m mape(j}(t]);
else printf("t5.2¢ ", m_mape{j)(t));
}:
printf("\n");

printf(*The testing of BPN network for time series s is

finished.\n",sernum);

/* This is the function to calculate the Mean Absolute
/* Percent Error for each time series of N_step ahead

/* forecasting. «/
compute_err(fore, act,c)
float fore(50)[50),act(]};
int ¢;

{

float sum err=0.0;

float diff;

int 1,3;

for (i=0;i<N;i++)
for (J=0;4<c;j++) {
diff = act[j+i} - fore{J][i]});

if (diff < 0.0) diff = fore{J}{i] - act[)+i};

if (Aiff == 0.0) arr_set{j]{i] = 0.0;

else err_set(j)(i] = TAift % 100 / act(i+i);
/* printf("e{3d]= t5.2f *,{,err _set[c](i]);*/

}i
/*printt( \n") ¥/
}

/Q - -

/* of hidden layer. */
float activation(net)
float net;

{

float out;

I*

if (net > 92.0)
return(0.849999);

/* This function decides the output value of each hidden
/* neuron through the activation function in the neurons

*/
*/
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else if (net < -92,0)
return(-0.150001);
aelse {
out = 1 + 1 / exp(net);
return(l/out~0.15);
}i
*/
out = 1 + 1 / exp(net);
return{l/out);

/ T o e e 0 e e e R i O ‘_--—.I
/* The function calculates the mean of MAPEs for each */
/* forecasting step. */

MEAN (t)

int t;

float mean;
int {,3,c;
printf ("\nThe following table is the list of ths means of
MAPES’\n");
for(i=0;i<N;i++) (

if ((1 % 10) == 0 k& 1 1= 0)

printf("\n Mid ", i+1);
elsa printf(" Mtd f,1+1);

}i
printf("\n");
for(i=0;i<N;i++) {
1f ((1 % 10) =~ 0 && 1 != 0)
printf("\n------- ";
else printf("------- ";
}i
printf("\n");
for(i=0;i<N;i++) {
mean = 0.0;
c=0;
for(3=0;j<t;j++) {
it (mape[i][Jj) != 0.0)
mean = mean + mape(i)(Jj);
elme cCc+é;

}i
J o= 3-c;
mean = mean / J;
it ((1 % 10) == 0 && 1 I= 0)
printf("\nt5.2f ", mean);
else printf("%5.2f %,mean);

Yi
printf("\n");

/* This function calls the sorting function to find out #/
/* the middle term of the Absolute Percent Errors. */
float compare(x,c)

float x[]);

int c¢;

sorting(x,0,c~1);

it ((c % 2) == 0)
return(x((c-1)/2]});

else return(x(c/2]);

}

/. ————————————————————————————————————————————————————————— Q/
/* The function arranges the input data in order by calling #/
/* 1itself recursively. @/

sorting(node, left,right)

float node[];

int left,right;

{

float x,y;

int §,73;

i = left;

j = right;

x = node( (laft+right)/2);

/* compare the middle term with the numbers of its right side and
left side #*/

do {
while (node[i) < x && i < right) 1++;

/* 1f the # on the left side is greater than the middle terms
then stop */

while (x < node{j) && J > left) j--;

/* if the # on the right side is smaller than the middle term
then stop */

it (L <= 4) ( /% swap tha two s */
y = node(i};
node{i] = node(]);
node(}] = y;
1+4; §-=;

}:
}while (i <= §);

/* compare the 78 on the left side of the middle teram ®/
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1f (left < 3)

if i [= 0,
sorting(node, left,j); (m_mape(1][]) 0.0 {

temp(a] = m_mape(i](]];
at++;
/* compare the #s on the right side of the middle term */ }i

dcall the compare() function to rearrange the Median APEs in
order

and return the middle term

if (1 < right)
sorting(node, i, right);

