
AN OBJECT-ORIENTED DATABASE RETRIEVAL

SYSTEM FOR AQUATIC TOXICITY

DATA FILES

By

KUMPERA KULPAIBOON

Bachelor of Science
Ramkhamhaeng University

Bangkok, Thailand
1983

Master of Business Administration
Oklahoma City University
Oklahoma City, Oklahoma

1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1993

AN OBJECT-ORIENTED DATABASE RETRIEVAL

SYSTEM FOR AQUATIC TOXICITY

DATA FILES

Thesis Approved:

L/ Thesis Advisor

~"c;L~

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. Huizhu Lu

for her encouragement and advice throughout my graduate

program. Without her close attention, patience, and guidance

this research work wouldn't have been possible.

Many thanks also go to Dr. John P. Chandler, Dr. George

E. Hedrick, and Dr. Sterling L. Burks for serving on my

graduate committee. Their cooperation and supports were very

helpful throughout the research work. A special thanks to

Dr. Burks for providing AQUIRE data files and guidance on

user interface section of the research.

My parents, Somphot and Jamnean Kulpaiboon, encouraged

and supported me all the way. I sincerely appreciate their

love, motivation, and faith in my abilities.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION
Database and Object-Oriented Paradigm .
AQUIRE Database
The Objective of the Thesis
The Organization of the Thesis

II. LITERATURE REVIEW
Introduction
Object-oriented Language

III.

IV.

v.

VI.

Related Works on Object-Oriented system .

OBJECT-ORIENTED SYSTEM
Object-Oriented Data Model
Object and Class

Relationships Between Classes
Object-Oriented Programming .

Encapsulation
Polymorphism .
Inheritance

DATA REPRESENTATIONS
VAX FORTRAN Numeric Data Representation .

Integer Number
Real Number

Intel 80386 Data Representation
Integer Number .
Real Number

Data Conversion
Method: Integer Conversion
Method: Real Number Conversion .
Character Data

DESIGNED COMPONENTS OF THE RETRIEVAL SYSTEM
AQUIRE Data files
AQUIRE Dialog window System .

Data Retrieval Subsystem .
User Interface Subsystem . .

SUMMARY AND CONCLUSIONS

iv

Page

1
1
2
3
3

4
4
5
8

12
12
13
13
14
15
15
15

17
19
19
20
21
21
22
23
23
24
25

26
26
30
30
36

47

Chapter Page

REFERENCES 49

APPENDIXES 52

APPENDIX A - INFORMATION TO SETUP AND RUN THIS
PROGRAM . . . 53

APPENDIX B - USER'S MANUAL 55

APPENDIX C - SAMPLE OUTPUTS FROM AQWINDOW 67

v

Table

1.

2.

3 •

4.

LIST OF TABLES

LIST OF AQUIRE DATA FILES .

VAX DATA REPRESENTATION •

LIST OF FILES AFTER SETUP

LIST OF SUBMENU COMMANDS

vi

Page

18

20

54

58

LIST OF FIGURES

Figure

1. VAX FORTRAN Data Representation

2. Intel 80x86 Data Representation

3. AQUIRE Record and Their Fields ..

4. AQUIRE Files and Their Pointers

5. A Data Retrieval subsystem ...

6. Dialog Window Interface Diagram

7.

8.

Initial Desktop

Select Submenu With Menu Items and
Status Line

vii

Page

19

22

28

29

31

37

56

65

CHAPTER I

INTRODUCTION

Database and Object-Oriented Paradigm

A database system generally is a computerized record

keeping system. Its purpose is to maintain data with

integrity and security and make them available to a user.

The user can access its records with an accessing language.

An accessing language at least includes retrieval, addition,

deletion, and updating operations.

Object-oriented programming (OOP) is a new programming

technique that allows programmers to reuse code components

previously developed under a defined set of classes, objects

and methods. The object-oriented programming provides a

capability for incorporating symbolic representation of

facts, data, and heuristic knowledge in a database model.

Such a database system based on object-oriented concepts is

called an object-oriented database system.

The object-oriented database system offers an ability

to represent both declarative and procedural knowledge. The

declarative knowledge is incorporated with the procedural

knowledge to form a complete representation of real-world

1

entities. This provides a better way to present data in

database application areas.

2

The object-oriented environment supports classes and

hierarchy structures. Any class inherits methods from its

superclass. As a result, applications may be written by

adapting previously constructed code to the task here. A

programmer selects a previously defined class that

functionally resembling the intended application and creates

a subclass. He or she needs only redefining significant

differences by overriding an inappropriate method with a

customized one.

AQUIRE Database

The Aquatic Toxicity Information Retrieval Database

(AQUIRE) was established in 1981 by the United States

Environmental Protection Agency Office of Pesticides and

Toxic Substances. It provides a quick access to a

comprehensive aquatic toxicity data. It contains over

105,300 records updated annually. The AQUIRE data files

contain information up to March 1989.

AQUIRE contains reviewed scientific articles published

both nationally and internationally on the toxicity of

chemicals to aquatic organisms and plants. It also includes

selected toxicity test results and related effects of

laboratory and field aquatic toxicity chemical to freshwater

and marine organisms (AQUIRE 1989).

3

The Objective of the Thesis

A DEC VAX 11/785 computer running VMS operating system

using VAX FORTRAN language is the original retrieval system.

However, most of the toxicity researchers use personal

computers as electronic tools for their researches. Thus,

the goal of this thesis is to construct a retrieval system

to AQUIRE data files, with object-oriented programming

(OOP), on a personal computer using DOS operating system.

The Organization of the Thesis

Followings are the organization of the Thesis. Chapter

I, this chapter, introduces object-oriented database and

original AQUIRE database system. The objective of the thesis

is also presented in this chapter. Chapter II introduces

object-oriented paradigm, object-oriented languages, and

review of the existing object-oriented systems. Chapter III

presents further details of the object-oriented system and

its data model.

Chapter IV is the comparison between VAX FORTRAN and

Intel 80386 data representations. The conversion methods are

introduced in this chapter. Chapter V presents the designed

components of the proposed retrieval system. Chapter VI is

the conclusion of the thesis and suggestion for future

study. Finally, the information to setup the retrieval

system, user's manual, and sample retrieved output are

presented in the Appendix A, B, and C.

CHAPTER II

LITERATURE REVIEW

Introduction

Recently, database systems have emerged in many new

application areas such as CASE, CAD/CAM, office automation,

and expert systems. These areas require advanced data

modeling capabilities to handle their complex data

representations. An object-oriented data model presents a

feasible solution. Its model consists of conceptual entities

as objects, collection of objects as classes, and organizing

all classes in a hierarchical form.

The basic idea of an object-oriented database is to

represent an item in the real world being modeled with a

corresponding item in the database (Peterson 1987). This

leads to improved maintainability and understandability of

the systems, especially, the system with a great degree of

complexity.

The object-oriented database is developed from the

concepts of object-oriented programming to support complex

applications. It reduces the semantic gap between a program

and its supporting data. The important properties of an

object are data encapsulation and inheritance. The object-

4

5

oriented programming encapsulates procedures into data they

manage. These procedures are called methods. These exact

form of data and methods are not directly accessible from

outside the object, but with interaction between objects

(Peterson 1987). An object may inherit attributes from other

objects. It may mix, match, and even substitute those

inherited data and methods.

Klaus Dittrich divided object-orientation into three

levels: structurally object-oriented, operationally object­

oriented, and behaviorally object-oriented (Dittrich 1986).

A structural object-orientation is a model that defines data

structures to represent entities of any complexity. An

operational object-orientation is a model that includes

operators to deal with complex objects. This level includes

the structural object-orientation. Finally, a behavioral

object-orientation includes features to define object type

of any complexity with a set of specified operators. Thus,

an instance can only be used by calling these operators.

Object-Oriented Language

The nature of object-oriented language changes the way

programmers think about programming. Object-oriented

programming focuses on the data to be manipulated rather

than on procedures that do the manipulation. A programmer

creates an object and a set of methods instead of a

procedure to control the system operations.

There are many examples of object-oriented language

such as Sirnula-67, Srnalltalk, ADA, Clascal, LISP Flavors,

and C++. Each language has a certain degree of supporting

an object-oriented paradigm. For example, Srnalltalk is more

object-oriented than ADA because it supports an inheritance

mechanism, but ADA does not. However, Ada has a stronger

typing mechanism than Srnalltalk has.

Sirnula-67. Sirnula-67 is considered the father of all

object-oriented languages (Meyer 1987). It was the first

language to introduce class as a language mechanism for

encapsulating data. However, the term object-oriented and

the explicit awareness of the idea carne from Srnalltalk

(Booch 1986). There are object-oriented languages that

follow the traditional path of Sirnula-67 such as ADA and

Clascal. Some languages follow the concepts of LISP and

Srnalltalk such as Flavors and LOOPS. Some languages are

extensions of other languages to support object-oriented

concepts. For example, Object Pascal and C++ are extensions

of Pascal and C respectively.

