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CHAPTER I 

INTRODUCTION 

Water is very important to mankind, plants, and animals. Where water is 

available, civilizations flourish, settlements are created, and stability is attained. The most 

important benefit from improving the quality and the quantity of water supplies is the 

improvement in public health. The effect of water supply on the community health 

depends on the level of use of the supply, and service provided. Improving water supply 

is an essential step in industrial and agricultural development and productivity. 

For effective water system planning, the needs must be assessed realistically 

considering the potential variability of water use. Understanding and managing water use 

can result in substantial savings in capital investments eventually. One way to realize 

these savings is from precise estimates of future water demand. 

In water demand forecasting there are many natural factors that cannot be 

expressed through the statistical terms. These factors may include the day light hours, 

temperature, season of the year, etc. Neural networks are able to solve such problems 

efficiently. Neural networks also have the capability of expressing the natural 

phenomena. 

The next two sections describe the forecasting problem and the neural networks 

and their advantages and disadvantages. 

1 



2 

Forecasting 

Forecasting is a major part of decision making for all organizations. Forecasting 

methods can be classified into two categories: causal and time seties methods. The time 

series methods differ from the causal methods in that they do not assume the cause and 

effect relationship between input and output variables. Whatever forecasting method is 

used, the main objective for all forecasters is to get a precise forecast. 

In time-series forecasting using regression the problem of prediction can be 

generalized in the following manner: 

Y(t+1) = F(X(t), X(t-1), X(t-2), ... , E(t)) 

where 

Y(t+ 1) is the forecasted value of X(t+ 1) using the past values of X at times t, t-1, 

t-2, . . . and error term E(t). In this model the main aim is to decrease the value of the 

error term E(t) when forecasting Y(t+ 1). 

II 

Neural Networks 

According to Robert Hetch-Neilsen (1989), Artificial Neural Network (ANN) is 

a computing system made up of a number of simple, highly interconnected 

processing elements, which processes information by its dynamic state response to 

external inputs." 

Artificial neural networks ("neural nets") go by many names such as parallel 

distributed processing models, connectionist models, neuromorphic systems. In a serial 

computer, everything happens in a deterministic sequence of operations. In contrast, a 
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neural network is neither sequential nor, even necessarily, deterministic. It is composed 

of many simple processing elements that usually process a weighted sum of all their 

inputs. Instead of executing a series of instructions, a neural network responds, in 

parallel, to the inputs given to it The final result consists of the complete state of the 

network after it has reached a steady-state condition, which correlates patterns between 

the sets of input data and corresponding output or target values. The final network can 

be used to predict outcomes from the new input data. The goal of the neural networks 

is to achieve good forecasting performance by densely interconnecting many processing 

elements. In this aspect the neural networks imitate the human nervous system. Neural 

networks have been used in the fields of speech recognition and image processing where 

high parallel computation is completely exploited, and the present technology could not 

outperform human nervous system. 

Neural networks are described in terms of input, output, and hidden neurons, a 

transfer function, learning or training rules etc. These learning rules specify how to setup 

and modify weights to improve the performance. 

Processing elements used in neural nets are nonlinear, analog and slower than the 

digital circuits. A processing element sums all its weighted inputs and passes out 

nonlinearly transformed result. Examples of nonlinear transfer functions include sigmoid, 

gaussian, step, and threshold logic. 

Adaptation of learning is a major advantage of neural networks. This attribute 

plays an important role in speech recognition where training data is limited and new 

speakers, new phrases, and new dialects are encountered continuously. Neural nets are 
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robust in that they compensate even minor variabilities in the characteristics of processing 

elements. Artificial neural networks make no assumptions about the distribution of data 

in contrast to traditional statistical classifiers. Thus neural networks prove to be better 

when the data to be modeled may have been generated by a nonlinear source [Lippmann, 

1987]. 

As the ANNs are fault tolerant, the loss of a few processing elements often will 

not degrade the performance of the whole network. ANNs are found to be effective in 

the areas where the conventional approaches are not adequate or are difficult to 

implement but precision is not a critical measure. Some examples include speech and 

pattern recognition. Neural networks are not known to provide a high degree of accuracy. 

However, Lapedes and Farber have shown that a multilayer network trained with 

backpropagation yielded higher numerical accuracy than conventional methods for 

prediction. 

Statement of the Problem 

The problem of prediction can be generalized in the following manner: 

Y(t+1) = F(X(t), E(t)) 

Where, 

Y(t+1) is the forecasted value of X at time t+1, by observing values of X at times 

1' ... , t. 

