
A LEVEL LINKED R* TREE STRUCTURE WITH 

AN APPLICATION USING X-WINDOW 

GRAPHICAL INTERFACE 

By 

V C S REDDY KUMMETHA 

Bachelor of Engineering 

Osmania University 

H yderabad, India 

1991 

Submitted to the faculty of the 
Graduate College of the 

Oklahon1a State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
Decen1ber 1993 



OKLAHOl\Lt\ STATE UNIVERSITY 

A LEVEL LINKED R* TREE STRUCTURE WITH 

AN APPLICATION USING X-WINDOW 

GRAPHICAL INTERFACE 

Thesis Approved: 

_ . ., Thesis Adviser 
/ I !; /, / Q/! l//1 

/~--]A(:, J! -fJiA~o 

Dean of the Graduate College 

ii 



ACKNOWLEDGEMENTS 

I wish to express my sincere appreciation and thanks to Dr. Huizhu Lu for her 

encouragement and advice throughout my thesis and course work. I would also like to 

thank Dr. Jacques Lafrance and Dr. Paul Benzamin for their valuable suggestions and for 

serving in my committee. 

I wouldn't have been what I am today but for the love, guidance and support of 

my parents Mr. K.Ramakrishna Reddy and Mrs. Sita. 

My appreciations to my sister Sujatha for her patience and guidance. 

Heartfelt thanks to my friend Siva for being so supportive throughout my course 

work. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 

II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

R Tree ............................................ 6 
Insertion Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Pick Seeds Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Distribute Algorithn1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Pick Next Algorithn1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

R* Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1() 
Algorithm Choose Subtree . . . . . . . . . . . . . . . . . . . . . . . . 11 
Algorithn1 Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
Algorithm Choose Split Axis . . . . . . . . . . . . . . . . . . . . . . 12 
Algorithm Choose Split Index . . . . . . . . . . . . . . . . . . . . . 13 

X-Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

III. R TREE BASED STRUCTURES: DRAWBACKS AND SOLUTIONS ... 16 

Inherent Drawback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Possible Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Implementation of Level Linked R* Tree Structure . . . . . . . . . . . . 17 

Leaf Level Linked R* Tree . . . . . . . . . . . . . . . . . . . . . . . . 18 
Algorithm Split . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Costs involved in Leaf Level Linked R* Tree . . . . . . 21 
Application of Leaf Level Linked R* Tree . . . . . . . . 22 

Fully Level Linked R* Tree . . . . . . . . . . . . . . . . . . . . . . . 22 
Application of Fully Level Linked R * Tree . . . . . . . 24 

Advantages of Level Linked R * Tree . . . . . . . . . . . . . . . . . 24 

IV. APPLICATION OF LEAF LEVEL LINKED R* TREE 
USING X-WINDOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Description of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Analysis of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

IV 



Chapter Page 

X-Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Xlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Xtintrinsic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
OSF/MOTIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Interface and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

V. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 

REFERENCES ............................................... 48 

v 



LIST ()F FIGURES 

Figure Page 

1. Example Structure of R • Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

2. Level Linked R* Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

3. Root Node before Split in R" Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

4. Leaf Level Linked R" Tree after Root Split . . . . . . . . . . . . . . . . . . . . . . 20 

5. Leaf Level Linked R" Tree before Leaf Split . . . . . . . . . . . . . . . . . . . . . 20 

6. Leaf Level Linked R" Tree after Leaf Split . . . . . . . . . . . . . . . . . . . . . . . 21 

7. Fully Level Linked R" Tree before Leaf Split . . . . . . . . . . . . . . . . . . . . . 23 

8. Fully Level Linked R" Tree after Node Split . . . . . . . . . . . . . . . . . . . . . . 23 

9. Hierarchy of X-Windows ................................... 31 

10. Main Window of Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

11. List of Counties when Load Button is Selected . . . . . . . . . . . . . . . . . . . . 35 

12. Display when Loading Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

13. Display when Data is Already Loaded . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

14. Display of Scrolled List of Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

15. Distribution of Selected Attribute in Caddo County in Shrink Scale . . . . . . 40 

16. Distribution of Selected Attribute in Caddo County in Enlarge Scale . . . . . 41 

17. Obtaining Coordinates of Selected Area When Attribute is Displayed . . . . 42 

Vl 



Chapter Page 

18. Querying a Selected Area in Caddo County . . . . . . . . . . . . . . . . . . . . . . 44 

19. Display When Quit is Selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 

Vll 



LIST OF TABLES 

Table Page 

1. Development in Spatial Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

2. Summary of Soils in Caddo County . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Vlll 



CHAPTER I 

INTRODUCTION 

Space is thought of as a collection of an infinite number of dimensionless points 

which form a continuum. Each point has a set of attributes that describes its properties. 

The collection of attribute values of spatial points is called spatial data. 

Here we discuss two-dimensional spatial data, specifically land. Every spatial 

point has a location that is fixed with respect to the earth and addressed by a coordinate 

system. For example, a point can be addressed by its distances on North, South, East, 

and West directions from a fixed origin. Each point on the land has attribute values. 

These attributes include mineral contents, type of soil, chemical compositions, etc ... 

By 'spatial locality', adjacent spatial objects tend to have nearly same attribute values. 

In other words, although they distribute irregularly, an attribute value spreads for a certain 

contiguous region. Thus space (land in this case) can be partitioned into small rectangular 

regions and attributes pertaining to these regions can be closely represented. 

A set of spatial data is huge. Research is being done to develop data structures 

that can efficiently store and access spatial data. Currently, data structures like R -trees, 

R+ trees and R • trees are efficient for handling spatial data. 

Unlike the B trees [Knu73l that store an alphabetic key or a numeric value in its 

node, R• trees hold coordinates of spatial object and their attributes. R* tree's ability to 
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handle spatial data is remarkable in that it provides very efficient access time when 

compared with other data structures. 

Apart from storing and accessing, the other major factor is pictorial representation 

of this huge spatial data. Pictorial representation of spatial data gives a clearer image 

than just looking at the numbers. We see the way we imagine, therefore spatial data is 

more meaningful if shown on screen, in pictorial form, opposed to a printout of numbers. 

X-Windows are flexible and have powerful graphical capabilities. A blend of X

Windows and R * tree provides a powerful interface for the spatial data. 



CHAPTER II 

LITERATURE REVIEW 

Currently, 80% of information held by business and government is geographically 

referenced[Carl92]. Examples include land use information, mailing addresses, facility 

layouts, information about networks like water, cable, gas, electric, transportation etc .. 