} median = compare(temp,a);
i€ ((1 % 10) == 0 && 1 1= 0)
printf("\ny5,2f ", median);
R At etk ittt bttt */ else printf("t5.2f ", median);
/* This ia the function to plick the middle term of Median */ Yot/
/* Absolute Percent Errors for the time series of yearly, */ printf("\n");
/* quarterly and monthly. */
M_MEDIAN(t) }
int t;

float median,mean;
float compare();
float temp(80];
int 1,j,a,c;
printf("\nThe following table is the list of the medians of
M_APEs’\n");
for (1=0;1i<N;i++) ({

if ((1 % 10) == 0 && i = 0)

printf("\n M _mtd ", i+1);
else printf(" M_mtd ©,i+1);

}i
printf("\n");
for(i=0;1<N;i++) {
if ((L % 10) == 0 && 1 I= 0)
printf (*\n--==--- "),
else printf("=-=----- ");

}i
printf(®\n");
for(i=0;i<N;i++) {
mean = 0.0;
c=0;
for(J=0;j<t;i++) |
if (m_mape(i])[3] != 0.0)
mean = mean + m_mape{i]{]}];
else c++;

}i
} = 3-c;
mean = mean / J;
1f ((L % 10) == 0 && { != 0)
printf ("\n35.2f ", mean);
else printt("%5.2f Y, mean);
}i
J*for(i=0;1<N;i+4) {
a = 0Q;
for(§=0;j<t;j++)
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#include <stdio.h>

#include <math.h>

#define prime 200

/* prime the random number generator 200 times #*/

fdefine maxape 70
/* maxape is the maximum total # of apes #/

fdefine Yser 20

#define Qser 23

#define Mser 68

/* There are 13, 30 and 68 time series for yearly, quarterly
and monthly data, respectively. */

#define Ymax 6

#define Qmax 8

#define Mmax 18

/* The maximum # of forecasting steps for yearly, quarterly
and monthly time series is 6, 8 and 18, respectively #/

#define maxget 50
#define numerr 30
#define maxobs 150

#define UPbound 0.5

#define LOWbound 0.01

/* UPbound and LOWbound are the upper delimiter and lower
delimiter of weight vectors */

#define TRUE 1
#define FALSE 0

float w{100){300},v[300](100);

/* wx(]),wy[] are the weight matrics connecting Input, Kohonen
layers */

/% vx{],vy[] are the weight matrics connecting Kohonen,
Grossberg layers ¥/

float alpha=0.7,beta=0.1;

float A=0.3,B=0.3;

/*float alpha, beta,UPbound,LOWbound,A,B;*/
float denorm;

float err_set(50)(30};

long seed = 1.0;

int I,K,G;

/* 1,K,G are the # of neurons in Input, Kohonen, Grossberg
layerss/

int N; /* N _step ahead forecasting */
int Pass;

/% Pass is the number of times to select a certain training
pattern and adjust the weight matrices #/

float mape(30)(70),m _mape(30)(70);
main()

float random();

float actual([200);

/* actual[] is the array of actual values for training and
testing #*/

float Alpha,Beta, AA,BB;

int time=1;

int numofobs;

/* 1 <= time <=13 for yearly , 14 <= time <= 43 for guarterly
44 <= time <= 111 for monthly #/

/* numofobs ie the # of observations in a time serias #*/

int {,done=0,add;

int j§;

char sernum{7];

FILE *fp,*fopen();

printf("\nPlease enter\n");

printf("the number of neurons for Input layer : ");
scanf ("%d",&I);

printf (*3d\n",I1);

printf("the number of neurons for Kohonen layer : "});
scanf ("%d", &K) ;

printf ("sd\n" K);

printf("the number of neurons for Grossberg layer : %);
scanf ("%d", &G) ;

printt ("sd\n",G);

printf ("the number of values to be forecast (N = 1,2,4,6,8,12,18)

T ")

scanf ("%d",&N) ;

printf("sd\n" ,N};