6

Srnalltalk. Srnalltalk is an emerging language for

expert systems and AI work. In Srnalltalk, everything is

based on objects, methods, messages, classes, and

inheritance (Coed and Yourdon 1991a). The programmer defines

a class of objects. Objects in Srnalltalk are analogous to

pieces of data in other languages (Hu 1990). Srnalltalk class

describes an object and the methods. For example, numbers

are objects and each number is an instance of the class

number and responds to messages such as plus, minus, and

modulo. An integer is a subclass of the class number. It

responds to the methods defined in its superclass, class

number (Alexander 1985).

Object-c. Objective-c, developed by Brad Cox, is an

object-oriented language resulted of combining Smalltalk

with C (Booch 1986 and Christian 1993). The language is an

extended C in the direction of Smalltalk, but less like C

than C++. It is a primary programming language on the NeXT

machine. The language introduces an object and message as a

new data type and operation to those in C. The power of

Objective-c lies in the predefined classes.

7

C++. C++ is based on c and is a superset of C++. It

was introduced by Bjarne Stroustrup in 1983 (Christian

1993). It is a hybrid language that supports both the

procedural and object-oriented paradigm. The language

supports object-oriented concepts and high-level abstraction

(Wiener 1988). It is similar to Modula-2 in its simplicity

and support for modularity. Finally, C++ has a flexibility

to deal with the hardware-software interface and low level

system programming.

C++ is a strongly typed object-oriented language.

Compiler checks and demands that all initialization and

8

assignment statements comply with the type defined at

compile time. This increased type checking reduces errors in

software system when compares to c. In C++, the programmer

declares a class and defines the methods for the class with

specific accessibility. These are public, protected, and

private.

Related Works on Object-Oriented system

GemStone. GemStone is an object-oriented database

server developed by Servia Logic Development Corporation. It

is classified as a behaviorally object-oriented system

(Peterson 1987). Gemstone is designed to support a database

management system for multiuser environment. Gemstone

supports an object identity no matter where the object is or

what the object contains. It provides controlled shared

access of common data, which is increasingly common to

object-oriented databases. GemStone was initially

implemented on a VAX-VMS machine. The principal concepts

used in Gemstone are objects, message, and class. These

correspond to record, procedure call, and record type in a

conventional database (Hu 1990).

POSTGRES. POSTGRES is a relational database with

extensions to support object management developed at the

University of California at Berkeley (Stonebraker 1986}. It

supports abstract data type mechanism. POSTGRES allows a

9

user to define a new data type, as a tuple in the relational

model, along with procedures to manipulate it.

The approach to relational model with procedures as

database objects give three properties (Peterson 1987).

First, subobject is no longer need to be accessed in a

database object, because the procedures are the mechanism to

implement the part-of hierarchy. Second, the unpredictable

types of subobjects can be modeled efficiently. Finally, an

object can be stored once and indirectly referenced by a

subobject.

OZ+. OZ+ is an object-oriented database system

intended to use in modeling office activities. It is

developed at the University of Toronto and implemented on

Sun 3/50 system. It provides storage and retrieval of

persistent data in multiuser environment (Weise 1989). OZ+

uses the concepts of objects, contents, rules, events, and

message to manage object persistence and concurrence of the

database system.

ODDESSY. ODDESSY is an object-oriented database system

intended for computer-aided database design. It uses the

concepts of objects, messages, and rules (Diderich 1989).

ODDESSY defines two types of messages to specify information

about an entity. First, a vertical modifier is used in data

entry to define a relationship of an object with another.

Second, a horizontal modifier is used to describe property

of an object.

10

ORION. ORION is an object-oriented database system

developed at Microelectronics and Computer Technology

Corporation. It is a single-user, multitasking database

system that supports complex object called composite object

(Kim 1989). The system is designed on Sun UNIX machine

implemented Common Lisp. ORION consists of four subsystems:

message handler subsystem, object subsystem, storage

subsystem, and transaction subsystem. The message handler

subsystem controls all messages including system defined

functions, user defined methods, and access messages. The

object subsystem provides control of high-level functions

including class definitions, their inheritances, and

database schema. The storage subsystem manages storage

location. Finally, The transaction subsystem manages and

controls multiple concurrent transactions.

System X-1. System X-1 adopts an object-oriented

approach for knowledge representations and inferences (Leung

and Won 1990). It includes both declarative and procedural

representations. All system objects are grouped in the

system class. The knowledge base is defined by a collection

of classes, objects, and methods. End-user communicates with

system defined objects or knowledge-engineer defined objects

through user interface. Knowledge-engineer can define

knowledge through a conventional editor or menu driven

interrogation.

11

DKOM. Distributed-Knowledge Object Modeling (DKOM)

consists of a set of distributed knowledge objects (KO).

Each knowledge object consists of a behavior part, a

knowledge-base part, and a monitor part (Tokoro and Ishikawa

1984). Knowledge objects run in parallel and communicate

with each other by mean of message passing. It responds to a

request message according to its knowledge-base.

Next chapter, Chapter III, the author presents further

details of the object-oriented system. The chapter begins

with object-oriented data model, and follows with object,

class, and their mechanisms.

CHAPTER III

OBJECT-ORIENTED SYSTEM

Object-oriented Data Model

An object-oriented database system is a database system

that provides all the traditional DBMS services and supports

object-oriented concepts. Generally, it combines the

capabilities of an object-oriented language and the storage

management functions of a database system (Hu 1990). It is

emerging to support the complex applications to reduce the

semantic gap between complex applications and the data

storage supporting those applications (Peterson 1987).

The objected-oriented term refers to a set of semantic

modeling mechanisms for capturing the information of a real

world application. The object-oriented model represents both

declarative and procedural knowledge. Declarative knowledge

is knowledge about facts and truths of the object. Procedure

knowledge is knowledge about the functions that can be

performed by the object. Both form a complete representation

of a real world application. In object-oriented database

system, the application is part of the system.

The standard for object-oriented data model has not

been established yet. However, the least requirements to

12

13

classify an object-oriented data model are object and object

identity, semantic primitives for the modeling of the

structure of information, and object behavior and

encapsulation (Rishe 1992). The first two requirements

represent the semantic database models toward the

information as real world entities. The last requirement

presents abstraction mechanisms for the objects.

Object and Class

An object is an abstract software model of an entity in

a problem domain. The object is defined with both data and

operations that define behavior of the data. These objects

send messages back and forth to each others. All object of a

particular type belong to the same class. A class is a

description of one or more objects with a uniform set of

data and operations.

Relationships Between Classes

Classes' responsibilities can be identified by the

relationships between classes. These relationships are is­

kind-of, is-analogous-to, and is-part-of (Wirf-Brock,

Wilkerson, and Weiner 1990). These relationships can be

useful in identifying and assigning the responsibilities.

Is-kind-of Relationship. Is-kind-of is a share

relationship, normally a parent-child relationship. Classes

that are a kind of some class share some responsibility.

These are data and methods.

14

Is-analogous-to Relationship. The relationships

between class can be analogous. Class A and class B may

share the same responsibilities if class A has a

relationship to another part of the system that is analogous

to that borne by class B (Wirf-Brock, Wilkerson, and Weiner

1990). Several classes that share the same superclass are

most likely to be analogous.

Is-part-of Relationship. A class can compose of many

instance of other classes. When a class composes of

instances of other classes, no inheritance of behavior is

implied.

Object-Oriented Programming

An object-oriented programming (OOP) is a new step of

the programming concept. It takes recent developments in

programming language to their next logical step to increase

clarity, modularity, and programming efficiency (Tello

1991). It provides a way to modularize programs that can

reuse copies such modules on demand. This is one of the

advantages over a procedural language. The program can be

easily modified by simply adding or deleting modules (or

object). There are three features of a language that makes

it a truly object-oriented. These features are

encapsulation, polymorphism, and inheritance (Pappas and

Murray 1990, Manola 1990).

Encapsulation

Encapsulation is a term for information hiding.

Variables, constants, and their methods are hidden inside

entities called objects (Duncan 1991). These data are

communicated by means of messages. Each object is an

instance of an object or class type. The purpose of

encapsulation is that a particular object class's

implementation can be modified without side effects

elsewhere.

Polymorphism

Polymorphism is an object's ability to select the

correct internal method based on the type of data received

in a message (Duncan 1991). A print object may receive a

message containing an integer, a real number, or an ASCII

string. The print object may take an appropriate action

depending on the incoming message without knowing the

contents of the message.

Inheritance

15

Inheritance is the ability to create classes that will

automatically model themselves on other classes. It is a

language mechanism for deriving a new class of objects from

16

an existing class (Duncan 1991). When a class B has been

defined so as to model itself on class A, class B is a child

class of class A. It inherits data and method from class A.

Class B need only contain the actual code and data for new

or changed methods. Normally a class can have zero or more

parent calls or child class.

The following chapters are details of the

object-oriented retrieval system design. They begin with the

data representations, designed components, and their

definitions.