The conventional method to preserve geographically referenced information is to draw 

maps on paper. Paper maps have several draw backs. They are difficult to update, 

manipulate, and combine with other data. Computerization of maps overcome these draw 

backs and supports many other features. 

Currently available database systen1s are suitable for business applications like 

planning and accounting. In database applications involving geographical data, 

geographical objects, data structures that are capable of handling multi-dimensional data 

objects are required. Traditional data structures that support one dimensional data are not 

suitable for multi-dimensional data objects, for example, B+ trees. B+ tree stores one 

dimensional data keys like numbers (ex. age), or alphabetic keys (ex. name) or 

alphanumeric keys (ex. addresses). These keys have a fixed relation between them, i.e. 

we can say that a particular key is greater than, equal to, or less than another key. But 

spatial data key, in the simplest form, a point, has at least two coordinates (x, y), and in 

complex form, a polygon in multiple dimensions, has many more coordinates to represent 

3 
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it. These keys don't have a fixed relation between them, in the sense that we cannot say 

a particular spatial data key is less than, equal to, or greater than another key. Therefore 

new data structures are proposed to handle spatial data. 

Early spatial data structures that are proposed are Quad tree [FB74l and K-D tree 

[Bent75] in 197 4 and 1975. The basic structure of these data structures is similar to the 

binary tree. Developments over these data structures are Cell method and K-0-B tree 

[Robi81]. These spatial data structures are similar to traditional structures but 

modifications are made to handle multi din1ensional data and proper algorithms are 

developed for insert and search. These data structures are not general enough and cannot 

handle both point and range query efficiently. These are expensive and are not 

appropriate for large databases. 

Later developments are based on B+ tree and hashing principle (bucket method). 

In 1984, R-tree [Gutt84l and Grid file I NH84] structures are proposed. Grid file is based 

on bucket method, and R-trees are based on B+ tree structure. Grid file is good for 

handling point data. It can handle non point data by mapping to a higher level. R-trees 

are popular methods for accessing rectangles. This can also handle point data since a 

point is nothing but a rectangle having zero area. 

After 1984, developments made, were, either to improve Grid file orR-tree. Bang 

file [FS87], GGF (generalized grid file) are examples of the development of grid files. 

R+ trees [SRF87], Greene's variation of R-tree and R *tree [NHRB90] are improvements 

done on R-tree. 

The development of spatial data structures can be summarized as follows: 
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A tabular column is drawn (TABLE 1) that shows the year in which the structure 

is published, the name of the structure, and the traditional structure on which it is based 

on. 

TABLE I 

DEVELOPMENT IN SPATIAL STRUCTURES 

YEAR 

1974 

1975 

1979 

1981 

1984 

1984 

1987 

1987 

1990 

1990 

SPATIAL 
STRUCTURE 

QUAD TREE 

K-D TREE 

CELL METHOD 

K-D-B TREE 

R-TREE 

GRID FILE 

R+ TREE 

BANG FILE 

R* TREE 

GGF 

TRADITIONAL 
STRUCTURE 

BINAF<.Y TF<.EE 

BUCKET METHOD 

B TREE 

I B+ TREE I 

'Ill BUCKET METHODI I 

B-r TREE 

I 'I 
BUCKET METHOD 

B+ TREE I 

BUCKET METHOD i 

'------------------------- _________ _j 

Note: The details in the tabular column are based on our literature survey. The 

spatial structures shown are the prc)lninent structures that are developed during the period 

1975 - 1990. This is not a complete listing. 

Spatial data structures can be broadly divided into two groups based on the 

structures that efficiently handle 

1) point data, and 

2) range data. 
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Grid files can efficiently handle point query where as R-tree variants can handle 

range query efficiently. Point and range query are defined as follows: 

1. A point query queries the database and gives the attributes associated with the 

given point. 

2. A range query queries the database and gives all the attributes that are associated 

with the points within the given range. 

In applications involving geological sciences. agriculture etc ... , the attributes 

follow spatial locality. For example a particular soil in land may spread for a particular 

region and then fade away, from where on another soil n1ay start. So land, in this case, 

can be divided into small rectangular regions consisting of a uniforn1 attribute. For this 

type of applications R-tree variants are best suited. R-tree I Gutt84] is explained in 

detail. 

R TREE 

An R tree is a B+ tree like structure that stores n1ultidimensional objects 

(rectangles). A non leaf node contains n1inin1um bounding rectangles and pointers to its 

child nodes. A minimum bounding rectangle of a node is one that has minimum area and 

includes all rectangles that are the entries in its child node. Leaf node contains rectangles 

and the data object corresponding to that rectangle. 

If 'M' is the maximum number of rectangles that fit in a node and 'm' is the 

minimum number of rectangles (2<= m <= M) then R tree has the following properties: 

1. The root has at least two children unless it is a leaf. 
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2. Every non-leaf node has between m and M children unless it is a root. 

3. Every leaf node contains between m and M entries unless it is the root. 

4. All leaves appear on the same level. 

An R tree is completely dynamic. Insertions and deletions can be intermixed with 

queries and no periodic global reorganization is required. Since R tree is a dynamic 

structure, all the approaches of optimizing the retrieval performance must be applied 

during the insertion of new data rectangle. The insertion algorithm calls two more 

algorithms in which crucial decisions for good retrieval performance are made. To insert 

a rectangle, the leaf node 'N' into which it is to be inserted must be determined. This 

is done by the following algorithm. 

Insertion Algorithm [Gutt84j: 

CS 1 Set N to be the root 

CS2 If N is leaf 

Else 

End 

return leaf 

Choose the entry in N whose rectangle needs least area 

enlargement to include the new data. Resolve ties by choosing 

entry with rectangle of smallest area. 
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CS3 Set N to be the child node pointed by the child pointer of the chosen entry 

and repeat from cs2. 

The insert function then determines if the leaf node can accommodate a new 

rectangle. If the node already has M rectangles, then it calls split function. Split 

algorithm in turn calls two more algorithms 

1) pick seeds: determines the first two rectangles that go into each group. 

2) distribute: this distributes the remaining entries into the two groups. 

The algorithm for splitting M+ 1 entries into two groups is as follows fGutt84]: 

S 1 Invoke pick seeds to choose two entries to be the first entries of the 

groups. 

S2 Repeat 

Distribute entry 

Until 

all entries are distributed or 

one of the two groups has M-m+ 1 entries. 

S3 If entries remain, assign them to the other group such that it has minimum 

number m. 

