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PREFACE 

Stresses induced in wound rolls due to temperature changes were studied. The 

study revealed that radial pressures can increase significantly due to temperature changes 

and the tangential pressures experienced a increase near the inner layers as well as at the 

outer boundary. The most important aspect of this research is the study of stress profiles in 

wound rolls as a function of temperature. This requires characterization of the coefficients 

of thermal expansion for the web and the core materials. In order to predict the stresses 

induced in rolls due to temperature changes, a thermoelastic code was developed and coded 

and the model verified experimentally. 
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CHAPTER! 

INTRODUCTION 

A web is defmed as any material in a continuous flexible strip form. Many 

products experience a web form sometime during processing. The quality of a wound 

roll depends upon its storage conditions. A wound roll which is subjected to a temperature 

different from that at which it was wound, develops a thennal stress field in addition to 

those stresses which were incurred due to winding. The additional stress may cause defects 

within the web material or may also cause defects to the wound roll itself. Unless a core 

failure has occurred, negative circumferential stress is rarely witnessed near the core. Also 

it would seem if <lr & <lt of the core are larger than <lr & <lt of web in the vicinity of the 

core that increased circumferential tension could result for an increase in temperature. 

A decrease in temperature may cause a decrease in the radial stress, which increases the 

chance of interlayer slip on roll acceleration during unwinding. Also, there is a critical 

stress at which the radial stress at a radial location can become zero, which has a chance 

of "layering" (radial separation of the layers) the roll. 

Tramposch[1965, 1967} described the problem of the relaxation of internal forces 

in wound reels, by invoking the theory of viscoelasticity. An isopararnetric four-parameter 

Maxwell - Kelvin model was used to formulate the viscoelastic response. Hakiel [1987] 

presented a nonlinear model for wound roll stresses. The model predicts the stresses in the 

rolls due to winding only. Later research focused upon predicting the stress distribution in 

wound reels of magnetic tape. The main concern was towards insuring the tape reel 
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integrity through use of proper winding tension profiJes and correct temperature and 

humidity conditioning. 

He analyzed the effect of high-temperature storage and came to a conclusion that 

given sufficient time, a reel could approach stress-free conditions. 

Connolly [ 1987] et al., analyzed the effect of temperature differences on wound 

magnetic tapes and presented the effect of variation in the radial coefficient of thermal 

expansion in calculation of the thermal stress-field induced in wound tape. He mocleled the 

wound roll as two concentric, thin, right circular cylinders and there are no thermal stresses 

in the axial direction. He made the following assumptions. 

1. The reel of tape behaves as a continuum, which is assumed to be an orthotropic, 

linearly elastic solid. 

2. Radial moclulus is a constant. 

3. The material properties are independent of temperature and humidity. 

4. The temperature change does not vary through the wound tape. 

5. The thermal expansitivity of tape, ar = at. 

He did not consider the anisotropy of the magnetic tape i.e., ar '* <lt. He 

considered the radial coefficient of thermal expansion to be a constant and estimated its 

value from previous papers. He also assumed that the radial modulus was a constant and 

determined the interlayer pressures for different values of Er. It was assumed to be a 

constant because, if Er were taken to be a function of pressure, it would add to the 

complexity of the mathematical problem. So, he measured this value immediately after 

winding and again after some interval of time. 

He finally concluded that any mismatch in the coefficient of expansion between the 

hub and the tape can have a far greater effect on the radial stress. 

Willet [1988] et a1 presented a nonlinear finite difference approach for stress 

distribution of wound reels of magnetic tape and accounted for variations in temperature 
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and moisture content He modeled the problem in a similar fashion compared to 

Connolly[1987] with similar assumptions. 

1. The reel of tape behaves as a continuum, which is assumed to be an orthotropic, 

linearly elastic solid. 

2. The radial modulus is a function of interlayer pressure. 

3. The material properties are independent of temperature and humidity. 

4. The thermal expansitivity of the tape is treated to be constant 

Though much has not been mentioned about the behavior of the tape's thermal 

expansitivity, he assumed it to be a constant He developed a second order non-linear 

differential equation which includes the thermal effects, but did not carry on with the 

analysis for predicting the tape's behavior due to temperature changes. 

In the process of winding, the material of the web is wound on a core of some 

stiffness with a certain winding tension. A stress field develops in which the most 

important components are the circumferential or tangential stress and the radial stress. 

The tangential stress is produced due to the effect of the winding tension applied over 

the cross-sectional area of the web, and the radial stress between the layers of the web, 

is produced due to the radial component of the winding tension stress. As a result of 

the continuous addition of the layers of the web material onto the core, radial stress is 

accumulated continuously. The radial displacement of the web is small in comparison 

to the inplane displacement and is neglected. This results in the reduction of the 

circumferential stress by the core modulus and hence the circumferential strain and 

simultaneously reduces the build up of the radial pressure. 
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Research Objective 

The objective of the present study is to develop a thennoelastic model which 

accounts for the induced stress in rolls due to the variations in temperature from first 

principles, using realistic governing equations and experimentally verify the validity of 

the model using wound rolls of nickel and aluminum. 

Although the topic of thermal stress variation received attention in previous papers, 

the topic demands further attention. The thermal expansitivity, radial modulus and proper 

winding tension were inadequately treated and is thoroughly investigated in this research. 

In the present study, the effect of thermal stresses on wound rolls was studied. 

To predict the effect of thermal stresses, a critical study of the material properties of the 

web was found necessary. The material propenies which are very important 

for analysis are the Young's modulus in the radial direction, usually referred to as radial 

modulus and the coefficient of thermal expansion in the radial direction. 

It is difficult to predict the coefficient of thermal expansion in the radial direction 

and a reasonable value for the radial coefficient of thermal expansion for the wound rolls 

was not available. This presented a need for experimental tests for the radial coefficient of 

thermal expansion, to predict the induced thermal stress field. It has been assumed that the 

radial coefficient of thermal expansion is a function of temperature and pressure and was 

proved experimentally. In order to develop a relation between the temperature change, 

induced pressure and the coefficient of thermal expansion, several experiments were 

conducted on the Instron 4202 and Instron 8502 using stacks of nickel and aluminum and 

their radial coefficient of thermal expansion were determined and implemented. In the 
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present research nickel and aluminum were used instead of paper or film because, paper 

and film do not exhibit thermoelastic response to temperature changes. 

An analysis of the thermal stress field created in the wound rolls by a change in 

temperature has been described. This analysis is sufficient to predict the induced thermal 

stress field due to temperature changes and can be applied to core geometry and material 

selection to minimize the adverse effects of thermal stresses in 

rolls. 

In addition to the above analysis, a FORTRAN program has been written for a 

thermoelastic winding model. The experimental results have been compared with this 

model. The model is discussed in Chapter Ill and the source code is presented in Appendix 

A. 
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CHAPTER II 

CLASSICAL WINDING MODElS 

History of wound roll models 

Over the past quarter century, several publications have appeared for analyzing 

the stresses generated during the winding of thin flexible webs, such as magnetic 

tape, fllm and paper. 

Most of the winding models reported were developed from constitutive equations 

which describe the behavior of the roll. These constitutive equations were derived from the 

principles of mechanics and material properties. The roll stresses for each wrap starting 

from the core to the fmal roll radius were superposed on the previous stresses, thus 

arriving at the final stress distribution in the wound roll. The following assumptions were 

made in most of the winding models. 

1. The web material has a stable condition, uniform thickness, width and length. 

2. The wound roll is made up of a series of concentric hoops of web material. 

3. The body forces on the roll are negligible. 

4. There are no gaps or overlaps between the layers of the web. 

5. The air floatation effects during winding are ignored. 

Gutterman [1959] developed a winding model which assumed isotropic material 

behavior. He assumed the wound roll to be a linear isotropic thick-walled cylinder. 

Although some of his assumptions, particularly isotropy, are known to be violated in actual 
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winding applications, the model provided the ground work upon which more advanced 

winding models are based. 

Pfeiffer [1966] showed that the relation of compressive stress vs strain in a paper 

roll was non-linear using sound wave velocity measurements. He suggested an exponential 

expression for the radial modulus as a function of radial pressure. Later a number of 

researchers tried to develop winding models which account for radial modulus non­

linearity. The first non-linear orthotropic winding model was introduced by Pfeiffer [ 1968] 

and was based upon energy principles. 

Hak:iel [1987] developed a non-linear winding model for the determination of 

stresses in wound rolls. He developed a second order differential equation and used 

the finite difference approximations to solve the equation. This model was chosen as 

the basis for this research because it allows the most generality in modelling the wound 

rolls. 

The winding models discussed so far were developed entirely from the mechanics 

formulae and the constitutive properties of the web material. All the models were based 

upon the equilibrium equations, the compatibility equations, and the stress-strain 

relationships. All these combined together putforth a second order differential equation, 

the solution of which yields the stresses in the wound roll. The winding models 

calculate the roll stresses after each layer has been wound and thus the incremental 

stresses calculated for each additional layer are added to the previous stresses, thereby 

developing a fully stressed wound roll. 

These models consider the wound roll to be a collection of concentric hoops of 

web material and disregard the actual spiral geometry. The web material is assumed to have 

a perfectly uniform thickness, width, and length. The elastic properties of the web except 

for the radial modulus are assumed to be constant during the addition of the material. As 

explained the radial modulus is a function of radial pressure. 
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Hakiel's Winding Model 

The winding model developed by Hakiel exactly followed the assumptions of 

the classical models and the solution method developed in a similar fashion. A second order 

nonlinear differential equation was developed with suitable boundary conditions and the 

stress profile determined. 

Model Development 

Equilibrium Equations 

The axisymmetric equilibrium equation in the radial direction is determined from the 
sum of 

the forces on a web segment in the radial direction and is shown in Figure 2.1 and Figure 

2.2. 
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Figure 2.1 Roll of a web showing a small 
element 

For small d9, the equilibrium equation can be simplified as, 

r dO'r 0 --+ O'r - O't = 
dr 

Where r is the radial distance from the center, O'r is the radial or interlayer pressure, 

and O't is the tangential or the circumferential pressure. 