F is the vector valued function containing an error term E(t). 

X(t) is the vector of inputs for observation at time t. 
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The neural network models that are considered in this thesis, backpropagation, 

Jordan network and Experimental network, differ in defining the vector valued function, 

F, which minimizes the error term E(t) in predicting Y(t+l). 

Smolensky ( 1986) specifies a dynamic feed-forward network in the form of: 

ui(t+l) = F[~ Wu G(uk(t))] 

Where 

ui(t) is the activation of the unit i at time t, 

F is a nonlinear sigmoid transfer function, 

G is nonlinear threshold function and 

W u is the connection strength or weight from unit k to unit i. 

This relationship can be used to forecast the future values. The main aim of the 

forecasting problem is to find the function F that minimizes the error in ui(t+l). 

The objective of this study is to build three adaptive systems that learn to estimate the 

future values and compare them with respect to their precision of estimation and the time 

consumed to build that model. 

In this thesis the u/t) is a univariate time series. The water pumpage is used as 

the estimate of the water demand. As the data is a real world one there is a possibility 

to encounter the worst case performance, even though the performance depends on many 

other factors that include number of hidden neurons, the learning parameters, transfer 

function and the history that we are providing to forecast the future value. There are 

other ways to build the adaptive system using a simulated data that may not capture and 

explain all the features of the adaptive system built. 
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Objectives of the Study 

1. Develop and implement the neural network models for water demand 

forecasting using traditional forecasting methods, backpropagation 

algorithm, and recurrent backpropagation algotithm. 

2. Identify and analyze the problems that are affecting the petformance of the 

neural network models 

3. Compare and contrast the models with each other. 

4. Analyze the effect of input window on the performance at different lead 

times (i.e., 1, 4, 12, and 52 weeks ahead). 



CHAPTER II 

LITERATURE REVIEW 

One of the main problems affecting the management of water distribution system 

is the forecasting of consumer demands ahead of time. It is particularly important that 

short-term forecasts of water demand be accurately estimated in order that minimum-cost 

pumping schedules may be computed. With the increasing federal role in all aspects of 

water resource planning, the need for a planning model to enable calculations of projected 

municipal water requirements has become evident. 

The following two sections describe the papers which dealt with water demand 

forecasting and comparisons of various methods in neural networks. 

Water Demand Forecasting 

Results from a forecast simulation (Miaou, S. P., 1986) indicate that the adaptive 

models do provide slightly better forecast performance for smaller lead times. But the 

improvement tends to decline as the lead-time increases, and the adaptive model 

eventually performs worse than the constant parameter models. 

In extreme arid environment, requirement approach is more appropriate in 

forecasting water use. However, variations in the socioeconomic characteristics that were 

predictors of residential water use for major urban areas (of Israel) were not associated 

7 
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with variations in residential water consumption. Only technical water-using appliance 

specifications were found to be correlates (Darr et al., 1975). 

For the purpose of on-line control of a water supply distribution system, it is 

necessary to obtain one-step ahead prediction, on a short-term basis of hourly or daily 

demands. In their study, Chen et al. ( 1988), found that the water demand could be 

expressed using the difference equation known as the ARIMA model. The time series 

of hourly demand was determined from two methods: one was formed by considering 

each following hour of the same day, another was formed by considering the same hour 

for each the following day. Time series analysis proved suitable for the modeling and 

short-term predicting of water demands. However, it is felt that higher precision could 

be obtained by combining the two methods for predicting hourly demands. 

In order to provide more efficient estimates and eliminate potential ordinary least 

squares bias in single equation models of demand for goods sold through block rate 

pricing systems because of possible price endogeneity, Chicone et al., ( 1986) employed 

an estimation technique incorporating the error structure using the three-stage-least­

squares. 

Burke, Thomas R. (1970), developed an economic model of municipality water 

requirements that incorporates variables reflecting the various factors affecting water 

demand (demographic, social, and industrial). 

Pooled time-series models are more demanding in their structure and data 

requirements, but often provide better estimates of the impact of price variables than 

simple time-series analysis. Combining time-series data with cross-sectional attributes can 
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be a very effective method of analysis for forecasting and measuring price elasticity. It 

isolates the differential response among cross-sectional characteristics that are obscured 

in pure time-series analysis. At EBMUD, significant elasticities, in the range of -0.1 to -

0.25, were identified for summer months, resulting primarily from the implementation of 

elevation surcharges of 25% to 50% for two elevation bands (Weber, 1989). 

