
A LEVEL LINKED R* TREE STRUCTURE WITH

AN APPLICATION USING X-WINDOW

GRAPHICAL INTERFACE

By

V C S REDDY KUMMETHA

Bachelor of Engineering

Osmania University

H yderabad, India

1991

Submitted to the faculty of the
Graduate College of the

Oklahon1a State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
Decen1ber 1993

OKLAHOl\Lt\ STATE UNIVERSITY

A LEVEL LINKED R* TREE STRUCTURE WITH

AN APPLICATION USING X-WINDOW

GRAPHICAL INTERFACE

Thesis Approved:

_ . ., Thesis Adviser
/ I !; /, / Q/! l//1

/~--]A(:, J! -fJiA~o

Dean of the Graduate College

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and thanks to Dr. Huizhu Lu for her

encouragement and advice throughout my thesis and course work. I would also like to

thank Dr. Jacques Lafrance and Dr. Paul Benzamin for their valuable suggestions and for

serving in my committee.

I wouldn't have been what I am today but for the love, guidance and support of

my parents Mr. K.Ramakrishna Reddy and Mrs. Sita.

My appreciations to my sister Sujatha for her patience and guidance.

Heartfelt thanks to my friend Siva for being so supportive throughout my course

work.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION

II. LITERATURE REVIEW . 3

R Tree .. 6
Insertion Algorithm . 7
Pick Seeds Algorithm . 8
Distribute Algorithn1 . 9
Pick Next Algorithn1 . 9

R* Tree . 1()
Algorithm Choose Subtree . 11
Algorithn1 Split . 12
Algorithm Choose Split Axis . 12
Algorithm Choose Split Index . 13

X-Windows . 14

III. R TREE BASED STRUCTURES: DRAWBACKS AND SOLUTIONS ... 16

Inherent Drawback . 16
Possible Solution . 17
Implementation of Level Linked R* Tree Structure 17

Leaf Level Linked R* Tree . 18
Algorithm Split . 19
Costs involved in Leaf Level Linked R* Tree 21
Application of Leaf Level Linked R* Tree 22

Fully Level Linked R* Tree . 22
Application of Fully Level Linked R * Tree 24

Advantages of Level Linked R * Tree 24

IV. APPLICATION OF LEAF LEVEL LINKED R* TREE
USING X-WINDOWS . 26

Description of Data . 27
Analysis of Data . 27

IV

Chapter Page

X-Windows . 30
Xlib . 31
Xtintrinsic . 32
OSF/MOTIF . 32
Interface and Application . 32

V. CONCLUSIONS . 47

REFERENCES ... 48

v

LIST ()F FIGURES

Figure Page

1. Example Structure of R • Tree . 16

2. Level Linked R* Tree Structure . 17

3. Root Node before Split in R" Tree . 19

4. Leaf Level Linked R" Tree after Root Split . 20

5. Leaf Level Linked R" Tree before Leaf Split . 20

6. Leaf Level Linked R" Tree after Leaf Split . 21

7. Fully Level Linked R" Tree before Leaf Split . 23

8. Fully Level Linked R" Tree after Node Split . 23

9. Hierarchy of X-Windows 31

10. Main Window of Interface . 33

11. List of Counties when Load Button is Selected . 35

12. Display when Loading Data . 36

13. Display when Data is Already Loaded . 37

14. Display of Scrolled List of Soils . 38

15. Distribution of Selected Attribute in Caddo County in Shrink Scale 40

16. Distribution of Selected Attribute in Caddo County in Enlarge Scale 41

17. Obtaining Coordinates of Selected Area When Attribute is Displayed 42

Vl

Chapter Page

18. Querying a Selected Area in Caddo County . 44

19. Display When Quit is Selected . 45

Vll

LIST OF TABLES

Table Page

1. Development in Spatial Structure . 5

2. Summary of Soils in Caddo County . 28

Vlll

CHAPTER I

INTRODUCTION

Space is thought of as a collection of an infinite number of dimensionless points

which form a continuum. Each point has a set of attributes that describes its properties.

The collection of attribute values of spatial points is called spatial data.

Here we discuss two-dimensional spatial data, specifically land. Every spatial

point has a location that is fixed with respect to the earth and addressed by a coordinate

system. For example, a point can be addressed by its distances on North, South, East,

and West directions from a fixed origin. Each point on the land has attribute values.

These attributes include mineral contents, type of soil, chemical compositions, etc ...

By 'spatial locality', adjacent spatial objects tend to have nearly same attribute values.

In other words, although they distribute irregularly, an attribute value spreads for a certain

contiguous region. Thus space (land in this case) can be partitioned into small rectangular

regions and attributes pertaining to these regions can be closely represented.

A set of spatial data is huge. Research is being done to develop data structures

that can efficiently store and access spatial data. Currently, data structures like R -trees,

R+ trees and R • trees are efficient for handling spatial data.

Unlike the B trees [Knu73l that store an alphabetic key or a numeric value in its

node, R• trees hold coordinates of spatial object and their attributes. R* tree's ability to

2

handle spatial data is remarkable in that it provides very efficient access time when

compared with other data structures.

Apart from storing and accessing, the other major factor is pictorial representation

of this huge spatial data. Pictorial representation of spatial data gives a clearer image

than just looking at the numbers. We see the way we imagine, therefore spatial data is

more meaningful if shown on screen, in pictorial form, opposed to a printout of numbers.

X-Windows are flexible and have powerful graphical capabilities. A blend of X

Windows and R * tree provides a powerful interface for the spatial data.

CHAPTER II

LITERATURE REVIEW

Currently, 80% of information held by business and government is geographically

referenced[Carl92]. Examples include land use information, mailing addresses, facility

layouts, information about networks like water, cable, gas, electric, transportation etc ..

The conventional method to preserve geographically referenced information is to draw

maps on paper. Paper maps have several draw backs. They are difficult to update,

manipulate, and combine with other data. Computerization of maps overcome these draw

backs and supports many other features.

Currently available database systen1s are suitable for business applications like

planning and accounting. In database applications involving geographical data,

geographical objects, data structures that are capable of handling multi-dimensional data

objects are required. Traditional data structures that support one dimensional data are not

suitable for multi-dimensional data objects, for example, B+ trees. B+ tree stores one

dimensional data keys like numbers (ex. age), or alphabetic keys (ex. name) or

alphanumeric keys (ex. addresses). These keys have a fixed relation between them, i.e.

we can say that a particular key is greater than, equal to, or less than another key. But

spatial data key, in the simplest form, a point, has at least two coordinates (x, y), and in

complex form, a polygon in multiple dimensions, has many more coordinates to represent

3

4

it. These keys don't have a fixed relation between them, in the sense that we cannot say

a particular spatial data key is less than, equal to, or greater than another key. Therefore

new data structures are proposed to handle spatial data.