I

printf(“the upperbound of weight vectors : ");
scanf ("tf", &UPbound) ;

printf("%£\n", UPbound) ;

printf("the lowerbound of weight vectors : ");
scanf ("t f", §LOWbound) ;

printf ("tf£\n",LOWbound) ;

printf("the training rate coefficient alpha : ");
scanf ("sf",&Alpha);

printf ("tf\n",Alpha);

printt("the training rate coefficient beta : ");
scanf ("%f",&Bata);

printf ("$f\n", Beta);

printf("the training rate coefficient A : "):
scanf ("sf",&AR);
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printf("sf\n", AA);

printf("the training rate coefficient B : ");
scanf ("¥ ", &BB) ;

printf ("$f\n",BB);

*

printf(“"the number of train passes : ");
scanf {"td", &4Pass);
printf("td\n", Pass);
printf("\n");
if (I1=G !} I <=N) {
printf ("The future values cannot be predicted!\n");
exit(1);
}i
printf("I = td , K =33 , G = ¥d\n",I,K,G);
printf("%d_step ahead forecasting\n",6N);

for(i=0;i<prime;i++) random();
fp = fopen("data","r");

/*alpha = Alpha; beta = Beta;
A= AA; B = BB;w/
for(i=0;1i<N;i++)
for(j=0;j<maxape;j++) {
mape{i}(3j] = 0.0;
m _mape{i)(3) = 0.0;

’
printf ("\ntsakasrsss Yearly time series forecasting
tﬁtﬁttiiﬁ!\n");
while (time <= Yser && ifeof (fp)) {
/* tor yearly time series */
fscanf (fp,"¥s",sernum);
fscanf (fp,"%d", &énumofobs) ;
for(i=0;i<numofobs;i++)
fscanf (fp, "3 f",&actual(i));
/*

printf(*\n%s %$d\n", sernum, numofobs) ;
if (numofobs < I || numofobs <= Ymax)
printf (“There is no enough data points in the time
series : ts\n",sernum);

}
else if (N > Ymax) {
printf("This %d_step forecasting cannot be done ",N);
printf("with time series ta\n",sernum);

else done = trainwork{numofobs-Ymax,numofobs,sernum,actual);
if (done) (
testwork (Ymax, numofobs, sernum,actual,time-1);
}i
for (i=0; i<maxobs;i++)
actual{i}) = 0.0;
for(i=0;i<maxset;i++)
for(3=0;j<numerr;j++)

v/

}
I

err_set(ij[j] = 0.0;
done = 0;
alpha = 0.7; beta = 0.1;
A=20.3; B=20.3;

time++;

if (N <= Ymax) {

}
*/

MEAN(Yser) ;
M_MEDIAN(Yser);

.
’

alpha = 0.7; beta = 0.1;
for(i=0;i<N;1++)

for(j=0;j<maxape;j++) {
mape(i}(}] = 0.0;
m_mapef[i)(]j] = 0.0;
}i

tima = 1;

printf ("\nasaasasenn Quarterly time series forecasting
ﬁ‘.ﬁii.itt\n");

while (time <= Qser && !feof(fp)) {

/*
pr

se

*/

/* for quarterly time series */
fscanf (fp, "As",sernum) ;
fscanf (fp,"td”, &numofobs);
for (1=0;i<numofobs;i++)
fecanf (fp,"Yf", Lactual(i]);

intf("\ntes %d\n", sernum, numofobs) ;
if (numofobs < I !! numofobs <= Qmax) {
printf("There is no enough data points in the time
ries : %s\n",sernum);
}
else if (N > Qmax) {

printf("This %d_step forecasting cannot be done ",N);

printf("with time series 3s\n", sernum);

else done = trainwork(numofobs-Qmax,numofobs,sernum,actual);

if (done) {
testwork (Qmax, numofobs, sernum, actual,time-1);
}i
for(i=0;i<maxobs;i++)
actual{i) = 0.0;
for (1=0;i<maxset;i++)
for(j=0;j<numerr;j++)
err_set(i}[j} = 0.0;
done = 0;
alpha = 0.7; beta = 0.1;
A=20.2; B=0.3;

time++;