Figure 2.2 Forces acting on a small element of web 

Orthotropic Constitutive Relations 

(2.1) 

The linear orthotropic constitutive relations for strains in cylindrical coordinates 

are as follows 

(2.2) 

(2.3) 
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Where Er and ft are the radial and tangential strains respectively, or and O't are the radial 

and circumferential stresses, Vtr is the Poisson's ratio representing a deformation in the 

radial direction due to the application of a stress in the tangential direction, Vn is the 

Poisson's ratio representing a deformation in the tangential direction due to a stress 

applied in the radial direction. Er and Et are the radial and circumferential 

Young's moduli respectively. 

The four material constants of Eqn (2.2 ) can be reduced to three using Maxwell's 

relation as follows 

(2.4) 

And define that 

E v 2 _t = _!;!_ = g 
Er Vn 

(2.5) 

Finally we have 

V = Vtr = g2 (2.6) 

Combining Equations (2.2), (2.3), (2.5) and (2.6), yields 

(2.7) 

(2.8) 

10 



11 

Strain Compatibility Equations 

Considering u as the positive outward displacement, the radial defonnation due 

to the addition of each lap of the web material to the winding roll can be represented by Eqn 

(2.9) 

(u+:dr)-u=du (2.9) 

The radial strain being represented by Eqn (2.1 0) 

(2.10) 

The circumferential strain is derived by the comparison of the circumferential 

length of one layer of the web material before and after the application of a unit radial 

deformation as shown in Figure 2.3, and is represented by Eqn (2.11) 



Figure 2.3 Radial displacement of the roll 

Et = 27t(u + r) - 27tT = l!. 
27tT r (2.11) 

Et representing_ the tangential or the circumferential strain. From the above equations 

the strain compatibility equation can be obtained and may be represented as follows 

au 
CIEt _ £X¥-) _ C1r _u__ _ Er Ee ---- --- ----ar ar r r2 r r 

Rearranging the above equation yields 

,. __ .. 
_r;_ 

Governing Differential Equation 

(2.12) 

(2.13) 

Considering Equations (2.7), (2.8), (2.9), (2.13) and solving simultaneously in 

terms of radial pressure ar , a second order differential equation 

is obtained as follows. 

r2 d2ar + 3r dar + ( 1 - Et) a = 0 
" dr2 dr Er r (2.14) 

using Eqn (2.5), Eqn (2.12) can also be written as 
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r2 d2ar + 3r dar + ( 1 - g2) a = 0 
dr2 dr r (2.15) 

Hakiel proposed a relationship between the radial modulus and the radial pressure, 

as a second order polynomial, represented by 

(2.16) 

where the constants Co , C1 • and Cz are detennined by curvefitting the radial modulus 

versus the radial stress. But a higher order polynomial is used with the first constant being 

forced to be zero. This can be explained by considering the fact that, when the radial 

pressure is zero the radial modulus must be zero. When the pressure in the web stack is 

zero, the peaks on the web surface come in contact and there would not be any stiffness for 

the stack, which means the radial modulus is zero. Which leads for our assumption of 

forcing the first constant to zero. This yields the expression for the relation between the 

radial modulus and the radial stress as given by Eqn (2.17) 

(2.17) 

The solution of Eqn (2.15), a second order nonlinear differential equation required 

two boundary conditions, one at the at the outer wrap of the roll and the other at the core­

roll interface. 
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The outer boundary condition is detennined by the hoop stress formula and is 

defined as 

(2.18) 

and note that this is actually the traction condition at the inner surface of the outer layer, 

where T w is the winding tension stress or the web line tension, h is the caliper, 

and s is the outer radius of the outermost wrap at any given time. 

The inner boundary condition is obtained by the assumption that the radial 

deformation of the core must equal that of the roll. The normalized radial deflection of the 

core is given in terms of the core by the definition of the core modulus Ec 

u(l) = -dcrr/Ec (2.19) 

The radial deformation of the roll can be obtained by combining the equation for 

the tangential strain Eqn (2.4) in terms of the radial deflection Et =u/r 

u(l) = O!Et )(8crt + v 8crr) (2.20) 

where OOt is the incremental in-roll tension caused by the winding on of a single lap onto 

the roll. Combining Eqn (2.20) with Eqn (2.1) and equating the result with Eqn (2.19) 

yields Eqn (2.21) for the boundary condition at the core. 

[d~r J l(r=l) =[(~) -1 +V J dbcrr l(r=1) (2.21) 

Eqn's (2.15), (2 . .18) and (2.21) comprise a complete boundary value problem 

whose solution is the pressure distribution in the winding roll caused by the winding on of 
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a single lap. The distribution of the in-roll tension stress caused by the winding on of a 

single lap can be obtained from the pressure distribution by solving Eqn (2.2). 

Upon solving his differential equation, Hakiel had to sum the pressures back to 

previous pressures due to the nonlinearity of the model and arrive at the final stress 

distribution. 

Willet and Poesch's Winding Model 

The model developed by Willet and Poesch[1988] is similar to Hakiel's winding 

model except for the consideration of the temperature variations and associated coefficient 

of thermal expansion of the web and core material. A second order nonlinear differential 

equation was developed and the inner boundary condition was modified to include the 

coefficient of thennal expansion of the core and the tangential coefficient of thermal 

expansion of the web material. Their analysis was completely devoted to the internal stress 

distributions of wound reels of magnetic tape using finite difference approach. 

Only the differential equation with the boundary conditions is presented here. 

Mcx:iel Presentation 

As discussed before, the stress-strain relationship is assumed to be nonlinear and 

the relation between the stress-strain is as shown in Eqn (2.22) 

n 

er = L bnal = bo+b1 ar+b2oi+b3crr3+ ..... +bncrl 
i=O 

(2.22) 
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Using the equations of equilibrium and strain compatibility, solving for the radial 

stress yields a second order nonlinear differential equation which is represented as follows. 

n 

= Et(l+Vr)L bncrrn- Et(Ur- aJ~T 
i=O 

(2.23) 

Since Eqn (2.23) is nonlinear it is necessary to use iterative solution techniques. 

To accomplish this, Eqn (2.23) must be linearized by using a set of known values, crr'· 

from an initial estimate or the previous iteration. Substituting cr; in Eqn (2.23) gives us 

the desired form ofEqn (2.24) 

where 

r2 d2crr -r dcr{E v dg(crr') - (3+v '] + (1 +V )cr 
dr2 dr tr , u t r 

dcrr 

or more simply 

B = -[r EtVr dg( cr~· ) - r (3+vJ] 
dcrr 

C = [1+vJ 

(2.24) 

(2.25) 
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The differentials in equation in Eqn (2.25) are replaced by a central difference 

derivative approximations as 

where 

dar 1 _ O'rn+1 - O'rn-1 
dr r=m- 2h 

d20'r 1 r=rn = O'rn+l - 20rn + O'rn-1 
dr2 h2 

Substituting Eqn's (2.26) and (2.27) in Eqn (2.25) results in 

r n fn r n r n fn (2 B ) 2 (2 B ) h2 - 2h O'rn-l+(C-2h)O'rn+ h2 + 2h O'rn+l=R 

Eqn (2.28) can be rewritten using values of crr' from the previous iteration as 

or 

al O'rn-1 +a2 crrn +a3 crrn+l =Q 

a3 = r2n 
h2 

_ Brn ( · · ) Q- R + 2h crrn-1- crrn+l 
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(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 



Eqn (2.30) is the governing equation which predicts the wound roll stresses. 

Boundary Conditions 

The governing equation for this problem is of second order. It is therefore 

necessary to specify two boundary conditions. 

At the outer surface of the roll 

8PI = Tw hI 
r=m r r.=rn 

which is actually the traction on the inner surface of the outer layer. 

At the core -roll interface 

(2.31) 

(2.32) 

Eqn's (2.30), (2.31) and (2.32) represent a complete boundary value problem; and 

it is important to note that the equations are tridiagonal and the system is symmetric, 

because a1 equals a3 in Eqn (2.30). 
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CHAPTER ill 

THERMOELASTIC WINDING MODEL 

The wound roll models developed to date do not consider the effect of 

environmental changes. It is known that after winding and during storage, the wound rolls 

develop stress changes due to changes in temperature and humidity. These changes may be 

induced both during and after winding of the web material. In the present study, emphasis 

was placed on the temperature changes and the resulting thermal stresses, the effects of 

changes in moisture were not considered. 

The objective of the present study is to develop a wound roll model which includes 

the effect of thermal stresses. Hak:iel's wound roll model is taken as a basis and a second 

order nonlinear differential equation has been developed. Assumptions made in the present 

analysis are similar to those made in Hak.iel's analysis. Willet and Poesch did not consider 

the nonlinearity of the radial modulus and the nonlinearity of the radial coefficient of 

thermal expansion, so are taken into account here. 

The following undesirable effects of thermal stresses have been noted and are as 

follows. 

Those caused by a temperature rise 

1. Wrinkling of the web material near the core due to an increased circumferential 

compression of inner layers (loss in wound on tension). 

2. Increased circumferential tension in the outer wraps of the web, which causes 

increased distortion. 

lQ 



3. Accelerated stress relaxation; any associated inelastic deformation occurs at a 

faster rate. 

Those caused by a temperanrre drop 

1. A decrease in the radial stress, which increases the chance of interlayer slip on 

acceleration. 

2. Presence of a critical stress at which the radial stress at a radial location can 

become zero, and cause "layering". 