Early spatial data structures that are proposed are Quad tree [FB74l and K-D tree

[Bent75] in 197 4 and 1975. The basic structure of these data structures is similar to the

binary tree. Developments over these data structures are Cell method and K-0-B tree

[Robi81]. These spatial data structures are similar to traditional structures but

modifications are made to handle multi din1ensional data and proper algorithms are

developed for insert and search. These data structures are not general enough and cannot

handle both point and range query efficiently. These are expensive and are not

appropriate for large databases.

Later developments are based on B+ tree and hashing principle (bucket method).

In 1984, R-tree [Gutt84l and Grid file I NH84] structures are proposed. Grid file is based

on bucket method, and R-trees are based on B+ tree structure. Grid file is good for

handling point data. It can handle non point data by mapping to a higher level. R-trees

are popular methods for accessing rectangles. This can also handle point data since a

point is nothing but a rectangle having zero area.

After 1984, developments made, were, either to improve Grid file orR-tree. Bang

file [FS87], GGF (generalized grid file) are examples of the development of grid files.

R+ trees [SRF87], Greene's variation of R-tree and R *tree [NHRB90] are improvements

done on R-tree.

The development of spatial data structures can be summarized as follows:

5

A tabular column is drawn (TABLE 1) that shows the year in which the structure

is published, the name of the structure, and the traditional structure on which it is based

on.

TABLE I

DEVELOPMENT IN SPATIAL STRUCTURES

YEAR

1974

1975

1979

1981

1984

1984

1987

1987

1990

1990

SPATIAL
STRUCTURE

QUAD TREE

K-D TREE

CELL METHOD

K-D-B TREE

R-TREE

GRID FILE

R+ TREE

BANG FILE

R* TREE

GGF

TRADITIONAL
STRUCTURE

BINAF<.Y TF<.EE

BUCKET METHOD

B TREE

I B+ TREE I

'Ill BUCKET METHODI I

B-r TREE

I 'I
BUCKET METHOD

B+ TREE I

BUCKET METHOD i

'------------------------- _________ _j

Note: The details in the tabular column are based on our literature survey. The

spatial structures shown are the prc)lninent structures that are developed during the period

1975 - 1990. This is not a complete listing.

Spatial data structures can be broadly divided into two groups based on the

structures that efficiently handle

1) point data, and

2) range data.

6

Grid files can efficiently handle point query where as R-tree variants can handle

range query efficiently. Point and range query are defined as follows:

1. A point query queries the database and gives the attributes associated with the

given point.

2. A range query queries the database and gives all the attributes that are associated

with the points within the given range.

In applications involving geological sciences. agriculture etc ... , the attributes

follow spatial locality. For example a particular soil in land may spread for a particular

region and then fade away, from where on another soil n1ay start. So land, in this case,

can be divided into small rectangular regions consisting of a uniforn1 attribute. For this

type of applications R-tree variants are best suited. R-tree I Gutt84] is explained in

detail.

R TREE

An R tree is a B+ tree like structure that stores n1ultidimensional objects

(rectangles). A non leaf node contains n1inin1um bounding rectangles and pointers to its

child nodes. A minimum bounding rectangle of a node is one that has minimum area and

includes all rectangles that are the entries in its child node. Leaf node contains rectangles

and the data object corresponding to that rectangle.

If 'M' is the maximum number of rectangles that fit in a node and 'm' is the

minimum number of rectangles (2<= m <= M) then R tree has the following properties:

1. The root has at least two children unless it is a leaf.

7

2. Every non-leaf node has between m and M children unless it is a root.

3. Every leaf node contains between m and M entries unless it is the root.

4. All leaves appear on the same level.

An R tree is completely dynamic. Insertions and deletions can be intermixed with

queries and no periodic global reorganization is required. Since R tree is a dynamic

structure, all the approaches of optimizing the retrieval performance must be applied

during the insertion of new data rectangle. The insertion algorithm calls two more

algorithms in which crucial decisions for good retrieval performance are made. To insert

a rectangle, the leaf node 'N' into which it is to be inserted must be determined. This

is done by the following algorithm.

Insertion Algorithm [Gutt84j:

CS 1 Set N to be the root

CS2 If N is leaf

Else

End

return leaf

Choose the entry in N whose rectangle needs least area

enlargement to include the new data. Resolve ties by choosing

entry with rectangle of smallest area.

8

CS3 Set N to be the child node pointed by the child pointer of the chosen entry

and repeat from cs2.

The insert function then determines if the leaf node can accommodate a new

rectangle. If the node already has M rectangles, then it calls split function. Split

algorithm in turn calls two more algorithms

1) pick seeds: determines the first two rectangles that go into each group.

2) distribute: this distributes the remaining entries into the two groups.

The algorithm for splitting M+ 1 entries into two groups is as follows fGutt84]:

S 1 Invoke pick seeds to choose two entries to be the first entries of the

groups.

S2 Repeat

Distribute entry

Until

all entries are distributed or

one of the two groups has M-m+ 1 entries.

S3 If entries remain, assign them to the other group such that it has minimum

number m.

Pick seeds Algorithm [G utt84]:

PS 1 For each pair of entries E 1 and E2 compose a rectangle R including

El.Rectangle and E2.Rectangle.

Calculated= area (R)- area (El.Rectangle)- area (E2.Rectangle)

9

PS2 Choose the pair with largest d.

Distribution Algorithm [Gutt84 1:

This algorithm invokes another algorithm pick next, to determine the next entry

considered for distribution. Then it selects the group where the entry is placed.

DE 1 Invoke pick next to chose next entry to be assigned.

DE2 Add it to the group whose covering rectangle will have to be enlarged

least to accommodate it. Resolve ties by adding the entry to the group

with smallest area. then to the one with few entries then to either.

Pick Next Algorithm [Gutt84 1:

PNl For each entry E not yet in a group, calculate dl, the area increase

required in the covering rectangle of the group 1 to include the

E.Rectangle.Similarly calculate d2 for group2.

PN2 Choose the entry with maximum difference between d 1 and d2.

The method of optimization is to n1inimize the area covered by a directory

rectangle. This reduces overlap of rectangles and good retrieval performance is obtained.

The algorithm pick seeds finds two rectangles that waste the largest area put in one group.

The two selected rectangles will be the distant ones. 'Distribute entries' algorithm assigns

the remaining entries based on the minimum area criteria. Pick next chooses an entry

with the best goodness value in every situation. In R-trees, bounding boxes are fonned

10

from arbitrary set of rectangles in a way that arbitrary retrieval operations with query

rectangles of arbitrary size are handled efficiently. The known parameters of retrieval

performance affect each other in a very complex manner such that it is impossible to

optimize one without influencing the other. This can cause deterioration in the overall

performance. Since the data rectangles may have different size and shape and directory

rectangles may grow and shrink dynamically, the success of methods that optimize one

parameter is very uncertain. In R• trees fNHRB90j a heuristic approach is applied taking

various parameters into consideration.