Pick seeds Algorithm [ G utt84]: 

PS 1 For each pair of entries E 1 and E2 compose a rectangle R including 

El.Rectangle and E2.Rectangle. 

Calculated= area (R)- area (El.Rectangle)- area (E2.Rectangle) 
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PS2 Choose the pair with largest d. 

Distribution Algorithm [Gutt84 1: 

This algorithm invokes another algorithm pick next, to determine the next entry 

considered for distribution. Then it selects the group where the entry is placed. 

DE 1 Invoke pick next to chose next entry to be assigned. 

DE2 Add it to the group whose covering rectangle will have to be enlarged 

least to accommodate it. Resolve ties by adding the entry to the group 

with smallest area. then to the one with few entries then to either. 

Pick Next Algorithm [Gutt84 1: 

PNl For each entry E not yet in a group, calculate dl, the area increase 

required in the covering rectangle of the group 1 to include the 

E.Rectangle.Similarly calculate d2 for group2. 

PN2 Choose the entry with maximum difference between d 1 and d2. 

The method of optimization is to n1inimize the area covered by a directory 

rectangle. This reduces overlap of rectangles and good retrieval performance is obtained. 

The algorithm pick seeds finds two rectangles that waste the largest area put in one group. 

The two selected rectangles will be the distant ones. 'Distribute entries' algorithm assigns 

the remaining entries based on the minimum area criteria. Pick next chooses an entry 

with the best goodness value in every situation. In R-trees, bounding boxes are fonned 
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from arbitrary set of rectangles in a way that arbitrary retrieval operations with query 

rectangles of arbitrary size are handled efficiently. The known parameters of retrieval 

performance affect each other in a very complex manner such that it is impossible to 

optimize one without influencing the other. This can cause deterioration in the overall 

performance. Since the data rectangles may have different size and shape and directory 

rectangles may grow and shrink dynamically, the success of methods that optimize one 

parameter is very uncertain. In R• trees fNHRB90j a heuristic approach is applied taking 

various parameters into consideration. 

R* TREE 

The parameters that are taken into consideration by the R* tree are[NHRB90]: 

1. Minimize the area covered by a directory rectangle. The dead space in the 

directory rectangle not covered by any of its child rectangles is minimized. 

2. Minimize the overlap between directory rectangles that decreases the number of 

paths to be traversed. 

3. Minimize the margin of the directory rectangle. Margin is the sum of the lengths 

of the edges of a rectangle. For a fixed area square has the minimum margin. 

Thus minimizing the margin yields more quadratically shaped directory rectangles. 

This results in more packed directory rectangles. Queries with large query 

rectangles profit this. 

4. Optimize storage utilization. The higher the storage utilization, the lower the tree 

height and the better the querying. 
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Unlike R tree that take only area parameter into consideration, R• tree takes area, 

margin and overlap. The overlap of an entry is defined as [NHRB90]: 

node. 

Let E 1, ... , Ep be the entries in the current node. Then 

Overlap (Ek) = E area (Ek.Rectangle r1 Ei.Rectangle), 1 :s; k :s; p. 

To insert a new rectangle choose suhtree function is invoked to find an appropriate 

Algorithm Choose Suhtree {NHRB90j: 

CS 1 Set N to be the root 

CS2 If N is a leaf, Return N 

Else If the child pointers in N point to leaves I determine the minimum 

overlap cost J, choose the entry in N whose rectangle needs least 

overlap enlargement to include the new data rectangle. Resolve 

ties by choosing the entry whose rectangle needs least area 

enlargen1ent then the rectangle with smallest area. 

End 

CS3 Set N to be the child node pointed to by the child pointer of the chosen 

entry and repeat fron1 CS2. 

From the above algorithm, the subtree is chosen and the node is selected in which 

the new entry is to be inserted. If the node has less than M entries, the new entry is 

inserted in that node. If it has M entries algorithm split is invoked. Algorithm split in 

tum calls two more algorithms: 



12 

1. Choose split axis: This chooses the axes along which the split has to be 

performed by computing various goodness values. 

2. Choose split index: This selects the distribution of entries into two groups. 

Along each axis the entries are first sorted by the lower value, then by the upper 

value of the rectangles. For each sort M - 2m + 2 distributions of the M + 1 entries into 

two groups are determined where the kth distribution fk = 1, ... , (M-2m+2)] has first [m-

1 +k] entries in the first group and the ren1aining in the second group. For each 

distribution the following goodness values are detern1ined: 

(1) 

(2) 

(3) 

area-value: 

margin-value: 

overlap-value: 

area[ bb(first group) I + area[ bb(second group)] 

n1arginl bb(first group)] + margin[bb(second group)] 

area[bb(first group)] n area[bb(second group)] 

Where bb represents the bounding rectangle. 

Algorithm Split [NHRB90]: 

S 1 Invoke choose split axis to determine the axis, perpendicular to which the 

split is performed. 

S2 Invoke choose split index to detern1ine the best distribution into two 

groups along that axis. 

S3 Distribute the entries into two groups. 
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Algorithm Choose Split Axis [NHRB90]: 

CSAl 

CSA2 

For each axis sort the entries by the lower and by the upper values 

of their rectangles and determine all distributions as described 

above. Compute S, the sun1 of all margin values of the different 

distributions. 

End 

Choose the axis with the minimum S as split axis. 

Algorithm Choose Split Index {NHRB90j: 

CSII Along the chosen split axis choose the distribution with the 

minimum overlap value. Resolve ties by choosing the distribution 

with minimum area value. 

Once the split is performed the tree structure has to be updated along the insertion 

path. All the covering rectangles have to be adjusted such that they are the minimum 

bounding boxes enclosing their children. 

Though the insertion is costly, it provides an order in the structure that contributes 

for fast accessing. 

Experiments conducted found that R • tree outperforms the R tree variants in all 

experiments[NHRB90]. The conclusions of the experiments are [NHRB90]: 

1. The R• tree is the most robust method, underligned by the fact that for every query 

less accesses are required than by any other variants. 
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2. The gain in efficiency of the R* tree for small query rectangles is higher than for 

large rectangles because storage utilization gets more important for large query rectangles. 

This emphasizes the goodness of the order preservation of the R * tree. 

3. The maximum performance gain of the R* tree taken over all query and data files 

is in comparison to the linear R tree about 400% and quadratic R tree is 180%. 