CHAPTER IV

DATA REPRESENTATIONS

AQUIRE data source tape is in ASCII character set using

DEC VAX 11/785 processing unit with VMS 5.1 operating system

and VAX FORTRAN as the implementation language. Retrieval

system and other manipulation software are not included.

Files 1 to 9 describe their respective files 10 to 18.

File 1 contains an introduction to AQUIRE data tape and

description for data file 10. File 2 to 9 are in form of

FORTRAN COMMON block descriptions for data files. The

contained information shows the record format.

Files 10 to 18 are data files. File 10 is a text file,

contains Chemical Abstract Service registry numbers. File 11

is the center of its database system. It contains pointers

(record number or related field) to related records in file

12 to 18. File 16 contains a trailing character to fill 45

characters per record. Table 1 shows AQUIRE files names,

record sizes and their contents.

17

File
Name

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

18

TABLE 1

LIST OF AQUIRE DATA FILES

Logical
Records

58
66
36
21
32
26
22
21
24

5,392
105,394

9,952
2,815

117,103
369,003
117,100
260,816
777,825

Logical
Length File Contents

80 TAPE_INTRO.TXT
80 AQTOX.INC
80 RETOX.INC
80 SPECIES.INC
80 STOCAS.INC
80 STOCCB.INC
80 STOCHR.INC
80 STOREM.INC
80 STOTHA.INC

136 CAS numbers and chemical name
160 Main AQUIRE data file
544 Citation information
68 Species information
24 CAS numbers used in each test
20 Concentration-cont. int-BCF
45 Purity/Chem characteristics
72 Remarks data file
16 Temp-Hardness-Alk-D.O.-pH

note: Logical Length unit is bytes.

19

VAX FORTRAN Numeric Data Representation

VAX binary INTEGER numbers are stored in two's

complement representation with the bytes stored in

increasing order of significance. The least significant byte

is the first byte. The most significant bit is the sign bit.

The sign bit is zero for positive numbers and one for

negative numbers. INTEGER and REAL number bits are labeled

from the right, 0 through 15 or 0 through 31.

brt I 0 [-- -·
-] A CHARACTER*1

b<l 15 I 0

is[
--- --- [-u----~ A

INTEGER*2

31 24

~I r- 16 I 0_

A INTEGER*4

31 24

L T. -r-----_j A REAL*4

A+3 A+2 A+1

VAX FORTRAN DATA REPRESENTATION

Figure 1. VAX FORTRAN Data Representation

Integer Number

INTEGER*2 are stored in two contiguous bytes aligned on

an arbitrary byte boundary. Values are in the range -32,768

to 32,767.

20

INTEGER*4 are stored in four contiguous bytes aligned

on an arbitrary byte boundary. Values are in the range

-2,147,483,648 to 2,147,483,647.

The following is a table showing a bit address and its

representation of VAX FORTRAN's integer and real number.

Data Type

INTEGER*2

INTEGER*4

REAL*4

Real Number

TABLE 2

VAX DATA REPRESENTATION

Bit Address

15
14:0

31
30:0

15
14:7
6:0 and 31:16

Description

sign bit
binary number

sign bit
binary number

sign of fraction bit
excess 128 binary exponent
normalized 24-bit fraction
with the redundant most
significant bit not
represent

Floating-point data (REAL*4) is four contiguous bytes

starting on an arbitrary byte boundary. Bits are labeled

from right to left, o through 31. Bit 15 is the sign bit.

The fraction bits increase in significance from 16 through

31 and 0 through 6. The fraction is normalized with the

redundant most significant fraction bit not represented

21

(hidden bit normalization). This bit is assumed to be one

unless the exponent is zero. The exponent zero represents

either a real number value zero or a reserved operand.

The exponent, bit 14:7, is stored in binary excess of

128 notation. Binary exponents from -127 to 127 are

represented by the equivalent binary 1 to 255.

The value data is in the approximate range 0.29*10**-38

to 1.7*10**38 with a precision of about seven decimal

digits.

Intel 80386 Data Representation

Intel 80386/80486 processor breaks down a datum into

bytes, which is the smallest addressable data, and stores

them in memory low-order byte first. This representation

maintains compatibility with its earlier processors, 8086

and 80286.

Assuming that the 32-bit hexadecimal value 100F755D is

stored in memory, beginning at location A, the individual

memory bytes are:

Address
Contents

Integer Number

A
5Dh

A+1
75h

A+2
OFh

A+3
10h

Integer and long-integer are stored in contiguous two

or four bytes using the same convention as VAX's integers. A

signed integer is stored in two's complement notion with the

22

byte stored in increasing order of significance. The most

significant bit indicates a sign bit.

Real Number

A short real number is stored in four contiguous bytes.

Bit 31 is a sign bit, zero for positive numbers and one for

negative numbers. The exponent field, bit 30:23, is stored

with the bias of 127 for short real numbers. For example, if

the exponent represents a value of 2**3, the value in the

exponent filed is 130. The values zero and all binary one's

are reserved for representing special values and cannot be

used to represent floating point numbers.

btl 7 0
[---~~-]

1 byte

brt 1 015 8

~ow byte jsj high byte --] 16-bit word

bit 7 0 15 8 23 16 31 24

I low byte I I lsi high byte] 32-bit word

bit 31 30 23 22 16 15 8 7 0

exponent I fraction fraction fraction float ..
c

INTEL 80x86 DATA REPRESENTATION

Figure 2. Intel 80x86 Data Representation

23

The fraction part of the floating point number occupies

23 bits, bit 22:0. The fraction includes the implied 1 bit.

Representative values range from ±1.18*10**-38 through

±3.4*10**38 with a precision of about seven decimal digits.

Data Conversion

The retrieval system has to read AQUIRE data and

convert them from VAX's data to Intel's data format before

any further use. The conversion section arranges data into a

correct byte order and retrieves them with a corresponding

data type.

Method: Integer Conversion

Begin. step 1. Copy two bytes of an integer field from

an input record to a two bytes memory

buffer.

step 2. Reverse bytes order in the buffer.

Intel_int[O) Vax_int[1];

Intel_int[1) = Vax_int[OJ;

step 3. Return buffer into integer data type.

Long integer conversion can be done with the same

method as integer conversion, but with four bytes size

applied. c language offers a union structure which will

return a correct byte represents an integer data type. This

can be done by copying the binary content to a defined union

structure then reading the integer from that union

structure.

Method: Real Number Conversion

24

Begin. step 1. Copy four bytes of an integer field from

an input record to a four bytes memory

buffer.

step 2. Reverse bytes order in the buffer.

Intel_real[O] = Vax_real[2];

Intel_real[l]

Intel_real[2]

Intel_real[J]

Vax_real[J];

Vax_real[OJ;

Vax_real[l];

step 3. Return buffer into real number data

type.

C language offers a union structure which will return a

correct byte representing a specified data type. The union

structure works correctly with integer and long integer data

types. However, with real number, data must be arranged

manually before the union structure will return the correct

value.

VAX floating point data keeps the sign bit and the

exponent field in the low ordered word but Intel floating

point data defines the sign bit and exponent field in the

high ordered word. The above method will do the arranging

data.

25

Character Data

Both VAX FORTRAN and Intel use ASCII character set for

their character data type representation. Character and

string can be directly used in the program.

CHAPTER V

DESIGNED COMPONENTS OF THE RETRIEVAL SYSTEM

Object-Oriented design is a process of decomposing a

program into objects and defining the relation between them.

It identifies those objects in the real world according to

the domain of problems. Then, the objects are simulated in

the computer according to their behavior.

The author chooses C++ as the implemented language,

because C++ is an extension of c with object-oriented

capability. It supports both procedural and object-oriented

paradigms. Most of all, it supports the hardware-software

interface and low level system programming, which is a

necessary feature to deal with the original AQUIRE data

files.

AQUIRE Data files

AQUIRE files consists of nine fixed-size record files.

AQTOX is a center file that contains pointers to the other

files. Figure 3 displays their records and their field

names. Each block represents a record with its file name on

the top and its field names inside each small block. An

arrow-headed line represents a pointer which points from one

26

27

field to a record (record number or field of a record) of a

specific file.

Each file contains one or more pointer fields which are

referred to a related record in other files. Figure 4 shows

these fields with their names and the number of possible

occurrences. Record with more than one occurrence represents

a specified number of records to combine into one related

information. For example, field ZCCBPTR of AQTOX file

contains a pointer to a specific record in STOCCB file which

contains a pointer to the next record in itself. This next

record contains a pointer to the next record, and so on, up

to twelve records in STOCCB file.