R* TREE

The parameters that are taken into consideration by the R* tree are[NHRB90]:

1. Minimize the area covered by a directory rectangle. The dead space in the

directory rectangle not covered by any of its child rectangles is minimized.

2. Minimize the overlap between directory rectangles that decreases the number of

paths to be traversed.

3. Minimize the margin of the directory rectangle. Margin is the sum of the lengths

of the edges of a rectangle. For a fixed area square has the minimum margin.

Thus minimizing the margin yields more quadratically shaped directory rectangles.

This results in more packed directory rectangles. Queries with large query

rectangles profit this.

4. Optimize storage utilization. The higher the storage utilization, the lower the tree

height and the better the querying.

11

Unlike R tree that take only area parameter into consideration, R• tree takes area,

margin and overlap. The overlap of an entry is defined as [NHRB90]:

node.

Let E 1, ... , Ep be the entries in the current node. Then

Overlap (Ek) = E area (Ek.Rectangle r1 Ei.Rectangle), 1 :s; k :s; p.

To insert a new rectangle choose suhtree function is invoked to find an appropriate

Algorithm Choose Suhtree {NHRB90j:

CS 1 Set N to be the root

CS2 If N is a leaf, Return N

Else If the child pointers in N point to leaves I determine the minimum

overlap cost J, choose the entry in N whose rectangle needs least

overlap enlargement to include the new data rectangle. Resolve

ties by choosing the entry whose rectangle needs least area

enlargen1ent then the rectangle with smallest area.

End

CS3 Set N to be the child node pointed to by the child pointer of the chosen

entry and repeat fron1 CS2.

From the above algorithm, the subtree is chosen and the node is selected in which

the new entry is to be inserted. If the node has less than M entries, the new entry is

inserted in that node. If it has M entries algorithm split is invoked. Algorithm split in

tum calls two more algorithms:

12

1. Choose split axis: This chooses the axes along which the split has to be

performed by computing various goodness values.

2. Choose split index: This selects the distribution of entries into two groups.

Along each axis the entries are first sorted by the lower value, then by the upper

value of the rectangles. For each sort M - 2m + 2 distributions of the M + 1 entries into

two groups are determined where the kth distribution fk = 1, ... , (M-2m+2)] has first [m-

1 +k] entries in the first group and the ren1aining in the second group. For each

distribution the following goodness values are detern1ined:

(1)

(2)

(3)

area-value:

margin-value:

overlap-value:

area[bb(first group) I + area[bb(second group)]

n1arginl bb(first group)] + margin[bb(second group)]

area[bb(first group)] n area[bb(second group)]

Where bb represents the bounding rectangle.

Algorithm Split [NHRB90]:

S 1 Invoke choose split axis to determine the axis, perpendicular to which the

split is performed.

S2 Invoke choose split index to detern1ine the best distribution into two

groups along that axis.

S3 Distribute the entries into two groups.

13

Algorithm Choose Split Axis [NHRB90]:

CSAl

CSA2

For each axis sort the entries by the lower and by the upper values

of their rectangles and determine all distributions as described

above. Compute S, the sun1 of all margin values of the different

distributions.

End

Choose the axis with the minimum S as split axis.

Algorithm Choose Split Index {NHRB90j:

CSII Along the chosen split axis choose the distribution with the

minimum overlap value. Resolve ties by choosing the distribution

with minimum area value.

Once the split is performed the tree structure has to be updated along the insertion

path. All the covering rectangles have to be adjusted such that they are the minimum

bounding boxes enclosing their children.

Though the insertion is costly, it provides an order in the structure that contributes

for fast accessing.

Experiments conducted found that R • tree outperforms the R tree variants in all

experiments[NHRB90]. The conclusions of the experiments are [NHRB90]:

1. The R• tree is the most robust method, underligned by the fact that for every query

less accesses are required than by any other variants.

14

2. The gain in efficiency of the R* tree for small query rectangles is higher than for

large rectangles because storage utilization gets more important for large query rectangles.

This emphasizes the goodness of the order preservation of the R * tree.

3. The maximum performance gain of the R* tree taken over all query and data files

is in comparison to the linear R tree about 400% and quadratic R tree is 180%.

4. R* tree has the best storage utilization.

X-Windows

To represent these data structures graphically, we need a sound graphical interface

and user friendly environment. X-Windows(X), which runs under UNIX environment,

provides an excellent interface as it does not restrict the window to any pre-defined

interface like most window systems do. We can define and design the window as we

desire.

X-Windows provide mechanisms to support n1any interface styles rather than

enforcing one particular policy, i.e. it does not provide any scroll bars, button boxes,

menu, etc ... , by default. All it provides is a rectangular section of screen. Applications

can create their own decorations like title bar, scroll bar, menus, etc ... , in the required

fashion and style. X has a variety of resources like windows, bitmaps, fonts, colors and

data structures used by applications.

X has a standard toolkit known as X toolkit. The X toolkit has two parts: Xt

Intrinsic and widget. Widget sets provide user interface components like windows, scroll

bars, title bars, dialog boxes etc . . . Xt Intrinsic supports many widget sets. The popular

15

widget set is Open Software Foundation (OSF) Motif Widget set. Both widget and Xt

Intrinsic are built on top of Xlib. Xlib the basic low level X library provides with various

functions and capabilities. Xlib also provides complete access and control over the

display, windows and input devices.

Programmers can directly program in Xlib, however it requires lot of redundant

code to maintain the conventions. The work done by 100 lines X lib code can efficiently

be done by five to ten lines of code using widget. Efficient X programs are written with

a combination of Xlib, Xt Intrinsic, and a widget set.

CHAPTER III

R TREE BASED STRUCTURES: DRAWBACKS AND S()LUTIONS

INHERENT DRAWBACK

R-tree structure is analogous to B+ tree structure. In R-tree structure index

rectangles are stored in non leaf nodes and actual rectangles are stored in leaf nodes.

The structure of R-tree is shown below:

y

Figure 1. Example Structure of R'" Tree

This structure (R -tree based spatial structure) is efficient for point and range

querying, but does not provide any means to access the actual data directly. If an

application requires access to actual data sequentially, then no matter what, the whole

tree has to be traversed to achieve this. This is costly and time consuming. In figure

1 from node x we need to go to node y access all data then go back to node x and

come down to node z to access other data. This is very costly and time consuming.

16

17

POSSIBLE SOLUTION

The problem encountered in R-tree based structures can be solved by n1aking it

leaf level linked structure. The leaf level linked R * tree structure is as show below:

y

Figure 2. Level Linked R* Tree Structure

The level linked R * data structure has all the properties of a R * data structure.