4. R* tree has the best storage utilization. 

X-Windows 

To represent these data structures graphically, we need a sound graphical interface 

and user friendly environment. X-Windows(X), which runs under UNIX environment, 

provides an excellent interface as it does not restrict the window to any pre-defined 

interface like most window systems do. We can define and design the window as we 

desire. 

X-Windows provide mechanisms to support n1any interface styles rather than 

enforcing one particular policy, i.e. it does not provide any scroll bars, button boxes, 

menu, etc ... , by default. All it provides is a rectangular section of screen. Applications 

can create their own decorations like title bar, scroll bar, menus, etc ... , in the required 

fashion and style. X has a variety of resources like windows, bitmaps, fonts, colors and 

data structures used by applications. 

X has a standard toolkit known as X toolkit. The X toolkit has two parts: Xt 

Intrinsic and widget. Widget sets provide user interface components like windows, scroll 

bars, title bars, dialog boxes etc . . . Xt Intrinsic supports many widget sets. The popular 
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widget set is Open Software Foundation (OSF) Motif Widget set. Both widget and Xt 

Intrinsic are built on top of Xlib. Xlib the basic low level X library provides with various 

functions and capabilities. Xlib also provides complete access and control over the 

display, windows and input devices. 

Programmers can directly program in Xlib, however it requires lot of redundant 

code to maintain the conventions. The work done by 100 lines X lib code can efficiently 

be done by five to ten lines of code using widget. Efficient X programs are written with 

a combination of Xlib, Xt Intrinsic, and a widget set. 



CHAPTER III 

R TREE BASED STRUCTURES: DRAWBACKS AND S()LUTIONS 

INHERENT DRAWBACK 

R-tree structure is analogous to B+ tree structure. In R-tree structure index 

rectangles are stored in non leaf nodes and actual rectangles are stored in leaf nodes. 

The structure of R-tree is shown below: 

y 

Figure 1. Example Structure of R'" Tree 

This structure (R -tree based spatial structure) is efficient for point and range 

querying, but does not provide any means to access the actual data directly. If an 

application requires access to actual data sequentially, then no matter what, the whole 

tree has to be traversed to achieve this. This is costly and time consuming. In figure 

1 from node x we need to go to node y access all data then go back to node x and 

come down to node z to access other data. This is very costly and time consuming. 

16 
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POSSIBLE SOLUTION 

The problem encountered in R-tree based structures can be solved by n1aking it 

leaf level linked structure. The leaf level linked R * tree structure is as show below: 

y 

Figure 2. Level Linked R* Tree Structure 

The level linked R * data structure has all the properties of a R * data structure. 

In addition it has all the nodes in the same level linked. Querying, either point or 

range is done similar to that of the R * tree. Sequential access to actual data is done 

by utilizing the level linked list of the leaf level. The level linking of the non leaf 

nodes can be utilized to implement hotspots principle that helps in in1proving the 

query algorithm. 

Implementation of level linked R • structure 

Implementation of the level linked R * tree depends on the requirements of the 

application. Some applications may require only level linking of the leaf level while 

others may require level linking of the whole tree. Though both types are discussed, 



since the application developed in this thesis requires leaf level linked R * tree 

structure, it is discussed in more detail. 

Leaf level linked R* trees: 
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This type of implementation is particularly needed for applications involving 

graphical interface for spatial data. These applications can access the actual data 

sequentially, using the leaf level, simultaneously exploit the efficient query capabilities 

of R* tree. 

In R * tree new nodes are created only in two cases: 

1. When a node is over filled, i.e if the node already contains M (maximum 

number) elements and a new element has to be inserted into that node, 'split' occurs. 

Whenever split occurs, a new node is created and is linked to its parent. This created 

node forms a new sibling to the old node. The newly created node can be in the leaf 

level or non leaf level. 

2. When ever the root node splits two new nodes are created, one forming the 

new root and the other forming a new sibling for the old root that split. 

Always there is only one node in the root level. So when a new root is created 

we need not worry about linking it to any other siblings in the root level. For leaf 

level linked R* trees the only case that has to be considered is, to link the newly 

created leaf node to the list of the leaf level. R * trees are similar to B+ tree structure 

and have all the leaf nodes in the same level. So the newly created leaf node should 

be in the same level as that of the leaf node that has been split. Whenever a leaf node 
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splits, by assigning the new node's sibling pointer to the old node's sibling pointer and 

the old node's sibling pointer to the new node, level linking of the leaf level can be 

achieved. Thus, only the split algorithm in the insertion algorithm of R * trees has to 

be modified. The modified split algorithm for leaf level linked R* trees is as follows: 

Algorithm Split: 

S 1 Invoke choose split axis to determine the axis, perpendicular to which 

the split is performed. 

S2 Invoke choose split index to determine the best distribution into two 

groups along that axis. 

S3 Distribute the entries into two groups. 

S4 If the split node is a leaf node update the links of the nodes. Set new 

nodes NEXT (pointer to next node in the same level) to old nodes 

NEXT and old nodes NEXT to new node. 

The working of the leaf level linked algorithm is shown in the following 

examples: 

An external pointer is set to the first node created, since this is a leaf node 

itself and is first leaf node created. As the tree grows the leaf level linked list is 

created and can be traversed using this pointer. 

~--~lLI_A __ ~_B __ ~---c~ 
Figure 3. Root Node Before Split in R* Tree 



Let M (maximum elements in a node) = 3 

Let m (minimum elements in a node) = 2 

20 

Initially the root node 1 shown in figure 3 is full. If a new element D has to be 

inserted the node 1 should split. Since the root node is being split, two new nodes are 

created one forming new root and the other forming new sibling as shown in figure 4. 

Figure 4. Leaf Level Linked R * Tree After Root Split 

The new nodes 2, 3 are created, 3 forming the new root and 2 forming the new 

sibling. 1, 2 are linked. BBI and BB2 are the bounding boxes of the nodes 1, 2. 

Another scenario is depicted below: 

Figure 5. Leaf Level Linked R* Tree before Leaf Split 

In the figure 5 if node 6 is overfilled and a new element is to be placed into it, 

split occurs and propagates as shown in figure 6. Node 6 is split and node 10 is created. 

According to the algorithm, sibling pointer of node 10 is set to the node pointed by 
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sibling pointer of node6, i.e. node7, and sibling pointer of node6 is set to new node 

(node 10). The level linking of the leaf level is perfectly maintained and is shown below: 

3 

Figure 6. Leaf Level Linked R* Tree After Leaf Split 

The non leaf node 2 also splits and new node 11 is formed, propagating a new 

bounding box to node 1. 