Mcx:lel Development 

The plane*stress, stress-displacement relationship for an orthotropic, linearly 

thermoelastic solid are 

where 

du AT_ (err- Vre<re ) _ - - CXrLl - - Er 
dr Er (3.1) 

(3.2) 

r represents the radial direction of the roll 

e represents the tangential (machine) direction of the roll 

Ee and Er represent the circumferential and the radial strains respectively 

Ver characterizes the strain in the radial direction produced by a stress in 

the tangential direction 

Vre characterizes the strain in the tangential direction produced by a 

stress in the radial direction 

cr represents the stress 

E represents the Young's modulus or modulus of elasticity 
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ae represent the circumferential coefficient of thermal expansion 

ar represents the radial coefficient of thermal expansion as either a function 

pressure or temperature 

11 T is the temperature change. 

The orthotropic considerations of the material gives the relationship between the 

Poisson's ratio and the Young's moduli (Maxwell's relationship) 

The equilibrium equation is 

From Eqn (3.2) we have 

]J_ = ee + aei1T r 

Differentiating Eqn (3.5) with respect to 'r' yields 

rearranging Eqn (3.6) yields 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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22 

or 

(3.8) 

Eqn (3.8) is called the compatibility equation 

but 

(3.10) 

Substituting Eqn (3.10) into Eqn (3.9), yields 

expanding Eqn (3. 11) and rearranging yields 

r2(d2crr) + dcrr{3r- verr + vrer) +a f (1 - Ver) + (Vre- 1)) = ~T(nr _ ~) 
£;\ dr2 dr Ee Er ~ Ee Er (3.12) 

substituting Maxwell's relation in Eqn (3.12) yields 



further simplification yields 

r2 dcrr +3 r dcrr + crJg2- 1) = Ea~T(ety- ~) 
dr2 dr (3. 14) 

This equation is similar to that developed by Hakiel [1987], but the terms in the 

right hand side are non zero. The coefficient's of thermal expansion namely ar and ae are 

not equal because of the effect of orthotropy and also ac and~ (1). Eqn (3.14) is the 

governing differential equation to detennine the stress distribution in wound rolls when 

subjected to temperature changes. 

Boundary Conditions 

The solution of the above differential equation can be solved with the application of 

appropriate boundary conditions. The boundary conditions are developed by considering 

the incremental interlayer pressure developed at any radius r as positive in compression. 

Let s be the radius at the outer boundary and h be the thickness of the web. 

At the outer boundary 

At the core 

u(1) &crJ1) 
Ec 

where Ec represents the modulus of the core material and Tw represents the winding 

tension. But from the definition of tangential strain at r = l i.e., at the core we have 

(3.15) 

(3.16) 
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where ooe and Oar represent the incremental tangential and radial pressures, and a.c 

represents the coefficient of thermal expansion of the core material. Substituting &Je 

and OOr for radial and tangential pressures in Eqn (3.1 0) yields 

Combining Eqn's (3.18) and (3.19) and simplifying yields 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The differential Eqn (3.14) along with the two bounqary conditions Eqn (3.15) and 

Eqn (3.20) represents a complete boundary value problem which has been solved 

numerically. 

Solution Method Employed 

Considering the fact that the roll consists of N layers of web material and that the 

radius at the i th layer in the roll can be determined as 
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r(i) = 1 + (i- 1)h (3.21) 

where r is the normalized radius obtained by dividing the instantaneous radius of the roll by 

the outer radius of the core. Similarly h the normalized thickness is obtained by dividing the 

web thickness by the outer radius of the core. 

The second order terms in Eqn (3.14) were approximated by a finite difference 

technique by employing the central difference equations as follows. 

( docrr) = (ocr~i + 1) - oo~i - 1 }) 
dr r =Ii 2h (3.22) 

(3.23) 

substituting equations (3 .22) and (3.23) in equation (3.14) yields 

- (g2 - 1) oo~i) = Eet1 T{ Ur·- ae) (3.24) 

where ocrz(i) represents the incremental interlayer pressure caused by the addition 

of the (i+ 1) th layer at a particular radius r(i), where i indicates a particular radial location 

of the roll. 

Rearranging and simplifying the above equation conveniently, yields 

Bcrz(i + 1} (1"1 ~)} + ocr~i )(!{~~ (1- g2)- 2) +ooz(i - 1} (1 ~~}) = K (3.25) 
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where K is a constant if ar is a function of temperature and is nonlinear if ar is a function 

of presure, which is equal to Ee~ll<lr- <Xe),. But ar assumed to be a function of 

temperature, because the variation of 01- with respect to temperature is much more simpler 

and was observed experimentally and eliminates the mathematical complications. 

Moreover, we obtained a experimental better curve-fit for <Xr vs ~T than for 01- vs Pressure, 

as shown in Chapter IV. 

The following variables were defined for substitution into Eqn (3.25) 

A=l ~JL 
1 2 r(i) 

B· =£(1-g2)-2 
1 r(if 

C1· = 1 - .l.lL 
2r(i) 

(3.26a) 

(3.26b) 

(3.26c) 

Finally we can arrive at an equation by substituting (3.26a), (3.26b) and (3.26c) 

into (3.25) to obtain 

(3.27) 

Now substituting fori, from one to the maximum number of laps wound onto the 

core, we can develop a set of simultaneous equations whose solution has been found by 

Gaussian elimination and back substitution with the help of the boundary conditions. 

The solution ofEqn (3.27) with the boundary conditions, gives the incremental 

pressure distribution in the roll due to the temperature differences. These results are 

superimposed on the stresses obtained by Hakiel's solution, thus arriving at the final stress 

distribution in the wound roll. 
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The flow chart for the computer program is shown in Figure 3.1. The program asks 

for the input parameters and then runs the Hakiel's Winding problem and when the current 

layer being wound reaches the outer layer, then the problem is solved to account for the 

temperature changes. This is a one step solution since the radial modulus and the radial 

coefficient of thermal expansion are now known because of the winding stresses obtained 

by Hakiel's program. Then the incremental stresses are summed up with the existing in-roll 

stresses. 

else 

Hakiel's 
Winding 
Model 

if 

I n=;ap I 
Thermoelastic 

Winding 
Model 

Final Stress 
Distribution 

Thermal 
Stress 

Subroutine 

Incremental 
Stresses 

Figure 3.1 Flow chart for computer implementation of the Thermoelastic 
model 
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CHAPTER IV 

EXPERIMENTAL ANALYSIS 

The thermoelastic winding model developed in Chapter Ill requires the radial 

mcxlulus vs radial pressure and the radial coefficient of thermal expansion vs radial 

pressure relationship as its input for the computer program. Experimental analysis was 

performed to determine the above properties of the web material. The application of the 

developed thermoelastic model was concentrated towards elastic materials because of the 

fact that, paper and other polyester films exhibit viscoelastic behavior, when subjected to 

temperature changes. The web materials used in the present analysis are Nickel 200 and 

Aluminum 

Radial Young's Modulus 

In order to determine the radial modulus, experiments were conducted using one 

inch high stacks of Nickel 200 and Aluminium. The dimensions of the stack of Nickel was 

2x2 sq inches and that for Aluminium was 6x6 sq inches. The stack test was 

performed on the Instron 8502 dynamic testing system Figure 4 .1 with the help of 

LAB TECH Note Book software through a data acquisition board connected to an IDM AT 

compatible. It was assumed that the flat geometry tested in the Instron was equivalent 

to the web behavior in a wound roll of the circular geometry. The web stack used can 

have a crossectional area less than the platens of the lnstron or can be made larger than 

the Instron platens. 
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Web 

CONTROL 
PANEL 

ffiMAT 
Compatible 

GPIB 
BOARD 

Figure 4.1 Instron 8502 - Testing Machine for Compression and Tension 

The relation between the radial stress and strain is obtained by the two modes 

of operation namely, load control and position control on the Instron. A compressive 

load was applied on the stack under test. The radial deformation data was obtained by 

using a strain extensometer and the data was collected by the ffiM AT compatible 

through a GPIB(General Purpose Interface Board). The radial stress was obtained by 

dividing the applied load by th.e area of the stack and the strain was obtained by 

dividing the deflection of the stack by the height of the stack. Several experiments were 

conducted among which Figure 4.2 and Figure 4.3 exactly represent the nonlinear stress­

strain relationship for nickel. 

Curve fitting radial stress vs strain yields a higher order equation for radial 

pressures. Differentiating the equation w .r.t. strain yields the relationship between the 
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radial modulus and the radial strain. Then a relationship between the radial modulus and 

radial pressure was obtained as shown in Figure 4.4 and Figure 4.5 for nickel and in 

Figure 4.7 for aluminum. This method is usually employed because it is more accurate over 

the pressure domain to take a piecewise linear estimation of the stress strain data to produce 

a plot of radial modulus versus radial pressure. 

Figure 4.2 and 4.3 clearly show the nonlinearity as we have seen before for paper 

and other polyester films. Through a fourth order curve fit, an exact relationship is obtained 

as represented below. 

y = MO + Ml *x + M2*x2 + M3*x3 + M4*x4 (4.1) 

The equation for Radial modulus as a function of Radial pressure was obtained 

by differentiating Eqn (4.1) with respect to Strain and then plotting the Radial modulus vs 

Radial pressure. But in the case of aluminum, a different procedure was adopted. The 

stress-strain data was estimated linearly using a graphic software and the result gives the 

radial modulus directly instead of using the tedious method adopted for nickel. 

The first coefficient of the curve-fit was forced to zero and curvefitted, thus 

achieving the final coefficients for the radial modulus as a function of radial pressure. 

These coefficients are shown in Table VI 

The tangential modulus was determined in a similar manner but the tangential 

modulus was nearly constant with respect to tangential stress which eliminates the need 

to perform a regression. 
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TABLE I 

COEFFICIENTS FOR STRESS - STRAIN 
RELATIONSHIP FOR NICKEL #1 

Coefficients 

3.5 loJ 

MO 

Ml 

M2 

M3 

M4 

3.0 103 r-

2.5 103 ~ 

2.0 loJ -

1.5 1 ()3 r-

1.0 103 r-

5.0 102 r-

0 
0 0.01 

Values of Coefficients 

_ ........ -·-- ...... 
0.02 0.03 0.04 

Strain(in!m) 

-4081203.1153 

41680797 

-156759937.72 

256050080.64 

-252097881.84 

I . 