In addition it has all the nodes in the same level linked. Querying, either point or

range is done similar to that of the R * tree. Sequential access to actual data is done

by utilizing the level linked list of the leaf level. The level linking of the non leaf

nodes can be utilized to implement hotspots principle that helps in in1proving the

query algorithm.

Implementation of level linked R • structure

Implementation of the level linked R * tree depends on the requirements of the

application. Some applications may require only level linking of the leaf level while

others may require level linking of the whole tree. Though both types are discussed,

since the application developed in this thesis requires leaf level linked R * tree

structure, it is discussed in more detail.

Leaf level linked R* trees:

18

This type of implementation is particularly needed for applications involving

graphical interface for spatial data. These applications can access the actual data

sequentially, using the leaf level, simultaneously exploit the efficient query capabilities

of R* tree.

In R * tree new nodes are created only in two cases:

1. When a node is over filled, i.e if the node already contains M (maximum

number) elements and a new element has to be inserted into that node, 'split' occurs.

Whenever split occurs, a new node is created and is linked to its parent. This created

node forms a new sibling to the old node. The newly created node can be in the leaf

level or non leaf level.

2. When ever the root node splits two new nodes are created, one forming the

new root and the other forming a new sibling for the old root that split.

Always there is only one node in the root level. So when a new root is created

we need not worry about linking it to any other siblings in the root level. For leaf

level linked R* trees the only case that has to be considered is, to link the newly

created leaf node to the list of the leaf level. R * trees are similar to B+ tree structure

and have all the leaf nodes in the same level. So the newly created leaf node should

be in the same level as that of the leaf node that has been split. Whenever a leaf node

19

splits, by assigning the new node's sibling pointer to the old node's sibling pointer and

the old node's sibling pointer to the new node, level linking of the leaf level can be

achieved. Thus, only the split algorithm in the insertion algorithm of R * trees has to

be modified. The modified split algorithm for leaf level linked R* trees is as follows:

Algorithm Split:

S 1 Invoke choose split axis to determine the axis, perpendicular to which

the split is performed.

S2 Invoke choose split index to determine the best distribution into two

groups along that axis.

S3 Distribute the entries into two groups.

S4 If the split node is a leaf node update the links of the nodes. Set new

nodes NEXT (pointer to next node in the same level) to old nodes

NEXT and old nodes NEXT to new node.

The working of the leaf level linked algorithm is shown in the following

examples:

An external pointer is set to the first node created, since this is a leaf node

itself and is first leaf node created. As the tree grows the leaf level linked list is

created and can be traversed using this pointer.

~--~lLI_A __ ~_B __ ~---c~
Figure 3. Root Node Before Split in R* Tree

Let M (maximum elements in a node) = 3

Let m (minimum elements in a node) = 2

20

Initially the root node 1 shown in figure 3 is full. If a new element D has to be

inserted the node 1 should split. Since the root node is being split, two new nodes are

created one forming new root and the other forming new sibling as shown in figure 4.

Figure 4. Leaf Level Linked R * Tree After Root Split

The new nodes 2, 3 are created, 3 forming the new root and 2 forming the new

sibling. 1, 2 are linked. BBI and BB2 are the bounding boxes of the nodes 1, 2.

Another scenario is depicted below:

Figure 5. Leaf Level Linked R* Tree before Leaf Split

In the figure 5 if node 6 is overfilled and a new element is to be placed into it,

split occurs and propagates as shown in figure 6. Node 6 is split and node 10 is created.

According to the algorithm, sibling pointer of node 10 is set to the node pointed by

21

sibling pointer of node6, i.e. node7, and sibling pointer of node6 is set to new node

(node 10). The level linking of the leaf level is perfectly maintained and is shown below:

3

Figure 6. Leaf Level Linked R* Tree After Leaf Split

The non leaf node 2 also splits and new node 11 is formed, propagating a new

bounding box to node 1.

Costs involved in implementing leaf level linked R* trees:

1. The access time to access the actual data is greatly reduced. In R * trees

the whole tree has to be traversed to achieve this. In leaf level linked R * trees only

the leaf level is accessed to achieve this. The in1provement in the access time of the

actual data is clear and is discussed below.

Let there be N > 1 nodes in the tree.

In R * tree, to access the actual data sequentially, we need to traverse all the N

nodes. If it takes one time unit to traverse from one node to other, then it requires a

value greater than N to access all the data in leaf nodes. In leaf level linked trees we

traverse only the leaf nodes which are a subset of total nodes N. So time taken to

access the actual data by leaf level linked trees is less than N units. Therefore time

taken to access the actual data is clearly better in leaf level linked trees.

22

2. In leaf level linked R * trees querying is done using the basic R * tree

structure, so there is no additional cost for querying.

3. One additional pointer is needed for leaf level linked R * tree structure.

So additional memory requirement is size of a pointer per node.

4. Whenever a split occurs only two pointer assignn1ents are done for level

linking. This is small when compared with the time complexity for R * tree insertion

and can be neglected. So we can say that there is no or negligent increase in the time

complexity for insertion in leaf level linked R * tree.

Application of leaf level linked R* trees:

Applications that require graphical representation of the spatial data as well as

querying can use a leaf level linked R * tree structure. The practical application of this

is done in this thesis for soils in Caddo county, Oklahoma, explained in chapter IV.

Fully level linked R* trees:

These structures are similar to leaf level linked structures. A brief outline of

these structures is discussed here.

As explained in the previous section new nodes are created only when split

occurs, two nodes are created when root node splits, and we need not worry about the

newly formed root node. The only other case to consider is, to link the newly created

node into the level, of the split node. So whenever a node splits, by assigning the new

ncxie's sibling pointer to the old node's sibling pointer and the old node's sibling

pointer to the new ncxie level linking level can be achieved.

The working of the fully level linked split algorithm is similar to that of the

leaf level linked split algorithm and is shown in the following examples:

Figure 7. Fully Level Linked R"' Tree before Leaf Split

23

In the above figure if node 6 is overfilled and a new elernent is to be placed

into it, split occurs and propagates. Node 6 is split and node 10 is created as shown

in figure 8. According to the algorithm, sibling pointer of node 10 is set to node

pointed by sibling pointer of node6, i.e. node7, and sibling pointer of node6 is set to

new node (node 10). The level linking of the leaf level is perfectly n1aintained. Now

the bounding rectangle is propagated to parent (node 2) in the immediate upper level.

Since node 2 is also over filled, it also splits creating a new node 11. Again links are

manipulated as explained above and the resulting tree is shown below:

1~------.--------~-------·~

Figure 8. Fully Level Linked R"' Tree after Node Split

24

Links are properly maintained and tree is completly linked. By having an

external pointer to each level we can traverse each level individually if needed. Cost

involed is similar to that of the leaf level linked tree.