28

AQTOX
STOCHR

ZFLAG
STOCAS ZUPDATE

,. NEXTCHR

NEXTCAS «(ZCASPTR
PURITY

CASNUM ZCHRPTR CHRTYPE

CASPLOC ZIREF
CHRFIELD

CASSLOC ZRPLOC
CHRAQLOC

-

CASAOLOC ZRSLOC
CHRFILL

-

CAS TYPE ZAUTHOR

ZYEAR

ZAPLOC SPECIES
ZASLOC • LATIN

CASNUMF
ZTEST1

COMMON

)> cAs Number
ZTEST2
ZREVUR

MAJOR

chemicai-N~,.;;e MINOR
ZRCODE
ZLFIELD

SPREF

ZFWSW
ZSTUDY A')
ZISPEC

RETOX ZSPLOC
STOCCB

AUTHOR ZSSLOC
,. NEXTCCB

YEAR ZUFSTG CCBCF
"-- ~---~---~

YEARA ZCONTRL CCBFIELD

TITLE ZEFFECT CCBAOLOC

SOURCE ZRESVRD

REFNUM '<(ZCCBPTR

REFTYP ZCCTYP1

APLOC ZCCTYP2 STOTHA

ASLOC
ZBCTYP1 >-' NEXTTHA

RPLOC ZBCTYP2 THADP

RSLOC ZBTIME1 THAFIELO
-- --·-

Ml ZRTIME1 THAAQLOC

Dl ZBTIME2

Yl ZRTIME2

MU ZTIMEUN
- - " STOREM

DU ZEXPTY ' ,.. NEXTREM
ZCONC YU

LITREV ZTHAPTR
REMARK

GAR MARK ZREMPTR
REMFIELD

ZFILL
REMAQLOC

-' REMFILL

Figure 3 • AQUIRE Record and Their Fields

29

AQTOX STOCCB

ZCCBPTR _I up to 12 records for ~
concentrat1on-conf ,nf-bcf 1 ConcentratJon-Conf-Jnt-BCF

(record number) l_ 1nformallon

RETOX

I
I '

crtat•on reference number ~I REF
& mfor mat 1or- I referE-nce number for crtat1on

(reference number)

STOCHR

ZCHRPTR I up to 6 records for

f
purity & chemtcai charactenstiC 1 punty & chermcal

(recOfd oumber)
I

charactenst1c comment

SPECIES

I
spec1es number t ZISPEC

&rt:s 11arne

I

spec1es number
(record number)

STOREM

ZREMPTR I up to 7 records for I remarksfJeld ., 1 cor '""pond~ng remark f <eld
{ rocmrl number)

STOCAS

C.~S number,~ I_ ZCASPTR

l c.he1 n1L.dl type I
CAS number & chemcal type
(fecord number)

' STOTHA
----- - -- -

I ZTHAPTR up to 15 records for
CASNUM Temp-Hardness-Aik-D 0 -pH -, 1 corres.pondmg THA f1eJd

(record number)

I I I- ·-
CAS number &
chern1ca! name

Figure 4. AQUIRE Files and Their Pointers

30

AQUIRE Dialog window System

The AQUIRE Dialog Window system mainly consists of two

subsystems, both are object-oriented subsystems. One is a

data retrieval, another is a user interface. The data

retrieval subsystem controls access to database files. The

user interface subsystem is designed with dialog windows and

a menu system. It is a graphical user interface. A user will

learn to use and understand its functions in a short time.

Data Retrieval Subsystem

The Data retrieval subsystem is the sole access to

database files. This subsystem consists of eight class

structures. Each class has specific services to the

subsystem. The subsystem provides its client with data from

the database. It converts the data from VAX FORTRAN data to

Intel data representation before returning to its client.

The data retrieval subsystem maintains its own search

method. It checks for current data before attempting a

search. This will eliminate any unnecessary search. Figure 5

shows the designed hierarchy classes of the data retrieval

subsystem.

31

INFOrec

INFILEinfo DB record Define

Search

Datafile

Figure 5. A Data Retrieval Subsystem

The class descriptions that constructs the data

retrieval susbsytem are as follows.

Class DBrecord

32

This is a base class for all accessing database files.

This class keeps information only about a current access

record and its file name. It returns a field of record in

binary format, a file name, a record size and its record

number.

Parent Class. None

Child Class. DEfile, AQfield

Attribute. filename, dbrecord, field, dbrecnum, reclen

Service. setdbrec(), dbfile(), dbfield(), dbrecnum(),

dbreclen()

Class AOfield

AQfield's main purpose is to perform a data conversion.

It contains no member data. It gets a database field from

its parent-class DBrecord and its corresponding information

from its parent-class INFILEinfo. This information consists

of field name, field type, field size, and field offset.

Then, it converts the requested field of data into Intel

data format. It also checks with it parent-class Define to

define further meaning of the requested field.

Parent Class. DBrecord, INFILEinfo, Define

Child Class. Search

Attribute. None

Service. fieldvalue()

Class DBFile

33

DBfile controls all accessing functions to a database

file. It obtains information of a retrieving record from its

parent-class INFILEinfo. This information consists of file

name and its record size. Then, it keeps a retrieved record

in its buffer before calls its parent-class's member

function setdbrec(). It also responsible to control open and

close a database file.

Parent Class. DBrecord, INFILEinfo

Child Class. Search

Attribute. dbfile, flname, buffer, recsize, recread,

reccount

Service. opendbf(), closedbf(), setbegin(), curfile(),

iscurfile(), getrec(), reccount()

Class Search

This class inherits properties from its parent-class

DBfile and AQfile to retrieve a record and extract any field

of data from the record. Its solely responsible is to locate

a specific record in a database file.

Parent Class. DBfile, AQfield

Child Class. Datafile

Attribute. setsearch()

34

Service. search()

Class Datafile

The responsibility of this class is to control open,

close, and get a specific record from database files. It

checks whether a database file is opened or not before it

calls the search() functions. This confirms the data

integrity and reduces the responsibility of other classes

that require access to database files. This class is a

connecting point between database files and a user interface

subsystem.

Parent Class. Search

Child Class. None

Attribute. openfile(), closefile()

Service. getrecord()

Class INFOrec

This class maintains and updates information of a

database file and database record. This is necessary

information to access and extract a database file. This

information consists of filename and its location, record

name, record size, field name, field data type, and field

offset.

Parent Class. None

Child Class. INFILEinfo

Attribute. headrec, inforec

35

Service. curinfo(), setflinfo(), addinfo(), newinfo(),

filename(), recsize(), allfield(), fieldnum(), fieldname(),

fieldtype(), fieldsize(), fieldoffset()

Class INFILEinfo

This is the only child-class of INFOrec. It reads a

corresponding information file and saves the information in

INFOrec. It also checks for presence of requested

information before it attempts to read the information file.

Parent Class. INFOrec

Child Class. None

Attribute. infile, openinf(), closeinf(), readhead(),

readrec()

Service. getinfname(), filename(), recsize(),

allfield(), fieldnum(), fieldname(), fieldtype(),

fieldsize(), fieldoffset()

Class DBFILEinfo

This class finds a match database file name of a given

field name. It checks whether a file name or field name is

valid or invalid. It contains no data. Actually, it is a

collection of functions using information from class

INFILEinfo.

Parent Class. INFILEinfo

Child Class. None

Attribute. noexteninf()

Service. dbfilename(), dbfilematch(), validfield(),

validfile()

Class Define

36

This class gives a corresponding description of any

field of record to a defined character code. It also checks

for validity of some defined field contents.

Parent Class. AqtoxDef, castype_def, StoccbDef,

StochrDef, StoremDef, Stothadef

Child Class. None

Attribute. fieldname()

Service. define(), valid()

User Interface Subsystem

This is a graphical user interface with menus and

dialog windows. The menus give a user choices to select one

or more dialog windows and commands to work with the

database. With object-oriented designed interface, the user

can direct access to or exit from any commands or dialog

windows at any time.

Many class structures in user interface subsystem

derives from Turbo Vision's class library. Turbo Vision is a

user interface toolkit, C++ class library. It is a part of

Borland C++ with Application Frameworks. It has components

to construct dialog boxes, overlay windows, and build menu­

based applications.

37

Figure 6 shows TDialogApp class, which is the main

control of the user interface subsystem, and the

communication between the data retrieval subsystem and the

user interface subsystem.

TDialogApp

1 1 1 1

I .I AquireScreenData I J T AquireDialog

1 1 1((1

I I CitationScreenData I_ J TCitationDialog

1 2 1 1

I I SpeciesScreenData I I TSpeciesDialog

1 2 1 1

J I CasScree n Data I I TCasDialog

Data File 1 2 1 1

J I ConcentScreenData I I TConcentDialog

1 1 1 1

I I PurityScreenData I I TPurityDialog

1 __ j r- 1

I T em pScree n Data .I TiempDialog

1 1 1 1

I j RemarkScreenData I .I TRemarkDialog

I TMenuBar I
I TMenuStatusLine I

Figure 6. Dialog Window Interface Diagram

The class descriptions that constructs the user

interface susbsytem are as follows.

Class AquireScreenData

38

This class keeps information for main Aquire dialog

window. It accesses database file 11 through an instance of

the class DataFile, AquireDataFile. It has a control

function to check if it needs to update its information with

one from the database.