-

• 

-• 
-

• 
-

• 
-• • 

I I 

0.05 0.06 0.07 

Figure 4.2 Stress Strain relationship for Nickel 200 #1 
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TABLE IT 

STRESS - STRAIN RELATIONSHIP FOR 
A STACKOFNICKEL#2 

Coefficients Values of Coefficients 

2000 

MO 

Ml 

M2 

M3 

M4 

6556208.0632 

-77 459655.342 

342497520.26 

-671682264.67 

492935395.68 

. . . . . ' . 
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~ 
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500 ---r- r T--~--r- r r· 
o~~~~~~~~~~~~~~~~~~~~ 

0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 

Strain(in[m) 

Figure 4.3 Stress Strain relationship for Nickel200 #2 
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TABLE ill 

RADIAL MODULUS AS A FUNCTION OF RADIAL 
PRESSURE FOR A STACK OF NICKEL #1 

Coefficients Value of Coefficients 

3.0 105 

2.5 lOS 

2.0 105 

1.5 105 

1.0 tOS 

5.0 104 

MO 

Ml 

M2 

M3 

114037.00046 

104.68004523 

-0.033868696 

5.76742E-06 

: .J 
. -~'-: ,,. I ............... t .................. , .................. t .............. j~-·~ .. r~ ........... t················ 
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Radial stress (psi) 

Figure 4.4 Radial Modulus vs Radial pressure for nickel #1 
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TABLE IV 

RADIAL MODULUS AS A FUNCTION OF RADIAL 
PRESSURE FOR A STACK OF NICKEL #2 

Coefficients Values of Coefficients 

6.o tOS 

5.5 10S 

5.o 10S 

4.5 tOS 

4.0 10S 

3.5 10S 

3.0 10S 

2.5 lOS 

2.0 lOS 

MO 

M1 

M2 

M3 

331474.12595 

243.99655 

-0.13498 

3.3963E-05 

i I 
: : : ,_.,, 

~: ~~.J_.;~:I;;~.:r:'-~-~·1:::~ :--
_-· :r: : : E 1:: ::: :1 : ::: 

........................ ; .......................... .( ........................... i-······-··················.;..-........................ . 

1 i ! ! 
0 500 1000 1500 2000 2500 

Radial Stress (psi) 

Figure 4.5 Radial Modulus vs Radial pressure for nickel #2 
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TABLEV 

STRESS - STRAIN RELATIONSHIP FOR 
A STACK OF ALUMINUM 

Coefficients 

5.0 102 

MO 

Ml 

M2 

M3 

M4 

4.0 102 1-

3.0 102 1-

2.0 ]()2 r-

1.0 102 1-

0 
0 

Figure 4.6 

0.02 0.04 

Values of Coefficients 

I 

6556208.0632 

-77459655.342 

342497520.26 

-671682264.67 

492935395.68 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

J 
0.06 0.08 

Strain (in[m) 

Stress - Strain relation for a stack of aluminum 
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TABlE VI 

RADIAL MODULUS AS A RJNCTION OF RADIAL 
PRESSURE FOR A STACK OF ALUMINUM 

Coefficients 

6.0 Icf 

5.0 Icf 

4.0 lcf 

3.0 Icf 

2.0 Icf 

1.0 Icf 

0 

MO 

Ml 

M2 

M3 

0 25 50 

0 
0 

75 

Values of Coefficients 

4.58002e-06 

1473.999 

-15.94299 

0.05731 

0 0 

100 125 

Radial Pressure(psi) 

Figure 4.7 Radial Modulus vs Radial Pressure for a stack of aluminum 
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Radial Coefficient of Thermal Expansion 

The material properties of the web material are important for design 

considerations of which the coefficient of thermal expansion in the radial direction is 

very important. Several experiments were conducted to estimate its value. The web stack 

was placed in a temperature chamber and loaded to a desired value by the 

load cell of the Instron. The temperature of the chamber can be raised or lowered 

according to the desired value. Now keeping the initial load constant, the temperature 

of the chamber was raised from ambient to a certain set point maximum in small 

increments and measuring the induced load at each increment. Considerable amount of time 

was allowed in measuring the data in each temperature step in order to insure that the 

chamber attains equilibrium temperature. 

This procedure was repeated for the Platens of the Instron alone to consider the 

induced load due to the expansion of the Platens. The radial coefficient of thermal 

expansion was measured by the difference of the pressure after and before temperature rise, 

divided by the radial modulus and the temperature difference. 

The real stress was proportional to the strain and is equated as follows. 

(4.8) 

The terms ofEqn (4.8) indicate the thermal strain resulting from radial coefficient 
I 

of expansion and the temperature rise. Now when the stack is subjected to a temperature 

change, there is a corresponding strain due to the expansion or contraction. Thus the 
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thennal strain can be represented by the quotient of difference in pressure of the stack 

before and after a temperature change. Tills can be represented as 

or 

(4.9) 

<lfmal - <linitial = a,. 
I;.i\T (4.10) 

The coefficient of expansion can be obtained from Eqn ( 4.1 0) and the 

experimental data obtained was as follows. 

Experimental Determination of Radial 

coefficient of thermal expansion 

An important pan of the experiment to be discussed is the coefficient of thermal 

expansion of the platens. 

Initially the experiment was conducted to determine the induced load due to the 

expansion of the platens only. The two platens were brought close enough and an initial 

load was applied. Then the temperature of the chamber was raised from ambient to a set 

point Sufficient time was allowed so that the platens attain the same temperature as the 

thermocouple of the chamber. Thus the temperature was raised in steps of 10° Fahrenheit 

and the load was measured. 

Then the web stack was placed between the platens and the same initial load applied 

and the procedure repeated. The difference of the induced load due to the expansion of the 
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Platens and web and the Platens alone gives the induced load due to the expansion of the 

web material. The data is presented in Table VTI 

S.No 

1 

2 

3 

4 

5 

6 

Results for Nickel 

TABLE VII 

INDUCED PRESSURE DUE TO TEMPERATURE 
RISE FOR 1" STACK OF WEB (NICKEL) 

Load (lbs) Temperature 

difference (OF) 

26.8 70 

46.2 80 

68.3 90 

86.7 100 

125.6 110 

156.2 120 

Pressure (psi) 

(load/area) 

136.4912 

235.294 

347.849 

441.559 

639.675 

795.520 

(4.11) 

The Radial modulus was determined from Eqn (4.3). Using data from Table VTI, 

and the equation for radial modulus, coefficient of thermal expansion was determined. 

An important note to be discussed is the area of crossection of the Platens used to 

apply the compressive load on the web stack. Since the dimensions of the Nickel stack 

was 2x2 sq inches, it was found necessary to use special platens for the Instron whose 
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area of crossection was lesser than the web dimensions. This would circumvent any 

possible errors in the observations due to the edge effects of the web stack. 

The Platens used for stack of 0.5 inches diameter for Nickel. Thus the data in Table 

Vll is plotted as shown in Figures 4.8 - 4.10 and the results curve- fitted to an exponential 

expression in Figures 4.11 - 4.12. 

8.0 Io2 

7.0 lo2 

6.0 l<f 

.-.. ·;;; 
C>.. 5.0 lri 

I 
"' "' 4.0 lri e 

Q.. 

3.0 Ifil 

2.0 1()2 

1.0 1{)2 
60 70 80 90 100 110 120 130 

Temperature(Fahrenhiet) 

Figure 4.8 Linear Pressure- Temperature relationship for Nickel 

It is evident that the radial modulus is a function of radial pressure and 

Eqn ( 4.1 0) is affected due to this fact. The nonlinear effect of the radial modulus is 

observed in Figure 4.8 and it is clear that the radial coefficient of thermal expansion is a 

function of radial pressure and also a function of temperature as shown in Figure 4.9. 
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1.0 w-6 

6.0 I0-6 

3.0 w-6 

2.0 w-6 

100 200 300 400 500 600 

Pressure(psi) 

Figure 4.9 Radial coefficient of thermal expansion as a 
function of Pressure 

700 800 

One can notice from the fact that, as the temperature rises, the induced pressure 

increases and as a result, we can observe an increase in the radial coefficient of thermal 

expansion. But after a certain temperature, and a cena.in pressure the radial coefficient of 

expansion tries to flatten and reach a constant value and in our case, it is the tangential 

coefficient of expansion of the web material under test. This is shown in Figure 4.11. An 

exponential expression was proposed which clearly fits the experimental data points. 
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Figure 4.10 Radial Coefficient of Thermal Expansion as a 
function of Temperature 

130 

From the above graphs, a relationship between the radial coefficient of thermal 

expansion and the induced pressure and temperature was determined and it is observed to 

be a exponential curve-fit 

Where 

y= cO* (1 - exp(- c1 *x)) + c2 

cO= 7.4e-06 

cl = 0.0041105 

c2 = 0.0 

(4.12) 
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Hence using Eqn (4.12) with the above constants and assuming a pressure range 

from Table VII, a radial coefficient of thennal expansion vs pressure relation is achieved as 

shown in Figure 4.11. Thus it can be seen that a good relation is achieved between the 

proposed model and the test data. 