Application of fully level linked trees:

Fully level linked trees can be used to implement the concept of hotspots. If

an element is accessed, the chances for accessing neighboring elements are more. By

having a pointer to the current node we can traverse neighboumig nodes and access

data quickly. This algorithm depends on the data and type of query done. To

implement this we need to have links to all neighboring nodes. R * tree structure

provides links to children and parent. In addition to this we need to have two sibling

pointers, to communicate and possibly traverse to sibling nodes. Also the links in the

level linked list should be adjusted corresponding to the positions of the modified

elements in parent node. This may lead to additional costs.

Advantages of Level Linked R* tree

1. Provides an easier way to access the actual data sequentially.

2. Allows implementation of the hotspot concept to achieve better accessing.

3. Can be implemented with aln1ost same cost as of R * trees.

4. Supports both point and range query efficiently.

The explanation for the above points is given below.

1. Accessing the actual data: In R * trees actual data is stored in the leaf nodes.

So to achieve easy accessing of the actual data only level linking of the leaf level is

enough. By having a pointer to the first node in the leaf level we can traverse the

whole list and access all the actual data.

2. Provision to implement hotspots: In addition to child pointers and parent

25

pointer, level linked R* tree has pointers to siblings. This means a node can

communicate with its neighboring node easily. In other words we can move to any

neighboring node with just one pointer movement This property can be exploited to

implement hotspots.

3. Low cost: To implement level linked R * trees, only two pointer assignments

are required that results in negligible additional cost over the insertion of R * trees.

4. Point and Range Query: Since the basic structure is similar to R * tree, the

efficient accessing algorithms of R * trees can be used without any modifications.

Therefore point and range query can be handled efficiently.

CHAPTER IV

APPLICATION OF LEAF LEVEL LINKED R* TREE USING X-WINDOW

INTERFACE

The main advantage of these structures is to access the actual data with minimum

cost. Also their structure supports the efficient querying provided by the R * tree. An

application that needs this kind of structure is the one that requires graphical

representation of the spatial data as well as querying. The practical application that we

are going to deal with, is the graphical representation and querying of soils in Caddo

county, Oklahoma.

For graphical representation of this spatial data we need to access the leaf nodes

because the actual data is in leaf nodes. Leaf level linked R * tree is used because this

application efficiently exploits both the leaf level linking for graphical representation and

basic R * tree structure for querying.

The application can be divided into two parts.

1. Implement the leaf level linked R * tree

2. Provide user friendly interface to represent the spatial data graphically and

to allow querying.

The leaf level linked structure is implemented as explained in the CHAPTER III.

To represent the data graphically, we need some sort of interface. For interface X-

26

27

Windows are used because they are flexible, have strong graphical capabilities and

provide user friendly components like push buttons, menus etc . . . This interface sits on

the leaf level linked R * tree. Though query request may be done through interface the

actual querying is done by the level linked R * tree.

Description of data:

Caddo County is one of the counties present in the state of Oklahoma. It spreads

to an area of four hectors. This area is divided into sn1all rectangles, each of 200 x 200

meters, and the most pron1inent attribute pertaining to this area is determined. This data

is obtained from Dr. Mark Gregory, Departn1ent of Agriculture.

Analysis of the data:

The obtained data is analyzed and then reforn1ed into two files. The first file has

the coordinates of the rectangular area with an attribute code. The format of this file is

as follows:

Xl Yl X2 Y2 ATT

Where Xl, Yl are the lower left and X2, Y2 are upper right comers of the

rectangle. A TT denotes the attribute code that corresponds to this piece of area. For

each attribute code there is a description in the second file. There are about 99 attribute .

codes. These codes and their description are listed in TABLE 2. The data is also

analyzed based on the amount of area they spread. In the tabular column shown in

TABLE 2, column 1 represents code, column 2 shows the attribute, column 3 shows the

28

TABLE 2

SUMMARY OF SOILS IN CADDO COUNTY

I Code I Attribute I Area I
0 no data 10377
1 Acme-Gypsum outcrop complex, 2 to 8 percent slopes 439
2 Breaks 904

3 Cobb fine sandy loam, 1 to 3 percent slopes 438
4 Cobb fine sandy loam, 3 to 5 percent slopes 2226

5 Cobb fine sandy loam, 5 to 8 percent slopes 420

6 Cobb fine sandy loam, 3 to 8 percent slopes, eroded 1846

7 Cobb and Grant soils, 3 to 8 percent slopes, severely eroded 1664

8 Cyril fine sandy loan1 276

9 Cyril fine sandy loam, noncalcareous variant 62

10 Darnell soils, 3 to 12 percent slopes, severely eroded 392

11 Darnell-Noble association, rolling 6766

12 Darnell-Noble association, hilly 1780

13 Dougherty loamy fine sand, 1 to 3 percent slopes 1176

14 Dougherty and Eufaula loamy fine sands, 3 to 8 % slopes 3087

15 Eufaula fine sand, rolling 1020

16 Eufaula loamy fine sand, 1 to 3 percent slopes 102

17 Eufaula loamy fine sand, hun1n1ocky 98

18 Foard silt loam, 0 to 1 percent slopes 717

19 Gracemont soils 1538

20 Grant loam, 1 to 3 percent slopes 1604

21 Grant loam, 3 to 5 percent slopes 2084

22 Grant loam, 3 to 6 percent slopes, eroded 566

23 Grant loam, 5 to 8 percent slopes 293

24 Grant-Wing complex, 1 to 5 percent slopes 263

25 Hollister silt loam, 0 to I percent slopes 746

26 Konawa loamy fine sand, I to 5 percent slopes, eroded 640

27 Konawa soils, 2 to 8 percent slopes, severely eroded 152

28 Limestone cobbly land 546

29 Lucien-Dill fine sandy loams, 3 to 12 percent slopes 3524

30 Lucien-Dill fine sandy loams, 12 to 30 percent slopes 379

31 McLain silty clay loam 497

29

TABLE 2 (CONTINUED)