Parent Class. None

Child Class. None

Attribute. fdFlag, preData, setZtime(),

clearUnFlagField(), setNowData()

Service. nowData, setSearch(), getData()

Class CitationScreenData

This class keeps information for Citation dialog

window. It accesses database file 12 through an instance of

the class DataFile, citationDataFile. It has a control

function to check if it needs to update its information with

one from the database.

Parent Class. None

Child Class. None

Attribute. fdFlag, preData, setDate(),

clearUnflagField(), setNowData()

Service. nowData, setSearch(), getData()

39

Class SpeciesScreenData

This class keeps information for Species dialog window.

It accesses database files 11 and 13 through two instances

of the class DataFile, AquireDataFile and SpeciesDataFile.

It has a control function to check if it needs to update its

information with one from the database.

Parent Class. None

Child Class. None

Attribute. fdFlag, flFlag, preData,

clearUnFlagField(), searchSpeciesFile, searchAquireFile(),

searchZlifstg()

Service. nowData, setSearch(), getData()

Class CasScreenData

This class keeps information for CAS dialog window. It

accesses database files 10 and 14 through two instances of

the class DataFile, CasnumoataFile and CasDataFile. It has a

control function to check if it needs to update its

information with one from the database.

Parent Class. None

Child Class. None

Attribute. fdFlag, flFlag, preData,

clearUnFlagField(), resetNowData(), searchCasFile(),

searchCasnumFile()

Service. nowData, setsearch(), getoata()

40

Class ConcentScreenData

This class keeps information for Concentration-Conf

inf-BCF dialog window. It accesses database files 11 and 15

through two instances of the class DataFile, AquireDataFile

and ConcentDataFile. AquireDataFile gives information of

concentration type and BCF type. ConcentScreenData contains

maximum of 12 records of file 15 to fill the dialog window.

Parent Class. None

Child Class. None

Attribute. None

Service. nowData(), getData()

Class PurityScreenData

This class keeps information for Purity and Chemical

Characteristics dialog window. It accesses database file 16

through an instance of the class DataFile, PurityDataFile.

PurityScreenData contains maximum of 6 records to fill the

dialog window.

Parent Class. None

Child Class. None

Attribute. None

Service. nowData, getData()

Class TempscreenData

This class keeps information for Temp-Hardness-Alk­

D.O.-pH dialog window. It accesses database file 18 through

an instance of the class DataFile, TempDataFile.

TempScreenData contains maximum of 15 records to fill the

dialog window.

Parent Class. None

Child Class. None

Attribute. None

Service. nowData, getData()

Class RemarkScreenData

41

This class keeps information for Remarks dialog window.

It accesses database file 17 through an instance of the

class DataFile, RemarkDataFile. RemarkScreenData contains

maximum of 7 records to fill the dialog window.

Parent Class. None

Child Class. None

Attribute. None

Service. nowData, getData()

Class ControlOpenCloseWindow

This class controls open and close dialog window. It

maintains an ID flag for each dialog window. All dialog

windows have to signal this class before creating or

removing a dialog window.

Parent Class. None

Child Class. None

Attribute. dwOpen

42

Service. setOpen(), setClose(), isOpen()

Class TMenuStatusLine

TMenuStatusLine inherits properties from its parent

class Turbo Vision's TStatusLine. Its function is to display

short help information for each menu command at the bottom

of the screen.

Parent Class. TStatusLine

Child Class. None

Attribute. None

Service. hint()

Class TDialogApp

TDialogApp is a user environment class. It is the

beginning of this window system application. It maintains

all dialog windows which are user's interfaces. It opens and

closes a dialog window on user's demand. These dialog

windows serve both input and output to user.

Parent Class. TApplication

Child Class. None

Attribute. pAquireDialog, pCitationDialog,

pSpeciesDialog, pCasDialog, pConcentDialog, pPurityDialog,

pTempDialog, pRemarkDialog, cascade(), outFileSelect(),

dosshell(), initMenuBar(), initStatusLine()

Service. handelEvent()

43

Class TAguireDialog

TAquireDialog is a user interface dialog window. It

displays data from AquireScreenData which are retrieved from

AquireDataFile. It functions both user's input and output on

the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

Class TCitationDialog

TCitationDialog is a user interface dialog window. It

displays data from CitationScreenData which are retrieved

from CitationDataFile. It functions both user's input and

output on the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

Class TSpeciesDialog

TSpeciesDialog is a user interface dialog window. It

displays data from SpeciesScreenData which are retrieved

from AquireDataFile and SpeciesDataFile. It functions both

user's input and output on the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

Class TCasDialog

TCasDialog is a user interface dialog window. It

displays data from CasScreenData which are retrieved from

casnumDataFile and CasDataFile. It functions both user's

input and output on the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

Class TConcentDialog

TConcentDialog is a user interface dialog window. It

displays data from ConcentScreenData which are retrieved

from AquireDataFile and ConcentDataFile. It functions both

user's input and output on the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

44

45

Class TPurityDialog

TPurityDialog is a user interface dialog window. It

displays data from PurityScreenData which are retrieved from

PurityDataFile. It functions both user's input and output on

the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

Class TTempDialog

TTempDialog is a user interface dialog window. It

displays data from TempScreenData which are retrieved from

TempDataFile. It functions both user's input and output on

the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

Class TRemarkDialog

TRemarkDialog is a user interface dialog window. It

displays data from RemarkScreenData which are retrieved from

RemarkDataFile. It functions both user's input and output on

the same screen.

Parent Class. TDialog

Child Class. None

Attribute. None

Service. handelEvent()

46

CHAPTER VI

SUMMARY AND CONCLUSIONS

An object-oriented data model is the result of

combining object-oriented programming to database

management. An object-oriented data model is now occupying a

significant part of the database technology. It is expected

to become predominant in tomorrow's database. However, there

is not yet a defined standard procedure in designing object­

oriented system such that in relational system. Different

authors apply different approach and diagraming technique to

define the data structure.

There are benefits in developing object-oriented

software. One is to reduce the total life cycle of software

cost. Another is to set up a software system that resists

accidental corruptions. Object-oriented programming is much

more easier to modify and extend than conventional-oriented

programming. It offers an ability to manage large software

projects or create prototypes quickly (Tesler 1986). In the

future, the object-oriented database technology will

possibly become commonly used data model as the relational

model.

47

48

The AQWINDOW database retrieval system is designed with

the object-oriented program structure. It consists of two

subsystems: a data retrieval subsystem and a user interface

subsystem. The data retrieval subsystem maintains

information of the data files and retrieval methods. The

user interface subsystem is a dialog window and menu driven

system. It provides users services and queries the database.

The AQWINDOW is a working model of an object-oriented

database retrieval system to AQUIRE database. The system can

be easily modified to be a general purpose database

retrieval system by overloading some class structures

defined for AQUIRE data.

There are some restrictions to the ability of AQWINDOW

The system takes only one search argument field at a time.

The search argument must be in full. Finally the system does

not have ability to correct spelling. The above shortcomings

are suggested for future system modification. The future

research should apply natural language to user interface

subsystem. This will extend the retrievability and return

more informative data than the defined set of command and

dialog window.

REFERENCES

Alexander, J. H. and M. J. Freiling. 1985. Smalltalk-80 Aids
Troubleshooting system Development. System and
Software. Volume 4, Number 4 (April): 111-118.

AQUIRE 1989. U.S. Environmental Protection Agency, Duluth,
Minnesota.

Baase, Sara. 1983. VAX-11 Assembly Language Programming.
Englewood Cliffs, New Jersey: Prectice-Hall.

Brown, Linfield C. and Thomas 0. Branwell, Jr. 1987. The
Enhanced Stream Water Quality Models QUAL2E and QUAL2E­
UNCAS: Documentation and User Model. Athens, GA:
Environmental Research Laboratory.

Booch, Grady. 1986. Object-Oriented Development. IEEE
Transactions on Software Engineering. Volume SE-12,
Number 2 (Feburary): 211-221.

Christian, Kaare. 1993. Borland C++ Techniques & Utilities.
Emeryville, CA: Ziff-Davis Press.

Coed, Peter and Edward Yourdon. 1991a. Object-Oriented
Analysis. Englewood Cliffs, New Jersey: Yourdon Press
Computing Series.

Coed, Peter and Edward Yourdon. 1991b. Object-Oriented
Design. Englewood Cliffs, New Jersey: Yourdon Press
Computing Series.

Coed, Peter and Jill Nicola. 1993. Object-Oriented
Programming. Englewood Cliffs, New Jersey: Yourdon
Press Computing series.

Cooke, Nancy M. and James E. McDonald. 1986. A Formal
Methodology for Acquiring and Representing Expert
Knowledge. Proceedings of the IEEE 74 (October).

Diederich, J. and J. Milton. 1989. Objects, Messages, and
Rules in Database Design. In Object-Oriented Concepts,
Databases, and Applications. ed. W. Kim and F. H.
Lochovsky, 177-215. Reading, Massachusettes: Addison­
Wesley Publishing Co.