A typical municipal water supply planning problem requires a finely-scaled 

mathematical model capable of handling uncertainty in both supply and demand to 

optimize the investment in municipal water supply facilities. Hughes et al., ( 1973), 

proposed a branch bound concept of mixed integer approach that overcomes many of the 

limitations of linear programming. It selects the optimum combination of source-facilities 

from all possible alternatives. 

Auto Regressive Integrated Moving Average (ARIMA) models were studied for 

daily and monthly demand predictions in the distribution networks of Barcelona, Spain. 

Though the predictions were initially good, as soon as a large deviation of demand from 

the predicted value occurred, the situation deteriorated. A periodic seven-day pattern was 

observed in the prediction errors, which showed a non-decreasing sequence of errors in 

successive seven-day periods after an abnormally large prediction error. In the stochastic 

model, a seasonal 12-month pattern with no apparent changes in the variance values 

between different periods was observed. The mean value tended, however, to increase 

from one period to the other, a fact that suggested non-stationary of the series confmned 

by the study of the autocorrelation functions. Hourly forecasts were derived from daily 

predictions through the use of average load allocation curves (Quevedo et al., 1988). 
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Budanaers ( 1976) proposed a dual set of short-term water demand models, one an 

extension of the Box-jenkins model and the other a weather component of demand model. 

These models have the feature of adaptability to changing data: given changes in the data 

sequence, the models' parameters will self-adjust to provide a better model. The models 

also have the property of being real-time computer implementable. 

A multivariate water forecasting procedure that is simple to implement has been 

used to estimate the water demand for a proposed subdivision in Barrie, Ontario. For 

comparison a trend forecasting procedure is also applied. Both the techniques provide 

accurate results when compared to actual use. However, the multivariate analysis allows 

more precision (Mitchell et al., 1977). 

Smith (1988), developed an autoregressive time series model with randomly 

varying mean, which dictates that the key step in producing a water use forecast is an 

updating step in which a revised estimate of current mean water use is computed. 

Forecasting: Comparisons between Neural Networks and Traditional Methods 

Connor and Atlas ( 1991) tested recurrent neural networks in forecasting time 

series. The results also proved that the recurrent networks have advantages over feed­

forward networks for prediction of stochastic process. According to their results the 

recurrent networks performed better when the number of input neurons is more than five. 

Comparisons have also been made between feed-forward networks and recurrent 

networks. According to Su et al. (1992) prediction errors of a feed-forward network 

increased significantly as prediction horizon becomes large, whereas those of recurrent 



11 

networks are more constant. They also observed that recurrent networks give consistently 

better results than a feed-forward network. But feed-forward networks performed better, 

for one step ahead forecast. They concluded that the RNNs (Recurrent Neural Networks) 

are better than FFNs (Feed-forward Networks) in long term prediction and multiple step 

prediction. 

Hill et al. ( 1991 ), compared time series forecasting ability of neural networks and 

classical methods. The data is selected from M-competition. The whole 1001 real time 

series is used to compare the models. The results proved that the neural network models 

outperformed the classical models in forecasting both monthly and quarterly data series 

and did about as well as classical models with annual series. 

For a single period time series forecasting, Sharda and Patil ( 1992) have shown 

that neural networks could be used. Using neural network models and traditional Box­

Jenkins forecasting models, a sample of 75 M-Competition data series was tested and 

compared over annual, quarterly, and monthly time periods. The neural network models 

performed comparable to Box-Jenkins models. 

Tang, Z. et. al., ( 1990) performed a comparison study in forecasting time series 

between the Box-Jenkins and feed-forward neural network model. The results proved that 

with short-term the neural network model outperformed the Box-jenkins model but with 

long memory both models performed comparably. 

Canu et al. ( 1992) performed a comparison between traditional forecasting 

methods and a multi-layer perceptron neural network model. The results proved that 

multi-layer perceptron model containing four layers outperformed the traditional 
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forecasting methods. He observed that the non-lineruities of the water demand are 

followed by the multi-layer perceptron model. 

Justification 

The recurrent networks are not experimented much in recent studies. Water 

demand forecasting is not an exception to this. The research of Canu et al. on water 

demand forecasting is dealing with backpropagation algorithm only. This motivated us to 

compare various network models. Comparisons are made between two recurrent network 

models, a backpropagation model, and traditional forecasting models. The main interest 

is also to compare the performances of two recurrent networks (Jordan net and an 

Experimental net). 