LET



}i
*

it (N <= Qmax) {
MEAN (Qser) ;
M_MEDIAN (Qser) ;
3
alpha = 0.7; beta = 0.1;
for(i=0;i<N;1i++)
for (J=0;j<maxape; j++) {
mape(1)(j) = 0.0;
m_mape[1)[]] = 0.0;

bi
time = 1;
printf(®\n##*asssnss Monthly time series forecasting
ARRARRRARA\ Q") -
while (time <= Mser && !feof(fp)) {
/* for monthly time series #/
fscanf (fp,"%s",sernum);
fscanf (fp,"td", &énumofobs) ;
printf("\nts  td\n", sernum,numofobs);
for(i=0;i<numofobs;i++)
fscanf (fp, "%f", éactual(i]};
if (numofobs < Y || numofobs <= Mmax)
printf ("There is no enough data points in the time
series : ¥8\n®,sernum);

}
else if (N > Mmax)
printf ("This %d_step forecasting cannot be done ",N);
printf ("with time series %¥s\n",sernum);

else done = trainwork(numofobs-Mmax,numofobs,sernum,actual);
if (done) {
testwork (Mmax, numofobs,sernum,actual,time~1);

}i
for(i=0;i<maxobs;i++)
actual(i] = 0.0;
for (i=0; i<maxset;i++)
for (j=0;j<numerr;j++)
err_set(i}(j} = 0.0;
done = 0;
alpha = 0.7; beta = 0.1;
A=20,3; B= 0.3;
time++;
}i

1f (N <= Mmax) {
MEAN (Mser) ;
M_MEDIAN (Mser) ;
}i

fclose(fp);

[home e ————— mmemmm e ————— cemmmesom— . —————— Y
/* This is the random number generator function from the %/
/* paper below. Park and Miller, "Random number generators:+/
/* good ones are hard to find. Comm. ACM 31, 10(Oct. 1988),*/
/* 1192-1201. %/

float random()

{

float a=16807.0,m=2147483647.0,q=127773.0,r=2836.0;
float lo,test;

int hi;

hi = (int) (seed/q); 1lo = seed - q*hi;

test = a*lo -~ r+*hi;

if (test > 0.0) Beed = test;

else seed = test + m;

return (seed/m);

}

T T ———
/* This is the function to train CPN network with the +#/
/* training sets from the time series data, */
trainwork(train, numofobs, sernum, actual)

int train,numofobs;

char sernum(7]);

float actual(};

float random(),normalization(),root{100];

float obs(150]{100); /* obs({) is the array of observations #*/
float set[150)([100);

float product(100),K net{300),G_net{100);

/* product is the product of observation and weight. K _net[] is
the net outputs for Kohonen neurons while G_net{] for Grossberg
neurons. #/

float act{100)(50]),diff, err{50),error,fore(50];
int i,3,k,9,c=0;

int ind, in,pass;

int b,prev(1%50j,flag;

int count{300};

/* count({] is an array of counters of winning times for each
Kohonen neuron */

printf("----Training for time series : %s\n",sernum);
train = train - I;
if (train <= 1) {
printf ("There is no enough data points in the time series :
ts\n",sernum);
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return(0);
}i

for(i=0;i<=train;i++)
for(3=0;3<I;3++) {
obs(i]{j) = actual[j+i);

¢

initvweight();
for(1=0;1<300;i++) count(i) = 0;

while (c <= train) ({
root(c) = normalization(obs[c));

/* the sguare root of sum of squares of the observations is saved
for denormalization purpose when comes to the testing process #/