32 Miller silty clay loam 143

33 Minco very fine sandy loam, 3 to 8 percent slopes 2891

34 Minco very fine sandy loam, steep 437

35 Minco silt loam, 3 to 5 percent slopes 1073

36 Noble fine sandy loam, 1 to 3 percent slopes 1335

37 Noble fine sandy loam, 3 to 8 percent slopes 7136

38 Norge silt loam, 1 to 3 percent slopes 1342

39 Norge silt loam, 3 to 5 percent slopes 1311

40 Pond Creek fine sandy loam, 0 to 1 percent slopes 963

41 Pond Creek fine sandy loam, 1 to 3 percent slopes 5186

42 Pond Creek silt loam, 0 to I percent slopes 1730

43 Pond Creek silt loam, 1 to 3 percent slopes 4239

44 Pond Creek silt loam, I to 3 percent slopes, eroded 180

45 Port silt loam 2715

46 Port and Pulaski soils, channeled 260

47 Pulaski soils 1392

48 Quinlan-Woodward complex, 5 to 12 percent slopes 2475

49 Reinach silt loam, upland, 0 to 1 percent slopes 88

50 Reinach silt loam, upland, 1 to 3 percent slopes 1824

51 Reinach silt loam, 0 to 1 percent slopes 1291

52 Rough broken land 976

53 Shellabarger fine sandy loam, 1 to 3 percent slopes 407

54 Shellabarger fine sandy loam, 3 to 5 percent slopes 268

55 Talpa-Rock outcrop complex, 5 to 30 percent slopes 1056

56 Tillman silty clay loam, 1 to 3 percent slopes 2440

57 Tillman silty clay loam, 3 to 5 percent slopes 935

58 Tillman silty clay loam, 2 to 5 percent slopes, eroded 199

59 Vernon soils, 5 to 12 percent slopes 118

60 Woodward-Quinlan complex, 3 to 5 percent slopes 972

61 Y ahola soils 975

81 Fill 0

82 Borrow Pits 0

83 Gravel Pits 0

84 Mine Pits and Dumps 0

30

TABLE 2 (CONTINUED)

85 Oil-Waste Land 0
86 Pits 0

87 Pits, Quarries 0

88 Quarries 28

89 Slick spot 89

96 Water, Sand Channel 57

98 Water 712

99 Border 0

number of 200 x 200 meters rectangles each attribute is spread. This gives us an idea

about the attributes.

X-Windows are used as an interface for this application. They are discussed in

detail in the following section.

X-Windows:

X-Windows provide an efficient interface. An application can open as many

windows as needed. An X-Window is a plain rectangular shaped window on the screen.

There are different types of interface objects like scroll bars, push buttons etc ... that are

to be added to the window as desired. To create a window and add different decorations

we need to program using son1e X-tools. The basic progran1n1ing is done using X-lib.

There are other tools like Xt intrinsic that are built on top of X-lib. OSF/Motif widget

set is built on top of the Xt Intrinsic. These tools have functions and macro that does

most of the work and are convenient to use. The hierarchy is shown below (Hel92]:

31

Application

User
Interface

Motif

Xt Intrinsics

Other
Libraries

Xlib

Operating System

Figure 9. Hierarchy of X-Windows [Hel92J

X lib:

Xlib is the X library and is the lowest level of programming interface to X. Xlib

is a programming interface that has subroutine package written in C and is provided with

the X Window system. Xlib is powerful enough to write effective applications without

additional programming tools and is necessary for certain tasks even in applications

written in higher level. The disadvantage of using Xlib is that it makes programming

difficult. For example to create a new window, about 60 lines of similar code is written

every time a new window is created. Also the all the conditions are written in one big

main loop with case statements. This complicates programming a complex interface.

This is explained in greater detail in [Oli89J.

32

Xt Intrinsics:

Xt Intrinsic are built on top of Xlib. The purpose of Xt is to provide an object

oriented layer that supports the user interface abstraction called a widget. A widget is a

reusable, configurable piece of code that operates independently of the application except

through prearranged interaction. Xt defines certain base classes of widget, whose

behavior can be inherited and augmented or modified by other widget classes or its sub

classes. For programming in Xt intrinsics [AT92] is referred.

OSF/Motif widget set (Xm):

Xt provides an object oriented framework for creating reusable, configurable user

interface widget. Motif provides widget for such con1mon user-interface elements as

labels, push buttons, menus, scroll bars etc . . . In addition it provides manager widget that

control the layout of the other widget. Xt provides functions for creating and setting

resources on widget. Xm provides the widgets themselves plus an array of utility and

convenience functions for creating groups of widget that are used collectively as a single

type of user interface element. For programming using Motif [Hel92] is referred.

INTERFACE AND APPLICATI()N

The X-Window interface sits on the R* tree. The interface provides access to load

data, display soils (attributes), and query the attributes. The main window has four push

buttons, one for load, display soils, query soils, and quit. This is shown in the figure 10.

When the LOAD button is pushed the names of the counties to be selected is

33

(I)
M (I) ,.... M
0 ,....

~
(I) 0 1?-4

>' tl'l

>-'
~

0 < :;:I

M M c::: 0
04 t.IJ
(I) :;:I
H 0
Q

34

displayed. In our case, since data of only one county is available the name of the Caddo

county is displayed. This is shown in the figure 11. When this button (Caddo) is pushed

it pops up a dialog box with a message infonning whether the data will be loaded or data

has already been loaded. This is shown in figures 12 and 13. Both of the dialog boxes

are opened in SYSTEM_MODAL. This means that when they are in action they have

to be responded. The mouse button will not work for other options until they are

responded. Also the dialog boxes display different symbols, one with sand timer to

represent it is busy loading and the other with infom1ation symbol. When the Load is

selected by responding to 'OK' in the dialog box of figure 12, loading starts, with the

scale widget displaying the amount of data displayed. Internally, the file containing the

data of the Caddo county is opened and the insertion function is called to build the R*

tree with the data. Since the data is huge (about 90,000 rectangles) it takes about 8 to

10 minutes to load the data of Caddo county. Once the data is loaded, the scaled widget,

dialogue box, and Caddo button will disappear. Attempt to load the data again results in

the second dialogue box (figure 13) that infonns that data has already been loaded. Once

loading is completed display of attributes and query of attributes can be selected.

If DISPLAY SOILS is selected a scrolled list appears as shown in figure 14. The

scrolled list displays all the attributes. Since there are 99 attributes it is inconvenient and

not possible to display all of them in a single window. So a scrolled window is used to

display these attributes. The scrolled list shows 15 items at a time. By pressing the

arrow buttons (up and down) provided on the right side of the list, the list can be

11 LOAD Ill [CADDO_COUNTY I

IDISPLAY_SOILSI

I ~~-~;~=~~~

II -QUI~ H fJ

Figure 11. List of Counties when Load Button is Selected

~~

'Jl

______ , .. _ ·--···--.. --··--------------.. --·-------·----.. ·--·-··--·- ... -·--···---···· .. --·--· ·-····-·-

IT--LOAD Ill poo_coUHTY I

ID~~;~AY_SOILSI

0
rr

I OUERY_SOILS I PER(~ENTAGE l.OAilED

III LOADING CADDO COUNTY DATA

\1 :: f] 8

Figure 12. Display when Loading Data
w
0\

II WAD 1\ uc-::a:~~~~n

IDISPLAY_SOILSI

I QUEBY_SOILS I ! DATA ALREADY LOADED

\I ourT---Tl [)]

Figure 13. Display when Data is Already Loaded

.... -.---·-

w
-.J

[1- LOAD II
DISPLAY_SOII.S

I p~~;~-=~~~z~-1

I I -0~1~ . lj

24:Grant-Wing complex, 1 to 5 percent slopes

25:Hollister silt loam, 0 to 1 percent slopes

26:Konawa loamy fine sand, 1 to 5 percent slopes, eroded

27:Konawa soils, 2 to 8 percent slopes, severely eroded

28:Limestone cobbly land

29:Lucien-Dill fine sandy loams, 3 to 12 percent slopes

30:Lucien-Dill fine sandy loams, 12 to 30 percent slopes

31:McLain silty clay loam

32:Miller silty clay loam

33:Minco very fine sandy loam, 3 to 8 percent slopes

34:Minco very fine sandy loam, steep

35:Minco silt loam, 3 to 5 percent slopes

36:Noble fine sandy loam, 1 to 3 percent slopes

Figure 14. Display of Scrolled List of Soils w
00

39

traversed up or down. To select an attribute, mouse button has to be clicked twice on the

desired item. This opens up another window (figure 15) to display the selected attribute.