Costs involved in implementing leaf level linked R* trees: 

1. The access time to access the actual data is greatly reduced. In R * trees 

the whole tree has to be traversed to achieve this. In leaf level linked R * trees only 

the leaf level is accessed to achieve this. The in1provement in the access time of the 

actual data is clear and is discussed below. 

Let there be N > 1 nodes in the tree. 

In R * tree, to access the actual data sequentially, we need to traverse all the N 

nodes. If it takes one time unit to traverse from one node to other, then it requires a 

value greater than N to access all the data in leaf nodes. In leaf level linked trees we 

traverse only the leaf nodes which are a subset of total nodes N. So time taken to 

access the actual data by leaf level linked trees is less than N units. Therefore time 

taken to access the actual data is clearly better in leaf level linked trees. 
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2. In leaf level linked R * trees querying is done using the basic R * tree 

structure, so there is no additional cost for querying. 

3. One additional pointer is needed for leaf level linked R * tree structure. 

So additional memory requirement is size of a pointer per node. 

4. Whenever a split occurs only two pointer assignn1ents are done for level 

linking. This is small when compared with the time complexity for R * tree insertion 

and can be neglected. So we can say that there is no or negligent increase in the time 

complexity for insertion in leaf level linked R * tree. 

Application of leaf level linked R* trees: 

Applications that require graphical representation of the spatial data as well as 

querying can use a leaf level linked R * tree structure. The practical application of this 

is done in this thesis for soils in Caddo county, Oklahoma, explained in chapter IV. 

Fully level linked R* trees: 

These structures are similar to leaf level linked structures. A brief outline of 

these structures is discussed here. 

As explained in the previous section new nodes are created only when split 

occurs, two nodes are created when root node splits, and we need not worry about the 

newly formed root node. The only other case to consider is, to link the newly created 

node into the level, of the split node. So whenever a node splits, by assigning the new 



ncxie's sibling pointer to the old node's sibling pointer and the old node's sibling 

pointer to the new ncxie level linking level can be achieved. 

The working of the fully level linked split algorithm is similar to that of the 

leaf level linked split algorithm and is shown in the following examples: 

Figure 7. Fully Level Linked R"' Tree before Leaf Split 
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In the above figure if node 6 is overfilled and a new elernent is to be placed 

into it, split occurs and propagates. Node 6 is split and node 10 is created as shown 

in figure 8. According to the algorithm, sibling pointer of node 10 is set to node 

pointed by sibling pointer of node6, i.e. node7, and sibling pointer of node6 is set to 

new node (node 10). The level linking of the leaf level is perfectly n1aintained. Now 

the bounding rectangle is propagated to parent (node 2) in the immediate upper level. 

Since node 2 is also over filled, it also splits creating a new node 11. Again links are 

manipulated as explained above and the resulting tree is shown below: 

1~------.--------~-------·~ 

Figure 8. Fully Level Linked R"' Tree after Node Split 
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Links are properly maintained and tree is completly linked. By having an 

external pointer to each level we can traverse each level individually if needed. Cost 

involed is similar to that of the leaf level linked tree. 

Application of fully level linked trees: 

Fully level linked trees can be used to implement the concept of hotspots. If 

an element is accessed, the chances for accessing neighboring elements are more. By 

having a pointer to the current node we can traverse neighboumig nodes and access 

data quickly. This algorithm depends on the data and type of query done. To 

implement this we need to have links to all neighboring nodes. R * tree structure 

provides links to children and parent. In addition to this we need to have two sibling 

pointers, to communicate and possibly traverse to sibling nodes. Also the links in the 

level linked list should be adjusted corresponding to the positions of the modified 

elements in parent node. This may lead to additional costs. 

Advantages of Level Linked R* tree 

1. Provides an easier way to access the actual data sequentially. 

2. Allows implementation of the hotspot concept to achieve better accessing. 

3. Can be implemented with aln1ost same cost as of R * trees. 

4. Supports both point and range query efficiently. 

The explanation for the above points is given below. 

1. Accessing the actual data: In R * trees actual data is stored in the leaf nodes. 

So to achieve easy accessing of the actual data only level linking of the leaf level is 



enough. By having a pointer to the first node in the leaf level we can traverse the 

whole list and access all the actual data. 

2. Provision to implement hotspots: In addition to child pointers and parent 
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pointer, level linked R* tree has pointers to siblings. This means a node can 

communicate with its neighboring node easily. In other words we can move to any 

neighboring node with just one pointer movement This property can be exploited to 

implement hotspots. 

3. Low cost: To implement level linked R * trees, only two pointer assignments 

are required that results in negligible additional cost over the insertion of R * trees. 

4. Point and Range Query: Since the basic structure is similar to R * tree, the 

efficient accessing algorithms of R * trees can be used without any modifications. 

Therefore point and range query can be handled efficiently. 



CHAPTER IV 

APPLICATION OF LEAF LEVEL LINKED R* TREE USING X-WINDOW 

INTERFACE 

The main advantage of these structures is to access the actual data with minimum 

cost. Also their structure supports the efficient querying provided by the R * tree. An 

application that needs this kind of structure is the one that requires graphical 

representation of the spatial data as well as querying. The practical application that we 

are going to deal with, is the graphical representation and querying of soils in Caddo 

county, Oklahoma. 

For graphical representation of this spatial data we need to access the leaf nodes 

because the actual data is in leaf nodes. Leaf level linked R * tree is used because this 

application efficiently exploits both the leaf level linking for graphical representation and 

basic R * tree structure for querying. 

The application can be divided into two parts. 

1. Implement the leaf level linked R * tree 

2. Provide user friendly interface to represent the spatial data graphically and 

to allow querying. 

The leaf level linked structure is implemented as explained in the CHAPTER III. 

To represent the data graphically, we need some sort of interface. For interface X-
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Windows are used because they are flexible, have strong graphical capabilities and 

provide user friendly components like push buttons, menus etc . . . This interface sits on 

the leaf level linked R * tree. Though query request may be done through interface the 

actual querying is done by the level linked R * tree. 

Description of data: 

Caddo County is one of the counties present in the state of Oklahoma. It spreads 

to an area of four hectors. This area is divided into sn1all rectangles, each of 200 x 200 

meters, and the most pron1inent attribute pertaining to this area is determined. This data 

is obtained from Dr. Mark Gregory, Departn1ent of Agriculture. 