8.0 w-6 

----e- Curve-fit 
y=cO*(l-exJ>"(-cl *x))+<:2 

------ Experimental Data 

3.0 w-6 

2.0 10"6 

100 200 300 400 500 600 700 800 

Radial Pressure (psi) 

Figure 4.11 Relationship between Radial coefficient of thermal 
expansion and Radial Pressure for Nickel 

A similar correlation is shown in Figure 4.12 for radial coefficient of thermal 

expansion as a function of temperature. Eqn ( 4.12) predicts the coefficient of expansion 

data for different pressures and different temperatures. This expression is incorporated into 

the thermoelastic winding model in the computer program, and the coefficients must be 

given depending on the web material under test. These coefficients must be determined 

experimentally. 
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Figure 4.12 Relationship between theradial coefficient of thermal 
expansion and temperature for Nickel 

Results for Aluminum 

Similar procedure was adopted for determination of the radial coefficient of thermal 

expansion for aluminum as was done for nickel. The diameter of Platens used for test was 

6.0 inches and the test was conducted on the Instron Dynamic Testing System. The results 

are presented in Figures 4.13 - 4.15. The relation between radial coefficient of thermal 

expansion and radial pressure was curvefitted and the relation was incorporated into the 

thermoelastic model on the computer. The program was run using this relation which 

achieved compatible results from both theory and through experiments. 
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TABLEVIU 

COEFFICIENTS FOR RADIAL COEFFICIENT 
OF TiffiRMAL EXPANSION AS A 
FUNCTION OF TEMPERATURE 

75 

Coefficients Values of Coefficients 

cO 

cl 

c2 

c3 

1.79e-05 

-8.72e-07 

1.53e-08 

-8.23e-11 
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Figure 4.14 Radial Coefficient of Thermal Expansion as a 
function of Pressure 

TABLE IX 

COEFFICIENTS FOR RADIAL COEFFICIENT 
OF 11-IERMAL EXPANSION AS A 

FUNCTION OF PRESSURE 

Coefficients 

cO 

cl 

c2 

c3 

Values of Coefficients 

2.66e-06 

-3.15e-08 

6.78e-1 0 

-2.68e-12 
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Figure 4.15 Pressure - Temperature relation for aluminum 

Pull Tab Calibration 

Sandwich type pull tabs were used to measure the radial stress induced in the 

wound rolls due to the winding tension. To get precise results from the winding 

experiments, careful calibration of the pull tabs is very important. The pull tab was placed 

at a desired radial location because both from theory and experiments it was clear that the 

calibration of the curve of the pull tab is a function of its position in the stack. The tab's 

position along the thickness of the web stack should be determined by the position in which 

it will be inserted in the winding roll. 

Since the width of the web was only 2 inches, special guides were used to prevent 

the web from walking away from the winding roller, which may cause telescoping. The 
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guides were fixed onto the core with the help of screws, but this caused a disadvantage that 

the pull tabs could not be placed near the core. Four tabs were placed in the Nickel roll and 

their position was noted and four pull tabs were placed in the stack for calibration at the 

same radial location as were placed in the roll. 

Figure 4.16 shows the calibration curve of one of the four pull tabs used in these 

experiments for nickel. The points show the average results of three pulls and the dotted 

line is the curve fit line which is a linear function Y = A *X. The error bars along the Y -

axis are the 95% probability of finding the actual stresses. Similarly Figure 4.17 shows one 

of the calibration curve for one pull tab for aluminum. 
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Figure 4.16 Calibration Curve for a 1" high stack of Nickel 
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CHAPTERV 

RESULTS AND DISCUSSIONS 

Validation of the results obtained by experiments were carried out by the computer 

code developed as was explained in chapter ill. It is interesting to note that the radial 

pressure increases as a result of a rise in temperature. This is because if there is a 

temperature rise, a stress field develops near the core due to the expansion of the core and it 

propagates throughout the roll and as a result, there will be a increase of radial pressure 

inside the roll. The core roll interface will be experiencing the same stress as long as there 

is no mismatch between the radial coefficient of thermal expansion. This resulted in an 

increased compression in the inner layers. 

It was verified theoretically by the thermoelastic model that an increase in 

temperature causes an increase in radial pressure. The theoretical results were very much in 

accordance with the experimental results and are presented later.The radial coefficient of 

thermal expansion was considered as a function of temperature and similarly, the radial 

modulus was considered as a function of radial pressure. The numerical data for input is 

shown in Table 5.1 for nickel 200 and in Table 5.2 for aluminum 
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Winding Results 

Nickel200 

TABLE X 

INPUT DATA FOR 1HERMOELASTIC MODEL 
FOR NICKEL 200 

Web Thickness 0.0065 (inches) 

Initial Roll Radius 1.75 (inches) 

Final Roll Radius 3.0 (inches) 

Inner Radius of Core 1.5 (inches) 

Modulus of Core Material 1.1 e+07 (psi) 

Poisson's Ratio of Core 0.33 

Tangential Modulus ofWeb 3.1e+07 (psi) 

Poisson's Ratio of Web 0.01 

Radial Modulus of Web cO= 114037.0 

Er (P) = c0+c1 *P+c2*P"2+c3*P"3 cl = 104.68 

c2 = -0.0338 

c3 = 5.767e-06 

Radial Coefficient of Thermal Expansion cO= 7.4e-06 

<Xr (P) =cO* (1 - e"(-c1 *P)) + c2 c1 = 0.0041105 

c2 = 0.0 
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TABLE X (Continued) 

Tangential Coefficient of Thennal 

Expansion Ut 

Coefficient of Expansion 

of Core ac 

Temperature Difference b. T 

Winding Tension T w 

7 .43e-06 in/inJO F 

6.43e-06 in/inJO F 

0.0-40.00 F 

70 psi 

A winding tension of 70 psi was used and as shown the program was run for 

different temperature changes. 
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Figure 5.1 Radial Stress profile for different temperatures 
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It is clearl from Figure 5.1 l;hat there is a increase in the radial stress as 

resultof a rise in temperature. The nickel roll was centerwound on the winder with a tension 

of 9 lbs (70 psi). Since the web is only 2 inches wide, a aluminum spool was made and 

fixedon the core of the winding roll, in order to guide the incoming web. 

It is believed that a rise in temperature causes an increase in the tangential pressures 

at the outer layers as well as in inner layers of the web due to the expansion of the core and 

the web material. This analysis was carried out to verify that the stress proftle follows 

correctly as was analyzed by Connolly et al.(1987). 

It is seen from the above graph that, the radial pressure profile follows our 

previous discussion but when there is a mismatch between the radial coefficient of 

expansion of the web and the expansion of the core, there is a rapid increase in radial 

pressure. 

In order to validate the thermoelastic model, Center Winding was carried at the 

WHRC on the O.S.U Winder. The nickel roll was wound on to a steel core with known 

material properties and four pull tabs were used at different radial locations. Then 

immediately after winding, the radial pressures were measured at the four locations using 

the calibration curves previously obtained for the pull tabs. Then the roll was placed in the 

temperature chamber and heated from room temperature with desired increments of 

temperature and each time the pressures measured. 

The results showed a good correlation to the theoretical results obtained by the 

computer program. The theoretical and experimental correlation of the radial pressures are 

shown in Figures 5.2 - 5.6 for nickel at different temperature increments. 
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Figure 5.2 Radial Pressure proflle for no rise in temperature 

The experimental results shown in Figure 5.2 show the average of three pulls with 

95% error bars. Similar plots are shown for different temperatures. 
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It can be seen from these figures that the radial pressures determined experimentally 

are less than those predicted by the model. This is due to the fact the web is thick and when 

the tension is set to 70 psi on the winder, only part of the winding tension is being utilized 

by the winding web and some part of it is lost in elastic deformation of the web material. 
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From Figure 5.6, we can obseiVe that there is a considerable drop in the 

experimental radial pressures as predicted theoretically. The significance may be due to 

elastic deformation taking place in the span of entry on to the winding roll or a reduced 

expansion of the wound roll in the radial direction, after winding and causing a forced 

temperature change. 
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Aluminum 

TABLE XI 

INPUT DATA FOR THERMOELSA TIC MODEL 
FOR ALUMINUM 

Web Thickness 0.002 (inches) 

Initial Roll Radius 1.75 (inches) 

Final Roll Radius 2.741 (inches) 

Inner Radius of Core 1.5 (inches) 

Modulus of Core Material 1.1 e+07 (psi) 

Poisson's Ratio of Core 0.33 

Tangential Modulus of Web 11.5e+06 (psi) 

Poisson's Ratio of Web 0 .01 

Radial Modulus ofWeb cO= 0.0 

Er (P) = cO+cl *P+c2*P"2+c3*P"3 cl = 1473.9999 

c2 = -15.943 

c3 = 0.057 

Radial Coefficient of Thermal Expansion cO= 13.1e-06 

ar (P) =cO* (1 - e"(-cl *P)) + c2 cl = 0.0041105 

c2 = 0.0 

Tangential Coefficient of Expansion 13. l e-06 in/in/ op 

of Web 

Clt 
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TABLE 5.2 (Continued) 

Coefficient of Expansion of Core 

Temperature Difference 

~T 

Winding Tension 
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Figure 5.7 Radial Pressure Profile for no rise in 
Temperature 
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The results shown in the figures 5.7 - 5.12 are the correlation of the Thermoelastic 

Model with the experimentally determined radial pressures as a function of temperature. 

They are clearly shown to match with the theoretical model. There is a slight descrepency in 

the experimental results. This may account for the values of radial coefficient of thermal 

expansion. We have assumed the radial coefficient of thermal expansion as a function of 

temperature. But at different temperatures, there is a reduction of radial pressures in the 

wound roll. The main effect could be a reduction in the expansion in the radial direction as 

has been proposed theoretically. 

Nothing much can be studied about the radial coefficient of thennal expansion as 

the main idea of this research is to develop a thermoelastic wound roll model rather than to 

study the effect of temperature and pressure on radial coefficent of expansion. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The parameters that effect the wound roll structure have been shown to be the 

temperature the rolls are subjected to during and after winding and the radial coefficient 

of thermal expansion of the core and the web material. The radial modulus as a function 

of radial pressure plays an important role in the roll stress profile. The developed model 

agrees well with the previous findings and is easily implemented as a modified 

differential equation with a non zero right hand vector. Considering the coefficient of 

radial and tangential thermal expansion of the web with an modified inner boundary 

condition, and also considering the effect of the coefficient of thermal expansion of the 

core in the Hakiel's winding model is the basis of the Thermoelastic winding model 

The main factors which contribute for the stress distribution are the winding 

tension as was shown in previous findings and the coefficient of thermal expansions of 

the web as well as the core with the correct operating temperatures as seen in the present 

analysis. The coefficient of thermal expansion in the radial direction was a difficult 

property to be measured, but the present research provides a way for its determination. 