CHAPTER Ill 

DESCRIPTION OF MODELS 

Box-Jenkins Model 

The Box-jenkins method is well known for time series forecasting. This method 

consists of four steps: data transformation, model identification, parameter estimation, and 

diagnostic checking. This method is one of the complex time series modeling methods. 

The general Box-Jenkins model has the following form: 

where, 

B is the back-shift operator ( i.e., Bxt = xt.1 ) 

V = 1-B; s = seasonality; ~ = white noise; 

<f>(B) and <I>(Bs) are seasonal and non-seasonal auto-regressive polynomials 

respectively. 

6(B) and 9(B8
) are nonseasonal and seasonal moving average polynomials 

respectively; 

y t is the time-series data, transformed if necessary. 

Mter identification of several alternate models the final model is selected in 

diagnostics-checking step. Once the final model is selected the forecasting process begins. 

13 
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Back propagation 

The application of backpropagation algorithm involves two phases. During the 

first phase the input is presented and propagated forward through the network to compute 

the output values for each unit. This output is then compared with the target, resulting 

in an error term 8 for each output unit. The second phase involves the backward pass 

through the network during which the 8 term is computed for each unit in the network. 

The second phase continues until it completes all the hidden layers. Once these two 

phases are complete the weight changes can be computed and applied for each weight in 

the network. As there are hidden layers the nonlinear behavior of the data can be 

followed by the network. The backpropagation can be specified in equation form as: 

w .. (t+l) = w .. + ~w .. (t) 
lj lj lj 

ewij(t) = (learning rate) (error_derivative)j oi 

~8/t) = (learning rate) (error derivative)j 

where 

Wij is the weight of connection from neuron i to j, 

ej is the threshold of the neuron j, 

~ wij is the change in the weight wij' 

~ej is the change in the threshold value of the neuron j. 

As there are multiple layers the input to a layer is the output of the previous layer 

(as in the case of hidden and output layers). 
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Recurrent Backpropagation 

Recurrent backpropagation is an extension of the backpropagation algorithm. In 

this algorithm the output from the output layer can be fed to any layer and the neurons 

in the input layer may not necesarily need input from the external sources (may receive 

input from the output of the output layers). Therefore in this type of network it is 

difficult to distinguish among input, hidden and output layers. 

For example let us consider the Figure 1. In this, the unit 1 and 2 are output units 

with targets ~~ and ~2 • The units 1, 3 and 5 are input units. The unit 1 acts both as input 

and output unit while 4 is neither. The elTor propagation network for this network is 

shown in Figure 2. 

A regularly trained feed-forward neural network responds to a given input patten1 

with exactly the same output pattern every time the input pattern is presented. A 

recurrent network may respond to the same input patte1n differently at different times, 

depending upon the patterns that have been presented as inputs just previously. Thus, the 

sequence of the patterns is as important as the input pattern itself. Recurrent networks 

are trained just like the regular feed-forward networks except that patterns must always 

be presented in the same order. The network that we selected has just one extra slab of 

neurons in the input layer that is connected to the hidden layer just like the other input 

layer. This extra layer contains one or more of the layers as they existed when the 

previous pattern was trained. In this, the network is able to see the previous knowledge 

it had about the previous inputs. 
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~I 

Figure 1 

Recurrent Backpropagation Network 
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Et E2 

Figure 2 

Error Propagation Network For Figure 1 
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Determinants of Neural Network Performance 

Learning: 

A neural network is made up of several interconnected processing elements or 

neurons. Each processing element receives a number of inputs Xi, which are assigned 

weights ~· From the weighted total input, the neurons compute a single output signal 

Y. The following four steps take place when each neuron is activated and processed: 

1. Various signals are received from other neurons. 

2. A weighted sum of these signals is calculated. 

3. The calculated sum is transformed by a function. 

4. The transformed signal is sent to other neurons. 

Learning process can best be visualized as curve fitting. As the neuron function 

is fixed, the only way the output from a neuron can be changed due to the input 

environment is by changing the weights on the inputs. 