/* operations between Input and Kohonen layers */

for(i=0;1i<X;i++) {
/* save the normalized obserations for training %/
set(c){1) = obs{c)(i);

fo;(kno;k<x;k++) {
for(i=0;1i<x;i+4) {
product(i) = obs(c)(i) * w{i][k]);

}
x_ﬁet[k] = 0.0;
for (i=0;1<1;1++)
K _net(k] = K _net{k) + product(i);

}i
j = decide_winner(K_net,count,train+1);
b=0;

/* operations between Kohonen and Grossberg layers */

for(g=0;g<G;g++) {

for (k=0;k<K;k++) {
if (k == 3)

product(k] = v(k][g];
else product(k) = 0.0;
Yi
G_net[g) = 0.0;
for (k=0;k<K;k++)

G_net(g] = G_net(g] + product(k];
if (g >= G-N) {

act{c][b] = actual[c+G-N+b};

b++;

}i

}i

adjust weight(obs[c],

3):
/* inTt ed1ust(obsrcl);

*/

CH+;
Yi

b=0;
for (pass=1;pass<=Pasa-c;pass++) {
ind = (int) (random() * c);

for(k=0;k<K;k++) {
for(i=0;4<T;1++)
product[i] = set{ind){1) * w[i){k];

K_;et[k] = 0.0;
for(i=0;i<1;1++)

K_net{k] = K net{k) + product(i);
}i

j = decide_winner(K_net,count,train+l);
b=0;
for (g=0;g<G;g++} {
for (k=0;k<K;k++) {
1f (k == j)
product(k) = v(k](g];
else product[k] = 0.0;
}i
G_net(g] = 0.0;
for (k=0;k<K;k++)
G_net{g] = G_net([g] + product[k];
it {g >= G-N)
fore(b] = root(ind] * G_net(g};
b++;
Yi
}i

for (i=0;1<N;i++) {
diff = act(ind){i) - fore{i)};
if (diff < 0.0)
diff = fore[i) - act{ind](i);
err{i) = aiff / act(ind)(i);
}i
error = 0.0;
for(i=0;i<N;i++) error += err(i);
error /= N;
if (error <= 0.000001)
return(l);
adjust_weight(set{ind},3);
}i
printf("The training of CPN network for time series s is
finished.\n",sernum);
return(l);

}
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{* This is the function to initialize the connecting weight #*/
[/* vectors in the CPN network. */

init_weight()

{

float random(),delimiter=1.0;

/* delimiters are the bounds for weights */

float sgqr_sum=0.0;

int {,k,q;

int ind;

/* initialize the welghts between Input and Kohonen layers #*/
for (k=0;k<K;k++) {
for (i=0;4<I;1++) {
while {delimiter > UPbound || delimiter < LOWbound)
delimiter = random();

w(i)[k) = delimiter;

delimiter = 1.0;

}i

/* normalization of the welghts hetween Input and Kohonen
layers */
for(i=0;i<I;{i++)
sqr_sum = sqr_sum + w(i)[k}*w[i])(k]);
for(i=0;i<I;i++)
wii){k} = w[i][k]) / sqrt(sqr_sum);

i

/* initialize the weights between Kohonen and Grossberg
layers */
for (k=0;k<K;k++) {
for(g=0;g<G;g++)
while (delimiter > UPbound || delimiter < LOWbound)
delimiter = random();
vik)(g] = delimiter;
delimiter = 1.0;
}:

/* normalization of the weights between Kochonen and Grossberg
layars */

8qr_sum = 0.0;

for (g=0;9<G;g++)

sqr_sum = sqr_sum + v(k](g]*v[k](g]);

denorm = eqrt(sqr_sum);

for (g=0;g<G;g++)

) v(k]l(g] = v(k}(g]) / denorm;

}

T e T L LR */
/* The function adjusts the weight vectors in the CPN */

/* networks according to the methods from the papers of
/* Hecht-Nielsen[1987a). */

adjust_weight(x,j}

float x{];

int j;

{
int i,k,q9;

*f

/* adjust the weight<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>