Analysis of the data: 

The obtained data is analyzed and then reforn1ed into two files. The first file has 

the coordinates of the rectangular area with an attribute code. The format of this file is 

as follows: 

Xl Yl X2 Y2 ATT 

Where Xl, Yl are the lower left and X2, Y2 are upper right comers of the 

rectangle. A TT denotes the attribute code that corresponds to this piece of area. For 

each attribute code there is a description in the second file. There are about 99 attribute . 

codes. These codes and their description are listed in TABLE 2. The data is also 

analyzed based on the amount of area they spread. In the tabular column shown in 

TABLE 2, column 1 represents code, column 2 shows the attribute, column 3 shows the 
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TABLE 2 

SUMMARY OF SOILS IN CADDO COUNTY 

I Code I Attribute I Area I 
0 no data 10377 
1 Acme-Gypsum outcrop complex, 2 to 8 percent slopes 439 
2 Breaks 904 

3 Cobb fine sandy loam, 1 to 3 percent slopes 438 
4 Cobb fine sandy loam, 3 to 5 percent slopes 2226 

5 Cobb fine sandy loam, 5 to 8 percent slopes 420 

6 Cobb fine sandy loam, 3 to 8 percent slopes, eroded 1846 

7 Cobb and Grant soils, 3 to 8 percent slopes, severely eroded 1664 

8 Cyril fine sandy loan1 276 

9 Cyril fine sandy loam, noncalcareous variant 62 

10 Darnell soils, 3 to 12 percent slopes, severely eroded 392 

11 Darnell-Noble association, rolling 6766 

12 Darnell-Noble association, hilly 1780 

13 Dougherty loamy fine sand, 1 to 3 percent slopes 1176 

14 Dougherty and Eufaula loamy fine sands, 3 to 8 % slopes 3087 

15 Eufaula fine sand, rolling 1020 

16 Eufaula loamy fine sand, 1 to 3 percent slopes 102 

17 Eufaula loamy fine sand, hun1n1ocky 98 

18 Foard silt loam, 0 to 1 percent slopes 717 

19 Gracemont soils 1538 

20 Grant loam, 1 to 3 percent slopes 1604 

21 Grant loam, 3 to 5 percent slopes 2084 

22 Grant loam, 3 to 6 percent slopes, eroded 566 

23 Grant loam, 5 to 8 percent slopes 293 

24 Grant-Wing complex, 1 to 5 percent slopes 263 

25 Hollister silt loam, 0 to I percent slopes 746 

26 Konawa loamy fine sand, I to 5 percent slopes, eroded 640 

27 Konawa soils, 2 to 8 percent slopes, severely eroded 152 

28 Limestone cobbly land 546 

29 Lucien-Dill fine sandy loams, 3 to 12 percent slopes 3524 

30 Lucien-Dill fine sandy loams, 12 to 30 percent slopes 379 

31 McLain silty clay loam 497 
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TABLE 2 (CONTINUED) 

32 Miller silty clay loam 143 

33 Minco very fine sandy loam, 3 to 8 percent slopes 2891 

34 Minco very fine sandy loam, steep 437 

35 Minco silt loam, 3 to 5 percent slopes 1073 

36 Noble fine sandy loam, 1 to 3 percent slopes 1335 

37 Noble fine sandy loam, 3 to 8 percent slopes 7136 

38 Norge silt loam, 1 to 3 percent slopes 1342 

39 Norge silt loam, 3 to 5 percent slopes 1311 

40 Pond Creek fine sandy loam, 0 to 1 percent slopes 963 

41 Pond Creek fine sandy loam, 1 to 3 percent slopes 5186 

42 Pond Creek silt loam, 0 to I percent slopes 1730 

43 Pond Creek silt loam, 1 to 3 percent slopes 4239 

44 Pond Creek silt loam, I to 3 percent slopes, eroded 180 

45 Port silt loam 2715 

46 Port and Pulaski soils, channeled 260 

47 Pulaski soils 1392 

48 Quinlan-Woodward complex, 5 to 12 percent slopes 2475 

49 Reinach silt loam, upland, 0 to 1 percent slopes 88 

50 Reinach silt loam, upland, 1 to 3 percent slopes 1824 

51 Reinach silt loam, 0 to 1 percent slopes 1291 

52 Rough broken land 976 

53 Shellabarger fine sandy loam, 1 to 3 percent slopes 407 

54 Shellabarger fine sandy loam, 3 to 5 percent slopes 268 

55 Talpa-Rock outcrop complex, 5 to 30 percent slopes 1056 

56 Tillman silty clay loam, 1 to 3 percent slopes 2440 

57 Tillman silty clay loam, 3 to 5 percent slopes 935 

58 Tillman silty clay loam, 2 to 5 percent slopes, eroded 199 

59 Vernon soils, 5 to 12 percent slopes 118 

60 Woodward-Quinlan complex, 3 to 5 percent slopes 972 

61 Y ahola soils 975 

81 Fill 0 

82 Borrow Pits 0 

83 Gravel Pits 0 

84 Mine Pits and Dumps 0 
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TABLE 2 (CONTINUED) 

85 Oil-Waste Land 0 
86 Pits 0 

87 Pits, Quarries 0 

88 Quarries 28 

89 Slick spot 89 

96 Water, Sand Channel 57 

98 Water 712 

99 Border 0 

number of 200 x 200 meters rectangles each attribute is spread. This gives us an idea 

about the attributes. 

X-Windows are used as an interface for this application. They are discussed in 

detail in the following section. 

X-Windows: 

X-Windows provide an efficient interface. An application can open as many 

windows as needed. An X-Window is a plain rectangular shaped window on the screen. 

There are different types of interface objects like scroll bars, push buttons etc ... that are 

to be added to the window as desired. To create a window and add different decorations 

we need to program using son1e X-tools. The basic progran1n1ing is done using X-lib. 

There are other tools like Xt intrinsic that are built on top of X-lib. OSF/Motif widget 

set is built on top of the Xt Intrinsic. These tools have functions and macro that does 

most of the work and are convenient to use. The hierarchy is shown below ( Hel92]: 
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Application 

User 
Interface 

Motif 

Xt Intrinsics 

Other 
Libraries 

Xlib 

Operating System 

Figure 9. Hierarchy of X-Windows [Hel92J 

X lib: 

Xlib is the X library and is the lowest level of programming interface to X. Xlib 

is a programming interface that has subroutine package written in C and is provided with 

the X Window system. Xlib is powerful enough to write effective applications without 

additional programming tools and is necessary for certain tasks even in applications 

written in higher level. The disadvantage of using Xlib is that it makes programming 

difficult. For example to create a new window, about 60 lines of similar code is written 

every time a new window is created. Also the all the conditions are written in one big 

main loop with case statements. This complicates programming a complex interface. 