49

Dittrich, Klaus R. 1986. Object-Oriented Database System:
the Notion and the Issue. International Workshop on
Object-Oriented Database System (September).

50

Duncan, Ray. 1991. Power Programming: A Look at Differences
Between C and C++. PC Magazine (July): 444.

Davis, J. R. and P. M. Nanninga. 1985. GEOMYCIN: Towards a
Geographic Expert System for Resource Management.
Journal of Environmental Management 21: 377-390.

Georgeff, Michael P. and AmyL. Lansky. 1986. Procedural
Knowledge. Proceedings of the IEEE 74 (October): 1383-
1398.

Hu, David. 1990. Object-Oriented Environment in C++.
Portland, Oregon: Management Information Source, Inc.

Kim, W., N. Ballou, and H. Chau. 1989. Features of the ORION
Object-Oriented Database System. In Object-Oriented
Concepts, Databases, and Applications. ed. W. Kim and
F. H. Lochovsky, 309-337. Reading, Massachusettes:
Addison-Wesley Publishing co.

Leung, K.S. and M.H. Wong. 1990. An Expert System Shell
Using Structured Knowledge. Computer (March): 38-47.

Manola, Frank. 1990. Object-Oriented Knowledge Bases. AI
Expert (March): 26-36.

Meyer, Bertrand. 1987. Reusability: The Case for Object­
Oriented Design. IEEE Software. (March): 50-64.

Nelson, Ross P. 1991. Microsoft's 80386/80486 Programming
Guide. Redmond, Washington: Microsoft Press.

Papas, Chris H. and William H. Murray. 1990. Turbo C++
Professional Handbook. New York: McGraw-Hill, Inc.

Parker, sandra c. and c. Ray Asfahl, eds. 1988. An
Industrial Chemical Hazards Database With a Natural
Language Interface: An Application of Artificial
Intelligence. Computer & Industrial Engineering 15:
443-445.

Peterson, Robert W. 1987. Object-Oriented Database Design.
AI Expert. (March): 26-31.

Rishe, Naphtali. 1992. Database Design The Semantic Modeling
Approach. New York: McGraw-Hill, Inc.

51

Stern, A. M. and C. R. Walker. 1978. Hazard Assessment of
Toxic Substances: Environment Fate Testing of Organic
Chemicals and Ecological Effects Testing. In Estimating
the Hazard of Chemical Substances to Aguatic Life. ASTM
STP 657. John Cairns, Jr., K. L. Dickson, and A. W.
Maki, eds. American Society for Testing and Materials:
81-131.

Stonebraker, Michael and Lawrance A. Rowe. 1986. The Design
of POSTGRES. In Procedding 1986 ACM SIGMOD
International Conference on the Management of Data.
(June).

Tello, Ernest R. 1991. Object-oriented Programming for
Windows. New York: John Wiley & Sons, Inc.

Tesler, Larry. 1986. Programming Experiences. Bytes.
(August): 195-205.

Tokoro, Mario and Yutaka Ishikawa. 1984. An Object-oriented
Approach to Knowledge systems. Proceeding of the
International Conferences on Fifth Generation Computer
Systems.

Webster, Bruce F. 1989. The NeXT Book. Reading,
Massachusetts: Addison-Wesley Publishing Co.

Weise S. P. and F. H. Lochovsky 1989. OZ+: an Object­
Oriented Database System. In Object-Oriented Concepts,
Databases, and Applications. ed. W. Kim and F. H.
Lochovsky, 309-337. Reading, Massachusettes: Addison­
Wesley Publishing Co.

Wiener, Richard S. and Lewis J. Pinson. 1988. An
Introduction to Object-Oriented Programming and C++.
Reading, Massachusettes: Addison-Wesley Publishing Co.

Wirfs-Brock, Rebecca, Brian Wilkerson, and Lauren Wiener.
1990. Designing Object-Oriented Software. Englewood
Cliffs, New Jersey: Prentice Hall.

Zaniolo, carlo and Ait-Kaci, Hassan eds. 1986. Object
Oriented Database System and Knowledge Systems. In
Expert Database Systems. Proceedings From the First
International Workshop, ed. Larry Kerschberg, 49-65.
University of South Carolina: The Benjamin/Cummings
Company, Inc.

APPENDIXES

52

APPENDIX A

INFORMATION TO SETUP AND RUN THIS PROGRAM

This database retrieval system requires at least 7.23MB

free hard disk space on a working computer system. The hard

disk requirement is for install a subset of AQUIRE database

and the retrieving program. The full database will

approximately require ten times the hard disk space for this

subset of AQUIRE database.

Setup and Run

step 1

Make two directories named DATA and PROGRAM. These two

must be sub-directories of the same directory and must be at

the same level. The directory DATA will contain AQUIRE data

files and their information files. The directory PROGRAM

will contain the retrieving program.

step 2

Copy data files and information files to directory

DATA. These file names are listed in table 3. Copy program

file AQWINDOW.EXE to directory PROGRAM.

53

54

step 3

Change current directory to PROGRAM. Type command

AQWINDOW.EXE to run the program.

TABLE 3

LIST OF FILES AFTER SETUP

Directory File Name Size File Description

DATA 10 733312 data file 10
PART11 875823 partial data file 11
PART12 811432 partial data file 12

13 191420 data file 13
PART14 814053 partial data file 14
PART15 803886 partial data file 15
PART16 826393 partial data file 16
PART17 .. 805224 partial data file 17
PART18 1 804679 partial data file 18

CASNUM. INF : . 55 information for file 10
AQTOX.INF 956 information for file 11
RETOX.INF 416 information for file 12

SPECIES.INF 111 information for file 13
STOCAS.INF 164 information for file 14
STOCCB.INF 98 information for file 15
STOCHR.INF 166 information for file 16
STOREM.INF 122 information for file 17
STOTHA.INF 96 information for file 18

PROGRAM AQSQL.EXE 188954 command line program
AQWINDOW.EXE 544184 window menu program

APPENDIX B

USER'S MANUAL

Program Information

This application is designed and tested on an IBM PC AT

class computer with Intel 80386 microprocessor and DOS

operating system.

The author writes this program with C++ object-oriented

programming language. The object-oriented user interface

allows the user to go to any level of command directly from

any where in the application. The user can access a dialog

window, menu command, or exit from the application at any

time.

This program is compiled with Borland C++ version 3.1.

The initial data retrieval system module compiled with

Borland's Turbo C++ version 2 and later compiled with

Borland C++ version 3.1 with some modifications. The user

interface module is constructed by deriving classes from

Turbo Vision's class library. Turbo Vision is a part of

Borland C++ with Application Framework. It is a software

development's tool kit.

55

56

This application supports both key board and mouse for

user input. However, the user may use this application

easier with keyboard and mouse than with keyboard alone.

Desktop

A Desktop is the whole computer screen. It is divided

into three sections: menu bar, working area, and status

line. A menu bar provides a user with choice of commands to

access the database and to manage dialog windows. A working

area is an area where all dialog window will be placed on. A

status line shows some short keyboard shortcuts and

information to menu items. Figure 7 shows an initial desktop

with three screen sections.

Figure 7. Initial Desktop

Menu Bar

The menu line on top of the screen is called a menu

bar. It consists of three submenu titles: file submenu,

select submenu, and window submenu. These are pull down

submenus.

57

A pull down submenu can be activated either by

highlighting the desired submenu then press Enter key or

positioning a mouse's pointer at the submenu then click the

mouse's left button. Each submenu also has a highlighted

character, which, when combined with an Alt key will pull

down that submenu. For example, a user can press Alt+F to

pull down the file submenu. Submenus consists of menu items.

A menu item has a highlighted character that can be

typed to select that item. An accelerator for a menu item is

listed to the right of a menu item. The accelerator key can

be used without activating the submenu. A menu item that

followed by an ellipsis leads to a dialog box.

Table 3, shows all menu items and their shortcut keys

of this menu system.

Working Area

The working area section occupies most of the desktop

space. It only service is to place the pull down menus and

dialog windows on.

58

status Line

The status line section is a single line at the button

of the screen that lists some keyboard shortcuts. It serves

as a short information of the menu command. The status line

command is automatically invoked when either a submenu or

menu item is activated (highlighted). It displays a brief

information about the submenus and menu items.

TABLE 4

LIST OF SUBMENU COMMANDS

Submenu Menu Item Accelerator Key

File Select output file FJ
Save to output file F2
DOS shell
Quit Alt+X

Select AQUIRE Alt+A
Citation Alt+I
Species Alt+S
CAS Alt+C
Concentration-Cont. Inf-BCF Alt+O
PurityjChem Characteristic Alt+H
Temp-Hardness-Alk-D.O.-pH Alt+T
Remark Alt+R

Window Move ctrl+F5
Next F6
Cascade
Close Alt+FJ

59

Dialog Window

A dialog window is an interface between a user and the

database. Each window has a name labeled on top. The dialog

window displays database fields with their appropriate

labels. Some are searchable fields, some are information

only fields. The dialog window also has one or more buttons.