Factors Influencing Supervised Learning in Neural Networks: 

Learning of a network can be broadly classified into two categories. One is 

supervised learning and the other is unsupervised learning. In supervised learning the 

network is provided with set of input and target pairs. When the network forecast some 

value for the present input vector, based on the previous history, the target (actual value 

to be forecasted) is compared with the predicted value and the error is adjusted. In 

unsupervised learning the network is supplied with a set of input patterns only. In this 
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case, for example, the neuron that affects the output more will try to change adjust the 

error in the network. 

Training the neural network to find the global minimum can be made easier by 

using some techniques. One way to find the global minitnum is the re-initialization of 

the weights to a different set. This can be achieved by assigning random weights with 

different seed value every time. This cannot ensure the global minimum acquisition but 

may help in finding global minimum. 

Too many or too few number of training patterns also confuses the network 

sometimes. The number of patterns also is very important in deciding the convergence 

of a network. 

Sometimes the network may find a local minimum and keep on oscillating in the 

same range. The momentum term, if added to delta rule, helps to get rid of such local 

minimums. But larger momentum term may help the algorithm in skipping the global 

minimums also. 

The neuron transfer function plays a key role in converging the network. If there 

is non-linearity in the data and the transfer function is a linear one there in no possibility 

of getting the network converged. The transfer function selection depends on the 

behavior data also. Some nonlinear transfer functions perform better than the other for 

some data sets. The sigmoidal transfer function is proving better for most of the 

problems. 

The number of hidden layers also important in getting the network trained rapidly. 

The number of layers is not fixed for all types of networks. There are some proofs that 
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a network with two hidden layers performs as good as any number of hidden layers. The 

more number of hidden layers will definitely increase the training time. 

The number of neurons in the hidden layer is also an important fact that decides 

the convergence of a network. There are no formulae to decide the number of neurons 

depending on the number of the input or output neurons. There is a possibility that a 

network that can get trained for N neurons may not get trained forM (:;t: N) number of 

neurons. But changing the number of neurons (either decrease or increase in the number 

of the neurons) may lead to convergence of network. 



CHAPTER IV 

MODEL DEVELOPMENT AND METHODOLOGY 

Data Description 

The water pumpage data is gathered from the City of Stillwater and the Oklahoma 

State University Water Pumping Station. It is important for us to consider the combined 

water pumpage, given that the OSU Water Pumping Station and the City of Stillwater 

complement each other to meet local water demand. We have gathered the daily water 

pumpage data of the past six years (January 1986 July 1992). The data was later 

processed to obtain weekly water pumpage data, amounting to 347 data points. To 

facilitate the analysis of the data we classified the 347 data points into monthly, quarterly, 

and yearly data values. 

The Backpropagation and recurrent backpropagation needs input (or train) and test 

patterns to train and to evaluate the network respectively. To test a network's 

performance fifty test patterns are held from each set of patterns. The remaining are fed 

to the networks as input (or train) patterns. During the training process the patterns are 

fed in a strict sequential order to the network in every iteration. A maximum of fifty 

thousand iterations was set to terminate the training and to decide the network's inability 

to converge. Only one hidden layer is used to train all the models. 

21 
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In Box-Jenkins ( 1976) model there is no necessity to classify the data into 

monthly, quarterly and annual series. The forecast for the nth period is made, based on 

the history of n-1 data points. There are no input or test patterns in this method. This 

model tries to understand the data series and determines the coefficients of the forecast 

equation that it uses in forecasting the next step or steps. This model proved to be 

performing better than several other approaches in one step ahead forecast in many 

previous comparisons made with neural network models. 

Back propagation 

The internal details of the backpropagation neural network model is shown in 

Figure 3. The first layer or the input layer consists of processing elements or neurons 

which can fan out to N processing elements. The elements in this layer take in individual 

components of the input vector. In this study, the input layer consists of 4, 12 or 52 

neurons. The second layer, hidden layer, receives signals from the input layer and after 

transformation passes them on to the output layer. In all our current models the output 

layer consists of only one neuron. The hidden layer consists of 4, 15, or 60 hidden 

neurons for the input neurons of 4, 12 or 52, respectively. The momentum term is set to 

0.8 and the learning rate is set to 0.75. The models are tried with only one hidden layer. 

Recurrent Backpropagation Networks 

The two recurrent backpropagation networks considered are Jordan network and 

Experimental network. The Jordan network is one of the well known architectures of the 
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recun·ent backpropagation networks. The architecture of the Jordan net is shown in the 

Figure 4. The Figure 5 shows some more possible recurrent backpropagation 

architectures. The Experimental net is the architecture that is experimented in this study. 