Though the method employed here may not represent the exact behavior of the wound 

roll, it provides a realistic way for its response to temperature and pressure. 

The radial coefficient of thermal expansion was a factor which affects the wound 

roll pressures when subjected to temperature changes. But the main purpose of this 

research was to develop a complete wound roll model which considers the effects of 
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temperature changes. Finally it can be concluded that the theoretical model developed 

agrees well with the experiments, and the model completely describes the thennal effects 

in wound rolls. 

Future Work 

To consider the moisture effects on the wound roll stress distribution is beyond 

the scope of this thesis. In order to completely predict the hygroscopic effects in wound 

rolls, the effect of the coefficient of hygroscopic expansion needs to be considered along 

with the thermal effects. Addition of this capability will allow the model to predict the 

thermal as well as the moisture effects on wound rolls. Future work should explore 

explore the stress induced due to hygroscopic expansion or contraction. 

The effect of the radial coefficient of thermal expansion needs to be studied in 

detail and an analytical model needs to be developed which exactly predicts its response 

to temperature cycles and pressures. 
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APPENDIX 

PROGRAM FOR CALCULATING TIIE STRESSES 

DEVELOPED IN WOUND ROLLS DUE TO 

WINDING AND TEMPERA TIJRE 

CHANGES 
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c This is a Program for finding the Thermal Stresses induced 
c in Wound Rolls due to temperature Differences 
c Program for calculating the pressure distribution in the 
c center wound rolls that are wound at constant wound-in 
c stress tw, or constant wound-in torque. 
c The program is capable of applying a variable radial modulus 
c and is capable of accounting for core and caliper deformatio 
c The program consists of the main program, seven subroutines 
c one function. The subroutines and function are as follows: 
c 
c 
c 
c 
c 
c 
c 
c 

ptstrs: dp(i) for each layer wrapped onto the roll. 
junk: Calculates Thermal Stresses in Wound Rolls. 

strain: dtstran(i) for tangential strain E.L.W.R. 
lineq: solves tri-diagonal matrix eq's. 
lineqq: solves tri-diagonal matrix eq's. 
output: output file writing. 

data block: initialization of variables p(i) and t(i). 
er: function that defines the radial modulus c 

c***************************************** 
c The following variables are all inputs to the program: 
c 
c h =web thickness 
c ec = core stiffness 
c et = elastic modulus of the web material in the 
c tangential direction 
c rmu = Poisson's ratio of the web material 
c nnin =initial radius of the roll (core o.d./2) 
c rmax = final radius of the roll 
c iflag = 1: constant torque winding 
c iflag = 0: constant tension winding 
c !FLAG = 2: POLYNOMIAL TENSION VARIATION 
c idisp = 1: stress and displacement calculations 
c idisp = 0: stress calculations only 
c 
c Consistent units should be used throughout. 
************************** MAIN PROGRAM ************ 
c 

IMPLICIT REAL*8 (A-H,O-Z) 
dimension tkeep(2000) 

common /mat1/a(2000,3),b(2000) 
common /mat2/dp(2000) 
common /mat3/p(2000),t(2000),dt(2000) 
common /mat4/ r(0:2000),hh(2000),u(2000) 
common /mat5/c0,c 1 ,c2,c3 
common /mat9/f(2000) 

common /mat6/ y(2000),z(2000),dz(2000) 
common /mat? I dy(2000) 

common /mat11/q0,q 1 ,q2,q3 
common /mat12/alphc,alpht,delt 

common /strin/ dtstran(2000) 

DATA 10/12/ 
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c 
c 

OPEN (10, Fll...E='ram.out' ,status='unknown') 
TAB=CHAR(9) 

c---------- Data Input from console 
c 

WRITE(9,*) 'THIS PROGRAM IS AN IMPLEMENTATION OF' 
WRITE(9, *) I TIIERMOELASTIC MODEL' 
WRITE(9, *) ' BASED ON HAKIELS WINDING MODEL' 

WRITE(9, *) 'PRODUCED BY DR.J.K.GOOD AND HIS STUDENTS' 
WRTIE(9, *) 'AT TilE WEB HANDLING RESEARCH CENTER,EN 218,0SU' 
WRTIE(9,*) I STILLWATER,OKLA. 74078 I 

WRITE(9,*) 'ENTER TilE FOLLOWING PARAMETERS:' 
WRITE(9,*) 
WRITE(9,*) 'TYPE EITHER:' 
WRITE(9,*) 'ZERO: FOR STRESS CALCULATIONS ONLY' 
WRITE(9,*) 'ONE: FOR STRESS AND DISPLACEMENT CALCULATIONS' 
READ(9,*) IDISP 
IF(IDISP.EQ.O) TiffiN 
WRITE(I0,88) 

ELSE 
WRITE(I0,90) 
END IF 
LP= 1 

write(9,*)'ENTER TilE WINDING TENSION' 
read(9,*)tw 
write(9,*)'WEB CALIPER' 

READ(9,*)H 
WRITE(9,*)'INITIAL ROLL RADIUS' 

READ(9, *) RMIN 
write(9,*)'FINAL ROLL RADIUS' 

READ(9,*) RMAX 
write(9,*)'TYPE EITHER:' 
write(9, *)'ZERO:IF TilE CORE MODULUS IS KNOWN' 
write(9, *)'ONE:IF TilE CORE MODULUS NEEDS TO' 
write(9, *)' BE COMPUTED' 

READ(9,*) IMOD 
IF(IMOD.EQ.O) TiffiN 

write(9, *)'ENTER THE CORE MODULUS' 
READ(9,*) EC 

ELSE 
write(9,*)'INNER RADIUS OF CORE' 

READ(9,*) RIC 
write(9,*)'MODULUS OFTIIE CORE MATERIAL' 

READ(9, *) ECM 
write(9,*)'POISSONS RATIO OF CORE' 

READ(9, *)POlS 
RA T2=(RMIN!RIC)**2 
EC=(ECM/((RA T2+ 1.0)/(RA T2-1)-POIS)) 

END IF 
write(9,*)'TANGENTIAL MODULUS OF WEB' 

READ(9,*) ET 
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write(9,*)'POISSONS RATIO OF WEB' 
READ(9,*) RMU 

write(9,*)'ENTER THE CONSTANTS FOR RADIAL MODULUS' 
write(9,*)'CO=?' 
READ(9,*) CO 

write(9, *)'Cl=?' 
READ(9,*) Cl 

write(9, *)'C2=?' 
READ(9, *) C2 

write(9, *)'C3=?' 
READ(9,*) C3 

write(9,*)'ENTER THE TE:MPERATURE DIFF 
READ(9,*)DELT 

write(9,*)'ENTER THE SET POINT DIFF' 
read(9,*)se~int 
write(9, *)'ENTER INCREMENT OF TEMPERATURE' 
read(9, * )incr 
write(9, *)'TYPE EITiffiR' 

write(9,*)'ZERO: FOR CONSTANT RADIAL COEFF OF EXP' 
write(9,*)'0NE:IF RADIAL COEFF OF EXP IS A' 
write(9,*)' FUNCITON OF TEMPERATURE' 
write(9,*)'1WO: IF RADIAL COEFF OF EXP IS A' 
write(9,*) 'CRAZ¥ FUNCTION' 

READ(9, *)icoeff 
if(icoeff.eq.O) then 
write(9, *)'RADIAL COEFF OF THERMAL EXP' 
READ(9, *)ALPHR 
endif 
if(icoeff.eq.l) then 
write(9, *)'ZO=?' 

READ(9,*)z0 
write(9, *)'zl=?' 
READ(9,*)zl 
write(9, *)'Z2=?' 
READ(9,*)z2 
ALPHR=zO*(l-exp(-zl *delt))+z2 
endif 
if(icoeff.eq.2) then 
write(9, *)'qO=?' 
read(9,*)q0 
write(9, *)'ql=?' 
read(9,*)ql 
write(9, *)'q2=?' 
read(9,*)q2 
write(9, *)'q3=?' 
read(9,*)q3 

c ALPHR=qO+(q 1 *delt)+(q2*delt*delt)+(q3*delt*delt*delt) 
endif 
write(9,*)TANGENTIAL COEFF OF EXP OF WEB' 

READ(9, *)ALPHT 
write(9, *)'COEFF OF EXP OF CORE' 

READ(9, *)ALPHC 
write(9, *)TYPE EITiffiR' 
write(9,*)'ZERO:IF CONSTANT WINDING TENSION' 
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c 

write(9, *)'ONE: IF CONSTANT TORQUE' 
write(9, *)'1WO: IF VARIABLE TORQUE' 
read(9, *)iflag 
IF(IFLAG.EQ.O)TIIEN 
WRITE(9, *)'CONSTANT WINDING TENSION' 
READ(9, *)TW 

END IF 
IF(IFLAG.EQ. 1) THEN 

write(9, *)'CONSTANT TORQUE' 
READ(9, *)TOR 

END IF 
IF(IFLAG.EQ.2) THEN 

write(9, *)'ENTER T1' 
READ(9, *) T1 

write(9,*)'ENTER T2' 
READ(9, *) T2 

write(9,*)'ENTER T3' 
READ(9, *) T3 

END IF 

c---------- Initial writing of input data 
c 

WRITE(I0,101) H,EC,ET,RMU,RMIN,RMAX,LP,DELT 
WRITE(I0,103) c0,c1,c2,c3 

WRITE(I0,104) zO,z1,z2 
WRITE(I0,102) IFLAG,TOR,ALPHR,ALPHT,ALPHC,1W,TO,T1,T2,T3,Q 

88 format(lOx,'io.disp--STRESS vs. RADIUS', 
+ 1x, 'WITHOUT CALIPER & CORE DEFORMA mON') 