This button directs the user to either another related

dialog window or another related record of the same database

file.

This application consists of 8 dialog windows which are

named as following.

1. Main AQUIRE Database

2. Citation Information

3. Species Information

4. Chemical Information

5. Concentration-Confidence interval-BCF Information

6. Purity/Chemical Characteristic Information

7. Temperature-Hardness-Alk-D.O.-pH Information

8. Remarks to AQUIRE Information

The Main AQUIRE Database dialog window is the center of

the retrieval system. The user can directly switch to other

dialog windows with related information at any time. The

system will update the information in the dialog window as

the user switches from one dialog window to another.

60

Search Field

The searchable field labels with a highlighted

character. The user can moves from one field to another with

Tab key on the keyboard. The searchable field accepts a

case-insensitive string as a search argument. However, it

does not check for a correct spelling. The search argument

must be in full. The system compares the search argument

with a field of record. It will not match a search argument

with a partial field of record.

The system will look for a field of data matched to a

search argument after the user types in the searched value

and presses the Enter key. The search argument is limited to

one field at a time. If the user enter more than one search

field, the system will takes the first argument in its order

as a search argument and discards the others.

While the system searches the database, the user cannot

move the cursor or move from one field to another. If the

system has found the matched data, it will update the dialog

window with the new information. If it does not find a

matched data, it will either clear the dialog window or

return to the previous information. Then the user can resume

the operation.

Button

A Button is another component of the dialog window. It

either directs the user to another related record within

61

another file or within the same file. The user activates a

button by either moves the cursor with Tab key to the button

then press enter or positions the mouse's pointer on it then

press the mouse button. Each button has a highlighted

character label, the user can activate it using Alt key

combines with the highlighted character.

If the button directs the user to another file, it will

open a relevant dialog window and update its information

with a related record from the database. If it directs the

user to a related record within the same files, it will

update its information with the related record.

The direct access button is equivalent to the menu item

of the select menu. It sends the same command to the system,

but it works as a shortcut key. The Button updates the

information on a dialog window using the same method as the

user enters a search argument field. This will eliminate a

misspell or error typing. The user will quickly and easily

move from one dialog window to another.

Menu Command

The menu system consists of three submenus: file

submenu, select submenu, and window submenu. Each submenu

consists of menu items. Followings are descriptions of each

menu item.

62

File Submenu

The file submenu command consists of four commands.

These commands are select output file, save to output file,

DOS shell, and quit command.

Select Output File Command (FJ). This command let a

user to choose an alternate output file name. The current

dialog window data will save to this output file whenever

the user issues the save to output file command (F2). At the

beginning of the application, the default file is set to

"out.dat".

This command leads user to a dialog box. The dialog box

displays the current selected output file name, cancel

button, OK button, and file dialog button. The user has

choices to cancel the command, select a new file name, or

use the file dialog command. The file dialog command will

display a list of existent file name that can be selected at

user's convenience.

The user may choose any existent or non-existent file

name. If the user selects an existent file name, the save to

output file command (F2) will append the data to the

selected output file. If the user selects (or enters) a non­

existent file name, the save to output file command will

create the selected file and write the data to that file.

After the output file is created, the later saved data will

append to the selected output file.

63

The user may change the output file any time during

running the application. However, if the selected output

file is currently a non-existent file, the application will

not create the selected file until the user issues the save

to output file (F2).

Save to Output File (F2). This command saves the

current data of a dialog window to an output file. The

default output file is "out.dat". It saves the data only of

the current, active, dialog window. It does not save the

data of all running dialog window. If the user wants to save

the data of all dialog window, he or she has to save it one

by one.

After the data is saved, the system will display an

information dialog to confirm the operation. The user may

either press Enc or Enter key to acknowledge the

information.

This command does nothing if it is activated without

any dialog window opened.

DOS Shell. This command will temporarily exit from the

application. This command is designed for a user to access

DOS (or others) command. The user may use this command to

send an output file to a printer or open a text editor to

edit an output file. The user may go back to the application

by issuing "exit" command.

64

Quit (Alt+X). This command will terminate all functions

then quit the application. The user may issue this command

at any time to quit the application.

Select Submenu

This submenu consists of eight dialog window commands.

A dialog window is the mean access to the database. Each

dialog window can be independently opened or closed. Figure

8, shows the Select submenu with its menu items. Following

are list of the dialog window commands with its shortcut key

in the parenthesis.

1. AQUIRE (Alt+A)

2. Citation (Alt+I)

3. Species (Alt+S)

4. CAS (Alt+C)

5. Concentration-Cont. Int-BCF (Alt+O)

6. Purity/Chem Characteristic (Alt+H)

7. Temp-Hardness-Alk-0.0.-pH (Alt+T)

8. Remark (Alt+R)

Window Submenu

The window submenu consists of four window manipulation

commands. These command are move, next, cascade, close.

Move (Ctrl+F5). This command moves a dialog window and

place it any place on the working area. It is useful if the

user wants to see the information from more than one dialog

65

window. The user activated this command then use an arrow

key on the key board to move the dialog window to the

desired location. The user sets down the dialog window by

press enter key. The user may cancel the command by pressing

the Esc key, the dialog window will set back to its previous

location.

AQUIRE Alt+A
Citation Alt+l
Species Alt+S
CAS Alt+C
Concentration-Cont. lnt-BCF Alt+O
Purity/Chem Characteristic Alt+H
Temp-Hardness-Aik-0.0.-pH Alt+ T
Remark Alt+R

Figure 8. Select Submenu With Menu Items and
Status Line

Next (F6). This command will make the next dialog

window become active. The next dialog window is the dialog

window in the order of creation. The active dialog window is

the dialog window that placed in front of the others. The

user may use this command to find specific dialog window or

select a specific dialog window from the select submenu.

66

Cascade. This command will place all opened dialog

windows at their original location. The original location is

the location when a dialog window first created.

Close (Alt+FJ). This command closes the active dialog

window. Even though a dialog window is closed, its data is

saved. When this dialog window is opened again it will

display the original data, unless its related data of

another dialog window is changed.

APPENDIX C

SAMPLE OUTPUTS FROM AQWINDOW

Followings are samples of retrieved information from

AQWINDOW. The output data are saved into the default output

file (data.out). Each example starts from a different search

argument. Then, the author retrieves related data from other

files through related dialog window.

Sample output 1

Following is the retrieved data using citation's

reference number 885 as an argument. The data following

citation information are related chemical and species used

in the test related to reference number 885.

Citation Information

Author(s): Sanders,H.O.
Publication Year: 1969 ()

Citation Title: Toxicity of Pesticides to the
Crustacean Gammarus lacustris

Source of Citation: Tech. Paper No. 25, Bur. Sports Fish
Wildl., Fish Wildl. Serv., U.S.D.I.:
18 P. (Used with Reference 732)

Reference Number: 885
Reference Type: A

This Record Number: 108
Inserted Date: 9/20/82
Updated Date: 0/0/0

Main AQUIRE Database

This Record Number: 6

67

Modified Date: 1/31/85
First Author Name: SANDERS
Publication Year: 69
Citation Ref. #: 885

Test Number: 0
Total Test: 0

Reviewer: 7
Review Code: 2
Test Field: Lab
Test Media: Fresh water
Study Type:

Species Number: 6
Species Life Stage: 2 MO

Control: Indeter
Test Effect: LC50
Test Time 1: (max) 96 Hours
Test Time 2: NR

Exposure Type: S
Test Method: Unmeasured

Species Information

Latin Name: Gammarus lacustris
Common Name: Scud

Species Life Stage: 2 MO
Major Group Code: CR
Minor Group Code: AMPH

Species Ref. #: 31
Species Number: 6

Chemical Information

Chemical Name: (2,4-DICHLOROPHENOXY)ACETIC ACID,
ESTER WITH 1,2-PROPANEDIOL,
MONOBUTYL ETHER

CAS Number: 1320189
Chemical Type: TEST

This Record Number: 6

Concentration-Confidence interval_BCF Information

lst. Data

Concentration Type: F
BCF Type: NR

Concentration Value: 2100 to: NR
Confidence int. Value: 1700 to: 2500

BCF Value: NA to:

2nd. Data

Concentration Type: NR

68

BCF Type: NR
Concentration Value:

confidence int. Value:
BCF Value:

to:
to:
to:

Purity/Chemical Characteristic Information

Chemical Characteristic

1. EC
2.
3.
4.
5.
6.

Purity Code

NR

Temperature-Hardness-Alk-D.O.-pH Information

value from to

Temperature: 21.1 NR
Hardness: NR

Alk.: 30.0 NR
D. 0. : NR

pH.: 7.1 NR

Remarks to AQUIRE Information

Remarks

1.
2. TDS = 88.0, MG = 3.1 PPM, CA = 7.1 PPM//
3. ORGANISMS EXHIBITING 1ST SIGNS OF POISONING DID NOT

SURVIVE
4. 0 EFCT CONT/TRANSFER TO CLEAN H20//
5.
6.
7.