The major difference in the architectures is that the output of the hidden or the output 

layer that is fed back to extra slab of input neurons. In Jordan net output of the output 

layer is fed back to the extra slab of input neurons, whereas the output of the hidden layer 

is fed back to the extra slab of input neurons in Experimental network. The nmnber of 

hidden neurons and the hidden layers is fixed in all the models. The nmnber of extra slab 

of input neurons is equal to the number of input neurons. Because of the interconnections 

between the hidden or output layer and the extra slab of input neurons. the recurrent 

backpropagation can see the data variations ahead of time and accordingly modifies the 

weights of the interconnections. Figure 6 depicts the architecture of Expetimenta1 net. 

Method of Analysis 

The data is divided, as mentioned earlier, into two parts: one is a set of training 

patterns, and the second is the set of testing pattetns. The tninimum of fifty test patterns 

are held for all models. For the input windows of 4, 12, 52 the leads tested are 1 (one 

step ahead), 4 (monthly), 12 (quarterly), and 52 (annual). The forecasting ability is 

compared based on two types of statistical parameters: measures of central tendency and 

the measures of dispersion. There are several methods used to measure the concept of 

"central tendency." In this theses we considered only the mean and medians. The mean 

gives equal weight to each observation and may be considered the "balance point" of the 
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data. The error in the data sometimes influences the mean to an unfair degree. In this 

situation we would consider median: that is, we arrange the observations in numerical 

order from the highest to lowest, or vice versa, and then select the midpoint of the 

arranged data as our average. The measures of central tendency are: MAPE (Mean 

Absolute Percentage Error), Median APE (Median Absolute Percentage Enor), MPE 

(Mean Percentage Error), MSE (Mean Square Error). The measure of dispersion can be 

used as the measure of the spread of a distribution. For some distributions (series of data) 

there is a possibility of having the same mean but the values may be spread over a wider 

region. In this case the measure of dispersion helps to find which series is better. 

Definitely, the series that is having lesser dispersion (of observations) is better than the 

series that disperses more. The measures of dispersion considered are: MD (Mean 

Deviation), MAD (Mean Absolute Deviation), Variance, Coefficient of Variance, Theil's 

U Coefficient. The descriptions of these measurements are: 

The mean percentage error is relative error expresed as a percentage. Thus to 

obtain the percentage error we multiply the relative error by hundred. 

Mean Percentage Error: 
" A.-F. 
E t I 

A. i=l I 

n 

In mean percentage error calculation the negative and positive values cancel out 

each other and the net error will be reduced to a greater extent. The comparison based 

on such values may lead to erroneous conclusions. The absolute percentage error 
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overcomes this effect by taking the absolutes to calculate the mean. Thus the Mean 

Absolute Percentage Error is considered a more robust measure. 

Mean APE: 

n 

The Mean Square error enhances the error that is appearing in absolute percentage 

error. As this is a squared error the outliers are given more weight. The comparison 

based on this measurement is better and accurate. 

n 

Mean Square Error: L(Ai-Fi)2 
i=l 

n 

The measures of dispersion compare the range of performance of a method. The 

mean deviation is one such measure. The deviation is computed with respect to the mean 

of a series. In the equation below the dispersion (of forecasted values) is measured with 

respect to the actual data series (Autobox Manual 1992). 

n 

Mean Deviation (Jl): L(Ai-Fi) 
i=l 

n 

In computing mean deviation the positive and negative deviations may cancel out 

each other. Comparison based on such value may lead to erroneous conclusions. The 

absolute deviation overcomes this affect and gives the absolute deviation from the actual 

series. 
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n 

Mean Absolute Deviation: 

n 

Because of the modulus sign which was used in the mean absolute deviation and 

the consequent awkward algebraic manipulation the mean deviation is not easy to use. 

A far more useful measure is the variance that uses the square deviation, which are all 

positive and hence de not cancel out each other. 

Variance: 

n 

The coefficient of variance can be used to give some measure of the relative 

importance of the standard deviation (square root of variance) referred to mean. For 

example: (a) A standard deviation of one ft in the measurement of the lengths of planks 

whose average length is hundred ft, (b) the same variation of one ft in the measurement 

of planks whose average length is five ft. Obviously the spread about the mean of the 

lengths in case (a) is less important than the spread in case (b). The coefficient of 

variance is used in such instances to decide the relative precision. 