This window displays the outline of Caddo county with the distribution of the selected

attribute in the county. The name of the selected attribute and the area covered by this

attribute are also displayed. Internally the leaf level linked list of the R * tree is traversed

and the rectangles containing the selected attribute are displayed on the screen, at the

selected portion with respect to the scale desired. Three options are provided, either to

shrink the map, to enlarge the map or to quit when done. Only two scales are provided

(SHRINK and ENLARGE). The first scale (SHRINK) draws every rectangle with an area

of 1 x 1 pixel area and the other (ENLARGE) with 2 x 2 pixel area. These two are

shown in figures 15 and 16. If 3 x 3 or n1ore than that is selected the map grows out of

proportions, so these are not provided. Though not provided in this interface, with little

change in the code, larger areas can be handled by having scroll bars for the drawing

area. The coordinates of any particular piece of land can be obtained by pressing the

mouse button at the desired location, dragging it to cover the desired area and releasing

the button. When the button is pressed and dragged, a rectangle is displayed showing

the area selected. When the button is released the coordinates of the selected area are

shown. This is shown in the figure 17. When the n1ouse button is pressed in the map

draw area, the mouse button is grabbed in n1ap window not allowing the mouse to move

out of the window. Since monochrome monitor is used, only one attribute is displayed

at a time. Background is displayed in black and foreground (distribution of attribute) is

37:Noble fine sandy loaa, 3 to 8 percent slopes

AREA COVERED BY TIIIS ATTRIBUTE: 28348

TOTAL AREA COVERED BY CADDO COUNTY: 4 liEC

I SIIRINK I

I f:NLARGFJ

,-~oo)CJ

·--- ~- "·""------------===--

Figure 15. Distribution of Selected Attribute in Caddo County in Shrink Scale

~
0

·····-··- ... -.... ··--·--------------·-··--··-·--·--------------·

37:Noble fine sandy loam, 3 to 8 percent slopes

AREA COVERED BY TillS ATTRIBUTE: 28348

TOTAL AREA COVERED BY CADDO COUNTY: 4 HEC

1 SilitfiKI

l't:m:A!¥)

I ootif]

..__ ____,.,.,...,....~.,.....,.~ - - - ·-- . .. -· --·

Figure 16. Distribution of Selected Attribute in Caddo County in Enlarge Scale

~ -

37:Roble fine sandy loa•, 3 to 8 percent alopea

AREA COVERED BY TIIIS ATTRIBUTE: 28348

TO'lAL AREA COVERED BY CADDO COUNTY: 4 HEC

I suii!NKJ

I ENLABG!)

I D<l!CJ

SELECTED COORDINATES:
X1:3934292

Yl: 583136
X2:3934292

Y2: 5623136

Figure 17. Obtaining Coordinates of Selected Area when Attribute is Displayed

~
N

43

shown in white. Since we cannot get very many shades from these two colors only one

attribute at a time is displayed. Code can be modified to display multiple attributes if

working on a color monitor. By selecting the DONE button the control is passed back

to the main window.

Query of soils can be done by pressing the QUERY _SOILS button. Once this is

selected a new window is opened similar to that of the display soils window. But this

window shows only the outline of the Caddo county. Both point and range queries can

be preformed. To perform a point query, press and release the n1ouse button at the

desired location on the map showing caddo county. A window opens showing the

attribute and its area. To perform range query press and drag the mouse button till the

required area is selected. When it is pressed and dragged, a rectangle is shown displaying

the area being selected. When the button is released a scrolled window displays the

results. The window contains all the attributes and their an1otmt of distribution in the area

selected. A scrolled window is provided to handle a query with larger number of

attributes. Also the coordinates of the selected area are displayed. This is shown in the

figure 18. Internally, the coordinates of the selected area are scaled and passed to the

query function of the R * tree. This function searches the R * tree for the embedded and

the overlapping rectangles of the given search rectangle. The results are displayed using

the interface. Similar to that of the display soils, two sizes are provided for the querying

and these can be selected by pressing the SHRINK or ENLARGE button. Pressing the

DONE button passes the control to main window and it is displayed waiting for further

responses from the user.

------··--

t:Ac.,..,-ey,$\.1111 outcrcp Cl:*Plex, 2 to B percent elopes
320000
2:Breaks
120000
4:Cott Flne s~ loa~~~. 3 to 5 percent slopes
520000
5:Cobb fine s~ loa~~~, 5 to B percent. slOJ>"
120000
6:Cott flne s~ loa~~~, 3 to 8 percent slopes, eroded
560000
7:Cott .-1d Grant aollt, 3 to 8 percent. slopes, severely eroded
160000
20:Crant lo~. 1 t.o 3 percent slopes
00()00

21:Crant lo~, 3 to 5 percent. slopes
1000000
22:Grant. loa~~~, 3 t.o 6 percent. slopes, eroded
600000
23:Grant 1oM, 5 to 8 percent slopes
880000
2'3:Luclen-Dlll r&ne ~~ lnMa, 3 t.o 12 percent tlopes
1900o0Q

30:Luclen-Dlll rlne aiJOC\j lnMs, 12 to 30 percent. tlopes
520000
31;tlcl.:~ln a:llt.!l clll'.:l 1oM
40000
32:1111ler sllty clll'.:l loa~~~
40000

36:Noble fine ·~ loa~~~, t to 3 percent siopea
40000

I ~~SIIBINK I

[ENLARGE)

1- ooNfJ

SELECTED COORDINATES:
X1:3934327

Yl: 563064
X2:3934339

Y2: 563079

~

Figure 18. Querying a Selected Area in Caddo County

-·-----··

t

II LOAD II
IDISPLAY_SOILSI

I QUERY_SOILS I

~r-~IT 11 9 DO YOU REALLY WANT TO QUIT II?

1~1 ~

Figure 19. Display when QUIT is Selected .+:;..
V\

46

Display of soils and query of soils can be selected as many times as desired.