This is explained in greater detail in [Oli89J. 
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Xt Intrinsics: 

Xt Intrinsic are built on top of Xlib. The purpose of Xt is to provide an object 

oriented layer that supports the user interface abstraction called a widget. A widget is a 

reusable, configurable piece of code that operates independently of the application except 

through prearranged interaction. Xt defines certain base classes of widget, whose 

behavior can be inherited and augmented or modified by other widget classes or its sub 

classes. For programming in Xt intrinsics [AT92] is referred. 

OSF/Motif widget set (Xm): 

Xt provides an object oriented framework for creating reusable, configurable user 

interface widget. Motif provides widget for such con1mon user-interface elements as 

labels, push buttons, menus, scroll bars etc . . . In addition it provides manager widget that 

control the layout of the other widget. Xt provides functions for creating and setting 

resources on widget. Xm provides the widgets themselves plus an array of utility and 

convenience functions for creating groups of widget that are used collectively as a single 

type of user interface element. For programming using Motif [Hel92] is referred. 

INTERFACE AND APPLICATI()N 

The X-Window interface sits on the R* tree. The interface provides access to load 

data, display soils (attributes), and query the attributes. The main window has four push 

buttons, one for load, display soils, query soils, and quit. This is shown in the figure 10. 

When the LOAD button is pushed the names of the counties to be selected is 
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displayed. In our case, since data of only one county is available the name of the Caddo 

county is displayed. This is shown in the figure 11. When this button (Caddo) is pushed 

it pops up a dialog box with a message infonning whether the data will be loaded or data 

has already been loaded. This is shown in figures 12 and 13. Both of the dialog boxes 

are opened in SYSTEM_MODAL. This means that when they are in action they have 

to be responded. The mouse button will not work for other options until they are 

responded. Also the dialog boxes display different symbols, one with sand timer to 

represent it is busy loading and the other with infom1ation symbol. When the Load is 

selected by responding to 'OK' in the dialog box of figure 12, loading starts, with the 

scale widget displaying the amount of data displayed. Internally, the file containing the 

data of the Caddo county is opened and the insertion function is called to build the R* 

tree with the data. Since the data is huge (about 90,000 rectangles) it takes about 8 to 

10 minutes to load the data of Caddo county. Once the data is loaded, the scaled widget, 

dialogue box, and Caddo button will disappear. Attempt to load the data again results in 

the second dialogue box (figure 13) that infonns that data has already been loaded. Once 

loading is completed display of attributes and query of attributes can be selected. 

If DISPLAY SOILS is selected a scrolled list appears as shown in figure 14. The 

scrolled list displays all the attributes. Since there are 99 attributes it is inconvenient and 

not possible to display all of them in a single window. So a scrolled window is used to 

display these attributes. The scrolled list shows 15 items at a time. By pressing the 

arrow buttons (up and down) provided on the right side of the list, the list can be 
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traversed up or down. To select an attribute, mouse button has to be clicked twice on the 

desired item. This opens up another window (figure 15) to display the selected attribute. 

This window displays the outline of Caddo county with the distribution of the selected 

attribute in the county. The name of the selected attribute and the area covered by this 

attribute are also displayed. Internally the leaf level linked list of the R * tree is traversed 

and the rectangles containing the selected attribute are displayed on the screen, at the 

selected portion with respect to the scale desired. Three options are provided, either to 

shrink the map, to enlarge the map or to quit when done. Only two scales are provided 

(SHRINK and ENLARGE). The first scale (SHRINK) draws every rectangle with an area 

of 1 x 1 pixel area and the other (ENLARGE) with 2 x 2 pixel area. These two are 

shown in figures 15 and 16. If 3 x 3 or n1ore than that is selected the map grows out of 

proportions, so these are not provided. Though not provided in this interface, with little 

change in the code, larger areas can be handled by having scroll bars for the drawing 

area. The coordinates of any particular piece of land can be obtained by pressing the 

mouse button at the desired location, dragging it to cover the desired area and releasing 

the button. When the button is pressed and dragged, a rectangle is displayed showing 

the area selected. When the button is released the coordinates of the selected area are 

shown. This is shown in the figure 17. When the n1ouse button is pressed in the map 

draw area, the mouse button is grabbed in n1ap window not allowing the mouse to move 

out of the window. Since monochrome monitor is used, only one attribute is displayed 

at a time. Background is displayed in black and foreground (distribution of attribute) is 
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shown in white. Since we cannot get very many shades from these two colors only one 

attribute at a time is displayed. Code can be modified to display multiple attributes if 

working on a color monitor. By selecting the DONE button the control is passed back 

to the main window. 

Query of soils can be done by pressing the QUERY _SOILS button. Once this is 

selected a new window is opened similar to that of the display soils window. But this 

window shows only the outline of the Caddo county. Both point and range queries can 

be preformed. To perform a point query, press and release the n1ouse button at the 

desired location on the map showing caddo county. A window opens showing the 

attribute and its area. To perform range query press and drag the mouse button till the 

required area is selected. When it is pressed and dragged, a rectangle is shown displaying 

the area being selected. When the button is released a scrolled window displays the 

results. The window contains all the attributes and their an1otmt of distribution in the area 

selected. A scrolled window is provided to handle a query with larger number of 

attributes. Also the coordinates of the selected area are displayed. This is shown in the 

figure 18. Internally, the coordinates of the selected area are scaled and passed to the 

query function of the R * tree. This function searches the R * tree for the embedded and 

the overlapping rectangles of the given search rectangle. The results are displayed using 

the interface. Similar to that of the display soils, two sizes are provided for the querying 

and these can be selected by pressing the SHRINK or ENLARGE button. Pressing the 

DONE button passes the control to main window and it is displayed waiting for further 

responses from the user. 
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Display of soils and query of soils can be selected as many times as desired. 

When QUIT button is pressed, a popup dialogue box opens as shown in figure 19. If 

YES is selected the program terminates otherwise the control passes back to the main 

window. 

The insertion function of the R * tree is used for loading the data, and for the 

querying, search function of the R * tree is used. To display the selected attribute the leaf 

level linked list in built in the R * structure is utilized. 