Sample Output 2

Following is the retrieved data using main AQUIRE

database's record number 4567 as an argument. The data

following main AQUIRE database are related citation,

chemical, and species information used in the test related

to main AQUIRE database's record number 4567.

69

Main AQUIRE Database

This Record Number: 4567
Modified Date: 1/31/85

First Author Name: KUMARAGURU
Publication Year: 81
Citation Ref. #: 5256

Test Number: o
Total Test: 0

Reviewer: 6
Review Code: 2
Test Field: Lab
Test Media: Fresh water
Study Type:

Species Number: 4
Species Life Stage: 0.89 G ; 0.8 - 1.2 G

Control: Indeter
Test Effect: LC50
Test Time 1: (max) 384 Hours
Test Time 2: NR

Exposure Type: F
Test Method: Measured

Citation Information

Author(s): Kumaraguru,A.K. and F.W.Beamish
Publication Year: 1981 ()

Citation Title: Lethal Toxicity of Permethrin
(NRDC-143) to Rainbow Trout, Salmo
gairdneri, in Relation to Body
Weight and Water Temperature

Source of Citation: Water Res. 15(4):503-506
Reference Number: 5256

Reference Type: A
This Record Number: 199

Inserted Date: 9/20/82
Updated Date: o;o;o

Species Information

Latin Name: Oncorhynchus mykiss
Common Name: Rainbow trout,donaldson trout

Species Life Stage: 0.89 G ; 0.8 - 1.2 G
Major Group Code: OS
Minor Group Code: SALM

Species Ref. #: 1
Species Number: 4

Chemical Information

Chemical Name: PERMETHRIN
CAS Number: 52645531

70

Chemical Type: TEST
This Record Number: 4561

Concentration-Confidence interval_BCF Information

1st. Data

Concentration Type:
BCF Type:

Concentration Value:
Confidence int. Value:

BCF Value:

2nd. Data

Concentration Type:
BCF Type:

Concentration Value:
Confidence int. Value:

BCF Value:

F
NR
3.17
2.79
NA

NR
NR

to: NR
to: 5.78
to:

to:
to:
to:

Sample output 3

Following is the retrieved data using chemical name

"cadmium chloride'' as an argument search for chemical

information dislog window. The data following chemical

information are related citation and species used in the

test related to cadmium chloride.

Chemical Information

Chemical Name: CADMIUM CHLORIDE
CAS Number: 10108642

Chemical Type: TEST
This Record Number: 29

Main AQUIRE Database

This Record Number: 29
Modified Date: 1/31/85

First Author Name: QURESHI
Publication Year: 80
Citation Ref. #: 5288

Test Number: 0
Total Test: 0

Reviewer: 2

71

Review Code: 2
Test Field: Lab
Test Media: Fresh water
study Type:

Species Number: 532
Species Life Stage: NR

Control: Satisfy
Test Effect: LC50
Test Time 1: (max) 192 Hours
Test Time 2: NR

Exposure Type: s
Test Method: Unmeasured

Citation Information

Author(s): Qureshi,S.A., A.B.Saksena, and
V.P.Singh

Publication Year: 1980 (A)
Citation Title: Acute Toxicity of Four Heavy Metals

to Benthic Fish Food Organisms From
the River Khan, Ujjain

Source of Citation: Int. J. Environ. stud. 15(1):59-61
Reference Number: 5288

Reference Type: A
This Record Number: 633

Inserted Date: 9/20/82
Updated Date: 0/0/0

Species Information

Latin Name: Tubifex tubifex
Common Name: Tubificid worm

Species Life Stage: NR
Major Group Code: AN
Minor Group Code: OLIG

Species Ref. #: 10
Species Number: 532

Concentration-Confidence interval_BCF Information

1st. Data

Concentration Type: T
BCF Type: NR

Concentration Value: 320000/ to: NR
Confidence int. Value: to:

BCF Value: NA to:

2nd. Data

Concentration Type: NR

72

BCF Type: NR
Concentration Value:

Confidence int. Value:
BCF Value:

to:
to:
to:

Temperature-Hardness-Alk-D.O.-pH Information

value from to

Temperature: 28 NR
Hardness: 224 NR

Alk.: 180 NR
D. 0. : 8 NR

pH.: 8.5 NR

73

Thesis:

VITA

Kumpera Kulpaiboon

Candidate for the Degree of

Master of Science

AN OBJECT-ORIENTED DATABASE RETRIEVAL SYSTEM FOR
AQUATIC TOXICITY DATA FILES

Major Field: Computer Science

Biographical:

Personal Data: Born in Bangkok, Thailand, March 2,
1960, the son of Somphot and Jamnean Kulpaiboon.

Education: Received Bachelor of Science Degree in
Mathematic from Ramkhamhaeng University, Bangkok,
Thailand in April, 1983; received Master of
Business Administration Degree in Management
Information System from Oklahoma City University,
Oklahoma City, Oklahoma in December, 1987;
completed requirements for the Master of Science
degree at Oklahoma state University in December,
1993.

Professional Experience: Research Assistant,
Department of Computer Science, Oklahoma State
University, June, 1993, to July, 1993.

	Thesis-1993-K96o_Page_01
	Thesis-1993-K96o_Page_02
	Thesis-1993-K96o_Page_03
	Thesis-1993-K96o_Page_04
	Thesis-1993-K96o_Page_05
	Thesis-1993-K96o_Page_06
	Thesis-1993-K96o_Page_07
	Thesis-1993-K96o_Page_08
	Thesis-1993-K96o_Page_09
	Thesis-1993-K96o_Page_10
	Thesis-1993-K96o_Page_11
	Thesis-1993-K96o_Page_12
	Thesis-1993-K96o_Page_13
	Thesis-1993-K96o_Page_14
	Thesis-1993-K96o_Page_15
	Thesis-1993-K96o_Page_16
	Thesis-1993-K96o_Page_17
	Thesis-1993-K96o_Page_18
	Thesis-1993-K96o_Page_19
	Thesis-1993-K96o_Page_20
	Thesis-1993-K96o_Page_21
	Thesis-1993-K96o_Page_22
	Thesis-1993-K96o_Page_23
	Thesis-1993-K96o_Page_24
	Thesis-1993-K96o_Page_25
	Thesis-1993-K96o_Page_26
	Thesis-1993-K96o_Page_27
	Thesis-1993-K96o_Page_28
	Thesis-1993-K96o_Page_29
	Thesis-1993-K96o_Page_30
	Thesis-1993-K96o_Page_31
	Thesis-1993-K96o_Page_32
	Thesis-1993-K96o_Page_33
	Thesis-1993-K96o_Page_34
	Thesis-1993-K96o_Page_35
	Thesis-1993-K96o_Page_36
	Thesis-1993-K96o_Page_37
	Thesis-1993-K96o_Page_38
	Thesis-1993-K96o_Page_39
	Thesis-1993-K96o_Page_40
	Thesis-1993-K96o_Page_41
	Thesis-1993-K96o_Page_42
	Thesis-1993-K96o_Page_43
	Thesis-1993-K96o_Page_44
	Thesis-1993-K96o_Page_45
	Thesis-1993-K96o_Page_46
	Thesis-1993-K96o_Page_47
	Thesis-1993-K96o_Page_48
	Thesis-1993-K96o_Page_49
	Thesis-1993-K96o_Page_50
	Thesis-1993-K96o_Page_51
	Thesis-1993-K96o_Page_52
	Thesis-1993-K96o_Page_53
	Thesis-1993-K96o_Page_54
	Thesis-1993-K96o_Page_55
	Thesis-1993-K96o_Page_56
	Thesis-1993-K96o_Page_57
	Thesis-1993-K96o_Page_58
	Thesis-1993-K96o_Page_59
	Thesis-1993-K96o_Page_60
	Thesis-1993-K96o_Page_61
	Thesis-1993-K96o_Page_62
	Thesis-1993-K96o_Page_63
	Thesis-1993-K96o_Page_64
	Thesis-1993-K96o_Page_65
	Thesis-1993-K96o_Page_66
	Thesis-1993-K96o_Page_67
	Thesis-1993-K96o_Page_68
	Thesis-1993-K96o_Page_69
	Thesis-1993-K96o_Page_70
	Thesis-1993-K96o_Page_71
	Thesis-1993-K96o_Page_72
	Thesis-1993-K96o_Page_73
	Thesis-1993-K96o_Page_74
	Thesis-1993-K96o_Page_75
	Thesis-1993-K96o_Page_76
	Thesis-1993-K96o_Page_77
	Thesis-1993-K96o_Page_78
	Thesis-1993-K96o_Page_79
	Thesis-1993-K96o_Page_80
	Thesis-1993-K96o_Page_81