90 format(lOx,'io.disp--STRESS vs. RADIUS', 
+ 1 x, 'WITH CALIPER & CORE DEFORMA TIION') 

101 format(/,'h =' ,f7 .5,/,'ec =' ,F1 0.1 j,'et =' ,fl 0.1 ,/,'rmu =' ,f5.4 
& ,/,'rmin =',f6.3,/,'rmax =',f6.3,/,'lp =',i2/,'delt = ',f10.3,/) 

102 format('iflag =',i2,/,'tor =',f16.8j,'alphr=',f10.9,/, 
& 'alpht=',f10.9J,'alphc=',f10.9j,'tw =',f16.8,/,'Q=',f16.9J, 
& Tw=',F8.3,'+',F8.3, '*RR+',F8.3, '*RR **2+ ',F8.3,'*RR **3') 

103 FORMAT('Er =',f10.3,'+',f8.3,'*P +',f8.3,'*PA2 + ',f8.3,'*PA3') 
104 FORMAT('Alpha Rad = ',fl0.9,'*','(1-exp(',f8.6,'*delt )+',f5.3) 

c 
c---------- Initialization of variables 
c 

NLAP = (RMAX-RMIN)/H 
hlimt=0.8*h 
r(O)=nnin 
hh(l)=h 
if(iflag .eq. 1) tw=tor/h/r(O) 
if(iflag .eq. 2) tw=TO 
twkeep=tw 
kk=O 

c tk= et*delt*(alphr-alpht) 
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c ttk=et*delt*(alphc-alpht) 

c 
c---------- Do Loop 1000 does primary work of the program 
c 
c---------- Call "ptstrs" to calculate the increment of the radial stress, dp(i) 
c---------- Calculate the radial stress after each lap to evaluate Er 
c 
1000 do while (r(kk).lt.rmax) 

c 

if (kk/40*40 .eq. kk) write(9,*)'Thermoelastic Winding 
+model- Iteration #',kk,' of ',nlap 

if(iflag.eq.1) tw=tor/r(kk)/h 
XXX=r(kk)-r(O) 
if(iflag .eq. 2) tw=TO+(T1 *XXX)+(T2*XXX**2)+(T3*XXX**3) 

dp(kk+ 1 )=h*tw/r(kk) 

dt(kk+ 1)=tw 

if (idisp.eq.O) then 
hh(kk+1)=h 

else 
hh(kk+ 1 )=h*(l.OdO-dp(kk+ 1)/2/er(dp(kk+ 1)/2)-rmu*tw/et) 

endif 
r(kk+ 1 )=r(kk)+hh(kk+ 1) 

20 call strs(kk,h,et,ec,rmu,q) 

c---------- Calculating the p(i) & dt(i) 
c 

do 60 i=l,kk+1 

p(i)=p(i)+dp(i) 
60 continue 

goto (73,72) kk+l 
do 70 i= kk,2,-1 

deridp=(dp(i+ 1 )-dp(i-1))/(r(i+ 1 )-r(i-1 )) 
70 dt(i)= -dp(i)-r(i)*deridp 
72 dt(l)= -dp(l)*(rmu+et/ec) 

73 continue 
if (idisp.eq.O) goto 1002 
if (kk.gt.1) call strain(kk,rmu,et,h,ec,hlimt,lp) 

1002 kk=kk+1 
enddo 
kk=kk-1 
t(kk+1)=tw 
do 80 ii= kk,2,-1 

80 t(ii)=-p(ii)-r(ii-1 )*(p(ii+ 1)-p(ii))/(hh(ii+ 1 )+hh(ii)) 
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t(l)= twkeep-p(l)*(rmu+et/ec) 
if (idisp.eq.O)goto 1003 
hmin=h 
do 81 i=1,kk 

if(hh(i).lt.hmin) hmin=hh(i) 
81 enddo 

1003 ii=int((rmax-rmin)/h/6) 
c 
c--------- Print output to file 
c 

call output(kk,twkeep,hmin,idisp,ii,tw ,rmin) 
c 
c--------- calculating Thermal stresses in rolls 
c 

write(9,*)'Calcu1ating thermally induced stresses' 
nlap=(rmax-rmin)/h 
kk = nlap 

dy(nlap) = 0.0 
dz(kk + 1 )=tw 

do while(delt.lt.setpoint) 
write(9, *)'iterating the thermal problem ',delt,'of,setpoint 
call ptstrs(kk,h,et,ec,rmu,tk,ttk) 

c write(9, *)'after iteration #',kk,nlap 
do 89 i=1,kk+1 

89 y(i)9J(i)+dy(i) 
write(9, *)'calculating final stresses' 

c goto (93,92) kk+ 1 
c do 91 i= kk,2,-1 
c deridy=(dy(i+ 1)-dy(i-1))/(r(i+ 1)-r(i-1)) 
c 91 dz(i)= -dy(i)-r(i)*deridy 
c 92 dz(1)= -dy(l)*(rmu+et/ec) 
c 93 continue 

do 94 i=l,kk 

z(i)=t(i)+dz(i) 
94 continue 

if (kk.gt.1) call sttain(kk,rmu,et,h,ec,hlimt,lp) 
delt=delt+incr 

enddo 
if (idisp.eq.O)goto 96 
hmin=h 
do 97 i=l,kk 

if(hh(i).lt.hmin) hmin=hh(i) 
97 enddo 
96 ii=int((rmax-rmin)/h/6) 

write(9, *)'calculated stresses' 
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call out(kk,twkeep,hmin,idisp,ii,tw ,nnin) 

Write(9,*) 'writing io.disp ends!' 
stop 
end 

******************* FUNCTION ER ****************** 
**************** Radial Modulus Determination ****** 
c 

function er(x) 
implicit real*8 (a-h,o-z) 
common /mat5/cO,c 1 ,c2,c3 
er = cO+(Cl *x)+(C2*(x**2))+(C3*(x**3)) 
return 
end 

function alphr(x) 
implicit real*8 (a-h,o-z) 
common /matll/qO,q 1 ,q2,q3 

alphr = qO+(q 1 *x)+(q2*(x**2))+(q3*(x**3)) 
return 
end 

*********** Subroutine Strs ****************** 

c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

subroutine strs(n,h,et,ec,rmu,q) 
implicit real*8 (a-h,o-z) 

common /matl/ a(2000,3),b(2000) 
common /mat3/ p(2000),t(2000),dt(2000) 
common /mat2/ dp(2000) 
common /mat4/ r(0:2000),hh(2000),u(2000) 
data in/10/ 
data io/12/ 
************************************* 
rk is the coefficient relating to the 
internal boundary condition 
************************************* 

rk=l.OdO+hh(l)*(et/ec-l.O+rmu)/r(O) 

go to (2,4,6) n+ 1 
n=O goto 2 to calculate dp(l) when winding lap at r(l) 
n=l goto 4 to calculate dp(l), dp(2) when winding lap at r(2) 
n=3 goto 6 to calculat dp(l), dp(2) & dp(3) when winding lap at r(3) 
n>=4 goto 8 to form matrix a 
elements order of the first row is changed to fit sub. lineq( ) 

***************************** 
Fonning the Matrix a 
***************************** 
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8 
a(l,l)=O.OdO 
a( 1 ,2)=-l.OdO*rk 

a(1,3)=l.Od0 
do 10 i=2,n 
temp=hh(i)/r(i) 

gi2=et/er(p(i)) 

a(i, 1 )= l .OdO-temp* 1.5d0 
a(i,2)=temp*temp*(l.Od0-gi2)-2.0d0 

10 a(i,3)= l.OdO+temp* 1.5d0 

do 11 i=l,n-1 
11 b(i)=O.OdO 

b(n)=-a(n,3)*dp(n+ 1) 

calllineqq(n) 
return 

c for the first 3 layers the change of thickness is ignored 
2 return 

4 dp(l)=dp(2)/rk 
return 

6 a2= l.OdO+ 1.5dO*h/( l.OdO+h) 
b2=h/(l.Od0+h)*h/(l .Od0+h)*(l.Od0-et/er(p(2)))-2.0d0 

c2=l.Od0-1.5dO*h/(l.OdO+h) 
temp= l.OdO*rk*b2+c2 

temp2=-a2*dp(3) 
dp( 1 )=temp2/temp 

dp(2)=dp(l)*rk 
return 
end 

******************* SUBROUTINE PTSTRS *************** 
************for constructing coefficient matrix a******* 
**************used in the subroutine lineq.f ********* 
c 

subroutine ptstrs(n,h,et,ec,rmu,tk,ttk) 
implicit real*8 (a-h,o-z) 
dimension xx(2000) 

common /matl/ a(2000,3),b(2000) 
common /mat3/ p(2000),t(2000),dt(2000) 
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c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

t 
c 
c 

5 

8 

common /mat6/ y(2000),z(2000),dz(2000) 
common /mat7 I dy(2000) 

common /matl2/alphc,alpht,delt 
common /mat4/ r(0:2000),hh(2000),u(2000) 

common /mat9/ f(2000) 
data in/10/ 
data io/12/ 
************************************* 
rk is the coefficient relating to the 
internal boundary condition 
************************************* 