Coefficient of Variance: 1 

A 
~ t (F-A)2 
n i=I 

The Theil's U-coefficient computes the goodness of the formal method as 

compared with naive method. The drawback of this measure is that its interpretation is 

not straightforward. Mathematical expression for Theil's U -coefficient is 
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Theil's U Coefficient: 



CHAPTER V 

RESULTS AND DISCUSSION 

Performances of all four models are compared based on their forecasting error. 

The error is calculated on the basis of measure of central tendency, and the measure of 

dispersion. In order to have an accurate analysis the measure of central tendency is 

calculated by four methods and the measure of dispersion is calculated by five methods. 

The analysis of these methods is summarized in figures 7-15, one for each error 

calculating method. 

In each figure four charts are shown. For the input window values of 4, 12 and 

52: the top-left, top-right, bottom-left and bottom-right depict the forecast errors for one, 

four, twelve and fifty two weeks ahead, respectively. 

Figure 7 shows mean percentage error for different models. For one week (Figure 

7 a) ahead prediction, as the input window grows, the variation in the error for experiment 

network is consistent, where as the other models vary inconsistently. For four and twelve 

weeks (Figure 7b, 7c) ahead forecast Jordan and experiment network models have better 

predictions than other models. For fifty two weeks (Figure 7d) ahead forecast Jordan net 

provided consistent results, with Experimental network model provided the next better 

results. The averages of all mean percentage errors for all models (for all combinations 

32 
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of input window and lead times) are shown in Figure 8(a). Clearly, the experiment and 

Jordan nets have least prediction percentage errors when compared to other models. 

Figure 9 shows the mean absolute percentage errors for all models. For one week, 

fifty weeks ahead forecast the Jordan net performed better than all the other models 

(Figures 9a, 9d). For four weeks (Figure 9b) ahead forecast the Experimental and Jordan 

network models performed almost equally. For twelve weeks (Figure 9c) ahead forecast 

the Experimental network model performed better than all the other models. On the 

average, from Figure 8b, the performance of the Experimental and Jordan net is almost 

the same. 

Figure 10 shows the median absolute percentage errors for all models. These 

figures support the results that are concluded from the mean absolute percentage error 

graphs (Figures 9a-9d). Though the extremities may affect the mean, the median cannot 

be affected by these extremities. The median absolute percentage error charts differ from 

that of MAPE charts only if there are extremities in the forecast. Since the Median APE 

charts are supporting the MAPE charts, we can conclude that the current forecast does not 

have any extremities. 

Figure 11 shows the mean square error for all models. For short term predictions 

(i.e., one week ahead, Figure 11a) backpropagation has highly inconsistent forecast. For 

long term (i.e., fifty two weeks ahead, Figure 11d) the traditional Box-Jenkins method 

(i.e., Autobox) is too erroneous. The Experimental and Jordan nets outperformed each 

other in twelve weeks (Figure 11c) and fifty two weeks ahead forecast, respectively. On 
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the average (Figure 8d) the Jordan net outperformed all other models, followed by 

Experimental net. 

The Figure 12 shows the mean deviations for all models. For one week ahead 

forecast (Figure 12a) the Jordan net performed better than the other models. In four 

weeks and twelve weeks (Figures 12b, 12c) ahead forecast experiment net deviated lesser 

than the other models. In fifty two weeks (Figure 12d) ahead forecast the Jordan net 

outperformed all other models. In all the figures (12a-12d), Box-Jenkins model has 

negative mean deviation that proves its tendency to under-forecast than to overcast. On 

the average (Figure 13a) the Jordan net has lesser deviation when compared to other 

models. 

The Figure 14 shows the mean absolute deviation charts for all the models. The 

lesser deviation of Jordan net in one and fifty two weeks (Figures 14a, 14d) ahead 

forecast proves its ability of forecast precision. Though the experiment net performed 

better than other nets in twelve weeks (Figure 14c) ahead forecast, it performed almost 

similar to Jordan net in four weeks (Figure 14b) ahead forecast. On the average (Figure 

13b) the Jordan net outperformed all the other models. 