CHAPTER V 

CONCLUSIONS 

The R* tree provides efficient point and range querying capability. But its 

structure as such, is not suitable for graphical interface of the data. By making it leaf 

level linked structure the actual data can be accessed by traversing the leaf level. This 

reduces the time for accessing the actual data sequentially in the R* tree. Also the leaf 

level linked list is implemented with negligible increase in the cost for insertion than in 

R * trees. Querying can be done with the same performance as that of R * tree since level 

linked structure preserves the basic R * tree structure. Thus the level linked structure 

proposed in this thesis performs both querying and graphical representation of spatial data. 

Existing structures can perform operations like insert, delete, and access. But the 

proposed structure, in addition to all above operations can perform graphical 

representation of the spatial data. 

Fully level linked R * trees are useful for implementing hotspot concept. This 

linking of the levels helps to implement many more applications that are to be explored. 

X Windows provide excellent user interface and supports good graphics. 

47 



REFERENCES 

[AT92] Adrain, N., Tim, O'reilly.: "X Toolkit Intrinsics Programming Manual", 
O'Reilly & associates, Inc., California, 1992. 

[Carl92] Carl, F.: "An Introduction to Geographic Inforn1ation Systems: Linking 
Maps to Databases", Database, April 1992 pp 12-21 

[Frank92] Frank, A.U.: "Spatial Concepts, Geometric Data Models, and Geometric 
Data Structures", Computers and Geosciences Vol.18, No.4, 1992 
pp.409-417. 

[Hel92] Heller, D.: "Motif Programming Manual", O'Reilly & Associates, Inc, 
California, 1992. 

[HT90] Henskes, D.Th., Tolmie, J.C.: "Prototyping and Visualization in Interface 
Design", Electrical Communication, Vol.64,No.4, 1990, pp. 321-
326. 

[NHRB90] Nobert, B., Hans, P.K., Ralf, S., Bernhard, S.: "The R* -tree: An Efficient 
and Robust Access Method for Points and Rectangles", ACM 
SIGMOD, NewYork, Vol 19, No.2, 1990 pp.322- 331. 

[OS90] Ohsawa, Y., Sakauchi, M.: "A New Tree Type Data Structure With 
Homogeneous Node Suitable For A Very Large Spatial Database", 
Proc. of the IEEE Sixth Int. Conf. on Data Engg. 1990 pp.296-303. 

[Oli89] Oliver, J.: "Introduction to the Window X System", Prentice Hall, 
NewJersy, 1989. 

[Peter89] Peter. H.L.: "When Maps Are Tied To DataBases", Newyork Times, 
Sunday, May 28 1989, pp I 0. 

[FS87] Freestone, M.: "The BANG File: A New Grid File", Proc. of the ACM 
SIGMOD Int. Conf. on Management of Data, 1987, pp.260-269. 

48 



[SRF87] 

[Gutt84] 

[NH84] 

[Rob81] 

[BF77] 

[BSW77] 

[Bent75] 

[FB74] 

[Knu73] 

49 

Sellis, T., Roussopoulos, N., Faloutsos, C.: "The R+ -tree: a Dynamic 
Index Structure For Multi-dimensional objects", Computer Science 
TR-1795, University of Maryland,College Park, MD, February 
1987. 

Guttman, A.: "R-Trees: A Dynamic Index Structure for Spatial Searching", 
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, 
1984, pp.47-57. 

Nievergelt,J., Hinterberger, H.: "The Grid File: An Adoptable Symmetric 
Multikey File Structure", ACM Transactions on Data Base 
Systems, Vol. 9,No.l, pp 38-71. 

Robison, J.T.: "The K-D-B Tree: A Search Structure for Larger Multi 
Dimensional Dynan1ic Indexes", Proc. of the ACM SIGMOD 
Conference, 1981, pp.l 0-18. 

Bentley, J.L., Friedman, J .H.: "Data Structures for Range Searching", 
ACM Computing Surveys, Vol.ll ,No.4 , 1979, pp.397-409. 

Bentley, J.L., Stanat, D.F., Williams, Jr., E. H.: "The Complexity of Fixed 
Radius Near Neighbor Searching", Inf. Proc. Lett. Conference, 
Vol.6, No.6, 1977, pp.209-212. 

Bentley, J.L.: "Multi-dimensional Binary Search Trees Used for Associated 
Searching", Communications of the ACM, Vol.l8, No.9, 1975, 
pp.509-517. 

Fink, R.A., Bentley, J.L.: "Quad Trees: A Data Structure for Retrieval on 
Composite Keys", Acta Informatica, Vol.4, No.1, 1974, pp.l-9. 

Knuth, D.E.: "The Art of Computer Programming", Vol. I, Fundamental 
Algorithms,Second Edition, Addisson- Wesley, MA, 1973. 



Thesis: 

VITA 

VCS REDDY KUMMETHA 

Candidate for the Degree of 

Master of Science 

A LEVEL LINKED R• TREE STRUCTURE WITH AN APPLICATION 
USING X-WINDOW GRAPHICAL INTERFACE 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Anantapur, Andhra Pradesh, India, December 12, 1969, son 
of Rama Krishna Reddy K., and Sita K. 

Education: Graduated from LRG High School, Anantapur, Andhra Pradesh, 
India, in May, 1985; received Bachelor of Engineering in Mechanical 
Engineering from Osmania University in May, 1991; completed requirements 
for the Master of Science Degree in Computer Science at Oklahoma State 
University in December, 1993. 

Professional Experience: Graduate Research Assistant, University Computer 
Center, Oklahoma State University, July, 1992 to present. 


	Image1.tif
	Image2.tif
	Image3.tif
	Image4.tif
	Image5.tif
	Image6.tif
	Image7.tif
	Image8.tif
	Image9.tif
	Image10.tif
	Image11.tif
	Image12.tif
	Image13.tif
	Image14.tif
	Image15.tif
	Image16.tif
	Image17.tif
	Image18.tif
	Image19.tif
	Image20.tif
	Image21.tif
	Image22.tif
	Image23.tif
	Image24.tif
	Image25.tif
	Image26.tif
	Image27.tif
	Image28.tif
	Image29.tif
	Image30.tif
	Image31.tif
	Image32.tif
	Image33.tif
	Image34.tif
	Image35.tif
	Image36.tif
	Image37.tif
	Image38.tif
	Image39.tif
	Image40.tif
	Image41.tif
	Image42.tif
	Image43.tif
	Image44.tif
	Image45.tif
	Image46.tif
	Image47.tif
	Image48.tif
	Image49.tif
	Image50.tif
	Image51.tif
	Image52.tif
	Image53.tif
	Image54.tif
	Image55.tif
	Image56.tif
	Image57.tif
	Image58.tif