WRITE(9, *)'ENTERED PTSTRS' 

rk=1.0dO+hh(l )*(et/ec-l.O+rrnu)/r(O) 

go to (2,4,6) n+ 1 
n=O goto 2 to calculate dp(1) when winding lap at r(1) 
n=1 goto 4 to calculate dp(l), dp(2) when winding lap at r(2) 
n=3 goto 6 to calculat dp(l), dp(2) & dp(3) when winding lap at r(3) 
n>=4 goto 8 to form rnaoix a 
elements order of the first row is changed to fit sub. lineq( ) 
***************************** 
Forming the right hand vector 
***************************** 

do 5 i==1,n 
xx(i )=et*del t*( alp hr(p(i) )-al pht) 
continue 

***************************** 
Forming the Matrix a 
***************************** 

a( 1,1 )=O.OdO 
a(l ,2)=-1.0dO*rk 

a(1,3)=1.0d0 
do 10 i=2,n 
temp=hh(i)/r(i) 

gi2=et/er(p(i)) 

a(i,1)=l.Od0-temp*1.5d0 
a(i,2)=temp*temp*( 1.0d0-gi2)-2.0d0 

10 a(i,3)=l.OdO+temp*1.5dO 

***************************** 
Modified right hand vector 
***************************** 
do 30 i=2,n-1 

30 f(i)=xx(i) 
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f(n)=xx(n)-a(n,3)*dy(n+ 1) 

f( 1 )=xx(1 )·(h*et*(alphc·alpht)*delt)/r(O) 

calllineq(n) 

return 

end 
******* SUBROUTINE STRAIN ************** 

subroutine strain(kk.rmu,et,h,ec,hlimt,lp) 
implicit real*8 (a-h,o-z) 
common /mat2/ dp(2000) 
common /mat3/ p(2000),t(2000),dt(2000) 
common /mat4/ r(0:2000),hh(2000),u(2000) 
common /strin/ dtstran(2000) 

c Calculating incremental tangential strain due to web 
c deformation and thermal expansion and updating radius 

20 do 30 i=kk,1,-1 
dtstran(i)=(dt(i)+rmu*dp(i))/et+(alpht*delt) 
u(i)=r(i)*dtstran(i) 
r(i)=r(i)+u(i) 

30 continue 

c Deformation at the core due to winding tension and 
c thermal expansion of the core 
c 

c 
c 
c 

str=alphc*delt 
r(O)=r(O)*(l.OdO-dp(l )/ec-str) 

******************************************** 
updating thickness hh(i) 

******************************************* 

do 31 i=l ,kk: 
hh(i)=r(i)-r(i-1) 
if (u(i).lt.O.dO .and. hh(i) .gt. h) then 
iredo=l 
hh(i)=h 

endif 
if (hh(i) .lt. hlimt) then 
iredo=2 
hh(i)=hlimt 

endif 
31 end do 

if (iredo .ne. 0) then 
do 32 i=l,kk 

r(i)=r(i-1 )+hh(i) 
32 end do 

endif 
iredo=O 
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130 continue 

110 format('displ.=',f15.10,' > 0.0, at r=',£9.6, 
+ 'while wound at r=',f9.6) 

112 format ('for every 40 layers core radius=',f10.6) 
114 format('iredo=',il,' at',i4,' th while wind at',i4,' layer'/ 

+ 'recalculate r(i) for hh(',i3,')=',f12.7) 

125 format('output r(O),dtstran(i),u(i),r(i),hh(i)') 
126 format('i=',i3,4f15.10/) 
128 format('r(O)=',f15.10) 

return 

* SUBROUTINE LINEQQ c 
subroutine lineqq(n) 
implicit rea1*8 (a-h, o-z) 
dimension gam(2000) 
common /matl/ a(2000,3),b(2000) 
common /mat2/ x(2000) 
bet=a(1,2) 
x(l )=b(l )/bet 
do 10 k=2,n 
gam(k)=a(k-1,3)/bet 
bet=a(k,2)-a(k, 1 )* gam(k) 
x(k)=(b(k)-a(k, 1 )*x(k-1) )/bet 

10 continue 
do 20 k=n-1,1,-1 

20 x(k)=x(k)-gam(k+1)*x(k+1) 
return 
end 

******************* subroutine lineq************ 

subroutine lineq(n) 
implicit rea1*8 (a-h, o-z) 
dimension gam(2000) 
common /matl/ a(2000,3),b(2000) 

common /mat9/f(2000) 
common /mat7 I x(2000) 
bet=a(1,2) 
x(l)=f(1)/bet 
do 10 k=2,n 
gam(k)=a(k-1,3)/bet 
bet=a(k,2)-a(k, 1 )* gam(k) 
x(k)=(f(k)-a(k,l)*x(k-1))/bet 

10 continue 
do 20 k=n-1,1,-1 

20 x(k)=x(k)-gam(k+1)*x(k+1) 
return 
end 
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*********************************************** 
************************************************ 
******************* SUBROUTINE OUTPUT ********** 
****************** writes ouput to file ********* 
c 

subroutine output(k:k:,twkeep,hmin,idisp,ii,tw,rmin) 
implicit rea1*8 (a-h,o-z) 
common /mat3/p(2000),t(2000),dt(2000) 
common /mat4/ r(0:2000),hh(2000),u(2000) 
data in/10/ 
data io/12/ 

T AB=CHAR(9) 
if (idisp.eq.O) then 

write(io, 122) k:k: 
else 

write(io,120) r(O), kk, hmin 
endif 

write(io, 118) 
do 78 i=1,ii/2,2 

78 write(io, 119) r(i-l),TAB,p(i),TAB,t(i) 
do 79 i=ii/2+ 1 ,ii,5 

79 write(io,119) r(i-l),TAB,p(i),TAB,t(i) 
do 80 i=ii+1,kk-1,10 

80 write(io, l 19) r(i-1),TAB,p(i),TAB,t(i) 
write(io,119) r(kk-1),TAB,p(kk),TAB,t(kk) 
write(io,119) r(k:k:),TAB,p(kk+ 1),TAB,t(kk+ 1) 

118 format(5x,'R', 12x,'P(r)',10x,T(r)') 
119 format(F8.5,Al,Fl0.5,Al,F10.5) 
120 format(fafter finishing winding the core radius=',f8.5/ 

+ . 'total layers wound onto the roll core=', i4,1xJ 
+ 'after finishing winding the smallest caliper=',f8.5/l) 

122 format(ftotallayers wound onto the roll core=', i4//} 
123 format(F8.5,A 1 ,F10.5,A1 ,F10.5) 

if (idisp.eq.O) then 
write(io, 122) kk 

else 
write(io, 120) r(O), kk, hmin 

endif 
write(io, 192) 
do 90 i=1,ii/2,2 

90 write(io, 123) r(i-1)/r(O),TAB,p(i)/tw,TAB,t(i)/tw 
do 91 i=ii/2+ 1 ,ii,5 

91 write(io,123) r(i-1)/r(O),TAB,p(i)/tw,TAB,t(i)/tw 
do 92 i=ii+ 1,k.lc-1, 10 

92 write(io,123) r(i-1}/r(O),TAB,p(i)/tw,TAB,t(i)/tw 
write(io,123) r(kk-1)/r(O),TAB,p(k.k)/tw,TAB,t(kk)/tw 
write(io, 123) r(kk)/r(O),TAB,p(kk+ 1)/tw,TAB,t(k.lc+ 1)/tw 

192 format(2x,'N.RADIUS',7x,'N.RADIAL PRESSURE(r)',7x, 
+ 'N.TANGENTIAL PRESSURE(r)') 

return 
end 
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**************************************************** 
********************* subroutine output********* 

subroutine out(kk,twkeep,hmin,idisp,ii,tw,rmin) 
implicit rea1*8 (a-h,o-z) 

common /mat3/p(2000),t(2000),dt(2000) 
common /mat6/y(2000),z(2000),dz(2000) 
common /mat4/ r(0:2000),hh(2000),u(2000) 

common /mat7 I dy(2000) 
data in/10/ 
data io/12/ 

TAB=CHAR(9) 
if (idisp.eq.O) then 

write(io, 122) kk 
else 

write(io,120) r(O), kk, hmin 
endif 

write(io, 118) 
do 78 i=1,ii/2,2 

78 write(io,119) r(i-1),TAB,y(i),TAB,z(i) 
do 79 i=ii/2+ 1 ,ii,5 

79 write(io,119) r(i-1),TAB,y(i),TAB,z(i) 
do 80 i=ii+1,kk-1,10 

80 write(io, 119) r(i-1 ),TAB,y(i),T AB,z(i) 
write(io,119) r(kk-1),TAB,y(kk),TAB,z(kk) 
write(io,l19) r(kk),TAB,y(kk+1),TAB,z(kk+1) 

118 format(5x,'R',12x,'Y(r)',10x,'Z(r)') 
119 format(F8.5,A1,F10.5,A1,F10.5) 
120 format(/'after finishing winding the core radius=',f8.5/ 

+ 'total layers wound onto the roll core=', i4,1x,/ 
+ 'after finishing winding the smallest caliper=',f8.5//) 

122 format(/'totallayers wound onto the roll core=', i4//) 
123 format(F8.5,A 1 ,F1 O.S,A 1 ,F1 0.5) 

if (idisp.eq.O) then 
write(io,122) kk 

else 
write(io, 120) r(O), kk, hmin 

endif 
write(io, 192) 
do 90 i=1,ii/2,2 

90 write(io,123) r(i-1)/r(O),TAB,y(i)/tw,TAB, 
+z(i)/tw 

do91 i=ii/2+1,ii,5 
91 write(io,123) r(i-1)/r(O),TAB,y(i)/tw,TAB, 

+z(i)/tw 
do 92 i=ii+1,kk-1,10 

92 write(io,123) r(i-1)/r(O),TAB,y(i)/tw,TAB, 
+z(i)/tw 

write(io,123) r(kk-1)/r(O),TAB,y(i)/tw,TAB, 
+ z(kk)/tw 

write(io, 123) r(kk)/r(O),TAB,y(kk+ 1)/tw 
+ ,T AB,z(kk)/tw 

192 format(5x,'RADTIJS',7x,TH.RADIAL PRESSURE(r)',5x, 

81 



+ 'TH.TANGENTIAL PRESSURE(r)') 

return 
end 

************************************************** 
c************************************************ 
c*************************** block data subprogram ********************* 
c 

block data 
implicit real*8 (a-h. o-z) 
common /mat3/p(2000),t(2000).dt(2000) 
data p/2000*0.0d0/, t/2000*0.0d0/ 
end 
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