When QUIT button is pressed, a popup dialogue box opens as shown in figure 19. If

YES is selected the program terminates otherwise the control passes back to the main

window.

The insertion function of the R * tree is used for loading the data, and for the

querying, search function of the R * tree is used. To display the selected attribute the leaf

level linked list in built in the R * structure is utilized.

CHAPTER V

CONCLUSIONS

The R* tree provides efficient point and range querying capability. But its

structure as such, is not suitable for graphical interface of the data. By making it leaf

level linked structure the actual data can be accessed by traversing the leaf level. This

reduces the time for accessing the actual data sequentially in the R* tree. Also the leaf

level linked list is implemented with negligible increase in the cost for insertion than in

R * trees. Querying can be done with the same performance as that of R * tree since level

linked structure preserves the basic R * tree structure. Thus the level linked structure

proposed in this thesis performs both querying and graphical representation of spatial data.

Existing structures can perform operations like insert, delete, and access. But the

proposed structure, in addition to all above operations can perform graphical

representation of the spatial data.

Fully level linked R * trees are useful for implementing hotspot concept. This

linking of the levels helps to implement many more applications that are to be explored.

X Windows provide excellent user interface and supports good graphics.

47

REFERENCES

[AT92] Adrain, N., Tim, O'reilly.: "X Toolkit Intrinsics Programming Manual",
O'Reilly & associates, Inc., California, 1992.

[Carl92] Carl, F.: "An Introduction to Geographic Inforn1ation Systems: Linking
Maps to Databases", Database, April 1992 pp 12-21

[Frank92] Frank, A.U.: "Spatial Concepts, Geometric Data Models, and Geometric
Data Structures", Computers and Geosciences Vol.18, No.4, 1992
pp.409-417.

[Hel92] Heller, D.: "Motif Programming Manual", O'Reilly & Associates, Inc,
California, 1992.

[HT90] Henskes, D.Th., Tolmie, J.C.: "Prototyping and Visualization in Interface
Design", Electrical Communication, Vol.64,No.4, 1990, pp. 321-
326.

[NHRB90] Nobert, B., Hans, P.K., Ralf, S., Bernhard, S.: "The R* -tree: An Efficient
and Robust Access Method for Points and Rectangles", ACM
SIGMOD, NewYork, Vol 19, No.2, 1990 pp.322- 331.

[OS90] Ohsawa, Y., Sakauchi, M.: "A New Tree Type Data Structure With
Homogeneous Node Suitable For A Very Large Spatial Database",
Proc. of the IEEE Sixth Int. Conf. on Data Engg. 1990 pp.296-303.

[Oli89] Oliver, J.: "Introduction to the Window X System", Prentice Hall,
NewJersy, 1989.

[Peter89] Peter. H.L.: "When Maps Are Tied To DataBases", Newyork Times,
Sunday, May 28 1989, pp I 0.

[FS87] Freestone, M.: "The BANG File: A New Grid File", Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, 1987, pp.260-269.

48

[SRF87]

[Gutt84]

[NH84]

[Rob81]

[BF77]

[BSW77]

[Bent75]

[FB74]

[Knu73]

49

Sellis, T., Roussopoulos, N., Faloutsos, C.: "The R+ -tree: a Dynamic
Index Structure For Multi-dimensional objects", Computer Science
TR-1795, University of Maryland,College Park, MD, February
1987.

Guttman, A.: "R-Trees: A Dynamic Index Structure for Spatial Searching",
Proc. of the ACM SIGMOD Int. Conf. on Management of Data,
1984, pp.47-57.

Nievergelt,J., Hinterberger, H.: "The Grid File: An Adoptable Symmetric
Multikey File Structure", ACM Transactions on Data Base
Systems, Vol. 9,No.l, pp 38-71.

Robison, J.T.: "The K-D-B Tree: A Search Structure for Larger Multi
Dimensional Dynan1ic Indexes", Proc. of the ACM SIGMOD
Conference, 1981, pp.l 0-18.

Bentley, J.L., Friedman, J .H.: "Data Structures for Range Searching",
ACM Computing Surveys, Vol.ll ,No.4 , 1979, pp.397-409.

Bentley, J.L., Stanat, D.F., Williams, Jr., E. H.: "The Complexity of Fixed
Radius Near Neighbor Searching", Inf. Proc. Lett. Conference,
Vol.6, No.6, 1977, pp.209-212.

Bentley, J.L.: "Multi-dimensional Binary Search Trees Used for Associated
Searching", Communications of the ACM, Vol.l8, No.9, 1975,
pp.509-517.

Fink, R.A., Bentley, J.L.: "Quad Trees: A Data Structure for Retrieval on
Composite Keys", Acta Informatica, Vol.4, No.1, 1974, pp.l-9.

Knuth, D.E.: "The Art of Computer Programming", Vol. I, Fundamental
Algorithms,Second Edition, Addisson- Wesley, MA, 1973.

Thesis:

VITA

VCS REDDY KUMMETHA

Candidate for the Degree of

Master of Science

A LEVEL LINKED R• TREE STRUCTURE WITH AN APPLICATION
USING X-WINDOW GRAPHICAL INTERFACE

Major Field: Computer Science

Biographical:

Personal Data: Born in Anantapur, Andhra Pradesh, India, December 12, 1969, son
of Rama Krishna Reddy K., and Sita K.

Education: Graduated from LRG High School, Anantapur, Andhra Pradesh,
India, in May, 1985; received Bachelor of Engineering in Mechanical
Engineering from Osmania University in May, 1991; completed requirements
for the Master of Science Degree in Computer Science at Oklahoma State
University in December, 1993.

Professional Experience: Graduate Research Assistant, University Computer
Center, Oklahoma State University, July, 1992 to present.

	Image1.tif
	Image2.tif
	Image3.tif
	Image4.tif
	Image5.tif
	Image6.tif
	Image7.tif
	Image8.tif
	Image9.tif
	Image10.tif
	Image11.tif
	Image12.tif
	Image13.tif
	Image14.tif
	Image15.tif
	Image16.tif
	Image17.tif
	Image18.tif
	Image19.tif
	Image20.tif
	Image21.tif
	Image22.tif
	Image23.tif
	Image24.tif
	Image25.tif
	Image26.tif
	Image27.tif
	Image28.tif
	Image29.tif
	Image30.tif
	Image31.tif
	Image32.tif
	Image33.tif
	Image34.tif
	Image35.tif
	Image36.tif
	Image37.tif
	Image38.tif
	Image39.tif
	Image40.tif
	Image41.tif
	Image42.tif
	Image43.tif
	Image44.tif
	Image45.tif
	Image46.tif
	Image47.tif
	Image48.tif
	Image49.tif
	Image50.tif
	Image51.tif
	Image52.tif
	Image53.tif
	Image54.tif
	Image55.tif
	Image56.tif
	Image57.tif
	Image58.tif