The Figure 15 shows the variance for all the models. The Box-Jenkins model of 

forecasting has very little variance than the other models. This does not mean that the 

forecast of this model is very consistent but not followed the variations of the actual data 

series. This is proved by highest mean square error, mean absolute percentage error, and 

median absolute percentage error. The average variance chart (Figure 13c) explains that 

the variance of the Jordan and Experimental nets are better. 
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The Figure 16 shows the coefficient of variance of the models. As explained in 

the definition of the coefficient of variance, this parameter explains the relative 

importance of the error with respect to the mean of actual data series. Therefore smaller 

the coefficient, better the performance. In one, four, and fifty two weeks (Figures 16a, 

16b, 16d) ahead forecast the Jordan net outperformed all the other models. In twelve 

weeks (Figure 16c) ahead forecast the experiment net performed better than the other 

models. On the average (Figure 13d) the Jordan net performed better than the other 

models followed by experiment net, backpropagation and Box-Jenkins method. 

As explained earlier the interpretation of theil' s U coefficient is not straight 

forward. Briefly, smaller the value of Theil's U Coefficient, better the perfotmance. From 

the Figures 17 a-17 d, and 18 it is clearly evident that Jordan and Experimental nets have 

smaller Theil's U Coefficient values than others, hence they yield better performance. 
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TABLE I 

Convergence Details for Vmious Models 

Input 
Window 
and Lead Backpropagation Jordan Net Experimental Net 

Time 

4 - 1 23229 * 12637 

4- 4 * * * 
4- 12 * * * 
4- 52 * * * 
12 - 1 6055 8534 3912 

12 4 8015 6197 19226 

12 - 12 15378 6198 38095 

12- 52 9424 11366 

52 - 1 312 254 294 

52- 4 * 210 296 

52 12 * 265 287 

52- 52 * 183 172 

The above table represents the sutnmary of the convergence of backpropagation 

and recutTent backpropagation (Jordan and Experimental) nets. The networks that did not 

converge are represented by a "*''. The numbers represent the number of iterations 

required by the corresponding network. The backpropagation network failed to converge 

50% of the time. The Jordan network failed only in 33% of the cases. The impo1tant 

observation is that the Experimental network have the tendency to converge most of the 
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time. In this study the Experimental network converged 25% of the time which is better 

than the other two networks. 

The Figures 19 - 30 represent the rate of convergence of various tnodels 

considered. For the input window size and lead time values of 4-4, 4-12, 4-52 the rate 

of convergence is almost the same for the Backpropagation, Jordan net, and Experimental 

net. The Jordan net could not converge for the input window size and lead time value of 

4-1. 

For the input window size and lead time values of 12-4, 12-12 the Jordan net and 

Backpropagation net display a similar convergence rate. In the case of 12-1 model the 

convergence rate is similar for all the three nets. In the case of 12-52 the convergence 

rate of Jordan net is appeared to be better than the other two nets. 

In the case of input window size and lead time values of 52-1, 52-4, 52-12, and 

52-52 the Experimental net and Jordan net have the similar convergence rate. The 

convergence rate of Backpropagation net is very less for the 52-4, 52-12 and 52-52 

models. These Backpropagation net models are interrupted after 72 hours of training. 

For the 52-1 model the backpropagation network have convergence rate that is similar to 

that of Experimental net and Jordan net. 
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CHAPTER VI 

CONCLUSIONS 

From the enclosed graphs we can see that the input window does not affect the 

performance of a network. Though the variation is there in the performance in the 

network while the input window is growing the final point is again the same for almost 

all the models. The error for Experimental network is increasing for the lower forecast 

horizons. But the Experimental net performed better than traditional and backpropagation 

network for greater forecast horizons. Though the traditional method succeeded in one 

step ahead forecasting, it failed vary badly for greater forecast horizons. This implies that 

the short term forecasting can be made using traditional forecasting methods but not the 

long term. On the average the Jordan network performed better than all the networks. 

Even for short term forecasting the Jordan network did not produced greater errors when 

compared to other recurrent or backpropagation networks. The error for this particular 

network is varying very little. Especially for the long term forecasting the MSE, Theil's 

U-coefficient and coefficient of variance charts prove that Jordan network is better than 

all the other models. The Box-Jenkins model of forecasting has very little variance. This 

does not mean that the forecast of this model is very consistent but not followed the 

variations of the actual data series in building the initial model. This is proved by highest 

mean square error, mean absolute percentage error, median absolute percentage error in 
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long term forecasting. The mean deviation charts say that the Box-Jenkins model has the 

tendency to under-forecast than to over-forecast. The consistency of forecasting can be 

easily seen in mean absolute deviation and mean deviation charts. From the averages of 

the each type of error, we can rank the performance of the networks from best to worst 

order as: Jordan network, Experimental recurrent network, Backpropagation network, Box­

Jenkins model forecasting. 
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